Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCInstrInfo.h
35267 views
1
//===-- PPCInstrInfo.h - PowerPC Instruction Information --------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains the PowerPC implementation of the TargetInstrInfo class.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#ifndef LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
14
#define LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
15
16
#include "MCTargetDesc/PPCMCTargetDesc.h"
17
#include "PPC.h"
18
#include "PPCRegisterInfo.h"
19
#include "llvm/ADT/SmallSet.h"
20
#include "llvm/CodeGen/TargetInstrInfo.h"
21
22
#define GET_INSTRINFO_HEADER
23
#include "PPCGenInstrInfo.inc"
24
25
namespace llvm {
26
27
// Instructions that have an immediate form might be convertible to that
28
// form if the correct input is a result of a load immediate. In order to
29
// know whether the transformation is special, we might need to know some
30
// of the details of the two forms.
31
struct ImmInstrInfo {
32
// Is the immediate field in the immediate form signed or unsigned?
33
uint64_t SignedImm : 1;
34
// Does the immediate need to be a multiple of some value?
35
uint64_t ImmMustBeMultipleOf : 5;
36
// Is R0/X0 treated specially by the original r+r instruction?
37
// If so, in which operand?
38
uint64_t ZeroIsSpecialOrig : 3;
39
// Is R0/X0 treated specially by the new r+i instruction?
40
// If so, in which operand?
41
uint64_t ZeroIsSpecialNew : 3;
42
// Is the operation commutative?
43
uint64_t IsCommutative : 1;
44
// The operand number to check for add-immediate def.
45
uint64_t OpNoForForwarding : 3;
46
// The operand number for the immediate.
47
uint64_t ImmOpNo : 3;
48
// The opcode of the new instruction.
49
uint64_t ImmOpcode : 16;
50
// The size of the immediate.
51
uint64_t ImmWidth : 5;
52
// The immediate should be truncated to N bits.
53
uint64_t TruncateImmTo : 5;
54
// Is the instruction summing the operand
55
uint64_t IsSummingOperands : 1;
56
};
57
58
// Information required to convert an instruction to just a materialized
59
// immediate.
60
struct LoadImmediateInfo {
61
unsigned Imm : 16;
62
unsigned Is64Bit : 1;
63
unsigned SetCR : 1;
64
};
65
66
// Index into the OpcodesForSpill array.
67
enum SpillOpcodeKey {
68
SOK_Int4Spill,
69
SOK_Int8Spill,
70
SOK_Float8Spill,
71
SOK_Float4Spill,
72
SOK_CRSpill,
73
SOK_CRBitSpill,
74
SOK_VRVectorSpill,
75
SOK_VSXVectorSpill,
76
SOK_VectorFloat8Spill,
77
SOK_VectorFloat4Spill,
78
SOK_SpillToVSR,
79
SOK_PairedVecSpill,
80
SOK_AccumulatorSpill,
81
SOK_UAccumulatorSpill,
82
SOK_WAccumulatorSpill,
83
SOK_SPESpill,
84
SOK_PairedG8Spill,
85
SOK_LastOpcodeSpill // This must be last on the enum.
86
};
87
88
// PPC MachineCombiner patterns
89
enum PPCMachineCombinerPattern : unsigned {
90
// These are patterns matched by the PowerPC to reassociate FMA chains.
91
REASSOC_XY_AMM_BMM = MachineCombinerPattern::TARGET_PATTERN_START,
92
REASSOC_XMM_AMM_BMM,
93
94
// These are patterns matched by the PowerPC to reassociate FMA and FSUB to
95
// reduce register pressure.
96
REASSOC_XY_BCA,
97
REASSOC_XY_BAC,
98
99
};
100
101
// Define list of load and store spill opcodes.
