Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/RISCV/MCTargetDesc/RISCVMatInt.cpp
35294 views
1
//===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include "RISCVMatInt.h"
10
#include "MCTargetDesc/RISCVMCTargetDesc.h"
11
#include "llvm/ADT/APInt.h"
12
#include "llvm/MC/MCInstBuilder.h"
13
#include "llvm/Support/MathExtras.h"
14
using namespace llvm;
15
16
static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) {
17
if (!HasRVC)
18
return Res.size();
19
20
int Cost = 0;
21
for (auto Instr : Res) {
22
// Assume instructions that aren't listed aren't compressible.
23
bool Compressed = false;
24
switch (Instr.getOpcode()) {
25
case RISCV::SLLI:
26
case RISCV::SRLI:
27
Compressed = true;
28
break;
29
case RISCV::ADDI:
30
case RISCV::ADDIW:
31
case RISCV::LUI:
32
Compressed = isInt<6>(Instr.getImm());
33
break;
34
}
35
// Two RVC instructions take the same space as one RVI instruction, but
36
// can take longer to execute than the single RVI instruction. Thus, we
37
// consider that two RVC instruction are slightly more costly than one
38
// RVI instruction. For longer sequences of RVC instructions the space
39
// savings can be worth it, though. The costs below try to model that.
40
if (!Compressed)
41
Cost += 100; // Baseline cost of one RVI instruction: 100%.
42
else
43
Cost += 70; // 70% cost of baseline.
44
}
45
return Cost;
46
}
47
48
// Recursively generate a sequence for materializing an integer.
49
static void generateInstSeqImpl(int64_t Val, const MCSubtargetInfo &STI,
50
RISCVMatInt::InstSeq &Res) {
51
bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit);
52
53
// Use BSETI for a single bit that can't be expressed by a single LUI or ADDI.
54
if (STI.hasFeature(RISCV::FeatureStdExtZbs) && isPowerOf2_64(Val) &&
55
(!isInt<32>(Val) || Val == 0x800)) {
56
Res.emplace_back(RISCV::BSETI, Log2_64(Val));
57
return;
58
}
59
60
if (isInt<32>(Val)) {
61
// Depending on the active bits in the immediate Value v, the following
62
// instruction sequences are emitted:
63
//
64
// v == 0 : ADDI
65
// v[0,12) != 0 && v[12,32) == 0 : ADDI
66
// v[0,12) == 0 && v[12,32) != 0 : LUI
67
// v[0,32) != 0 : LUI+ADDI(W)
68
int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF;
69
int64_t Lo12 = SignExtend64<12>(Val);
70
71
if (Hi20)
72
Res.emplace_back(RISCV::LUI, Hi20);
73
74
if (Lo12 || Hi20 == 0) {
75
unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI;
76
Res.emplace_back(AddiOpc, Lo12);
77
}
78
return;
79
}
80
81
assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target");
82
83
// In the worst case, for a full 64-bit constant, a sequence of 8 instructions
84
// (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note
85
// that the first two instructions (LUI+ADDIW) can contribute up to 32 bits
86
// while the following ADDI instructions contribute up to 12 bits each.
87
//
88
// On the first glance, implementing this seems to be possible by simply
89
// emitting the most significant 32 bits (LUI+ADDIW) followed by as many left
90
// shift (SLLI) and immediate additions (ADDI) as needed. However, due to the
91
// fact that ADDI performs a sign extended addition, doing it like that would
92
// only be possible when at most 11 bits of the ADDI instructions are used.
93
// Using all 12 bits of the ADDI instructions, like done by GAS, actually
94
// requires that the constant is processed starting with the least significant
95
// bit.
96
//
97
// In the following, constants are processed from LSB to MSB but instruction
98
// emission is performed from MSB to LSB by recursively calling
99
// generateInstSeq. In each recursion, first the lowest 12 bits are removed
100
// from the constant and the optimal shift amount, which can be greater than
101
// 12 bits if the constant is sparse, is determined. Then, the shifted
102
// remaining constant is processed recursively and gets emitted as soon as it
103
// fits into 32 bits. The emission of the shifts and additions is subsequently
104
// performed when the recursion returns.
