Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVISelLowering.cpp
35266 views
1
//===-- RISCVISelLowering.cpp - RISC-V DAG Lowering Implementation -------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines the interfaces that RISC-V uses to lower LLVM code into a
10
// selection DAG.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "RISCVISelLowering.h"
15
#include "MCTargetDesc/RISCVMatInt.h"
16
#include "RISCV.h"
17
#include "RISCVMachineFunctionInfo.h"
18
#include "RISCVRegisterInfo.h"
19
#include "RISCVSubtarget.h"
20
#include "RISCVTargetMachine.h"
21
#include "llvm/ADT/SmallSet.h"
22
#include "llvm/ADT/Statistic.h"
23
#include "llvm/Analysis/MemoryLocation.h"
24
#include "llvm/Analysis/VectorUtils.h"
25
#include "llvm/CodeGen/Analysis.h"
26
#include "llvm/CodeGen/MachineFrameInfo.h"
27
#include "llvm/CodeGen/MachineFunction.h"
28
#include "llvm/CodeGen/MachineInstrBuilder.h"
29
#include "llvm/CodeGen/MachineJumpTableInfo.h"
30
#include "llvm/CodeGen/MachineRegisterInfo.h"
31
#include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
32
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
33
#include "llvm/CodeGen/ValueTypes.h"
34
#include "llvm/IR/DiagnosticInfo.h"
35
#include "llvm/IR/DiagnosticPrinter.h"
36
#include "llvm/IR/IRBuilder.h"
37
#include "llvm/IR/Instructions.h"
38
#include "llvm/IR/IntrinsicsRISCV.h"
39
#include "llvm/IR/PatternMatch.h"
40
#include "llvm/Support/CommandLine.h"
41
#include "llvm/Support/Debug.h"
42
#include "llvm/Support/ErrorHandling.h"
43
#include "llvm/Support/InstructionCost.h"
44
#include "llvm/Support/KnownBits.h"
45
#include "llvm/Support/MathExtras.h"
46
#include "llvm/Support/raw_ostream.h"
47
#include <optional>
48
49
using namespace llvm;
50
51
#define DEBUG_TYPE "riscv-lower"
52
53
STATISTIC(NumTailCalls, "Number of tail calls");
54
55
static cl::opt<unsigned> ExtensionMaxWebSize(
56
DEBUG_TYPE "-ext-max-web-size", cl::Hidden,
57
cl::desc("Give the maximum size (in number of nodes) of the web of "
58
"instructions that we will consider for VW expansion"),
59
cl::init(18));
60
61
static cl::opt<bool>
62
AllowSplatInVW_W(DEBUG_TYPE "-form-vw-w-with-splat", cl::Hidden,
63
cl::desc("Allow the formation of VW_W operations (e.g., "
64
"VWADD_W) with splat constants"),
65
cl::init(false));
66
67
static cl::opt<unsigned> NumRepeatedDivisors(
68
DEBUG_TYPE "-fp-repeated-divisors", cl::Hidden,
69
cl::desc("Set the minimum number of repetitions of a divisor to allow "
70
"transformation to multiplications by the reciprocal"),
71
cl::init(2));
72
73
static cl::opt<int>
74
FPImmCost(DEBUG_TYPE "-fpimm-cost", cl::Hidden,
75
cl::desc("Give the maximum number of instructions that we will "
76
"use for creating a floating-point immediate value"),
77
cl::init(2));
78
79
static cl::opt<bool>
80
RV64LegalI32("riscv-experimental-rv64-legal-i32", cl::ReallyHidden,
81
cl::desc("Make i32 a legal type for SelectionDAG on RV64."));
82
83
RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
84
const RISCVSubtarget &STI)
85
: TargetLowering(TM), Subtarget(STI) {
86
87
RISCVABI::ABI ABI = Subtarget.getTargetABI();
88
assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
89
90
if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
91
!Subtarget.hasStdExtF()) {
92
errs() << "Hard-float 'f' ABI can't be used for a target that "
93
"doesn't support the F instruction set extension (ignoring "
94
"target-abi)\n";
95
ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
96
} else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
97
!Subtarget.hasStdExtD()) {
98
errs() << "Hard-float 'd' ABI can't be used for a target that "
99
"doesn't support the D instruction set extension (ignoring "
100
"target-abi)\n";
101
ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
102
}
103
104
switch (ABI) {
105
default:
106
report_fatal_error("Don't know how to lower this ABI");
107
case RISCVABI::ABI_ILP32:
108
case RISCVABI::ABI_ILP32E:
109
case RISCVABI::ABI_LP64E:
110
case RISCVABI::ABI_ILP32F:
111
case RISCVABI::ABI_ILP32D:
112
case RISCVABI::ABI_LP64:
113
case RISCVABI::ABI_LP64F:
114
case RISCVABI::ABI_LP64D:
115
break;
116
}
117
118
MVT XLenVT = Subtarget.getXLenVT();
119
120
// Set up the register classes.
121
addRegisterClass(XLenVT, &RISCV::GPRRegClass);
122
if (Subtarget.is64Bit() && RV64LegalI32)
123
addRegisterClass(MVT::i32, &RISCV::GPRRegClass);
124
125
if (Subtarget.hasStdExtZfhmin())
126
addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
127
if (Subtarget.hasStdExtZfbfmin())
128
addRegisterClass(MVT::bf16, &RISCV::FPR16RegClass);
129
if (Subtarget.hasStdExtF())
130
addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
131
if (Subtarget.hasStdExtD())
132
addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
133
if (Subtarget.hasStdExtZhinxmin())
134
addRegisterClass(MVT::f16, &RISCV::GPRF16RegClass);
135
if (Subtarget.hasStdExtZfinx())
136
addRegisterClass(MVT::f32, &RISCV::GPRF32RegClass);
137
if (Subtarget.hasStdExtZdinx()) {
138
if (Subtarget.is64Bit())
139
addRegisterClass(MVT::f64, &RISCV::GPRRegClass);
140
else
141
addRegisterClass(MVT::f64, &RISCV::GPRPairRegClass);
142
}
143
144
static const MVT::SimpleValueType BoolVecVTs[] = {
145
MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1,
146
MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
147
static const MVT::SimpleValueType IntVecVTs[] = {
148
MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8,
149
MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16,
150
MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
151
MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
152
MVT::nxv4i64, MVT::nxv8i64};
153
static const MVT::SimpleValueType F16VecVTs[] = {
154
MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16,
155
MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
156
static const MVT::SimpleValueType BF16VecVTs[] = {
157
MVT::nxv1bf16, MVT::nxv2bf16, MVT::nxv4bf16,
158
MVT::nxv8bf16, MVT::nxv16bf16, MVT::nxv32bf16};
159
static const MVT::SimpleValueType F32VecVTs[] = {
160
MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
161
static const MVT::SimpleValueType F64VecVTs[] = {
162
MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
163
164
if (Subtarget.hasVInstructions()) {
165
auto addRegClassForRVV = [this](MVT VT) {
166
// Disable the smallest fractional LMUL types if ELEN is less than
167
// RVVBitsPerBlock.
168
unsigned MinElts = RISCV::RVVBitsPerBlock / Subtarget.getELen();
169
if (VT.getVectorMinNumElements() < MinElts)
170
return;
171
172
unsigned Size = VT.getSizeInBits().getKnownMinValue();
173
const TargetRegisterClass *RC;
174
if (Size <= RISCV::RVVBitsPerBlock)
175
RC = &RISCV::VRRegClass;
176
else if (Size == 2 * RISCV::RVVBitsPerBlock)
177
RC = &RISCV::VRM2RegClass;
178
else if (Size == 4 * RISCV::RVVBitsPerBlock)
179
RC = &RISCV::VRM4RegClass;
180
else if (Size == 8 * RISCV::RVVBitsPerBlock)
181
RC = &RISCV::VRM8RegClass;
182
else
183
llvm_unreachable("Unexpected size");
184
185
addRegisterClass(VT, RC);
186
};
187
188
for (MVT VT : BoolVecVTs)
189
addRegClassForRVV(VT);
190
for (MVT VT : IntVecVTs) {
191
if (VT.getVectorElementType() == MVT::i64 &&
192
!Subtarget.hasVInstructionsI64())
193
continue;
194
addRegClassForRVV(VT);
195
}
196
197
if (Subtarget.hasVInstructionsF16Minimal())
198
for (MVT VT : F16VecVTs)
199
addRegClassForRVV(VT);
200
201
if (Subtarget.hasVInstructionsBF16())
202
for (MVT VT : BF16VecVTs)
203
addRegClassForRVV(VT);
204
205
if (Subtarget.hasVInstructionsF32())
206
for (MVT VT : F32VecVTs)
207
addRegClassForRVV(VT);
208
209
if (Subtarget.hasVInstructionsF64())
210
for (MVT VT : F64VecVTs)
211
addRegClassForRVV(VT);
212
213
if (Subtarget.useRVVForFixedLengthVectors()) {
214
auto addRegClassForFixedVectors = [this](MVT VT) {
215
MVT ContainerVT = getContainerForFixedLengthVector(VT);
216
unsigned RCID = getRegClassIDForVecVT(ContainerVT);
217
const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
218
addRegisterClass(VT, TRI.getRegClass(RCID));
219
};
220
for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
221
if (useRVVForFixedLengthVectorVT(VT))
222
addRegClassForFixedVectors(VT);
223
224
for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
225
if (useRVVForFixedLengthVectorVT(VT))
226
addRegClassForFixedVectors(VT);
227
}
228
}
229
230
// Compute derived properties from the register classes.
231
computeRegisterProperties(STI.getRegisterInfo());
232
233
setStackPointerRegisterToSaveRestore(RISCV::X2);
234
235
setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, XLenVT,
236
MVT::i1, Promote);
237
// DAGCombiner can call isLoadExtLegal for types that aren't legal.
238
setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::i32,
239
MVT::i1, Promote);
240
241
// TODO: add all necessary setOperationAction calls.
242
setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
243
244
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
245
setOperationAction(ISD::BR_CC, XLenVT, Expand);
246
if (RV64LegalI32 && Subtarget.is64Bit())
247
setOperationAction(ISD::BR_CC, MVT::i32, Expand);
248
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
249
setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
250
if (RV64LegalI32 && Subtarget.is64Bit())
251
setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
252
253
if (!Subtarget.hasVendorXCValu())
254
setCondCodeAction(ISD::SETLE, XLenVT, Expand);
255
setCondCodeAction(ISD::SETGT, XLenVT, Custom);
256
setCondCodeAction(ISD::SETGE, XLenVT, Expand);
257
if (!Subtarget.hasVendorXCValu())
258
setCondCodeAction(ISD::SETULE, XLenVT, Expand);
259
setCondCodeAction(ISD::SETUGT, XLenVT, Custom);
260
setCondCodeAction(ISD::SETUGE, XLenVT, Expand);
261
262
if (RV64LegalI32 && Subtarget.is64Bit())
263
setOperationAction(ISD::SETCC, MVT::i32, Promote);
264
265
setOperationAction({ISD::STACKSAVE, ISD::STACKRESTORE}, MVT::Other, Expand);
266
267
setOperationAction(ISD::VASTART, MVT::Other, Custom);
268
setOperationAction({ISD::VAARG, ISD::VACOPY, ISD::VAEND}, MVT::Other, Expand);
269
if (RV64LegalI32 && Subtarget.is64Bit())
270
setOperationAction(ISD::VAARG, MVT::i32, Promote);
271
272
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
273
274
setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
275
276
if (!Subtarget.hasStdExtZbb() && !Subtarget.hasVendorXTHeadBb())
277
setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::i8, MVT::i16}, Expand);
278
279
if (Subtarget.is64Bit()) {
280
setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
281
282
if (!RV64LegalI32) {
283
setOperationAction(ISD::LOAD, MVT::i32, Custom);
284
setOperationAction({ISD::ADD, ISD::SUB, ISD::SHL, ISD::SRA, ISD::SRL},
285
MVT::i32, Custom);
286
setOperationAction({ISD::UADDO, ISD::USUBO, ISD::UADDSAT, ISD::USUBSAT},
287
MVT::i32, Custom);
288
if (!Subtarget.hasStdExtZbb())
289
setOperationAction({ISD::SADDSAT, ISD::SSUBSAT}, MVT::i32, Custom);
290
} else {
291
setOperationAction(ISD::SSUBO, MVT::i32, Custom);
292
if (Subtarget.hasStdExtZbb()) {
293
setOperationAction({ISD::SADDSAT, ISD::SSUBSAT}, MVT::i32, Custom);
294
setOperationAction({ISD::UADDSAT, ISD::USUBSAT}, MVT::i32, Custom);
295
}
296
}
297
setOperationAction(ISD::SADDO, MVT::i32, Custom);
298
}
299
if (!Subtarget.hasStdExtZmmul()) {
300
setOperationAction({ISD::MUL, ISD::MULHS, ISD::MULHU}, XLenVT, Expand);
301
if (RV64LegalI32 && Subtarget.is64Bit())
302
setOperationAction(ISD::MUL, MVT::i32, Promote);
303
} else if (Subtarget.is64Bit()) {
304
setOperationAction(ISD::MUL, MVT::i128, Custom);
305
if (!RV64LegalI32)
306
setOperationAction(ISD::MUL, MVT::i32, Custom);
307
else
308
setOperationAction(ISD::SMULO, MVT::i32, Custom);
309
} else {
310
setOperationAction(ISD::MUL, MVT::i64, Custom);
311
}
312
313
if (!Subtarget.hasStdExtM()) {
314
setOperationAction({ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM},
315
XLenVT, Expand);
316
if (RV64LegalI32 && Subtarget.is64Bit())
317
setOperationAction({ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM}, MVT::i32,
318
Promote);
319
} else if (Subtarget.is64Bit()) {
320
if (!RV64LegalI32)
321
setOperationAction({ISD::SDIV, ISD::UDIV, ISD::UREM},
322
{MVT::i8, MVT::i16, MVT::i32}, Custom);
323
}
324
325
if (RV64LegalI32 && Subtarget.is64Bit()) {
326
setOperationAction({ISD::MULHS, ISD::MULHU}, MVT::i32, Expand);
327
setOperationAction(
328
{ISD::SDIVREM, ISD::UDIVREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI}, MVT::i32,
329
Expand);
330
}
331
332
setOperationAction(
333
{ISD::SDIVREM, ISD::UDIVREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI}, XLenVT,
334
Expand);
335
336
setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, XLenVT,
337
Custom);
338
339
if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) {
340
if (!RV64LegalI32 && Subtarget.is64Bit())
341
setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom);
342
} else if (Subtarget.hasVendorXTHeadBb()) {
343
if (Subtarget.is64Bit())
344
setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom);
345
setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Custom);
346
} else if (Subtarget.hasVendorXCVbitmanip()) {
347
setOperationAction(ISD::ROTL, XLenVT, Expand);
348
} else {
349
setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Expand);
350
if (RV64LegalI32 && Subtarget.is64Bit())
351
setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Expand);
352
}
353
354
// With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
355
// pattern match it directly in isel.
356
setOperationAction(ISD::BSWAP, XLenVT,
357
(Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb() ||
358
Subtarget.hasVendorXTHeadBb())
359
? Legal
360
: Expand);
361
if (RV64LegalI32 && Subtarget.is64Bit())
362
setOperationAction(ISD::BSWAP, MVT::i32,
363
(Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb() ||
364
Subtarget.hasVendorXTHeadBb())
365
? Promote
366
: Expand);
367
368
369
if (Subtarget.hasVendorXCVbitmanip()) {
370
setOperationAction(ISD::BITREVERSE, XLenVT, Legal);
371
} else {
372
// Zbkb can use rev8+brev8 to implement bitreverse.
373
setOperationAction(ISD::BITREVERSE, XLenVT,
374
Subtarget.hasStdExtZbkb() ? Custom : Expand);
375
}
376
377
if (Subtarget.hasStdExtZbb()) {
378
setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, XLenVT,
379
Legal);
380
if (RV64LegalI32 && Subtarget.is64Bit())
381
setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, MVT::i32,
382
Promote);
383
384
if (Subtarget.is64Bit()) {
385
if (RV64LegalI32)
386
setOperationAction(ISD::CTTZ, MVT::i32, Legal);
387
else
388
setOperationAction({ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF}, MVT::i32, Custom);
389
}
390
} else if (!Subtarget.hasVendorXCVbitmanip()) {
391
setOperationAction({ISD::CTTZ, ISD::CTPOP}, XLenVT, Expand);
392
if (RV64LegalI32 && Subtarget.is64Bit())
393
setOperationAction({ISD::CTTZ, ISD::CTPOP}, MVT::i32, Expand);
394
}
395
396
if (Subtarget.hasStdExtZbb() || Subtarget.hasVendorXTHeadBb() ||
397
Subtarget.hasVendorXCVbitmanip()) {
398
// We need the custom lowering to make sure that the resulting sequence
399
// for the 32bit case is efficient on 64bit targets.
400
if (Subtarget.is64Bit()) {
401
if (RV64LegalI32) {
402
setOperationAction(ISD::CTLZ, MVT::i32,
403
Subtarget.hasStdExtZbb() ? Legal : Promote);
404
if (!Subtarget.hasStdExtZbb())
405
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
406
} else
407
setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, MVT::i32, Custom);
408
}
409
} else {
410
setOperationAction(ISD::CTLZ, XLenVT, Expand);
411
if (RV64LegalI32 && Subtarget.is64Bit())
412
setOperationAction(ISD::CTLZ, MVT::i32, Expand);
413
}
414
415
if (!RV64LegalI32 && Subtarget.is64Bit() &&
416
!Subtarget.hasShortForwardBranchOpt())
417
setOperationAction(ISD::ABS, MVT::i32, Custom);
418
419
// We can use PseudoCCSUB to implement ABS.
420
if (Subtarget.hasShortForwardBranchOpt())
421
setOperationAction(ISD::ABS, XLenVT, Legal);
422
423
if (!Subtarget.hasVendorXTHeadCondMov()) {
424
setOperationAction(ISD::SELECT, XLenVT, Custom);
425
if (RV64LegalI32 && Subtarget.is64Bit())
426
setOperationAction(ISD::SELECT, MVT::i32, Promote);
427
}
428
429
static const unsigned FPLegalNodeTypes[] = {
430
ISD::FMINNUM, ISD::FMAXNUM, ISD::LRINT,
431
ISD::LLRINT, ISD::LROUND, ISD::LLROUND,
432
ISD::STRICT_LRINT, ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
433
ISD::STRICT_LLROUND, ISD::STRICT_FMA, ISD::STRICT_FADD,
434
ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV,
435
ISD::STRICT_FSQRT, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
436
437
static const ISD::CondCode FPCCToExpand[] = {
438
ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
439
ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
440
ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO};
441
442
static const unsigned FPOpToExpand[] = {
443
ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW,
444
ISD::FREM};
445
446
static const unsigned FPRndMode[] = {
447
ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FRINT, ISD::FROUND,
448
ISD::FROUNDEVEN};
449
450
if (Subtarget.hasStdExtZfhminOrZhinxmin())
451
setOperationAction(ISD::BITCAST, MVT::i16, Custom);
452
453
static const unsigned ZfhminZfbfminPromoteOps[] = {
454
ISD::FMINNUM, ISD::FMAXNUM, ISD::FADD,
455
ISD::FSUB, ISD::FMUL, ISD::FMA,
456
ISD::FDIV, ISD::FSQRT, ISD::FABS,
457
ISD::FNEG, ISD::STRICT_FMA, ISD::STRICT_FADD,
458
ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV,
459
ISD::STRICT_FSQRT, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS,
460
ISD::SETCC, ISD::FCEIL, ISD::FFLOOR,
461
ISD::FTRUNC, ISD::FRINT, ISD::FROUND,
462
ISD::FROUNDEVEN, ISD::SELECT};
463
464
if (Subtarget.hasStdExtZfbfmin()) {
465
setOperationAction(ISD::BITCAST, MVT::i16, Custom);
466
setOperationAction(ISD::BITCAST, MVT::bf16, Custom);
467
setOperationAction(ISD::FP_ROUND, MVT::bf16, Custom);
468
setOperationAction(ISD::FP_EXTEND, MVT::f32, Custom);
469
setOperationAction(ISD::FP_EXTEND, MVT::f64, Custom);
470
setOperationAction(ISD::ConstantFP, MVT::bf16, Expand);
471
setOperationAction(ISD::SELECT_CC, MVT::bf16, Expand);
472
setOperationAction(ISD::BR_CC, MVT::bf16, Expand);
473
setOperationAction(ZfhminZfbfminPromoteOps, MVT::bf16, Promote);
474
setOperationAction(ISD::FREM, MVT::bf16, Promote);
475
// FIXME: Need to promote bf16 FCOPYSIGN to f32, but the
476
// DAGCombiner::visitFP_ROUND probably needs improvements first.
477
setOperationAction(ISD::FCOPYSIGN, MVT::bf16, Expand);
478
}
479
480
if (Subtarget.hasStdExtZfhminOrZhinxmin()) {
481
if (Subtarget.hasStdExtZfhOrZhinx()) {
482
setOperationAction(FPLegalNodeTypes, MVT::f16, Legal);
483
setOperationAction(FPRndMode, MVT::f16,
484
Subtarget.hasStdExtZfa() ? Legal : Custom);
485
setOperationAction(ISD::SELECT, MVT::f16, Custom);
486
setOperationAction(ISD::IS_FPCLASS, MVT::f16, Custom);
487
} else {
488
setOperationAction(ZfhminZfbfminPromoteOps, MVT::f16, Promote);
489
setOperationAction({ISD::STRICT_LRINT, ISD::STRICT_LLRINT,
490
ISD::STRICT_LROUND, ISD::STRICT_LLROUND},
491
MVT::f16, Legal);
492
// FIXME: Need to promote f16 FCOPYSIGN to f32, but the
493
// DAGCombiner::visitFP_ROUND probably needs improvements first.
494
setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
495
}
496
497
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
498
setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
499
setCondCodeAction(FPCCToExpand, MVT::f16, Expand);
500
setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
501
setOperationAction(ISD::BR_CC, MVT::f16, Expand);
502
503
setOperationAction(ISD::FNEARBYINT, MVT::f16,
504
Subtarget.hasStdExtZfa() ? Legal : Promote);
505
setOperationAction({ISD::FREM, ISD::FPOW, ISD::FPOWI,
506
ISD::FCOS, ISD::FSIN, ISD::FSINCOS, ISD::FEXP,
507
ISD::FEXP2, ISD::FEXP10, ISD::FLOG, ISD::FLOG2,
508
ISD::FLOG10},
509
MVT::f16, Promote);
510
511
// FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
512
// complete support for all operations in LegalizeDAG.
513
setOperationAction({ISD::STRICT_FCEIL, ISD::STRICT_FFLOOR,
514
ISD::STRICT_FNEARBYINT, ISD::STRICT_FRINT,
515
ISD::STRICT_FROUND, ISD::STRICT_FROUNDEVEN,
516
ISD::STRICT_FTRUNC},
517
MVT::f16, Promote);
518
519
// We need to custom promote this.
520
if (Subtarget.is64Bit())
521
setOperationAction(ISD::FPOWI, MVT::i32, Custom);
522
523
setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, MVT::f16,
524
Subtarget.hasStdExtZfa() ? Legal : Custom);
525
}
526
527
if (Subtarget.hasStdExtFOrZfinx()) {
528
setOperationAction(FPLegalNodeTypes, MVT::f32, Legal);
529
setOperationAction(FPRndMode, MVT::f32,
530
Subtarget.hasStdExtZfa() ? Legal : Custom);
531
setCondCodeAction(FPCCToExpand, MVT::f32, Expand);
532
setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
533
setOperationAction(ISD::SELECT, MVT::f32, Custom);
534
setOperationAction(ISD::BR_CC, MVT::f32, Expand);
535
setOperationAction(FPOpToExpand, MVT::f32, Expand);
536
setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
537
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
538
setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::bf16, Expand);
539
setTruncStoreAction(MVT::f32, MVT::bf16, Expand);
540
setOperationAction(ISD::IS_FPCLASS, MVT::f32, Custom);
541
setOperationAction(ISD::BF16_TO_FP, MVT::f32, Custom);
542
setOperationAction(ISD::FP_TO_BF16, MVT::f32,
543
Subtarget.isSoftFPABI() ? LibCall : Custom);
544
setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
545
setOperationAction(ISD::FP16_TO_FP, MVT::f32, Custom);
546
547
if (Subtarget.hasStdExtZfa()) {
548
setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
549
setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, MVT::f32, Legal);
550
} else {
551
setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, MVT::f32, Custom);
552
}
553
}
554
555
if (Subtarget.hasStdExtFOrZfinx() && Subtarget.is64Bit())
556
setOperationAction(ISD::BITCAST, MVT::i32, Custom);
557
558
if (Subtarget.hasStdExtDOrZdinx()) {
559
setOperationAction(FPLegalNodeTypes, MVT::f64, Legal);
560
561
if (!Subtarget.is64Bit())
562
setOperationAction(ISD::BITCAST, MVT::i64, Custom);
563
564
if (Subtarget.hasStdExtZfa()) {
565
setOperationAction(FPRndMode, MVT::f64, Legal);
566
setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
567
setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, MVT::f64, Legal);
568
} else {
569
if (Subtarget.is64Bit())
570
setOperationAction(FPRndMode, MVT::f64, Custom);
571
572
setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, MVT::f64, Custom);
573
}
574
575
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
576
setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
577
setCondCodeAction(FPCCToExpand, MVT::f64, Expand);
578
setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
579
setOperationAction(ISD::SELECT, MVT::f64, Custom);
580
setOperationAction(ISD::BR_CC, MVT::f64, Expand);
581
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
582
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
583
setOperationAction(FPOpToExpand, MVT::f64, Expand);
584
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
585
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
586
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::bf16, Expand);
587
setTruncStoreAction(MVT::f64, MVT::bf16, Expand);
588
setOperationAction(ISD::IS_FPCLASS, MVT::f64, Custom);
589
setOperationAction(ISD::BF16_TO_FP, MVT::f64, Custom);
590
setOperationAction(ISD::FP_TO_BF16, MVT::f64,
591
Subtarget.isSoftFPABI() ? LibCall : Custom);
592
setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
593
setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
594
}
595
596
if (Subtarget.is64Bit()) {
597
setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT,
598
ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT},
599
MVT::i32, Custom);
600
setOperationAction(ISD::LROUND, MVT::i32, Custom);
601
}
602
603
if (Subtarget.hasStdExtFOrZfinx()) {
604
setOperationAction({ISD::FP_TO_UINT_SAT, ISD::FP_TO_SINT_SAT}, XLenVT,
605
Custom);
606
607
setOperationAction({ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT,
608
ISD::STRICT_UINT_TO_FP, ISD::STRICT_SINT_TO_FP},
609
XLenVT, Legal);
610
611
if (RV64LegalI32 && Subtarget.is64Bit())
612
setOperationAction({ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT,
613
ISD::STRICT_UINT_TO_FP, ISD::STRICT_SINT_TO_FP},
614
MVT::i32, Legal);
615
616
setOperationAction(ISD::GET_ROUNDING, XLenVT, Custom);
617
setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
618
}
619
620
setOperationAction({ISD::GlobalAddress, ISD::BlockAddress, ISD::ConstantPool,
621
ISD::JumpTable},
622
XLenVT, Custom);
623
624
setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
625
626
if (Subtarget.is64Bit())
627
setOperationAction(ISD::Constant, MVT::i64, Custom);
628
629
// TODO: On M-mode only targets, the cycle[h]/time[h] CSR may not be present.
630
// Unfortunately this can't be determined just from the ISA naming string.
631
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
632
Subtarget.is64Bit() ? Legal : Custom);
633
setOperationAction(ISD::READSTEADYCOUNTER, MVT::i64,
634
Subtarget.is64Bit() ? Legal : Custom);
635
636
setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Legal);
637
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
638
if (Subtarget.is64Bit())
639
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
640
641
if (Subtarget.hasStdExtZicbop()) {
642
setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
643
}
644
645
if (Subtarget.hasStdExtA()) {
646
setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
647
if (Subtarget.hasStdExtZabha() && Subtarget.hasStdExtZacas())
648
setMinCmpXchgSizeInBits(8);
649
else
650
setMinCmpXchgSizeInBits(32);
651
} else if (Subtarget.hasForcedAtomics()) {
652
setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
653
} else {
654
setMaxAtomicSizeInBitsSupported(0);
655
}
656
657
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
658
659
setBooleanContents(ZeroOrOneBooleanContent);
660
661
if (getTargetMachine().getTargetTriple().isOSLinux()) {
662
// Custom lowering of llvm.clear_cache.
663
setOperationAction(ISD::CLEAR_CACHE, MVT::Other, Custom);
664
}
665
666
if (Subtarget.hasVInstructions()) {
667
setBooleanVectorContents(ZeroOrOneBooleanContent);
668
669
setOperationAction(ISD::VSCALE, XLenVT, Custom);
670
if (RV64LegalI32 && Subtarget.is64Bit())
671
setOperationAction(ISD::VSCALE, MVT::i32, Custom);
672
673
// RVV intrinsics may have illegal operands.
674
// We also need to custom legalize vmv.x.s.
675
setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN,
676
ISD::INTRINSIC_VOID},
677
{MVT::i8, MVT::i16}, Custom);
678
if (Subtarget.is64Bit())
679
setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID},
680
MVT::i32, Custom);
681
else
682
setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
683
MVT::i64, Custom);
684
685
setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID},
686
MVT::Other, Custom);
687
688
static const unsigned IntegerVPOps[] = {
689
ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL,
690
ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM,
691
ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR,
692
ISD::VP_XOR, ISD::VP_SRA, ISD::VP_SRL,
693
ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND,
694
ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX,
695
ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
696
ISD::VP_MERGE, ISD::VP_SELECT, ISD::VP_FP_TO_SINT,
697
ISD::VP_FP_TO_UINT, ISD::VP_SETCC, ISD::VP_SIGN_EXTEND,
698
ISD::VP_ZERO_EXTEND, ISD::VP_TRUNCATE, ISD::VP_SMIN,
699
ISD::VP_SMAX, ISD::VP_UMIN, ISD::VP_UMAX,
700
ISD::VP_ABS, ISD::EXPERIMENTAL_VP_REVERSE, ISD::EXPERIMENTAL_VP_SPLICE,
701
ISD::VP_SADDSAT, ISD::VP_UADDSAT, ISD::VP_SSUBSAT,
702
ISD::VP_USUBSAT, ISD::VP_CTTZ_ELTS, ISD::VP_CTTZ_ELTS_ZERO_UNDEF,
703
ISD::EXPERIMENTAL_VP_SPLAT};
704
705
static const unsigned FloatingPointVPOps[] = {
706
ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL,
707
ISD::VP_FDIV, ISD::VP_FNEG, ISD::VP_FABS,
708
ISD::VP_FMA, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
709
ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_MERGE,
710
ISD::VP_SELECT, ISD::VP_SINT_TO_FP, ISD::VP_UINT_TO_FP,
711
ISD::VP_SETCC, ISD::VP_FP_ROUND, ISD::VP_FP_EXTEND,
712
ISD::VP_SQRT, ISD::VP_FMINNUM, ISD::VP_FMAXNUM,
713
ISD::VP_FCEIL, ISD::VP_FFLOOR, ISD::VP_FROUND,
714
ISD::VP_FROUNDEVEN, ISD::VP_FCOPYSIGN, ISD::VP_FROUNDTOZERO,
715
ISD::VP_FRINT, ISD::VP_FNEARBYINT, ISD::VP_IS_FPCLASS,
716
ISD::VP_FMINIMUM, ISD::VP_FMAXIMUM, ISD::VP_LRINT,
717
ISD::VP_LLRINT, ISD::EXPERIMENTAL_VP_REVERSE,
718
ISD::EXPERIMENTAL_VP_SPLICE, ISD::VP_REDUCE_FMINIMUM,
719
ISD::VP_REDUCE_FMAXIMUM, ISD::EXPERIMENTAL_VP_SPLAT};
720
721
static const unsigned IntegerVecReduceOps[] = {
722
ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
723
ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
724
ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN};
725
726
static const unsigned FloatingPointVecReduceOps[] = {
727
ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_FMIN,
728
ISD::VECREDUCE_FMAX, ISD::VECREDUCE_FMINIMUM, ISD::VECREDUCE_FMAXIMUM};
729
730
if (!Subtarget.is64Bit()) {
731
// We must custom-lower certain vXi64 operations on RV32 due to the vector
732
// element type being illegal.
733
setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
734
MVT::i64, Custom);
735
736
setOperationAction(IntegerVecReduceOps, MVT::i64, Custom);
737
738
setOperationAction({ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND,
739
ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR,
740
ISD::VP_REDUCE_SMAX, ISD::VP_REDUCE_SMIN,
741
ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN},
742
MVT::i64, Custom);
743
}
744
745
for (MVT VT : BoolVecVTs) {
746
if (!isTypeLegal(VT))
747
continue;
748
749
setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
750
751
// Mask VTs are custom-expanded into a series of standard nodes
752
setOperationAction({ISD::TRUNCATE, ISD::CONCAT_VECTORS,
753
ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR,
754
ISD::SCALAR_TO_VECTOR},
755
VT, Custom);
756
757
setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
758
Custom);
759
760
setOperationAction(ISD::SELECT, VT, Custom);
761
setOperationAction(
762
{ISD::SELECT_CC, ISD::VSELECT, ISD::VP_MERGE, ISD::VP_SELECT}, VT,
763
Expand);
764
765
setOperationAction({ISD::VP_CTTZ_ELTS, ISD::VP_CTTZ_ELTS_ZERO_UNDEF}, VT,
766
Custom);
767
768
setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR}, VT, Custom);
769
770
setOperationAction(
771
{ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
772
Custom);
773
774
setOperationAction(
775
{ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
776
Custom);
777
778
// RVV has native int->float & float->int conversions where the
779
// element type sizes are within one power-of-two of each other. Any
780
// wider distances between type sizes have to be lowered as sequences
781
// which progressively narrow the gap in stages.
782
setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT,
783
ISD::FP_TO_UINT, ISD::STRICT_SINT_TO_FP,
784
ISD::STRICT_UINT_TO_FP, ISD::STRICT_FP_TO_SINT,
785
ISD::STRICT_FP_TO_UINT},
786
VT, Custom);
787
setOperationAction({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}, VT,
788
Custom);
789
790
// Expand all extending loads to types larger than this, and truncating
791
// stores from types larger than this.
792
for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
793
setTruncStoreAction(VT, OtherVT, Expand);
794
setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, VT,
795
OtherVT, Expand);
796
}
797
798
setOperationAction({ISD::VP_FP_TO_SINT, ISD::VP_FP_TO_UINT,
799
ISD::VP_TRUNCATE, ISD::VP_SETCC},
800
VT, Custom);
801
802
setOperationAction(ISD::VECTOR_DEINTERLEAVE, VT, Custom);
803
setOperationAction(ISD::VECTOR_INTERLEAVE, VT, Custom);
804
805
setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
806
807
setOperationAction(ISD::EXPERIMENTAL_VP_SPLICE, VT, Custom);
808
setOperationAction(ISD::EXPERIMENTAL_VP_REVERSE, VT, Custom);
809
810
setOperationPromotedToType(
811
ISD::VECTOR_SPLICE, VT,
812
MVT::getVectorVT(MVT::i8, VT.getVectorElementCount()));
813
}
814
815
for (MVT VT : IntVecVTs) {
816
if (!isTypeLegal(VT))
817
continue;
818
819
setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
820
setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
821
822
// Vectors implement MULHS/MULHU.
823
setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Expand);
824
825
// nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
826
if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV())
827
setOperationAction({ISD::MULHU, ISD::MULHS}, VT, Expand);
828
829
setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, VT,
830
Legal);
831
832
setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Custom);
833
834
// Custom-lower extensions and truncations from/to mask types.
835
setOperationAction({ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND},
836
VT, Custom);
837
838
// RVV has native int->float & float->int conversions where the
839
// element type sizes are within one power-of-two of each other. Any
840
// wider distances between type sizes have to be lowered as sequences
841
// which progressively narrow the gap in stages.
842
setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT,
843
ISD::FP_TO_UINT, ISD::STRICT_SINT_TO_FP,
844
ISD::STRICT_UINT_TO_FP, ISD::STRICT_FP_TO_SINT,
845
ISD::STRICT_FP_TO_UINT},
846
VT, Custom);
847
setOperationAction({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}, VT,
848
Custom);
849
setOperationAction({ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS,
850
ISD::AVGCEILU, ISD::SADDSAT, ISD::UADDSAT,
851
ISD::SSUBSAT, ISD::USUBSAT},
852
VT, Legal);
853
854
// Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
855
// nodes which truncate by one power of two at a time.
856
setOperationAction(ISD::TRUNCATE, VT, Custom);
857
858
// Custom-lower insert/extract operations to simplify patterns.
859
setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
860
Custom);
861
862
// Custom-lower reduction operations to set up the corresponding custom
863
// nodes' operands.
864
setOperationAction(IntegerVecReduceOps, VT, Custom);
865
866
setOperationAction(IntegerVPOps, VT, Custom);
867
868
setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
869
870
setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
871
VT, Custom);
872
873
setOperationAction(
874
{ISD::VP_LOAD, ISD::VP_STORE, ISD::EXPERIMENTAL_VP_STRIDED_LOAD,
875
ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER, ISD::VP_SCATTER},
876
VT, Custom);
877
878
setOperationAction({ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR,
879
ISD::EXTRACT_SUBVECTOR, ISD::SCALAR_TO_VECTOR},
880
VT, Custom);
881
882
setOperationAction(ISD::SELECT, VT, Custom);
883
setOperationAction(ISD::SELECT_CC, VT, Expand);
884
885
setOperationAction({ISD::STEP_VECTOR, ISD::VECTOR_REVERSE}, VT, Custom);
886
887
for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
888
setTruncStoreAction(VT, OtherVT, Expand);
889
setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, VT,
890
OtherVT, Expand);
891
}
892
893
setOperationAction(ISD::VECTOR_DEINTERLEAVE, VT, Custom);
894
setOperationAction(ISD::VECTOR_INTERLEAVE, VT, Custom);
895
896
// Splice
897
setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
898
899
if (Subtarget.hasStdExtZvkb()) {
900
setOperationAction(ISD::BSWAP, VT, Legal);
901
setOperationAction(ISD::VP_BSWAP, VT, Custom);
902
} else {
903
setOperationAction({ISD::BSWAP, ISD::VP_BSWAP}, VT, Expand);
904
setOperationAction({ISD::ROTL, ISD::ROTR}, VT, Expand);
905
}
906
907
if (Subtarget.hasStdExtZvbb()) {
908
setOperationAction(ISD::BITREVERSE, VT, Legal);
909
setOperationAction(ISD::VP_BITREVERSE, VT, Custom);
910
setOperationAction({ISD::VP_CTLZ, ISD::VP_CTLZ_ZERO_UNDEF, ISD::VP_CTTZ,
911
ISD::VP_CTTZ_ZERO_UNDEF, ISD::VP_CTPOP},
912
VT, Custom);
913
} else {
914
setOperationAction({ISD::BITREVERSE, ISD::VP_BITREVERSE}, VT, Expand);
915
setOperationAction({ISD::CTLZ, ISD::CTTZ, ISD::CTPOP}, VT, Expand);
916
setOperationAction({ISD::VP_CTLZ, ISD::VP_CTLZ_ZERO_UNDEF, ISD::VP_CTTZ,
917
ISD::VP_CTTZ_ZERO_UNDEF, ISD::VP_CTPOP},
918
VT, Expand);
919
920
// Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if element of VT in the
921
// range of f32.
922
EVT FloatVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
923
if (isTypeLegal(FloatVT)) {
924
setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF,
925
ISD::CTTZ_ZERO_UNDEF, ISD::VP_CTLZ,
926
ISD::VP_CTLZ_ZERO_UNDEF, ISD::VP_CTTZ_ZERO_UNDEF},
927
VT, Custom);
928
}
929
}
930
}
931
932
// Expand various CCs to best match the RVV ISA, which natively supports UNE
933
// but no other unordered comparisons, and supports all ordered comparisons
934
// except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
935
// purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
936
// and we pattern-match those back to the "original", swapping operands once
937
// more. This way we catch both operations and both "vf" and "fv" forms with
938
// fewer patterns.
939
static const ISD::CondCode VFPCCToExpand[] = {
940
ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
941
ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
942
ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE,
943
};
944
945
// TODO: support more ops.
946
static const unsigned ZvfhminPromoteOps[] = {
947
ISD::FMINNUM, ISD::FMAXNUM, ISD::FADD, ISD::FSUB,
948
ISD::FMUL, ISD::FMA, ISD::FDIV, ISD::FSQRT,
949
ISD::FABS, ISD::FNEG, ISD::FCOPYSIGN, ISD::FCEIL,
950
ISD::FFLOOR, ISD::FROUND, ISD::FROUNDEVEN, ISD::FRINT,
951
ISD::FNEARBYINT, ISD::IS_FPCLASS, ISD::SETCC, ISD::FMAXIMUM,
952
ISD::FMINIMUM, ISD::STRICT_FADD, ISD::STRICT_FSUB, ISD::STRICT_FMUL,
953
ISD::STRICT_FDIV, ISD::STRICT_FSQRT, ISD::STRICT_FMA};
954
955
// TODO: support more vp ops.
956
static const unsigned ZvfhminPromoteVPOps[] = {
957
ISD::VP_FADD, ISD::VP_FSUB, ISD::VP_FMUL,
958
ISD::VP_FDIV, ISD::VP_FNEG, ISD::VP_FABS,
959
ISD::VP_FMA, ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
960
ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX, ISD::VP_SQRT,
961
ISD::VP_FMINNUM, ISD::VP_FMAXNUM, ISD::VP_FCEIL,
962
ISD::VP_FFLOOR, ISD::VP_FROUND, ISD::VP_FROUNDEVEN,
963
ISD::VP_FCOPYSIGN, ISD::VP_FROUNDTOZERO, ISD::VP_FRINT,
964
ISD::VP_FNEARBYINT, ISD::VP_SETCC, ISD::VP_FMINIMUM,
965
ISD::VP_FMAXIMUM, ISD::VP_REDUCE_FMINIMUM, ISD::VP_REDUCE_FMAXIMUM};
966
967
// Sets common operation actions on RVV floating-point vector types.
968
const auto SetCommonVFPActions = [&](MVT VT) {
969
setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
970
// RVV has native FP_ROUND & FP_EXTEND conversions where the element type
971
// sizes are within one power-of-two of each other. Therefore conversions
972
// between vXf16 and vXf64 must be lowered as sequences which convert via
973
// vXf32.
974
setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
975
setOperationAction({ISD::LRINT, ISD::LLRINT}, VT, Custom);
976
// Custom-lower insert/extract operations to simplify patterns.
977
setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
978
Custom);
979
// Expand various condition codes (explained above).
980
setCondCodeAction(VFPCCToExpand, VT, Expand);
981
982
setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, VT, Legal);
983
setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM}, VT, Custom);
984
985
setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND,
986
ISD::FROUNDEVEN, ISD::FRINT, ISD::FNEARBYINT,
987
ISD::IS_FPCLASS},
988
VT, Custom);
989
990
setOperationAction(FloatingPointVecReduceOps, VT, Custom);
991
992
// Expand FP operations that need libcalls.
993
setOperationAction(ISD::FREM, VT, Expand);
994
setOperationAction(ISD::FPOW, VT, Expand);
995
setOperationAction(ISD::FCOS, VT, Expand);
996
setOperationAction(ISD::FSIN, VT, Expand);
997
setOperationAction(ISD::FSINCOS, VT, Expand);
998
setOperationAction(ISD::FEXP, VT, Expand);
999
setOperationAction(ISD::FEXP2, VT, Expand);
1000
setOperationAction(ISD::FEXP10, VT, Expand);
1001
setOperationAction(ISD::FLOG, VT, Expand);
1002
setOperationAction(ISD::FLOG2, VT, Expand);
1003
setOperationAction(ISD::FLOG10, VT, Expand);
1004
1005
setOperationAction(ISD::FCOPYSIGN, VT, Legal);
1006
1007
setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
1008
1009
setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
1010
VT, Custom);
1011
1012
setOperationAction(
1013
{ISD::VP_LOAD, ISD::VP_STORE, ISD::EXPERIMENTAL_VP_STRIDED_LOAD,
1014
ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER, ISD::VP_SCATTER},
1015
VT, Custom);
1016
1017
setOperationAction(ISD::SELECT, VT, Custom);
1018
setOperationAction(ISD::SELECT_CC, VT, Expand);
1019
1020
setOperationAction({ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR,
1021
ISD::EXTRACT_SUBVECTOR, ISD::SCALAR_TO_VECTOR},
1022
VT, Custom);
1023
1024
setOperationAction(ISD::VECTOR_DEINTERLEAVE, VT, Custom);
1025
setOperationAction(ISD::VECTOR_INTERLEAVE, VT, Custom);
1026
1027
setOperationAction({ISD::VECTOR_REVERSE, ISD::VECTOR_SPLICE}, VT, Custom);
1028
1029
setOperationAction(FloatingPointVPOps, VT, Custom);
1030
1031
setOperationAction({ISD::STRICT_FP_EXTEND, ISD::STRICT_FP_ROUND}, VT,
1032
Custom);
1033
setOperationAction({ISD::STRICT_FADD, ISD::STRICT_FSUB, ISD::STRICT_FMUL,
1034
ISD::STRICT_FDIV, ISD::STRICT_FSQRT, ISD::STRICT_FMA},
1035
VT, Legal);
1036
setOperationAction({ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS,
1037
ISD::STRICT_FTRUNC, ISD::STRICT_FCEIL,
1038
ISD::STRICT_FFLOOR, ISD::STRICT_FROUND,
1039
ISD::STRICT_FROUNDEVEN, ISD::STRICT_FNEARBYINT},
1040
VT, Custom);
1041
};
1042
1043
// Sets common extload/truncstore actions on RVV floating-point vector
1044
// types.
1045
const auto SetCommonVFPExtLoadTruncStoreActions =
1046
[&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
1047
for (auto SmallVT : SmallerVTs) {
1048
setTruncStoreAction(VT, SmallVT, Expand);
1049
setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
1050
}
1051
};
1052
1053
if (Subtarget.hasVInstructionsF16()) {
1054
for (MVT VT : F16VecVTs) {
1055
if (!isTypeLegal(VT))
1056
continue;
1057
SetCommonVFPActions(VT);
1058
}
1059
} else if (Subtarget.hasVInstructionsF16Minimal()) {
1060
for (MVT VT : F16VecVTs) {
1061
if (!isTypeLegal(VT))
1062
continue;
1063
setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
1064
setOperationAction({ISD::STRICT_FP_ROUND, ISD::STRICT_FP_EXTEND}, VT,
1065
Custom);
1066
setOperationAction({ISD::VP_FP_ROUND, ISD::VP_FP_EXTEND}, VT, Custom);
1067
setOperationAction({ISD::VP_MERGE, ISD::VP_SELECT, ISD::SELECT}, VT,
1068
Custom);
1069
setOperationAction(ISD::SELECT_CC, VT, Expand);
1070
setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP,
1071
ISD::VP_SINT_TO_FP, ISD::VP_UINT_TO_FP},
1072
VT, Custom);
1073
setOperationAction({ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR,
1074
ISD::EXTRACT_SUBVECTOR},
1075
VT, Custom);
1076
if (Subtarget.hasStdExtZfhmin())
1077
setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
1078
// load/store
1079
setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
1080
1081
// Custom split nxv32f16 since nxv32f32 if not legal.
1082
if (VT == MVT::nxv32f16) {
1083
setOperationAction(ZvfhminPromoteOps, VT, Custom);
1084
setOperationAction(ZvfhminPromoteVPOps, VT, Custom);
1085
continue;
1086
}
1087
// Add more promote ops.
1088
MVT F32VecVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
1089
setOperationPromotedToType(ZvfhminPromoteOps, VT, F32VecVT);
1090
setOperationPromotedToType(ZvfhminPromoteVPOps, VT, F32VecVT);
1091
}
1092
}
1093
1094
// TODO: Could we merge some code with zvfhmin?
1095
if (Subtarget.hasVInstructionsBF16()) {
1096
for (MVT VT : BF16VecVTs) {
1097
if (!isTypeLegal(VT))
1098
continue;
1099
setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
1100
setOperationAction({ISD::VP_FP_ROUND, ISD::VP_FP_EXTEND}, VT, Custom);
1101
setOperationAction({ISD::STRICT_FP_ROUND, ISD::STRICT_FP_EXTEND}, VT,
1102
Custom);
1103
setOperationAction({ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR,
1104
ISD::EXTRACT_SUBVECTOR},
1105
VT, Custom);
1106
setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
1107
if (Subtarget.hasStdExtZfbfmin())
1108
setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
1109
setOperationAction({ISD::VP_MERGE, ISD::VP_SELECT, ISD::SELECT}, VT,
1110
Custom);
1111
setOperationAction(ISD::SELECT_CC, VT, Expand);
1112
// TODO: Promote to fp32.
1113
}
1114
}
1115
1116
if (Subtarget.hasVInstructionsF32()) {
1117
for (MVT VT : F32VecVTs) {
1118
if (!isTypeLegal(VT))
1119
continue;
1120
SetCommonVFPActions(VT);
1121
SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
1122
}
1123
}
1124
1125
if (Subtarget.hasVInstructionsF64()) {
1126
for (MVT VT : F64VecVTs) {
1127
if (!isTypeLegal(VT))
1128
continue;
1129
SetCommonVFPActions(VT);
1130
SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
1131
SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
1132
}
1133
}
1134
1135
if (Subtarget.useRVVForFixedLengthVectors()) {
1136
for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
1137
if (!useRVVForFixedLengthVectorVT(VT))
1138
continue;
1139
1140
// By default everything must be expanded.
1141
for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
1142
setOperationAction(Op, VT, Expand);
1143
for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
1144
setTruncStoreAction(VT, OtherVT, Expand);
1145
setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, VT,
1146
OtherVT, Expand);
1147
}
1148
1149
// Custom lower fixed vector undefs to scalable vector undefs to avoid
1150
// expansion to a build_vector of 0s.
1151
setOperationAction(ISD::UNDEF, VT, Custom);
1152
1153
// We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
1154
setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
1155
Custom);
1156
1157
setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS}, VT,
1158
Custom);
1159
1160
setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
1161
VT, Custom);
1162
1163
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
1164
1165
setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
1166
1167
setOperationAction(ISD::SETCC, VT, Custom);
1168
1169
setOperationAction(ISD::SELECT, VT, Custom);
1170
1171
setOperationAction(ISD::TRUNCATE, VT, Custom);
1172
1173
setOperationAction(ISD::BITCAST, VT, Custom);
1174
1175
setOperationAction(
1176
{ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
1177
Custom);
1178
1179
setOperationAction(
1180
{ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
1181
Custom);
1182
1183
setOperationAction(
1184
{
1185
ISD::SINT_TO_FP,
1186
ISD::UINT_TO_FP,
1187
ISD::FP_TO_SINT,
1188
ISD::FP_TO_UINT,
1189
ISD::STRICT_SINT_TO_FP,
1190
ISD::STRICT_UINT_TO_FP,
1191
ISD::STRICT_FP_TO_SINT,
1192
ISD::STRICT_FP_TO_UINT,
1193
},
1194
VT, Custom);
1195
setOperationAction({ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT}, VT,
1196
Custom);
1197
1198
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
1199
1200
// Operations below are different for between masks and other vectors.
1201
if (VT.getVectorElementType() == MVT::i1) {
1202
setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, ISD::AND,
1203
ISD::OR, ISD::XOR},
1204
VT, Custom);
1205
1206
setOperationAction({ISD::VP_FP_TO_SINT, ISD::VP_FP_TO_UINT,
1207
ISD::VP_SETCC, ISD::VP_TRUNCATE},
1208
VT, Custom);
1209
1210
setOperationAction(ISD::EXPERIMENTAL_VP_SPLICE, VT, Custom);
1211
setOperationAction(ISD::EXPERIMENTAL_VP_REVERSE, VT, Custom);
1212
continue;
1213
}
1214
1215
// Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to
1216
// it before type legalization for i64 vectors on RV32. It will then be
1217
// type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle.
1218
// FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
1219
// improvements first.
1220
if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
1221
setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
1222
setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
1223
}
1224
1225
setOperationAction(
1226
{ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom);
1227
1228
setOperationAction({ISD::VP_LOAD, ISD::VP_STORE,
1229
ISD::EXPERIMENTAL_VP_STRIDED_LOAD,
1230
ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER,
1231
ISD::VP_SCATTER},
1232
VT, Custom);
1233
1234
setOperationAction({ISD::ADD, ISD::MUL, ISD::SUB, ISD::AND, ISD::OR,
1235
ISD::XOR, ISD::SDIV, ISD::SREM, ISD::UDIV,
1236
ISD::UREM, ISD::SHL, ISD::SRA, ISD::SRL},
1237
VT, Custom);
1238
1239
setOperationAction(
1240
{ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::ABS}, VT, Custom);
1241
1242
setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Custom);
1243
1244
// vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
1245
if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV())
1246
setOperationAction({ISD::MULHS, ISD::MULHU}, VT, Custom);
1247
1248
setOperationAction({ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS,
1249
ISD::AVGCEILU, ISD::SADDSAT, ISD::UADDSAT,
1250
ISD::SSUBSAT, ISD::USUBSAT},
1251
VT, Custom);
1252
1253
setOperationAction(ISD::VSELECT, VT, Custom);
1254
1255
setOperationAction(
1256
{ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, VT, Custom);
1257
1258
// Custom-lower reduction operations to set up the corresponding custom
1259
// nodes' operands.
1260
setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_SMAX,
1261
ISD::VECREDUCE_SMIN, ISD::VECREDUCE_UMAX,
1262
ISD::VECREDUCE_UMIN},
1263
VT, Custom);
1264
1265
setOperationAction(IntegerVPOps, VT, Custom);
1266
1267
if (Subtarget.hasStdExtZvkb())
1268
setOperationAction({ISD::BSWAP, ISD::ROTL, ISD::ROTR}, VT, Custom);
1269
1270
if (Subtarget.hasStdExtZvbb()) {
1271
setOperationAction({ISD::BITREVERSE, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF,
1272
ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTPOP},
1273
VT, Custom);
1274
} else {
1275
// Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if element of VT in the
1276
// range of f32.