102
#define NoInstr PPC::INSTRUCTION_LIST_END
103
#define Pwr8LoadOpcodes \
104
{ \
105
PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, \
106
PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX, \
107
PPC::SPILLTOVSR_LD, NoInstr, NoInstr, NoInstr, NoInstr, PPC::EVLDD, \
108
PPC::RESTORE_QUADWORD \
109
}
110
111
#define Pwr9LoadOpcodes \
112
{ \
113
PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, \
114
PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, \
115
PPC::DFLOADf32, PPC::SPILLTOVSR_LD, NoInstr, NoInstr, NoInstr, \
116
NoInstr, NoInstr, PPC::RESTORE_QUADWORD \
117
}
118
119
#define Pwr10LoadOpcodes \
120
{ \
121
PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, \
122
PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, \
123
PPC::DFLOADf32, PPC::SPILLTOVSR_LD, PPC::LXVP, PPC::RESTORE_ACC, \
124
PPC::RESTORE_UACC, NoInstr, NoInstr, PPC::RESTORE_QUADWORD \
125
}
126
127
#define FutureLoadOpcodes \
128
{ \
129
PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, \
130
PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, \
131
PPC::DFLOADf32, PPC::SPILLTOVSR_LD, PPC::LXVP, PPC::RESTORE_ACC, \
132
PPC::RESTORE_UACC, PPC::RESTORE_WACC, NoInstr, PPC::RESTORE_QUADWORD \
133
}
134
135
#define Pwr8StoreOpcodes \
136
{ \
137
PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
138
PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX, \
139
PPC::SPILLTOVSR_ST, NoInstr, NoInstr, NoInstr, NoInstr, PPC::EVSTDD, \
140
PPC::SPILL_QUADWORD \
141
}
142
143
#define Pwr9StoreOpcodes \
144
{ \
145
PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
146
PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, \
147
PPC::SPILLTOVSR_ST, NoInstr, NoInstr, NoInstr, NoInstr, NoInstr, \
148
PPC::SPILL_QUADWORD \
149
}
150
151
#define Pwr10StoreOpcodes \
152
{ \
153
PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
154
PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, \
155
PPC::SPILLTOVSR_ST, PPC::STXVP, PPC::SPILL_ACC, PPC::SPILL_UACC, \
156
NoInstr, NoInstr, PPC::SPILL_QUADWORD \
157
}
158
159
#define FutureStoreOpcodes \
160
{ \
161
PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
162
PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, \
163
PPC::SPILLTOVSR_ST, PPC::STXVP, PPC::SPILL_ACC, PPC::SPILL_UACC, \
164
PPC::SPILL_WACC, NoInstr, PPC::SPILL_QUADWORD \
165
}
166
167
// Initialize arrays for load and store spill opcodes on supported subtargets.
168
#define StoreOpcodesForSpill \
169
{ Pwr8StoreOpcodes, Pwr9StoreOpcodes, Pwr10StoreOpcodes, FutureStoreOpcodes }
170
#define LoadOpcodesForSpill \
171
{ Pwr8LoadOpcodes, Pwr9LoadOpcodes, Pwr10LoadOpcodes, FutureLoadOpcodes }
172
173
class PPCSubtarget;
174
class PPCInstrInfo : public PPCGenInstrInfo {
175
PPCSubtarget &Subtarget;
176
const PPCRegisterInfo RI;
177
const unsigned StoreSpillOpcodesArray[4][SOK_LastOpcodeSpill] =
178
StoreOpcodesForSpill;
179
const unsigned LoadSpillOpcodesArray[4][SOK_LastOpcodeSpill] =
180
LoadOpcodesForSpill;
181
182
void StoreRegToStackSlot(MachineFunction &MF, unsigned SrcReg, bool isKill,
183
int FrameIdx, const TargetRegisterClass *RC,
184
SmallVectorImpl<MachineInstr *> &NewMIs) const;
185
void LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
186
unsigned DestReg, int FrameIdx,
187
const TargetRegisterClass *RC,
188
SmallVectorImpl<MachineInstr *> &NewMIs) const;
189
190
// Replace the instruction with single LI if possible. \p DefMI must be LI or
191
// LI8.
192
bool simplifyToLI(MachineInstr &MI, MachineInstr &DefMI,
193
unsigned OpNoForForwarding, MachineInstr **KilledDef) const;
194
// If the inst is imm-form and its register operand is produced by a ADDI, put
195
// the imm into the inst directly and remove the ADDI if possible.
196
bool transformToNewImmFormFedByAdd(MachineInstr &MI, MachineInstr &DefMI,
197
unsigned OpNoForForwarding) const;
198
// If the inst is x-form and has imm-form and one of its operand is produced
199
// by a LI, put the imm into the inst directly and remove the LI if possible.
200
bool transformToImmFormFedByLI(MachineInstr &MI, const ImmInstrInfo &III,
201
unsigned ConstantOpNo,
202
MachineInstr &DefMI) const;
203
// If the inst is x-form and has imm-form and one of its operand is produced
204
// by an add-immediate, try to transform it when possible.