105
106
int64_t Lo12 = SignExtend64<12>(Val);
107
Val = (uint64_t)Val - (uint64_t)Lo12;
108
109
int ShiftAmount = 0;
110
bool Unsigned = false;
111
112
// Val might now be valid for LUI without needing a shift.
113
if (!isInt<32>(Val)) {
114
ShiftAmount = llvm::countr_zero((uint64_t)Val);
115
Val >>= ShiftAmount;
116
117
// If the remaining bits don't fit in 12 bits, we might be able to reduce
118
// the // shift amount in order to use LUI which will zero the lower 12
119
// bits.
120
if (ShiftAmount > 12 && !isInt<12>(Val)) {
121
if (isInt<32>((uint64_t)Val << 12)) {
122
// Reduce the shift amount and add zeros to the LSBs so it will match
123
// LUI.
124
ShiftAmount -= 12;
125
Val = (uint64_t)Val << 12;
126
} else if (isUInt<32>((uint64_t)Val << 12) &&
127
STI.hasFeature(RISCV::FeatureStdExtZba)) {
128
// Reduce the shift amount and add zeros to the LSBs so it will match
129
// LUI, then shift left with SLLI.UW to clear the upper 32 set bits.
130
ShiftAmount -= 12;
131
Val = ((uint64_t)Val << 12) | (0xffffffffull << 32);
132
Unsigned = true;
133
}
134
}
135
136
// Try to use SLLI_UW for Val when it is uint32 but not int32.
137
if (isUInt<32>((uint64_t)Val) && !isInt<32>((uint64_t)Val) &&
138
STI.hasFeature(RISCV::FeatureStdExtZba)) {
139
// Use LUI+ADDI or LUI to compose, then clear the upper 32 bits with
140
// SLLI_UW.
141
Val = ((uint64_t)Val) | (0xffffffffull << 32);
142
Unsigned = true;
143
}
144
}
145
146
generateInstSeqImpl(Val, STI, Res);
147
148
// Skip shift if we were able to use LUI directly.
149
if (ShiftAmount) {
150
unsigned Opc = Unsigned ? RISCV::SLLI_UW : RISCV::SLLI;
151
Res.emplace_back(Opc, ShiftAmount);
152
}
153
154
if (Lo12)
155
Res.emplace_back(RISCV::ADDI, Lo12);
156
}
157
158
static unsigned extractRotateInfo(int64_t Val) {
159
// for case: 0b111..1..xxxxxx1..1..
160
unsigned LeadingOnes = llvm::countl_one((uint64_t)Val);
161
unsigned TrailingOnes = llvm::countr_one((uint64_t)Val);
162
if (TrailingOnes > 0 && TrailingOnes < 64 &&
163
(LeadingOnes + TrailingOnes) > (64 - 12))
164
return 64 - TrailingOnes;
165
166
// for case: 0bxxx1..1..1...xxx
167
unsigned UpperTrailingOnes = llvm::countr_one(Hi_32(Val));
168
unsigned LowerLeadingOnes = llvm::countl_one(Lo_32(Val));
169
if (UpperTrailingOnes < 32 &&
170
(UpperTrailingOnes + LowerLeadingOnes) > (64 - 12))
171
return 32 - UpperTrailingOnes;
172
173
return 0;
174
}
175
176
static void generateInstSeqLeadingZeros(int64_t Val, const MCSubtargetInfo &STI,
177
RISCVMatInt::InstSeq &Res) {
178
assert(Val > 0 && "Expected postive val");
179
180
unsigned LeadingZeros = llvm::countl_zero((uint64_t)Val);
181
uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros;
182
// Fill in the bits that will be shifted out with 1s. An example where this
183
// helps is trailing one masks with 32 or more ones. This will generate
184
// ADDI -1 and an SRLI.
185
ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros);
186
187
RISCVMatInt::InstSeq TmpSeq;
188
generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
189
190
// Keep the new sequence if it is an improvement or the original is empty.