1277
EVT FloatVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
1278
if (isTypeLegal(FloatVT))
1279
setOperationAction(
1280
{ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
1281
Custom);
1282
}
1283
}
1284
1285
for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
1286
// There are no extending loads or truncating stores.
1287
for (MVT InnerVT : MVT::fp_fixedlen_vector_valuetypes()) {
1288
setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
1289
setTruncStoreAction(VT, InnerVT, Expand);
1290
}
1291
1292
if (!useRVVForFixedLengthVectorVT(VT))
1293
continue;
1294
1295
// By default everything must be expanded.
1296
for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
1297
setOperationAction(Op, VT, Expand);
1298
1299
// Custom lower fixed vector undefs to scalable vector undefs to avoid
1300
// expansion to a build_vector of 0s.
1301
setOperationAction(ISD::UNDEF, VT, Custom);
1302
1303
setOperationAction({ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR,
1304
ISD::EXTRACT_SUBVECTOR},
1305
VT, Custom);
1306
1307
// FIXME: mload, mstore, mgather, mscatter, vp_load/store,
1308
// vp_stride_load/store, vp_gather/scatter can be hoisted to here.
1309
setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
1310
1311
setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
1312
setOperationAction({ISD::STRICT_FP_ROUND, ISD::STRICT_FP_EXTEND}, VT,
1313
Custom);
1314
1315
if (VT.getVectorElementType() == MVT::f16 &&
1316
!Subtarget.hasVInstructionsF16()) {
1317
setOperationAction({ISD::VP_FP_ROUND, ISD::VP_FP_EXTEND}, VT, Custom);
1318
setOperationAction(
1319
{ISD::VP_MERGE, ISD::VP_SELECT, ISD::VSELECT, ISD::SELECT}, VT,
1320
Custom);
1321
setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP,
1322
ISD::VP_SINT_TO_FP, ISD::VP_UINT_TO_FP},
1323
VT, Custom);
1324
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
1325
if (Subtarget.hasStdExtZfhmin()) {
1326
// FIXME: We should prefer BUILD_VECTOR over SPLAT_VECTOR.
1327
setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
1328
} else {
1329
// We need to custom legalize f16 build vectors if Zfhmin isn't
1330
// available.
1331
setOperationAction(ISD::BUILD_VECTOR, MVT::f16, Custom);
1332
}
1333
MVT F32VecVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
1334
// Don't promote f16 vector operations to f32 if f32 vector type is
1335
// not legal.
1336
// TODO: could split the f16 vector into two vectors and do promotion.
1337
if (!isTypeLegal(F32VecVT))
1338
continue;
1339
setOperationPromotedToType(ZvfhminPromoteOps, VT, F32VecVT);
1340
setOperationPromotedToType(ZvfhminPromoteVPOps, VT, F32VecVT);
1341
continue;
1342
}
1343
1344
if (VT.getVectorElementType() == MVT::bf16) {
1345
setOperationAction({ISD::VP_FP_ROUND, ISD::VP_FP_EXTEND}, VT, Custom);
1346
// FIXME: We should prefer BUILD_VECTOR over SPLAT_VECTOR.
1347
setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
1348
setOperationAction(
1349
{ISD::VP_MERGE, ISD::VP_SELECT, ISD::VSELECT, ISD::SELECT}, VT,
1350
Custom);
1351
// TODO: Promote to fp32.
1352
continue;
1353
}
1354
1355
setOperationAction({ISD::BUILD_VECTOR, ISD::VECTOR_SHUFFLE,
1356
ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
1357
VT, Custom);
1358
1359
setOperationAction(
1360
{ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom);
1361
1362
setOperationAction({ISD::VP_LOAD, ISD::VP_STORE,
1363
ISD::EXPERIMENTAL_VP_STRIDED_LOAD,
1364
ISD::EXPERIMENTAL_VP_STRIDED_STORE, ISD::VP_GATHER,
1365
ISD::VP_SCATTER},
1366
VT, Custom);
1367
1368
setOperationAction({ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV,
1369
ISD::FNEG, ISD::FABS, ISD::FCOPYSIGN, ISD::FSQRT,
1370
ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM,
1371
ISD::IS_FPCLASS, ISD::FMAXIMUM, ISD::FMINIMUM},
1372
VT, Custom);
1373
1374
setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND,
1375
ISD::FROUNDEVEN, ISD::FRINT, ISD::FNEARBYINT},
1376
VT, Custom);
1377
1378
setCondCodeAction(VFPCCToExpand, VT, Expand);
1379
1380
setOperationAction(ISD::SETCC, VT, Custom);
1381
setOperationAction({ISD::VSELECT, ISD::SELECT}, VT, Custom);
1382
1383
setOperationAction(ISD::BITCAST, VT, Custom);
1384
1385
setOperationAction(FloatingPointVecReduceOps, VT, Custom);
1386
1387
setOperationAction(FloatingPointVPOps, VT, Custom);
1388
1389
setOperationAction(
1390
{ISD::STRICT_FADD, ISD::STRICT_FSUB, ISD::STRICT_FMUL,
1391
ISD::STRICT_FDIV, ISD::STRICT_FSQRT, ISD::STRICT_FMA,
1392
ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS, ISD::STRICT_FTRUNC,
1393
ISD::STRICT_FCEIL, ISD::STRICT_FFLOOR, ISD::STRICT_FROUND,
1394
ISD::STRICT_FROUNDEVEN, ISD::STRICT_FNEARBYINT},
1395
VT, Custom);
1396
}
1397
1398
// Custom-legalize bitcasts from fixed-length vectors to scalar types.
1399
setOperationAction(ISD::BITCAST, {MVT::i8, MVT::i16, MVT::i32}, Custom);
1400
if (Subtarget.is64Bit())
1401
setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1402
if (Subtarget.hasStdExtZfhminOrZhinxmin())
1403
setOperationAction(ISD::BITCAST, MVT::f16, Custom);
1404
if (Subtarget.hasStdExtFOrZfinx())
1405
setOperationAction(ISD::BITCAST, MVT::f32, Custom);
1406
if (Subtarget.hasStdExtDOrZdinx())
1407
setOperationAction(ISD::BITCAST, MVT::f64, Custom);
1408
}
1409
}
1410
1411
if (Subtarget.hasStdExtA()) {
1412
setOperationAction(ISD::ATOMIC_LOAD_SUB, XLenVT, Expand);
1413
if (RV64LegalI32 && Subtarget.is64Bit())
1414
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
1415
}
1416
1417
if (Subtarget.hasForcedAtomics()) {
1418
// Force __sync libcalls to be emitted for atomic rmw/cas operations.
1419
setOperationAction(
1420
{ISD::ATOMIC_CMP_SWAP, ISD::ATOMIC_SWAP, ISD::ATOMIC_LOAD_ADD,
1421
ISD::ATOMIC_LOAD_SUB, ISD::ATOMIC_LOAD_AND, ISD::ATOMIC_LOAD_OR,
1422
ISD::ATOMIC_LOAD_XOR, ISD::ATOMIC_LOAD_NAND, ISD::ATOMIC_LOAD_MIN,
1423
ISD::ATOMIC_LOAD_MAX, ISD::ATOMIC_LOAD_UMIN, ISD::ATOMIC_LOAD_UMAX},
1424
XLenVT, LibCall);
1425
}
1426
1427
if (Subtarget.hasVendorXTHeadMemIdx()) {
1428
for (unsigned im : {ISD::PRE_INC, ISD::POST_INC}) {
1429
setIndexedLoadAction(im, MVT::i8, Legal);
1430
setIndexedStoreAction(im, MVT::i8, Legal);
1431
setIndexedLoadAction(im, MVT::i16, Legal);
1432
setIndexedStoreAction(im, MVT::i16, Legal);
1433
setIndexedLoadAction(im, MVT::i32, Legal);
1434
setIndexedStoreAction(im, MVT::i32, Legal);
1435
1436
if (Subtarget.is64Bit()) {
1437
setIndexedLoadAction(im, MVT::i64, Legal);
1438
setIndexedStoreAction(im, MVT::i64, Legal);
1439
}
1440
}
1441
}
1442
1443
if (Subtarget.hasVendorXCVmem()) {
1444
setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
1445
setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
1446
setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal);
1447
1448
setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal);
1449
setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal);
1450
setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal);
1451
}
1452
1453
if (Subtarget.hasVendorXCValu()) {
1454
setOperationAction(ISD::ABS, XLenVT, Legal);
1455
setOperationAction(ISD::SMIN, XLenVT, Legal);
1456
setOperationAction(ISD::UMIN, XLenVT, Legal);
1457
setOperationAction(ISD::SMAX, XLenVT, Legal);
1458
setOperationAction(ISD::UMAX, XLenVT, Legal);
1459
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Legal);
1460
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
1461
}
1462
1463
// Function alignments.
1464
const Align FunctionAlignment(Subtarget.hasStdExtCOrZca() ? 2 : 4);
1465
setMinFunctionAlignment(FunctionAlignment);
1466
// Set preferred alignments.
1467
setPrefFunctionAlignment(Subtarget.getPrefFunctionAlignment());
1468
setPrefLoopAlignment(Subtarget.getPrefLoopAlignment());
1469
1470
setTargetDAGCombine({ISD::INTRINSIC_VOID, ISD::INTRINSIC_W_CHAIN,
1471
ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::MUL,
1472
ISD::AND, ISD::OR, ISD::XOR, ISD::SETCC, ISD::SELECT});
1473
if (Subtarget.is64Bit())
1474
setTargetDAGCombine(ISD::SRA);
1475
1476
if (Subtarget.hasStdExtFOrZfinx())
1477
setTargetDAGCombine({ISD::FADD, ISD::FMAXNUM, ISD::FMINNUM});
1478
1479
if (Subtarget.hasStdExtZbb())
1480
setTargetDAGCombine({ISD::UMAX, ISD::UMIN, ISD::SMAX, ISD::SMIN});
1481
1482
if ((Subtarget.hasStdExtZbs() && Subtarget.is64Bit()) ||
1483
Subtarget.hasStdExtV())
1484
setTargetDAGCombine(ISD::TRUNCATE);
1485
1486
if (Subtarget.hasStdExtZbkb())
1487
setTargetDAGCombine(ISD::BITREVERSE);
1488
if (Subtarget.hasStdExtZfhminOrZhinxmin())
1489
setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1490
if (Subtarget.hasStdExtFOrZfinx())
1491
setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT,
1492
ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT});
1493
if (Subtarget.hasVInstructions())
1494
setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER,
1495
ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL,
1496
ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR,
1497
ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS,
1498
ISD::EXPERIMENTAL_VP_REVERSE, ISD::MUL,
1499
ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM,
1500
ISD::INSERT_VECTOR_ELT, ISD::ABS});
1501
if (Subtarget.hasVendorXTHeadMemPair())
1502
setTargetDAGCombine({ISD::LOAD, ISD::STORE});
1503
if (Subtarget.useRVVForFixedLengthVectors())
1504
setTargetDAGCombine(ISD::BITCAST);
1505
1506
setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
1507
setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
1508
1509
// Disable strict node mutation.
1510
IsStrictFPEnabled = true;
1511
1512
// Let the subtarget decide if a predictable select is more expensive than the
1513
// corresponding branch. This information is used in CGP/SelectOpt to decide
1514
// when to convert selects into branches.
1515
PredictableSelectIsExpensive = Subtarget.predictableSelectIsExpensive();
1516
}
1517
1518
EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
1519
LLVMContext &Context,
1520
EVT VT) const {
1521
if (!VT.isVector())
1522
return getPointerTy(DL);
1523
if (Subtarget.hasVInstructions() &&
1524
(VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
1525
return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
1526
return VT.changeVectorElementTypeToInteger();
1527
}
1528
1529
MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
1530
return Subtarget.getXLenVT();
1531
}
1532
1533
// Return false if we can lower get_vector_length to a vsetvli intrinsic.
1534
bool RISCVTargetLowering::shouldExpandGetVectorLength(EVT TripCountVT,
1535
unsigned VF,
1536
bool IsScalable) const {
1537
if (!Subtarget.hasVInstructions())
1538
return true;
1539
1540
if (!IsScalable)
1541
return true;
1542
1543
if (TripCountVT != MVT::i32 && TripCountVT != Subtarget.getXLenVT())
1544
return true;
1545
1546
// Don't allow VF=1 if those types are't legal.
1547
if (VF < RISCV::RVVBitsPerBlock / Subtarget.getELen())
1548
return true;
1549
1550
// VLEN=32 support is incomplete.
1551
if (Subtarget.getRealMinVLen() < RISCV::RVVBitsPerBlock)
1552
return true;
1553
1554
// The maximum VF is for the smallest element width with LMUL=8.
1555
// VF must be a power of 2.
1556
unsigned MaxVF = (RISCV::RVVBitsPerBlock / 8) * 8;
1557
return VF > MaxVF || !isPowerOf2_32(VF);
1558
}
1559
1560
bool RISCVTargetLowering::shouldExpandCttzElements(EVT VT) const {
1561
return !Subtarget.hasVInstructions() ||
1562
VT.getVectorElementType() != MVT::i1 || !isTypeLegal(VT);
1563
}
1564
1565
bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1566
const CallInst &I,
1567
MachineFunction &MF,
1568
unsigned Intrinsic) const {
1569
auto &DL = I.getDataLayout();
1570
1571
auto SetRVVLoadStoreInfo = [&](unsigned PtrOp, bool IsStore,
1572
bool IsUnitStrided, bool UsePtrVal = false) {
1573
Info.opc = IsStore ? ISD::INTRINSIC_VOID : ISD::INTRINSIC_W_CHAIN;
1574
// We can't use ptrVal if the intrinsic can access memory before the
1575
// pointer. This means we can't use it for strided or indexed intrinsics.
1576
if (UsePtrVal)
1577
Info.ptrVal = I.getArgOperand(PtrOp);
1578
else
1579
Info.fallbackAddressSpace =
1580
I.getArgOperand(PtrOp)->getType()->getPointerAddressSpace();
1581
Type *MemTy;
1582
if (IsStore) {
1583
// Store value is the first operand.
1584
MemTy = I.getArgOperand(0)->getType();
1585
} else {
1586
// Use return type. If it's segment load, return type is a struct.
1587
MemTy = I.getType();
1588
if (MemTy->isStructTy())
1589
MemTy = MemTy->getStructElementType(0);
1590
}
1591
if (!IsUnitStrided)
1592
MemTy = MemTy->getScalarType();
1593
1594
Info.memVT = getValueType(DL, MemTy);
1595
Info.align = Align(DL.getTypeSizeInBits(MemTy->getScalarType()) / 8);
1596
Info.size = MemoryLocation::UnknownSize;
1597
Info.flags |=
1598
IsStore ? MachineMemOperand::MOStore : MachineMemOperand::MOLoad;
1599
return true;
1600
};
1601
1602
if (I.hasMetadata(LLVMContext::MD_nontemporal))
1603
Info.flags |= MachineMemOperand::MONonTemporal;
1604
1605
Info.flags |= RISCVTargetLowering::getTargetMMOFlags(I);
1606
switch (Intrinsic) {
1607
default:
1608
return false;
1609
case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
1610
case Intrinsic::riscv_masked_atomicrmw_add_i32:
1611
case Intrinsic::riscv_masked_atomicrmw_sub_i32:
1612
case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1613
case Intrinsic::riscv_masked_atomicrmw_max_i32:
1614
case Intrinsic::riscv_masked_atomicrmw_min_i32:
1615
case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1616
case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1617
case Intrinsic::riscv_masked_cmpxchg_i32:
1618
Info.opc = ISD::INTRINSIC_W_CHAIN;
1619
Info.memVT = MVT::i32;
1620
Info.ptrVal = I.getArgOperand(0);
1621
Info.offset = 0;
1622
Info.align = Align(4);
1623
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1624
MachineMemOperand::MOVolatile;
1625
return true;
1626
case Intrinsic::riscv_masked_strided_load:
1627
return SetRVVLoadStoreInfo(/*PtrOp*/ 1, /*IsStore*/ false,
1628
/*IsUnitStrided*/ false);
1629
case Intrinsic::riscv_masked_strided_store:
1630
return SetRVVLoadStoreInfo(/*PtrOp*/ 1, /*IsStore*/ true,
1631
/*IsUnitStrided*/ false);
1632
case Intrinsic::riscv_seg2_load:
1633
case Intrinsic::riscv_seg3_load:
1634
case Intrinsic::riscv_seg4_load:
1635
case Intrinsic::riscv_seg5_load:
1636
case Intrinsic::riscv_seg6_load:
1637
case Intrinsic::riscv_seg7_load:
1638
case Intrinsic::riscv_seg8_load:
1639
return SetRVVLoadStoreInfo(/*PtrOp*/ 0, /*IsStore*/ false,
1640
/*IsUnitStrided*/ false, /*UsePtrVal*/ true);
1641
case Intrinsic::riscv_seg2_store:
1642
case Intrinsic::riscv_seg3_store:
1643
case Intrinsic::riscv_seg4_store:
1644
case Intrinsic::riscv_seg5_store:
1645
case Intrinsic::riscv_seg6_store:
1646
case Intrinsic::riscv_seg7_store:
1647
case Intrinsic::riscv_seg8_store:
1648
// Operands are (vec, ..., vec, ptr, vl)
1649
return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 2,
1650
/*IsStore*/ true,
1651
/*IsUnitStrided*/ false, /*UsePtrVal*/ true);
1652
case Intrinsic::riscv_vle:
1653
case Intrinsic::riscv_vle_mask:
1654
case Intrinsic::riscv_vleff:
1655
case Intrinsic::riscv_vleff_mask:
1656
return SetRVVLoadStoreInfo(/*PtrOp*/ 1,
1657
/*IsStore*/ false,
1658
/*IsUnitStrided*/ true,
1659
/*UsePtrVal*/ true);
1660
case Intrinsic::riscv_vse:
1661
case Intrinsic::riscv_vse_mask:
1662
return SetRVVLoadStoreInfo(/*PtrOp*/ 1,
1663
/*IsStore*/ true,
1664
/*IsUnitStrided*/ true,
1665
/*UsePtrVal*/ true);
1666
case Intrinsic::riscv_vlse:
1667
case Intrinsic::riscv_vlse_mask:
1668
case Intrinsic::riscv_vloxei:
1669
case Intrinsic::riscv_vloxei_mask:
1670
case Intrinsic::riscv_vluxei:
1671
case Intrinsic::riscv_vluxei_mask:
1672
return SetRVVLoadStoreInfo(/*PtrOp*/ 1,
1673
/*IsStore*/ false,
1674
/*IsUnitStrided*/ false);
1675
case Intrinsic::riscv_vsse:
1676
case Intrinsic::riscv_vsse_mask:
1677
case Intrinsic::riscv_vsoxei:
1678
case Intrinsic::riscv_vsoxei_mask:
1679
case Intrinsic::riscv_vsuxei:
1680
case Intrinsic::riscv_vsuxei_mask:
1681
return SetRVVLoadStoreInfo(/*PtrOp*/ 1,
1682
/*IsStore*/ true,
1683
/*IsUnitStrided*/ false);
1684
case Intrinsic::riscv_vlseg2:
1685
case Intrinsic::riscv_vlseg3:
1686
case Intrinsic::riscv_vlseg4:
1687
case Intrinsic::riscv_vlseg5:
1688
case Intrinsic::riscv_vlseg6:
1689
case Intrinsic::riscv_vlseg7:
1690
case Intrinsic::riscv_vlseg8:
1691
case Intrinsic::riscv_vlseg2ff:
1692
case Intrinsic::riscv_vlseg3ff:
1693
case Intrinsic::riscv_vlseg4ff:
1694
case Intrinsic::riscv_vlseg5ff:
1695
case Intrinsic::riscv_vlseg6ff:
1696
case Intrinsic::riscv_vlseg7ff:
1697
case Intrinsic::riscv_vlseg8ff:
1698
return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 2,
1699
/*IsStore*/ false,
1700
/*IsUnitStrided*/ false, /*UsePtrVal*/ true);
1701
case Intrinsic::riscv_vlseg2_mask:
1702
case Intrinsic::riscv_vlseg3_mask:
1703
case Intrinsic::riscv_vlseg4_mask:
1704
case Intrinsic::riscv_vlseg5_mask:
1705
case Intrinsic::riscv_vlseg6_mask:
1706
case Intrinsic::riscv_vlseg7_mask:
1707
case Intrinsic::riscv_vlseg8_mask:
1708
case Intrinsic::riscv_vlseg2ff_mask:
1709
case Intrinsic::riscv_vlseg3ff_mask:
1710
case Intrinsic::riscv_vlseg4ff_mask:
1711
case Intrinsic::riscv_vlseg5ff_mask:
1712
case Intrinsic::riscv_vlseg6ff_mask:
1713
case Intrinsic::riscv_vlseg7ff_mask:
1714
case Intrinsic::riscv_vlseg8ff_mask:
1715
return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 4,
1716
/*IsStore*/ false,
1717
/*IsUnitStrided*/ false, /*UsePtrVal*/ true);
1718
case Intrinsic::riscv_vlsseg2:
1719
case Intrinsic::riscv_vlsseg3:
1720
case Intrinsic::riscv_vlsseg4:
1721
case Intrinsic::riscv_vlsseg5:
1722
case Intrinsic::riscv_vlsseg6:
1723
case Intrinsic::riscv_vlsseg7:
1724
case Intrinsic::riscv_vlsseg8:
1725
case Intrinsic::riscv_vloxseg2:
1726
case Intrinsic::riscv_vloxseg3:
1727
case Intrinsic::riscv_vloxseg4:
1728
case Intrinsic::riscv_vloxseg5:
1729
case Intrinsic::riscv_vloxseg6:
1730
case Intrinsic::riscv_vloxseg7:
1731
case Intrinsic::riscv_vloxseg8:
1732
case Intrinsic::riscv_vluxseg2:
1733
case Intrinsic::riscv_vluxseg3:
1734
case Intrinsic::riscv_vluxseg4:
1735
case Intrinsic::riscv_vluxseg5:
1736
case Intrinsic::riscv_vluxseg6:
1737
case Intrinsic::riscv_vluxseg7:
1738
case Intrinsic::riscv_vluxseg8:
1739
return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 3,
1740
/*IsStore*/ false,
1741
/*IsUnitStrided*/ false);
1742
case Intrinsic::riscv_vlsseg2_mask:
1743
case Intrinsic::riscv_vlsseg3_mask:
1744
case Intrinsic::riscv_vlsseg4_mask:
1745
case Intrinsic::riscv_vlsseg5_mask:
1746
case Intrinsic::riscv_vlsseg6_mask:
1747
case Intrinsic::riscv_vlsseg7_mask:
1748
case Intrinsic::riscv_vlsseg8_mask:
1749
case Intrinsic::riscv_vloxseg2_mask:
1750
case Intrinsic::riscv_vloxseg3_mask:
1751
case Intrinsic::riscv_vloxseg4_mask:
1752
case Intrinsic::riscv_vloxseg5_mask:
1753
case Intrinsic::riscv_vloxseg6_mask:
1754
case Intrinsic::riscv_vloxseg7_mask:
1755
case Intrinsic::riscv_vloxseg8_mask:
1756
case Intrinsic::riscv_vluxseg2_mask:
1757
case Intrinsic::riscv_vluxseg3_mask:
1758
case Intrinsic::riscv_vluxseg4_mask:
1759
case Intrinsic::riscv_vluxseg5_mask:
1760
case Intrinsic::riscv_vluxseg6_mask:
1761
case Intrinsic::riscv_vluxseg7_mask:
1762
case Intrinsic::riscv_vluxseg8_mask:
1763
return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 5,
1764
/*IsStore*/ false,
1765
/*IsUnitStrided*/ false);
1766
case Intrinsic::riscv_vsseg2:
1767
case Intrinsic::riscv_vsseg3:
1768
case Intrinsic::riscv_vsseg4:
1769
case Intrinsic::riscv_vsseg5:
1770
case Intrinsic::riscv_vsseg6:
1771
case Intrinsic::riscv_vsseg7:
1772
case Intrinsic::riscv_vsseg8:
1773
return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 2,
1774
/*IsStore*/ true,
1775
/*IsUnitStrided*/ false);
1776
case Intrinsic::riscv_vsseg2_mask:
1777
case Intrinsic::riscv_vsseg3_mask:
1778
case Intrinsic::riscv_vsseg4_mask:
1779
case Intrinsic::riscv_vsseg5_mask:
1780
case Intrinsic::riscv_vsseg6_mask:
1781
case Intrinsic::riscv_vsseg7_mask:
1782
case Intrinsic::riscv_vsseg8_mask:
1783
return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 3,
1784
/*IsStore*/ true,
1785
/*IsUnitStrided*/ false);
1786
case Intrinsic::riscv_vssseg2:
1787
case Intrinsic::riscv_vssseg3:
1788
case Intrinsic::riscv_vssseg4:
1789
case Intrinsic::riscv_vssseg5:
1790
case Intrinsic::riscv_vssseg6:
1791
case Intrinsic::riscv_vssseg7:
1792
case Intrinsic::riscv_vssseg8:
1793
case Intrinsic::riscv_vsoxseg2:
1794
case Intrinsic::riscv_vsoxseg3:
1795
case Intrinsic::riscv_vsoxseg4:
1796
case Intrinsic::riscv_vsoxseg5:
1797
case Intrinsic::riscv_vsoxseg6:
1798
case Intrinsic::riscv_vsoxseg7:
1799
case Intrinsic::riscv_vsoxseg8:
1800
case Intrinsic::riscv_vsuxseg2:
1801
case Intrinsic::riscv_vsuxseg3:
1802
case Intrinsic::riscv_vsuxseg4:
1803
case Intrinsic::riscv_vsuxseg5:
1804
case Intrinsic::riscv_vsuxseg6:
1805
case Intrinsic::riscv_vsuxseg7:
1806
case Intrinsic::riscv_vsuxseg8:
1807
return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 3,
1808
/*IsStore*/ true,
1809
/*IsUnitStrided*/ false);
1810
case Intrinsic::riscv_vssseg2_mask:
1811
case Intrinsic::riscv_vssseg3_mask:
1812
case Intrinsic::riscv_vssseg4_mask:
1813
case Intrinsic::riscv_vssseg5_mask:
1814
case Intrinsic::riscv_vssseg6_mask:
1815
case Intrinsic::riscv_vssseg7_mask:
1816
case Intrinsic::riscv_vssseg8_mask:
1817
case Intrinsic::riscv_vsoxseg2_mask:
1818
case Intrinsic::riscv_vsoxseg3_mask:
1819
case Intrinsic::riscv_vsoxseg4_mask:
1820
case Intrinsic::riscv_vsoxseg5_mask:
1821
case Intrinsic::riscv_vsoxseg6_mask:
1822
case Intrinsic::riscv_vsoxseg7_mask:
1823
case Intrinsic::riscv_vsoxseg8_mask:
1824
case Intrinsic::riscv_vsuxseg2_mask:
1825
case Intrinsic::riscv_vsuxseg3_mask:
1826
case Intrinsic::riscv_vsuxseg4_mask:
1827
case Intrinsic::riscv_vsuxseg5_mask:
1828
case Intrinsic::riscv_vsuxseg6_mask:
1829
case Intrinsic::riscv_vsuxseg7_mask:
1830
case Intrinsic::riscv_vsuxseg8_mask:
1831
return SetRVVLoadStoreInfo(/*PtrOp*/ I.arg_size() - 4,
1832
/*IsStore*/ true,
1833
/*IsUnitStrided*/ false);
1834
}
1835
}
1836
1837
bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1838
const AddrMode &AM, Type *Ty,
1839
unsigned AS,
1840
Instruction *I) const {
1841
// No global is ever allowed as a base.
1842
if (AM.BaseGV)
1843
return false;
1844
1845
// RVV instructions only support register addressing.
1846
if (Subtarget.hasVInstructions() && isa<VectorType>(Ty))
1847
return AM.HasBaseReg && AM.Scale == 0 && !AM.BaseOffs;
1848
1849
// Require a 12-bit signed offset.
1850
if (!isInt<12>(AM.BaseOffs))
1851
return false;
1852
1853
switch (AM.Scale) {
1854
case 0: // "r+i" or just "i", depending on HasBaseReg.
1855
break;
1856
case 1:
1857
if (!AM.HasBaseReg) // allow "r+i".
1858
break;
1859
return false; // disallow "r+r" or "r+r+i".
1860
default:
1861
return false;
1862
}
1863
1864
return true;
1865
}
1866
1867
bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1868
return isInt<12>(Imm);
1869
}
1870
1871
bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1872
return isInt<12>(Imm);
1873
}
1874
1875
// On RV32, 64-bit integers are split into their high and low parts and held
1876
// in two different registers, so the trunc is free since the low register can
1877
// just be used.
1878
// FIXME: Should we consider i64->i32 free on RV64 to match the EVT version of
1879
// isTruncateFree?
1880
bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1881
if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1882
return false;
1883
unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1884
unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1885
return (SrcBits == 64 && DestBits == 32);
1886
}
1887
1888
bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1889
// We consider i64->i32 free on RV64 since we have good selection of W
1890
// instructions that make promoting operations back to i64 free in many cases.
1891
if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
1892
!DstVT.isInteger())
1893
return false;
1894
unsigned SrcBits = SrcVT.getSizeInBits();
1895
unsigned DestBits = DstVT.getSizeInBits();
1896
return (SrcBits == 64 && DestBits == 32);
1897
}
1898
1899
bool RISCVTargetLowering::isTruncateFree(SDValue Val, EVT VT2) const {
1900
EVT SrcVT = Val.getValueType();
1901
// free truncate from vnsrl and vnsra
1902
if (Subtarget.hasStdExtV() &&
1903
(Val.getOpcode() == ISD::SRL || Val.getOpcode() == ISD::SRA) &&
1904
SrcVT.isVector() && VT2.isVector()) {
1905
unsigned SrcBits = SrcVT.getVectorElementType().getSizeInBits();
1906
unsigned DestBits = VT2.getVectorElementType().getSizeInBits();
1907
if (SrcBits == DestBits * 2) {
1908
return true;
1909
}
1910
}
1911
return TargetLowering::isTruncateFree(Val, VT2);
1912
}
1913
1914
bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1915
// Zexts are free if they can be combined with a load.
1916
// Don't advertise i32->i64 zextload as being free for RV64. It interacts
1917
// poorly with type legalization of compares preferring sext.
1918
if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1919
EVT MemVT = LD->getMemoryVT();
1920
if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1921
(LD->getExtensionType() == ISD::NON_EXTLOAD ||
1922
LD->getExtensionType() == ISD::ZEXTLOAD))
1923
return true;
1924
}
1925
1926
return TargetLowering::isZExtFree(Val, VT2);
1927
}
1928
1929
bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1930
return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1931
}
1932
1933
bool RISCVTargetLowering::signExtendConstant(const ConstantInt *CI) const {
1934
return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32);
1935
}
1936
1937
bool RISCVTargetLowering::isCheapToSpeculateCttz(Type *Ty) const {
1938
return Subtarget.hasStdExtZbb() || Subtarget.hasVendorXCVbitmanip();
1939
}
1940
1941
bool RISCVTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const {
1942
return Subtarget.hasStdExtZbb() || Subtarget.hasVendorXTHeadBb() ||
1943
Subtarget.hasVendorXCVbitmanip();
1944
}
1945
1946
bool RISCVTargetLowering::isMaskAndCmp0FoldingBeneficial(
1947
const Instruction &AndI) const {
1948
// We expect to be able to match a bit extraction instruction if the Zbs
1949
// extension is supported and the mask is a power of two. However, we
1950
// conservatively return false if the mask would fit in an ANDI instruction,
1951
// on the basis that it's possible the sinking+duplication of the AND in
1952
// CodeGenPrepare triggered by this hook wouldn't decrease the instruction
1953
// count and would increase code size (e.g. ANDI+BNEZ => BEXTI+BNEZ).
1954
if (!Subtarget.hasStdExtZbs() && !Subtarget.hasVendorXTHeadBs())
1955
return false;
1956
ConstantInt *Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
1957
if (!Mask)
1958
return false;
1959
return !Mask->getValue().isSignedIntN(12) && Mask->getValue().isPowerOf2();
1960
}
1961
1962
bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1963
EVT VT = Y.getValueType();
1964
1965
// FIXME: Support vectors once we have tests.
1966
if (VT.isVector())
1967
return false;
1968
1969
return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) &&
1970
(!isa<ConstantSDNode>(Y) || cast<ConstantSDNode>(Y)->isOpaque());
1971
}
1972
1973
bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
1974
// Zbs provides BEXT[_I], which can be used with SEQZ/SNEZ as a bit test.
1975
if (Subtarget.hasStdExtZbs())
1976
return X.getValueType().isScalarInteger();
1977
auto *C = dyn_cast<ConstantSDNode>(Y);
1978
// XTheadBs provides th.tst (similar to bexti), if Y is a constant
1979
if (Subtarget.hasVendorXTHeadBs())
1980
return C != nullptr;
1981
// We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position.
1982
return C && C->getAPIntValue().ule(10);
1983
}
1984
1985
bool RISCVTargetLowering::shouldFoldSelectWithIdentityConstant(unsigned Opcode,
1986
EVT VT) const {
1987
// Only enable for rvv.
1988
if (!VT.isVector() || !Subtarget.hasVInstructions())
1989
return false;
1990
1991
if (VT.isFixedLengthVector() && !isTypeLegal(VT))
1992
return false;
1993
1994
return true;
1995
}
1996
1997
bool RISCVTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1998
Type *Ty) const {
1999
assert(Ty->isIntegerTy());
2000
2001
unsigned BitSize = Ty->getIntegerBitWidth();
2002
if (BitSize > Subtarget.getXLen())
2003
return false;
2004
2005
// Fast path, assume 32-bit immediates are cheap.
2006
int64_t Val = Imm.getSExtValue();
2007
if (isInt<32>(Val))
2008
return true;
2009
2010
// A constant pool entry may be more aligned thant he load we're trying to
2011
// replace. If we don't support unaligned scalar mem, prefer the constant
2012
// pool.
2013
// TODO: Can the caller pass down the alignment?
2014
if (!Subtarget.enableUnalignedScalarMem())
2015
return true;
2016
2017
// Prefer to keep the load if it would require many instructions.
2018
// This uses the same threshold we use for constant pools but doesn't
2019
// check useConstantPoolForLargeInts.
2020
// TODO: Should we keep the load only when we're definitely going to emit a
2021
// constant pool?
2022
2023
RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Val, Subtarget);
2024
return Seq.size() <= Subtarget.getMaxBuildIntsCost();
2025
}
2026
2027
bool RISCVTargetLowering::
2028
shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
2029
SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
2030
unsigned OldShiftOpcode, unsigned NewShiftOpcode,
2031
SelectionDAG &DAG) const {
2032
// One interesting pattern that we'd want to form is 'bit extract':
2033
// ((1 >> Y) & 1) ==/!= 0
2034
// But we also need to be careful not to try to reverse that fold.
2035
2036
// Is this '((1 >> Y) & 1)'?
2037
if (XC && OldShiftOpcode == ISD::SRL && XC->isOne())
2038
return false; // Keep the 'bit extract' pattern.
2039
2040
// Will this be '((1 >> Y) & 1)' after the transform?
2041
if (NewShiftOpcode == ISD::SRL && CC->isOne())
2042
return true; // Do form the 'bit extract' pattern.
2043
2044
// If 'X' is a constant, and we transform, then we will immediately
2045
// try to undo the fold, thus causing endless combine loop.
2046
// So only do the transform if X is not a constant. This matches the default
2047
// implementation of this function.
2048
return !XC;
2049
}
2050
2051
bool RISCVTargetLowering::canSplatOperand(unsigned Opcode, int Operand) const {
2052
switch (Opcode) {
2053
case Instruction::Add:
2054
case Instruction::Sub:
2055
case Instruction::Mul:
2056
case Instruction::And:
2057
case Instruction::Or:
2058
case Instruction::Xor:
2059
case Instruction::FAdd:
2060
case Instruction::FSub:
2061
case Instruction::FMul:
2062
case Instruction::FDiv:
2063
case Instruction::ICmp:
2064
case Instruction::FCmp:
2065
return true;
2066
case Instruction::Shl:
2067
case Instruction::LShr:
2068
case Instruction::AShr:
2069
case Instruction::UDiv:
2070
case Instruction::SDiv:
2071
case Instruction::URem:
2072
case Instruction::SRem:
2073
case Instruction::Select:
2074
return Operand == 1;
2075
default:
2076
return false;
2077
}
2078
}
2079
2080
2081
bool RISCVTargetLowering::canSplatOperand(Instruction *I, int Operand) const {
2082
if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
2083
return false;
2084
2085
if (canSplatOperand(I->getOpcode(), Operand))
2086
return true;
2087
2088
auto *II = dyn_cast<IntrinsicInst>(I);
2089
if (!II)
2090
return false;
2091
2092
switch (II->getIntrinsicID()) {
2093
case Intrinsic::fma:
2094
case Intrinsic::vp_fma:
2095
return Operand == 0 || Operand == 1;
2096
case Intrinsic::vp_shl:
2097
case Intrinsic::vp_lshr:
2098
case Intrinsic::vp_ashr:
2099
case Intrinsic::vp_udiv:
2100
case Intrinsic::vp_sdiv:
2101
case Intrinsic::vp_urem:
2102
case Intrinsic::vp_srem:
2103
case Intrinsic::ssub_sat:
2104
case Intrinsic::vp_ssub_sat:
2105
case Intrinsic::usub_sat:
2106
case Intrinsic::vp_usub_sat:
2107
return Operand == 1;
2108
// These intrinsics are commutative.
2109
case Intrinsic::vp_add:
2110
case Intrinsic::vp_mul:
2111
case Intrinsic::vp_and:
2112
case Intrinsic::vp_or:
2113
case Intrinsic::vp_xor:
2114
case Intrinsic::vp_fadd:
2115
case Intrinsic::vp_fmul:
2116
case Intrinsic::vp_icmp:
2117
case Intrinsic::vp_fcmp:
2118
case Intrinsic::smin:
2119
case Intrinsic::vp_smin:
2120
case Intrinsic::umin:
2121
case Intrinsic::vp_umin:
2122
case Intrinsic::smax:
2123
case Intrinsic::vp_smax:
2124
case Intrinsic::umax:
2125
case Intrinsic::vp_umax:
2126
case Intrinsic::sadd_sat:
2127
case Intrinsic::vp_sadd_sat:
2128
case Intrinsic::uadd_sat:
2129
case Intrinsic::vp_uadd_sat:
2130
// These intrinsics have 'vr' versions.
2131
case Intrinsic::vp_sub:
2132
case Intrinsic::vp_fsub:
2133
case Intrinsic::vp_fdiv:
2134
return Operand == 0 || Operand == 1;
2135
default:
2136
return false;
2137
}
2138
}
2139
2140
/// Check if sinking \p I's operands to I's basic block is profitable, because
2141
/// the operands can be folded into a target instruction, e.g.
2142
/// splats of scalars can fold into vector instructions.
2143
bool RISCVTargetLowering::shouldSinkOperands(
2144
Instruction *I, SmallVectorImpl<Use *> &Ops) const {
2145
using namespace llvm::PatternMatch;
2146
2147
if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
2148
return false;
2149
2150
// Don't sink splat operands if the target prefers it. Some targets requires
2151
// S2V transfer buffers and we can run out of them copying the same value
2152
// repeatedly.
2153
// FIXME: It could still be worth doing if it would improve vector register
2154
// pressure and prevent a vector spill.
2155
if (!Subtarget.sinkSplatOperands())
2156
return false;
2157
2158
for (auto OpIdx : enumerate(I->operands())) {
2159
if (!canSplatOperand(I, OpIdx.index()))
2160
continue;
2161
2162
Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
2163
// Make sure we are not already sinking this operand
2164
if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
2165
continue;
2166
2167
// We are looking for a splat that can be sunk.
2168
if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
2169
m_Undef(), m_ZeroMask())))
2170
continue;
2171
2172
// Don't sink i1 splats.
2173
if (cast<VectorType>(Op->getType())->getElementType()->isIntegerTy(1))
2174
continue;
2175
2176
// All uses of the shuffle should be sunk to avoid duplicating it across gpr
2177
// and vector registers
2178
for (Use &U : Op->uses()) {
2179
Instruction *Insn = cast<Instruction>(U.getUser());
2180
if (!canSplatOperand(Insn, U.getOperandNo()))
2181
return false;
2182
}
2183
2184
Ops.push_back(&Op->getOperandUse(0));
2185
Ops.push_back(&OpIdx.value());
2186
}
2187
return true;
2188
}
2189
2190
bool RISCVTargetLowering::shouldScalarizeBinop(SDValue VecOp) const {
2191
unsigned Opc = VecOp.getOpcode();
2192
2193
// Assume target opcodes can't be scalarized.
2194
// TODO - do we have any exceptions?
2195
if (Opc >= ISD::BUILTIN_OP_END)
2196
return false;
2197
2198
// If the vector op is not supported, try to convert to scalar.
2199
EVT VecVT = VecOp.getValueType();
2200
if (!isOperationLegalOrCustomOrPromote(Opc, VecVT))
2201
return true;
2202
2203
// If the vector op is supported, but the scalar op is not, the transform may
2204
// not be worthwhile.
2205
// Permit a vector binary operation can be converted to scalar binary
2206
// operation which is custom lowered with illegal type.
2207
EVT ScalarVT = VecVT.getScalarType();
2208
return isOperationLegalOrCustomOrPromote(Opc, ScalarVT) ||
2209
isOperationCustom(Opc, ScalarVT);
2210
}
2211
2212
bool RISCVTargetLowering::isOffsetFoldingLegal(
2213
const GlobalAddressSDNode *GA) const {
2214
// In order to maximise the opportunity for common subexpression elimination,
2215
// keep a separate ADD node for the global address offset instead of folding
2216
// it in the global address node. Later peephole optimisations may choose to
2217
// fold it back in when profitable.
2218
return false;
2219
}
2220
2221
// Return one of the followings:
2222
// (1) `{0-31 value, false}` if FLI is available for Imm's type and FP value.
2223
// (2) `{0-31 value, true}` if Imm is negative and FLI is available for its
2224
// positive counterpart, which will be materialized from the first returned
2225
// element. The second returned element indicated that there should be a FNEG
2226
// followed.
2227
// (3) `{-1, _}` if there is no way FLI can be used to materialize Imm.
2228
std::pair<int, bool> RISCVTargetLowering::getLegalZfaFPImm(const APFloat &Imm,
2229
EVT VT) const {
2230
if (!Subtarget.hasStdExtZfa())
2231
return std::make_pair(-1, false);
2232
2233
bool IsSupportedVT = false;
2234
if (VT == MVT::f16) {
2235
IsSupportedVT = Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZvfh();
2236
} else if (VT == MVT::f32) {
2237
IsSupportedVT = true;
2238
} else if (VT == MVT::f64) {
2239
assert(Subtarget.hasStdExtD() && "Expect D extension");
2240
IsSupportedVT = true;
2241
}
2242
2243
if (!IsSupportedVT)
2244
return std::make_pair(-1, false);
2245
2246
int Index = RISCVLoadFPImm::getLoadFPImm(Imm);
2247
if (Index < 0 && Imm.isNegative())
2248
// Try the combination of its positive counterpart + FNEG.
2249
return std::make_pair(RISCVLoadFPImm::getLoadFPImm(-Imm), true);
2250
else
2251
return std::make_pair(Index, false);
2252
}
2253
2254
bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
2255
bool ForCodeSize) const {
2256
bool IsLegalVT = false;
2257
if (VT == MVT::f16)
2258
IsLegalVT = Subtarget.hasStdExtZfhminOrZhinxmin();
2259
else if (VT == MVT::f32)
2260
IsLegalVT = Subtarget.hasStdExtFOrZfinx();
2261
else if (VT == MVT::f64)
2262
IsLegalVT = Subtarget.hasStdExtDOrZdinx();
2263
else if (VT == MVT::bf16)
2264
IsLegalVT = Subtarget.hasStdExtZfbfmin();
2265
2266
if (!IsLegalVT)
2267
return false;
2268
2269
if (getLegalZfaFPImm(Imm, VT).first >= 0)
2270
return true;
2271
2272
// Cannot create a 64 bit floating-point immediate value for rv32.
2273
if (Subtarget.getXLen() < VT.getScalarSizeInBits()) {
2274
// td can handle +0.0 or -0.0 already.
2275
// -0.0 can be created by fmv + fneg.
2276
return Imm.isZero();
2277
}
2278
2279
// Special case: fmv + fneg
2280
if (Imm.isNegZero())
2281
return true;
2282
2283
// Building an integer and then converting requires a fmv at the end of
2284
// the integer sequence.
2285
const int Cost =
2286
1 + RISCVMatInt::getIntMatCost(Imm.bitcastToAPInt(), Subtarget.getXLen(),
2287
Subtarget);
2288
return Cost <= FPImmCost;
2289
}
2290
2291
// TODO: This is very conservative.
2292
bool RISCVTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
2293
unsigned Index) const {
2294
if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
2295
return false;
2296
2297
// Only support extracting a fixed from a fixed vector for now.
2298
if (ResVT.isScalableVector() || SrcVT.isScalableVector())
2299
return false;
2300
2301
EVT EltVT = ResVT.getVectorElementType();
2302
assert(EltVT == SrcVT.getVectorElementType() && "Should hold for node");
2303
2304
// The smallest type we can slide is i8.
2305
// TODO: We can extract index 0 from a mask vector without a slide.
2306
if (EltVT == MVT::i1)
2307
return false;
2308
2309
unsigned ResElts = ResVT.getVectorNumElements();
2310
unsigned SrcElts = SrcVT.getVectorNumElements();
2311
2312
unsigned MinVLen = Subtarget.getRealMinVLen();
2313
unsigned MinVLMAX = MinVLen / EltVT.getSizeInBits();
2314
2315
// If we're extracting only data from the first VLEN bits of the source
2316
// then we can always do this with an m1 vslidedown.vx. Restricting the
2317
// Index ensures we can use a vslidedown.vi.
2318
// TODO: We can generalize this when the exact VLEN is known.
2319
if (Index + ResElts <= MinVLMAX && Index < 31)
2320
return true;
2321
2322
// Convervatively only handle extracting half of a vector.
2323
// TODO: For sizes which aren't multiples of VLEN sizes, this may not be
2324
// a cheap extract. However, this case is important in practice for
2325
// shuffled extracts of longer vectors. How resolve?
2326
if ((ResElts * 2) != SrcElts)
2327
return false;
2328
2329
// Slide can support arbitrary index, but we only treat vslidedown.vi as
2330
// cheap.
2331
if (Index >= 32)
2332
return false;
2333
2334
// TODO: We can do arbitrary slidedowns, but for now only support extracting
2335
// the upper half of a vector until we have more test coverage.
2336
return Index == 0 || Index == ResElts;
2337
}
2338
2339
MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
2340
CallingConv::ID CC,
2341
EVT VT) const {
2342
// Use f32 to pass f16 if it is legal and Zfh/Zfhmin is not enabled.
2343
// We might still end up using a GPR but that will be decided based on ABI.
2344
if (VT == MVT::f16 && Subtarget.hasStdExtFOrZfinx() &&
2345
!Subtarget.hasStdExtZfhminOrZhinxmin())
2346
return MVT::f32;
2347
2348
MVT PartVT = TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
2349
2350
if (RV64LegalI32 && Subtarget.is64Bit() && PartVT == MVT::i32)
2351
return MVT::i64;
2352
2353
return PartVT;
2354
}
2355
2356
unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
2357
CallingConv::ID CC,
2358
EVT VT) const {
2359
// Use f32 to pass f16 if it is legal and Zfh/Zfhmin is not enabled.
2360
// We might still end up using a GPR but that will be decided based on ABI.
2361
if (VT == MVT::f16 && Subtarget.hasStdExtFOrZfinx() &&
2362
!Subtarget.hasStdExtZfhminOrZhinxmin())
2363
return 1;
2364
2365
return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
2366
}
2367
2368
unsigned RISCVTargetLowering::getVectorTypeBreakdownForCallingConv(
2369
LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
2370
unsigned &NumIntermediates, MVT &RegisterVT) const {
2371
unsigned NumRegs = TargetLowering::getVectorTypeBreakdownForCallingConv(
2372
Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
2373
2374
if (RV64LegalI32 && Subtarget.is64Bit() && IntermediateVT == MVT::i32)
2375
IntermediateVT = MVT::i64;
2376
2377
if (RV64LegalI32 && Subtarget.is64Bit() && RegisterVT == MVT::i32)
2378
RegisterVT = MVT::i64;
2379
2380
return NumRegs;
2381
}
2382
2383
// Changes the condition code and swaps operands if necessary, so the SetCC
2384
// operation matches one of the comparisons supported directly by branches
2385
// in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
2386
// with 1/-1.
2387
static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
2388
ISD::CondCode &CC, SelectionDAG &DAG) {
2389
// If this is a single bit test that can't be handled by ANDI, shift the
2390
// bit to be tested to the MSB and perform a signed compare with 0.
2391
if (isIntEqualitySetCC(CC) && isNullConstant(RHS) &&
2392
LHS.getOpcode() == ISD::AND && LHS.hasOneUse() &&
2393
isa<ConstantSDNode>(LHS.getOperand(1))) {
2394
uint64_t Mask = LHS.getConstantOperandVal(1);
2395
if ((isPowerOf2_64(Mask) || isMask_64(Mask)) && !isInt<12>(Mask)) {
2396
unsigned ShAmt = 0;
2397
if (isPowerOf2_64(Mask)) {
2398
CC = CC == ISD::SETEQ ? ISD::SETGE : ISD::SETLT;
2399
ShAmt = LHS.getValueSizeInBits() - 1 - Log2_64(Mask);
2400
} else {
2401
ShAmt = LHS.getValueSizeInBits() - llvm::bit_width(Mask);
2402
}
2403
2404
LHS = LHS.getOperand(0);
2405
if (ShAmt != 0)
2406
LHS = DAG.getNode(ISD::SHL, DL, LHS.getValueType(), LHS,
2407
DAG.getConstant(ShAmt, DL, LHS.getValueType()));
2408
return;
2409
}
2410
}
2411
2412
if (auto *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2413
int64_t C = RHSC->getSExtValue();
2414
switch (CC) {
2415
default: break;
2416
case ISD::SETGT:
2417
// Convert X > -1 to X >= 0.
2418
if (C == -1) {
2419
RHS = DAG.getConstant(0, DL, RHS.getValueType());
2420
CC = ISD::SETGE;
2421
return;
2422
}
2423
break;
2424
case ISD::SETLT:
2425
// Convert X < 1 to 0 >= X.
2426
if (C == 1) {
2427
RHS = LHS;
2428
LHS = DAG.getConstant(0, DL, RHS.getValueType());
2429
CC = ISD::SETGE;
2430
return;
2431
}
2432
break;
2433
}
2434
}
2435
2436
switch (CC) {
2437
default:
2438
break;
2439
case ISD::SETGT:
2440
case ISD::SETLE:
2441
case ISD::SETUGT:
2442
case ISD::SETULE:
2443
CC = ISD::getSetCCSwappedOperands(CC);
2444
std::swap(LHS, RHS);
2445
break;
2446
}
2447
}
2448
2449
RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
2450
assert(VT.isScalableVector() && "Expecting a scalable vector type");
2451
unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
2452
if (VT.getVectorElementType() == MVT::i1)
2453
KnownSize *= 8;
2454
2455
switch (KnownSize) {
2456
default:
2457
llvm_unreachable("Invalid LMUL.");
2458
case 8:
2459
return RISCVII::VLMUL::LMUL_F8;
2460
case 16:
2461
return RISCVII::VLMUL::LMUL_F4;
2462
case 32:
2463
return RISCVII::VLMUL::LMUL_F2;
2464
case 64:
2465
return RISCVII::VLMUL::LMUL_1;
2466
case 128:
2467
return RISCVII::VLMUL::LMUL_2;
2468
case 256:
2469
return RISCVII::VLMUL::LMUL_4;
2470
case 512:
2471
return RISCVII::VLMUL::LMUL_8;
2472
}
2473
}
2474
2475
unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
2476
switch (LMul) {
2477
default:
2478
llvm_unreachable("Invalid LMUL.");
2479
case RISCVII::VLMUL::LMUL_F8:
2480
case RISCVII::VLMUL::LMUL_F4:
2481
case RISCVII::VLMUL::LMUL_F2:
2482
case RISCVII::VLMUL::LMUL_1:
2483
return RISCV::VRRegClassID;
2484
case RISCVII::VLMUL::LMUL_2:
2485
return RISCV::VRM2RegClassID;
2486
case RISCVII::VLMUL::LMUL_4:
2487
return RISCV::VRM4RegClassID;
2488
case RISCVII::VLMUL::LMUL_8:
2489
return RISCV::VRM8RegClassID;
2490
}
2491
}
2492
2493
unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
2494
RISCVII::VLMUL LMUL = getLMUL(VT);
2495
if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
2496
LMUL == RISCVII::VLMUL::LMUL_F4 ||
2497
LMUL == RISCVII::VLMUL::LMUL_F2 ||
2498
LMUL == RISCVII::VLMUL::LMUL_1) {
2499
static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
2500
"Unexpected subreg numbering");
2501
return RISCV::sub_vrm1_0 + Index;
2502
}
2503
if (LMUL == RISCVII::VLMUL::LMUL_2) {
2504
static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
2505
"Unexpected subreg numbering");
2506
return RISCV::sub_vrm2_0 + Index;
2507
}
2508
if (LMUL == RISCVII::VLMUL::LMUL_4) {
2509
static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
2510
"Unexpected subreg numbering");
2511
return RISCV::sub_vrm4_0 + Index;
2512
}
2513
llvm_unreachable("Invalid vector type.");
2514
}
2515
2516
unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
2517
if (VT.getVectorElementType() == MVT::i1)
2518
return RISCV::VRRegClassID;
2519
return getRegClassIDForLMUL(getLMUL(VT));
2520
}
2521
2522
// Attempt to decompose a subvector insert/extract between VecVT and
2523
// SubVecVT via subregister indices. Returns the subregister index that
2524
// can perform the subvector insert/extract with the given element index, as
2525
// well as the index corresponding to any leftover subvectors that must be
2526
// further inserted/extracted within the register class for SubVecVT.