205
bool transformToImmFormFedByAdd(MachineInstr &MI, const ImmInstrInfo &III,
206
unsigned ConstantOpNo, MachineInstr &DefMI,
207
bool KillDefMI) const;
208
// Try to find that, if the instruction 'MI' contains any operand that
209
// could be forwarded from some inst that feeds it. If yes, return the
210
// Def of that operand. And OpNoForForwarding is the operand index in
211
// the 'MI' for that 'Def'. If we see another use of this Def between
212
// the Def and the MI, SeenIntermediateUse becomes 'true'.
213
MachineInstr *getForwardingDefMI(MachineInstr &MI,
214
unsigned &OpNoForForwarding,
215
bool &SeenIntermediateUse) const;
216
217
// Can the user MI have it's source at index \p OpNoForForwarding
218
// forwarded from an add-immediate that feeds it?
219
bool isUseMIElgibleForForwarding(MachineInstr &MI, const ImmInstrInfo &III,
220
unsigned OpNoForForwarding) const;
221
bool isDefMIElgibleForForwarding(MachineInstr &DefMI,
222
const ImmInstrInfo &III,
223
MachineOperand *&ImmMO,
224
MachineOperand *&RegMO) const;
225
bool isImmElgibleForForwarding(const MachineOperand &ImmMO,
226
const MachineInstr &DefMI,
227
const ImmInstrInfo &III,
228
int64_t &Imm,
229
int64_t BaseImm = 0) const;
230
bool isRegElgibleForForwarding(const MachineOperand &RegMO,
231
const MachineInstr &DefMI,
232
const MachineInstr &MI, bool KillDefMI,
233
bool &IsFwdFeederRegKilled,
234
bool &SeenIntermediateUse) const;
235
unsigned getSpillTarget() const;
236
ArrayRef<unsigned> getStoreOpcodesForSpillArray() const;
237
ArrayRef<unsigned> getLoadOpcodesForSpillArray() const;
238
unsigned getSpillIndex(const TargetRegisterClass *RC) const;
239
int16_t getFMAOpIdxInfo(unsigned Opcode) const;
240
void reassociateFMA(MachineInstr &Root, unsigned Pattern,
241
SmallVectorImpl<MachineInstr *> &InsInstrs,
242
SmallVectorImpl<MachineInstr *> &DelInstrs,
243
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
244
Register
245
generateLoadForNewConst(unsigned Idx, MachineInstr *MI, Type *Ty,
246
SmallVectorImpl<MachineInstr *> &InsInstrs) const;
247
virtual void anchor();
248
249
protected:
250
/// Commutes the operands in the given instruction.
251
/// The commutable operands are specified by their indices OpIdx1 and OpIdx2.
252
///
253
/// Do not call this method for a non-commutable instruction or for
254
/// non-commutable pair of operand indices OpIdx1 and OpIdx2.
255
/// Even though the instruction is commutable, the method may still
256
/// fail to commute the operands, null pointer is returned in such cases.
257
///
258
/// For example, we can commute rlwimi instructions, but only if the
259
/// rotate amt is zero. We also have to munge the immediates a bit.
260
MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
261
unsigned OpIdx1,
262
unsigned OpIdx2) const override;
263
264
public:
265
explicit PPCInstrInfo(PPCSubtarget &STI);
266
267
bool isLoadFromConstantPool(MachineInstr *I) const;
268
const Constant *getConstantFromConstantPool(MachineInstr *I) const;
269
270
/// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
271
/// such, whenever a client has an instance of instruction info, it should
272
/// always be able to get register info as well (through this method).