191
if ((TmpSeq.size() + 1) < Res.size() ||
192
(Res.empty() && TmpSeq.size() < 8)) {
193
TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
194
Res = TmpSeq;
195
}
196
197
// Some cases can benefit from filling the lower bits with zeros instead.
198
ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros);
199
TmpSeq.clear();
200
generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
201
202
// Keep the new sequence if it is an improvement or the original is empty.
203
if ((TmpSeq.size() + 1) < Res.size() ||
204
(Res.empty() && TmpSeq.size() < 8)) {
205
TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
206
Res = TmpSeq;
207
}
208
209
// If we have exactly 32 leading zeros and Zba, we can try using zext.w at
210
// the end of the sequence.
211
if (LeadingZeros == 32 && STI.hasFeature(RISCV::FeatureStdExtZba)) {
212
// Try replacing upper bits with 1.
213
uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros);
214
TmpSeq.clear();
215
generateInstSeqImpl(LeadingOnesVal, STI, TmpSeq);
216
217
// Keep the new sequence if it is an improvement.
218
if ((TmpSeq.size() + 1) < Res.size() ||
219
(Res.empty() && TmpSeq.size() < 8)) {
220
TmpSeq.emplace_back(RISCV::ADD_UW, 0);
221
Res = TmpSeq;
222
}
223
}
224
}
225
226
namespace llvm::RISCVMatInt {
227
InstSeq generateInstSeq(int64_t Val, const MCSubtargetInfo &STI) {
228
RISCVMatInt::InstSeq Res;
229
generateInstSeqImpl(Val, STI, Res);
230
231
// If the low 12 bits are non-zero, the first expansion may end with an ADDI
232
// or ADDIW. If there are trailing zeros, try generating a sign extended
233
// constant with no trailing zeros and use a final SLLI to restore them.
234
if ((Val & 0xfff) != 0 && (Val & 1) == 0 && Res.size() >= 2) {
235
unsigned TrailingZeros = llvm::countr_zero((uint64_t)Val);
236
int64_t ShiftedVal = Val >> TrailingZeros;
237
// If we can use C.LI+C.SLLI instead of LUI+ADDI(W) prefer that since
238
// its more compressible. But only if LUI+ADDI(W) isn't fusable.
239
// NOTE: We don't check for C extension to minimize differences in generated
240
// code.
241
bool IsShiftedCompressible =
242
isInt<6>(ShiftedVal) && !STI.hasFeature(RISCV::TuneLUIADDIFusion);
243
RISCVMatInt::InstSeq TmpSeq;
244
generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
245
246
// Keep the new sequence if it is an improvement.
247
if ((TmpSeq.size() + 1) < Res.size() || IsShiftedCompressible) {
248
TmpSeq.emplace_back(RISCV::SLLI, TrailingZeros);
249
Res = TmpSeq;
250
}
251
}
252
253
// If we have a 1 or 2 instruction sequence this is the best we can do. This
254
// will always be true for RV32 and will often be true for RV64.
255
if (Res.size() <= 2)
256
return Res;
257
258
assert(STI.hasFeature(RISCV::Feature64Bit) &&
259
"Expected RV32 to only need 2 instructions");
260
261
// If the lower 13 bits are something like 0x17ff, try to add 1 to change the
262
// lower 13 bits to 0x1800. We can restore this with an ADDI of -1 at the end
263
// of the sequence. Call generateInstSeqImpl on the new constant which may
264
// subtract 0xfffffffffffff800 to create another ADDI. This will leave a
265
// constant with more than 12 trailing zeros for the next recursive step.
266
if ((Val & 0xfff) != 0 && (Val & 0x1800) == 0x1000) {
267
int64_t Imm12 = -(0x800 - (Val & 0xfff));
268
int64_t AdjustedVal = Val - Imm12;
269
RISCVMatInt::InstSeq TmpSeq;
270
generateInstSeqImpl(AdjustedVal, STI, TmpSeq);
271
272
// Keep the new sequence if it is an improvement.