2527
std::pair<unsigned, unsigned>
2528
RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
2529
MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
2530
const RISCVRegisterInfo *TRI) {
2531
static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
2532
RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
2533
RISCV::VRM2RegClassID > RISCV::VRRegClassID),
2534
"Register classes not ordered");
2535
unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
2536
unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
2537
// Try to compose a subregister index that takes us from the incoming
2538
// LMUL>1 register class down to the outgoing one. At each step we half
2539
// the LMUL:
2540
// nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
2541
// Note that this is not guaranteed to find a subregister index, such as
2542
// when we are extracting from one VR type to another.
2543
unsigned SubRegIdx = RISCV::NoSubRegister;
2544
for (const unsigned RCID :
2545
{RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
2546
if (VecRegClassID > RCID && SubRegClassID <= RCID) {
2547
VecVT = VecVT.getHalfNumVectorElementsVT();
2548
bool IsHi =
2549
InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
2550
SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
2551
getSubregIndexByMVT(VecVT, IsHi));
2552
if (IsHi)
2553
InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
2554
}
2555
return {SubRegIdx, InsertExtractIdx};
2556
}
2557
2558
// Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
2559
// stores for those types.
2560
bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
2561
return !Subtarget.useRVVForFixedLengthVectors() ||
2562
(VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
2563
}
2564
2565
bool RISCVTargetLowering::isLegalElementTypeForRVV(EVT ScalarTy) const {
2566
if (!ScalarTy.isSimple())
2567
return false;
2568
switch (ScalarTy.getSimpleVT().SimpleTy) {
2569
case MVT::iPTR:
2570
return Subtarget.is64Bit() ? Subtarget.hasVInstructionsI64() : true;
2571
case MVT::i8:
2572
case MVT::i16:
2573
case MVT::i32:
2574
return true;
2575
case MVT::i64:
2576
return Subtarget.hasVInstructionsI64();
2577
case MVT::f16:
2578
return Subtarget.hasVInstructionsF16();
2579
case MVT::f32:
2580
return Subtarget.hasVInstructionsF32();
2581
case MVT::f64:
2582
return Subtarget.hasVInstructionsF64();
2583
default:
2584
return false;
2585
}
2586
}
2587
2588
2589
unsigned RISCVTargetLowering::combineRepeatedFPDivisors() const {
2590
return NumRepeatedDivisors;
2591
}
2592
2593
static SDValue getVLOperand(SDValue Op) {
2594
assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2595
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
2596
"Unexpected opcode");
2597
bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
2598
unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
2599
const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
2600
RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
2601
if (!II)
2602
return SDValue();
2603
return Op.getOperand(II->VLOperand + 1 + HasChain);
2604
}
2605
2606
static bool useRVVForFixedLengthVectorVT(MVT VT,
2607
const RISCVSubtarget &Subtarget) {
2608
assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
2609
if (!Subtarget.useRVVForFixedLengthVectors())
2610
return false;
2611
2612
// We only support a set of vector types with a consistent maximum fixed size
2613
// across all supported vector element types to avoid legalization issues.
2614
// Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
2615
// fixed-length vector type we support is 1024 bytes.
2616
if (VT.getFixedSizeInBits() > 1024 * 8)
2617
return false;
2618
2619
unsigned MinVLen = Subtarget.getRealMinVLen();
2620
2621
MVT EltVT = VT.getVectorElementType();
2622
2623
// Don't use RVV for vectors we cannot scalarize if required.
2624
switch (EltVT.SimpleTy) {
2625
// i1 is supported but has different rules.
2626
default:
2627
return false;
2628
case MVT::i1:
2629
// Masks can only use a single register.
2630
if (VT.getVectorNumElements() > MinVLen)
2631
return false;
2632
MinVLen /= 8;
2633
break;
2634
case MVT::i8:
2635
case MVT::i16:
2636
case MVT::i32:
2637
break;
2638
case MVT::i64:
2639
if (!Subtarget.hasVInstructionsI64())
2640
return false;
2641
break;
2642
case MVT::f16:
2643
if (!Subtarget.hasVInstructionsF16Minimal())
2644
return false;
2645
break;
2646
case MVT::bf16:
2647
if (!Subtarget.hasVInstructionsBF16())
2648
return false;
2649
break;
2650
case MVT::f32:
2651
if (!Subtarget.hasVInstructionsF32())
2652
return false;
2653
break;
2654
case MVT::f64:
2655
if (!Subtarget.hasVInstructionsF64())
2656
return false;
2657
break;
2658
}
2659
2660
// Reject elements larger than ELEN.
2661
if (EltVT.getSizeInBits() > Subtarget.getELen())
2662
return false;
2663
2664
unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
2665
// Don't use RVV for types that don't fit.
2666
if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
2667
return false;
2668
2669
// TODO: Perhaps an artificial restriction, but worth having whilst getting
2670
// the base fixed length RVV support in place.
2671
if (!VT.isPow2VectorType())
2672
return false;
2673
2674
return true;
2675
}
2676
2677
bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
2678
return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
2679
}
2680
2681
// Return the largest legal scalable vector type that matches VT's element type.
2682
static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
2683
const RISCVSubtarget &Subtarget) {
2684
// This may be called before legal types are setup.
2685
assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
2686
useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
2687
"Expected legal fixed length vector!");
2688
2689
unsigned MinVLen = Subtarget.getRealMinVLen();
2690
unsigned MaxELen = Subtarget.getELen();
2691
2692
MVT EltVT = VT.getVectorElementType();
2693
switch (EltVT.SimpleTy) {
2694
default:
2695
llvm_unreachable("unexpected element type for RVV container");
2696
case MVT::i1:
2697
case MVT::i8:
2698
case MVT::i16:
2699
case MVT::i32:
2700
case MVT::i64:
2701
case MVT::bf16:
2702
case MVT::f16:
2703
case MVT::f32:
2704
case MVT::f64: {
2705
// We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
2706
// narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
2707
// each fractional LMUL we support SEW between 8 and LMUL*ELEN.
2708
unsigned NumElts =
2709
(VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
2710
NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
2711
assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
2712
return MVT::getScalableVectorVT(EltVT, NumElts);
2713
}
2714
}
2715
}
2716
2717
static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
2718
const RISCVSubtarget &Subtarget) {
2719
return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
2720
Subtarget);
2721
}
2722
2723
MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
2724
return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
2725
}
2726
2727
// Grow V to consume an entire RVV register.
2728
static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
2729
const RISCVSubtarget &Subtarget) {
2730
assert(VT.isScalableVector() &&
2731
"Expected to convert into a scalable vector!");
2732
assert(V.getValueType().isFixedLengthVector() &&
2733
"Expected a fixed length vector operand!");
2734
SDLoc DL(V);
2735
SDValue Zero = DAG.getVectorIdxConstant(0, DL);
2736
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
2737
}
2738
2739
// Shrink V so it's just big enough to maintain a VT's worth of data.
2740
static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
2741
const RISCVSubtarget &Subtarget) {
2742
assert(VT.isFixedLengthVector() &&
2743
"Expected to convert into a fixed length vector!");
2744
assert(V.getValueType().isScalableVector() &&
2745
"Expected a scalable vector operand!");
2746
SDLoc DL(V);
2747
SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
2748
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
2749
}
2750
2751
/// Return the type of the mask type suitable for masking the provided
2752
/// vector type. This is simply an i1 element type vector of the same
2753
/// (possibly scalable) length.
2754
static MVT getMaskTypeFor(MVT VecVT) {
2755
assert(VecVT.isVector());
2756
ElementCount EC = VecVT.getVectorElementCount();
2757
return MVT::getVectorVT(MVT::i1, EC);
2758
}
2759
2760
/// Creates an all ones mask suitable for masking a vector of type VecTy with
2761
/// vector length VL. .
2762
static SDValue getAllOnesMask(MVT VecVT, SDValue VL, const SDLoc &DL,
2763
SelectionDAG &DAG) {
2764
MVT MaskVT = getMaskTypeFor(VecVT);
2765
return DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
2766
}
2767
2768
static SDValue getVLOp(uint64_t NumElts, MVT ContainerVT, const SDLoc &DL,
2769
SelectionDAG &DAG, const RISCVSubtarget &Subtarget) {
2770
// If we know the exact VLEN, and our VL is exactly equal to VLMAX,
2771
// canonicalize the representation. InsertVSETVLI will pick the immediate
2772
// encoding later if profitable.
2773
const auto [MinVLMAX, MaxVLMAX] =
2774
RISCVTargetLowering::computeVLMAXBounds(ContainerVT, Subtarget);
2775
if (MinVLMAX == MaxVLMAX && NumElts == MinVLMAX)
2776
return DAG.getRegister(RISCV::X0, Subtarget.getXLenVT());
2777
2778
return DAG.getConstant(NumElts, DL, Subtarget.getXLenVT());
2779
}
2780
2781
static std::pair<SDValue, SDValue>
2782
getDefaultScalableVLOps(MVT VecVT, const SDLoc &DL, SelectionDAG &DAG,
2783
const RISCVSubtarget &Subtarget) {
2784
assert(VecVT.isScalableVector() && "Expecting a scalable vector");
2785
SDValue VL = DAG.getRegister(RISCV::X0, Subtarget.getXLenVT());
2786
SDValue Mask = getAllOnesMask(VecVT, VL, DL, DAG);
2787
return {Mask, VL};
2788
}
2789
2790
static std::pair<SDValue, SDValue>
2791
getDefaultVLOps(uint64_t NumElts, MVT ContainerVT, const SDLoc &DL,
2792
SelectionDAG &DAG, const RISCVSubtarget &Subtarget) {
2793
assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
2794
SDValue VL = getVLOp(NumElts, ContainerVT, DL, DAG, Subtarget);
2795
SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
2796
return {Mask, VL};
2797
}
2798
2799
// Gets the two common "VL" operands: an all-ones mask and the vector length.
2800
// VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
2801
// the vector type that the fixed-length vector is contained in. Otherwise if
2802
// VecVT is scalable, then ContainerVT should be the same as VecVT.
2803
static std::pair<SDValue, SDValue>
2804
getDefaultVLOps(MVT VecVT, MVT ContainerVT, const SDLoc &DL, SelectionDAG &DAG,
2805
const RISCVSubtarget &Subtarget) {
2806
if (VecVT.isFixedLengthVector())
2807
return getDefaultVLOps(VecVT.getVectorNumElements(), ContainerVT, DL, DAG,
2808
Subtarget);
2809
assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
2810
return getDefaultScalableVLOps(ContainerVT, DL, DAG, Subtarget);
2811
}
2812
2813
SDValue RISCVTargetLowering::computeVLMax(MVT VecVT, const SDLoc &DL,
2814
SelectionDAG &DAG) const {
2815
assert(VecVT.isScalableVector() && "Expected scalable vector");
2816
return DAG.getElementCount(DL, Subtarget.getXLenVT(),
2817
VecVT.getVectorElementCount());
2818
}
2819
2820
std::pair<unsigned, unsigned>
2821
RISCVTargetLowering::computeVLMAXBounds(MVT VecVT,
2822
const RISCVSubtarget &Subtarget) {
2823
assert(VecVT.isScalableVector() && "Expected scalable vector");
2824
2825
unsigned EltSize = VecVT.getScalarSizeInBits();
2826
unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
2827
2828
unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
2829
unsigned MaxVLMAX =
2830
RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
2831
2832
unsigned VectorBitsMin = Subtarget.getRealMinVLen();
2833
unsigned MinVLMAX =
2834
RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize);
2835
2836
return std::make_pair(MinVLMAX, MaxVLMAX);
2837
}
2838
2839
// The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
2840
// of either is (currently) supported. This can get us into an infinite loop
2841
// where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
2842
// as a ..., etc.
2843
// Until either (or both) of these can reliably lower any node, reporting that
2844
// we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
2845
// the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
2846
// which is not desirable.
2847
bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
2848
EVT VT, unsigned DefinedValues) const {
2849
return false;
2850
}
2851
2852
InstructionCost RISCVTargetLowering::getLMULCost(MVT VT) const {
2853
// TODO: Here assume reciprocal throughput is 1 for LMUL_1, it is
2854
// implementation-defined.
2855
if (!VT.isVector())
2856
return InstructionCost::getInvalid();
2857
unsigned DLenFactor = Subtarget.getDLenFactor();
2858
unsigned Cost;
2859
if (VT.isScalableVector()) {
2860
unsigned LMul;
2861
bool Fractional;
2862
std::tie(LMul, Fractional) =
2863
RISCVVType::decodeVLMUL(RISCVTargetLowering::getLMUL(VT));
2864
if (Fractional)
2865
Cost = LMul <= DLenFactor ? (DLenFactor / LMul) : 1;
2866
else
2867
Cost = (LMul * DLenFactor);
2868
} else {
2869
Cost = divideCeil(VT.getSizeInBits(), Subtarget.getRealMinVLen() / DLenFactor);
2870
}
2871
return Cost;
2872
}
2873
2874
2875
/// Return the cost of a vrgather.vv instruction for the type VT. vrgather.vv
2876
/// is generally quadratic in the number of vreg implied by LMUL. Note that
2877
/// operand (index and possibly mask) are handled separately.
2878
InstructionCost RISCVTargetLowering::getVRGatherVVCost(MVT VT) const {
2879
return getLMULCost(VT) * getLMULCost(VT);
2880
}
2881
2882
/// Return the cost of a vrgather.vi (or vx) instruction for the type VT.
2883
/// vrgather.vi/vx may be linear in the number of vregs implied by LMUL,
2884
/// or may track the vrgather.vv cost. It is implementation-dependent.
2885
InstructionCost RISCVTargetLowering::getVRGatherVICost(MVT VT) const {
2886
return getLMULCost(VT);
2887
}
2888
2889
/// Return the cost of a vslidedown.vx or vslideup.vx instruction
2890
/// for the type VT. (This does not cover the vslide1up or vslide1down
2891
/// variants.) Slides may be linear in the number of vregs implied by LMUL,
2892
/// or may track the vrgather.vv cost. It is implementation-dependent.
2893
InstructionCost RISCVTargetLowering::getVSlideVXCost(MVT VT) const {
2894
return getLMULCost(VT);
2895
}
2896
2897
/// Return the cost of a vslidedown.vi or vslideup.vi instruction
2898
/// for the type VT. (This does not cover the vslide1up or vslide1down
2899
/// variants.) Slides may be linear in the number of vregs implied by LMUL,
2900
/// or may track the vrgather.vv cost. It is implementation-dependent.
2901
InstructionCost RISCVTargetLowering::getVSlideVICost(MVT VT) const {
2902
return getLMULCost(VT);
2903
}
2904
2905
static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
2906
const RISCVSubtarget &Subtarget) {
2907
// RISC-V FP-to-int conversions saturate to the destination register size, but
2908
// don't produce 0 for nan. We can use a conversion instruction and fix the
2909
// nan case with a compare and a select.
2910
SDValue Src = Op.getOperand(0);
2911
2912
MVT DstVT = Op.getSimpleValueType();
2913
EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2914
2915
bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
2916
2917
if (!DstVT.isVector()) {
2918
// For bf16 or for f16 in absense of Zfh, promote to f32, then saturate
2919
// the result.
2920
if ((Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfhOrZhinx()) ||
2921
Src.getValueType() == MVT::bf16) {
2922
Src = DAG.getNode(ISD::FP_EXTEND, SDLoc(Op), MVT::f32, Src);
2923
}
2924
2925
unsigned Opc;
2926
if (SatVT == DstVT)
2927
Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
2928
else if (DstVT == MVT::i64 && SatVT == MVT::i32)
2929
Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
2930
else
2931
return SDValue();
2932
// FIXME: Support other SatVTs by clamping before or after the conversion.
2933
2934
SDLoc DL(Op);
2935
SDValue FpToInt = DAG.getNode(
2936
Opc, DL, DstVT, Src,
2937
DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
2938
2939
if (Opc == RISCVISD::FCVT_WU_RV64)
2940
FpToInt = DAG.getZeroExtendInReg(FpToInt, DL, MVT::i32);
2941
2942
SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
2943
return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt,
2944
ISD::CondCode::SETUO);
2945
}
2946
2947
// Vectors.
2948
2949
MVT DstEltVT = DstVT.getVectorElementType();
2950
MVT SrcVT = Src.getSimpleValueType();
2951
MVT SrcEltVT = SrcVT.getVectorElementType();
2952
unsigned SrcEltSize = SrcEltVT.getSizeInBits();
2953
unsigned DstEltSize = DstEltVT.getSizeInBits();
2954
2955
// Only handle saturating to the destination type.
2956
if (SatVT != DstEltVT)
2957
return SDValue();
2958
2959
// FIXME: Don't support narrowing by more than 1 steps for now.
2960
if (SrcEltSize > (2 * DstEltSize))
2961
return SDValue();
2962
2963
MVT DstContainerVT = DstVT;
2964
MVT SrcContainerVT = SrcVT;
2965
if (DstVT.isFixedLengthVector()) {
2966
DstContainerVT = getContainerForFixedLengthVector(DAG, DstVT, Subtarget);
2967
SrcContainerVT = getContainerForFixedLengthVector(DAG, SrcVT, Subtarget);
2968
assert(DstContainerVT.getVectorElementCount() ==
2969
SrcContainerVT.getVectorElementCount() &&
2970
"Expected same element count");
2971
Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2972
}
2973
2974
SDLoc DL(Op);
2975
2976
auto [Mask, VL] = getDefaultVLOps(DstVT, DstContainerVT, DL, DAG, Subtarget);
2977
2978
SDValue IsNan = DAG.getNode(RISCVISD::SETCC_VL, DL, Mask.getValueType(),
2979
{Src, Src, DAG.getCondCode(ISD::SETNE),
2980
DAG.getUNDEF(Mask.getValueType()), Mask, VL});
2981
2982
// Need to widen by more than 1 step, promote the FP type, then do a widening
2983
// convert.
2984
if (DstEltSize > (2 * SrcEltSize)) {
2985
assert(SrcContainerVT.getVectorElementType() == MVT::f16 && "Unexpected VT!");
2986
MVT InterVT = SrcContainerVT.changeVectorElementType(MVT::f32);
2987
Src = DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterVT, Src, Mask, VL);
2988
}
2989
2990
unsigned RVVOpc =
2991
IsSigned ? RISCVISD::VFCVT_RTZ_X_F_VL : RISCVISD::VFCVT_RTZ_XU_F_VL;
2992
SDValue Res = DAG.getNode(RVVOpc, DL, DstContainerVT, Src, Mask, VL);
2993
2994
SDValue SplatZero = DAG.getNode(
2995
RISCVISD::VMV_V_X_VL, DL, DstContainerVT, DAG.getUNDEF(DstContainerVT),
2996
DAG.getConstant(0, DL, Subtarget.getXLenVT()), VL);
2997
Res = DAG.getNode(RISCVISD::VMERGE_VL, DL, DstContainerVT, IsNan, SplatZero,
2998
Res, DAG.getUNDEF(DstContainerVT), VL);
2999
3000
if (DstVT.isFixedLengthVector())
3001
Res = convertFromScalableVector(DstVT, Res, DAG, Subtarget);
3002
3003
return Res;
3004
}
3005
3006
static RISCVFPRndMode::RoundingMode matchRoundingOp(unsigned Opc) {
3007
switch (Opc) {
3008
case ISD::FROUNDEVEN:
3009
case ISD::STRICT_FROUNDEVEN:
3010
case ISD::VP_FROUNDEVEN:
3011
return RISCVFPRndMode::RNE;
3012
case ISD::FTRUNC:
3013
case ISD::STRICT_FTRUNC:
3014
case ISD::VP_FROUNDTOZERO:
3015
return RISCVFPRndMode::RTZ;
3016
case ISD::FFLOOR:
3017
case ISD::STRICT_FFLOOR:
3018
case ISD::VP_FFLOOR:
3019
return RISCVFPRndMode::RDN;
3020
case ISD::FCEIL:
3021
case ISD::STRICT_FCEIL:
3022
case ISD::VP_FCEIL:
3023
return RISCVFPRndMode::RUP;
3024
case ISD::FROUND:
3025
case ISD::STRICT_FROUND:
3026
case ISD::VP_FROUND:
3027
return RISCVFPRndMode::RMM;
3028
case ISD::FRINT:
3029
return RISCVFPRndMode::DYN;
3030
}
3031
3032
return RISCVFPRndMode::Invalid;
3033
}
3034
3035
// Expand vector FTRUNC, FCEIL, FFLOOR, FROUND, VP_FCEIL, VP_FFLOOR, VP_FROUND
3036
// VP_FROUNDEVEN, VP_FROUNDTOZERO, VP_FRINT and VP_FNEARBYINT by converting to
3037
// the integer domain and back. Taking care to avoid converting values that are
3038
// nan or already correct.
3039
static SDValue
3040
lowerVectorFTRUNC_FCEIL_FFLOOR_FROUND(SDValue Op, SelectionDAG &DAG,
3041
const RISCVSubtarget &Subtarget) {
3042
MVT VT = Op.getSimpleValueType();
3043
assert(VT.isVector() && "Unexpected type");
3044
3045
SDLoc DL(Op);
3046
3047
SDValue Src = Op.getOperand(0);
3048
3049
MVT ContainerVT = VT;
3050
if (VT.isFixedLengthVector()) {
3051
ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
3052
Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3053
}
3054
3055
SDValue Mask, VL;
3056
if (Op->isVPOpcode()) {
3057
Mask = Op.getOperand(1);
3058
if (VT.isFixedLengthVector())
3059
Mask = convertToScalableVector(getMaskTypeFor(ContainerVT), Mask, DAG,
3060
Subtarget);
3061
VL = Op.getOperand(2);
3062
} else {
3063
std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3064
}
3065
3066
// Freeze the source since we are increasing the number of uses.
3067
Src = DAG.getFreeze(Src);
3068
3069
// We do the conversion on the absolute value and fix the sign at the end.
3070
SDValue Abs = DAG.getNode(RISCVISD::FABS_VL, DL, ContainerVT, Src, Mask, VL);
3071
3072
// Determine the largest integer that can be represented exactly. This and
3073
// values larger than it don't have any fractional bits so don't need to
3074
// be converted.
3075
const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(ContainerVT);
3076
unsigned Precision = APFloat::semanticsPrecision(FltSem);
3077
APFloat MaxVal = APFloat(FltSem);
3078
MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
3079
/*IsSigned*/ false, APFloat::rmNearestTiesToEven);
3080
SDValue MaxValNode =
3081
DAG.getConstantFP(MaxVal, DL, ContainerVT.getVectorElementType());
3082
SDValue MaxValSplat = DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, ContainerVT,
3083
DAG.getUNDEF(ContainerVT), MaxValNode, VL);
3084
3085
// If abs(Src) was larger than MaxVal or nan, keep it.
3086
MVT SetccVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3087
Mask =
3088
DAG.getNode(RISCVISD::SETCC_VL, DL, SetccVT,
3089
{Abs, MaxValSplat, DAG.getCondCode(ISD::SETOLT),
3090
Mask, Mask, VL});
3091
3092
// Truncate to integer and convert back to FP.
3093
MVT IntVT = ContainerVT.changeVectorElementTypeToInteger();
3094
MVT XLenVT = Subtarget.getXLenVT();
3095
SDValue Truncated;
3096
3097
switch (Op.getOpcode()) {
3098
default:
3099
llvm_unreachable("Unexpected opcode");
3100
case ISD::FCEIL:
3101
case ISD::VP_FCEIL:
3102
case ISD::FFLOOR:
3103
case ISD::VP_FFLOOR:
3104
case ISD::FROUND:
3105
case ISD::FROUNDEVEN:
3106
case ISD::VP_FROUND:
3107
case ISD::VP_FROUNDEVEN:
3108
case ISD::VP_FROUNDTOZERO: {
3109
RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Op.getOpcode());
3110
assert(FRM != RISCVFPRndMode::Invalid);
3111
Truncated = DAG.getNode(RISCVISD::VFCVT_RM_X_F_VL, DL, IntVT, Src, Mask,
3112
DAG.getTargetConstant(FRM, DL, XLenVT), VL);
3113
break;
3114
}
3115
case ISD::FTRUNC:
3116
Truncated = DAG.getNode(RISCVISD::VFCVT_RTZ_X_F_VL, DL, IntVT, Src,
3117
Mask, VL);
3118
break;
3119
case ISD::FRINT:
3120
case ISD::VP_FRINT:
3121
Truncated = DAG.getNode(RISCVISD::VFCVT_X_F_VL, DL, IntVT, Src, Mask, VL);
3122
break;
3123
case ISD::FNEARBYINT:
3124
case ISD::VP_FNEARBYINT:
3125
Truncated = DAG.getNode(RISCVISD::VFROUND_NOEXCEPT_VL, DL, ContainerVT, Src,
3126
Mask, VL);
3127
break;
3128
}
3129
3130
// VFROUND_NOEXCEPT_VL includes SINT_TO_FP_VL.
3131
if (Truncated.getOpcode() != RISCVISD::VFROUND_NOEXCEPT_VL)
3132
Truncated = DAG.getNode(RISCVISD::SINT_TO_FP_VL, DL, ContainerVT, Truncated,
3133
Mask, VL);
3134
3135
// Restore the original sign so that -0.0 is preserved.
3136
Truncated = DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Truncated,
3137
Src, Src, Mask, VL);
3138
3139
if (!VT.isFixedLengthVector())
3140
return Truncated;
3141
3142
return convertFromScalableVector(VT, Truncated, DAG, Subtarget);
3143
}
3144
3145
// Expand vector STRICT_FTRUNC, STRICT_FCEIL, STRICT_FFLOOR, STRICT_FROUND
3146
// STRICT_FROUNDEVEN and STRICT_FNEARBYINT by converting sNan of the source to
3147
// qNan and coverting the new source to integer and back to FP.
3148
static SDValue
3149
lowerVectorStrictFTRUNC_FCEIL_FFLOOR_FROUND(SDValue Op, SelectionDAG &DAG,
3150
const RISCVSubtarget &Subtarget) {
3151
SDLoc DL(Op);
3152
MVT VT = Op.getSimpleValueType();
3153
SDValue Chain = Op.getOperand(0);
3154
SDValue Src = Op.getOperand(1);
3155
3156
MVT ContainerVT = VT;
3157
if (VT.isFixedLengthVector()) {
3158
ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
3159
Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3160
}
3161
3162
auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3163
3164
// Freeze the source since we are increasing the number of uses.
3165
Src = DAG.getFreeze(Src);
3166
3167
// Covert sNan to qNan by executing x + x for all unordered elemenet x in Src.
3168
MVT MaskVT = Mask.getSimpleValueType();
3169
SDValue Unorder = DAG.getNode(RISCVISD::STRICT_FSETCC_VL, DL,
3170
DAG.getVTList(MaskVT, MVT::Other),
3171
{Chain, Src, Src, DAG.getCondCode(ISD::SETUNE),
3172
DAG.getUNDEF(MaskVT), Mask, VL});
3173
Chain = Unorder.getValue(1);
3174
Src = DAG.getNode(RISCVISD::STRICT_FADD_VL, DL,
3175
DAG.getVTList(ContainerVT, MVT::Other),
3176
{Chain, Src, Src, Src, Unorder, VL});
3177
Chain = Src.getValue(1);
3178
3179
// We do the conversion on the absolute value and fix the sign at the end.
3180
SDValue Abs = DAG.getNode(RISCVISD::FABS_VL, DL, ContainerVT, Src, Mask, VL);
3181
3182
// Determine the largest integer that can be represented exactly. This and
3183
// values larger than it don't have any fractional bits so don't need to
3184
// be converted.
3185
const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(ContainerVT);
3186
unsigned Precision = APFloat::semanticsPrecision(FltSem);
3187
APFloat MaxVal = APFloat(FltSem);
3188
MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
3189
/*IsSigned*/ false, APFloat::rmNearestTiesToEven);
3190
SDValue MaxValNode =
3191
DAG.getConstantFP(MaxVal, DL, ContainerVT.getVectorElementType());
3192
SDValue MaxValSplat = DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, ContainerVT,
3193
DAG.getUNDEF(ContainerVT), MaxValNode, VL);
3194
3195
// If abs(Src) was larger than MaxVal or nan, keep it.
3196
Mask = DAG.getNode(
3197
RISCVISD::SETCC_VL, DL, MaskVT,
3198
{Abs, MaxValSplat, DAG.getCondCode(ISD::SETOLT), Mask, Mask, VL});
3199
3200
// Truncate to integer and convert back to FP.
3201
MVT IntVT = ContainerVT.changeVectorElementTypeToInteger();
3202
MVT XLenVT = Subtarget.getXLenVT();
3203
SDValue Truncated;
3204
3205
switch (Op.getOpcode()) {
3206
default:
3207
llvm_unreachable("Unexpected opcode");
3208
case ISD::STRICT_FCEIL:
3209
case ISD::STRICT_FFLOOR:
3210
case ISD::STRICT_FROUND:
3211
case ISD::STRICT_FROUNDEVEN: {
3212
RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Op.getOpcode());
3213
assert(FRM != RISCVFPRndMode::Invalid);
3214
Truncated = DAG.getNode(
3215
RISCVISD::STRICT_VFCVT_RM_X_F_VL, DL, DAG.getVTList(IntVT, MVT::Other),
3216
{Chain, Src, Mask, DAG.getTargetConstant(FRM, DL, XLenVT), VL});
3217
break;
3218
}
3219
case ISD::STRICT_FTRUNC:
3220
Truncated =
3221
DAG.getNode(RISCVISD::STRICT_VFCVT_RTZ_X_F_VL, DL,
3222
DAG.getVTList(IntVT, MVT::Other), Chain, Src, Mask, VL);
3223
break;
3224
case ISD::STRICT_FNEARBYINT:
3225
Truncated = DAG.getNode(RISCVISD::STRICT_VFROUND_NOEXCEPT_VL, DL,
3226
DAG.getVTList(ContainerVT, MVT::Other), Chain, Src,
3227
Mask, VL);
3228
break;
3229
}
3230
Chain = Truncated.getValue(1);
3231
3232
// VFROUND_NOEXCEPT_VL includes SINT_TO_FP_VL.
3233
if (Op.getOpcode() != ISD::STRICT_FNEARBYINT) {
3234
Truncated = DAG.getNode(RISCVISD::STRICT_SINT_TO_FP_VL, DL,
3235
DAG.getVTList(ContainerVT, MVT::Other), Chain,
3236
Truncated, Mask, VL);
3237
Chain = Truncated.getValue(1);
3238
}
3239
3240
// Restore the original sign so that -0.0 is preserved.
3241
Truncated = DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Truncated,
3242
Src, Src, Mask, VL);
3243
3244
if (VT.isFixedLengthVector())
3245
Truncated = convertFromScalableVector(VT, Truncated, DAG, Subtarget);
3246
return DAG.getMergeValues({Truncated, Chain}, DL);
3247
}
3248
3249
static SDValue
3250
lowerFTRUNC_FCEIL_FFLOOR_FROUND(SDValue Op, SelectionDAG &DAG,
3251
const RISCVSubtarget &Subtarget) {
3252
MVT VT = Op.getSimpleValueType();
3253
if (VT.isVector())
3254
return lowerVectorFTRUNC_FCEIL_FFLOOR_FROUND(Op, DAG, Subtarget);
3255
3256
if (DAG.shouldOptForSize())
3257
return SDValue();
3258
3259
SDLoc DL(Op);
3260
SDValue Src = Op.getOperand(0);
3261
3262
// Create an integer the size of the mantissa with the MSB set. This and all
3263
// values larger than it don't have any fractional bits so don't need to be
3264
// converted.
3265
const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
3266
unsigned Precision = APFloat::semanticsPrecision(FltSem);
3267
APFloat MaxVal = APFloat(FltSem);
3268
MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
3269
/*IsSigned*/ false, APFloat::rmNearestTiesToEven);
3270
SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
3271
3272
RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Op.getOpcode());
3273
return DAG.getNode(RISCVISD::FROUND, DL, VT, Src, MaxValNode,
3274
DAG.getTargetConstant(FRM, DL, Subtarget.getXLenVT()));
3275
}
3276
3277
// Expand vector LRINT and LLRINT by converting to the integer domain.
3278
static SDValue lowerVectorXRINT(SDValue Op, SelectionDAG &DAG,
3279
const RISCVSubtarget &Subtarget) {
3280
MVT VT = Op.getSimpleValueType();
3281
assert(VT.isVector() && "Unexpected type");
3282
3283
SDLoc DL(Op);
3284
SDValue Src = Op.getOperand(0);
3285
MVT ContainerVT = VT;
3286
3287
if (VT.isFixedLengthVector()) {
3288
ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
3289
Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3290
}
3291
3292
auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3293
SDValue Truncated =
3294
DAG.getNode(RISCVISD::VFCVT_X_F_VL, DL, ContainerVT, Src, Mask, VL);
3295
3296
if (!VT.isFixedLengthVector())
3297
return Truncated;
3298
3299
return convertFromScalableVector(VT, Truncated, DAG, Subtarget);
3300
}
3301
3302
static SDValue
3303
getVSlidedown(SelectionDAG &DAG, const RISCVSubtarget &Subtarget,
3304
const SDLoc &DL, EVT VT, SDValue Merge, SDValue Op,
3305
SDValue Offset, SDValue Mask, SDValue VL,
3306
unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED) {
3307
if (Merge.isUndef())
3308
Policy = RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC;
3309
SDValue PolicyOp = DAG.getTargetConstant(Policy, DL, Subtarget.getXLenVT());
3310
SDValue Ops[] = {Merge, Op, Offset, Mask, VL, PolicyOp};
3311
return DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VT, Ops);
3312
}
3313
3314
static SDValue
3315
getVSlideup(SelectionDAG &DAG, const RISCVSubtarget &Subtarget, const SDLoc &DL,
3316
EVT VT, SDValue Merge, SDValue Op, SDValue Offset, SDValue Mask,
3317
SDValue VL,
3318
unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED) {
3319
if (Merge.isUndef())
3320
Policy = RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC;
3321
SDValue PolicyOp = DAG.getTargetConstant(Policy, DL, Subtarget.getXLenVT());
3322
SDValue Ops[] = {Merge, Op, Offset, Mask, VL, PolicyOp};
3323
return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VT, Ops);
3324
}
3325
3326
static MVT getLMUL1VT(MVT VT) {
3327
assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
3328
"Unexpected vector MVT");
3329
return MVT::getScalableVectorVT(
3330
VT.getVectorElementType(),
3331
RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
3332
}
3333
3334
struct VIDSequence {
3335
int64_t StepNumerator;
3336
unsigned StepDenominator;
3337
int64_t Addend;
3338
};
3339
3340
static std::optional<uint64_t> getExactInteger(const APFloat &APF,
3341
uint32_t BitWidth) {
3342
// We will use a SINT_TO_FP to materialize this constant so we should use a
3343
// signed APSInt here.
3344
APSInt ValInt(BitWidth, /*IsUnsigned*/ false);
3345
// We use an arbitrary rounding mode here. If a floating-point is an exact
3346
// integer (e.g., 1.0), the rounding mode does not affect the output value. If
3347
// the rounding mode changes the output value, then it is not an exact
3348
// integer.
3349
RoundingMode ArbitraryRM = RoundingMode::TowardZero;
3350
bool IsExact;
3351
// If it is out of signed integer range, it will return an invalid operation.
3352
// If it is not an exact integer, IsExact is false.
3353
if ((APF.convertToInteger(ValInt, ArbitraryRM, &IsExact) ==
3354
APFloatBase::opInvalidOp) ||
3355
!IsExact)
3356
return std::nullopt;
3357
return ValInt.extractBitsAsZExtValue(BitWidth, 0);
3358
}
3359
3360
// Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
3361
// to the (non-zero) step S and start value X. This can be then lowered as the
3362
// RVV sequence (VID * S) + X, for example.
3363
// The step S is represented as an integer numerator divided by a positive
3364
// denominator. Note that the implementation currently only identifies
3365
// sequences in which either the numerator is +/- 1 or the denominator is 1. It
3366
// cannot detect 2/3, for example.
3367
// Note that this method will also match potentially unappealing index
3368
// sequences, like <i32 0, i32 50939494>, however it is left to the caller to
3369
// determine whether this is worth generating code for.
3370
static std::optional<VIDSequence> isSimpleVIDSequence(SDValue Op,
3371
unsigned EltSizeInBits) {
3372
assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
3373
if (!cast<BuildVectorSDNode>(Op)->isConstant())
3374
return std::nullopt;
3375
bool IsInteger = Op.getValueType().isInteger();
3376
3377
std::optional<unsigned> SeqStepDenom;
3378
std::optional<int64_t> SeqStepNum, SeqAddend;
3379
std::optional<std::pair<uint64_t, unsigned>> PrevElt;
3380
assert(EltSizeInBits >= Op.getValueType().getScalarSizeInBits());
3381
3382
// First extract the ops into a list of constant integer values. This may not
3383
// be possible for floats if they're not all representable as integers.
3384
SmallVector<std::optional<uint64_t>> Elts(Op.getNumOperands());
3385
const unsigned OpSize = Op.getScalarValueSizeInBits();
3386
for (auto [Idx, Elt] : enumerate(Op->op_values())) {
3387
if (Elt.isUndef()) {
3388
Elts[Idx] = std::nullopt;
3389
continue;
3390
}
3391
if (IsInteger) {
3392
Elts[Idx] = Elt->getAsZExtVal() & maskTrailingOnes<uint64_t>(OpSize);
3393
} else {
3394
auto ExactInteger =
3395
getExactInteger(cast<ConstantFPSDNode>(Elt)->getValueAPF(), OpSize);
3396
if (!ExactInteger)
3397
return std::nullopt;
3398
Elts[Idx] = *ExactInteger;
3399
}
3400
}
3401
3402
for (auto [Idx, Elt] : enumerate(Elts)) {
3403
// Assume undef elements match the sequence; we just have to be careful
3404
// when interpolating across them.
3405
if (!Elt)
3406
continue;
3407
3408
if (PrevElt) {
3409
// Calculate the step since the last non-undef element, and ensure
3410
// it's consistent across the entire sequence.
3411
unsigned IdxDiff = Idx - PrevElt->second;
3412
int64_t ValDiff = SignExtend64(*Elt - PrevElt->first, EltSizeInBits);
3413
3414
// A zero-value value difference means that we're somewhere in the middle
3415
// of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
3416
// step change before evaluating the sequence.
3417
if (ValDiff == 0)
3418
continue;
3419
3420
int64_t Remainder = ValDiff % IdxDiff;
3421
// Normalize the step if it's greater than 1.
3422
if (Remainder != ValDiff) {
3423
// The difference must cleanly divide the element span.
3424
if (Remainder != 0)
3425
return std::nullopt;
3426
ValDiff /= IdxDiff;
3427
IdxDiff = 1;
3428
}
3429
3430
if (!SeqStepNum)
3431
SeqStepNum = ValDiff;
3432
else if (ValDiff != SeqStepNum)
3433
return std::nullopt;
3434
3435
if (!SeqStepDenom)
3436
SeqStepDenom = IdxDiff;
3437
else if (IdxDiff != *SeqStepDenom)
3438
return std::nullopt;
3439
}
3440
3441
// Record this non-undef element for later.
3442
if (!PrevElt || PrevElt->first != *Elt)
3443
PrevElt = std::make_pair(*Elt, Idx);
3444
}
3445
3446
// We need to have logged a step for this to count as a legal index sequence.
3447
if (!SeqStepNum || !SeqStepDenom)
3448
return std::nullopt;
3449
3450
// Loop back through the sequence and validate elements we might have skipped
3451
// while waiting for a valid step. While doing this, log any sequence addend.
3452
for (auto [Idx, Elt] : enumerate(Elts)) {
3453
if (!Elt)
3454
continue;
3455
uint64_t ExpectedVal =
3456
(int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
3457
int64_t Addend = SignExtend64(*Elt - ExpectedVal, EltSizeInBits);
3458
if (!SeqAddend)
3459
SeqAddend = Addend;
3460
else if (Addend != SeqAddend)
3461
return std::nullopt;
3462
}
3463
3464
assert(SeqAddend && "Must have an addend if we have a step");
3465
3466
return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
3467
}
3468
3469
// Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
3470
// and lower it as a VRGATHER_VX_VL from the source vector.
3471
static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
3472
SelectionDAG &DAG,
3473
const RISCVSubtarget &Subtarget) {
3474
if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
3475
return SDValue();
3476
SDValue Vec = SplatVal.getOperand(0);
3477
// Only perform this optimization on vectors of the same size for simplicity.
3478
// Don't perform this optimization for i1 vectors.
3479
// FIXME: Support i1 vectors, maybe by promoting to i8?
3480
if (Vec.getValueType() != VT || VT.getVectorElementType() == MVT::i1)
3481
return SDValue();
3482
SDValue Idx = SplatVal.getOperand(1);
3483
// The index must be a legal type.
3484
if (Idx.getValueType() != Subtarget.getXLenVT())
3485
return SDValue();
3486
3487
MVT ContainerVT = VT;
3488
if (VT.isFixedLengthVector()) {
3489
ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
3490
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3491
}
3492
3493
auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3494
3495
SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
3496
Idx, DAG.getUNDEF(ContainerVT), Mask, VL);
3497
3498
if (!VT.isFixedLengthVector())
3499
return Gather;
3500
3501
return convertFromScalableVector(VT, Gather, DAG, Subtarget);
3502
}
3503
3504
3505
/// Try and optimize BUILD_VECTORs with "dominant values" - these are values
3506
/// which constitute a large proportion of the elements. In such cases we can
3507
/// splat a vector with the dominant element and make up the shortfall with
3508
/// INSERT_VECTOR_ELTs. Returns SDValue if not profitable.
3509
/// Note that this includes vectors of 2 elements by association. The
3510
/// upper-most element is the "dominant" one, allowing us to use a splat to
3511
/// "insert" the upper element, and an insert of the lower element at position
3512
/// 0, which improves codegen.
3513
static SDValue lowerBuildVectorViaDominantValues(SDValue Op, SelectionDAG &DAG,
3514
const RISCVSubtarget &Subtarget) {
3515
MVT VT = Op.getSimpleValueType();
3516
assert(VT.isFixedLengthVector() && "Unexpected vector!");
3517
3518
MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
3519
3520
SDLoc DL(Op);
3521
auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3522
3523
MVT XLenVT = Subtarget.getXLenVT();
3524
unsigned NumElts = Op.getNumOperands();
3525
3526
SDValue DominantValue;
3527
unsigned MostCommonCount = 0;
3528
DenseMap<SDValue, unsigned> ValueCounts;
3529
unsigned NumUndefElts =
3530
count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
3531
3532
// Track the number of scalar loads we know we'd be inserting, estimated as
3533
// any non-zero floating-point constant. Other kinds of element are either
3534
// already in registers or are materialized on demand. The threshold at which
3535
// a vector load is more desirable than several scalar materializion and
3536
// vector-insertion instructions is not known.
3537
unsigned NumScalarLoads = 0;
3538
3539
for (SDValue V : Op->op_values()) {
3540
if (V.isUndef())
3541
continue;
3542
3543
ValueCounts.insert(std::make_pair(V, 0));
3544
unsigned &Count = ValueCounts[V];
3545
if (0 == Count)
3546
if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
3547
NumScalarLoads += !CFP->isExactlyValue(+0.0);
3548
3549
// Is this value dominant? In case of a tie, prefer the highest element as
3550
// it's cheaper to insert near the beginning of a vector than it is at the
3551
// end.
3552
if (++Count >= MostCommonCount) {
3553
DominantValue = V;
3554
MostCommonCount = Count;
3555
}
3556
}
3557
3558
assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
3559
unsigned NumDefElts = NumElts - NumUndefElts;
3560
unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
3561
3562
// Don't perform this optimization when optimizing for size, since
3563
// materializing elements and inserting them tends to cause code bloat.
3564
if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
3565
(NumElts != 2 || ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) &&
3566
((MostCommonCount > DominantValueCountThreshold) ||
3567
(ValueCounts.size() <= Log2_32(NumDefElts)))) {
3568
// Start by splatting the most common element.
3569
SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
3570
3571
DenseSet<SDValue> Processed{DominantValue};
3572
3573
// We can handle an insert into the last element (of a splat) via
3574
// v(f)slide1down. This is slightly better than the vslideup insert
3575
// lowering as it avoids the need for a vector group temporary. It
3576
// is also better than using vmerge.vx as it avoids the need to
3577
// materialize the mask in a vector register.
3578
if (SDValue LastOp = Op->getOperand(Op->getNumOperands() - 1);
3579
!LastOp.isUndef() && ValueCounts[LastOp] == 1 &&
3580
LastOp != DominantValue) {
3581
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3582
auto OpCode =
3583
VT.isFloatingPoint() ? RISCVISD::VFSLIDE1DOWN_VL : RISCVISD::VSLIDE1DOWN_VL;
3584
if (!VT.isFloatingPoint())
3585
LastOp = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, LastOp);
3586
Vec = DAG.getNode(OpCode, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Vec,
3587
LastOp, Mask, VL);
3588
Vec = convertFromScalableVector(VT, Vec, DAG, Subtarget);
3589
Processed.insert(LastOp);
3590
}
3591
3592
MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
3593
for (const auto &OpIdx : enumerate(Op->ops())) {
3594
const SDValue &V = OpIdx.value();
3595
if (V.isUndef() || !Processed.insert(V).second)
3596
continue;
3597
if (ValueCounts[V] == 1) {
3598
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
3599
DAG.getVectorIdxConstant(OpIdx.index(), DL));
3600
} else {
3601
// Blend in all instances of this value using a VSELECT, using a
3602
// mask where each bit signals whether that element is the one
3603
// we're after.
3604
SmallVector<SDValue> Ops;
3605
transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
3606
return DAG.getConstant(V == V1, DL, XLenVT);
3607
});
3608
Vec = DAG.getNode(ISD::VSELECT, DL, VT,
3609
DAG.getBuildVector(SelMaskTy, DL, Ops),
3610
DAG.getSplatBuildVector(VT, DL, V), Vec);
3611
}
3612
}
3613
3614
return Vec;
3615
}
3616
3617
return SDValue();
3618
}
3619
3620
static SDValue lowerBuildVectorOfConstants(SDValue Op, SelectionDAG &DAG,
3621
const RISCVSubtarget &Subtarget) {
3622
MVT VT = Op.getSimpleValueType();
3623
assert(VT.isFixedLengthVector() && "Unexpected vector!");
3624
3625
MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
3626
3627
SDLoc DL(Op);
3628
auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3629
3630
MVT XLenVT = Subtarget.getXLenVT();
3631
unsigned NumElts = Op.getNumOperands();
3632
3633
if (VT.getVectorElementType() == MVT::i1) {
3634
if (ISD::isBuildVectorAllZeros(Op.getNode())) {
3635
SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
3636
return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
3637
}
3638
3639
if (ISD::isBuildVectorAllOnes(Op.getNode())) {
3640
SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
3641
return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
3642
}
3643
3644
// Lower constant mask BUILD_VECTORs via an integer vector type, in
3645
// scalar integer chunks whose bit-width depends on the number of mask
3646
// bits and XLEN.
3647
// First, determine the most appropriate scalar integer type to use. This
3648
// is at most XLenVT, but may be shrunk to a smaller vector element type
3649
// according to the size of the final vector - use i8 chunks rather than
3650
// XLenVT if we're producing a v8i1. This results in more consistent
3651
// codegen across RV32 and RV64.
3652
unsigned NumViaIntegerBits = std::clamp(NumElts, 8u, Subtarget.getXLen());
3653
NumViaIntegerBits = std::min(NumViaIntegerBits, Subtarget.getELen());
3654
// If we have to use more than one INSERT_VECTOR_ELT then this
3655
// optimization is likely to increase code size; avoid peforming it in
3656
// such a case. We can use a load from a constant pool in this case.
3657
if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
3658
return SDValue();
3659
// Now we can create our integer vector type. Note that it may be larger
3660
// than the resulting mask type: v4i1 would use v1i8 as its integer type.
3661
unsigned IntegerViaVecElts = divideCeil(NumElts, NumViaIntegerBits);
3662
MVT IntegerViaVecVT =
3663
MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
3664
IntegerViaVecElts);
3665
3666
uint64_t Bits = 0;
3667
unsigned BitPos = 0, IntegerEltIdx = 0;
3668
SmallVector<SDValue, 8> Elts(IntegerViaVecElts);
3669
3670
for (unsigned I = 0; I < NumElts;) {
3671
SDValue V = Op.getOperand(I);
3672
bool BitValue = !V.isUndef() && V->getAsZExtVal();
3673
Bits |= ((uint64_t)BitValue << BitPos);
3674
++BitPos;
3675
++I;
3676
3677
// Once we accumulate enough bits to fill our scalar type or process the
3678
// last element, insert into our vector and clear our accumulated data.
3679
if (I % NumViaIntegerBits == 0 || I == NumElts) {
3680
if (NumViaIntegerBits <= 32)
3681
Bits = SignExtend64<32>(Bits);
3682
SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
3683
Elts[IntegerEltIdx] = Elt;
3684
Bits = 0;
3685
BitPos = 0;
3686
IntegerEltIdx++;
3687
}
3688
}
3689
3690
SDValue Vec = DAG.getBuildVector(IntegerViaVecVT, DL, Elts);
3691
3692
if (NumElts < NumViaIntegerBits) {
3693
// If we're producing a smaller vector than our minimum legal integer
3694
// type, bitcast to the equivalent (known-legal) mask type, and extract
3695
// our final mask.
3696
assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
3697
Vec = DAG.getBitcast(MVT::v8i1, Vec);
3698
Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
3699
DAG.getConstant(0, DL, XLenVT));
3700
} else {
3701
// Else we must have produced an integer type with the same size as the
3702
// mask type; bitcast for the final result.
3703
assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
3704
Vec = DAG.getBitcast(VT, Vec);
3705
}
3706
3707
return Vec;
3708
}
3709
3710
if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
3711
unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
3712
: RISCVISD::VMV_V_X_VL;
3713
if (!VT.isFloatingPoint())
3714
Splat = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Splat);
3715
Splat =
3716
DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
3717
return convertFromScalableVector(VT, Splat, DAG, Subtarget);
3718
}
3719
3720
// Try and match index sequences, which we can lower to the vid instruction
3721
// with optional modifications. An all-undef vector is matched by
3722
// getSplatValue, above.
3723
if (auto SimpleVID = isSimpleVIDSequence(Op, Op.getScalarValueSizeInBits())) {
3724
int64_t StepNumerator = SimpleVID->StepNumerator;
3725
unsigned StepDenominator = SimpleVID->StepDenominator;
3726
int64_t Addend = SimpleVID->Addend;
3727
3728
assert(StepNumerator != 0 && "Invalid step");
3729
bool Negate = false;
3730
int64_t SplatStepVal = StepNumerator;
3731
unsigned StepOpcode = ISD::MUL;
3732
// Exclude INT64_MIN to avoid passing it to std::abs. We won't optimize it
3733
// anyway as the shift of 63 won't fit in uimm5.
3734
if (StepNumerator != 1 && StepNumerator != INT64_MIN &&
3735
isPowerOf2_64(std::abs(StepNumerator))) {
3736
Negate = StepNumerator < 0;
3737
StepOpcode = ISD::SHL;
3738
SplatStepVal = Log2_64(std::abs(StepNumerator));
3739
}
3740
3741
// Only emit VIDs with suitably-small steps/addends. We use imm5 is a
3742
// threshold since it's the immediate value many RVV instructions accept.
3743
// There is no vmul.vi instruction so ensure multiply constant can fit in
3744
// a single addi instruction.
3745
if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
3746
(StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
3747
isPowerOf2_32(StepDenominator) &&
3748
(SplatStepVal >= 0 || StepDenominator == 1) && isInt<5>(Addend)) {
3749
MVT VIDVT =
3750
VT.isFloatingPoint() ? VT.changeVectorElementTypeToInteger() : VT;
3751
MVT VIDContainerVT =
3752
getContainerForFixedLengthVector(DAG, VIDVT, Subtarget);
3753
SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VIDContainerVT, Mask, VL);
3754
// Convert right out of the scalable type so we can use standard ISD
3755
// nodes for the rest of the computation. If we used scalable types with
3756
// these, we'd lose the fixed-length vector info and generate worse
3757
// vsetvli code.
3758
VID = convertFromScalableVector(VIDVT, VID, DAG, Subtarget);
3759
if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
3760
(StepOpcode == ISD::SHL && SplatStepVal != 0)) {
3761
SDValue SplatStep = DAG.getConstant(SplatStepVal, DL, VIDVT);
3762
VID = DAG.getNode(StepOpcode, DL, VIDVT, VID, SplatStep);
3763
}
3764
if (StepDenominator != 1) {
3765
SDValue SplatStep =
3766
DAG.getConstant(Log2_64(StepDenominator), DL, VIDVT);
3767
VID = DAG.getNode(ISD::SRL, DL, VIDVT, VID, SplatStep);
3768
}
3769
if (Addend != 0 || Negate) {
3770
SDValue SplatAddend = DAG.getConstant(Addend, DL, VIDVT);
3771
VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VIDVT, SplatAddend,
3772
VID);
3773
}
3774
if (VT.isFloatingPoint()) {
3775
// TODO: Use vfwcvt to reduce register pressure.
3776
VID = DAG.getNode(ISD::SINT_TO_FP, DL, VT, VID);
3777
}
3778
return VID;
3779
}
3780
}
3781
3782
// For very small build_vectors, use a single scalar insert of a constant.
3783
// TODO: Base this on constant rematerialization cost, not size.