273
///
274
const PPCRegisterInfo &getRegisterInfo() const { return RI; }
275
276
bool isXFormMemOp(unsigned Opcode) const {
277
return get(Opcode).TSFlags & PPCII::XFormMemOp;
278
}
279
bool isPrefixed(unsigned Opcode) const {
280
return get(Opcode).TSFlags & PPCII::Prefixed;
281
}
282
bool isSExt32To64(unsigned Opcode) const {
283
return get(Opcode).TSFlags & PPCII::SExt32To64;
284
}
285
bool isZExt32To64(unsigned Opcode) const {
286
return get(Opcode).TSFlags & PPCII::ZExt32To64;
287
}
288
289
static bool isSameClassPhysRegCopy(unsigned Opcode) {
290
unsigned CopyOpcodes[] = {PPC::OR, PPC::OR8, PPC::FMR,
291
PPC::VOR, PPC::XXLOR, PPC::XXLORf,
292
PPC::XSCPSGNDP, PPC::MCRF, PPC::CROR,
293
PPC::EVOR, -1U};
294
for (int i = 0; CopyOpcodes[i] != -1U; i++)
295
if (Opcode == CopyOpcodes[i])
296
return true;
297
return false;
298
}
299
300
static bool hasPCRelFlag(unsigned TF) {
301
return TF == PPCII::MO_PCREL_FLAG || TF == PPCII::MO_GOT_TLSGD_PCREL_FLAG ||
302
TF == PPCII::MO_GOT_TLSLD_PCREL_FLAG ||
303
TF == PPCII::MO_GOT_TPREL_PCREL_FLAG ||
304
TF == PPCII::MO_TPREL_PCREL_FLAG || TF == PPCII::MO_TLS_PCREL_FLAG ||
305
TF == PPCII::MO_GOT_PCREL_FLAG;
306
}
307
308
static bool hasGOTFlag(unsigned TF) {
309
return TF == PPCII::MO_GOT_FLAG || TF == PPCII::MO_GOT_TLSGD_PCREL_FLAG ||
310
TF == PPCII::MO_GOT_TLSLD_PCREL_FLAG ||
311
TF == PPCII::MO_GOT_TPREL_PCREL_FLAG ||
312
TF == PPCII::MO_GOT_PCREL_FLAG;
313
}
314
315
static bool hasTLSFlag(unsigned TF) {
316
return TF == PPCII::MO_TLSGD_FLAG || TF == PPCII::MO_TPREL_FLAG ||
317
TF == PPCII::MO_TLSLD_FLAG || TF == PPCII::MO_TLSGDM_FLAG ||
318
TF == PPCII::MO_GOT_TLSGD_PCREL_FLAG ||
319
TF == PPCII::MO_GOT_TLSLD_PCREL_FLAG ||
320
TF == PPCII::MO_GOT_TPREL_PCREL_FLAG || TF == PPCII::MO_TPREL_LO ||
321
TF == PPCII::MO_TPREL_HA || TF == PPCII::MO_DTPREL_LO ||
322
TF == PPCII::MO_TLSLD_LO || TF == PPCII::MO_TLS ||
323
TF == PPCII::MO_TPREL_PCREL_FLAG || TF == PPCII::MO_TLS_PCREL_FLAG;
324
}
325
326
ScheduleHazardRecognizer *
327
CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
328
const ScheduleDAG *DAG) const override;
329
ScheduleHazardRecognizer *
330
CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
331
const ScheduleDAG *DAG) const override;
332
333
unsigned getInstrLatency(const InstrItineraryData *ItinData,
334
const MachineInstr &MI,
335
unsigned *PredCost = nullptr) const override;
336
337
std::optional<unsigned> getOperandLatency(const InstrItineraryData *ItinData,
338
const MachineInstr &DefMI,
339
unsigned DefIdx,
340
const MachineInstr &UseMI,
341
unsigned UseIdx) const override;
342
std::optional<unsigned> getOperandLatency(const InstrItineraryData *ItinData,
343
SDNode *DefNode, unsigned DefIdx,
344
SDNode *UseNode,
345
unsigned UseIdx) const override {
346
return PPCGenInstrInfo::getOperandLatency(ItinData, DefNode, DefIdx,
347
UseNode, UseIdx);
348
}
349
350
bool hasLowDefLatency(const TargetSchedModel &SchedModel,
351
const MachineInstr &DefMI,
352
unsigned DefIdx) const override {
353
// Machine LICM should hoist all instructions in low-register-pressure
354
// situations; none are sufficiently free to justify leaving in a loop
355
// body.
356
return false;
357
}
358
359
bool useMachineCombiner() const override {
360
return true;
361
}
362
363
/// When getMachineCombinerPatterns() finds patterns, this function generates
364
/// the instructions that could replace the original code sequence
365
void genAlternativeCodeSequence(
366
MachineInstr &Root, unsigned Pattern,
367
SmallVectorImpl<MachineInstr *> &InsInstrs,
368
SmallVectorImpl<MachineInstr *> &DelInstrs,
369
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const override;
370
371
/// Return true when there is potentially a faster code sequence for a fma
372
/// chain ending in \p Root. All potential patterns are output in the \p
373
/// P array.