273
if ((TmpSeq.size() + 1) < Res.size()) {
274
TmpSeq.emplace_back(RISCV::ADDI, Imm12);
275
Res = TmpSeq;
276
}
277
}
278
279
// If the constant is positive we might be able to generate a shifted constant
280
// with no leading zeros and use a final SRLI to restore them.
281
if (Val > 0 && Res.size() > 2) {
282
generateInstSeqLeadingZeros(Val, STI, Res);
283
}
284
285
// If the constant is negative, trying inverting and using our trailing zero
286
// optimizations. Use an xori to invert the final value.
287
if (Val < 0 && Res.size() > 3) {
288
uint64_t InvertedVal = ~(uint64_t)Val;
289
RISCVMatInt::InstSeq TmpSeq;
290
generateInstSeqLeadingZeros(InvertedVal, STI, TmpSeq);
291
292
// Keep it if we found a sequence that is smaller after inverting.
293
if (!TmpSeq.empty() && (TmpSeq.size() + 1) < Res.size()) {
294
TmpSeq.emplace_back(RISCV::XORI, -1);
295
Res = TmpSeq;
296
}
297
}
298
299
// If the Low and High halves are the same, use pack. The pack instruction
300
// packs the XLEN/2-bit lower halves of rs1 and rs2 into rd, with rs1 in the
301
// lower half and rs2 in the upper half.
302
if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbkb)) {
303
int64_t LoVal = SignExtend64<32>(Val);
304
int64_t HiVal = SignExtend64<32>(Val >> 32);
305
if (LoVal == HiVal) {
306
RISCVMatInt::InstSeq TmpSeq;
307
generateInstSeqImpl(LoVal, STI, TmpSeq);
308
if ((TmpSeq.size() + 1) < Res.size()) {
309
TmpSeq.emplace_back(RISCV::PACK, 0);
310
Res = TmpSeq;
311
}
312
}
313
}
314
315
// Perform optimization with BSETI in the Zbs extension.
316
if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbs)) {
317
// Create a simm32 value for LUI+ADDIW by forcing the upper 33 bits to zero.
318
// Xor that with original value to get which bits should be set by BSETI.
319
uint64_t Lo = Val & 0x7fffffff;
320
uint64_t Hi = Val ^ Lo;
321
assert(Hi != 0);
322
RISCVMatInt::InstSeq TmpSeq;
323
324
if (Lo != 0)
325
generateInstSeqImpl(Lo, STI, TmpSeq);
326
327
if (TmpSeq.size() + llvm::popcount(Hi) < Res.size()) {
328
do {
329
TmpSeq.emplace_back(RISCV::BSETI, llvm::countr_zero(Hi));
330
Hi &= (Hi - 1); // Clear lowest set bit.
331
} while (Hi != 0);
332
Res = TmpSeq;
333
}
334
}
335
336
// Perform optimization with BCLRI in the Zbs extension.
337
if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbs)) {
338
// Create a simm32 value for LUI+ADDIW by forcing the upper 33 bits to one.
339
// Xor that with original value to get which bits should be cleared by
340
// BCLRI.
341
uint64_t Lo = Val | 0xffffffff80000000;
342
uint64_t Hi = Val ^ Lo;
343
assert(Hi != 0);
344
345
RISCVMatInt::InstSeq TmpSeq;
346
generateInstSeqImpl(Lo, STI, TmpSeq);
347
348
if (TmpSeq.size() + llvm::popcount(Hi) < Res.size()) {
349
do {
350
TmpSeq.emplace_back(RISCV::BCLRI, llvm::countr_zero(Hi));
351
Hi &= (Hi - 1); // Clear lowest set bit.
352
} while (Hi != 0);
353
Res = TmpSeq;
354
}
355
}
356
357
// Perform optimization with SH*ADD in the Zba extension.
358
if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZba)) {
359
int64_t Div = 0;
360
unsigned Opc = 0;
361
RISCVMatInt::InstSeq TmpSeq;
362
// Select the opcode and divisor.