3784
const unsigned EltBitSize = VT.getScalarSizeInBits();
3785
if (VT.getSizeInBits() <= 32 &&
3786
ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
3787
MVT ViaIntVT = MVT::getIntegerVT(VT.getSizeInBits());
3788
assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32) &&
3789
"Unexpected sequence type");
3790
// If we can use the original VL with the modified element type, this
3791
// means we only have a VTYPE toggle, not a VL toggle. TODO: Should this
3792
// be moved into InsertVSETVLI?
3793
unsigned ViaVecLen =
3794
(Subtarget.getRealMinVLen() >= VT.getSizeInBits() * NumElts) ? NumElts : 1;
3795
MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, ViaVecLen);
3796
3797
uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
3798
uint64_t SplatValue = 0;
3799
// Construct the amalgamated value at this larger vector type.
3800
for (const auto &OpIdx : enumerate(Op->op_values())) {
3801
const auto &SeqV = OpIdx.value();
3802
if (!SeqV.isUndef())
3803
SplatValue |=
3804
((SeqV->getAsZExtVal() & EltMask) << (OpIdx.index() * EltBitSize));
3805
}
3806
3807
// On RV64, sign-extend from 32 to 64 bits where possible in order to
3808
// achieve better constant materializion.
3809
if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
3810
SplatValue = SignExtend64<32>(SplatValue);
3811
3812
SDValue Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ViaVecVT,
3813
DAG.getUNDEF(ViaVecVT),
3814
DAG.getConstant(SplatValue, DL, XLenVT),
3815
DAG.getVectorIdxConstant(0, DL));
3816
if (ViaVecLen != 1)
3817
Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
3818
MVT::getVectorVT(ViaIntVT, 1), Vec,
3819
DAG.getConstant(0, DL, XLenVT));
3820
return DAG.getBitcast(VT, Vec);
3821
}
3822
3823
3824
// Attempt to detect "hidden" splats, which only reveal themselves as splats
3825
// when re-interpreted as a vector with a larger element type. For example,
3826
// v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
3827
// could be instead splat as
3828
// v2i32 = build_vector i32 0x00010000, i32 0x00010000
3829
// TODO: This optimization could also work on non-constant splats, but it
3830
// would require bit-manipulation instructions to construct the splat value.
3831
SmallVector<SDValue> Sequence;
3832
const auto *BV = cast<BuildVectorSDNode>(Op);
3833
if (VT.isInteger() && EltBitSize < Subtarget.getELen() &&
3834
ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
3835
BV->getRepeatedSequence(Sequence) &&
3836
(Sequence.size() * EltBitSize) <= Subtarget.getELen()) {
3837
unsigned SeqLen = Sequence.size();
3838
MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
3839
assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
3840
ViaIntVT == MVT::i64) &&
3841
"Unexpected sequence type");
3842
3843
// If we can use the original VL with the modified element type, this
3844
// means we only have a VTYPE toggle, not a VL toggle. TODO: Should this
3845
// be moved into InsertVSETVLI?
3846
const unsigned RequiredVL = NumElts / SeqLen;
3847
const unsigned ViaVecLen =
3848
(Subtarget.getRealMinVLen() >= ViaIntVT.getSizeInBits() * NumElts) ?
3849
NumElts : RequiredVL;
3850
MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, ViaVecLen);
3851
3852
unsigned EltIdx = 0;
3853
uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
3854
uint64_t SplatValue = 0;
3855
// Construct the amalgamated value which can be splatted as this larger
3856
// vector type.
3857
for (const auto &SeqV : Sequence) {
3858
if (!SeqV.isUndef())
3859
SplatValue |=
3860
((SeqV->getAsZExtVal() & EltMask) << (EltIdx * EltBitSize));
3861
EltIdx++;
3862
}
3863
3864
// On RV64, sign-extend from 32 to 64 bits where possible in order to
3865
// achieve better constant materializion.
3866
if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
3867
SplatValue = SignExtend64<32>(SplatValue);
3868
3869
// Since we can't introduce illegal i64 types at this stage, we can only
3870
// perform an i64 splat on RV32 if it is its own sign-extended value. That
3871
// way we can use RVV instructions to splat.
3872
assert((ViaIntVT.bitsLE(XLenVT) ||
3873
(!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
3874
"Unexpected bitcast sequence");
3875
if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
3876
SDValue ViaVL =
3877
DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
3878
MVT ViaContainerVT =
3879
getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
3880
SDValue Splat =
3881
DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
3882
DAG.getUNDEF(ViaContainerVT),
3883
DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
3884
Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
3885
if (ViaVecLen != RequiredVL)
3886
Splat = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
3887
MVT::getVectorVT(ViaIntVT, RequiredVL), Splat,
3888
DAG.getConstant(0, DL, XLenVT));
3889
return DAG.getBitcast(VT, Splat);
3890
}
3891
}
3892
3893
// If the number of signbits allows, see if we can lower as a <N x i8>.
3894
// Our main goal here is to reduce LMUL (and thus work) required to
3895
// build the constant, but we will also narrow if the resulting
3896
// narrow vector is known to materialize cheaply.
3897
// TODO: We really should be costing the smaller vector. There are
3898
// profitable cases this misses.
3899
if (EltBitSize > 8 && VT.isInteger() &&
3900
(NumElts <= 4 || VT.getSizeInBits() > Subtarget.getRealMinVLen())) {
3901
unsigned SignBits = DAG.ComputeNumSignBits(Op);
3902
if (EltBitSize - SignBits < 8) {
3903
SDValue Source = DAG.getBuildVector(VT.changeVectorElementType(MVT::i8),
3904
DL, Op->ops());
3905
Source = convertToScalableVector(ContainerVT.changeVectorElementType(MVT::i8),
3906
Source, DAG, Subtarget);
3907
SDValue Res = DAG.getNode(RISCVISD::VSEXT_VL, DL, ContainerVT, Source, Mask, VL);
3908
return convertFromScalableVector(VT, Res, DAG, Subtarget);
3909
}
3910
}
3911
3912
if (SDValue Res = lowerBuildVectorViaDominantValues(Op, DAG, Subtarget))
3913
return Res;
3914
3915
// For constant vectors, use generic constant pool lowering. Otherwise,
3916
// we'd have to materialize constants in GPRs just to move them into the
3917
// vector.
3918
return SDValue();
3919
}
3920
3921
static unsigned getPACKOpcode(unsigned DestBW,
3922
const RISCVSubtarget &Subtarget) {
3923
switch (DestBW) {
3924
default:
3925
llvm_unreachable("Unsupported pack size");
3926
case 16:
3927
return RISCV::PACKH;
3928
case 32:
3929
return Subtarget.is64Bit() ? RISCV::PACKW : RISCV::PACK;
3930
case 64:
3931
assert(Subtarget.is64Bit());
3932
return RISCV::PACK;
3933
}
3934
}
3935
3936
/// Double the element size of the build vector to reduce the number
3937
/// of vslide1down in the build vector chain. In the worst case, this
3938
/// trades three scalar operations for 1 vector operation. Scalar
3939
/// operations are generally lower latency, and for out-of-order cores
3940
/// we also benefit from additional parallelism.
3941
static SDValue lowerBuildVectorViaPacking(SDValue Op, SelectionDAG &DAG,
3942
const RISCVSubtarget &Subtarget) {
3943
SDLoc DL(Op);
3944
MVT VT = Op.getSimpleValueType();
3945
assert(VT.isFixedLengthVector() && "Unexpected vector!");
3946
MVT ElemVT = VT.getVectorElementType();
3947
if (!ElemVT.isInteger())
3948
return SDValue();
3949
3950
// TODO: Relax these architectural restrictions, possibly with costing
3951
// of the actual instructions required.
3952
if (!Subtarget.hasStdExtZbb() || !Subtarget.hasStdExtZba())
3953
return SDValue();
3954
3955
unsigned NumElts = VT.getVectorNumElements();
3956
unsigned ElemSizeInBits = ElemVT.getSizeInBits();
3957
if (ElemSizeInBits >= std::min(Subtarget.getELen(), Subtarget.getXLen()) ||
3958
NumElts % 2 != 0)
3959
return SDValue();
3960
3961
// Produce [B,A] packed into a type twice as wide. Note that all
3962
// scalars are XLenVT, possibly masked (see below).
3963
MVT XLenVT = Subtarget.getXLenVT();
3964
SDValue Mask = DAG.getConstant(
3965
APInt::getLowBitsSet(XLenVT.getSizeInBits(), ElemSizeInBits), DL, XLenVT);
3966
auto pack = [&](SDValue A, SDValue B) {
3967
// Bias the scheduling of the inserted operations to near the
3968
// definition of the element - this tends to reduce register
3969
// pressure overall.
3970
SDLoc ElemDL(B);
3971
if (Subtarget.hasStdExtZbkb())
3972
// Note that we're relying on the high bits of the result being
3973
// don't care. For PACKW, the result is *sign* extended.
3974
return SDValue(
3975
DAG.getMachineNode(getPACKOpcode(ElemSizeInBits * 2, Subtarget),
3976
ElemDL, XLenVT, A, B),
3977
0);
3978
3979
A = DAG.getNode(ISD::AND, SDLoc(A), XLenVT, A, Mask);
3980
B = DAG.getNode(ISD::AND, SDLoc(B), XLenVT, B, Mask);
3981
SDValue ShtAmt = DAG.getConstant(ElemSizeInBits, ElemDL, XLenVT);
3982
SDNodeFlags Flags;
3983
Flags.setDisjoint(true);
3984
return DAG.getNode(ISD::OR, ElemDL, XLenVT, A,
3985
DAG.getNode(ISD::SHL, ElemDL, XLenVT, B, ShtAmt), Flags);
3986
};
3987
3988
SmallVector<SDValue> NewOperands;
3989
NewOperands.reserve(NumElts / 2);
3990
for (unsigned i = 0; i < VT.getVectorNumElements(); i += 2)
3991
NewOperands.push_back(pack(Op.getOperand(i), Op.getOperand(i + 1)));
3992
assert(NumElts == NewOperands.size() * 2);
3993
MVT WideVT = MVT::getIntegerVT(ElemSizeInBits * 2);
3994
MVT WideVecVT = MVT::getVectorVT(WideVT, NumElts / 2);
3995
return DAG.getNode(ISD::BITCAST, DL, VT,
3996
DAG.getBuildVector(WideVecVT, DL, NewOperands));
3997
}
3998
3999
// Convert to an vXf16 build_vector to vXi16 with bitcasts.
4000
static SDValue lowerBUILD_VECTORvXf16(SDValue Op, SelectionDAG &DAG) {
4001
MVT VT = Op.getSimpleValueType();
4002
MVT IVT = VT.changeVectorElementType(MVT::i16);
4003
SmallVector<SDValue, 16> NewOps(Op.getNumOperands());
4004
for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I)
4005
NewOps[I] = DAG.getBitcast(MVT::i16, Op.getOperand(I));
4006
SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), IVT, NewOps);
4007
return DAG.getBitcast(VT, Res);
4008
}
4009
4010
static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
4011
const RISCVSubtarget &Subtarget) {
4012
MVT VT = Op.getSimpleValueType();
4013
assert(VT.isFixedLengthVector() && "Unexpected vector!");
4014
4015
// If we don't have scalar f16, we need to bitcast to an i16 vector.
4016
if (VT.getVectorElementType() == MVT::f16 &&
4017
!Subtarget.hasStdExtZfhmin())
4018
return lowerBUILD_VECTORvXf16(Op, DAG);
4019
4020
if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) ||
4021
ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode()))
4022
return lowerBuildVectorOfConstants(Op, DAG, Subtarget);
4023
4024
MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
4025
4026
SDLoc DL(Op);
4027
auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4028
4029
MVT XLenVT = Subtarget.getXLenVT();
4030
4031
if (VT.getVectorElementType() == MVT::i1) {
4032
// A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
4033
// vector type, we have a legal equivalently-sized i8 type, so we can use
4034
// that.
4035
MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
4036
SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
4037
4038
SDValue WideVec;
4039
if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
4040
// For a splat, perform a scalar truncate before creating the wider
4041
// vector.
4042
Splat = DAG.getNode(ISD::AND, DL, Splat.getValueType(), Splat,
4043
DAG.getConstant(1, DL, Splat.getValueType()));
4044
WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
4045
} else {
4046
SmallVector<SDValue, 8> Ops(Op->op_values());
4047
WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
4048
SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
4049
WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
4050
}
4051
4052
return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
4053
}
4054
4055
if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
4056
if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
4057
return Gather;
4058
unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
4059
: RISCVISD::VMV_V_X_VL;
4060
if (!VT.isFloatingPoint())
4061
Splat = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Splat);
4062
Splat =
4063
DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
4064
return convertFromScalableVector(VT, Splat, DAG, Subtarget);
4065
}
4066
4067
if (SDValue Res = lowerBuildVectorViaDominantValues(Op, DAG, Subtarget))
4068
return Res;
4069
4070
// If we're compiling for an exact VLEN value, we can split our work per
4071
// register in the register group.
4072
if (const auto VLen = Subtarget.getRealVLen();
4073
VLen && VT.getSizeInBits().getKnownMinValue() > *VLen) {
4074
MVT ElemVT = VT.getVectorElementType();
4075
unsigned ElemsPerVReg = *VLen / ElemVT.getFixedSizeInBits();
4076
EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
4077
MVT OneRegVT = MVT::getVectorVT(ElemVT, ElemsPerVReg);
4078
MVT M1VT = getContainerForFixedLengthVector(DAG, OneRegVT, Subtarget);
4079
assert(M1VT == getLMUL1VT(M1VT));
4080
4081
// The following semantically builds up a fixed length concat_vector
4082
// of the component build_vectors. We eagerly lower to scalable and
4083
// insert_subvector here to avoid DAG combining it back to a large
4084
// build_vector.
4085
SmallVector<SDValue> BuildVectorOps(Op->op_begin(), Op->op_end());
4086
unsigned NumOpElts = M1VT.getVectorMinNumElements();
4087
SDValue Vec = DAG.getUNDEF(ContainerVT);
4088
for (unsigned i = 0; i < VT.getVectorNumElements(); i += ElemsPerVReg) {
4089
auto OneVRegOfOps = ArrayRef(BuildVectorOps).slice(i, ElemsPerVReg);
4090
SDValue SubBV =
4091
DAG.getNode(ISD::BUILD_VECTOR, DL, OneRegVT, OneVRegOfOps);
4092
SubBV = convertToScalableVector(M1VT, SubBV, DAG, Subtarget);
4093
unsigned InsertIdx = (i / ElemsPerVReg) * NumOpElts;
4094
Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, Vec, SubBV,
4095
DAG.getVectorIdxConstant(InsertIdx, DL));
4096
}
4097
return convertFromScalableVector(VT, Vec, DAG, Subtarget);
4098
}
4099
4100
// If we're about to resort to vslide1down (or stack usage), pack our
4101
// elements into the widest scalar type we can. This will force a VL/VTYPE
4102
// toggle, but reduces the critical path, the number of vslide1down ops
4103
// required, and possibly enables scalar folds of the values.
4104
if (SDValue Res = lowerBuildVectorViaPacking(Op, DAG, Subtarget))
4105
return Res;
4106
4107
// For m1 vectors, if we have non-undef values in both halves of our vector,
4108
// split the vector into low and high halves, build them separately, then
4109
// use a vselect to combine them. For long vectors, this cuts the critical
4110
// path of the vslide1down sequence in half, and gives us an opportunity
4111
// to special case each half independently. Note that we don't change the
4112
// length of the sub-vectors here, so if both fallback to the generic
4113
// vslide1down path, we should be able to fold the vselect into the final
4114
// vslidedown (for the undef tail) for the first half w/ masking.
4115
unsigned NumElts = VT.getVectorNumElements();
4116
unsigned NumUndefElts =
4117
count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
4118
unsigned NumDefElts = NumElts - NumUndefElts;
4119
if (NumDefElts >= 8 && NumDefElts > NumElts / 2 &&
4120
ContainerVT.bitsLE(getLMUL1VT(ContainerVT))) {
4121
SmallVector<SDValue> SubVecAOps, SubVecBOps;
4122
SmallVector<SDValue> MaskVals;
4123
SDValue UndefElem = DAG.getUNDEF(Op->getOperand(0)->getValueType(0));
4124
SubVecAOps.reserve(NumElts);
4125
SubVecBOps.reserve(NumElts);
4126
for (unsigned i = 0; i < NumElts; i++) {
4127
SDValue Elem = Op->getOperand(i);
4128
if (i < NumElts / 2) {
4129
SubVecAOps.push_back(Elem);
4130
SubVecBOps.push_back(UndefElem);
4131
} else {
4132
SubVecAOps.push_back(UndefElem);
4133
SubVecBOps.push_back(Elem);
4134
}
4135
bool SelectMaskVal = (i < NumElts / 2);
4136
MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
4137
}
4138
assert(SubVecAOps.size() == NumElts && SubVecBOps.size() == NumElts &&
4139
MaskVals.size() == NumElts);
4140
4141
SDValue SubVecA = DAG.getBuildVector(VT, DL, SubVecAOps);
4142
SDValue SubVecB = DAG.getBuildVector(VT, DL, SubVecBOps);
4143
MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
4144
SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
4145
return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, SubVecA, SubVecB);
4146
}
4147
4148
// Cap the cost at a value linear to the number of elements in the vector.
4149
// The default lowering is to use the stack. The vector store + scalar loads
4150
// is linear in VL. However, at high lmuls vslide1down and vslidedown end up
4151
// being (at least) linear in LMUL. As a result, using the vslidedown
4152
// lowering for every element ends up being VL*LMUL..
4153
// TODO: Should we be directly costing the stack alternative? Doing so might
4154
// give us a more accurate upper bound.
4155
InstructionCost LinearBudget = VT.getVectorNumElements() * 2;
4156
4157
// TODO: unify with TTI getSlideCost.
4158
InstructionCost PerSlideCost = 1;
4159
switch (RISCVTargetLowering::getLMUL(ContainerVT)) {
4160
default: break;
4161
case RISCVII::VLMUL::LMUL_2:
4162
PerSlideCost = 2;
4163
break;
4164
case RISCVII::VLMUL::LMUL_4:
4165
PerSlideCost = 4;
4166
break;
4167
case RISCVII::VLMUL::LMUL_8:
4168
PerSlideCost = 8;
4169
break;
4170
}
4171
4172
// TODO: Should we be using the build instseq then cost + evaluate scheme
4173
// we use for integer constants here?
4174
unsigned UndefCount = 0;
4175
for (const SDValue &V : Op->ops()) {
4176
if (V.isUndef()) {
4177
UndefCount++;
4178
continue;
4179
}
4180
if (UndefCount) {
4181
LinearBudget -= PerSlideCost;
4182
UndefCount = 0;
4183
}
4184
LinearBudget -= PerSlideCost;
4185
}
4186
if (UndefCount) {
4187
LinearBudget -= PerSlideCost;
4188
}
4189
4190
if (LinearBudget < 0)
4191
return SDValue();
4192
4193
assert((!VT.isFloatingPoint() ||
4194
VT.getVectorElementType().getSizeInBits() <= Subtarget.getFLen()) &&
4195
"Illegal type which will result in reserved encoding");
4196
4197
const unsigned Policy = RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC;
4198
4199
SDValue Vec;
4200
UndefCount = 0;
4201
for (SDValue V : Op->ops()) {
4202
if (V.isUndef()) {
4203
UndefCount++;
4204
continue;
4205
}
4206
4207
// Start our sequence with a TA splat in the hopes that hardware is able to
4208
// recognize there's no dependency on the prior value of our temporary
4209
// register.
4210
if (!Vec) {
4211
Vec = DAG.getSplatVector(VT, DL, V);
4212
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4213
UndefCount = 0;
4214
continue;
4215
}
4216
4217
if (UndefCount) {
4218
const SDValue Offset = DAG.getConstant(UndefCount, DL, Subtarget.getXLenVT());
4219
Vec = getVSlidedown(DAG, Subtarget, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
4220
Vec, Offset, Mask, VL, Policy);
4221
UndefCount = 0;
4222
}
4223
auto OpCode =
4224
VT.isFloatingPoint() ? RISCVISD::VFSLIDE1DOWN_VL : RISCVISD::VSLIDE1DOWN_VL;
4225
if (!VT.isFloatingPoint())
4226
V = DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), V);
4227
Vec = DAG.getNode(OpCode, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Vec,
4228
V, Mask, VL);
4229
}
4230
if (UndefCount) {
4231
const SDValue Offset = DAG.getConstant(UndefCount, DL, Subtarget.getXLenVT());
4232
Vec = getVSlidedown(DAG, Subtarget, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
4233
Vec, Offset, Mask, VL, Policy);
4234
}
4235
return convertFromScalableVector(VT, Vec, DAG, Subtarget);
4236
}
4237
4238
static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
4239
SDValue Lo, SDValue Hi, SDValue VL,
4240
SelectionDAG &DAG) {
4241
if (!Passthru)
4242
Passthru = DAG.getUNDEF(VT);
4243
if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4244
int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4245
int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4246
// If Hi constant is all the same sign bit as Lo, lower this as a custom
4247
// node in order to try and match RVV vector/scalar instructions.
4248
if ((LoC >> 31) == HiC)
4249
return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
4250
4251
// If vl is equal to VLMAX or fits in 4 bits and Hi constant is equal to Lo,
4252
// we could use vmv.v.x whose EEW = 32 to lower it. This allows us to use
4253
// vlmax vsetvli or vsetivli to change the VL.
4254
// FIXME: Support larger constants?
4255
// FIXME: Support non-constant VLs by saturating?
4256
if (LoC == HiC) {
4257
SDValue NewVL;
4258
if (isAllOnesConstant(VL) ||
4259
(isa<RegisterSDNode>(VL) &&
4260
cast<RegisterSDNode>(VL)->getReg() == RISCV::X0))
4261
NewVL = DAG.getRegister(RISCV::X0, MVT::i32);
4262
else if (isa<ConstantSDNode>(VL) && isUInt<4>(VL->getAsZExtVal()))
4263
NewVL = DAG.getNode(ISD::ADD, DL, VL.getValueType(), VL, VL);
4264
4265
if (NewVL) {
4266
MVT InterVT =
4267
MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4268
auto InterVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterVT,
4269
DAG.getUNDEF(InterVT), Lo, NewVL);
4270
return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
4271
}
4272
}
4273
}
4274
4275
// Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4276
if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4277
isa<ConstantSDNode>(Hi.getOperand(1)) &&
4278
Hi.getConstantOperandVal(1) == 31)
4279
return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
4280
4281
// If the hi bits of the splat are undefined, then it's fine to just splat Lo
4282
// even if it might be sign extended.
4283
if (Hi.isUndef())
4284
return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
4285
4286
// Fall back to a stack store and stride x0 vector load.
4287
return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
4288
Hi, VL);
4289
}
4290
4291
// Called by type legalization to handle splat of i64 on RV32.
4292
// FIXME: We can optimize this when the type has sign or zero bits in one
4293
// of the halves.
4294
static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
4295
SDValue Scalar, SDValue VL,
4296
SelectionDAG &DAG) {
4297
assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
4298
SDValue Lo, Hi;
4299
std::tie(Lo, Hi) = DAG.SplitScalar(Scalar, DL, MVT::i32, MVT::i32);
4300
return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
4301
}
4302
4303
// This function lowers a splat of a scalar operand Splat with the vector
4304
// length VL. It ensures the final sequence is type legal, which is useful when
4305
// lowering a splat after type legalization.
4306
static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
4307
MVT VT, const SDLoc &DL, SelectionDAG &DAG,
4308
const RISCVSubtarget &Subtarget) {
4309
bool HasPassthru = Passthru && !Passthru.isUndef();
4310
if (!HasPassthru && !Passthru)
4311
Passthru = DAG.getUNDEF(VT);
4312
if (VT.isFloatingPoint())
4313
return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
4314
4315
MVT XLenVT = Subtarget.getXLenVT();
4316
4317
// Simplest case is that the operand needs to be promoted to XLenVT.
4318
if (Scalar.getValueType().bitsLE(XLenVT)) {
4319
// If the operand is a constant, sign extend to increase our chances
4320
// of being able to use a .vi instruction. ANY_EXTEND would become a
4321
// a zero extend and the simm5 check in isel would fail.
4322
// FIXME: Should we ignore the upper bits in isel instead?
4323
unsigned ExtOpc =
4324
isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4325
Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
4326
return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
4327
}
4328
4329
assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
4330
"Unexpected scalar for splat lowering!");
4331
4332
if (isOneConstant(VL) && isNullConstant(Scalar))
4333
return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
4334
DAG.getConstant(0, DL, XLenVT), VL);
4335
4336
// Otherwise use the more complicated splatting algorithm.
4337
return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
4338
}
4339
4340
// This function lowers an insert of a scalar operand Scalar into lane
4341
// 0 of the vector regardless of the value of VL. The contents of the
4342
// remaining lanes of the result vector are unspecified. VL is assumed
4343
// to be non-zero.
4344
static SDValue lowerScalarInsert(SDValue Scalar, SDValue VL, MVT VT,
4345
const SDLoc &DL, SelectionDAG &DAG,
4346
const RISCVSubtarget &Subtarget) {
4347
assert(VT.isScalableVector() && "Expect VT is scalable vector type.");
4348
4349
const MVT XLenVT = Subtarget.getXLenVT();
4350
SDValue Passthru = DAG.getUNDEF(VT);
4351
4352
if (Scalar.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4353
isNullConstant(Scalar.getOperand(1))) {
4354
SDValue ExtractedVal = Scalar.getOperand(0);
4355
// The element types must be the same.
4356
if (ExtractedVal.getValueType().getVectorElementType() ==
4357
VT.getVectorElementType()) {
4358
MVT ExtractedVT = ExtractedVal.getSimpleValueType();
4359
MVT ExtractedContainerVT = ExtractedVT;
4360
if (ExtractedContainerVT.isFixedLengthVector()) {
4361
ExtractedContainerVT = getContainerForFixedLengthVector(
4362
DAG, ExtractedContainerVT, Subtarget);
4363
ExtractedVal = convertToScalableVector(ExtractedContainerVT,
4364
ExtractedVal, DAG, Subtarget);
4365
}
4366
if (ExtractedContainerVT.bitsLE(VT))
4367
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Passthru,
4368
ExtractedVal, DAG.getVectorIdxConstant(0, DL));
4369
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, ExtractedVal,
4370
DAG.getVectorIdxConstant(0, DL));
4371
}
4372
}
4373
4374
4375
if (VT.isFloatingPoint())
4376
return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT,
4377
DAG.getUNDEF(VT), Scalar, VL);
4378
4379
// Avoid the tricky legalization cases by falling back to using the
4380
// splat code which already handles it gracefully.
4381
if (!Scalar.getValueType().bitsLE(XLenVT))
4382
return lowerScalarSplat(DAG.getUNDEF(VT), Scalar,
4383
DAG.getConstant(1, DL, XLenVT),
4384
VT, DL, DAG, Subtarget);
4385
4386
// If the operand is a constant, sign extend to increase our chances
4387
// of being able to use a .vi instruction. ANY_EXTEND would become a
4388
// a zero extend and the simm5 check in isel would fail.
4389
// FIXME: Should we ignore the upper bits in isel instead?
4390
unsigned ExtOpc =
4391
isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4392
Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
4393
return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT,
4394
DAG.getUNDEF(VT), Scalar, VL);
4395
}
4396
4397
// Is this a shuffle extracts either the even or odd elements of a vector?
4398
// That is, specifically, either (a) or (b) below.
4399
// t34: v8i8 = extract_subvector t11, Constant:i64<0>
4400
// t33: v8i8 = extract_subvector t11, Constant:i64<8>
4401
// a) t35: v8i8 = vector_shuffle<0,2,4,6,8,10,12,14> t34, t33
4402
// b) t35: v8i8 = vector_shuffle<1,3,5,7,9,11,13,15> t34, t33
4403
// Returns {Src Vector, Even Elements} om success
4404
static bool isDeinterleaveShuffle(MVT VT, MVT ContainerVT, SDValue V1,
4405
SDValue V2, ArrayRef<int> Mask,
4406
const RISCVSubtarget &Subtarget) {
4407
// Need to be able to widen the vector.
4408
if (VT.getScalarSizeInBits() >= Subtarget.getELen())
4409
return false;
4410
4411
// Both input must be extracts.
4412
if (V1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4413
V2.getOpcode() != ISD::EXTRACT_SUBVECTOR)
4414
return false;
4415
4416
// Extracting from the same source.
4417
SDValue Src = V1.getOperand(0);
4418
if (Src != V2.getOperand(0))
4419
return false;
4420
4421
// Src needs to have twice the number of elements.
4422
if (Src.getValueType().getVectorNumElements() != (Mask.size() * 2))
4423
return false;
4424
4425
// The extracts must extract the two halves of the source.
4426
if (V1.getConstantOperandVal(1) != 0 ||
4427
V2.getConstantOperandVal(1) != Mask.size())
4428
return false;
4429
4430
// First index must be the first even or odd element from V1.
4431
if (Mask[0] != 0 && Mask[0] != 1)
4432
return false;
4433
4434
// The others must increase by 2 each time.
4435
// TODO: Support undef elements?
4436
for (unsigned i = 1; i != Mask.size(); ++i)
4437
if (Mask[i] != Mask[i - 1] + 2)
4438
return false;
4439
4440
return true;
4441
}
4442
4443
/// Is this shuffle interleaving contiguous elements from one vector into the
4444
/// even elements and contiguous elements from another vector into the odd
4445
/// elements. \p EvenSrc will contain the element that should be in the first
4446
/// even element. \p OddSrc will contain the element that should be in the first
4447
/// odd element. These can be the first element in a source or the element half
4448
/// way through the source.
4449
static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, int &EvenSrc,
4450
int &OddSrc, const RISCVSubtarget &Subtarget) {
4451
// We need to be able to widen elements to the next larger integer type.
4452
if (VT.getScalarSizeInBits() >= Subtarget.getELen())
4453
return false;
4454
4455
int Size = Mask.size();
4456
int NumElts = VT.getVectorNumElements();
4457
assert(Size == (int)NumElts && "Unexpected mask size");
4458
4459
SmallVector<unsigned, 2> StartIndexes;
4460
if (!ShuffleVectorInst::isInterleaveMask(Mask, 2, Size * 2, StartIndexes))
4461
return false;
4462
4463
EvenSrc = StartIndexes[0];
4464
OddSrc = StartIndexes[1];
4465
4466
// One source should be low half of first vector.
4467
if (EvenSrc != 0 && OddSrc != 0)
4468
return false;
4469
4470
// Subvectors will be subtracted from either at the start of the two input
4471
// vectors, or at the start and middle of the first vector if it's an unary
4472
// interleave.
4473
// In both cases, HalfNumElts will be extracted.
4474
// We need to ensure that the extract indices are 0 or HalfNumElts otherwise
4475
// we'll create an illegal extract_subvector.
4476
// FIXME: We could support other values using a slidedown first.
4477
int HalfNumElts = NumElts / 2;
4478
return ((EvenSrc % HalfNumElts) == 0) && ((OddSrc % HalfNumElts) == 0);
4479
}
4480
4481
/// Match shuffles that concatenate two vectors, rotate the concatenation,
4482
/// and then extract the original number of elements from the rotated result.
4483
/// This is equivalent to vector.splice or X86's PALIGNR instruction. The
4484
/// returned rotation amount is for a rotate right, where elements move from
4485
/// higher elements to lower elements. \p LoSrc indicates the first source
4486
/// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
4487
/// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
4488
/// 0 or 1 if a rotation is found.
4489
///
4490
/// NOTE: We talk about rotate to the right which matches how bit shift and
4491
/// rotate instructions are described where LSBs are on the right, but LLVM IR
4492
/// and the table below write vectors with the lowest elements on the left.
4493
static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
4494
int Size = Mask.size();
4495
4496
// We need to detect various ways of spelling a rotation:
4497
// [11, 12, 13, 14, 15, 0, 1, 2]
4498
// [-1, 12, 13, 14, -1, -1, 1, -1]
4499
// [-1, -1, -1, -1, -1, -1, 1, 2]
4500
// [ 3, 4, 5, 6, 7, 8, 9, 10]
4501
// [-1, 4, 5, 6, -1, -1, 9, -1]
4502
// [-1, 4, 5, 6, -1, -1, -1, -1]
4503
int Rotation = 0;
4504
LoSrc = -1;
4505
HiSrc = -1;
4506
for (int i = 0; i != Size; ++i) {
4507
int M = Mask[i];
4508
if (M < 0)
4509
continue;
4510
4511
// Determine where a rotate vector would have started.
4512
int StartIdx = i - (M % Size);
4513
// The identity rotation isn't interesting, stop.
4514
if (StartIdx == 0)
4515
return -1;
4516
4517
// If we found the tail of a vector the rotation must be the missing
4518
// front. If we found the head of a vector, it must be how much of the
4519
// head.
4520
int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
4521
4522
if (Rotation == 0)
4523
Rotation = CandidateRotation;
4524
else if (Rotation != CandidateRotation)
4525
// The rotations don't match, so we can't match this mask.
4526
return -1;
4527
4528
// Compute which value this mask is pointing at.
4529
int MaskSrc = M < Size ? 0 : 1;
4530
4531
// Compute which of the two target values this index should be assigned to.
4532
// This reflects whether the high elements are remaining or the low elemnts
4533
// are remaining.
4534
int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
4535
4536
// Either set up this value if we've not encountered it before, or check
4537
// that it remains consistent.
4538
if (TargetSrc < 0)
4539
TargetSrc = MaskSrc;
4540
else if (TargetSrc != MaskSrc)
4541
// This may be a rotation, but it pulls from the inputs in some
4542
// unsupported interleaving.
4543
return -1;
4544
}
4545
4546
// Check that we successfully analyzed the mask, and normalize the results.
4547
assert(Rotation != 0 && "Failed to locate a viable rotation!");
4548
assert((LoSrc >= 0 || HiSrc >= 0) &&
4549
"Failed to find a rotated input vector!");
4550
4551
return Rotation;
4552
}
4553
4554
// Lower a deinterleave shuffle to vnsrl.
4555
// [a, p, b, q, c, r, d, s] -> [a, b, c, d] (EvenElts == true)
4556
// -> [p, q, r, s] (EvenElts == false)
4557
// VT is the type of the vector to return, <[vscale x ]n x ty>
4558
// Src is the vector to deinterleave of type <[vscale x ]n*2 x ty>
4559
static SDValue getDeinterleaveViaVNSRL(const SDLoc &DL, MVT VT, SDValue Src,
4560
bool EvenElts,
4561
const RISCVSubtarget &Subtarget,
4562
SelectionDAG &DAG) {
4563
// The result is a vector of type <m x n x ty>
4564
MVT ContainerVT = VT;
4565
// Convert fixed vectors to scalable if needed
4566
if (ContainerVT.isFixedLengthVector()) {
4567
assert(Src.getSimpleValueType().isFixedLengthVector());
4568
ContainerVT = getContainerForFixedLengthVector(DAG, ContainerVT, Subtarget);
4569
4570
// The source is a vector of type <m x n*2 x ty>
4571
MVT SrcContainerVT =
4572
MVT::getVectorVT(ContainerVT.getVectorElementType(),
4573
ContainerVT.getVectorElementCount() * 2);
4574
Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
4575
}
4576
4577
auto [TrueMask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4578
4579
// Bitcast the source vector from <m x n*2 x ty> -> <m x n x ty*2>
4580
// This also converts FP to int.
4581
unsigned EltBits = ContainerVT.getScalarSizeInBits();
4582
MVT WideSrcContainerVT = MVT::getVectorVT(
4583
MVT::getIntegerVT(EltBits * 2), ContainerVT.getVectorElementCount());
4584
Src = DAG.getBitcast(WideSrcContainerVT, Src);
4585
4586
// The integer version of the container type.
4587
MVT IntContainerVT = ContainerVT.changeVectorElementTypeToInteger();
4588
4589
// If we want even elements, then the shift amount is 0. Otherwise, shift by
4590
// the original element size.
4591
unsigned Shift = EvenElts ? 0 : EltBits;
4592
SDValue SplatShift = DAG.getNode(
4593
RISCVISD::VMV_V_X_VL, DL, IntContainerVT, DAG.getUNDEF(ContainerVT),
4594
DAG.getConstant(Shift, DL, Subtarget.getXLenVT()), VL);
4595
SDValue Res =
4596
DAG.getNode(RISCVISD::VNSRL_VL, DL, IntContainerVT, Src, SplatShift,
4597
DAG.getUNDEF(IntContainerVT), TrueMask, VL);
4598
// Cast back to FP if needed.
4599
Res = DAG.getBitcast(ContainerVT, Res);
4600
4601
if (VT.isFixedLengthVector())
4602
Res = convertFromScalableVector(VT, Res, DAG, Subtarget);
4603
return Res;
4604
}
4605
4606
// Lower the following shuffle to vslidedown.
4607
// a)
4608
// t49: v8i8 = extract_subvector t13, Constant:i64<0>
4609
// t109: v8i8 = extract_subvector t13, Constant:i64<8>
4610
// t108: v8i8 = vector_shuffle<1,2,3,4,5,6,7,8> t49, t106
4611
// b)
4612
// t69: v16i16 = extract_subvector t68, Constant:i64<0>
4613
// t23: v8i16 = extract_subvector t69, Constant:i64<0>
4614
// t29: v4i16 = extract_subvector t23, Constant:i64<4>
4615
// t26: v8i16 = extract_subvector t69, Constant:i64<8>
4616
// t30: v4i16 = extract_subvector t26, Constant:i64<0>
4617
// t54: v4i16 = vector_shuffle<1,2,3,4> t29, t30
4618
static SDValue lowerVECTOR_SHUFFLEAsVSlidedown(const SDLoc &DL, MVT VT,
4619
SDValue V1, SDValue V2,
4620
ArrayRef<int> Mask,
4621
const RISCVSubtarget &Subtarget,
4622
SelectionDAG &DAG) {
4623
auto findNonEXTRACT_SUBVECTORParent =
4624
[](SDValue Parent) -> std::pair<SDValue, uint64_t> {
4625
uint64_t Offset = 0;
4626
while (Parent.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
4627
// EXTRACT_SUBVECTOR can be used to extract a fixed-width vector from
4628
// a scalable vector. But we don't want to match the case.
4629
Parent.getOperand(0).getSimpleValueType().isFixedLengthVector()) {
4630
Offset += Parent.getConstantOperandVal(1);
4631
Parent = Parent.getOperand(0);
4632
}
4633
return std::make_pair(Parent, Offset);
4634
};
4635
4636
auto [V1Src, V1IndexOffset] = findNonEXTRACT_SUBVECTORParent(V1);
4637
auto [V2Src, V2IndexOffset] = findNonEXTRACT_SUBVECTORParent(V2);
4638
4639
// Extracting from the same source.
4640
SDValue Src = V1Src;
4641
if (Src != V2Src)
4642
return SDValue();
4643
4644
// Rebuild mask because Src may be from multiple EXTRACT_SUBVECTORs.
4645
SmallVector<int, 16> NewMask(Mask);
4646
for (size_t i = 0; i != NewMask.size(); ++i) {
4647
if (NewMask[i] == -1)
4648
continue;
4649
4650
if (static_cast<size_t>(NewMask[i]) < NewMask.size()) {
4651
NewMask[i] = NewMask[i] + V1IndexOffset;
4652
} else {
4653
// Minus NewMask.size() is needed. Otherwise, the b case would be
4654
// <5,6,7,12> instead of <5,6,7,8>.
4655
NewMask[i] = NewMask[i] - NewMask.size() + V2IndexOffset;
4656
}
4657
}
4658
4659
// First index must be known and non-zero. It will be used as the slidedown
4660
// amount.
4661
if (NewMask[0] <= 0)
4662
return SDValue();
4663
4664
// NewMask is also continuous.
4665
for (unsigned i = 1; i != NewMask.size(); ++i)
4666
if (NewMask[i - 1] + 1 != NewMask[i])
4667
return SDValue();
4668
4669
MVT XLenVT = Subtarget.getXLenVT();
4670
MVT SrcVT = Src.getSimpleValueType();
4671
MVT ContainerVT = getContainerForFixedLengthVector(DAG, SrcVT, Subtarget);
4672
auto [TrueMask, VL] = getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
4673
SDValue Slidedown =
4674
getVSlidedown(DAG, Subtarget, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
4675
convertToScalableVector(ContainerVT, Src, DAG, Subtarget),
4676
DAG.getConstant(NewMask[0], DL, XLenVT), TrueMask, VL);
4677
return DAG.getNode(
4678
ISD::EXTRACT_SUBVECTOR, DL, VT,
4679
convertFromScalableVector(SrcVT, Slidedown, DAG, Subtarget),
4680
DAG.getConstant(0, DL, XLenVT));
4681
}
4682
4683
// Because vslideup leaves the destination elements at the start intact, we can
4684
// use it to perform shuffles that insert subvectors:
4685
//
4686
// vector_shuffle v8:v8i8, v9:v8i8, <0, 1, 2, 3, 8, 9, 10, 11>
4687
// ->
4688
// vsetvli zero, 8, e8, mf2, ta, ma
4689
// vslideup.vi v8, v9, 4
4690
//
4691
// vector_shuffle v8:v8i8, v9:v8i8 <0, 1, 8, 9, 10, 5, 6, 7>
4692
// ->
4693
// vsetvli zero, 5, e8, mf2, tu, ma
4694
// vslideup.v1 v8, v9, 2
4695
static SDValue lowerVECTOR_SHUFFLEAsVSlideup(const SDLoc &DL, MVT VT,
4696
SDValue V1, SDValue V2,
4697
ArrayRef<int> Mask,
4698
const RISCVSubtarget &Subtarget,
4699
SelectionDAG &DAG) {
4700
unsigned NumElts = VT.getVectorNumElements();
4701
int NumSubElts, Index;
4702
if (!ShuffleVectorInst::isInsertSubvectorMask(Mask, NumElts, NumSubElts,
4703
Index))
4704
return SDValue();
4705
4706
bool OpsSwapped = Mask[Index] < (int)NumElts;
4707
SDValue InPlace = OpsSwapped ? V2 : V1;
4708
SDValue ToInsert = OpsSwapped ? V1 : V2;
4709
4710
MVT XLenVT = Subtarget.getXLenVT();
4711
MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
4712
auto TrueMask = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).first;
4713
// We slide up by the index that the subvector is being inserted at, and set
4714
// VL to the index + the number of elements being inserted.
4715
unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED | RISCVII::MASK_AGNOSTIC;
4716
// If the we're adding a suffix to the in place vector, i.e. inserting right
4717
// up to the very end of it, then we don't actually care about the tail.
4718
if (NumSubElts + Index >= (int)NumElts)
4719
Policy |= RISCVII::TAIL_AGNOSTIC;
4720
4721
InPlace = convertToScalableVector(ContainerVT, InPlace, DAG, Subtarget);
4722
ToInsert = convertToScalableVector(ContainerVT, ToInsert, DAG, Subtarget);
4723
SDValue VL = DAG.getConstant(NumSubElts + Index, DL, XLenVT);
4724
4725
SDValue Res;
4726
// If we're inserting into the lowest elements, use a tail undisturbed
4727
// vmv.v.v.
4728
if (Index == 0)
4729
Res = DAG.getNode(RISCVISD::VMV_V_V_VL, DL, ContainerVT, InPlace, ToInsert,
4730
VL);
4731
else
4732
Res = getVSlideup(DAG, Subtarget, DL, ContainerVT, InPlace, ToInsert,
4733
DAG.getConstant(Index, DL, XLenVT), TrueMask, VL, Policy);
4734
return convertFromScalableVector(VT, Res, DAG, Subtarget);
4735
}
4736
4737
/// Match v(f)slide1up/down idioms. These operations involve sliding
4738
/// N-1 elements to make room for an inserted scalar at one end.
4739
static SDValue lowerVECTOR_SHUFFLEAsVSlide1(const SDLoc &DL, MVT VT,
4740
SDValue V1, SDValue V2,
4741
ArrayRef<int> Mask,
4742
const RISCVSubtarget &Subtarget,
4743
SelectionDAG &DAG) {
4744
bool OpsSwapped = false;
4745
if (!isa<BuildVectorSDNode>(V1)) {
4746
if (!isa<BuildVectorSDNode>(V2))
4747
return SDValue();
4748
std::swap(V1, V2);
4749
OpsSwapped = true;
4750
}
4751
SDValue Splat = cast<BuildVectorSDNode>(V1)->getSplatValue();
4752
if (!Splat)
4753
return SDValue();
4754
4755
// Return true if the mask could describe a slide of Mask.size() - 1
4756
// elements from concat_vector(V1, V2)[Base:] to [Offset:].
4757
auto isSlideMask = [](ArrayRef<int> Mask, unsigned Base, int Offset) {
4758
const unsigned S = (Offset > 0) ? 0 : -Offset;
4759
const unsigned E = Mask.size() - ((Offset > 0) ? Offset : 0);
4760
for (unsigned i = S; i != E; ++i)
4761
if (Mask[i] >= 0 && (unsigned)Mask[i] != Base + i + Offset)
4762
return false;
4763
return true;
4764
};
4765
4766
const unsigned NumElts = VT.getVectorNumElements();
4767
bool IsVSlidedown = isSlideMask(Mask, OpsSwapped ? 0 : NumElts, 1);
4768
if (!IsVSlidedown && !isSlideMask(Mask, OpsSwapped ? 0 : NumElts, -1))
4769
return SDValue();
4770
4771
const int InsertIdx = Mask[IsVSlidedown ? (NumElts - 1) : 0];
4772
// Inserted lane must come from splat, undef scalar is legal but not profitable.
4773
if (InsertIdx < 0 || InsertIdx / NumElts != (unsigned)OpsSwapped)
4774
return SDValue();
4775
4776
MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
4777
auto [TrueMask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4778
auto OpCode = IsVSlidedown ?
4779
(VT.isFloatingPoint() ? RISCVISD::VFSLIDE1DOWN_VL : RISCVISD::VSLIDE1DOWN_VL) :
4780
(VT.isFloatingPoint() ? RISCVISD::VFSLIDE1UP_VL : RISCVISD::VSLIDE1UP_VL);
4781
if (!VT.isFloatingPoint())
4782
Splat = DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), Splat);
4783
auto Vec = DAG.getNode(OpCode, DL, ContainerVT,
4784
DAG.getUNDEF(ContainerVT),
4785
convertToScalableVector(ContainerVT, V2, DAG, Subtarget),
4786
Splat, TrueMask, VL);
4787
return convertFromScalableVector(VT, Vec, DAG, Subtarget);
4788
}
4789
4790
// Given two input vectors of <[vscale x ]n x ty>, use vwaddu.vv and vwmaccu.vx
4791
// to create an interleaved vector of <[vscale x] n*2 x ty>.
4792
// This requires that the size of ty is less than the subtarget's maximum ELEN.
4793
static SDValue getWideningInterleave(SDValue EvenV, SDValue OddV,
4794
const SDLoc &DL, SelectionDAG &DAG,
4795
const RISCVSubtarget &Subtarget) {
4796
MVT VecVT = EvenV.getSimpleValueType();
4797
MVT VecContainerVT = VecVT; // <vscale x n x ty>
4798
// Convert fixed vectors to scalable if needed
4799
if (VecContainerVT.isFixedLengthVector()) {
4800
VecContainerVT = getContainerForFixedLengthVector(DAG, VecVT, Subtarget);
4801
EvenV = convertToScalableVector(VecContainerVT, EvenV, DAG, Subtarget);
4802
OddV = convertToScalableVector(VecContainerVT, OddV, DAG, Subtarget);
4803
}
4804
4805
assert(VecVT.getScalarSizeInBits() < Subtarget.getELen());
4806
4807
// We're working with a vector of the same size as the resulting
4808
// interleaved vector, but with half the number of elements and
4809
// twice the SEW (Hence the restriction on not using the maximum
4810
// ELEN)
4811
MVT WideVT =
4812
MVT::getVectorVT(MVT::getIntegerVT(VecVT.getScalarSizeInBits() * 2),
4813
VecVT.getVectorElementCount());
4814
MVT WideContainerVT = WideVT; // <vscale x n x ty*2>
4815
if (WideContainerVT.isFixedLengthVector())
4816
WideContainerVT = getContainerForFixedLengthVector(DAG, WideVT, Subtarget);
4817
4818
// Bitcast the input vectors to integers in case they are FP
4819
VecContainerVT = VecContainerVT.changeTypeToInteger();
4820
EvenV = DAG.getBitcast(VecContainerVT, EvenV);
4821
OddV = DAG.getBitcast(VecContainerVT, OddV);
4822
4823
auto [Mask, VL] = getDefaultVLOps(VecVT, VecContainerVT, DL, DAG, Subtarget);
4824
SDValue Passthru = DAG.getUNDEF(WideContainerVT);
4825
4826
SDValue Interleaved;
4827
if (OddV.isUndef()) {
4828
// If OddV is undef, this is a zero extend.
4829
// FIXME: Not only does this optimize the code, it fixes some correctness
4830
// issues because MIR does not have freeze.
4831
Interleaved =
4832
DAG.getNode(RISCVISD::VZEXT_VL, DL, WideContainerVT, EvenV, Mask, VL);
4833
} else if (Subtarget.hasStdExtZvbb()) {
4834
// Interleaved = (OddV << VecVT.getScalarSizeInBits()) + EvenV.
4835
SDValue OffsetVec =
4836
DAG.getConstant(VecVT.getScalarSizeInBits(), DL, VecContainerVT);
4837
Interleaved = DAG.getNode(RISCVISD::VWSLL_VL, DL, WideContainerVT, OddV,
4838
OffsetVec, Passthru, Mask, VL);
4839
if (!EvenV.isUndef())
4840
Interleaved = DAG.getNode(RISCVISD::VWADDU_W_VL, DL, WideContainerVT,
4841
Interleaved, EvenV, Passthru, Mask, VL);
4842
} else if (EvenV.isUndef()) {
4843
Interleaved =
4844
DAG.getNode(RISCVISD::VZEXT_VL, DL, WideContainerVT, OddV, Mask, VL);
4845
4846
SDValue OffsetVec =
4847
DAG.getConstant(VecVT.getScalarSizeInBits(), DL, WideContainerVT);
4848
Interleaved = DAG.getNode(RISCVISD::SHL_VL, DL, WideContainerVT,
4849
Interleaved, OffsetVec, Passthru, Mask, VL);
4850
} else {
4851
// FIXME: We should freeze the odd vector here. We already handled the case
4852
// of provably undef/poison above.
4853
4854
// Widen EvenV and OddV with 0s and add one copy of OddV to EvenV with
4855
// vwaddu.vv
4856
Interleaved = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideContainerVT, EvenV,
4857
OddV, Passthru, Mask, VL);
4858
4859
// Then get OddV * by 2^(VecVT.getScalarSizeInBits() - 1)
4860
SDValue AllOnesVec = DAG.getSplatVector(
4861
VecContainerVT, DL, DAG.getAllOnesConstant(DL, Subtarget.getXLenVT()));
4862
SDValue OddsMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideContainerVT,
4863
OddV, AllOnesVec, Passthru, Mask, VL);
4864
4865
// Add the two together so we get
4866
// (OddV * 0xff...ff) + (OddV + EvenV)
4867
// = (OddV * 0x100...00) + EvenV
4868
// = (OddV << VecVT.getScalarSizeInBits()) + EvenV
4869
// Note the ADD_VL and VLMULU_VL should get selected as vwmaccu.vx
4870
Interleaved = DAG.getNode(RISCVISD::ADD_VL, DL, WideContainerVT,
4871
Interleaved, OddsMul, Passthru, Mask, VL);
4872
}
4873
4874
// Bitcast from <vscale x n * ty*2> to <vscale x 2*n x ty>
4875
MVT ResultContainerVT = MVT::getVectorVT(
4876
VecVT.getVectorElementType(), // Make sure to use original type
4877
VecContainerVT.getVectorElementCount().multiplyCoefficientBy(2));
4878
Interleaved = DAG.getBitcast(ResultContainerVT, Interleaved);
4879
4880
// Convert back to a fixed vector if needed
4881
MVT ResultVT =
4882
MVT::getVectorVT(VecVT.getVectorElementType(),
4883
VecVT.getVectorElementCount().multiplyCoefficientBy(2));
4884
if (ResultVT.isFixedLengthVector())
4885
Interleaved =
4886
convertFromScalableVector(ResultVT, Interleaved, DAG, Subtarget);
4887
4888
return Interleaved;
4889
}
4890
4891
// If we have a vector of bits that we want to reverse, we can use a vbrev on a
4892
// larger element type, e.g. v32i1 can be reversed with a v1i32 bitreverse.
4893
static SDValue lowerBitreverseShuffle(ShuffleVectorSDNode *SVN,
4894
SelectionDAG &DAG,
4895
const RISCVSubtarget &Subtarget) {
4896
SDLoc DL(SVN);
4897
MVT VT = SVN->getSimpleValueType(0);
4898
SDValue V = SVN->getOperand(0);
4899
unsigned NumElts = VT.getVectorNumElements();
4900
4901
assert(VT.getVectorElementType() == MVT::i1);
4902
4903
if (!ShuffleVectorInst::isReverseMask(SVN->getMask(),
4904
SVN->getMask().size()) ||
4905
!SVN->getOperand(1).isUndef())
4906
return SDValue();
4907
4908
unsigned ViaEltSize = std::max((uint64_t)8, PowerOf2Ceil(NumElts));
4909
EVT ViaVT = EVT::getVectorVT(
4910
*DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), ViaEltSize), 1);
4911
EVT ViaBitVT =
4912
EVT::getVectorVT(*DAG.getContext(), MVT::i1, ViaVT.getScalarSizeInBits());
4913
4914
// If we don't have zvbb or the larger element type > ELEN, the operation will
4915
// be illegal.
4916
if (!Subtarget.getTargetLowering()->isOperationLegalOrCustom(ISD::BITREVERSE,
4917
ViaVT) ||
4918
!Subtarget.getTargetLowering()->isTypeLegal(ViaBitVT))
4919
return SDValue();
4920
4921
// If the bit vector doesn't fit exactly into the larger element type, we need
4922
// to insert it into the larger vector and then shift up the reversed bits
4923
// afterwards to get rid of the gap introduced.