374
bool getFMAPatterns(MachineInstr &Root, SmallVectorImpl<unsigned> &Patterns,
375
bool DoRegPressureReduce) const;
376
377
CombinerObjective getCombinerObjective(unsigned Pattern) const override;
378
379
/// Return true when there is potentially a faster code sequence
380
/// for an instruction chain ending in <Root>. All potential patterns are
381
/// output in the <Pattern> array.
382
bool getMachineCombinerPatterns(MachineInstr &Root,
383
SmallVectorImpl<unsigned> &Patterns,
384
bool DoRegPressureReduce) const override;
385
386
/// On PowerPC, we leverage machine combiner pass to reduce register pressure
387
/// when the register pressure is high for one BB.
388
/// Return true if register pressure for \p MBB is high and ABI is supported
389
/// to reduce register pressure. Otherwise return false.
390
bool shouldReduceRegisterPressure(
391
const MachineBasicBlock *MBB,
392
const RegisterClassInfo *RegClassInfo) const override;
393
394
/// Fixup the placeholders we put in genAlternativeCodeSequence() for
395
/// MachineCombiner.
396
void
397
finalizeInsInstrs(MachineInstr &Root, unsigned &Pattern,
398
SmallVectorImpl<MachineInstr *> &InsInstrs) const override;
399
400
bool isAssociativeAndCommutative(const MachineInstr &Inst,
401
bool Invert) const override;
402
403
/// On PowerPC, we try to reassociate FMA chain which will increase
404
/// instruction size. Set extension resource length limit to 1 for edge case.
405
/// Resource Length is calculated by scaled resource usage in getCycles().
406
/// Because of the division in getCycles(), it returns different cycles due to
407
/// legacy scaled resource usage. So new resource length may be same with
408
/// legacy or 1 bigger than legacy.
409
/// We need to execlude the 1 bigger case even the resource length is not
410
/// perserved for more FMA chain reassociations on PowerPC.
411
int getExtendResourceLenLimit() const override { return 1; }
412
413
// PowerPC specific version of setSpecialOperandAttr that copies Flags to MI
414
// and clears nuw, nsw, and exact flags.
415
using TargetInstrInfo::setSpecialOperandAttr;
416
void setSpecialOperandAttr(MachineInstr &MI, uint32_t Flags) const;
417
418
bool isCoalescableExtInstr(const MachineInstr &MI,
419
Register &SrcReg, Register &DstReg,
420
unsigned &SubIdx) const override;
421
Register isLoadFromStackSlot(const MachineInstr &MI,
422
int &FrameIndex) const override;
423
bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const override;
424
Register isStoreToStackSlot(const MachineInstr &MI,
425
int &FrameIndex) const override;
426
427
bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1,
428
unsigned &SrcOpIdx2) const override;
429
430
void insertNoop(MachineBasicBlock &MBB,
431
MachineBasicBlock::iterator MI) const override;
432
433
434
// Branch analysis.
435
bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
436
MachineBasicBlock *&FBB,
437
SmallVectorImpl<MachineOperand> &Cond,
438
bool AllowModify) const override;
439
unsigned removeBranch(MachineBasicBlock &MBB,
440
int *BytesRemoved = nullptr) const override;
441
unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
442
MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
443
const DebugLoc &DL,
444
int *BytesAdded = nullptr) const override;
445
446
// Select analysis.
447
bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
448
Register, Register, Register, int &, int &,
449
int &) const override;
450
void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
451
const DebugLoc &DL, Register DstReg,
452
ArrayRef<MachineOperand> Cond, Register TrueReg,
453
Register FalseReg) const override;
454
455
void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
456
const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg,
457
bool KillSrc) const override;
458
459
void storeRegToStackSlot(MachineBasicBlock &MBB,
460
MachineBasicBlock::iterator MBBI, Register SrcReg,
461
bool isKill, int FrameIndex,
462
const TargetRegisterClass *RC,
463
const TargetRegisterInfo *TRI,
464
Register VReg) const override;
465
466
// Emits a register spill without updating the register class for vector
467
// registers. This ensures that when we spill a vector register the
468
// element order in the register is the same as it was in memory.