363
if ((Val % 3) == 0 && isInt<32>(Val / 3)) {
364
Div = 3;
365
Opc = RISCV::SH1ADD;
366
} else if ((Val % 5) == 0 && isInt<32>(Val / 5)) {
367
Div = 5;
368
Opc = RISCV::SH2ADD;
369
} else if ((Val % 9) == 0 && isInt<32>(Val / 9)) {
370
Div = 9;
371
Opc = RISCV::SH3ADD;
372
}
373
// Build the new instruction sequence.
374
if (Div > 0) {
375
generateInstSeqImpl(Val / Div, STI, TmpSeq);
376
if ((TmpSeq.size() + 1) < Res.size()) {
377
TmpSeq.emplace_back(Opc, 0);
378
Res = TmpSeq;
379
}
380
} else {
381
// Try to use LUI+SH*ADD+ADDI.
382
int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull;
383
int64_t Lo12 = SignExtend64<12>(Val);
384
Div = 0;
385
if (isInt<32>(Hi52 / 3) && (Hi52 % 3) == 0) {
386
Div = 3;
387
Opc = RISCV::SH1ADD;
388
} else if (isInt<32>(Hi52 / 5) && (Hi52 % 5) == 0) {
389
Div = 5;
390
Opc = RISCV::SH2ADD;
391
} else if (isInt<32>(Hi52 / 9) && (Hi52 % 9) == 0) {
392
Div = 9;
393
Opc = RISCV::SH3ADD;
394
}
395
// Build the new instruction sequence.
396
if (Div > 0) {
397
// For Val that has zero Lo12 (implies Val equals to Hi52) should has
398
// already been processed to LUI+SH*ADD by previous optimization.
399
assert(Lo12 != 0 &&
400
"unexpected instruction sequence for immediate materialisation");
401
assert(TmpSeq.empty() && "Expected empty TmpSeq");
402
generateInstSeqImpl(Hi52 / Div, STI, TmpSeq);
403
if ((TmpSeq.size() + 2) < Res.size()) {
404
TmpSeq.emplace_back(Opc, 0);
405
TmpSeq.emplace_back(RISCV::ADDI, Lo12);
406
Res = TmpSeq;
407
}
408
}
409
}
410
}
411
412
// Perform optimization with rori in the Zbb and th.srri in the XTheadBb
413
// extension.
414
if (Res.size() > 2 && (STI.hasFeature(RISCV::FeatureStdExtZbb) ||
415
STI.hasFeature(RISCV::FeatureVendorXTHeadBb))) {
416
if (unsigned Rotate = extractRotateInfo(Val)) {
417
RISCVMatInt::InstSeq TmpSeq;
418
uint64_t NegImm12 = llvm::rotl<uint64_t>(Val, Rotate);
419
assert(isInt<12>(NegImm12));
420
TmpSeq.emplace_back(RISCV::ADDI, NegImm12);
421
TmpSeq.emplace_back(STI.hasFeature(RISCV::FeatureStdExtZbb)
422
? RISCV::RORI
423
: RISCV::TH_SRRI,
424
Rotate);
425
Res = TmpSeq;
426
}
427
}
428
return Res;
429
}
430
431
void generateMCInstSeq(int64_t Val, const MCSubtargetInfo &STI,
432
MCRegister DestReg, SmallVectorImpl<MCInst> &Insts) {
433
RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Val, STI);
434
435
MCRegister SrcReg = RISCV::X0;
436
for (RISCVMatInt::Inst &Inst : Seq) {
437
switch (Inst.getOpndKind()) {
438
case RISCVMatInt::Imm:
439
Insts.push_back(MCInstBuilder(Inst.getOpcode())
440
.addReg(DestReg)
441
.addImm(Inst.getImm()));
442
break;
443
case RISCVMatInt::RegX0:
444
Insts.push_back(MCInstBuilder(Inst.getOpcode())
445
.addReg(DestReg)
446
.addReg(SrcReg)
447
.addReg(RISCV::X0));
448
break;
449
case RISCVMatInt::RegReg:
450
Insts.push_back(MCInstBuilder(Inst.getOpcode())
451
.addReg(DestReg)
452
.addReg(SrcReg)
453
.addReg(SrcReg));
454
break;
455
case RISCVMatInt::RegImm:
456
Insts.push_back(MCInstBuilder(Inst.getOpcode())
457
.addReg(DestReg)
458
.addReg(SrcReg)
459
.addImm(Inst.getImm()));
460
break;
461
}
462
463
// Only the first instruction has X0 as its source.