4924
if (ViaEltSize > NumElts)
4925
V = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ViaBitVT, DAG.getUNDEF(ViaBitVT),
4926
V, DAG.getVectorIdxConstant(0, DL));
4927
4928
SDValue Res =
4929
DAG.getNode(ISD::BITREVERSE, DL, ViaVT, DAG.getBitcast(ViaVT, V));
4930
4931
// Shift up the reversed bits if the vector didn't exactly fit into the larger
4932
// element type.
4933
if (ViaEltSize > NumElts)
4934
Res = DAG.getNode(ISD::SRL, DL, ViaVT, Res,
4935
DAG.getConstant(ViaEltSize - NumElts, DL, ViaVT));
4936
4937
Res = DAG.getBitcast(ViaBitVT, Res);
4938
4939
if (ViaEltSize > NumElts)
4940
Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Res,
4941
DAG.getVectorIdxConstant(0, DL));
4942
return Res;
4943
}
4944
4945
static bool isLegalBitRotate(ShuffleVectorSDNode *SVN,
4946
SelectionDAG &DAG,
4947
const RISCVSubtarget &Subtarget,
4948
MVT &RotateVT, unsigned &RotateAmt) {
4949
SDLoc DL(SVN);
4950
4951
EVT VT = SVN->getValueType(0);
4952
unsigned NumElts = VT.getVectorNumElements();
4953
unsigned EltSizeInBits = VT.getScalarSizeInBits();
4954
unsigned NumSubElts;
4955
if (!ShuffleVectorInst::isBitRotateMask(SVN->getMask(), EltSizeInBits, 2,
4956
NumElts, NumSubElts, RotateAmt))
4957
return false;
4958
RotateVT = MVT::getVectorVT(MVT::getIntegerVT(EltSizeInBits * NumSubElts),
4959
NumElts / NumSubElts);
4960
4961
// We might have a RotateVT that isn't legal, e.g. v4i64 on zve32x.
4962
return Subtarget.getTargetLowering()->isTypeLegal(RotateVT);
4963
}
4964
4965
// Given a shuffle mask like <3, 0, 1, 2, 7, 4, 5, 6> for v8i8, we can
4966
// reinterpret it as a v2i32 and rotate it right by 8 instead. We can lower this
4967
// as a vror.vi if we have Zvkb, or otherwise as a vsll, vsrl and vor.
4968
static SDValue lowerVECTOR_SHUFFLEAsRotate(ShuffleVectorSDNode *SVN,
4969
SelectionDAG &DAG,
4970
const RISCVSubtarget &Subtarget) {
4971
SDLoc DL(SVN);
4972
4973
EVT VT = SVN->getValueType(0);
4974
unsigned RotateAmt;
4975
MVT RotateVT;
4976
if (!isLegalBitRotate(SVN, DAG, Subtarget, RotateVT, RotateAmt))
4977
return SDValue();
4978
4979
SDValue Op = DAG.getBitcast(RotateVT, SVN->getOperand(0));
4980
4981
SDValue Rotate;
4982
// A rotate of an i16 by 8 bits either direction is equivalent to a byteswap,
4983
// so canonicalize to vrev8.
4984
if (RotateVT.getScalarType() == MVT::i16 && RotateAmt == 8)
4985
Rotate = DAG.getNode(ISD::BSWAP, DL, RotateVT, Op);
4986
else
4987
Rotate = DAG.getNode(ISD::ROTL, DL, RotateVT, Op,
4988
DAG.getConstant(RotateAmt, DL, RotateVT));
4989
4990
return DAG.getBitcast(VT, Rotate);
4991
}
4992
4993
// If compiling with an exactly known VLEN, see if we can split a
4994
// shuffle on m2 or larger into a small number of m1 sized shuffles
4995
// which write each destination registers exactly once.
4996
static SDValue lowerShuffleViaVRegSplitting(ShuffleVectorSDNode *SVN,
4997
SelectionDAG &DAG,
4998
const RISCVSubtarget &Subtarget) {
4999
SDLoc DL(SVN);
5000
MVT VT = SVN->getSimpleValueType(0);
5001
SDValue V1 = SVN->getOperand(0);
5002
SDValue V2 = SVN->getOperand(1);
5003
ArrayRef<int> Mask = SVN->getMask();
5004
unsigned NumElts = VT.getVectorNumElements();
5005
5006
// If we don't know exact data layout, not much we can do. If this
5007
// is already m1 or smaller, no point in splitting further.
5008
const auto VLen = Subtarget.getRealVLen();
5009
if (!VLen || VT.getSizeInBits().getFixedValue() <= *VLen)
5010
return SDValue();
5011
5012
// Avoid picking up bitrotate patterns which we have a linear-in-lmul
5013
// expansion for.
5014
unsigned RotateAmt;
5015
MVT RotateVT;
5016
if (isLegalBitRotate(SVN, DAG, Subtarget, RotateVT, RotateAmt))
5017
return SDValue();
5018
5019
MVT ElemVT = VT.getVectorElementType();
5020
unsigned ElemsPerVReg = *VLen / ElemVT.getFixedSizeInBits();
5021
unsigned VRegsPerSrc = NumElts / ElemsPerVReg;
5022
5023
SmallVector<std::pair<int, SmallVector<int>>>
5024
OutMasks(VRegsPerSrc, {-1, {}});
5025
5026
// Check if our mask can be done as a 1-to-1 mapping from source
5027
// to destination registers in the group without needing to
5028
// write each destination more than once.
5029
for (unsigned DstIdx = 0; DstIdx < Mask.size(); DstIdx++) {
5030
int DstVecIdx = DstIdx / ElemsPerVReg;
5031
int DstSubIdx = DstIdx % ElemsPerVReg;
5032
int SrcIdx = Mask[DstIdx];
5033
if (SrcIdx < 0 || (unsigned)SrcIdx >= 2 * NumElts)
5034
continue;
5035
int SrcVecIdx = SrcIdx / ElemsPerVReg;
5036
int SrcSubIdx = SrcIdx % ElemsPerVReg;
5037
if (OutMasks[DstVecIdx].first == -1)
5038
OutMasks[DstVecIdx].first = SrcVecIdx;
5039
if (OutMasks[DstVecIdx].first != SrcVecIdx)
5040
// Note: This case could easily be handled by keeping track of a chain
5041
// of source values and generating two element shuffles below. This is
5042
// less an implementation question, and more a profitability one.
5043
return SDValue();
5044
5045
OutMasks[DstVecIdx].second.resize(ElemsPerVReg, -1);
5046
OutMasks[DstVecIdx].second[DstSubIdx] = SrcSubIdx;
5047
}
5048
5049
EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
5050
MVT OneRegVT = MVT::getVectorVT(ElemVT, ElemsPerVReg);
5051
MVT M1VT = getContainerForFixedLengthVector(DAG, OneRegVT, Subtarget);
5052
assert(M1VT == getLMUL1VT(M1VT));
5053
unsigned NumOpElts = M1VT.getVectorMinNumElements();
5054
SDValue Vec = DAG.getUNDEF(ContainerVT);
5055
// The following semantically builds up a fixed length concat_vector
5056
// of the component shuffle_vectors. We eagerly lower to scalable here
5057
// to avoid DAG combining it back to a large shuffle_vector again.
5058
V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
5059
V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
5060
for (unsigned DstVecIdx = 0 ; DstVecIdx < OutMasks.size(); DstVecIdx++) {
5061
auto &[SrcVecIdx, SrcSubMask] = OutMasks[DstVecIdx];
5062
if (SrcVecIdx == -1)
5063
continue;
5064
unsigned ExtractIdx = (SrcVecIdx % VRegsPerSrc) * NumOpElts;
5065
SDValue SrcVec = (unsigned)SrcVecIdx >= VRegsPerSrc ? V2 : V1;
5066
SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, M1VT, SrcVec,
5067
DAG.getVectorIdxConstant(ExtractIdx, DL));
5068
SubVec = convertFromScalableVector(OneRegVT, SubVec, DAG, Subtarget);
5069
SubVec = DAG.getVectorShuffle(OneRegVT, DL, SubVec, SubVec, SrcSubMask);
5070
SubVec = convertToScalableVector(M1VT, SubVec, DAG, Subtarget);
5071
unsigned InsertIdx = DstVecIdx * NumOpElts;
5072
Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, Vec, SubVec,
5073
DAG.getVectorIdxConstant(InsertIdx, DL));
5074
}
5075
return convertFromScalableVector(VT, Vec, DAG, Subtarget);
5076
}
5077
5078
static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
5079
const RISCVSubtarget &Subtarget) {
5080
SDValue V1 = Op.getOperand(0);
5081
SDValue V2 = Op.getOperand(1);
5082
SDLoc DL(Op);
5083
MVT XLenVT = Subtarget.getXLenVT();
5084
MVT VT = Op.getSimpleValueType();
5085
unsigned NumElts = VT.getVectorNumElements();
5086
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
5087
5088
if (VT.getVectorElementType() == MVT::i1) {
5089
// Lower to a vror.vi of a larger element type if possible before we promote
5090
// i1s to i8s.
5091
if (SDValue V = lowerVECTOR_SHUFFLEAsRotate(SVN, DAG, Subtarget))
5092
return V;
5093
if (SDValue V = lowerBitreverseShuffle(SVN, DAG, Subtarget))
5094
return V;
5095
5096
// Promote i1 shuffle to i8 shuffle.
5097
MVT WidenVT = MVT::getVectorVT(MVT::i8, VT.getVectorElementCount());
5098
V1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenVT, V1);
5099
V2 = V2.isUndef() ? DAG.getUNDEF(WidenVT)
5100
: DAG.getNode(ISD::ZERO_EXTEND, DL, WidenVT, V2);
5101
SDValue Shuffled = DAG.getVectorShuffle(WidenVT, DL, V1, V2, SVN->getMask());
5102
return DAG.getSetCC(DL, VT, Shuffled, DAG.getConstant(0, DL, WidenVT),
5103
ISD::SETNE);
5104
}
5105
5106
MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
5107
5108
auto [TrueMask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5109
5110
if (SVN->isSplat()) {
5111
const int Lane = SVN->getSplatIndex();
5112
if (Lane >= 0) {
5113
MVT SVT = VT.getVectorElementType();
5114
5115
// Turn splatted vector load into a strided load with an X0 stride.
5116
SDValue V = V1;
5117
// Peek through CONCAT_VECTORS as VectorCombine can concat a vector
5118
// with undef.
5119
// FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
5120
int Offset = Lane;
5121
if (V.getOpcode() == ISD::CONCAT_VECTORS) {
5122
int OpElements =
5123
V.getOperand(0).getSimpleValueType().getVectorNumElements();
5124
V = V.getOperand(Offset / OpElements);
5125
Offset %= OpElements;
5126
}
5127
5128
// We need to ensure the load isn't atomic or volatile.
5129
if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
5130
auto *Ld = cast<LoadSDNode>(V);
5131
Offset *= SVT.getStoreSize();
5132
SDValue NewAddr = DAG.getMemBasePlusOffset(
5133
Ld->getBasePtr(), TypeSize::getFixed(Offset), DL);
5134
5135
// If this is SEW=64 on RV32, use a strided load with a stride of x0.
5136
if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
5137
SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5138
SDValue IntID =
5139
DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
5140
SDValue Ops[] = {Ld->getChain(),
5141
IntID,
5142
DAG.getUNDEF(ContainerVT),
5143
NewAddr,
5144
DAG.getRegister(RISCV::X0, XLenVT),
5145
VL};
5146
SDValue NewLoad = DAG.getMemIntrinsicNode(
5147
ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
5148
DAG.getMachineFunction().getMachineMemOperand(
5149
Ld->getMemOperand(), Offset, SVT.getStoreSize()));
5150
DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
5151
return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5152
}
5153
5154
MVT SplatVT = ContainerVT;
5155
5156
// If we don't have Zfh, we need to use an integer scalar load.
5157
if (SVT == MVT::f16 && !Subtarget.hasStdExtZfh()) {
5158
SVT = MVT::i16;
5159
SplatVT = ContainerVT.changeVectorElementType(SVT);
5160
}
5161
5162
// Otherwise use a scalar load and splat. This will give the best
5163
// opportunity to fold a splat into the operation. ISel can turn it into
5164
// the x0 strided load if we aren't able to fold away the select.
5165
if (SVT.isFloatingPoint())
5166
V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
5167
Ld->getPointerInfo().getWithOffset(Offset),
5168
Ld->getOriginalAlign(),
5169
Ld->getMemOperand()->getFlags());
5170
else
5171
V = DAG.getExtLoad(ISD::EXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
5172
Ld->getPointerInfo().getWithOffset(Offset), SVT,
5173
Ld->getOriginalAlign(),
5174
Ld->getMemOperand()->getFlags());
5175
DAG.makeEquivalentMemoryOrdering(Ld, V);
5176
5177
unsigned Opc = SplatVT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
5178
: RISCVISD::VMV_V_X_VL;
5179
SDValue Splat =
5180
DAG.getNode(Opc, DL, SplatVT, DAG.getUNDEF(ContainerVT), V, VL);
5181
Splat = DAG.getBitcast(ContainerVT, Splat);
5182
return convertFromScalableVector(VT, Splat, DAG, Subtarget);
5183
}
5184
5185
V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
5186
assert(Lane < (int)NumElts && "Unexpected lane!");
5187
SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT,
5188
V1, DAG.getConstant(Lane, DL, XLenVT),
5189
DAG.getUNDEF(ContainerVT), TrueMask, VL);
5190
return convertFromScalableVector(VT, Gather, DAG, Subtarget);
5191
}
5192
}
5193
5194
// For exact VLEN m2 or greater, try to split to m1 operations if we
5195
// can split cleanly.
5196
if (SDValue V = lowerShuffleViaVRegSplitting(SVN, DAG, Subtarget))
5197
return V;
5198
5199
ArrayRef<int> Mask = SVN->getMask();
5200
5201
if (SDValue V =
5202
lowerVECTOR_SHUFFLEAsVSlide1(DL, VT, V1, V2, Mask, Subtarget, DAG))
5203
return V;
5204
5205
if (SDValue V =
5206
lowerVECTOR_SHUFFLEAsVSlidedown(DL, VT, V1, V2, Mask, Subtarget, DAG))
5207
return V;
5208
5209
// A bitrotate will be one instruction on Zvkb, so try to lower to it first if
5210
// available.
5211
if (Subtarget.hasStdExtZvkb())
5212
if (SDValue V = lowerVECTOR_SHUFFLEAsRotate(SVN, DAG, Subtarget))
5213
return V;
5214
5215
// Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
5216
// be undef which can be handled with a single SLIDEDOWN/UP.
5217
int LoSrc, HiSrc;
5218
int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
5219
if (Rotation > 0) {
5220
SDValue LoV, HiV;
5221
if (LoSrc >= 0) {
5222
LoV = LoSrc == 0 ? V1 : V2;
5223
LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
5224
}
5225
if (HiSrc >= 0) {
5226
HiV = HiSrc == 0 ? V1 : V2;
5227
HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
5228
}
5229
5230
// We found a rotation. We need to slide HiV down by Rotation. Then we need
5231
// to slide LoV up by (NumElts - Rotation).
5232
unsigned InvRotate = NumElts - Rotation;
5233
5234
SDValue Res = DAG.getUNDEF(ContainerVT);
5235
if (HiV) {
5236
// Even though we could use a smaller VL, don't to avoid a vsetivli
5237
// toggle.
5238
Res = getVSlidedown(DAG, Subtarget, DL, ContainerVT, Res, HiV,
5239
DAG.getConstant(Rotation, DL, XLenVT), TrueMask, VL);
5240
}
5241
if (LoV)
5242
Res = getVSlideup(DAG, Subtarget, DL, ContainerVT, Res, LoV,
5243
DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL,
5244
RISCVII::TAIL_AGNOSTIC);
5245
5246
return convertFromScalableVector(VT, Res, DAG, Subtarget);
5247
}
5248
5249
// If this is a deinterleave and we can widen the vector, then we can use
5250
// vnsrl to deinterleave.
5251
if (isDeinterleaveShuffle(VT, ContainerVT, V1, V2, Mask, Subtarget)) {
5252
return getDeinterleaveViaVNSRL(DL, VT, V1.getOperand(0), Mask[0] == 0,
5253
Subtarget, DAG);
5254
}
5255
5256
if (SDValue V =
5257
lowerVECTOR_SHUFFLEAsVSlideup(DL, VT, V1, V2, Mask, Subtarget, DAG))
5258
return V;
5259
5260
// Detect an interleave shuffle and lower to
5261
// (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
5262
int EvenSrc, OddSrc;
5263
if (isInterleaveShuffle(Mask, VT, EvenSrc, OddSrc, Subtarget)) {
5264
// Extract the halves of the vectors.
5265
MVT HalfVT = VT.getHalfNumVectorElementsVT();
5266
5267
int Size = Mask.size();
5268
SDValue EvenV, OddV;
5269
assert(EvenSrc >= 0 && "Undef source?");
5270
EvenV = (EvenSrc / Size) == 0 ? V1 : V2;
5271
EvenV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, EvenV,
5272
DAG.getVectorIdxConstant(EvenSrc % Size, DL));
5273
5274
assert(OddSrc >= 0 && "Undef source?");
5275
OddV = (OddSrc / Size) == 0 ? V1 : V2;
5276
OddV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, OddV,
5277
DAG.getVectorIdxConstant(OddSrc % Size, DL));
5278
5279
return getWideningInterleave(EvenV, OddV, DL, DAG, Subtarget);
5280
}
5281
5282
5283
// Handle any remaining single source shuffles
5284
assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
5285
if (V2.isUndef()) {
5286
// We might be able to express the shuffle as a bitrotate. But even if we
5287
// don't have Zvkb and have to expand, the expanded sequence of approx. 2
5288
// shifts and a vor will have a higher throughput than a vrgather.
5289
if (SDValue V = lowerVECTOR_SHUFFLEAsRotate(SVN, DAG, Subtarget))
5290
return V;
5291
5292
if (VT.getScalarSizeInBits() == 8 &&
5293
any_of(Mask, [&](const auto &Idx) { return Idx > 255; })) {
5294
// On such a vector we're unable to use i8 as the index type.
5295
// FIXME: We could promote the index to i16 and use vrgatherei16, but that
5296
// may involve vector splitting if we're already at LMUL=8, or our
5297
// user-supplied maximum fixed-length LMUL.
5298
return SDValue();
5299
}
5300
5301
// Base case for the two operand recursion below - handle the worst case
5302
// single source shuffle.
5303
unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
5304
MVT IndexVT = VT.changeTypeToInteger();
5305
// Since we can't introduce illegal index types at this stage, use i16 and
5306
// vrgatherei16 if the corresponding index type for plain vrgather is greater
5307
// than XLenVT.
5308
if (IndexVT.getScalarType().bitsGT(XLenVT)) {
5309
GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
5310
IndexVT = IndexVT.changeVectorElementType(MVT::i16);
5311
}
5312
5313
// If the mask allows, we can do all the index computation in 16 bits. This
5314
// requires less work and less register pressure at high LMUL, and creates
5315
// smaller constants which may be cheaper to materialize.
5316
if (IndexVT.getScalarType().bitsGT(MVT::i16) && isUInt<16>(NumElts - 1) &&
5317
(IndexVT.getSizeInBits() / Subtarget.getRealMinVLen()) > 1) {
5318
GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
5319
IndexVT = IndexVT.changeVectorElementType(MVT::i16);
5320
}
5321
5322
MVT IndexContainerVT =
5323
ContainerVT.changeVectorElementType(IndexVT.getScalarType());
5324
5325
V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
5326
SmallVector<SDValue> GatherIndicesLHS;
5327
for (int MaskIndex : Mask) {
5328
bool IsLHSIndex = MaskIndex < (int)NumElts && MaskIndex >= 0;
5329
GatherIndicesLHS.push_back(IsLHSIndex
5330
? DAG.getConstant(MaskIndex, DL, XLenVT)
5331
: DAG.getUNDEF(XLenVT));
5332
}
5333
SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
5334
LHSIndices = convertToScalableVector(IndexContainerVT, LHSIndices, DAG,
5335
Subtarget);
5336
SDValue Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
5337
DAG.getUNDEF(ContainerVT), TrueMask, VL);
5338
return convertFromScalableVector(VT, Gather, DAG, Subtarget);
5339
}
5340
5341
// As a backup, shuffles can be lowered via a vrgather instruction, possibly
5342
// merged with a second vrgather.
5343
SmallVector<int> ShuffleMaskLHS, ShuffleMaskRHS;
5344
5345
// Now construct the mask that will be used by the blended vrgather operation.
5346
// Construct the appropriate indices into each vector.
5347
for (int MaskIndex : Mask) {
5348
bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
5349
ShuffleMaskLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
5350
? MaskIndex : -1);
5351
ShuffleMaskRHS.push_back(IsLHSOrUndefIndex ? -1 : (MaskIndex - NumElts));
5352
}
5353
5354
// Try to pick a profitable operand order.
5355
bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
5356
SwapOps = SwapOps ^ ShuffleVectorInst::isIdentityMask(ShuffleMaskRHS, NumElts);
5357
5358
// Recursively invoke lowering for each operand if we had two
5359
// independent single source shuffles, and then combine the result via a
5360
// vselect. Note that the vselect will likely be folded back into the
5361
// second permute (vrgather, or other) by the post-isel combine.
5362
V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), ShuffleMaskLHS);
5363
V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), ShuffleMaskRHS);
5364
5365
SmallVector<SDValue> MaskVals;
5366
for (int MaskIndex : Mask) {
5367
bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ !SwapOps;
5368
MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
5369
}
5370
5371
assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
5372
MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
5373
SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
5374
5375
if (SwapOps)
5376
return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
5377
return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V2, V1);
5378
}
5379
5380
bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
5381
// Support splats for any type. These should type legalize well.
5382
if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
5383
return true;
5384
5385
// Only support legal VTs for other shuffles for now.
5386
if (!isTypeLegal(VT))
5387
return false;
5388
5389
MVT SVT = VT.getSimpleVT();
5390
5391
// Not for i1 vectors.
5392
if (SVT.getScalarType() == MVT::i1)
5393
return false;
5394
5395
int Dummy1, Dummy2;
5396
return (isElementRotate(Dummy1, Dummy2, M) > 0) ||
5397
isInterleaveShuffle(M, SVT, Dummy1, Dummy2, Subtarget);
5398
}
5399
5400
// Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
5401
// the exponent.
5402
SDValue
5403
RISCVTargetLowering::lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op,
5404
SelectionDAG &DAG) const {
5405
MVT VT = Op.getSimpleValueType();
5406
unsigned EltSize = VT.getScalarSizeInBits();
5407
SDValue Src = Op.getOperand(0);
5408
SDLoc DL(Op);
5409
MVT ContainerVT = VT;
5410
5411
SDValue Mask, VL;
5412
if (Op->isVPOpcode()) {
5413
Mask = Op.getOperand(1);
5414
if (VT.isFixedLengthVector())
5415
Mask = convertToScalableVector(getMaskTypeFor(ContainerVT), Mask, DAG,
5416
Subtarget);
5417
VL = Op.getOperand(2);
5418
}
5419
5420
// We choose FP type that can represent the value if possible. Otherwise, we
5421
// use rounding to zero conversion for correct exponent of the result.
5422
// TODO: Use f16 for i8 when possible?
5423
MVT FloatEltVT = (EltSize >= 32) ? MVT::f64 : MVT::f32;
5424
if (!isTypeLegal(MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount())))
5425
FloatEltVT = MVT::f32;
5426
MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
5427
5428
// Legal types should have been checked in the RISCVTargetLowering
5429
// constructor.
5430
// TODO: Splitting may make sense in some cases.
5431
assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
5432
"Expected legal float type!");
5433
5434
// For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
5435
// The trailing zero count is equal to log2 of this single bit value.
5436
if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
5437
SDValue Neg = DAG.getNegative(Src, DL, VT);
5438
Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
5439
} else if (Op.getOpcode() == ISD::VP_CTTZ_ZERO_UNDEF) {
5440
SDValue Neg = DAG.getNode(ISD::VP_SUB, DL, VT, DAG.getConstant(0, DL, VT),
5441
Src, Mask, VL);
5442
Src = DAG.getNode(ISD::VP_AND, DL, VT, Src, Neg, Mask, VL);
5443
}
5444
5445
// We have a legal FP type, convert to it.
5446
SDValue FloatVal;
5447
if (FloatVT.bitsGT(VT)) {
5448
if (Op->isVPOpcode())
5449
FloatVal = DAG.getNode(ISD::VP_UINT_TO_FP, DL, FloatVT, Src, Mask, VL);
5450
else
5451
FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
5452
} else {
5453
// Use RTZ to avoid rounding influencing exponent of FloatVal.
5454
if (VT.isFixedLengthVector()) {
5455
ContainerVT = getContainerForFixedLengthVector(VT);
5456
Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
5457
}
5458
if (!Op->isVPOpcode())
5459
std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5460
SDValue RTZRM =
5461
DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT());
5462
MVT ContainerFloatVT =
5463
MVT::getVectorVT(FloatEltVT, ContainerVT.getVectorElementCount());
5464
FloatVal = DAG.getNode(RISCVISD::VFCVT_RM_F_XU_VL, DL, ContainerFloatVT,
5465
Src, Mask, RTZRM, VL);
5466
if (VT.isFixedLengthVector())
5467
FloatVal = convertFromScalableVector(FloatVT, FloatVal, DAG, Subtarget);
5468
}
5469
// Bitcast to integer and shift the exponent to the LSB.
5470
EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
5471
SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
5472
unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
5473
5474
SDValue Exp;
5475
// Restore back to original type. Truncation after SRL is to generate vnsrl.
5476
if (Op->isVPOpcode()) {
5477
Exp = DAG.getNode(ISD::VP_SRL, DL, IntVT, Bitcast,
5478
DAG.getConstant(ShiftAmt, DL, IntVT), Mask, VL);
5479
Exp = DAG.getVPZExtOrTrunc(DL, VT, Exp, Mask, VL);
5480
} else {
5481
Exp = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
5482
DAG.getConstant(ShiftAmt, DL, IntVT));
5483
if (IntVT.bitsLT(VT))
5484
Exp = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Exp);
5485
else if (IntVT.bitsGT(VT))
5486
Exp = DAG.getNode(ISD::TRUNCATE, DL, VT, Exp);
5487
}
5488
5489
// The exponent contains log2 of the value in biased form.
5490
unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
5491
// For trailing zeros, we just need to subtract the bias.
5492
if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
5493
return DAG.getNode(ISD::SUB, DL, VT, Exp,
5494
DAG.getConstant(ExponentBias, DL, VT));
5495
if (Op.getOpcode() == ISD::VP_CTTZ_ZERO_UNDEF)
5496
return DAG.getNode(ISD::VP_SUB, DL, VT, Exp,
5497
DAG.getConstant(ExponentBias, DL, VT), Mask, VL);
5498
5499
// For leading zeros, we need to remove the bias and convert from log2 to
5500
// leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
5501
unsigned Adjust = ExponentBias + (EltSize - 1);
5502
SDValue Res;
5503
if (Op->isVPOpcode())
5504
Res = DAG.getNode(ISD::VP_SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Exp,
5505
Mask, VL);
5506
else
5507
Res = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Exp);
5508
5509
// The above result with zero input equals to Adjust which is greater than
5510
// EltSize. Hence, we can do min(Res, EltSize) for CTLZ.
5511
if (Op.getOpcode() == ISD::CTLZ)
5512
Res = DAG.getNode(ISD::UMIN, DL, VT, Res, DAG.getConstant(EltSize, DL, VT));
5513
else if (Op.getOpcode() == ISD::VP_CTLZ)
5514
Res = DAG.getNode(ISD::VP_UMIN, DL, VT, Res,
5515
DAG.getConstant(EltSize, DL, VT), Mask, VL);
5516
return Res;
5517
}
5518
5519
SDValue RISCVTargetLowering::lowerVPCttzElements(SDValue Op,
5520
SelectionDAG &DAG) const {
5521
SDLoc DL(Op);
5522
MVT XLenVT = Subtarget.getXLenVT();
5523
SDValue Source = Op->getOperand(0);
5524
MVT SrcVT = Source.getSimpleValueType();
5525
SDValue Mask = Op->getOperand(1);
5526
SDValue EVL = Op->getOperand(2);
5527
5528
if (SrcVT.isFixedLengthVector()) {
5529
MVT ContainerVT = getContainerForFixedLengthVector(SrcVT);
5530
Source = convertToScalableVector(ContainerVT, Source, DAG, Subtarget);
5531
Mask = convertToScalableVector(getMaskTypeFor(ContainerVT), Mask, DAG,
5532
Subtarget);
5533
SrcVT = ContainerVT;
5534
}
5535
5536
// Convert to boolean vector.
5537
if (SrcVT.getScalarType() != MVT::i1) {
5538
SDValue AllZero = DAG.getConstant(0, DL, SrcVT);
5539
SrcVT = MVT::getVectorVT(MVT::i1, SrcVT.getVectorElementCount());
5540
Source = DAG.getNode(RISCVISD::SETCC_VL, DL, SrcVT,
5541
{Source, AllZero, DAG.getCondCode(ISD::SETNE),
5542
DAG.getUNDEF(SrcVT), Mask, EVL});
5543
}
5544
5545
SDValue Res = DAG.getNode(RISCVISD::VFIRST_VL, DL, XLenVT, Source, Mask, EVL);
5546
if (Op->getOpcode() == ISD::VP_CTTZ_ELTS_ZERO_UNDEF)
5547
// In this case, we can interpret poison as -1, so nothing to do further.
5548
return Res;
5549
5550
// Convert -1 to VL.
5551
SDValue SetCC =
5552
DAG.getSetCC(DL, XLenVT, Res, DAG.getConstant(0, DL, XLenVT), ISD::SETLT);
5553
Res = DAG.getSelect(DL, XLenVT, SetCC, EVL, Res);
5554
return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Res);
5555
}
5556
5557
// While RVV has alignment restrictions, we should always be able to load as a
5558
// legal equivalently-sized byte-typed vector instead. This method is
5559
// responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
5560
// the load is already correctly-aligned, it returns SDValue().
5561
SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
5562
SelectionDAG &DAG) const {
5563
auto *Load = cast<LoadSDNode>(Op);
5564
assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
5565
5566
if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5567
Load->getMemoryVT(),
5568
*Load->getMemOperand()))
5569
return SDValue();
5570
5571
SDLoc DL(Op);
5572
MVT VT = Op.getSimpleValueType();
5573
unsigned EltSizeBits = VT.getScalarSizeInBits();
5574
assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
5575
"Unexpected unaligned RVV load type");
5576
MVT NewVT =
5577
MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
5578
assert(NewVT.isValid() &&
5579
"Expecting equally-sized RVV vector types to be legal");
5580
SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
5581
Load->getPointerInfo(), Load->getOriginalAlign(),
5582
Load->getMemOperand()->getFlags());
5583
return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
5584
}
5585
5586
// While RVV has alignment restrictions, we should always be able to store as a
5587
// legal equivalently-sized byte-typed vector instead. This method is
5588
// responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
5589
// returns SDValue() if the store is already correctly aligned.
5590
SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
5591
SelectionDAG &DAG) const {
5592
auto *Store = cast<StoreSDNode>(Op);
5593
assert(Store && Store->getValue().getValueType().isVector() &&
5594
"Expected vector store");
5595
5596
if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5597
Store->getMemoryVT(),
5598
*Store->getMemOperand()))
5599
return SDValue();
5600
5601
SDLoc DL(Op);
5602
SDValue StoredVal = Store->getValue();
5603
MVT VT = StoredVal.getSimpleValueType();
5604
unsigned EltSizeBits = VT.getScalarSizeInBits();
5605
assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
5606
"Unexpected unaligned RVV store type");
5607
MVT NewVT =
5608
MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
5609
assert(NewVT.isValid() &&
5610
"Expecting equally-sized RVV vector types to be legal");
5611
StoredVal = DAG.getBitcast(NewVT, StoredVal);
5612
return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
5613
Store->getPointerInfo(), Store->getOriginalAlign(),
5614
Store->getMemOperand()->getFlags());
5615
}
5616
5617
static SDValue lowerConstant(SDValue Op, SelectionDAG &DAG,
5618
const RISCVSubtarget &Subtarget) {
5619
assert(Op.getValueType() == MVT::i64 && "Unexpected VT");
5620
5621
int64_t Imm = cast<ConstantSDNode>(Op)->getSExtValue();
5622
5623
// All simm32 constants should be handled by isel.
5624
// NOTE: The getMaxBuildIntsCost call below should return a value >= 2 making
5625
// this check redundant, but small immediates are common so this check
5626
// should have better compile time.
5627
if (isInt<32>(Imm))
5628
return Op;
5629
5630
// We only need to cost the immediate, if constant pool lowering is enabled.
5631
if (!Subtarget.useConstantPoolForLargeInts())
5632
return Op;
5633
5634
RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Imm, Subtarget);
5635
if (Seq.size() <= Subtarget.getMaxBuildIntsCost())
5636
return Op;
5637
5638
// Optimizations below are disabled for opt size. If we're optimizing for
5639
// size, use a constant pool.
5640
if (DAG.shouldOptForSize())
5641
return SDValue();
5642
5643
// Special case. See if we can build the constant as (ADD (SLLI X, C), X) do
5644
// that if it will avoid a constant pool.
5645
// It will require an extra temporary register though.
5646
// If we have Zba we can use (ADD_UW X, (SLLI X, 32)) to handle cases where
5647
// low and high 32 bits are the same and bit 31 and 63 are set.
5648
unsigned ShiftAmt, AddOpc;
5649
RISCVMatInt::InstSeq SeqLo =
5650
RISCVMatInt::generateTwoRegInstSeq(Imm, Subtarget, ShiftAmt, AddOpc);
5651
if (!SeqLo.empty() && (SeqLo.size() + 2) <= Subtarget.getMaxBuildIntsCost())
5652
return Op;
5653
5654
return SDValue();
5655
}
5656
5657
static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
5658
const RISCVSubtarget &Subtarget) {
5659
SDLoc dl(Op);
5660
AtomicOrdering FenceOrdering =
5661
static_cast<AtomicOrdering>(Op.getConstantOperandVal(1));
5662
SyncScope::ID FenceSSID =
5663
static_cast<SyncScope::ID>(Op.getConstantOperandVal(2));
5664
5665
if (Subtarget.hasStdExtZtso()) {
5666
// The only fence that needs an instruction is a sequentially-consistent
5667
// cross-thread fence.
5668
if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
5669
FenceSSID == SyncScope::System)
5670
return Op;
5671
5672
// MEMBARRIER is a compiler barrier; it codegens to a no-op.
5673
return DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
5674
}
5675
5676
// singlethread fences only synchronize with signal handlers on the same
5677
// thread and thus only need to preserve instruction order, not actually
5678
// enforce memory ordering.
5679
if (FenceSSID == SyncScope::SingleThread)
5680
// MEMBARRIER is a compiler barrier; it codegens to a no-op.
5681
return DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
5682
5683
return Op;
5684
}
5685
5686
static SDValue lowerSADDSAT_SSUBSAT(SDValue Op, SelectionDAG &DAG) {
5687
assert(Op.getValueType() == MVT::i32 && RV64LegalI32 &&
5688
"Unexpected custom legalisation");
5689
5690
// With Zbb, we can widen to i64 and smin/smax with INT32_MAX/MIN.
5691
bool IsAdd = Op.getOpcode() == ISD::SADDSAT;
5692
SDLoc DL(Op);
5693
SDValue LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op.getOperand(0));
5694
SDValue RHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op.getOperand(1));
5695
SDValue Result =
5696
DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
5697
5698
APInt MinVal = APInt::getSignedMinValue(32).sext(64);
5699
APInt MaxVal = APInt::getSignedMaxValue(32).sext(64);
5700
SDValue SatMin = DAG.getConstant(MinVal, DL, MVT::i64);
5701
SDValue SatMax = DAG.getConstant(MaxVal, DL, MVT::i64);
5702
Result = DAG.getNode(ISD::SMIN, DL, MVT::i64, Result, SatMax);
5703
Result = DAG.getNode(ISD::SMAX, DL, MVT::i64, Result, SatMin);
5704
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Result);
5705
}
5706
5707
static SDValue lowerUADDSAT_USUBSAT(SDValue Op, SelectionDAG &DAG) {
5708
assert(Op.getValueType() == MVT::i32 && RV64LegalI32 &&
5709
"Unexpected custom legalisation");
5710
5711
// With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
5712
// sign extend allows overflow of the lower 32 bits to be detected on
5713
// the promoted size.
5714
SDLoc DL(Op);
5715
SDValue LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op.getOperand(0));
5716
SDValue RHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op.getOperand(1));
5717
SDValue WideOp = DAG.getNode(Op.getOpcode(), DL, MVT::i64, LHS, RHS);
5718
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, WideOp);
5719
}
5720
5721
// Custom lower i32 SADDO/SSUBO with RV64LegalI32 so we take advantage of addw.
5722
static SDValue lowerSADDO_SSUBO(SDValue Op, SelectionDAG &DAG) {
5723
assert(Op.getValueType() == MVT::i32 && RV64LegalI32 &&
5724
"Unexpected custom legalisation");
5725
if (isa<ConstantSDNode>(Op.getOperand(1)))
5726
return SDValue();
5727
5728
bool IsAdd = Op.getOpcode() == ISD::SADDO;
5729
SDLoc DL(Op);
5730
SDValue LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op.getOperand(0));
5731
SDValue RHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op.getOperand(1));
5732
SDValue WideOp =
5733
DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
5734
SDValue Res = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, WideOp);
5735
SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, WideOp,
5736
DAG.getValueType(MVT::i32));
5737
SDValue Ovf = DAG.getSetCC(DL, Op.getValue(1).getValueType(), WideOp, SExt,
5738
ISD::SETNE);
5739
return DAG.getMergeValues({Res, Ovf}, DL);
5740
}
5741
5742
// Custom lower i32 SMULO with RV64LegalI32 so we take advantage of mulw.
5743
static SDValue lowerSMULO(SDValue Op, SelectionDAG &DAG) {
5744
assert(Op.getValueType() == MVT::i32 && RV64LegalI32 &&
5745
"Unexpected custom legalisation");
5746
SDLoc DL(Op);
5747
SDValue LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op.getOperand(0));
5748
SDValue RHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op.getOperand(1));
5749
SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
5750
SDValue Res = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
5751
SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Mul,
5752
DAG.getValueType(MVT::i32));
5753
SDValue Ovf = DAG.getSetCC(DL, Op.getValue(1).getValueType(), Mul, SExt,
5754
ISD::SETNE);
5755
return DAG.getMergeValues({Res, Ovf}, DL);
5756
}
5757
5758
SDValue RISCVTargetLowering::LowerIS_FPCLASS(SDValue Op,
5759
SelectionDAG &DAG) const {
5760
SDLoc DL(Op);
5761
MVT VT = Op.getSimpleValueType();
5762
MVT XLenVT = Subtarget.getXLenVT();
5763
unsigned Check = Op.getConstantOperandVal(1);
5764
unsigned TDCMask = 0;
5765
if (Check & fcSNan)
5766
TDCMask |= RISCV::FPMASK_Signaling_NaN;
5767
if (Check & fcQNan)
5768
TDCMask |= RISCV::FPMASK_Quiet_NaN;
5769
if (Check & fcPosInf)
5770
TDCMask |= RISCV::FPMASK_Positive_Infinity;
5771
if (Check & fcNegInf)
5772
TDCMask |= RISCV::FPMASK_Negative_Infinity;
5773
if (Check & fcPosNormal)
5774
TDCMask |= RISCV::FPMASK_Positive_Normal;
5775
if (Check & fcNegNormal)
5776
TDCMask |= RISCV::FPMASK_Negative_Normal;
5777
if (Check & fcPosSubnormal)
5778
TDCMask |= RISCV::FPMASK_Positive_Subnormal;
5779
if (Check & fcNegSubnormal)
5780
TDCMask |= RISCV::FPMASK_Negative_Subnormal;
5781
if (Check & fcPosZero)
5782
TDCMask |= RISCV::FPMASK_Positive_Zero;
5783
if (Check & fcNegZero)
5784
TDCMask |= RISCV::FPMASK_Negative_Zero;
5785
5786
bool IsOneBitMask = isPowerOf2_32(TDCMask);
5787
5788
SDValue TDCMaskV = DAG.getConstant(TDCMask, DL, XLenVT);
5789
5790
if (VT.isVector()) {
5791
SDValue Op0 = Op.getOperand(0);
5792
MVT VT0 = Op.getOperand(0).getSimpleValueType();
5793
5794
if (VT.isScalableVector()) {
5795
MVT DstVT = VT0.changeVectorElementTypeToInteger();
5796
auto [Mask, VL] = getDefaultScalableVLOps(VT0, DL, DAG, Subtarget);
5797
if (Op.getOpcode() == ISD::VP_IS_FPCLASS) {
5798
Mask = Op.getOperand(2);
5799
VL = Op.getOperand(3);
5800
}
5801
SDValue FPCLASS = DAG.getNode(RISCVISD::FCLASS_VL, DL, DstVT, Op0, Mask,
5802
VL, Op->getFlags());
5803
if (IsOneBitMask)
5804
return DAG.getSetCC(DL, VT, FPCLASS,
5805
DAG.getConstant(TDCMask, DL, DstVT),
5806
ISD::CondCode::SETEQ);
5807
SDValue AND = DAG.getNode(ISD::AND, DL, DstVT, FPCLASS,
5808
DAG.getConstant(TDCMask, DL, DstVT));
5809
return DAG.getSetCC(DL, VT, AND, DAG.getConstant(0, DL, DstVT),
5810
ISD::SETNE);
5811
}
5812
5813
MVT ContainerVT0 = getContainerForFixedLengthVector(VT0);
5814
MVT ContainerVT = getContainerForFixedLengthVector(VT);
5815
MVT ContainerDstVT = ContainerVT0.changeVectorElementTypeToInteger();
5816
auto [Mask, VL] = getDefaultVLOps(VT0, ContainerVT0, DL, DAG, Subtarget);
5817
if (Op.getOpcode() == ISD::VP_IS_FPCLASS) {
5818
Mask = Op.getOperand(2);
5819
MVT MaskContainerVT =
5820
getContainerForFixedLengthVector(Mask.getSimpleValueType());
5821
Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget);
5822
VL = Op.getOperand(3);
5823
}
5824
Op0 = convertToScalableVector(ContainerVT0, Op0, DAG, Subtarget);
5825
5826
SDValue FPCLASS = DAG.getNode(RISCVISD::FCLASS_VL, DL, ContainerDstVT, Op0,
5827
Mask, VL, Op->getFlags());
5828
5829
TDCMaskV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerDstVT,
5830
DAG.getUNDEF(ContainerDstVT), TDCMaskV, VL);
5831
if (IsOneBitMask) {
5832
SDValue VMSEQ =
5833
DAG.getNode(RISCVISD::SETCC_VL, DL, ContainerVT,
5834
{FPCLASS, TDCMaskV, DAG.getCondCode(ISD::SETEQ),
5835
DAG.getUNDEF(ContainerVT), Mask, VL});
5836
return convertFromScalableVector(VT, VMSEQ, DAG, Subtarget);
5837
}
5838
SDValue AND = DAG.getNode(RISCVISD::AND_VL, DL, ContainerDstVT, FPCLASS,
5839
TDCMaskV, DAG.getUNDEF(ContainerDstVT), Mask, VL);
5840
5841
SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
5842
SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerDstVT,
5843
DAG.getUNDEF(ContainerDstVT), SplatZero, VL);
5844
5845
SDValue VMSNE = DAG.getNode(RISCVISD::SETCC_VL, DL, ContainerVT,
5846
{AND, SplatZero, DAG.getCondCode(ISD::SETNE),
5847
DAG.getUNDEF(ContainerVT), Mask, VL});
5848
return convertFromScalableVector(VT, VMSNE, DAG, Subtarget);
5849
}
5850
5851
SDValue FCLASS = DAG.getNode(RISCVISD::FCLASS, DL, XLenVT, Op.getOperand(0));
5852
SDValue AND = DAG.getNode(ISD::AND, DL, XLenVT, FCLASS, TDCMaskV);
5853
SDValue Res = DAG.getSetCC(DL, XLenVT, AND, DAG.getConstant(0, DL, XLenVT),
5854
ISD::CondCode::SETNE);
5855
return DAG.getNode(ISD::TRUNCATE, DL, VT, Res);
5856
}
5857
5858
// Lower fmaximum and fminimum. Unlike our fmax and fmin instructions, these
5859
// operations propagate nans.
5860
static SDValue lowerFMAXIMUM_FMINIMUM(SDValue Op, SelectionDAG &DAG,
5861
const RISCVSubtarget &Subtarget) {
5862
SDLoc DL(Op);
5863
MVT VT = Op.getSimpleValueType();
5864
5865
SDValue X = Op.getOperand(0);
5866
SDValue Y = Op.getOperand(1);
5867
5868
if (!VT.isVector()) {
5869
MVT XLenVT = Subtarget.getXLenVT();
5870
5871
// If X is a nan, replace Y with X. If Y is a nan, replace X with Y. This
5872
// ensures that when one input is a nan, the other will also be a nan
5873
// allowing the nan to propagate. If both inputs are nan, this will swap the
5874
// inputs which is harmless.
5875
5876
SDValue NewY = Y;
5877
if (!Op->getFlags().hasNoNaNs() && !DAG.isKnownNeverNaN(X)) {
5878
SDValue XIsNonNan = DAG.getSetCC(DL, XLenVT, X, X, ISD::SETOEQ);
5879
NewY = DAG.getSelect(DL, VT, XIsNonNan, Y, X);
5880
}
5881
5882
SDValue NewX = X;
5883
if (!Op->getFlags().hasNoNaNs() && !DAG.isKnownNeverNaN(Y)) {
5884
SDValue YIsNonNan = DAG.getSetCC(DL, XLenVT, Y, Y, ISD::SETOEQ);
5885
NewX = DAG.getSelect(DL, VT, YIsNonNan, X, Y);
5886
}
5887
5888
unsigned Opc =
5889
Op.getOpcode() == ISD::FMAXIMUM ? RISCVISD::FMAX : RISCVISD::FMIN;
5890
return DAG.getNode(Opc, DL, VT, NewX, NewY);
5891
}
5892
5893
// Check no NaNs before converting to fixed vector scalable.
5894
bool XIsNeverNan = Op->getFlags().hasNoNaNs() || DAG.isKnownNeverNaN(X);
5895
bool YIsNeverNan = Op->getFlags().hasNoNaNs() || DAG.isKnownNeverNaN(Y);
5896
5897
MVT ContainerVT = VT;
5898
if (VT.isFixedLengthVector()) {
5899
ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
5900
X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
5901
Y = convertToScalableVector(ContainerVT, Y, DAG, Subtarget);
5902
}
5903
5904
SDValue Mask, VL;
5905
if (Op->isVPOpcode()) {
5906
Mask = Op.getOperand(2);
5907
if (VT.isFixedLengthVector())
5908
Mask = convertToScalableVector(getMaskTypeFor(ContainerVT), Mask, DAG,
5909
Subtarget);
5910
VL = Op.getOperand(3);
5911
} else {
5912
std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
5913
}
5914
5915
SDValue NewY = Y;
5916
if (!XIsNeverNan) {
5917
SDValue XIsNonNan = DAG.getNode(RISCVISD::SETCC_VL, DL, Mask.getValueType(),
5918
{X, X, DAG.getCondCode(ISD::SETOEQ),
5919
DAG.getUNDEF(ContainerVT), Mask, VL});
5920
NewY = DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, XIsNonNan, Y, X,
5921
DAG.getUNDEF(ContainerVT), VL);
5922
}
5923
5924
SDValue NewX = X;
5925
if (!YIsNeverNan) {
5926
SDValue YIsNonNan = DAG.getNode(RISCVISD::SETCC_VL, DL, Mask.getValueType(),
5927
{Y, Y, DAG.getCondCode(ISD::SETOEQ),
5928
DAG.getUNDEF(ContainerVT), Mask, VL});
5929
NewX = DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, YIsNonNan, X, Y,
5930
DAG.getUNDEF(ContainerVT), VL);
5931
}
5932
5933
unsigned Opc =
5934
Op.getOpcode() == ISD::FMAXIMUM || Op->getOpcode() == ISD::VP_FMAXIMUM
5935
? RISCVISD::VFMAX_VL
5936
: RISCVISD::VFMIN_VL;
5937
SDValue Res = DAG.getNode(Opc, DL, ContainerVT, NewX, NewY,
5938
DAG.getUNDEF(ContainerVT), Mask, VL);
5939
if (VT.isFixedLengthVector())
5940
Res = convertFromScalableVector(VT, Res, DAG, Subtarget);
5941
return Res;
5942
}
5943
5944
/// Get a RISC-V target specified VL op for a given SDNode.
5945
static unsigned getRISCVVLOp(SDValue Op) {
5946
#define OP_CASE(NODE) \
5947
case ISD::NODE: \
5948
return RISCVISD::NODE##_VL;
5949
#define VP_CASE(NODE) \
5950
case ISD::VP_##NODE: \
5951
return RISCVISD::NODE##_VL;
5952
// clang-format off
5953
switch (Op.getOpcode()) {
5954
default:
5955
llvm_unreachable("don't have RISC-V specified VL op for this SDNode");
5956
OP_CASE(ADD)
5957
OP_CASE(SUB)
5958
OP_CASE(MUL)
5959
OP_CASE(MULHS)
5960
OP_CASE(MULHU)
5961
OP_CASE(SDIV)
5962
OP_CASE(SREM)
5963
OP_CASE(UDIV)
5964
OP_CASE(UREM)
5965
OP_CASE(SHL)
5966
OP_CASE(SRA)
5967
OP_CASE(SRL)
5968
OP_CASE(ROTL)
5969
OP_CASE(ROTR)
5970
OP_CASE(BSWAP)
5971
OP_CASE(CTTZ)
5972
OP_CASE(CTLZ)
5973
OP_CASE(CTPOP)
5974
OP_CASE(BITREVERSE)
5975
OP_CASE(SADDSAT)
5976
OP_CASE(UADDSAT)
5977
OP_CASE(SSUBSAT)
5978
OP_CASE(USUBSAT)
5979
OP_CASE(AVGFLOORS)
5980
OP_CASE(AVGFLOORU)
5981
OP_CASE(AVGCEILS)
5982
OP_CASE(AVGCEILU)
5983
OP_CASE(FADD)
5984
OP_CASE(FSUB)
5985
OP_CASE(FMUL)
5986
OP_CASE(FDIV)
5987
OP_CASE(FNEG)
5988
OP_CASE(FABS)
5989
OP_CASE(FSQRT)
5990
OP_CASE(SMIN)
5991
OP_CASE(SMAX)
5992
OP_CASE(UMIN)
5993
OP_CASE(UMAX)
5994
OP_CASE(STRICT_FADD)
5995
OP_CASE(STRICT_FSUB)
5996
OP_CASE(STRICT_FMUL)
5997
OP_CASE(STRICT_FDIV)
5998
OP_CASE(STRICT_FSQRT)
5999
VP_CASE(ADD) // VP_ADD
6000
VP_CASE(SUB) // VP_SUB
6001
VP_CASE(MUL) // VP_MUL
6002
VP_CASE(SDIV) // VP_SDIV
6003
VP_CASE(SREM) // VP_SREM
6004
VP_CASE(UDIV) // VP_UDIV
6005
VP_CASE(UREM) // VP_UREM
6006
VP_CASE(SHL) // VP_SHL
6007
VP_CASE(FADD) // VP_FADD
6008
VP_CASE(FSUB) // VP_FSUB
6009
VP_CASE(FMUL) // VP_FMUL
6010
VP_CASE(FDIV) // VP_FDIV
6011
VP_CASE(FNEG) // VP_FNEG
6012
VP_CASE(FABS) // VP_FABS
6013
VP_CASE(SMIN) // VP_SMIN
6014
VP_CASE(SMAX) // VP_SMAX
6015
VP_CASE(UMIN) // VP_UMIN
6016
VP_CASE(UMAX) // VP_UMAX
6017
VP_CASE(FCOPYSIGN) // VP_FCOPYSIGN
6018
VP_CASE(SETCC) // VP_SETCC
6019
VP_CASE(SINT_TO_FP) // VP_SINT_TO_FP
6020
VP_CASE(UINT_TO_FP) // VP_UINT_TO_FP
6021
VP_CASE(BITREVERSE) // VP_BITREVERSE
6022
VP_CASE(SADDSAT) // VP_SADDSAT
6023
VP_CASE(UADDSAT) // VP_UADDSAT
6024
VP_CASE(SSUBSAT) // VP_SSUBSAT
6025
VP_CASE(USUBSAT) // VP_USUBSAT
6026
VP_CASE(BSWAP) // VP_BSWAP
6027
VP_CASE(CTLZ) // VP_CTLZ
6028
VP_CASE(CTTZ) // VP_CTTZ
6029
VP_CASE(CTPOP) // VP_CTPOP
6030
case ISD::CTLZ_ZERO_UNDEF:
6031
case ISD::VP_CTLZ_ZERO_UNDEF:
6032
return RISCVISD::CTLZ_VL;
6033
case ISD::CTTZ_ZERO_UNDEF:
6034
case ISD::VP_CTTZ_ZERO_UNDEF:
6035
return RISCVISD::CTTZ_VL;
6036
case ISD::FMA:
6037
case ISD::VP_FMA:
6038
return RISCVISD::VFMADD_VL;
6039
case ISD::STRICT_FMA:
6040
return RISCVISD::STRICT_VFMADD_VL;
6041
case ISD::AND:
6042
case ISD::VP_AND:
6043
if (Op.getSimpleValueType().getVectorElementType() == MVT::i1)
6044
return RISCVISD::VMAND_VL;
6045
return RISCVISD::AND_VL;
6046
case ISD::OR:
6047
case ISD::VP_OR:
6048
if (Op.getSimpleValueType().getVectorElementType() == MVT::i1)
6049
return RISCVISD::VMOR_VL;
6050
return RISCVISD::OR_VL;
6051
case ISD::XOR:
6052
case ISD::VP_XOR:
6053
if (Op.getSimpleValueType().getVectorElementType() == MVT::i1)
6054
return RISCVISD::VMXOR_VL;
6055
return RISCVISD::XOR_VL;
6056
case ISD::VP_SELECT:
6057
case ISD::VP_MERGE:
6058
return RISCVISD::VMERGE_VL;
6059
case ISD::VP_SRA:
6060
return RISCVISD::SRA_VL;
6061
case ISD::VP_SRL:
6062
return RISCVISD::SRL_VL;
6063
case ISD::VP_SQRT:
6064
return RISCVISD::FSQRT_VL;
6065
case ISD::VP_SIGN_EXTEND:
6066
return RISCVISD::VSEXT_VL;
6067
case ISD::VP_ZERO_EXTEND:
6068
return RISCVISD::VZEXT_VL;
6069
case ISD::VP_FP_TO_SINT:
6070
return RISCVISD::VFCVT_RTZ_X_F_VL;
6071
case ISD::VP_FP_TO_UINT:
6072
return RISCVISD::VFCVT_RTZ_XU_F_VL;
6073
case ISD::FMINNUM:
6074
case ISD::VP_FMINNUM:
6075
return RISCVISD::VFMIN_VL;
6076
case ISD::FMAXNUM:
6077
case ISD::VP_FMAXNUM:
6078
return RISCVISD::VFMAX_VL;
6079
case ISD::LRINT:
6080
case ISD::VP_LRINT:
6081
case ISD::LLRINT:
6082
case ISD::VP_LLRINT:
6083
return RISCVISD::VFCVT_X_F_VL;
6084
}
6085
// clang-format on
6086
#undef OP_CASE
6087
#undef VP_CASE
6088
}
6089
6090
/// Return true if a RISC-V target specified op has a merge operand.