469
void storeRegToStackSlotNoUpd(MachineBasicBlock &MBB,
470
MachineBasicBlock::iterator MBBI,
471
unsigned SrcReg, bool isKill, int FrameIndex,
472
const TargetRegisterClass *RC,
473
const TargetRegisterInfo *TRI) const;
474
475
void loadRegFromStackSlot(MachineBasicBlock &MBB,
476
MachineBasicBlock::iterator MBBI, Register DestReg,
477
int FrameIndex, const TargetRegisterClass *RC,
478
const TargetRegisterInfo *TRI,
479
Register VReg) const override;
480
481
// Emits a register reload without updating the register class for vector
482
// registers. This ensures that when we reload a vector register the
483
// element order in the register is the same as it was in memory.
484
void loadRegFromStackSlotNoUpd(MachineBasicBlock &MBB,
485
MachineBasicBlock::iterator MBBI,
486
unsigned DestReg, int FrameIndex,
487
const TargetRegisterClass *RC,
488
const TargetRegisterInfo *TRI) const;
489
490
unsigned getStoreOpcodeForSpill(const TargetRegisterClass *RC) const;
491
492
unsigned getLoadOpcodeForSpill(const TargetRegisterClass *RC) const;
493
494
bool
495
reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
496
497
bool foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg,
498
MachineRegisterInfo *MRI) const override;
499
500
bool onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
501
Register Reg) const;
502
503
// If conversion by predication (only supported by some branch instructions).
504
// All of the profitability checks always return true; it is always
505
// profitable to use the predicated branches.
506
bool isProfitableToIfCvt(MachineBasicBlock &MBB,
507
unsigned NumCycles, unsigned ExtraPredCycles,
508
BranchProbability Probability) const override {
509
return true;
510
}
511
512
bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
513
unsigned NumT, unsigned ExtraT,
514
MachineBasicBlock &FMBB,
515
unsigned NumF, unsigned ExtraF,
516
BranchProbability Probability) const override;
517
518
bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
519
BranchProbability Probability) const override {
520
return true;
521
}
522
523
bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
524
MachineBasicBlock &FMBB) const override {
525
return false;
526
}
527
528
// Predication support.
529
bool isPredicated(const MachineInstr &MI) const override;
530
531
bool isSchedulingBoundary(const MachineInstr &MI,
532
const MachineBasicBlock *MBB,
533
const MachineFunction &MF) const override;
534
535
bool PredicateInstruction(MachineInstr &MI,
536
ArrayRef<MachineOperand> Pred) const override;
537
538
bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
539
ArrayRef<MachineOperand> Pred2) const override;
540
541
bool ClobbersPredicate(MachineInstr &MI, std::vector<MachineOperand> &Pred,
542
bool SkipDead) const override;
543
544
// Comparison optimization.
545
546
bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
547
Register &SrcReg2, int64_t &Mask,
548
int64_t &Value) const override;
549
550
bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
551
Register SrcReg2, int64_t Mask, int64_t Value,
552
const MachineRegisterInfo *MRI) const override;
553
554
555
/// Return true if get the base operand, byte offset of an instruction and
556
/// the memory width. Width is the size of memory that is being
557
/// loaded/stored (e.g. 1, 2, 4, 8).
558
bool getMemOperandWithOffsetWidth(const MachineInstr &LdSt,
559
const MachineOperand *&BaseOp,
560
int64_t &Offset, LocationSize &Width,
561
const TargetRegisterInfo *TRI) const;
562
563
bool optimizeCmpPostRA(MachineInstr &MI) const;
564
565
/// Get the base operand and byte offset of an instruction that reads/writes
566
/// memory.
567
bool getMemOperandsWithOffsetWidth(
568
const MachineInstr &LdSt,
569
SmallVectorImpl<const MachineOperand *> &BaseOps, int64_t &Offset,
570
bool &OffsetIsScalable, LocationSize &Width,
571
const TargetRegisterInfo *TRI) const override;
572
573
/// Returns true if the two given memory operations should be scheduled
574
/// adjacent.
575
bool shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
576
int64_t Offset1, bool OffsetIsScalable1,
577
ArrayRef<const MachineOperand *> BaseOps2,
578
int64_t Offset2, bool OffsetIsScalable2,
579
unsigned ClusterSize,
580
unsigned NumBytes) const override;
581
582
/// Return true if two MIs access different memory addresses and false
583
/// otherwise
584
bool
585
areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
586
const MachineInstr &MIb) const override;
587
588
/// GetInstSize - Return the number of bytes of code the specified
589
/// instruction may be. This returns the maximum number of bytes.