464
SrcReg = DestReg;
465
}
466
}
467
468
InstSeq generateTwoRegInstSeq(int64_t Val, const MCSubtargetInfo &STI,
469
unsigned &ShiftAmt, unsigned &AddOpc) {
470
int64_t LoVal = SignExtend64<32>(Val);
471
if (LoVal == 0)
472
return RISCVMatInt::InstSeq();
473
474
// Subtract the LoVal to emulate the effect of the final ADD.
475
uint64_t Tmp = (uint64_t)Val - (uint64_t)LoVal;
476
assert(Tmp != 0);
477
478
// Use trailing zero counts to figure how far we need to shift LoVal to line
479
// up with the remaining constant.
480
// TODO: This algorithm assumes all non-zero bits in the low 32 bits of the
481
// final constant come from LoVal.
482
unsigned TzLo = llvm::countr_zero((uint64_t)LoVal);
483
unsigned TzHi = llvm::countr_zero(Tmp);
484
assert(TzLo < 32 && TzHi >= 32);
485
ShiftAmt = TzHi - TzLo;
486
AddOpc = RISCV::ADD;
487
488
if (Tmp == ((uint64_t)LoVal << ShiftAmt))
489
return RISCVMatInt::generateInstSeq(LoVal, STI);
490
491
// If we have Zba, we can use (ADD_UW X, (SLLI X, 32)).
492
if (STI.hasFeature(RISCV::FeatureStdExtZba) && Lo_32(Val) == Hi_32(Val)) {
493
ShiftAmt = 32;
494
AddOpc = RISCV::ADD_UW;
495
return RISCVMatInt::generateInstSeq(LoVal, STI);
496
}
497
498
return RISCVMatInt::InstSeq();
499
}
500
501
int getIntMatCost(const APInt &Val, unsigned Size, const MCSubtargetInfo &STI,
502
bool CompressionCost, bool FreeZeroes) {
503
bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit);
504
bool HasRVC = CompressionCost && (STI.hasFeature(RISCV::FeatureStdExtC) ||
505
STI.hasFeature(RISCV::FeatureStdExtZca));
506
int PlatRegSize = IsRV64 ? 64 : 32;
507
508
// Split the constant into platform register sized chunks, and calculate cost
509
// of each chunk.
510
int Cost = 0;
511
for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) {
512
APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize);
513
if (FreeZeroes && Chunk.getSExtValue() == 0)
514
continue;
515
InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), STI);
516
Cost += getInstSeqCost(MatSeq, HasRVC);
517
}
518
return std::max(FreeZeroes ? 0 : 1, Cost);
519
}
520
521
OpndKind Inst::getOpndKind() const {
522
switch (Opc) {
523
default:
524
llvm_unreachable("Unexpected opcode!");
525
case RISCV::LUI:
526
return RISCVMatInt::Imm;
527
case RISCV::ADD_UW:
528
return RISCVMatInt::RegX0;
529
case RISCV::SH1ADD:
530
case RISCV::SH2ADD:
531
case RISCV::SH3ADD:
532
case RISCV::PACK:
533
return RISCVMatInt::RegReg;
534
case RISCV::ADDI:
535
case RISCV::ADDIW:
536
case RISCV::XORI:
537
case RISCV::SLLI:
538
case RISCV::SRLI:
539
case RISCV::SLLI_UW:
540
case RISCV::RORI:
541
case RISCV::BSETI:
542
case RISCV::BCLRI:
543
case RISCV::TH_SRRI:
544
return RISCVMatInt::RegImm;
545
}
546
}
547
548
} // namespace llvm::RISCVMatInt
549
550