6091
static bool hasMergeOp(unsigned Opcode) {
6092
assert(Opcode > RISCVISD::FIRST_NUMBER &&
6093
Opcode <= RISCVISD::LAST_RISCV_STRICTFP_OPCODE &&
6094
"not a RISC-V target specific op");
6095
static_assert(RISCVISD::LAST_VL_VECTOR_OP - RISCVISD::FIRST_VL_VECTOR_OP ==
6096
130 &&
6097
RISCVISD::LAST_RISCV_STRICTFP_OPCODE -
6098
ISD::FIRST_TARGET_STRICTFP_OPCODE ==
6099
21 &&
6100
"adding target specific op should update this function");
6101
if (Opcode >= RISCVISD::ADD_VL && Opcode <= RISCVISD::VFMAX_VL)
6102
return true;
6103
if (Opcode == RISCVISD::FCOPYSIGN_VL)
6104
return true;
6105
if (Opcode >= RISCVISD::VWMUL_VL && Opcode <= RISCVISD::VFWSUB_W_VL)
6106
return true;
6107
if (Opcode == RISCVISD::SETCC_VL)
6108
return true;
6109
if (Opcode >= RISCVISD::STRICT_FADD_VL && Opcode <= RISCVISD::STRICT_FDIV_VL)
6110
return true;
6111
if (Opcode == RISCVISD::VMERGE_VL)
6112
return true;
6113
return false;
6114
}
6115
6116
/// Return true if a RISC-V target specified op has a mask operand.
6117
static bool hasMaskOp(unsigned Opcode) {
6118
assert(Opcode > RISCVISD::FIRST_NUMBER &&
6119
Opcode <= RISCVISD::LAST_RISCV_STRICTFP_OPCODE &&
6120
"not a RISC-V target specific op");
6121
static_assert(RISCVISD::LAST_VL_VECTOR_OP - RISCVISD::FIRST_VL_VECTOR_OP ==
6122
130 &&
6123
RISCVISD::LAST_RISCV_STRICTFP_OPCODE -
6124
ISD::FIRST_TARGET_STRICTFP_OPCODE ==
6125
21 &&
6126
"adding target specific op should update this function");
6127
if (Opcode >= RISCVISD::TRUNCATE_VECTOR_VL && Opcode <= RISCVISD::SETCC_VL)
6128
return true;
6129
if (Opcode >= RISCVISD::VRGATHER_VX_VL && Opcode <= RISCVISD::VFIRST_VL)
6130
return true;
6131
if (Opcode >= RISCVISD::STRICT_FADD_VL &&
6132
Opcode <= RISCVISD::STRICT_VFROUND_NOEXCEPT_VL)
6133
return true;
6134
return false;
6135
}
6136
6137
static SDValue SplitVectorOp(SDValue Op, SelectionDAG &DAG) {
6138
auto [LoVT, HiVT] = DAG.GetSplitDestVTs(Op.getValueType());
6139
SDLoc DL(Op);
6140
6141
SmallVector<SDValue, 4> LoOperands(Op.getNumOperands());
6142
SmallVector<SDValue, 4> HiOperands(Op.getNumOperands());
6143
6144
for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
6145
if (!Op.getOperand(j).getValueType().isVector()) {
6146
LoOperands[j] = Op.getOperand(j);
6147
HiOperands[j] = Op.getOperand(j);
6148
continue;
6149
}
6150
std::tie(LoOperands[j], HiOperands[j]) =
6151
DAG.SplitVector(Op.getOperand(j), DL);
6152
}
6153
6154
SDValue LoRes =
6155
DAG.getNode(Op.getOpcode(), DL, LoVT, LoOperands, Op->getFlags());
6156
SDValue HiRes =
6157
DAG.getNode(Op.getOpcode(), DL, HiVT, HiOperands, Op->getFlags());
6158
6159
return DAG.getNode(ISD::CONCAT_VECTORS, DL, Op.getValueType(), LoRes, HiRes);
6160
}
6161
6162
static SDValue SplitVPOp(SDValue Op, SelectionDAG &DAG) {
6163
assert(ISD::isVPOpcode(Op.getOpcode()) && "Not a VP op");
6164
auto [LoVT, HiVT] = DAG.GetSplitDestVTs(Op.getValueType());
6165
SDLoc DL(Op);
6166
6167
SmallVector<SDValue, 4> LoOperands(Op.getNumOperands());
6168
SmallVector<SDValue, 4> HiOperands(Op.getNumOperands());
6169
6170
for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
6171
if (ISD::getVPExplicitVectorLengthIdx(Op.getOpcode()) == j) {
6172
std::tie(LoOperands[j], HiOperands[j]) =
6173
DAG.SplitEVL(Op.getOperand(j), Op.getValueType(), DL);
6174
continue;
6175
}
6176
if (!Op.getOperand(j).getValueType().isVector()) {
6177
LoOperands[j] = Op.getOperand(j);
6178
HiOperands[j] = Op.getOperand(j);
6179
continue;
6180
}
6181
std::tie(LoOperands[j], HiOperands[j]) =
6182
DAG.SplitVector(Op.getOperand(j), DL);
6183
}
6184
6185
SDValue LoRes =
6186
DAG.getNode(Op.getOpcode(), DL, LoVT, LoOperands, Op->getFlags());
6187
SDValue HiRes =
6188
DAG.getNode(Op.getOpcode(), DL, HiVT, HiOperands, Op->getFlags());
6189
6190
return DAG.getNode(ISD::CONCAT_VECTORS, DL, Op.getValueType(), LoRes, HiRes);
6191
}
6192
6193
static SDValue SplitVectorReductionOp(SDValue Op, SelectionDAG &DAG) {
6194
SDLoc DL(Op);
6195
6196
auto [Lo, Hi] = DAG.SplitVector(Op.getOperand(1), DL);
6197
auto [MaskLo, MaskHi] = DAG.SplitVector(Op.getOperand(2), DL);
6198
auto [EVLLo, EVLHi] =
6199
DAG.SplitEVL(Op.getOperand(3), Op.getOperand(1).getValueType(), DL);
6200
6201
SDValue ResLo =
6202
DAG.getNode(Op.getOpcode(), DL, Op.getValueType(),
6203
{Op.getOperand(0), Lo, MaskLo, EVLLo}, Op->getFlags());
6204
return DAG.getNode(Op.getOpcode(), DL, Op.getValueType(),
6205
{ResLo, Hi, MaskHi, EVLHi}, Op->getFlags());
6206
}
6207
6208
static SDValue SplitStrictFPVectorOp(SDValue Op, SelectionDAG &DAG) {
6209
6210
assert(Op->isStrictFPOpcode());
6211
6212
auto [LoVT, HiVT] = DAG.GetSplitDestVTs(Op->getValueType(0));
6213
6214
SDVTList LoVTs = DAG.getVTList(LoVT, Op->getValueType(1));
6215
SDVTList HiVTs = DAG.getVTList(HiVT, Op->getValueType(1));
6216
6217
SDLoc DL(Op);
6218
6219
SmallVector<SDValue, 4> LoOperands(Op.getNumOperands());
6220
SmallVector<SDValue, 4> HiOperands(Op.getNumOperands());
6221
6222
for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
6223
if (!Op.getOperand(j).getValueType().isVector()) {
6224
LoOperands[j] = Op.getOperand(j);
6225
HiOperands[j] = Op.getOperand(j);
6226
continue;
6227
}
6228
std::tie(LoOperands[j], HiOperands[j]) =
6229
DAG.SplitVector(Op.getOperand(j), DL);
6230
}
6231
6232
SDValue LoRes =
6233
DAG.getNode(Op.getOpcode(), DL, LoVTs, LoOperands, Op->getFlags());
6234
HiOperands[0] = LoRes.getValue(1);
6235
SDValue HiRes =
6236
DAG.getNode(Op.getOpcode(), DL, HiVTs, HiOperands, Op->getFlags());
6237
6238
SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, Op->getValueType(0),
6239
LoRes.getValue(0), HiRes.getValue(0));
6240
return DAG.getMergeValues({V, HiRes.getValue(1)}, DL);
6241
}
6242
6243
SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
6244
SelectionDAG &DAG) const {
6245
switch (Op.getOpcode()) {
6246
default:
6247
report_fatal_error("unimplemented operand");
6248
case ISD::ATOMIC_FENCE:
6249
return LowerATOMIC_FENCE(Op, DAG, Subtarget);
6250
case ISD::GlobalAddress:
6251
return lowerGlobalAddress(Op, DAG);
6252
case ISD::BlockAddress:
6253
return lowerBlockAddress(Op, DAG);
6254
case ISD::ConstantPool:
6255
return lowerConstantPool(Op, DAG);
6256
case ISD::JumpTable:
6257
return lowerJumpTable(Op, DAG);
6258
case ISD::GlobalTLSAddress:
6259
return lowerGlobalTLSAddress(Op, DAG);
6260
case ISD::Constant:
6261
return lowerConstant(Op, DAG, Subtarget);
6262
case ISD::SELECT:
6263
return lowerSELECT(Op, DAG);
6264
case ISD::BRCOND:
6265
return lowerBRCOND(Op, DAG);
6266
case ISD::VASTART:
6267
return lowerVASTART(Op, DAG);
6268
case ISD::FRAMEADDR:
6269
return lowerFRAMEADDR(Op, DAG);
6270
case ISD::RETURNADDR:
6271
return lowerRETURNADDR(Op, DAG);
6272
case ISD::SADDO:
6273
case ISD::SSUBO:
6274
return lowerSADDO_SSUBO(Op, DAG);
6275
case ISD::SMULO:
6276
return lowerSMULO(Op, DAG);
6277
case ISD::SHL_PARTS:
6278
return lowerShiftLeftParts(Op, DAG);
6279
case ISD::SRA_PARTS:
6280
return lowerShiftRightParts(Op, DAG, true);
6281
case ISD::SRL_PARTS:
6282
return lowerShiftRightParts(Op, DAG, false);
6283
case ISD::ROTL:
6284
case ISD::ROTR:
6285
if (Op.getValueType().isFixedLengthVector()) {
6286
assert(Subtarget.hasStdExtZvkb());
6287
return lowerToScalableOp(Op, DAG);
6288
}
6289
assert(Subtarget.hasVendorXTHeadBb() &&
6290
!(Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()) &&
6291
"Unexpected custom legalization");
6292
// XTHeadBb only supports rotate by constant.
6293
if (!isa<ConstantSDNode>(Op.getOperand(1)))
6294
return SDValue();
6295
return Op;
6296
case ISD::BITCAST: {
6297
SDLoc DL(Op);
6298
EVT VT = Op.getValueType();
6299
SDValue Op0 = Op.getOperand(0);
6300
EVT Op0VT = Op0.getValueType();
6301
MVT XLenVT = Subtarget.getXLenVT();
6302
if (VT == MVT::f16 && Op0VT == MVT::i16 &&
6303
Subtarget.hasStdExtZfhminOrZhinxmin()) {
6304
SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
6305
SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
6306
return FPConv;
6307
}
6308
if (VT == MVT::bf16 && Op0VT == MVT::i16 &&
6309
Subtarget.hasStdExtZfbfmin()) {
6310
SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
6311
SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::bf16, NewOp0);
6312
return FPConv;
6313
}
6314
if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
6315
Subtarget.hasStdExtFOrZfinx()) {
6316
SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
6317
SDValue FPConv =
6318
DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
6319
return FPConv;
6320
}
6321
if (VT == MVT::f64 && Op0VT == MVT::i64 && !Subtarget.is64Bit() &&
6322
Subtarget.hasStdExtDOrZdinx()) {
6323
SDValue Lo, Hi;
6324
std::tie(Lo, Hi) = DAG.SplitScalar(Op0, DL, MVT::i32, MVT::i32);
6325
SDValue RetReg =
6326
DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
6327
return RetReg;
6328
}
6329
6330
// Consider other scalar<->scalar casts as legal if the types are legal.
6331
// Otherwise expand them.
6332
if (!VT.isVector() && !Op0VT.isVector()) {
6333
if (isTypeLegal(VT) && isTypeLegal(Op0VT))
6334
return Op;
6335
return SDValue();
6336
}
6337
6338
assert(!VT.isScalableVector() && !Op0VT.isScalableVector() &&
6339
"Unexpected types");
6340
6341
if (VT.isFixedLengthVector()) {
6342
// We can handle fixed length vector bitcasts with a simple replacement
6343
// in isel.
6344
if (Op0VT.isFixedLengthVector())
6345
return Op;
6346
// When bitcasting from scalar to fixed-length vector, insert the scalar
6347
// into a one-element vector of the result type, and perform a vector
6348
// bitcast.
6349
if (!Op0VT.isVector()) {
6350
EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
6351
if (!isTypeLegal(BVT))
6352
return SDValue();
6353
return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
6354
DAG.getUNDEF(BVT), Op0,
6355
DAG.getVectorIdxConstant(0, DL)));
6356
}
6357
return SDValue();
6358
}
6359
// Custom-legalize bitcasts from fixed-length vector types to scalar types
6360
// thus: bitcast the vector to a one-element vector type whose element type
6361
// is the same as the result type, and extract the first element.
6362
if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
6363
EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
6364
if (!isTypeLegal(BVT))
6365
return SDValue();
6366
SDValue BVec = DAG.getBitcast(BVT, Op0);
6367
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
6368
DAG.getVectorIdxConstant(0, DL));
6369
}
6370
return SDValue();
6371
}
6372
case ISD::INTRINSIC_WO_CHAIN:
6373
return LowerINTRINSIC_WO_CHAIN(Op, DAG);
6374
case ISD::INTRINSIC_W_CHAIN:
6375
return LowerINTRINSIC_W_CHAIN(Op, DAG);
6376
case ISD::INTRINSIC_VOID:
6377
return LowerINTRINSIC_VOID(Op, DAG);
6378
case ISD::IS_FPCLASS:
6379
return LowerIS_FPCLASS(Op, DAG);
6380
case ISD::BITREVERSE: {
6381
MVT VT = Op.getSimpleValueType();
6382
if (VT.isFixedLengthVector()) {
6383
assert(Subtarget.hasStdExtZvbb());
6384
return lowerToScalableOp(Op, DAG);
6385
}
6386
SDLoc DL(Op);
6387
assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
6388
assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
6389
// Expand bitreverse to a bswap(rev8) followed by brev8.
6390
SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
6391
return DAG.getNode(RISCVISD::BREV8, DL, VT, BSwap);
6392
}
6393
case ISD::TRUNCATE:
6394
// Only custom-lower vector truncates
6395
if (!Op.getSimpleValueType().isVector())
6396
return Op;
6397
return lowerVectorTruncLike(Op, DAG);
6398
case ISD::ANY_EXTEND:
6399
case ISD::ZERO_EXTEND:
6400
if (Op.getOperand(0).getValueType().isVector() &&
6401
Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
6402
return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
6403
return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
6404
case ISD::SIGN_EXTEND:
6405
if (Op.getOperand(0).getValueType().isVector() &&
6406
Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
6407
return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
6408
return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
6409
case ISD::SPLAT_VECTOR_PARTS:
6410
return lowerSPLAT_VECTOR_PARTS(Op, DAG);
6411
case ISD::INSERT_VECTOR_ELT:
6412
return lowerINSERT_VECTOR_ELT(Op, DAG);
6413
case ISD::EXTRACT_VECTOR_ELT:
6414
return lowerEXTRACT_VECTOR_ELT(Op, DAG);
6415
case ISD::SCALAR_TO_VECTOR: {
6416
MVT VT = Op.getSimpleValueType();
6417
SDLoc DL(Op);
6418
SDValue Scalar = Op.getOperand(0);
6419
if (VT.getVectorElementType() == MVT::i1) {
6420
MVT WideVT = VT.changeVectorElementType(MVT::i8);
6421
SDValue V = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, WideVT, Scalar);
6422
return DAG.getNode(ISD::TRUNCATE, DL, VT, V);
6423
}
6424
MVT ContainerVT = VT;
6425
if (VT.isFixedLengthVector())
6426
ContainerVT = getContainerForFixedLengthVector(VT);
6427
SDValue VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6428
Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getXLenVT(), Scalar);
6429
SDValue V = DAG.getNode(RISCVISD::VMV_S_X_VL, DL, ContainerVT,
6430
DAG.getUNDEF(ContainerVT), Scalar, VL);
6431
if (VT.isFixedLengthVector())
6432
V = convertFromScalableVector(VT, V, DAG, Subtarget);
6433
return V;
6434
}
6435
case ISD::VSCALE: {
6436
MVT XLenVT = Subtarget.getXLenVT();
6437
MVT VT = Op.getSimpleValueType();
6438
SDLoc DL(Op);
6439
SDValue Res = DAG.getNode(RISCVISD::READ_VLENB, DL, XLenVT);
6440
// We define our scalable vector types for lmul=1 to use a 64 bit known
6441
// minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
6442
// vscale as VLENB / 8.
6443
static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
6444
if (Subtarget.getRealMinVLen() < RISCV::RVVBitsPerBlock)
6445
report_fatal_error("Support for VLEN==32 is incomplete.");
6446
// We assume VLENB is a multiple of 8. We manually choose the best shift
6447
// here because SimplifyDemandedBits isn't always able to simplify it.
6448
uint64_t Val = Op.getConstantOperandVal(0);
6449
if (isPowerOf2_64(Val)) {
6450
uint64_t Log2 = Log2_64(Val);
6451
if (Log2 < 3)
6452
Res = DAG.getNode(ISD::SRL, DL, XLenVT, Res,
6453
DAG.getConstant(3 - Log2, DL, VT));
6454
else if (Log2 > 3)
6455
Res = DAG.getNode(ISD::SHL, DL, XLenVT, Res,
6456
DAG.getConstant(Log2 - 3, DL, XLenVT));
6457
} else if ((Val % 8) == 0) {
6458
// If the multiplier is a multiple of 8, scale it down to avoid needing
6459
// to shift the VLENB value.
6460
Res = DAG.getNode(ISD::MUL, DL, XLenVT, Res,
6461
DAG.getConstant(Val / 8, DL, XLenVT));
6462
} else {
6463
SDValue VScale = DAG.getNode(ISD::SRL, DL, XLenVT, Res,
6464
DAG.getConstant(3, DL, XLenVT));
6465
Res = DAG.getNode(ISD::MUL, DL, XLenVT, VScale,
6466
DAG.getConstant(Val, DL, XLenVT));
6467
}
6468
return DAG.getNode(ISD::TRUNCATE, DL, VT, Res);
6469
}
6470
case ISD::FPOWI: {
6471
// Custom promote f16 powi with illegal i32 integer type on RV64. Once
6472
// promoted this will be legalized into a libcall by LegalizeIntegerTypes.
6473
if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
6474
Op.getOperand(1).getValueType() == MVT::i32) {
6475
SDLoc DL(Op);
6476
SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
6477
SDValue Powi =
6478
DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
6479
return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
6480
DAG.getIntPtrConstant(0, DL, /*isTarget=*/true));
6481
}
6482
return SDValue();
6483
}
6484
case ISD::FMAXIMUM:
6485
case ISD::FMINIMUM:
6486
if (Op.getValueType() == MVT::nxv32f16 &&
6487
(Subtarget.hasVInstructionsF16Minimal() &&
6488
!Subtarget.hasVInstructionsF16()))
6489
return SplitVectorOp(Op, DAG);
6490
return lowerFMAXIMUM_FMINIMUM(Op, DAG, Subtarget);
6491
case ISD::FP_EXTEND: {
6492
SDLoc DL(Op);
6493
EVT VT = Op.getValueType();
6494
SDValue Op0 = Op.getOperand(0);
6495
EVT Op0VT = Op0.getValueType();
6496
if (VT == MVT::f32 && Op0VT == MVT::bf16 && Subtarget.hasStdExtZfbfmin())
6497
return DAG.getNode(RISCVISD::FP_EXTEND_BF16, DL, MVT::f32, Op0);
6498
if (VT == MVT::f64 && Op0VT == MVT::bf16 && Subtarget.hasStdExtZfbfmin()) {
6499
SDValue FloatVal =
6500
DAG.getNode(RISCVISD::FP_EXTEND_BF16, DL, MVT::f32, Op0);
6501
return DAG.getNode(ISD::FP_EXTEND, DL, MVT::f64, FloatVal);
6502
}
6503
6504
if (!Op.getValueType().isVector())
6505
return Op;
6506
return lowerVectorFPExtendOrRoundLike(Op, DAG);
6507
}
6508
case ISD::FP_ROUND: {
6509
SDLoc DL(Op);
6510
EVT VT = Op.getValueType();
6511
SDValue Op0 = Op.getOperand(0);
6512
EVT Op0VT = Op0.getValueType();
6513
if (VT == MVT::bf16 && Op0VT == MVT::f32 && Subtarget.hasStdExtZfbfmin())
6514
return DAG.getNode(RISCVISD::FP_ROUND_BF16, DL, MVT::bf16, Op0);
6515
if (VT == MVT::bf16 && Op0VT == MVT::f64 && Subtarget.hasStdExtZfbfmin() &&
6516
Subtarget.hasStdExtDOrZdinx()) {
6517
SDValue FloatVal =
6518
DAG.getNode(ISD::FP_ROUND, DL, MVT::f32, Op0,
6519
DAG.getIntPtrConstant(0, DL, /*isTarget=*/true));
6520
return DAG.getNode(RISCVISD::FP_ROUND_BF16, DL, MVT::bf16, FloatVal);
6521
}
6522
6523
if (!Op.getValueType().isVector())
6524
return Op;
6525
return lowerVectorFPExtendOrRoundLike(Op, DAG);
6526
}
6527
case ISD::STRICT_FP_ROUND:
6528
case ISD::STRICT_FP_EXTEND:
6529
return lowerStrictFPExtendOrRoundLike(Op, DAG);
6530
case ISD::SINT_TO_FP:
6531
case ISD::UINT_TO_FP:
6532
if (Op.getValueType().isVector() &&
6533
Op.getValueType().getScalarType() == MVT::f16 &&
6534
(Subtarget.hasVInstructionsF16Minimal() &&
6535
!Subtarget.hasVInstructionsF16())) {
6536
if (Op.getValueType() == MVT::nxv32f16)
6537
return SplitVectorOp(Op, DAG);
6538
// int -> f32
6539
SDLoc DL(Op);
6540
MVT NVT =
6541
MVT::getVectorVT(MVT::f32, Op.getValueType().getVectorElementCount());
6542
SDValue NC = DAG.getNode(Op.getOpcode(), DL, NVT, Op->ops());
6543
// f32 -> f16
6544
return DAG.getNode(ISD::FP_ROUND, DL, Op.getValueType(), NC,
6545
DAG.getIntPtrConstant(0, DL, /*isTarget=*/true));
6546
}
6547
[[fallthrough]];
6548
case ISD::FP_TO_SINT:
6549
case ISD::FP_TO_UINT:
6550
if (SDValue Op1 = Op.getOperand(0);
6551
Op1.getValueType().isVector() &&
6552
Op1.getValueType().getScalarType() == MVT::f16 &&
6553
(Subtarget.hasVInstructionsF16Minimal() &&
6554
!Subtarget.hasVInstructionsF16())) {
6555
if (Op1.getValueType() == MVT::nxv32f16)
6556
return SplitVectorOp(Op, DAG);
6557
// f16 -> f32
6558
SDLoc DL(Op);
6559
MVT NVT = MVT::getVectorVT(MVT::f32,
6560
Op1.getValueType().getVectorElementCount());
6561
SDValue WidenVec = DAG.getNode(ISD::FP_EXTEND, DL, NVT, Op1);
6562
// f32 -> int
6563
return DAG.getNode(Op.getOpcode(), DL, Op.getValueType(), WidenVec);
6564
}
6565
[[fallthrough]];
6566
case ISD::STRICT_FP_TO_SINT:
6567
case ISD::STRICT_FP_TO_UINT:
6568
case ISD::STRICT_SINT_TO_FP:
6569
case ISD::STRICT_UINT_TO_FP: {
6570
// RVV can only do fp<->int conversions to types half/double the size as
6571
// the source. We custom-lower any conversions that do two hops into
6572
// sequences.
6573
MVT VT = Op.getSimpleValueType();
6574
if (!VT.isVector())
6575
return Op;
6576
SDLoc DL(Op);
6577
bool IsStrict = Op->isStrictFPOpcode();
6578
SDValue Src = Op.getOperand(0 + IsStrict);
6579
MVT EltVT = VT.getVectorElementType();
6580
MVT SrcVT = Src.getSimpleValueType();
6581
MVT SrcEltVT = SrcVT.getVectorElementType();
6582
unsigned EltSize = EltVT.getSizeInBits();
6583
unsigned SrcEltSize = SrcEltVT.getSizeInBits();
6584
assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
6585
"Unexpected vector element types");
6586
6587
bool IsInt2FP = SrcEltVT.isInteger();
6588
// Widening conversions
6589
if (EltSize > (2 * SrcEltSize)) {
6590
if (IsInt2FP) {
6591
// Do a regular integer sign/zero extension then convert to float.
6592
MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize / 2),
6593
VT.getVectorElementCount());
6594
unsigned ExtOpcode = (Op.getOpcode() == ISD::UINT_TO_FP ||
6595
Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
6596
? ISD::ZERO_EXTEND
6597
: ISD::SIGN_EXTEND;
6598
SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
6599
if (IsStrict)
6600
return DAG.getNode(Op.getOpcode(), DL, Op->getVTList(),
6601
Op.getOperand(0), Ext);
6602
return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
6603
}
6604
// FP2Int
6605
assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
6606
// Do one doubling fp_extend then complete the operation by converting
6607
// to int.
6608
MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
6609
if (IsStrict) {
6610
auto [FExt, Chain] =
6611
DAG.getStrictFPExtendOrRound(Src, Op.getOperand(0), DL, InterimFVT);
6612
return DAG.getNode(Op.getOpcode(), DL, Op->getVTList(), Chain, FExt);
6613
}
6614
SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
6615
return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
6616
}
6617
6618
// Narrowing conversions
6619
if (SrcEltSize > (2 * EltSize)) {
6620
if (IsInt2FP) {
6621
// One narrowing int_to_fp, then an fp_round.
6622
assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
6623
MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
6624
if (IsStrict) {
6625
SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL,
6626
DAG.getVTList(InterimFVT, MVT::Other),
6627
Op.getOperand(0), Src);
6628
SDValue Chain = Int2FP.getValue(1);
6629
return DAG.getStrictFPExtendOrRound(Int2FP, Chain, DL, VT).first;
6630
}
6631
SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
6632
return DAG.getFPExtendOrRound(Int2FP, DL, VT);
6633
}
6634
// FP2Int
6635
// One narrowing fp_to_int, then truncate the integer. If the float isn't
6636
// representable by the integer, the result is poison.
6637
MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6638
VT.getVectorElementCount());
6639
if (IsStrict) {
6640
SDValue FP2Int =
6641
DAG.getNode(Op.getOpcode(), DL, DAG.getVTList(IVecVT, MVT::Other),
6642
Op.getOperand(0), Src);
6643
SDValue Res = DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
6644
return DAG.getMergeValues({Res, FP2Int.getValue(1)}, DL);
6645
}
6646
SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
6647
return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
6648
}
6649
6650
// Scalable vectors can exit here. Patterns will handle equally-sized
6651
// conversions halving/doubling ones.
6652
if (!VT.isFixedLengthVector())
6653
return Op;
6654
6655
// For fixed-length vectors we lower to a custom "VL" node.
6656
unsigned RVVOpc = 0;
6657
switch (Op.getOpcode()) {
6658
default:
6659
llvm_unreachable("Impossible opcode");
6660
case ISD::FP_TO_SINT:
6661
RVVOpc = RISCVISD::VFCVT_RTZ_X_F_VL;
6662
break;
6663
case ISD::FP_TO_UINT:
6664
RVVOpc = RISCVISD::VFCVT_RTZ_XU_F_VL;
6665
break;
6666
case ISD::SINT_TO_FP:
6667
RVVOpc = RISCVISD::SINT_TO_FP_VL;
6668
break;
6669
case ISD::UINT_TO_FP:
6670
RVVOpc = RISCVISD::UINT_TO_FP_VL;
6671
break;
6672
case ISD::STRICT_FP_TO_SINT:
6673
RVVOpc = RISCVISD::STRICT_VFCVT_RTZ_X_F_VL;
6674
break;
6675
case ISD::STRICT_FP_TO_UINT:
6676
RVVOpc = RISCVISD::STRICT_VFCVT_RTZ_XU_F_VL;
6677
break;
6678
case ISD::STRICT_SINT_TO_FP:
6679
RVVOpc = RISCVISD::STRICT_SINT_TO_FP_VL;
6680
break;
6681
case ISD::STRICT_UINT_TO_FP:
6682
RVVOpc = RISCVISD::STRICT_UINT_TO_FP_VL;
6683
break;
6684
}
6685
6686
MVT ContainerVT = getContainerForFixedLengthVector(VT);
6687
MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
6688
assert(ContainerVT.getVectorElementCount() == SrcContainerVT.getVectorElementCount() &&
6689
"Expected same element count");
6690
6691
auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6692
6693
Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
6694
if (IsStrict) {
6695
Src = DAG.getNode(RVVOpc, DL, DAG.getVTList(ContainerVT, MVT::Other),
6696
Op.getOperand(0), Src, Mask, VL);
6697
SDValue SubVec = convertFromScalableVector(VT, Src, DAG, Subtarget);
6698
return DAG.getMergeValues({SubVec, Src.getValue(1)}, DL);
6699
}
6700
Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
6701
return convertFromScalableVector(VT, Src, DAG, Subtarget);
6702
}
6703
case ISD::FP_TO_SINT_SAT:
6704
case ISD::FP_TO_UINT_SAT:
6705
return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
6706
case ISD::FP_TO_BF16: {
6707
// Custom lower to ensure the libcall return is passed in an FPR on hard
6708
// float ABIs.
6709
assert(!Subtarget.isSoftFPABI() && "Unexpected custom legalization");
6710
SDLoc DL(Op);
6711
MakeLibCallOptions CallOptions;
6712
RTLIB::Libcall LC =
6713
RTLIB::getFPROUND(Op.getOperand(0).getValueType(), MVT::bf16);
6714
SDValue Res =
6715
makeLibCall(DAG, LC, MVT::f32, Op.getOperand(0), CallOptions, DL).first;
6716
if (Subtarget.is64Bit() && !RV64LegalI32)
6717
return DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Res);
6718
return DAG.getBitcast(MVT::i32, Res);
6719
}
6720
case ISD::BF16_TO_FP: {
6721
assert(Subtarget.hasStdExtFOrZfinx() && "Unexpected custom legalization");
6722
MVT VT = Op.getSimpleValueType();
6723
SDLoc DL(Op);
6724
Op = DAG.getNode(
6725
ISD::SHL, DL, Op.getOperand(0).getValueType(), Op.getOperand(0),
6726
DAG.getShiftAmountConstant(16, Op.getOperand(0).getValueType(), DL));
6727
SDValue Res = Subtarget.is64Bit()
6728
? DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Op)
6729
: DAG.getBitcast(MVT::f32, Op);
6730
// fp_extend if the target VT is bigger than f32.
6731
if (VT != MVT::f32)
6732
return DAG.getNode(ISD::FP_EXTEND, DL, VT, Res);
6733
return Res;
6734
}
6735
case ISD::FP_TO_FP16: {
6736
// Custom lower to ensure the libcall return is passed in an FPR on hard
6737
// float ABIs.
6738
assert(Subtarget.hasStdExtFOrZfinx() && "Unexpected custom legalisation");
6739
SDLoc DL(Op);
6740
MakeLibCallOptions CallOptions;
6741
RTLIB::Libcall LC =
6742
RTLIB::getFPROUND(Op.getOperand(0).getValueType(), MVT::f16);
6743
SDValue Res =
6744
makeLibCall(DAG, LC, MVT::f32, Op.getOperand(0), CallOptions, DL).first;
6745
if (Subtarget.is64Bit() && !RV64LegalI32)
6746
return DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Res);
6747
return DAG.getBitcast(MVT::i32, Res);
6748
}
6749
case ISD::FP16_TO_FP: {
6750
// Custom lower to ensure the libcall argument is passed in an FPR on hard
6751
// float ABIs.
6752
assert(Subtarget.hasStdExtFOrZfinx() && "Unexpected custom legalisation");
6753
SDLoc DL(Op);
6754
MakeLibCallOptions CallOptions;
6755
SDValue Arg = Subtarget.is64Bit()
6756
? DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32,
6757
Op.getOperand(0))
6758
: DAG.getBitcast(MVT::f32, Op.getOperand(0));
6759
SDValue Res =
6760
makeLibCall(DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Arg, CallOptions, DL)
6761
.first;
6762
return Res;
6763
}
6764
case ISD::FTRUNC:
6765
case ISD::FCEIL:
6766
case ISD::FFLOOR:
6767
case ISD::FNEARBYINT:
6768
case ISD::FRINT:
6769
case ISD::FROUND:
6770
case ISD::FROUNDEVEN:
6771
return lowerFTRUNC_FCEIL_FFLOOR_FROUND(Op, DAG, Subtarget);
6772
case ISD::LRINT:
6773
case ISD::LLRINT:
6774
return lowerVectorXRINT(Op, DAG, Subtarget);
6775
case ISD::VECREDUCE_ADD:
6776
case ISD::VECREDUCE_UMAX:
6777
case ISD::VECREDUCE_SMAX:
6778
case ISD::VECREDUCE_UMIN:
6779
case ISD::VECREDUCE_SMIN:
6780
return lowerVECREDUCE(Op, DAG);
6781
case ISD::VECREDUCE_AND:
6782
case ISD::VECREDUCE_OR:
6783
case ISD::VECREDUCE_XOR:
6784
if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
6785
return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
6786
return lowerVECREDUCE(Op, DAG);
6787
case ISD::VECREDUCE_FADD:
6788
case ISD::VECREDUCE_SEQ_FADD:
6789
case ISD::VECREDUCE_FMIN:
6790
case ISD::VECREDUCE_FMAX:
6791
case ISD::VECREDUCE_FMAXIMUM:
6792
case ISD::VECREDUCE_FMINIMUM:
6793
return lowerFPVECREDUCE(Op, DAG);
6794
case ISD::VP_REDUCE_ADD:
6795
case ISD::VP_REDUCE_UMAX:
6796
case ISD::VP_REDUCE_SMAX:
6797
case ISD::VP_REDUCE_UMIN:
6798
case ISD::VP_REDUCE_SMIN:
6799
case ISD::VP_REDUCE_FADD:
6800
case ISD::VP_REDUCE_SEQ_FADD:
6801
case ISD::VP_REDUCE_FMIN:
6802
case ISD::VP_REDUCE_FMAX:
6803
case ISD::VP_REDUCE_FMINIMUM:
6804
case ISD::VP_REDUCE_FMAXIMUM:
6805
if (Op.getOperand(1).getValueType() == MVT::nxv32f16 &&
6806
(Subtarget.hasVInstructionsF16Minimal() &&
6807
!Subtarget.hasVInstructionsF16()))
6808
return SplitVectorReductionOp(Op, DAG);
6809
return lowerVPREDUCE(Op, DAG);
6810
case ISD::VP_REDUCE_AND:
6811
case ISD::VP_REDUCE_OR:
6812
case ISD::VP_REDUCE_XOR:
6813
if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
6814
return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
6815
return lowerVPREDUCE(Op, DAG);
6816
case ISD::VP_CTTZ_ELTS:
6817
case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
6818
return lowerVPCttzElements(Op, DAG);
6819
case ISD::UNDEF: {
6820
MVT ContainerVT = getContainerForFixedLengthVector(Op.getSimpleValueType());
6821
return convertFromScalableVector(Op.getSimpleValueType(),
6822
DAG.getUNDEF(ContainerVT), DAG, Subtarget);
6823
}
6824
case ISD::INSERT_SUBVECTOR:
6825
return lowerINSERT_SUBVECTOR(Op, DAG);
6826
case ISD::EXTRACT_SUBVECTOR:
6827
return lowerEXTRACT_SUBVECTOR(Op, DAG);
6828
case ISD::VECTOR_DEINTERLEAVE:
6829
return lowerVECTOR_DEINTERLEAVE(Op, DAG);
6830
case ISD::VECTOR_INTERLEAVE:
6831
return lowerVECTOR_INTERLEAVE(Op, DAG);
6832
case ISD::STEP_VECTOR:
6833
return lowerSTEP_VECTOR(Op, DAG);
6834
case ISD::VECTOR_REVERSE:
6835
return lowerVECTOR_REVERSE(Op, DAG);
6836
case ISD::VECTOR_SPLICE:
6837
return lowerVECTOR_SPLICE(Op, DAG);
6838
case ISD::BUILD_VECTOR:
6839
return lowerBUILD_VECTOR(Op, DAG, Subtarget);
6840
case ISD::SPLAT_VECTOR:
6841
if ((Op.getValueType().getScalarType() == MVT::f16 &&
6842
(Subtarget.hasVInstructionsF16Minimal() &&
6843
Subtarget.hasStdExtZfhminOrZhinxmin() &&
6844
!Subtarget.hasVInstructionsF16())) ||
6845
(Op.getValueType().getScalarType() == MVT::bf16 &&
6846
(Subtarget.hasVInstructionsBF16() && Subtarget.hasStdExtZfbfmin()))) {
6847
if (Op.getValueType() == MVT::nxv32f16 ||
6848
Op.getValueType() == MVT::nxv32bf16)
6849
return SplitVectorOp(Op, DAG);
6850
SDLoc DL(Op);
6851
SDValue NewScalar =
6852
DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
6853
SDValue NewSplat = DAG.getNode(
6854
ISD::SPLAT_VECTOR, DL,
6855
MVT::getVectorVT(MVT::f32, Op.getValueType().getVectorElementCount()),
6856
NewScalar);
6857
return DAG.getNode(ISD::FP_ROUND, DL, Op.getValueType(), NewSplat,
6858
DAG.getIntPtrConstant(0, DL, /*isTarget=*/true));
6859
}
6860
if (Op.getValueType().getVectorElementType() == MVT::i1)
6861
return lowerVectorMaskSplat(Op, DAG);
6862
return SDValue();
6863
case ISD::VECTOR_SHUFFLE:
6864
return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
6865
case ISD::CONCAT_VECTORS: {
6866
// Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
6867
// better than going through the stack, as the default expansion does.
6868
SDLoc DL(Op);
6869
MVT VT = Op.getSimpleValueType();
6870
MVT ContainerVT = VT;
6871
if (VT.isFixedLengthVector())
6872
ContainerVT = ::getContainerForFixedLengthVector(DAG, VT, Subtarget);
6873
6874
// Recursively split concat_vectors with more than 2 operands:
6875
//
6876
// concat_vector op1, op2, op3, op4
6877
// ->
6878
// concat_vector (concat_vector op1, op2), (concat_vector op3, op4)
6879
//
6880
// This reduces the length of the chain of vslideups and allows us to
6881
// perform the vslideups at a smaller LMUL, limited to MF2.
6882
if (Op.getNumOperands() > 2 &&
6883
ContainerVT.bitsGE(getLMUL1VT(ContainerVT))) {
6884
MVT HalfVT = VT.getHalfNumVectorElementsVT();
6885
assert(isPowerOf2_32(Op.getNumOperands()));
6886
size_t HalfNumOps = Op.getNumOperands() / 2;
6887
SDValue Lo = DAG.getNode(ISD::CONCAT_VECTORS, DL, HalfVT,
6888
Op->ops().take_front(HalfNumOps));
6889
SDValue Hi = DAG.getNode(ISD::CONCAT_VECTORS, DL, HalfVT,
6890
Op->ops().drop_front(HalfNumOps));
6891
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
6892
}
6893
6894
unsigned NumOpElts =
6895
Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
6896
SDValue Vec = DAG.getUNDEF(VT);
6897
for (const auto &OpIdx : enumerate(Op->ops())) {
6898
SDValue SubVec = OpIdx.value();
6899
// Don't insert undef subvectors.
6900
if (SubVec.isUndef())
6901
continue;
6902
Vec =
6903
DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
6904
DAG.getVectorIdxConstant(OpIdx.index() * NumOpElts, DL));
6905
}
6906
return Vec;
6907
}
6908
case ISD::LOAD:
6909
if (auto V = expandUnalignedRVVLoad(Op, DAG))
6910
return V;
6911
if (Op.getValueType().isFixedLengthVector())
6912
return lowerFixedLengthVectorLoadToRVV(Op, DAG);
6913
return Op;
6914
case ISD::STORE:
6915
if (auto V = expandUnalignedRVVStore(Op, DAG))
6916
return V;
6917
if (Op.getOperand(1).getValueType().isFixedLengthVector())
6918
return lowerFixedLengthVectorStoreToRVV(Op, DAG);
6919
return Op;
6920
case ISD::MLOAD:
6921
case ISD::VP_LOAD:
6922
return lowerMaskedLoad(Op, DAG);
6923
case ISD::MSTORE:
6924
case ISD::VP_STORE:
6925
return lowerMaskedStore(Op, DAG);
6926
case ISD::SELECT_CC: {
6927
// This occurs because we custom legalize SETGT and SETUGT for setcc. That
6928
// causes LegalizeDAG to think we need to custom legalize select_cc. Expand
6929
// into separate SETCC+SELECT just like LegalizeDAG.
6930
SDValue Tmp1 = Op.getOperand(0);
6931
SDValue Tmp2 = Op.getOperand(1);
6932
SDValue True = Op.getOperand(2);
6933
SDValue False = Op.getOperand(3);
6934
EVT VT = Op.getValueType();
6935
SDValue CC = Op.getOperand(4);
6936
EVT CmpVT = Tmp1.getValueType();
6937
EVT CCVT =
6938
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT);
6939
SDLoc DL(Op);
6940
SDValue Cond =
6941
DAG.getNode(ISD::SETCC, DL, CCVT, Tmp1, Tmp2, CC, Op->getFlags());
6942
return DAG.getSelect(DL, VT, Cond, True, False);
6943
}
6944
case ISD::SETCC: {
6945
MVT OpVT = Op.getOperand(0).getSimpleValueType();
6946
if (OpVT.isScalarInteger()) {
6947
MVT VT = Op.getSimpleValueType();
6948
SDValue LHS = Op.getOperand(0);
6949
SDValue RHS = Op.getOperand(1);
6950
ISD::CondCode CCVal = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6951
assert((CCVal == ISD::SETGT || CCVal == ISD::SETUGT) &&
6952
"Unexpected CondCode");
6953
6954
SDLoc DL(Op);
6955
6956
// If the RHS is a constant in the range [-2049, 0) or (0, 2046], we can
6957
// convert this to the equivalent of (set(u)ge X, C+1) by using
6958
// (xori (slti(u) X, C+1), 1). This avoids materializing a small constant
6959
// in a register.
6960
if (isa<ConstantSDNode>(RHS)) {
6961
int64_t Imm = cast<ConstantSDNode>(RHS)->getSExtValue();
6962
if (Imm != 0 && isInt<12>((uint64_t)Imm + 1)) {
6963
// If this is an unsigned compare and the constant is -1, incrementing
6964
// the constant would change behavior. The result should be false.
6965
if (CCVal == ISD::SETUGT && Imm == -1)
6966
return DAG.getConstant(0, DL, VT);
6967
// Using getSetCCSwappedOperands will convert SET(U)GT->SET(U)LT.
6968
CCVal = ISD::getSetCCSwappedOperands(CCVal);
6969
SDValue SetCC = DAG.getSetCC(
6970
DL, VT, LHS, DAG.getConstant(Imm + 1, DL, OpVT), CCVal);
6971
return DAG.getLogicalNOT(DL, SetCC, VT);
6972
}
6973
}
6974
6975
// Not a constant we could handle, swap the operands and condition code to
6976
// SETLT/SETULT.
6977
CCVal = ISD::getSetCCSwappedOperands(CCVal);
6978
return DAG.getSetCC(DL, VT, RHS, LHS, CCVal);
6979
}
6980
6981
if (Op.getOperand(0).getSimpleValueType() == MVT::nxv32f16 &&
6982
(Subtarget.hasVInstructionsF16Minimal() &&
6983
!Subtarget.hasVInstructionsF16()))
6984
return SplitVectorOp(Op, DAG);
6985
6986
return lowerFixedLengthVectorSetccToRVV(Op, DAG);
6987
}
6988
case ISD::ADD:
6989
case ISD::SUB:
6990
case ISD::MUL:
6991
case ISD::MULHS:
6992
case ISD::MULHU:
6993
case ISD::AND:
6994
case ISD::OR:
6995
case ISD::XOR:
6996
case ISD::SDIV:
6997
case ISD::SREM:
6998
case ISD::UDIV:
6999
case ISD::UREM:
7000
case ISD::BSWAP:
7001
case ISD::CTPOP:
7002
return lowerToScalableOp(Op, DAG);
7003
case ISD::SHL:
7004
case ISD::SRA:
7005
case ISD::SRL:
7006
if (Op.getSimpleValueType().isFixedLengthVector())
7007
return lowerToScalableOp(Op, DAG);
7008
// This can be called for an i32 shift amount that needs to be promoted.
7009
assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
7010
"Unexpected custom legalisation");
7011
return SDValue();
7012
case ISD::FADD:
7013
case ISD::FSUB:
7014
case ISD::FMUL:
7015
case ISD::FDIV:
7016
case ISD::FNEG:
7017
case ISD::FABS:
7018
case ISD::FSQRT:
7019
case ISD::FMA:
7020
case ISD::FMINNUM:
7021
case ISD::FMAXNUM:
7022
if (Op.getValueType() == MVT::nxv32f16 &&
7023
(Subtarget.hasVInstructionsF16Minimal() &&
7024
!Subtarget.hasVInstructionsF16()))
7025
return SplitVectorOp(Op, DAG);
7026
[[fallthrough]];
7027
case ISD::AVGFLOORS:
7028
case ISD::AVGFLOORU:
7029
case ISD::AVGCEILS:
7030
case ISD::AVGCEILU:
7031
case ISD::SMIN:
7032
case ISD::SMAX:
7033
case ISD::UMIN:
7034
case ISD::UMAX:
7035
return lowerToScalableOp(Op, DAG);
7036
case ISD::UADDSAT:
7037
case ISD::USUBSAT:
7038
if (!Op.getValueType().isVector())
7039
return lowerUADDSAT_USUBSAT(Op, DAG);
7040
return lowerToScalableOp(Op, DAG);
7041
case ISD::SADDSAT:
7042
case ISD::SSUBSAT:
7043
if (!Op.getValueType().isVector())
7044
return lowerSADDSAT_SSUBSAT(Op, DAG);
7045
return lowerToScalableOp(Op, DAG);
7046
case ISD::ABDS:
7047
case ISD::ABDU: {
7048
SDLoc dl(Op);
7049
EVT VT = Op->getValueType(0);
7050
SDValue LHS = DAG.getFreeze(Op->getOperand(0));
7051
SDValue RHS = DAG.getFreeze(Op->getOperand(1));
7052
bool IsSigned = Op->getOpcode() == ISD::ABDS;
7053
7054
// abds(lhs, rhs) -> sub(smax(lhs,rhs), smin(lhs,rhs))
7055
// abdu(lhs, rhs) -> sub(umax(lhs,rhs), umin(lhs,rhs))
7056
unsigned MaxOpc = IsSigned ? ISD::SMAX : ISD::UMAX;
7057
unsigned MinOpc = IsSigned ? ISD::SMIN : ISD::UMIN;
7058
SDValue Max = DAG.getNode(MaxOpc, dl, VT, LHS, RHS);
7059
SDValue Min = DAG.getNode(MinOpc, dl, VT, LHS, RHS);
7060
return DAG.getNode(ISD::SUB, dl, VT, Max, Min);
7061
}
7062
case ISD::ABS:
7063
case ISD::VP_ABS:
7064
return lowerABS(Op, DAG);
7065
case ISD::CTLZ:
7066
case ISD::CTLZ_ZERO_UNDEF:
7067
case ISD::CTTZ:
7068
case ISD::CTTZ_ZERO_UNDEF:
7069
if (Subtarget.hasStdExtZvbb())
7070
return lowerToScalableOp(Op, DAG);
7071
assert(Op.getOpcode() != ISD::CTTZ);
7072
return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
7073
case ISD::VSELECT:
7074
return lowerFixedLengthVectorSelectToRVV(Op, DAG);
7075
case ISD::FCOPYSIGN:
7076
if (Op.getValueType() == MVT::nxv32f16 &&
7077
(Subtarget.hasVInstructionsF16Minimal() &&
7078
!Subtarget.hasVInstructionsF16()))
7079
return SplitVectorOp(Op, DAG);
7080
return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
7081
case ISD::STRICT_FADD:
7082
case ISD::STRICT_FSUB:
7083
case ISD::STRICT_FMUL:
7084
case ISD::STRICT_FDIV:
7085
case ISD::STRICT_FSQRT:
7086
case ISD::STRICT_FMA:
7087
if (Op.getValueType() == MVT::nxv32f16 &&
7088
(Subtarget.hasVInstructionsF16Minimal() &&
7089
!Subtarget.hasVInstructionsF16()))
7090
return SplitStrictFPVectorOp(Op, DAG);
7091
return lowerToScalableOp(Op, DAG);
7092
case ISD::STRICT_FSETCC:
7093
case ISD::STRICT_FSETCCS:
7094
return lowerVectorStrictFSetcc(Op, DAG);
7095
case ISD::STRICT_FCEIL:
7096
case ISD::STRICT_FRINT:
7097
case ISD::STRICT_FFLOOR:
7098
case ISD::STRICT_FTRUNC:
7099
case ISD::STRICT_FNEARBYINT:
7100
case ISD::STRICT_FROUND:
7101
case ISD::STRICT_FROUNDEVEN:
7102
return lowerVectorStrictFTRUNC_FCEIL_FFLOOR_FROUND(Op, DAG, Subtarget);
7103
case ISD::MGATHER:
7104
case ISD::VP_GATHER:
7105
return lowerMaskedGather(Op, DAG);
7106
case ISD::MSCATTER:
7107
case ISD::VP_SCATTER:
7108
return lowerMaskedScatter(Op, DAG);
7109
case ISD::GET_ROUNDING:
7110
return lowerGET_ROUNDING(Op, DAG);
7111
case ISD::SET_ROUNDING:
7112
return lowerSET_ROUNDING(Op, DAG);
7113
case ISD::EH_DWARF_CFA:
7114
return lowerEH_DWARF_CFA(Op, DAG);
7115
case ISD::VP_SELECT:
7116
case ISD::VP_MERGE:
7117
case ISD::VP_ADD:
7118
case ISD::VP_SUB:
7119
case ISD::VP_MUL:
7120
case ISD::VP_SDIV:
7121
case ISD::VP_UDIV:
7122
case ISD::VP_SREM:
7123
case ISD::VP_UREM:
7124
case ISD::VP_UADDSAT:
7125
case ISD::VP_USUBSAT:
7126
case ISD::VP_SADDSAT:
7127
case ISD::VP_SSUBSAT:
7128
case ISD::VP_LRINT:
7129
case ISD::VP_LLRINT:
7130
return lowerVPOp(Op, DAG);
7131
case ISD::VP_AND:
7132
case ISD::VP_OR:
7133
case ISD::VP_XOR:
7134
return lowerLogicVPOp(Op, DAG);
7135
case ISD::VP_FADD:
7136
case ISD::VP_FSUB:
7137
case ISD::VP_FMUL:
7138
case ISD::VP_FDIV:
7139
case ISD::VP_FNEG:
7140
case ISD::VP_FABS:
7141
case ISD::VP_SQRT:
7142
case ISD::VP_FMA:
7143
case ISD::VP_FMINNUM:
7144
case ISD::VP_FMAXNUM:
7145
case ISD::VP_FCOPYSIGN:
7146
if (Op.getValueType() == MVT::nxv32f16 &&
7147
(Subtarget.hasVInstructionsF16Minimal() &&
7148
!Subtarget.hasVInstructionsF16()))
7149
return SplitVPOp(Op, DAG);
7150
[[fallthrough]];
7151
case ISD::VP_SRA:
7152
case ISD::VP_SRL:
7153
case ISD::VP_SHL:
7154
return lowerVPOp(Op, DAG);
7155
case ISD::VP_IS_FPCLASS:
7156
return LowerIS_FPCLASS(Op, DAG);
7157
case ISD::VP_SIGN_EXTEND:
7158
case ISD::VP_ZERO_EXTEND:
7159
if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
7160
return lowerVPExtMaskOp(Op, DAG);
7161
return lowerVPOp(Op, DAG);
7162
case ISD::VP_TRUNCATE:
7163
return lowerVectorTruncLike(Op, DAG);
7164
case ISD::VP_FP_EXTEND:
7165
case ISD::VP_FP_ROUND:
7166
return lowerVectorFPExtendOrRoundLike(Op, DAG);
7167
case ISD::VP_SINT_TO_FP:
7168
case ISD::VP_UINT_TO_FP:
7169
if (Op.getValueType().isVector() &&
7170
Op.getValueType().getScalarType() == MVT::f16 &&
7171
(Subtarget.hasVInstructionsF16Minimal() &&
7172
!Subtarget.hasVInstructionsF16())) {
7173
if (Op.getValueType() == MVT::nxv32f16)
7174
return SplitVPOp(Op, DAG);
7175
// int -> f32
7176
SDLoc DL(Op);
7177
MVT NVT =
7178
MVT::getVectorVT(MVT::f32, Op.getValueType().getVectorElementCount());
7179
auto NC = DAG.getNode(Op.getOpcode(), DL, NVT, Op->ops());
7180
// f32 -> f16
7181
return DAG.getNode(ISD::FP_ROUND, DL, Op.getValueType(), NC,
7182
DAG.getIntPtrConstant(0, DL, /*isTarget=*/true));
7183
}
7184
[[fallthrough]];
7185
case ISD::VP_FP_TO_SINT:
7186
case ISD::VP_FP_TO_UINT:
7187
if (SDValue Op1 = Op.getOperand(0);
7188
Op1.getValueType().isVector() &&
7189
Op1.getValueType().getScalarType() == MVT::f16 &&
7190
(Subtarget.hasVInstructionsF16Minimal() &&
7191
!Subtarget.hasVInstructionsF16())) {
7192
if (Op1.getValueType() == MVT::nxv32f16)
7193
return SplitVPOp(Op, DAG);
7194
// f16 -> f32
7195
SDLoc DL(Op);
7196
MVT NVT = MVT::getVectorVT(MVT::f32,
7197
Op1.getValueType().getVectorElementCount());
7198
SDValue WidenVec = DAG.getNode(ISD::FP_EXTEND, DL, NVT, Op1);
7199
// f32 -> int
7200
return DAG.getNode(Op.getOpcode(), DL, Op.getValueType(),
7201
{WidenVec, Op.getOperand(1), Op.getOperand(2)});
7202
}
7203
return lowerVPFPIntConvOp(Op, DAG);
7204
case ISD::VP_SETCC:
7205
if (Op.getOperand(0).getSimpleValueType() == MVT::nxv32f16 &&
7206
(Subtarget.hasVInstructionsF16Minimal() &&
7207
!Subtarget.hasVInstructionsF16()))
7208
return SplitVPOp(Op, DAG);
7209
if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
7210
return lowerVPSetCCMaskOp(Op, DAG);
7211
[[fallthrough]];
7212
case ISD::VP_SMIN:
7213
case ISD::VP_SMAX:
7214
case ISD::VP_UMIN:
7215
case ISD::VP_UMAX:
7216
case ISD::VP_BITREVERSE:
7217
case ISD::VP_BSWAP:
7218
return lowerVPOp(Op, DAG);
7219
case ISD::VP_CTLZ:
7220
case ISD::VP_CTLZ_ZERO_UNDEF:
7221
if (Subtarget.hasStdExtZvbb())
7222
return lowerVPOp(Op, DAG);
7223
return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
7224
case ISD::VP_CTTZ:
7225
case ISD::VP_CTTZ_ZERO_UNDEF:
7226
if (Subtarget.hasStdExtZvbb())
7227
return lowerVPOp(Op, DAG);
7228
return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
7229
case ISD::VP_CTPOP:
7230
return lowerVPOp(Op, DAG);
7231
case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7232
return lowerVPStridedLoad(Op, DAG);
7233
case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7234
return lowerVPStridedStore(Op, DAG);
7235
case ISD::VP_FCEIL:
7236
case ISD::VP_FFLOOR:
7237
case ISD::VP_FRINT:
7238
case ISD::VP_FNEARBYINT:
7239
case ISD::VP_FROUND:
7240
case ISD::VP_FROUNDEVEN:
7241
case ISD::VP_FROUNDTOZERO:
7242
if (Op.getValueType() == MVT::nxv32f16 &&
7243
(Subtarget.hasVInstructionsF16Minimal() &&
7244
!Subtarget.hasVInstructionsF16()))
7245
return SplitVPOp(Op, DAG);
7246
return lowerVectorFTRUNC_FCEIL_FFLOOR_FROUND(Op, DAG, Subtarget);
7247
case ISD::VP_FMAXIMUM:
7248
case ISD::VP_FMINIMUM:
7249
if (Op.getValueType() == MVT::nxv32f16 &&
7250
(Subtarget.hasVInstructionsF16Minimal() &&
7251
!Subtarget.hasVInstructionsF16()))
7252
return SplitVPOp(Op, DAG);
7253
return lowerFMAXIMUM_FMINIMUM(Op, DAG, Subtarget);
7254
case ISD::EXPERIMENTAL_VP_SPLICE:
7255
return lowerVPSpliceExperimental(Op, DAG);
7256
case ISD::EXPERIMENTAL_VP_REVERSE:
7257
return lowerVPReverseExperimental(Op, DAG);
7258
case ISD::EXPERIMENTAL_VP_SPLAT:
7259
return lowerVPSplatExperimental(Op, DAG);
7260
case ISD::CLEAR_CACHE: {
7261
assert(getTargetMachine().getTargetTriple().isOSLinux() &&
7262
"llvm.clear_cache only needs custom lower on Linux targets");
7263
SDLoc DL(Op);
7264
SDValue Flags = DAG.getConstant(0, DL, Subtarget.getXLenVT());
7265
return emitFlushICache(DAG, Op.getOperand(0), Op.getOperand(1),
7266
Op.getOperand(2), Flags, DL);
7267
}
7268
}
7269
}
7270
7271
SDValue RISCVTargetLowering::emitFlushICache(SelectionDAG &DAG, SDValue InChain,
7272
SDValue Start, SDValue End,
7273
SDValue Flags, SDLoc DL) const {
7274
MakeLibCallOptions CallOptions;
7275
std::pair<SDValue, SDValue> CallResult =
7276
makeLibCall(DAG, RTLIB::RISCV_FLUSH_ICACHE, MVT::isVoid,
7277
{Start, End, Flags}, CallOptions, DL, InChain);
7278
7279
// This function returns void so only the out chain matters.