590
///
591
unsigned getInstSizeInBytes(const MachineInstr &MI) const override;
592
593
MCInst getNop() const override;
594
595
std::pair<unsigned, unsigned>
596
decomposeMachineOperandsTargetFlags(unsigned TF) const override;
597
598
ArrayRef<std::pair<unsigned, const char *>>
599
getSerializableDirectMachineOperandTargetFlags() const override;
600
601
// Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
602
bool expandVSXMemPseudo(MachineInstr &MI) const;
603
604
// Lower pseudo instructions after register allocation.
605
bool expandPostRAPseudo(MachineInstr &MI) const override;
606
607
const TargetRegisterClass *updatedRC(const TargetRegisterClass *RC) const;
608
static int getRecordFormOpcode(unsigned Opcode);
609
610
bool isTOCSaveMI(const MachineInstr &MI) const;
611
612
std::pair<bool, bool>
613
isSignOrZeroExtended(const unsigned Reg, const unsigned BinOpDepth,
614
const MachineRegisterInfo *MRI) const;
615
616
// Return true if the register is sign-extended from 32 to 64 bits.
617
bool isSignExtended(const unsigned Reg,
618
const MachineRegisterInfo *MRI) const {
619
return isSignOrZeroExtended(Reg, 0, MRI).first;
620
}
621
622
// Return true if the register is zero-extended from 32 to 64 bits.
623
bool isZeroExtended(const unsigned Reg,
624
const MachineRegisterInfo *MRI) const {
625
return isSignOrZeroExtended(Reg, 0, MRI).second;
626
}
627
628
bool convertToImmediateForm(MachineInstr &MI,
629
SmallSet<Register, 4> &RegsToUpdate,
630
MachineInstr **KilledDef = nullptr) const;
631
bool foldFrameOffset(MachineInstr &MI) const;
632
bool combineRLWINM(MachineInstr &MI, MachineInstr **ToErase = nullptr) const;
633
bool isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, int64_t &Imm) const;
634
bool isADDInstrEligibleForFolding(MachineInstr &ADDMI) const;
635
bool isImmInstrEligibleForFolding(MachineInstr &MI, unsigned &BaseReg,
636
unsigned &XFormOpcode,
637
int64_t &OffsetOfImmInstr,
638
ImmInstrInfo &III) const;
639
bool isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
640
MachineInstr *&ADDIMI, int64_t &OffsetAddi,
641
int64_t OffsetImm) const;
642
643
void replaceInstrWithLI(MachineInstr &MI, const LoadImmediateInfo &LII) const;
644
void replaceInstrOperandWithImm(MachineInstr &MI, unsigned OpNo,
645
int64_t Imm) const;
646
647
bool instrHasImmForm(unsigned Opc, bool IsVFReg, ImmInstrInfo &III,
648
bool PostRA) const;
649
650
// In PostRA phase, try to find instruction defines \p Reg before \p MI.
651
// \p SeenIntermediate is set to true if uses between DefMI and \p MI exist.
652
MachineInstr *getDefMIPostRA(unsigned Reg, MachineInstr &MI,
653
bool &SeenIntermediateUse) const;
654
655
// Materialize immediate after RA.
656
void materializeImmPostRA(MachineBasicBlock &MBB,
657
MachineBasicBlock::iterator MBBI,
658
const DebugLoc &DL, Register Reg,
659
int64_t Imm) const;
660
661
/// Check \p Opcode is BDNZ (Decrement CTR and branch if it is still nonzero).
662
bool isBDNZ(unsigned Opcode) const;
663
664
/// Find the hardware loop instruction used to set-up the specified loop.
665
/// On PPC, we have two instructions used to set-up the hardware loop
666
/// (MTCTRloop, MTCTR8loop) with corresponding endloop (BDNZ, BDNZ8)
667
/// instructions to indicate the end of a loop.
668
MachineInstr *
669
findLoopInstr(MachineBasicBlock &PreHeader,
670
SmallPtrSet<MachineBasicBlock *, 8> &Visited) const;
671
672
/// Analyze loop L, which must be a single-basic-block loop, and if the
673
/// conditions can be understood enough produce a PipelinerLoopInfo object.
674
std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
675
analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override;
676
};
677
678
}
679
680
#endif
681
682