7280
return CallResult.second;
7281
}
7282
7283
static SDValue getTargetNode(GlobalAddressSDNode *N, const SDLoc &DL, EVT Ty,
7284
SelectionDAG &DAG, unsigned Flags) {
7285
return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
7286
}
7287
7288
static SDValue getTargetNode(BlockAddressSDNode *N, const SDLoc &DL, EVT Ty,
7289
SelectionDAG &DAG, unsigned Flags) {
7290
return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
7291
Flags);
7292
}
7293
7294
static SDValue getTargetNode(ConstantPoolSDNode *N, const SDLoc &DL, EVT Ty,
7295
SelectionDAG &DAG, unsigned Flags) {
7296
return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
7297
N->getOffset(), Flags);
7298
}
7299
7300
static SDValue getTargetNode(JumpTableSDNode *N, const SDLoc &DL, EVT Ty,
7301
SelectionDAG &DAG, unsigned Flags) {
7302
return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
7303
}
7304
7305
template <class NodeTy>
7306
SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
7307
bool IsLocal, bool IsExternWeak) const {
7308
SDLoc DL(N);
7309
EVT Ty = getPointerTy(DAG.getDataLayout());
7310
7311
// When HWASAN is used and tagging of global variables is enabled
7312
// they should be accessed via the GOT, since the tagged address of a global
7313
// is incompatible with existing code models. This also applies to non-pic
7314
// mode.
7315
if (isPositionIndependent() || Subtarget.allowTaggedGlobals()) {
7316
SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
7317
if (IsLocal && !Subtarget.allowTaggedGlobals())
7318
// Use PC-relative addressing to access the symbol. This generates the
7319
// pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
7320
// %pcrel_lo(auipc)).
7321
return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr);
7322
7323
// Use PC-relative addressing to access the GOT for this symbol, then load
7324
// the address from the GOT. This generates the pattern (PseudoLGA sym),
7325
// which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
7326
SDValue Load =
7327
SDValue(DAG.getMachineNode(RISCV::PseudoLGA, DL, Ty, Addr), 0);
7328
MachineFunction &MF = DAG.getMachineFunction();
7329
MachineMemOperand *MemOp = MF.getMachineMemOperand(
7330
MachinePointerInfo::getGOT(MF),
7331
MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
7332
MachineMemOperand::MOInvariant,
7333
LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
7334
DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
7335
return Load;
7336
}
7337
7338
switch (getTargetMachine().getCodeModel()) {
7339
default:
7340
report_fatal_error("Unsupported code model for lowering");
7341
case CodeModel::Small: {
7342
// Generate a sequence for accessing addresses within the first 2 GiB of
7343
// address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
7344
SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
7345
SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
7346
SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi);
7347
return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNHi, AddrLo);
7348
}
7349
case CodeModel::Medium: {
7350
SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
7351
if (IsExternWeak) {
7352
// An extern weak symbol may be undefined, i.e. have value 0, which may
7353
// not be within 2GiB of PC, so use GOT-indirect addressing to access the
7354
// symbol. This generates the pattern (PseudoLGA sym), which expands to
7355
// (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
7356
SDValue Load =
7357
SDValue(DAG.getMachineNode(RISCV::PseudoLGA, DL, Ty, Addr), 0);
7358
MachineFunction &MF = DAG.getMachineFunction();
7359
MachineMemOperand *MemOp = MF.getMachineMemOperand(
7360
MachinePointerInfo::getGOT(MF),
7361
MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
7362
MachineMemOperand::MOInvariant,
7363
LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
7364
DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
7365
return Load;
7366
}
7367
7368
// Generate a sequence for accessing addresses within any 2GiB range within
7369
// the address space. This generates the pattern (PseudoLLA sym), which
7370
// expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
7371
return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr);
7372
}
7373
}
7374
}
7375
7376
SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
7377
SelectionDAG &DAG) const {
7378
GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
7379
assert(N->getOffset() == 0 && "unexpected offset in global node");
7380
const GlobalValue *GV = N->getGlobal();
7381
return getAddr(N, DAG, GV->isDSOLocal(), GV->hasExternalWeakLinkage());
7382
}
7383
7384
SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
7385
SelectionDAG &DAG) const {
7386
BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
7387
7388
return getAddr(N, DAG);
7389
}
7390
7391
SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
7392
SelectionDAG &DAG) const {
7393
ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
7394
7395
return getAddr(N, DAG);
7396
}
7397
7398
SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
7399
SelectionDAG &DAG) const {
7400
JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
7401
7402
return getAddr(N, DAG);
7403
}
7404
7405
SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
7406
SelectionDAG &DAG,
7407
bool UseGOT) const {
7408
SDLoc DL(N);
7409
EVT Ty = getPointerTy(DAG.getDataLayout());
7410
const GlobalValue *GV = N->getGlobal();
7411
MVT XLenVT = Subtarget.getXLenVT();
7412
7413
if (UseGOT) {
7414
// Use PC-relative addressing to access the GOT for this TLS symbol, then
7415
// load the address from the GOT and add the thread pointer. This generates
7416
// the pattern (PseudoLA_TLS_IE sym), which expands to
7417
// (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
7418
SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
7419
SDValue Load =
7420
SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
7421
MachineFunction &MF = DAG.getMachineFunction();
7422
MachineMemOperand *MemOp = MF.getMachineMemOperand(
7423
MachinePointerInfo::getGOT(MF),
7424
MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
7425
MachineMemOperand::MOInvariant,
7426
LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
7427
DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
7428
7429
// Add the thread pointer.
7430
SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
7431
return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
7432
}
7433
7434
// Generate a sequence for accessing the address relative to the thread
7435
// pointer, with the appropriate adjustment for the thread pointer offset.
7436
// This generates the pattern
7437
// (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
7438
SDValue AddrHi =
7439
DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
7440
SDValue AddrAdd =
7441
DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
7442
SDValue AddrLo =
7443
DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
7444
7445
SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi);
7446
SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
7447
SDValue MNAdd =
7448
DAG.getNode(RISCVISD::ADD_TPREL, DL, Ty, MNHi, TPReg, AddrAdd);
7449
return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNAdd, AddrLo);
7450
}
7451
7452
SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
7453
SelectionDAG &DAG) const {
7454
SDLoc DL(N);
7455
EVT Ty = getPointerTy(DAG.getDataLayout());
7456
IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
7457
const GlobalValue *GV = N->getGlobal();
7458
7459
// Use a PC-relative addressing mode to access the global dynamic GOT address.
7460
// This generates the pattern (PseudoLA_TLS_GD sym), which expands to
7461
// (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
7462
SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
7463
SDValue Load =
7464
SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
7465
7466
// Prepare argument list to generate call.
7467
ArgListTy Args;
7468
ArgListEntry Entry;
7469
Entry.Node = Load;
7470
Entry.Ty = CallTy;
7471
Args.push_back(Entry);
7472
7473
// Setup call to __tls_get_addr.
7474
TargetLowering::CallLoweringInfo CLI(DAG);
7475
CLI.setDebugLoc(DL)
7476
.setChain(DAG.getEntryNode())
7477
.setLibCallee(CallingConv::C, CallTy,
7478
DAG.getExternalSymbol("__tls_get_addr", Ty),
7479
std::move(Args));
7480
7481
return LowerCallTo(CLI).first;
7482
}
7483
7484
SDValue RISCVTargetLowering::getTLSDescAddr(GlobalAddressSDNode *N,
7485
SelectionDAG &DAG) const {
7486
SDLoc DL(N);
7487
EVT Ty = getPointerTy(DAG.getDataLayout());
7488
const GlobalValue *GV = N->getGlobal();
7489
7490
// Use a PC-relative addressing mode to access the global dynamic GOT address.
7491
// This generates the pattern (PseudoLA_TLSDESC sym), which expands to
7492
//
7493
// auipc tX, %tlsdesc_hi(symbol) // R_RISCV_TLSDESC_HI20(symbol)
7494
// lw tY, tX, %tlsdesc_load_lo(label) // R_RISCV_TLSDESC_LOAD_LO12(label)
7495
// addi a0, tX, %tlsdesc_add_lo(label) // R_RISCV_TLSDESC_ADD_LO12(label)
7496
// jalr t0, tY // R_RISCV_TLSDESC_CALL(label)
7497
SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
7498
return SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLSDESC, DL, Ty, Addr), 0);
7499
}
7500
7501
SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
7502
SelectionDAG &DAG) const {
7503
GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
7504
assert(N->getOffset() == 0 && "unexpected offset in global node");
7505
7506
if (DAG.getTarget().useEmulatedTLS())
7507
return LowerToTLSEmulatedModel(N, DAG);
7508
7509
TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
7510
7511
if (DAG.getMachineFunction().getFunction().getCallingConv() ==
7512
CallingConv::GHC)
7513
report_fatal_error("In GHC calling convention TLS is not supported");
7514
7515
SDValue Addr;
7516
switch (Model) {
7517
case TLSModel::LocalExec:
7518
Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
7519
break;
7520
case TLSModel::InitialExec:
7521
Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
7522
break;
7523
case TLSModel::LocalDynamic:
7524
case TLSModel::GeneralDynamic:
7525
Addr = DAG.getTarget().useTLSDESC() ? getTLSDescAddr(N, DAG)
7526
: getDynamicTLSAddr(N, DAG);
7527
break;
7528
}
7529
7530
return Addr;
7531
}
7532
7533
// Return true if Val is equal to (setcc LHS, RHS, CC).
7534
// Return false if Val is the inverse of (setcc LHS, RHS, CC).
7535
// Otherwise, return std::nullopt.
7536
static std::optional<bool> matchSetCC(SDValue LHS, SDValue RHS,
7537
ISD::CondCode CC, SDValue Val) {
7538
assert(Val->getOpcode() == ISD::SETCC);
7539
SDValue LHS2 = Val.getOperand(0);
7540
SDValue RHS2 = Val.getOperand(1);
7541
ISD::CondCode CC2 = cast<CondCodeSDNode>(Val.getOperand(2))->get();
7542
7543
if (LHS == LHS2 && RHS == RHS2) {
7544
if (CC == CC2)
7545
return true;
7546
if (CC == ISD::getSetCCInverse(CC2, LHS2.getValueType()))
7547
return false;
7548
} else if (LHS == RHS2 && RHS == LHS2) {
7549
CC2 = ISD::getSetCCSwappedOperands(CC2);
7550
if (CC == CC2)
7551
return true;
7552
if (CC == ISD::getSetCCInverse(CC2, LHS2.getValueType()))
7553
return false;
7554
}
7555
7556
return std::nullopt;
7557
}
7558
7559
static SDValue combineSelectToBinOp(SDNode *N, SelectionDAG &DAG,
7560
const RISCVSubtarget &Subtarget) {
7561
SDValue CondV = N->getOperand(0);
7562
SDValue TrueV = N->getOperand(1);
7563
SDValue FalseV = N->getOperand(2);
7564
MVT VT = N->getSimpleValueType(0);
7565
SDLoc DL(N);
7566
7567
if (!Subtarget.hasConditionalMoveFusion()) {
7568
// (select c, -1, y) -> -c | y
7569
if (isAllOnesConstant(TrueV)) {
7570
SDValue Neg = DAG.getNegative(CondV, DL, VT);
7571
return DAG.getNode(ISD::OR, DL, VT, Neg, DAG.getFreeze(FalseV));
7572
}
7573
// (select c, y, -1) -> (c-1) | y
7574
if (isAllOnesConstant(FalseV)) {
7575
SDValue Neg = DAG.getNode(ISD::ADD, DL, VT, CondV,
7576
DAG.getAllOnesConstant(DL, VT));
7577
return DAG.getNode(ISD::OR, DL, VT, Neg, DAG.getFreeze(TrueV));
7578
}
7579
7580
// (select c, 0, y) -> (c-1) & y
7581
if (isNullConstant(TrueV)) {
7582
SDValue Neg = DAG.getNode(ISD::ADD, DL, VT, CondV,
7583
DAG.getAllOnesConstant(DL, VT));
7584
return DAG.getNode(ISD::AND, DL, VT, Neg, DAG.getFreeze(FalseV));
7585
}
7586
// (select c, y, 0) -> -c & y
7587
if (isNullConstant(FalseV)) {
7588
SDValue Neg = DAG.getNegative(CondV, DL, VT);
7589
return DAG.getNode(ISD::AND, DL, VT, Neg, DAG.getFreeze(TrueV));
7590
}
7591
}
7592
7593
// select c, ~x, x --> xor -c, x
7594
if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV)) {
7595
const APInt &TrueVal = TrueV->getAsAPIntVal();
7596
const APInt &FalseVal = FalseV->getAsAPIntVal();
7597
if (~TrueVal == FalseVal) {
7598
SDValue Neg = DAG.getNegative(CondV, DL, VT);
7599
return DAG.getNode(ISD::XOR, DL, VT, Neg, FalseV);
7600
}
7601
}
7602
7603
// Try to fold (select (setcc lhs, rhs, cc), truev, falsev) into bitwise ops
7604
// when both truev and falsev are also setcc.
7605
if (CondV.getOpcode() == ISD::SETCC && TrueV.getOpcode() == ISD::SETCC &&
7606
FalseV.getOpcode() == ISD::SETCC) {
7607
SDValue LHS = CondV.getOperand(0);
7608
SDValue RHS = CondV.getOperand(1);
7609
ISD::CondCode CC = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
7610
7611
// (select x, x, y) -> x | y
7612
// (select !x, x, y) -> x & y
7613
if (std::optional<bool> MatchResult = matchSetCC(LHS, RHS, CC, TrueV)) {
7614
return DAG.getNode(*MatchResult ? ISD::OR : ISD::AND, DL, VT, TrueV,
7615
DAG.getFreeze(FalseV));
7616
}
7617
// (select x, y, x) -> x & y
7618
// (select !x, y, x) -> x | y
7619
if (std::optional<bool> MatchResult = matchSetCC(LHS, RHS, CC, FalseV)) {
7620
return DAG.getNode(*MatchResult ? ISD::AND : ISD::OR, DL, VT,
7621
DAG.getFreeze(TrueV), FalseV);
7622
}
7623
}
7624
7625
return SDValue();
7626
}
7627
7628
// Transform `binOp (select cond, x, c0), c1` where `c0` and `c1` are constants
7629
// into `select cond, binOp(x, c1), binOp(c0, c1)` if profitable.
7630
// For now we only consider transformation profitable if `binOp(c0, c1)` ends up
7631
// being `0` or `-1`. In such cases we can replace `select` with `and`.
7632
// TODO: Should we also do this if `binOp(c0, c1)` is cheaper to materialize
7633
// than `c0`?
7634
static SDValue
7635
foldBinOpIntoSelectIfProfitable(SDNode *BO, SelectionDAG &DAG,
7636
const RISCVSubtarget &Subtarget) {
7637
if (Subtarget.hasShortForwardBranchOpt())
7638
return SDValue();
7639
7640
unsigned SelOpNo = 0;
7641
SDValue Sel = BO->getOperand(0);
7642
if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) {
7643
SelOpNo = 1;
7644
Sel = BO->getOperand(1);
7645
}
7646
7647
if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse())
7648
return SDValue();
7649
7650
unsigned ConstSelOpNo = 1;
7651
unsigned OtherSelOpNo = 2;
7652
if (!dyn_cast<ConstantSDNode>(Sel->getOperand(ConstSelOpNo))) {
7653
ConstSelOpNo = 2;
7654
OtherSelOpNo = 1;
7655
}
7656
SDValue ConstSelOp = Sel->getOperand(ConstSelOpNo);
7657
ConstantSDNode *ConstSelOpNode = dyn_cast<ConstantSDNode>(ConstSelOp);
7658
if (!ConstSelOpNode || ConstSelOpNode->isOpaque())
7659
return SDValue();
7660
7661
SDValue ConstBinOp = BO->getOperand(SelOpNo ^ 1);
7662
ConstantSDNode *ConstBinOpNode = dyn_cast<ConstantSDNode>(ConstBinOp);
7663
if (!ConstBinOpNode || ConstBinOpNode->isOpaque())
7664
return SDValue();
7665
7666
SDLoc DL(Sel);
7667
EVT VT = BO->getValueType(0);
7668
7669
SDValue NewConstOps[2] = {ConstSelOp, ConstBinOp};
7670
if (SelOpNo == 1)
7671
std::swap(NewConstOps[0], NewConstOps[1]);
7672
7673
SDValue NewConstOp =
7674
DAG.FoldConstantArithmetic(BO->getOpcode(), DL, VT, NewConstOps);
7675
if (!NewConstOp)
7676
return SDValue();
7677
7678
const APInt &NewConstAPInt = NewConstOp->getAsAPIntVal();
7679
if (!NewConstAPInt.isZero() && !NewConstAPInt.isAllOnes())
7680
return SDValue();
7681
7682
SDValue OtherSelOp = Sel->getOperand(OtherSelOpNo);
7683
SDValue NewNonConstOps[2] = {OtherSelOp, ConstBinOp};
7684
if (SelOpNo == 1)
7685
std::swap(NewNonConstOps[0], NewNonConstOps[1]);
7686
SDValue NewNonConstOp = DAG.getNode(BO->getOpcode(), DL, VT, NewNonConstOps);
7687
7688
SDValue NewT = (ConstSelOpNo == 1) ? NewConstOp : NewNonConstOp;
7689
SDValue NewF = (ConstSelOpNo == 1) ? NewNonConstOp : NewConstOp;
7690
return DAG.getSelect(DL, VT, Sel.getOperand(0), NewT, NewF);
7691
}
7692
7693
SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7694
SDValue CondV = Op.getOperand(0);
7695
SDValue TrueV = Op.getOperand(1);
7696
SDValue FalseV = Op.getOperand(2);
7697
SDLoc DL(Op);
7698
MVT VT = Op.getSimpleValueType();
7699
MVT XLenVT = Subtarget.getXLenVT();
7700
7701
// Lower vector SELECTs to VSELECTs by splatting the condition.
7702
if (VT.isVector()) {
7703
MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
7704
SDValue CondSplat = DAG.getSplat(SplatCondVT, DL, CondV);
7705
return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
7706
}
7707
7708
// When Zicond or XVentanaCondOps is present, emit CZERO_EQZ and CZERO_NEZ
7709
// nodes to implement the SELECT. Performing the lowering here allows for
7710
// greater control over when CZERO_{EQZ/NEZ} are used vs another branchless
7711
// sequence or RISCVISD::SELECT_CC node (branch-based select).
7712
if ((Subtarget.hasStdExtZicond() || Subtarget.hasVendorXVentanaCondOps()) &&
7713
VT.isScalarInteger()) {
7714
// (select c, t, 0) -> (czero_eqz t, c)
7715
if (isNullConstant(FalseV))
7716
return DAG.getNode(RISCVISD::CZERO_EQZ, DL, VT, TrueV, CondV);
7717
// (select c, 0, f) -> (czero_nez f, c)
7718
if (isNullConstant(TrueV))
7719
return DAG.getNode(RISCVISD::CZERO_NEZ, DL, VT, FalseV, CondV);
7720
7721
// (select c, (and f, x), f) -> (or (and f, x), (czero_nez f, c))
7722
if (TrueV.getOpcode() == ISD::AND &&
7723
(TrueV.getOperand(0) == FalseV || TrueV.getOperand(1) == FalseV))
7724
return DAG.getNode(
7725
ISD::OR, DL, VT, TrueV,
7726
DAG.getNode(RISCVISD::CZERO_NEZ, DL, VT, FalseV, CondV));
7727
// (select c, t, (and t, x)) -> (or (czero_eqz t, c), (and t, x))
7728
if (FalseV.getOpcode() == ISD::AND &&
7729
(FalseV.getOperand(0) == TrueV || FalseV.getOperand(1) == TrueV))
7730
return DAG.getNode(
7731
ISD::OR, DL, VT, FalseV,
7732
DAG.getNode(RISCVISD::CZERO_EQZ, DL, VT, TrueV, CondV));
7733
7734
// Try some other optimizations before falling back to generic lowering.
7735
if (SDValue V = combineSelectToBinOp(Op.getNode(), DAG, Subtarget))
7736
return V;
7737
7738
// (select c, c1, c2) -> (add (czero_nez c2 - c1, c), c1)
7739
// (select c, c1, c2) -> (add (czero_eqz c1 - c2, c), c2)
7740
if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV)) {
7741
const APInt &TrueVal = TrueV->getAsAPIntVal();
7742
const APInt &FalseVal = FalseV->getAsAPIntVal();
7743
const int TrueValCost = RISCVMatInt::getIntMatCost(
7744
TrueVal, Subtarget.getXLen(), Subtarget, /*CompressionCost=*/true);
7745
const int FalseValCost = RISCVMatInt::getIntMatCost(
7746
FalseVal, Subtarget.getXLen(), Subtarget, /*CompressionCost=*/true);
7747
bool IsCZERO_NEZ = TrueValCost <= FalseValCost;
7748
SDValue LHSVal = DAG.getConstant(
7749
IsCZERO_NEZ ? FalseVal - TrueVal : TrueVal - FalseVal, DL, VT);
7750
SDValue RHSVal =
7751
DAG.getConstant(IsCZERO_NEZ ? TrueVal : FalseVal, DL, VT);
7752
SDValue CMOV =
7753
DAG.getNode(IsCZERO_NEZ ? RISCVISD::CZERO_NEZ : RISCVISD::CZERO_EQZ,
7754
DL, VT, LHSVal, CondV);
7755
return DAG.getNode(ISD::ADD, DL, VT, CMOV, RHSVal);
7756
}
7757
7758
// (select c, t, f) -> (or (czero_eqz t, c), (czero_nez f, c))
7759
// Unless we have the short forward branch optimization.
7760
if (!Subtarget.hasConditionalMoveFusion())
7761
return DAG.getNode(
7762
ISD::OR, DL, VT,
7763
DAG.getNode(RISCVISD::CZERO_EQZ, DL, VT, TrueV, CondV),
7764
DAG.getNode(RISCVISD::CZERO_NEZ, DL, VT, FalseV, CondV));
7765
}
7766
7767
if (SDValue V = combineSelectToBinOp(Op.getNode(), DAG, Subtarget))
7768
return V;
7769
7770
if (Op.hasOneUse()) {
7771
unsigned UseOpc = Op->use_begin()->getOpcode();
7772
if (isBinOp(UseOpc) && DAG.isSafeToSpeculativelyExecute(UseOpc)) {
7773
SDNode *BinOp = *Op->use_begin();
7774
if (SDValue NewSel = foldBinOpIntoSelectIfProfitable(*Op->use_begin(),
7775
DAG, Subtarget)) {
7776
DAG.ReplaceAllUsesWith(BinOp, &NewSel);
7777
// Opcode check is necessary because foldBinOpIntoSelectIfProfitable
7778
// may return a constant node and cause crash in lowerSELECT.
7779
if (NewSel.getOpcode() == ISD::SELECT)
7780
return lowerSELECT(NewSel, DAG);
7781
return NewSel;
7782
}
7783
}
7784
}
7785
7786
// (select cc, 1.0, 0.0) -> (sint_to_fp (zext cc))
7787
// (select cc, 0.0, 1.0) -> (sint_to_fp (zext (xor cc, 1)))
7788
const ConstantFPSDNode *FPTV = dyn_cast<ConstantFPSDNode>(TrueV);
7789
const ConstantFPSDNode *FPFV = dyn_cast<ConstantFPSDNode>(FalseV);
7790
if (FPTV && FPFV) {
7791
if (FPTV->isExactlyValue(1.0) && FPFV->isExactlyValue(0.0))
7792
return DAG.getNode(ISD::SINT_TO_FP, DL, VT, CondV);
7793
if (FPTV->isExactlyValue(0.0) && FPFV->isExactlyValue(1.0)) {
7794
SDValue XOR = DAG.getNode(ISD::XOR, DL, XLenVT, CondV,
7795
DAG.getConstant(1, DL, XLenVT));
7796
return DAG.getNode(ISD::SINT_TO_FP, DL, VT, XOR);
7797
}
7798
}
7799
7800
// If the condition is not an integer SETCC which operates on XLenVT, we need
7801
// to emit a RISCVISD::SELECT_CC comparing the condition to zero. i.e.:
7802
// (select condv, truev, falsev)
7803
// -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
7804
if (CondV.getOpcode() != ISD::SETCC ||
7805
CondV.getOperand(0).getSimpleValueType() != XLenVT) {
7806
SDValue Zero = DAG.getConstant(0, DL, XLenVT);
7807
SDValue SetNE = DAG.getCondCode(ISD::SETNE);
7808
7809
SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
7810
7811
return DAG.getNode(RISCVISD::SELECT_CC, DL, VT, Ops);
7812
}
7813
7814
// If the CondV is the output of a SETCC node which operates on XLenVT inputs,
7815
// then merge the SETCC node into the lowered RISCVISD::SELECT_CC to take
7816
// advantage of the integer compare+branch instructions. i.e.:
7817
// (select (setcc lhs, rhs, cc), truev, falsev)
7818
// -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
7819
SDValue LHS = CondV.getOperand(0);
7820
SDValue RHS = CondV.getOperand(1);
7821
ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
7822
7823
// Special case for a select of 2 constants that have a diffence of 1.
7824
// Normally this is done by DAGCombine, but if the select is introduced by
7825
// type legalization or op legalization, we miss it. Restricting to SETLT
7826
// case for now because that is what signed saturating add/sub need.
7827
// FIXME: We don't need the condition to be SETLT or even a SETCC,
7828
// but we would probably want to swap the true/false values if the condition
7829
// is SETGE/SETLE to avoid an XORI.
7830
if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
7831
CCVal == ISD::SETLT) {
7832
const APInt &TrueVal = TrueV->getAsAPIntVal();
7833
const APInt &FalseVal = FalseV->getAsAPIntVal();
7834
if (TrueVal - 1 == FalseVal)
7835
return DAG.getNode(ISD::ADD, DL, VT, CondV, FalseV);
7836
if (TrueVal + 1 == FalseVal)
7837
return DAG.getNode(ISD::SUB, DL, VT, FalseV, CondV);
7838
}
7839
7840
translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
7841
// 1 < x ? x : 1 -> 0 < x ? x : 1
7842
if (isOneConstant(LHS) && (CCVal == ISD::SETLT || CCVal == ISD::SETULT) &&
7843
RHS == TrueV && LHS == FalseV) {
7844
LHS = DAG.getConstant(0, DL, VT);
7845
// 0 <u x is the same as x != 0.
7846
if (CCVal == ISD::SETULT) {
7847
std::swap(LHS, RHS);
7848
CCVal = ISD::SETNE;
7849
}
7850
}
7851
7852
// x <s -1 ? x : -1 -> x <s 0 ? x : -1
7853
if (isAllOnesConstant(RHS) && CCVal == ISD::SETLT && LHS == TrueV &&
7854
RHS == FalseV) {
7855
RHS = DAG.getConstant(0, DL, VT);
7856
}
7857
7858
SDValue TargetCC = DAG.getCondCode(CCVal);
7859
7860
if (isa<ConstantSDNode>(TrueV) && !isa<ConstantSDNode>(FalseV)) {
7861
// (select (setcc lhs, rhs, CC), constant, falsev)
7862
// -> (select (setcc lhs, rhs, InverseCC), falsev, constant)
7863
std::swap(TrueV, FalseV);
7864
TargetCC = DAG.getCondCode(ISD::getSetCCInverse(CCVal, LHS.getValueType()));
7865
}
7866
7867
SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
7868
return DAG.getNode(RISCVISD::SELECT_CC, DL, VT, Ops);
7869
}
7870
7871
SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
7872
SDValue CondV = Op.getOperand(1);
7873
SDLoc DL(Op);
7874
MVT XLenVT = Subtarget.getXLenVT();
7875
7876
if (CondV.getOpcode() == ISD::SETCC &&
7877
CondV.getOperand(0).getValueType() == XLenVT) {
7878
SDValue LHS = CondV.getOperand(0);
7879
SDValue RHS = CondV.getOperand(1);
7880
ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
7881
7882
translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
7883
7884
SDValue TargetCC = DAG.getCondCode(CCVal);
7885
return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
7886
LHS, RHS, TargetCC, Op.getOperand(2));
7887
}
7888
7889
return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
7890
CondV, DAG.getConstant(0, DL, XLenVT),
7891
DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
7892
}
7893
7894
SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
7895
MachineFunction &MF = DAG.getMachineFunction();
7896
RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
7897
7898
SDLoc DL(Op);
7899
SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7900
getPointerTy(MF.getDataLayout()));
7901
7902
// vastart just stores the address of the VarArgsFrameIndex slot into the
7903
// memory location argument.
7904
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7905
return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
7906
MachinePointerInfo(SV));
7907
}
7908
7909
SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
7910
SelectionDAG &DAG) const {
7911
const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
7912
MachineFunction &MF = DAG.getMachineFunction();
7913
MachineFrameInfo &MFI = MF.getFrameInfo();
7914
MFI.setFrameAddressIsTaken(true);
7915
Register FrameReg = RI.getFrameRegister(MF);
7916
int XLenInBytes = Subtarget.getXLen() / 8;
7917
7918
EVT VT = Op.getValueType();
7919
SDLoc DL(Op);
7920
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
7921
unsigned Depth = Op.getConstantOperandVal(0);
7922
while (Depth--) {
7923
int Offset = -(XLenInBytes * 2);
7924
SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
7925
DAG.getIntPtrConstant(Offset, DL));
7926
FrameAddr =
7927
DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
7928
}
7929
return FrameAddr;
7930
}
7931
7932
SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
7933
SelectionDAG &DAG) const {
7934
const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
7935
MachineFunction &MF = DAG.getMachineFunction();
7936
MachineFrameInfo &MFI = MF.getFrameInfo();
7937
MFI.setReturnAddressIsTaken(true);
7938
MVT XLenVT = Subtarget.getXLenVT();
7939
int XLenInBytes = Subtarget.getXLen() / 8;
7940
7941
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
7942
return SDValue();
7943
7944
EVT VT = Op.getValueType();
7945
SDLoc DL(Op);
7946
unsigned Depth = Op.getConstantOperandVal(0);
7947
if (Depth) {
7948
int Off = -XLenInBytes;
7949
SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
7950
SDValue Offset = DAG.getConstant(Off, DL, VT);
7951
return DAG.getLoad(VT, DL, DAG.getEntryNode(),
7952
DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
7953
MachinePointerInfo());
7954
}
7955
7956
// Return the value of the return address register, marking it an implicit
7957
// live-in.
7958
Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
7959
return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
7960
}
7961
7962
SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
7963
SelectionDAG &DAG) const {
7964
SDLoc DL(Op);
7965
SDValue Lo = Op.getOperand(0);
7966
SDValue Hi = Op.getOperand(1);
7967
SDValue Shamt = Op.getOperand(2);
7968
EVT VT = Lo.getValueType();
7969
7970
// if Shamt-XLEN < 0: // Shamt < XLEN
7971
// Lo = Lo << Shamt
7972
// Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
7973
// else:
7974
// Lo = 0
7975
// Hi = Lo << (Shamt-XLEN)
7976
7977
SDValue Zero = DAG.getConstant(0, DL, VT);
7978
SDValue One = DAG.getConstant(1, DL, VT);
7979
SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
7980
SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
7981
SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
7982
SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
7983
7984
SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
7985
SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
7986
SDValue ShiftRightLo =
7987
DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
7988
SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
7989
SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
7990
SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
7991
7992
SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
7993
7994
Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
7995
Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
7996
7997
SDValue Parts[2] = {Lo, Hi};
7998
return DAG.getMergeValues(Parts, DL);
7999
}
8000
8001
SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
8002
bool IsSRA) const {
8003
SDLoc DL(Op);
8004
SDValue Lo = Op.getOperand(0);
8005
SDValue Hi = Op.getOperand(1);
8006
SDValue Shamt = Op.getOperand(2);
8007
EVT VT = Lo.getValueType();
8008
8009
// SRA expansion:
8010
// if Shamt-XLEN < 0: // Shamt < XLEN
8011
// Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - ShAmt))
8012
// Hi = Hi >>s Shamt
8013
// else:
8014
// Lo = Hi >>s (Shamt-XLEN);
8015
// Hi = Hi >>s (XLEN-1)
8016
//
8017
// SRL expansion:
8018
// if Shamt-XLEN < 0: // Shamt < XLEN
8019
// Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - ShAmt))
8020
// Hi = Hi >>u Shamt
8021
// else:
8022
// Lo = Hi >>u (Shamt-XLEN);
8023
// Hi = 0;
8024
8025
unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
8026
8027
SDValue Zero = DAG.getConstant(0, DL, VT);
8028
SDValue One = DAG.getConstant(1, DL, VT);
8029
SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
8030
SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
8031
SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
8032
SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
8033
8034
SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
8035
SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
8036
SDValue ShiftLeftHi =
8037
DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
8038
SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
8039
SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
8040
SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
8041
SDValue HiFalse =
8042
IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
8043
8044
SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
8045
8046
Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
8047
Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
8048
8049
SDValue Parts[2] = {Lo, Hi};
8050
return DAG.getMergeValues(Parts, DL);
8051
}
8052
8053
// Lower splats of i1 types to SETCC. For each mask vector type, we have a
8054
// legal equivalently-sized i8 type, so we can use that as a go-between.
8055
SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
8056
SelectionDAG &DAG) const {
8057
SDLoc DL(Op);
8058
MVT VT = Op.getSimpleValueType();
8059
SDValue SplatVal = Op.getOperand(0);
8060
// All-zeros or all-ones splats are handled specially.
8061
if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
8062
SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
8063
return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
8064
}
8065
if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
8066
SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
8067
return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
8068
}
8069
MVT InterVT = VT.changeVectorElementType(MVT::i8);
8070
SplatVal = DAG.getNode(ISD::AND, DL, SplatVal.getValueType(), SplatVal,
8071
DAG.getConstant(1, DL, SplatVal.getValueType()));
8072
SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
8073
SDValue Zero = DAG.getConstant(0, DL, InterVT);
8074
return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
8075
}
8076
8077
// Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
8078
// illegal (currently only vXi64 RV32).
8079
// FIXME: We could also catch non-constant sign-extended i32 values and lower
8080
// them to VMV_V_X_VL.
8081
SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
8082
SelectionDAG &DAG) const {
8083
SDLoc DL(Op);
8084
MVT VecVT = Op.getSimpleValueType();
8085
assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
8086
"Unexpected SPLAT_VECTOR_PARTS lowering");
8087
8088
assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
8089
SDValue Lo = Op.getOperand(0);
8090
SDValue Hi = Op.getOperand(1);
8091
8092
MVT ContainerVT = VecVT;
8093
if (VecVT.isFixedLengthVector())
8094
ContainerVT = getContainerForFixedLengthVector(VecVT);
8095
8096
auto VL = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).second;
8097
8098
SDValue Res =
8099
splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
8100
8101
if (VecVT.isFixedLengthVector())
8102
Res = convertFromScalableVector(VecVT, Res, DAG, Subtarget);
8103
8104
return Res;
8105
}
8106
8107
// Custom-lower extensions from mask vectors by using a vselect either with 1
8108
// for zero/any-extension or -1 for sign-extension:
8109
// (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
8110
// Note that any-extension is lowered identically to zero-extension.
8111
SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
8112
int64_t ExtTrueVal) const {
8113
SDLoc DL(Op);
8114
MVT VecVT = Op.getSimpleValueType();
8115
SDValue Src = Op.getOperand(0);
8116
// Only custom-lower extensions from mask types
8117
assert(Src.getValueType().isVector() &&
8118
Src.getValueType().getVectorElementType() == MVT::i1);
8119
8120
if (VecVT.isScalableVector()) {
8121
SDValue SplatZero = DAG.getConstant(0, DL, VecVT);
8122
SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT);
8123
return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
8124
}
8125
8126
MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
8127
MVT I1ContainerVT =
8128
MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
8129
8130
SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
8131
8132
SDValue VL = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).second;
8133
8134
MVT XLenVT = Subtarget.getXLenVT();
8135
SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
8136
SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
8137
8138
SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
8139
DAG.getUNDEF(ContainerVT), SplatZero, VL);
8140
SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
8141
DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
8142
SDValue Select =
8143
DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, CC, SplatTrueVal,
8144
SplatZero, DAG.getUNDEF(ContainerVT), VL);
8145
8146
return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
8147
}
8148
8149
SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
8150
SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
8151
MVT ExtVT = Op.getSimpleValueType();
8152
// Only custom-lower extensions from fixed-length vector types.
8153
if (!ExtVT.isFixedLengthVector())
8154
return Op;
8155
MVT VT = Op.getOperand(0).getSimpleValueType();
8156
// Grab the canonical container type for the extended type. Infer the smaller
8157
// type from that to ensure the same number of vector elements, as we know
8158
// the LMUL will be sufficient to hold the smaller type.
8159
MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
8160
// Get the extended container type manually to ensure the same number of
8161
// vector elements between source and dest.
8162
MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
8163
ContainerExtVT.getVectorElementCount());
8164
8165
SDValue Op1 =
8166
convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
8167
8168
SDLoc DL(Op);
8169
auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
8170
8171
SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
8172
8173
return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
8174
}
8175
8176
// Custom-lower truncations from vectors to mask vectors by using a mask and a
8177
// setcc operation:
8178
// (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
8179
SDValue RISCVTargetLowering::lowerVectorMaskTruncLike(SDValue Op,
8180
SelectionDAG &DAG) const {
8181
bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE;
8182
SDLoc DL(Op);
8183
EVT MaskVT = Op.getValueType();
8184
// Only expect to custom-lower truncations to mask types
8185
assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
8186
"Unexpected type for vector mask lowering");
8187
SDValue Src = Op.getOperand(0);
8188
MVT VecVT = Src.getSimpleValueType();
8189
SDValue Mask, VL;
8190
if (IsVPTrunc) {
8191
Mask = Op.getOperand(1);
8192
VL = Op.getOperand(2);
8193
}
8194
// If this is a fixed vector, we need to convert it to a scalable vector.
8195
MVT ContainerVT = VecVT;
8196
8197
if (VecVT.isFixedLengthVector()) {
8198
ContainerVT = getContainerForFixedLengthVector(VecVT);
8199
Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
8200
if (IsVPTrunc) {
8201
MVT MaskContainerVT =
8202
getContainerForFixedLengthVector(Mask.getSimpleValueType());
8203
Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget);
8204
}
8205
}
8206
8207
if (!IsVPTrunc) {
8208
std::tie(Mask, VL) =
8209
getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
8210
}
8211
8212
SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
8213
SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
8214
8215
SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
8216
DAG.getUNDEF(ContainerVT), SplatOne, VL);
8217
SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
8218
DAG.getUNDEF(ContainerVT), SplatZero, VL);
8219
8220
MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
8221
SDValue Trunc = DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne,
8222
DAG.getUNDEF(ContainerVT), Mask, VL);
8223
Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT,
8224
{Trunc, SplatZero, DAG.getCondCode(ISD::SETNE),
8225
DAG.getUNDEF(MaskContainerVT), Mask, VL});
8226
if (MaskVT.isFixedLengthVector())
8227
Trunc = convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
8228
return Trunc;
8229
}
8230
8231
SDValue RISCVTargetLowering::lowerVectorTruncLike(SDValue Op,
8232
SelectionDAG &DAG) const {
8233
bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE;
8234
SDLoc DL(Op);
8235
8236
MVT VT = Op.getSimpleValueType();
8237
// Only custom-lower vector truncates
8238
assert(VT.isVector() && "Unexpected type for vector truncate lowering");
8239
8240
// Truncates to mask types are handled differently
8241
if (VT.getVectorElementType() == MVT::i1)
8242
return lowerVectorMaskTruncLike(Op, DAG);
8243
8244
// RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
8245
// truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
8246
// truncate by one power of two at a time.
8247
MVT DstEltVT = VT.getVectorElementType();
8248
8249
SDValue Src = Op.getOperand(0);
8250
MVT SrcVT = Src.getSimpleValueType();
8251
MVT SrcEltVT = SrcVT.getVectorElementType();
8252
8253
assert(DstEltVT.bitsLT(SrcEltVT) && isPowerOf2_64(DstEltVT.getSizeInBits()) &&
8254
isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
8255
"Unexpected vector truncate lowering");
8256
8257
MVT ContainerVT = SrcVT;
8258
SDValue Mask, VL;
8259
if (IsVPTrunc) {
8260
Mask = Op.getOperand(1);
8261
VL = Op.getOperand(2);
8262
}
8263
if (SrcVT.isFixedLengthVector()) {
8264
ContainerVT = getContainerForFixedLengthVector(SrcVT);
8265
Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
8266
if (IsVPTrunc) {
8267
MVT MaskVT = getMaskTypeFor(ContainerVT);
8268
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
8269
}
8270
}
8271
8272
SDValue Result = Src;
8273
if (!IsVPTrunc) {
8274
std::tie(Mask, VL) =
8275
getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
8276
}
8277
8278
LLVMContext &Context = *DAG.getContext();
8279
const ElementCount Count = ContainerVT.getVectorElementCount();
8280
do {
8281
SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
8282
EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
8283
Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
8284
Mask, VL);
8285
} while (SrcEltVT != DstEltVT);
8286
8287
if (SrcVT.isFixedLengthVector())
8288
Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
8289
8290
return Result;
8291
}
8292
8293
SDValue
8294
RISCVTargetLowering::lowerStrictFPExtendOrRoundLike(SDValue Op,
8295
SelectionDAG &DAG) const {
8296
SDLoc DL(Op);
8297
SDValue Chain = Op.getOperand(0);
8298
SDValue Src = Op.getOperand(1);
8299
MVT VT = Op.getSimpleValueType();
8300
MVT SrcVT = Src.getSimpleValueType();
8301
MVT ContainerVT = VT;
8302
if (VT.isFixedLengthVector()) {
8303
MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
8304
ContainerVT =
8305
SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
8306
Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
8307
}
8308
8309
auto [Mask, VL] = getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
8310
8311
// RVV can only widen/truncate fp to types double/half the size as the source.
8312
if ((VT.getVectorElementType() == MVT::f64 &&
8313
(SrcVT.getVectorElementType() == MVT::f16 ||
8314
SrcVT.getVectorElementType() == MVT::bf16)) ||
8315
((VT.getVectorElementType() == MVT::f16 ||
8316
VT.getVectorElementType() == MVT::bf16) &&
8317
SrcVT.getVectorElementType() == MVT::f64)) {
8318
// For double rounding, the intermediate rounding should be round-to-odd.
8319
unsigned InterConvOpc = Op.getOpcode() == ISD::STRICT_FP_EXTEND
8320
? RISCVISD::STRICT_FP_EXTEND_VL
8321
: RISCVISD::STRICT_VFNCVT_ROD_VL;
8322
MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
8323
Src = DAG.getNode(InterConvOpc, DL, DAG.getVTList(InterVT, MVT::Other),
8324
Chain, Src, Mask, VL);
8325
Chain = Src.getValue(1);
8326
}
8327
8328
unsigned ConvOpc = Op.getOpcode() == ISD::STRICT_FP_EXTEND
8329
? RISCVISD::STRICT_FP_EXTEND_VL
8330
: RISCVISD::STRICT_FP_ROUND_VL;
8331
SDValue Res = DAG.getNode(ConvOpc, DL, DAG.getVTList(ContainerVT, MVT::Other),
8332
Chain, Src, Mask, VL);
8333
if (VT.isFixedLengthVector()) {
8334
// StrictFP operations have two result values. Their lowered result should
8335
// have same result count.
8336
SDValue SubVec = convertFromScalableVector(VT, Res, DAG, Subtarget);
8337
Res = DAG.getMergeValues({SubVec, Res.getValue(1)}, DL);
8338
}
8339
return Res;
8340
}
8341
8342
SDValue
8343
RISCVTargetLowering::lowerVectorFPExtendOrRoundLike(SDValue Op,
8344
SelectionDAG &DAG) const {
8345
bool IsVP =
8346
Op.getOpcode() == ISD::VP_FP_ROUND || Op.getOpcode() == ISD::VP_FP_EXTEND;
8347
bool IsExtend =
8348
Op.getOpcode() == ISD::VP_FP_EXTEND || Op.getOpcode() == ISD::FP_EXTEND;
8349
// RVV can only do truncate fp to types half the size as the source. We
8350
// custom-lower f64->f16 rounds via RVV's round-to-odd float
8351
// conversion instruction.
8352
SDLoc DL(Op);
8353
MVT VT = Op.getSimpleValueType();
8354
8355
assert(VT.isVector() && "Unexpected type for vector truncate lowering");
8356
8357
SDValue Src = Op.getOperand(0);
8358
MVT SrcVT = Src.getSimpleValueType();
8359
8360
bool IsDirectExtend =
8361
IsExtend && (VT.getVectorElementType() != MVT::f64 ||
8362
(SrcVT.getVectorElementType() != MVT::f16 &&
8363
SrcVT.getVectorElementType() != MVT::bf16));
8364
bool IsDirectTrunc = !IsExtend && ((VT.getVectorElementType() != MVT::f16 &&
8365
VT.getVectorElementType() != MVT::bf16) ||
8366
SrcVT.getVectorElementType() != MVT::f64);
8367
8368
bool IsDirectConv = IsDirectExtend || IsDirectTrunc;
8369
8370
// Prepare any fixed-length vector operands.
8371
MVT ContainerVT = VT;
8372
SDValue Mask, VL;
8373
if (IsVP) {
8374
Mask = Op.getOperand(1);
8375
VL = Op.getOperand(2);
8376
}
8377
if (VT.isFixedLengthVector()) {
8378
MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
8379
ContainerVT =
8380
SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
8381
Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
8382
if (IsVP) {
8383
MVT MaskVT = getMaskTypeFor(ContainerVT);
8384
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
8385
}
8386
}
8387
8388
if (!IsVP)
8389
std::tie(Mask, VL) =
8390
getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
8391
8392
unsigned ConvOpc = IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::FP_ROUND_VL;
8393
8394
if (IsDirectConv) {
8395
Src = DAG.getNode(ConvOpc, DL, ContainerVT, Src, Mask, VL);
8396
if (VT.isFixedLengthVector())
8397
Src = convertFromScalableVector(VT, Src, DAG, Subtarget);
8398
return Src;
8399
}
8400
8401
unsigned InterConvOpc =
8402
IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::VFNCVT_ROD_VL;
8403
8404
MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
8405
SDValue IntermediateConv =
8406
DAG.getNode(InterConvOpc, DL, InterVT, Src, Mask, VL);
8407
SDValue Result =
8408
DAG.getNode(ConvOpc, DL, ContainerVT, IntermediateConv, Mask, VL);
8409
if (VT.isFixedLengthVector())
8410
return convertFromScalableVector(VT, Result, DAG, Subtarget);
8411
return Result;
8412
}
8413
8414
// Given a scalable vector type and an index into it, returns the type for the
8415
// smallest subvector that the index fits in. This can be used to reduce LMUL
8416
// for operations like vslidedown.
8417
//
8418
// E.g. With Zvl128b, index 3 in a nxv4i32 fits within the first nxv2i32.
8419
static std::optional<MVT>
8420
getSmallestVTForIndex(MVT VecVT, unsigned MaxIdx, SDLoc DL, SelectionDAG &DAG,
8421
const RISCVSubtarget &Subtarget) {
8422
assert(VecVT.isScalableVector());
8423
const unsigned EltSize = VecVT.getScalarSizeInBits();
8424
const unsigned VectorBitsMin = Subtarget.getRealMinVLen();
8425
const unsigned MinVLMAX = VectorBitsMin / EltSize;
8426
MVT SmallerVT;
8427
if (MaxIdx < MinVLMAX)
8428
SmallerVT = getLMUL1VT(VecVT);
8429
else if (MaxIdx < MinVLMAX * 2)
8430
SmallerVT = getLMUL1VT(VecVT).getDoubleNumVectorElementsVT();
8431
else if (MaxIdx < MinVLMAX * 4)
8432
SmallerVT = getLMUL1VT(VecVT)
8433
.getDoubleNumVectorElementsVT()
8434
.getDoubleNumVectorElementsVT();
8435
if (!SmallerVT.isValid() || !VecVT.bitsGT(SmallerVT))
8436
return std::nullopt;
8437
return SmallerVT;
8438
}
8439
8440
// Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
8441
// first position of a vector, and that vector is slid up to the insert index.
8442
// By limiting the active vector length to index+1 and merging with the
8443
// original vector (with an undisturbed tail policy for elements >= VL), we
8444
// achieve the desired result of leaving all elements untouched except the one
8445
// at VL-1, which is replaced with the desired value.
8446
SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
8447
SelectionDAG &DAG) const {
8448
SDLoc DL(Op);
8449
MVT VecVT = Op.getSimpleValueType();
8450
SDValue Vec = Op.getOperand(0);
8451
SDValue Val = Op.getOperand(1);
8452
SDValue Idx = Op.getOperand(2);
8453
8454
if (VecVT.getVectorElementType() == MVT::i1) {
8455
// FIXME: For now we just promote to an i8 vector and insert into that,
8456
// but this is probably not optimal.
8457
MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
8458
Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
8459
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
8460
return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
8461
}
8462
8463
MVT ContainerVT = VecVT;
8464
// If the operand is a fixed-length vector, convert to a scalable one.
8465
if (VecVT.isFixedLengthVector()) {
8466
ContainerVT = getContainerForFixedLengthVector(VecVT);
8467
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
8468
}
8469
8470
// If we know the index we're going to insert at, we can shrink Vec so that
8471
// we're performing the scalar inserts and slideup on a smaller LMUL.
8472
MVT OrigContainerVT = ContainerVT;
8473
SDValue OrigVec = Vec;
8474
SDValue AlignedIdx;
8475
if (auto *IdxC = dyn_cast<ConstantSDNode>(Idx)) {
8476
const unsigned OrigIdx = IdxC->getZExtValue();
8477
// Do we know an upper bound on LMUL?
8478
if (auto ShrunkVT = getSmallestVTForIndex(ContainerVT, OrigIdx,
8479
DL, DAG, Subtarget)) {
8480
ContainerVT = *ShrunkVT;
8481
AlignedIdx = DAG.getVectorIdxConstant(0, DL);
8482
}
8483
8484
// If we're compiling for an exact VLEN value, we can always perform
8485
// the insert in m1 as we can determine the register corresponding to
8486
// the index in the register group.
8487
const MVT M1VT = getLMUL1VT(ContainerVT);
8488
if (auto VLEN = Subtarget.getRealVLen();
8489
VLEN && ContainerVT.bitsGT(M1VT)) {
8490
EVT ElemVT = VecVT.getVectorElementType();
8491
unsigned ElemsPerVReg = *VLEN / ElemVT.getFixedSizeInBits();
8492
unsigned RemIdx = OrigIdx % ElemsPerVReg;
8493
unsigned SubRegIdx = OrigIdx / ElemsPerVReg;
8494
unsigned ExtractIdx =
8495
SubRegIdx * M1VT.getVectorElementCount().getKnownMinValue();
8496
AlignedIdx = DAG.getVectorIdxConstant(ExtractIdx, DL);
8497
Idx = DAG.getVectorIdxConstant(RemIdx, DL);
8498
ContainerVT = M1VT;
8499
}
8500
8501
if (AlignedIdx)
8502
Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ContainerVT, Vec,
8503
AlignedIdx);
8504
}
8505
8506
MVT XLenVT = Subtarget.getXLenVT();
8507
8508
bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
8509
// Even i64-element vectors on RV32 can be lowered without scalar
8510
// legalization if the most-significant 32 bits of the value are not affected
8511
// by the sign-extension of the lower 32 bits.
8512
// TODO: We could also catch sign extensions of a 32-bit value.
8513
if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
8514
const auto *CVal = cast<ConstantSDNode>(Val);
8515
if (isInt<32>(CVal->getSExtValue())) {
8516
IsLegalInsert = true;
8517
Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
8518
}
8519
}
8520
8521
auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
8522
8523
SDValue ValInVec;
8524
8525
if (IsLegalInsert) {
8526
unsigned Opc =
8527
VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
8528
if (isNullConstant(Idx)) {
8529
if (!VecVT.isFloatingPoint())
8530
Val = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Val);
8531
Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
8532
8533
if (AlignedIdx)
8534
Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, OrigContainerVT, OrigVec,
8535
Vec, AlignedIdx);
8536
if (!VecVT.isFixedLengthVector())
8537
return Vec;
8538
return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
8539
}
8540
ValInVec = lowerScalarInsert(Val, VL, ContainerVT, DL, DAG, Subtarget);
8541
} else {
8542
// On RV32, i64-element vectors must be specially handled to place the
8543
// value at element 0, by using two vslide1down instructions in sequence on
8544
// the i32 split lo/hi value. Use an equivalently-sized i32 vector for
8545
// this.
8546
SDValue ValLo, ValHi;
8547
std::tie(ValLo, ValHi) = DAG.SplitScalar(Val, DL, MVT::i32, MVT::i32);
8548
MVT I32ContainerVT =
8549
MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
8550
SDValue I32Mask =
8551
getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
8552
// Limit the active VL to two.
8553
SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
8554
// If the Idx is 0 we can insert directly into the vector.
8555
if (isNullConstant(Idx)) {
8556
// First slide in the lo value, then the hi in above it. We use slide1down
8557
// to avoid the register group overlap constraint of vslide1up.
8558
ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT,
8559
Vec, Vec, ValLo, I32Mask, InsertI64VL);
8560
// If the source vector is undef don't pass along the tail elements from
8561
// the previous slide1down.
8562
SDValue Tail = Vec.isUndef() ? Vec : ValInVec;
8563
ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT,
8564
Tail, ValInVec, ValHi, I32Mask, InsertI64VL);
8565
// Bitcast back to the right container type.
8566
ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
8567
8568
if (AlignedIdx)
8569
ValInVec =
8570
DAG.getNode(ISD::INSERT_SUBVECTOR, DL, OrigContainerVT, OrigVec,
8571
ValInVec, AlignedIdx);
8572
if (!VecVT.isFixedLengthVector())
8573
return ValInVec;
8574
return convertFromScalableVector(VecVT, ValInVec, DAG, Subtarget);
8575
}
8576
8577
// First slide in the lo value, then the hi in above it. We use slide1down
8578
// to avoid the register group overlap constraint of vslide1up.
8579
ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT,
8580
DAG.getUNDEF(I32ContainerVT),
8581
DAG.getUNDEF(I32ContainerVT), ValLo,
8582
I32Mask, InsertI64VL);
8583
ValInVec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32ContainerVT,
8584
DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
8585
I32Mask, InsertI64VL);
8586
// Bitcast back to the right container type.
8587
ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
8588
}
8589
8590
// Now that the value is in a vector, slide it into position.
8591
SDValue InsertVL =
8592
DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
8593
8594
// Use tail agnostic policy if Idx is the last index of Vec.
8595
unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED;
8596
if (VecVT.isFixedLengthVector() && isa<ConstantSDNode>(Idx) &&
8597
Idx->getAsZExtVal() + 1 == VecVT.getVectorNumElements())
8598
Policy = RISCVII::TAIL_AGNOSTIC;
8599
SDValue Slideup = getVSlideup(DAG, Subtarget, DL, ContainerVT, Vec, ValInVec,
8600
Idx, Mask, InsertVL, Policy);
8601
8602
if (AlignedIdx)
8603
Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, OrigContainerVT, OrigVec,
8604
Slideup, AlignedIdx);
8605
if (!VecVT.isFixedLengthVector())
8606
return Slideup;
8607
return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
8608
}
8609
8610
// Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
8611
// extract the first element: (extractelt (slidedown vec, idx), 0). For integer
8612
// types this is done using VMV_X_S to allow us to glean information about the
8613
// sign bits of the result.
8614
SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
8615
SelectionDAG &DAG) const {
8616
SDLoc DL(Op);
8617
SDValue Idx = Op.getOperand(1);
8618
SDValue Vec = Op.getOperand(0);
8619
EVT EltVT = Op.getValueType();
8620
MVT VecVT = Vec.getSimpleValueType();
8621
MVT XLenVT = Subtarget.getXLenVT();
8622
8623
if (VecVT.getVectorElementType() == MVT::i1) {
8624
// Use vfirst.m to extract the first bit.
8625
if (isNullConstant(Idx)) {
8626
MVT ContainerVT = VecVT;
8627
if (VecVT.isFixedLengthVector()) {
8628
ContainerVT = getContainerForFixedLengthVector(VecVT);
8629
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
8630
}
8631
auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
8632
SDValue Vfirst =
8633
DAG.getNode(RISCVISD::VFIRST_VL, DL, XLenVT, Vec, Mask, VL);
8634
SDValue Res = DAG.getSetCC(DL, XLenVT, Vfirst,
8635
DAG.getConstant(0, DL, XLenVT), ISD::SETEQ);
8636
return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Res);
8637
}
8638
if (VecVT.isFixedLengthVector()) {
8639
unsigned NumElts = VecVT.getVectorNumElements();
8640
if (NumElts >= 8) {
8641
MVT WideEltVT;
8642
unsigned WidenVecLen;
8643
SDValue ExtractElementIdx;
8644
SDValue ExtractBitIdx;
8645
unsigned MaxEEW = Subtarget.getELen();
8646
MVT LargestEltVT = MVT::getIntegerVT(
8647
std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
8648
if (NumElts <= LargestEltVT.getSizeInBits()) {
8649
assert(isPowerOf2_32(NumElts) &&
8650
"the number of elements should be power of 2");
8651
WideEltVT = MVT::getIntegerVT(NumElts);
8652
WidenVecLen = 1;
8653
ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
8654
ExtractBitIdx = Idx;
8655
} else {
8656
WideEltVT = LargestEltVT;
8657
WidenVecLen = NumElts / WideEltVT.getSizeInBits();
8658
// extract element index = index / element width
8659
ExtractElementIdx = DAG.getNode(
8660
ISD::SRL, DL, XLenVT, Idx,
8661
DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
8662
// mask bit index = index % element width
8663
ExtractBitIdx = DAG.getNode(
8664
ISD::AND, DL, XLenVT, Idx,
8665
DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
8666
}
8667
MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
8668
Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
8669
SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
8670
Vec, ExtractElementIdx);
8671
// Extract the bit from GPR.
8672
SDValue ShiftRight =
8673
DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
8674
SDValue Res = DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
8675
DAG.getConstant(1, DL, XLenVT));
8676
return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Res);
8677
}
8678
}
8679
// Otherwise, promote to an i8 vector and extract from that.
8680
MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
8681
Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
8682
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
8683
}
8684
8685
// If this is a fixed vector, we need to convert it to a scalable vector.
8686
MVT ContainerVT = VecVT;
8687
if (VecVT.isFixedLengthVector()) {
8688
ContainerVT = getContainerForFixedLengthVector(VecVT);
8689
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
8690
}
8691
8692
// If we're compiling for an exact VLEN value and we have a known
8693
// constant index, we can always perform the extract in m1 (or
8694
// smaller) as we can determine the register corresponding to
8695
// the index in the register group.
8696
const auto VLen = Subtarget.getRealVLen();
8697
if (auto *IdxC = dyn_cast<ConstantSDNode>(Idx);
8698
IdxC && VLen && VecVT.getSizeInBits().getKnownMinValue() > *VLen) {
8699
MVT M1VT = getLMUL1VT(ContainerVT);
8700
unsigned OrigIdx = IdxC->getZExtValue();
8701
EVT ElemVT = VecVT.getVectorElementType();
8702
unsigned ElemsPerVReg = *VLen / ElemVT.getFixedSizeInBits();
8703
unsigned RemIdx = OrigIdx % ElemsPerVReg;
8704
unsigned SubRegIdx = OrigIdx / ElemsPerVReg;
8705
unsigned ExtractIdx =
8706
SubRegIdx * M1VT.getVectorElementCount().getKnownMinValue();
8707
Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, M1VT, Vec,
8708
DAG.getVectorIdxConstant(ExtractIdx, DL));
8709
Idx = DAG.getVectorIdxConstant(RemIdx, DL);
8710
ContainerVT = M1VT;
8711
}
8712
8713
// Reduce the LMUL of our slidedown and vmv.x.s to the smallest LMUL which
8714
// contains our index.
8715
std::optional<uint64_t> MaxIdx;
8716
if (VecVT.isFixedLengthVector())
8717
MaxIdx = VecVT.getVectorNumElements() - 1;
8718
if (auto *IdxC = dyn_cast<ConstantSDNode>(Idx))
8719
MaxIdx = IdxC->getZExtValue();
8720
if (MaxIdx) {
8721
if (auto SmallerVT =
8722
getSmallestVTForIndex(ContainerVT, *MaxIdx, DL, DAG, Subtarget)) {
8723
ContainerVT = *SmallerVT;
8724
Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ContainerVT, Vec,
8725
DAG.getConstant(0, DL, XLenVT));
8726
}
8727
}
8728
8729
// If after narrowing, the required slide is still greater than LMUL2,
8730
// fallback to generic expansion and go through the stack. This is done
8731
// for a subtle reason: extracting *all* elements out of a vector is
8732
// widely expected to be linear in vector size, but because vslidedown
8733
// is linear in LMUL, performing N extracts using vslidedown becomes
8734
// O(n^2) / (VLEN/ETYPE) work. On the surface, going through the stack
8735
// seems to have the same problem (the store is linear in LMUL), but the
8736
// generic expansion *memoizes* the store, and thus for many extracts of
8737
// the same vector we end up with one store and a bunch of loads.
8738
// TODO: We don't have the same code for insert_vector_elt because we
8739
// have BUILD_VECTOR and handle the degenerate case there. Should we
8740
// consider adding an inverse BUILD_VECTOR node?
8741
MVT LMUL2VT = getLMUL1VT(ContainerVT).getDoubleNumVectorElementsVT();
8742
if (ContainerVT.bitsGT(LMUL2VT) && VecVT.isFixedLengthVector())
8743
return SDValue();
8744
8745
// If the index is 0, the vector is already in the right position.
8746
if (!isNullConstant(Idx)) {
8747
// Use a VL of 1 to avoid processing more elements than we need.
8748
auto [Mask, VL] = getDefaultVLOps(1, ContainerVT, DL, DAG, Subtarget);
8749
Vec = getVSlidedown(DAG, Subtarget, DL, ContainerVT,
8750
DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
8751
}
8752
8753
if (!EltVT.isInteger()) {
8754
// Floating-point extracts are handled in TableGen.
8755
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
8756
DAG.getVectorIdxConstant(0, DL));
8757
}
8758
8759
SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
8760
return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
8761
}
8762
8763
// Some RVV intrinsics may claim that they want an integer operand to be
8764
// promoted or expanded.
8765
static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG,
8766
const RISCVSubtarget &Subtarget) {
8767
assert((Op.getOpcode() == ISD::INTRINSIC_VOID ||
8768
Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
8769
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
8770
"Unexpected opcode");
8771
8772
if (!Subtarget.hasVInstructions())
8773
return SDValue();
8774
8775
bool HasChain = Op.getOpcode() == ISD::INTRINSIC_VOID ||
8776
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
8777
unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
8778
8779
SDLoc DL(Op);
8780
8781
const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
8782
RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
8783
if (!II || !II->hasScalarOperand())
8784
return SDValue();
8785
8786
unsigned SplatOp = II->ScalarOperand + 1 + HasChain;
8787
assert(SplatOp < Op.getNumOperands());
8788
8789
SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
8790
SDValue &ScalarOp = Operands[SplatOp];
8791
MVT OpVT = ScalarOp.getSimpleValueType();
8792
MVT XLenVT = Subtarget.getXLenVT();
8793
8794
// If this isn't a scalar, or its type is XLenVT we're done.
8795
if (!OpVT.isScalarInteger() || OpVT == XLenVT)
8796
return SDValue();
8797
8798
// Simplest case is that the operand needs to be promoted to XLenVT.
8799
if (OpVT.bitsLT(XLenVT)) {
8800
// If the operand is a constant, sign extend to increase our chances
8801
// of being able to use a .vi instruction. ANY_EXTEND would become a
8802
// a zero extend and the simm5 check in isel would fail.
8803
// FIXME: Should we ignore the upper bits in isel instead?
8804
unsigned ExtOpc =
8805
isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
8806
ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
8807
return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
8808
}
8809
8810
// Use the previous operand to get the vXi64 VT. The result might be a mask
8811
// VT for compares. Using the previous operand assumes that the previous
8812
// operand will never have a smaller element size than a scalar operand and
8813
// that a widening operation never uses SEW=64.
8814
// NOTE: If this fails the below assert, we can probably just find the
8815
// element count from any operand or result and use it to construct the VT.
8816
assert(II->ScalarOperand > 0 && "Unexpected splat operand!");
8817
MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
8818
8819
// The more complex case is when the scalar is larger than XLenVT.
8820
assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
8821
VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
8822
8823
// If this is a sign-extended 32-bit value, we can truncate it and rely on the
8824
// instruction to sign-extend since SEW>XLEN.
8825
if (DAG.ComputeNumSignBits(ScalarOp) > 32) {
8826
ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp);
8827
return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
8828
}
8829
8830
switch (IntNo) {
8831
case Intrinsic::riscv_vslide1up:
8832
case Intrinsic::riscv_vslide1down:
8833
case Intrinsic::riscv_vslide1up_mask:
8834
case Intrinsic::riscv_vslide1down_mask: {
8835
// We need to special case these when the scalar is larger than XLen.
8836
unsigned NumOps = Op.getNumOperands();
8837
bool IsMasked = NumOps == 7;
8838
8839
// Convert the vector source to the equivalent nxvXi32 vector.
8840
MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
8841
SDValue Vec = DAG.getBitcast(I32VT, Operands[2]);
8842
SDValue ScalarLo, ScalarHi;
8843
std::tie(ScalarLo, ScalarHi) =
8844
DAG.SplitScalar(ScalarOp, DL, MVT::i32, MVT::i32);
8845
8846
// Double the VL since we halved SEW.
8847
SDValue AVL = getVLOperand(Op);
8848
SDValue I32VL;
8849
8850
// Optimize for constant AVL
8851
if (isa<ConstantSDNode>(AVL)) {
8852
const auto [MinVLMAX, MaxVLMAX] =
8853
RISCVTargetLowering::computeVLMAXBounds(VT, Subtarget);
8854
8855
uint64_t AVLInt = AVL->getAsZExtVal();
8856
if (AVLInt <= MinVLMAX) {
8857
I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT);
8858
} else if (AVLInt >= 2 * MaxVLMAX) {
8859
// Just set vl to VLMAX in this situation
8860
RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT);
8861
SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
8862
unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits());
8863
SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
8864
SDValue SETVLMAX = DAG.getTargetConstant(
8865
Intrinsic::riscv_vsetvlimax, DL, MVT::i32);
8866
I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW,
8867
LMUL);
8868
} else {
8869
// For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl
8870
// is related to the hardware implementation.
8871
// So let the following code handle
8872
}
8873
}
8874
if (!I32VL) {
8875
RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT);
8876
SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
8877
unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits());
8878
SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
8879
SDValue SETVL =
8880
DAG.getTargetConstant(Intrinsic::riscv_vsetvli, DL, MVT::i32);
8881
// Using vsetvli instruction to get actually used length which related to
8882
// the hardware implementation
8883
SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL,
8884
SEW, LMUL);
8885
I32VL =
8886
DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
8887
}
8888
8889
SDValue I32Mask = getAllOnesMask(I32VT, I32VL, DL, DAG);
8890
8891
// Shift the two scalar parts in using SEW=32 slide1up/slide1down
8892
// instructions.
8893
SDValue Passthru;
8894
if (IsMasked)
8895
Passthru = DAG.getUNDEF(I32VT);
8896
else
8897
Passthru = DAG.getBitcast(I32VT, Operands[1]);
8898
8899
if (IntNo == Intrinsic::riscv_vslide1up ||
8900
IntNo == Intrinsic::riscv_vslide1up_mask) {
8901
Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
8902
ScalarHi, I32Mask, I32VL);
8903
Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
8904
ScalarLo, I32Mask, I32VL);
8905
} else {
8906
Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
8907
ScalarLo, I32Mask, I32VL);
8908
Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
8909
ScalarHi, I32Mask, I32VL);
8910
}
8911
8912
// Convert back to nxvXi64.
8913
Vec = DAG.getBitcast(VT, Vec);
8914
8915
if (!IsMasked)
8916
return Vec;
8917
// Apply mask after the operation.
8918
SDValue Mask = Operands[NumOps - 3];
8919
SDValue MaskedOff = Operands[1];
8920
// Assume Policy operand is the last operand.
8921
uint64_t Policy = Operands[NumOps - 1]->getAsZExtVal();
8922
// We don't need to select maskedoff if it's undef.
8923
if (MaskedOff.isUndef())
8924
return Vec;
8925
// TAMU
8926
if (Policy == RISCVII::TAIL_AGNOSTIC)
8927
return DAG.getNode(RISCVISD::VMERGE_VL, DL, VT, Mask, Vec, MaskedOff,
8928
DAG.getUNDEF(VT), AVL);
8929
// TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
8930
// It's fine because vmerge does not care mask policy.
8931
return DAG.getNode(RISCVISD::VMERGE_VL, DL, VT, Mask, Vec, MaskedOff,
8932
MaskedOff, AVL);
8933
}
8934
}
8935
8936
// We need to convert the scalar to a splat vector.
8937
SDValue VL = getVLOperand(Op);
8938
assert(VL.getValueType() == XLenVT);
8939
ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
8940
return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
8941
}
8942
8943
// Lower the llvm.get.vector.length intrinsic to vsetvli. We only support
8944
// scalable vector llvm.get.vector.length for now.
8945
//
8946
// We need to convert from a scalable VF to a vsetvli with VLMax equal to
8947
// (vscale * VF). The vscale and VF are independent of element width. We use
8948
// SEW=8 for the vsetvli because it is the only element width that supports all
8949
// fractional LMULs. The LMUL is choosen so that with SEW=8 the VLMax is
8950
// (vscale * VF). Where vscale is defined as VLEN/RVVBitsPerBlock. The
8951
// InsertVSETVLI pass can fix up the vtype of the vsetvli if a different
8952
// SEW and LMUL are better for the surrounding vector instructions.
8953
static SDValue lowerGetVectorLength(SDNode *N, SelectionDAG &DAG,
8954
const RISCVSubtarget &Subtarget) {
8955
MVT XLenVT = Subtarget.getXLenVT();
8956
8957
// The smallest LMUL is only valid for the smallest element width.
8958
const unsigned ElementWidth = 8;
8959
8960
// Determine the VF that corresponds to LMUL 1 for ElementWidth.
8961
unsigned LMul1VF = RISCV::RVVBitsPerBlock / ElementWidth;
8962
// We don't support VF==1 with ELEN==32.
8963
[[maybe_unused]] unsigned MinVF =
8964
RISCV::RVVBitsPerBlock / Subtarget.getELen();
8965
8966
[[maybe_unused]] unsigned VF = N->getConstantOperandVal(2);
8967
assert(VF >= MinVF && VF <= (LMul1VF * 8) && isPowerOf2_32(VF) &&
8968
"Unexpected VF");
8969
8970
bool Fractional = VF < LMul1VF;
8971
unsigned LMulVal = Fractional ? LMul1VF / VF : VF / LMul1VF;
8972
unsigned VLMUL = (unsigned)RISCVVType::encodeLMUL(LMulVal, Fractional);
8973
unsigned VSEW = RISCVVType::encodeSEW(ElementWidth);
8974
8975
SDLoc DL(N);
8976
8977
SDValue LMul = DAG.getTargetConstant(VLMUL, DL, XLenVT);
8978
SDValue Sew = DAG.getTargetConstant(VSEW, DL, XLenVT);
8979
8980
SDValue AVL = DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1));
8981
8982
SDValue ID = DAG.getTargetConstant(Intrinsic::riscv_vsetvli, DL, XLenVT);
8983
SDValue Res =
8984
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, ID, AVL, Sew, LMul);
8985
return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), Res);
8986
}
8987
8988
static SDValue lowerCttzElts(SDNode *N, SelectionDAG &DAG,
8989
const RISCVSubtarget &Subtarget) {
8990
SDValue Op0 = N->getOperand(1);
8991
MVT OpVT = Op0.getSimpleValueType();
8992
MVT ContainerVT = OpVT;
8993
if (OpVT.isFixedLengthVector()) {
8994
ContainerVT = getContainerForFixedLengthVector(DAG, OpVT, Subtarget);
8995
Op0 = convertToScalableVector(ContainerVT, Op0, DAG, Subtarget);
8996
}
8997
MVT XLenVT = Subtarget.getXLenVT();
8998
SDLoc DL(N);
8999
auto [Mask, VL] = getDefaultVLOps(OpVT, ContainerVT, DL, DAG, Subtarget);
9000
SDValue Res = DAG.getNode(RISCVISD::VFIRST_VL, DL, XLenVT, Op0, Mask, VL);
9001
if (isOneConstant(N->getOperand(2)))
9002
return Res;
9003
9004
// Convert -1 to VL.
9005
SDValue Setcc =
9006
DAG.getSetCC(DL, XLenVT, Res, DAG.getConstant(0, DL, XLenVT), ISD::SETLT);
9007
VL = DAG.getElementCount(DL, XLenVT, OpVT.getVectorElementCount());
9008
return DAG.getSelect(DL, XLenVT, Setcc, VL, Res);
9009
}
9010
9011
static inline void promoteVCIXScalar(const SDValue &Op,
9012
SmallVectorImpl<SDValue> &Operands,
9013
SelectionDAG &DAG) {
9014
const RISCVSubtarget &Subtarget =
9015
DAG.getMachineFunction().getSubtarget<RISCVSubtarget>();
9016
9017
bool HasChain = Op.getOpcode() == ISD::INTRINSIC_VOID ||
9018
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
9019
unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
9020
SDLoc DL(Op);
9021
9022
const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
9023
RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
9024
if (!II || !II->hasScalarOperand())
9025
return;
9026
9027
unsigned SplatOp = II->ScalarOperand + 1;
9028
assert(SplatOp < Op.getNumOperands());
9029
9030
SDValue &ScalarOp = Operands[SplatOp];
9031
MVT OpVT = ScalarOp.getSimpleValueType();
9032
MVT XLenVT = Subtarget.getXLenVT();
9033
9034
// The code below is partially copied from lowerVectorIntrinsicScalars.
9035
// If this isn't a scalar, or its type is XLenVT we're done.
9036
if (!OpVT.isScalarInteger() || OpVT == XLenVT)
9037
return;
9038
9039
// Manually emit promote operation for scalar operation.
9040
if (OpVT.bitsLT(XLenVT)) {
9041
unsigned ExtOpc =
9042
isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
9043
ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
9044
}
9045
9046
return;
9047
}
9048
9049
static void processVCIXOperands(SDValue &OrigOp,
9050
SmallVectorImpl<SDValue> &Operands,
9051
SelectionDAG &DAG) {
9052
promoteVCIXScalar(OrigOp, Operands, DAG);
9053
const RISCVSubtarget &Subtarget =
9054
DAG.getMachineFunction().getSubtarget<RISCVSubtarget>();
9055
for (SDValue &V : Operands) {
9056
EVT ValType = V.getValueType();
9057
if (ValType.isVector() && ValType.isFloatingPoint()) {
9058
MVT InterimIVT =
9059
MVT::getVectorVT(MVT::getIntegerVT(ValType.getScalarSizeInBits()),
9060
ValType.getVectorElementCount());
9061
V = DAG.getBitcast(InterimIVT, V);
9062
}
9063
if (ValType.isFixedLengthVector()) {
9064
MVT OpContainerVT = getContainerForFixedLengthVector(
9065
DAG, V.getSimpleValueType(), Subtarget);
9066
V = convertToScalableVector(OpContainerVT, V, DAG, Subtarget);
9067
}
9068
}
9069
}
9070
9071
// LMUL * VLEN should be greater than or equal to EGS * SEW
9072
static inline bool isValidEGW(int EGS, EVT VT,
9073
const RISCVSubtarget &Subtarget) {
9074
return (Subtarget.getRealMinVLen() *
9075
VT.getSizeInBits().getKnownMinValue()) / RISCV::RVVBitsPerBlock >=
9076
EGS * VT.getScalarSizeInBits();
9077
}
9078
9079
SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
9080
SelectionDAG &DAG) const {
9081
unsigned IntNo = Op.getConstantOperandVal(0);
9082
SDLoc DL(Op);
9083
MVT XLenVT = Subtarget.getXLenVT();
9084
9085
switch (IntNo) {
9086
default:
9087
break; // Don't custom lower most intrinsics.
9088
case Intrinsic::thread_pointer: {
9089
EVT PtrVT = getPointerTy(DAG.getDataLayout());
9090
return DAG.getRegister(RISCV::X4, PtrVT);
9091
}
9092
case Intrinsic::riscv_orc_b:
9093
case Intrinsic::riscv_brev8:
9094
case Intrinsic::riscv_sha256sig0:
9095
case Intrinsic::riscv_sha256sig1:
9096
case Intrinsic::riscv_sha256sum0:
9097
case Intrinsic::riscv_sha256sum1:
9098
case Intrinsic::riscv_sm3p0:
9099
case Intrinsic::riscv_sm3p1: {
9100
unsigned Opc;
9101
switch (IntNo) {
9102
case Intrinsic::riscv_orc_b: Opc = RISCVISD::ORC_B; break;
9103
case Intrinsic::riscv_brev8: Opc = RISCVISD::BREV8; break;
9104
case Intrinsic::riscv_sha256sig0: Opc = RISCVISD::SHA256SIG0; break;
9105
case Intrinsic::riscv_sha256sig1: Opc = RISCVISD::SHA256SIG1; break;
9106
case Intrinsic::riscv_sha256sum0: Opc = RISCVISD::SHA256SUM0; break;
9107
case Intrinsic::riscv_sha256sum1: Opc = RISCVISD::SHA256SUM1; break;
9108
case Intrinsic::riscv_sm3p0: Opc = RISCVISD::SM3P0; break;
9109
case Intrinsic::riscv_sm3p1: Opc = RISCVISD::SM3P1; break;
9110
}
9111
9112
if (RV64LegalI32 && Subtarget.is64Bit() && Op.getValueType() == MVT::i32) {
9113
SDValue NewOp =
9114
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(1));
9115
SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp);
9116
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res);
9117
}
9118
9119
return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1));
9120
}
9121
case Intrinsic::riscv_sm4ks:
9122
case Intrinsic::riscv_sm4ed: {
9123
unsigned Opc =
9124
IntNo == Intrinsic::riscv_sm4ks ? RISCVISD::SM4KS : RISCVISD::SM4ED;
9125
9126
if (RV64LegalI32 && Subtarget.is64Bit() && Op.getValueType() == MVT::i32) {
9127
SDValue NewOp0 =
9128
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(1));
9129
SDValue NewOp1 =
9130
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(2));
9131
SDValue Res =
9132
DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, Op.getOperand(3));
9133
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res);
9134
}
9135
9136
return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2),
9137
Op.getOperand(3));
9138
}
9139
case Intrinsic::riscv_zip:
9140
case Intrinsic::riscv_unzip: {
9141
unsigned Opc =
9142
IntNo == Intrinsic::riscv_zip ? RISCVISD::ZIP : RISCVISD::UNZIP;
9143
return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1));
9144
}
9145
case Intrinsic::riscv_mopr: {
9146
if (RV64LegalI32 && Subtarget.is64Bit() && Op.getValueType() == MVT::i32) {
9147
SDValue NewOp =
9148
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(1));
9149
SDValue Res = DAG.getNode(
9150
RISCVISD::MOPR, DL, MVT::i64, NewOp,
9151
DAG.getTargetConstant(Op.getConstantOperandVal(2), DL, MVT::i64));
9152
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res);
9153
}
9154
return DAG.getNode(RISCVISD::MOPR, DL, XLenVT, Op.getOperand(1),
9155
Op.getOperand(2));
9156
}
9157
9158
case Intrinsic::riscv_moprr: {
9159
if (RV64LegalI32 && Subtarget.is64Bit() && Op.getValueType() == MVT::i32) {
9160
SDValue NewOp0 =
9161
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(1));
9162
SDValue NewOp1 =
9163
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(2));
9164
SDValue Res = DAG.getNode(
9165
RISCVISD::MOPRR, DL, MVT::i64, NewOp0, NewOp1,
9166
DAG.getTargetConstant(Op.getConstantOperandVal(3), DL, MVT::i64));
9167
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res);
9168
}
9169
return DAG.getNode(RISCVISD::MOPRR, DL, XLenVT, Op.getOperand(1),
9170
Op.getOperand(2), Op.getOperand(3));
9171
}
9172
case Intrinsic::riscv_clmul:
9173
if (RV64LegalI32 && Subtarget.is64Bit() && Op.getValueType() == MVT::i32) {
9174
SDValue NewOp0 =
9175
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(1));
9176
SDValue NewOp1 =
9177
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(2));
9178
SDValue Res = DAG.getNode(RISCVISD::CLMUL, DL, MVT::i64, NewOp0, NewOp1);
9179
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res);
9180
}
9181
return DAG.getNode(RISCVISD::CLMUL, DL, XLenVT, Op.getOperand(1),
9182
Op.getOperand(2));
9183
case Intrinsic::riscv_clmulh:
9184
case Intrinsic::riscv_clmulr: {
9185
unsigned Opc =
9186
IntNo == Intrinsic::riscv_clmulh ? RISCVISD::CLMULH : RISCVISD::CLMULR;
9187
if (RV64LegalI32 && Subtarget.is64Bit() && Op.getValueType() == MVT::i32) {
9188
SDValue NewOp0 =
9189
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(1));
9190
SDValue NewOp1 =
9191
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(2));
9192
NewOp0 = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0,
9193
DAG.getConstant(32, DL, MVT::i64));
9194
NewOp1 = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp1,
9195
DAG.getConstant(32, DL, MVT::i64));
9196
SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1);
9197
Res = DAG.getNode(ISD::SRL, DL, MVT::i64, Res,
9198
DAG.getConstant(32, DL, MVT::i64));
9199
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res);
9200
}
9201
9202
return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
9203
}
9204
case Intrinsic::experimental_get_vector_length:
9205
return lowerGetVectorLength(Op.getNode(), DAG, Subtarget);
9206
case Intrinsic::experimental_cttz_elts:
9207
return lowerCttzElts(Op.getNode(), DAG, Subtarget);
9208
case Intrinsic::riscv_vmv_x_s: {
9209
SDValue Res = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Op.getOperand(1));
9210
return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Res);
9211
}
9212
case Intrinsic::riscv_vfmv_f_s:
9213
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(),
9214
Op.getOperand(1), DAG.getVectorIdxConstant(0, DL));
9215
case Intrinsic::riscv_vmv_v_x:
9216
return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
9217
Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
9218
Subtarget);
9219
case Intrinsic::riscv_vfmv_v_f:
9220
return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
9221
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9222
case Intrinsic::riscv_vmv_s_x: {
9223
SDValue Scalar = Op.getOperand(2);
9224
9225
if (Scalar.getValueType().bitsLE(XLenVT)) {
9226
Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
9227
return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
9228
Op.getOperand(1), Scalar, Op.getOperand(3));
9229
}
9230
9231
assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
9232
9233
// This is an i64 value that lives in two scalar registers. We have to
9234
// insert this in a convoluted way. First we build vXi64 splat containing
9235
// the two values that we assemble using some bit math. Next we'll use
9236
// vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
9237
// to merge element 0 from our splat into the source vector.
9238
// FIXME: This is probably not the best way to do this, but it is
9239
// consistent with INSERT_VECTOR_ELT lowering so it is a good starting
9240
// point.
9241
// sw lo, (a0)
9242
// sw hi, 4(a0)
9243
// vlse vX, (a0)
9244
//
9245
// vid.v vVid
9246
// vmseq.vx mMask, vVid, 0
9247
// vmerge.vvm vDest, vSrc, vVal, mMask
9248
MVT VT = Op.getSimpleValueType();
9249
SDValue Vec = Op.getOperand(1);
9250
SDValue VL = getVLOperand(Op);
9251
9252
SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
9253
if (Op.getOperand(1).isUndef())
9254
return SplattedVal;
9255
SDValue SplattedIdx =
9256
DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
9257
DAG.getConstant(0, DL, MVT::i32), VL);
9258
9259
MVT MaskVT = getMaskTypeFor(VT);
9260
SDValue Mask = getAllOnesMask(VT, VL, DL, DAG);
9261
SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
9262
SDValue SelectCond =
9263
DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT,
9264
{VID, SplattedIdx, DAG.getCondCode(ISD::SETEQ),
9265
DAG.getUNDEF(MaskVT), Mask, VL});
9266
return DAG.getNode(RISCVISD::VMERGE_VL, DL, VT, SelectCond, SplattedVal,
9267
Vec, DAG.getUNDEF(VT), VL);
9268
}
9269
case Intrinsic::riscv_vfmv_s_f:
9270
return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, Op.getSimpleValueType(),
9271
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9272
// EGS * EEW >= 128 bits
9273
case Intrinsic::riscv_vaesdf_vv:
9274
case Intrinsic::riscv_vaesdf_vs:
9275
case Intrinsic::riscv_vaesdm_vv:
9276
case Intrinsic::riscv_vaesdm_vs:
9277
case Intrinsic::riscv_vaesef_vv:
9278
case Intrinsic::riscv_vaesef_vs:
9279
case Intrinsic::riscv_vaesem_vv:
9280
case Intrinsic::riscv_vaesem_vs:
9281
case Intrinsic::riscv_vaeskf1:
9282
case Intrinsic::riscv_vaeskf2:
9283
case Intrinsic::riscv_vaesz_vs:
9284
case Intrinsic::riscv_vsm4k:
9285
case Intrinsic::riscv_vsm4r_vv:
9286
case Intrinsic::riscv_vsm4r_vs: {
9287
if (!isValidEGW(4, Op.getSimpleValueType(), Subtarget) ||
9288
!isValidEGW(4, Op->getOperand(1).getSimpleValueType(), Subtarget) ||
9289
!isValidEGW(4, Op->getOperand(2).getSimpleValueType(), Subtarget))
9290
report_fatal_error("EGW should be greater than or equal to 4 * SEW.");
9291
return Op;
9292
}
9293
// EGS * EEW >= 256 bits
9294
case Intrinsic::riscv_vsm3c:
9295
case Intrinsic::riscv_vsm3me: {
9296
if (!isValidEGW(8, Op.getSimpleValueType(), Subtarget) ||
9297
!isValidEGW(8, Op->getOperand(1).getSimpleValueType(), Subtarget))
9298
report_fatal_error("EGW should be greater than or equal to 8 * SEW.");
9299
return Op;
9300
}
9301
// zvknha(SEW=32)/zvknhb(SEW=[32|64])
9302
case Intrinsic::riscv_vsha2ch:
9303
case Intrinsic::riscv_vsha2cl:
9304
case Intrinsic::riscv_vsha2ms: {
9305
if (Op->getSimpleValueType(0).getScalarSizeInBits() == 64 &&
9306
!Subtarget.hasStdExtZvknhb())
9307
report_fatal_error("SEW=64 needs Zvknhb to be enabled.");
9308
if (!isValidEGW(4, Op.getSimpleValueType(), Subtarget) ||
9309
!isValidEGW(4, Op->getOperand(1).getSimpleValueType(), Subtarget) ||
9310
!isValidEGW(4, Op->getOperand(2).getSimpleValueType(), Subtarget))
9311
report_fatal_error("EGW should be greater than or equal to 4 * SEW.");
9312
return Op;
9313
}
9314
case Intrinsic::riscv_sf_vc_v_x:
9315
case Intrinsic::riscv_sf_vc_v_i:
9316
case Intrinsic::riscv_sf_vc_v_xv:
9317
case Intrinsic::riscv_sf_vc_v_iv:
9318
case Intrinsic::riscv_sf_vc_v_vv:
9319
case Intrinsic::riscv_sf_vc_v_fv:
9320
case Intrinsic::riscv_sf_vc_v_xvv:
9321
case Intrinsic::riscv_sf_vc_v_ivv:
9322
case Intrinsic::riscv_sf_vc_v_vvv:
9323
case Intrinsic::riscv_sf_vc_v_fvv:
9324
case Intrinsic::riscv_sf_vc_v_xvw:
9325
case Intrinsic::riscv_sf_vc_v_ivw:
9326
case Intrinsic::riscv_sf_vc_v_vvw:
9327
case Intrinsic::riscv_sf_vc_v_fvw: {
9328
MVT VT = Op.getSimpleValueType();
9329
9330
SmallVector<SDValue> Operands{Op->op_values()};
9331
processVCIXOperands(Op, Operands, DAG);
9332
9333
MVT RetVT = VT;
9334
if (VT.isFixedLengthVector())
9335
RetVT = getContainerForFixedLengthVector(VT);
9336
else if (VT.isFloatingPoint())
9337
RetVT = MVT::getVectorVT(MVT::getIntegerVT(VT.getScalarSizeInBits()),
9338
VT.getVectorElementCount());
9339
9340
SDValue NewNode = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, RetVT, Operands);
9341
9342
if (VT.isFixedLengthVector())
9343
NewNode = convertFromScalableVector(VT, NewNode, DAG, Subtarget);
9344
else if (VT.isFloatingPoint())
9345
NewNode = DAG.getBitcast(VT, NewNode);
9346
9347
if (Op == NewNode)
9348
break;
9349
9350
return NewNode;
9351
}
9352
}
9353
9354
return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
9355
}
9356
9357
static inline SDValue getVCIXISDNodeWCHAIN(SDValue &Op, SelectionDAG &DAG,
9358
unsigned Type) {
9359
SDLoc DL(Op);
9360
SmallVector<SDValue> Operands{Op->op_values()};
9361
Operands.erase(Operands.begin() + 1);
9362
9363
const RISCVSubtarget &Subtarget =
9364
DAG.getMachineFunction().getSubtarget<RISCVSubtarget>();
9365
MVT VT = Op.getSimpleValueType();
9366
MVT RetVT = VT;
9367
MVT FloatVT = VT;
9368
9369
if (VT.isFloatingPoint()) {
9370
RetVT = MVT::getVectorVT(MVT::getIntegerVT(VT.getScalarSizeInBits()),
9371
VT.getVectorElementCount());
9372
FloatVT = RetVT;
9373
}
9374
if (VT.isFixedLengthVector())
9375
RetVT = getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), RetVT,
9376
Subtarget);
9377
9378
processVCIXOperands(Op, Operands, DAG);
9379
9380
SDVTList VTs = DAG.getVTList({RetVT, MVT::Other});
9381
SDValue NewNode = DAG.getNode(Type, DL, VTs, Operands);
9382
SDValue Chain = NewNode.getValue(1);
9383
9384
if (VT.isFixedLengthVector())
9385
NewNode = convertFromScalableVector(FloatVT, NewNode, DAG, Subtarget);
9386
if (VT.isFloatingPoint())
9387
NewNode = DAG.getBitcast(VT, NewNode);
9388
9389
NewNode = DAG.getMergeValues({NewNode, Chain}, DL);
9390
9391
return NewNode;
9392
}
9393
9394
static inline SDValue getVCIXISDNodeVOID(SDValue &Op, SelectionDAG &DAG,
9395
unsigned Type) {
9396
SmallVector<SDValue> Operands{Op->op_values()};
9397
Operands.erase(Operands.begin() + 1);
9398
processVCIXOperands(Op, Operands, DAG);
9399
9400
return DAG.getNode(Type, SDLoc(Op), Op.getValueType(), Operands);
9401
}
9402
9403
SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
9404
SelectionDAG &DAG) const {
9405
unsigned IntNo = Op.getConstantOperandVal(1);
9406
switch (IntNo) {
9407
default:
9408
break;
9409
case Intrinsic::riscv_masked_strided_load: {
9410
SDLoc DL(Op);
9411
MVT XLenVT = Subtarget.getXLenVT();
9412
9413
// If the mask is known to be all ones, optimize to an unmasked intrinsic;
9414
// the selection of the masked intrinsics doesn't do this for us.
9415
SDValue Mask = Op.getOperand(5);
9416
bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
9417
9418
MVT VT = Op->getSimpleValueType(0);
9419
MVT ContainerVT = VT;
9420
if (VT.isFixedLengthVector())
9421
ContainerVT = getContainerForFixedLengthVector(VT);
9422
9423
SDValue PassThru = Op.getOperand(2);
9424
if (!IsUnmasked) {
9425
MVT MaskVT = getMaskTypeFor(ContainerVT);
9426
if (VT.isFixedLengthVector()) {
9427
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
9428
PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
9429
}
9430
}
9431
9432
auto *Load = cast<MemIntrinsicSDNode>(Op);
9433
SDValue VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
9434
SDValue Ptr = Op.getOperand(3);
9435
SDValue Stride = Op.getOperand(4);
9436
SDValue Result, Chain;
9437
9438
// TODO: We restrict this to unmasked loads currently in consideration of
9439
// the complexity of handling all falses masks.
9440
MVT ScalarVT = ContainerVT.getVectorElementType();
9441
if (IsUnmasked && isNullConstant(Stride) && ContainerVT.isInteger()) {
9442
SDValue ScalarLoad =
9443
DAG.getExtLoad(ISD::EXTLOAD, DL, XLenVT, Load->getChain(), Ptr,
9444
ScalarVT, Load->getMemOperand());
9445
Chain = ScalarLoad.getValue(1);
9446
Result = lowerScalarSplat(SDValue(), ScalarLoad, VL, ContainerVT, DL, DAG,
9447
Subtarget);
9448
} else if (IsUnmasked && isNullConstant(Stride) && isTypeLegal(ScalarVT)) {
9449
SDValue ScalarLoad = DAG.getLoad(ScalarVT, DL, Load->getChain(), Ptr,
9450
Load->getMemOperand());
9451
Chain = ScalarLoad.getValue(1);
9452
Result = DAG.getSplat(ContainerVT, DL, ScalarLoad);
9453
} else {
9454
SDValue IntID = DAG.getTargetConstant(
9455
IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
9456
XLenVT);
9457
9458
SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
9459
if (IsUnmasked)
9460
Ops.push_back(DAG.getUNDEF(ContainerVT));
9461
else
9462
Ops.push_back(PassThru);
9463
Ops.push_back(Ptr);
9464
Ops.push_back(Stride);
9465
if (!IsUnmasked)
9466
Ops.push_back(Mask);
9467
Ops.push_back(VL);
9468
if (!IsUnmasked) {
9469
SDValue Policy =
9470
DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
9471
Ops.push_back(Policy);
9472
}
9473
9474
SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
9475
Result =
9476
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
9477
Load->getMemoryVT(), Load->getMemOperand());
9478
Chain = Result.getValue(1);
9479
}
9480
if (VT.isFixedLengthVector())
9481
Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
9482
return DAG.getMergeValues({Result, Chain}, DL);
9483
}
9484
case Intrinsic::riscv_seg2_load:
9485
case Intrinsic::riscv_seg3_load:
9486
case Intrinsic::riscv_seg4_load:
9487
case Intrinsic::riscv_seg5_load:
9488
case Intrinsic::riscv_seg6_load:
9489
case Intrinsic::riscv_seg7_load:
9490
case Intrinsic::riscv_seg8_load: {
9491
SDLoc DL(Op);
9492
static const Intrinsic::ID VlsegInts[7] = {
9493
Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3,
9494
Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5,
9495
Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7,
9496
Intrinsic::riscv_vlseg8};
9497
unsigned NF = Op->getNumValues() - 1;
9498
assert(NF >= 2 && NF <= 8 && "Unexpected seg number");
9499
MVT XLenVT = Subtarget.getXLenVT();
9500
MVT VT = Op->getSimpleValueType(0);
9501
MVT ContainerVT = getContainerForFixedLengthVector(VT);
9502
9503
SDValue VL = getVLOp(VT.getVectorNumElements(), ContainerVT, DL, DAG,
9504
Subtarget);
9505
SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT);
9506
auto *Load = cast<MemIntrinsicSDNode>(Op);
9507
SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT);
9508
ContainerVTs.push_back(MVT::Other);
9509
SDVTList VTs = DAG.getVTList(ContainerVTs);
9510
SmallVector<SDValue, 12> Ops = {Load->getChain(), IntID};
9511
Ops.insert(Ops.end(), NF, DAG.getUNDEF(ContainerVT));
9512
Ops.push_back(Op.getOperand(2));
9513
Ops.push_back(VL);
9514
SDValue Result =
9515
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
9516
Load->getMemoryVT(), Load->getMemOperand());
9517
SmallVector<SDValue, 9> Results;
9518
for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++)
9519
Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx),
9520
DAG, Subtarget));
9521
Results.push_back(Result.getValue(NF));
9522
return DAG.getMergeValues(Results, DL);
9523
}
9524
case Intrinsic::riscv_sf_vc_v_x_se:
9525
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_X_SE);
9526
case Intrinsic::riscv_sf_vc_v_i_se:
9527
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_I_SE);
9528
case Intrinsic::riscv_sf_vc_v_xv_se:
9529
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_XV_SE);
9530
case Intrinsic::riscv_sf_vc_v_iv_se:
9531
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_IV_SE);
9532
case Intrinsic::riscv_sf_vc_v_vv_se:
9533
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_VV_SE);
9534
case Intrinsic::riscv_sf_vc_v_fv_se:
9535
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_FV_SE);
9536
case Intrinsic::riscv_sf_vc_v_xvv_se:
9537
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_XVV_SE);
9538
case Intrinsic::riscv_sf_vc_v_ivv_se:
9539
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_IVV_SE);
9540
case Intrinsic::riscv_sf_vc_v_vvv_se:
9541
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_VVV_SE);
9542
case Intrinsic::riscv_sf_vc_v_fvv_se:
9543
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_FVV_SE);
9544
case Intrinsic::riscv_sf_vc_v_xvw_se:
9545
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_XVW_SE);
9546
case Intrinsic::riscv_sf_vc_v_ivw_se:
9547
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_IVW_SE);
9548
case Intrinsic::riscv_sf_vc_v_vvw_se:
9549
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_VVW_SE);
9550
case Intrinsic::riscv_sf_vc_v_fvw_se:
9551
return getVCIXISDNodeWCHAIN(Op, DAG, RISCVISD::SF_VC_V_FVW_SE);
9552
}
9553
9554
return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
9555
}
9556
9557
SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
9558
SelectionDAG &DAG) const {
9559
unsigned IntNo = Op.getConstantOperandVal(1);
9560
switch (IntNo) {
9561
default:
9562
break;
9563
case Intrinsic::riscv_masked_strided_store: {
9564
SDLoc DL(Op);
9565
MVT XLenVT = Subtarget.getXLenVT();
9566
9567
// If the mask is known to be all ones, optimize to an unmasked intrinsic;
9568
// the selection of the masked intrinsics doesn't do this for us.
9569
SDValue Mask = Op.getOperand(5);
9570
bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
9571
9572
SDValue Val = Op.getOperand(2);
9573
MVT VT = Val.getSimpleValueType();
9574
MVT ContainerVT = VT;
9575
if (VT.isFixedLengthVector()) {
9576
ContainerVT = getContainerForFixedLengthVector(VT);
9577
Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
9578
}
9579
if (!IsUnmasked) {
9580
MVT MaskVT = getMaskTypeFor(ContainerVT);
9581
if (VT.isFixedLengthVector())
9582
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
9583
}
9584
9585
SDValue VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
9586
9587
SDValue IntID = DAG.getTargetConstant(
9588
IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
9589
XLenVT);
9590
9591
auto *Store = cast<MemIntrinsicSDNode>(Op);
9592
SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
9593
Ops.push_back(Val);
9594
Ops.push_back(Op.getOperand(3)); // Ptr
9595
Ops.push_back(Op.getOperand(4)); // Stride
9596
if (!IsUnmasked)
9597
Ops.push_back(Mask);
9598
Ops.push_back(VL);
9599
9600
return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
9601
Ops, Store->getMemoryVT(),
9602
Store->getMemOperand());
9603
}
9604
case Intrinsic::riscv_seg2_store:
9605
case Intrinsic::riscv_seg3_store:
9606
case Intrinsic::riscv_seg4_store:
9607
case Intrinsic::riscv_seg5_store:
9608
case Intrinsic::riscv_seg6_store:
9609
case Intrinsic::riscv_seg7_store:
9610
case Intrinsic::riscv_seg8_store: {
9611
SDLoc DL(Op);
9612
static const Intrinsic::ID VssegInts[] = {
9613
Intrinsic::riscv_vsseg2, Intrinsic::riscv_vsseg3,
9614
Intrinsic::riscv_vsseg4, Intrinsic::riscv_vsseg5,
9615
Intrinsic::riscv_vsseg6, Intrinsic::riscv_vsseg7,
9616
Intrinsic::riscv_vsseg8};
9617
// Operands are (chain, int_id, vec*, ptr, vl)
9618
unsigned NF = Op->getNumOperands() - 4;
9619
assert(NF >= 2 && NF <= 8 && "Unexpected seg number");
9620
MVT XLenVT = Subtarget.getXLenVT();
9621
MVT VT = Op->getOperand(2).getSimpleValueType();
9622
MVT ContainerVT = getContainerForFixedLengthVector(VT);
9623
9624
SDValue VL = getVLOp(VT.getVectorNumElements(), ContainerVT, DL, DAG,
9625
Subtarget);
9626
SDValue IntID = DAG.getTargetConstant(VssegInts[NF - 2], DL, XLenVT);
9627
SDValue Ptr = Op->getOperand(NF + 2);
9628
9629
auto *FixedIntrinsic = cast<MemIntrinsicSDNode>(Op);
9630
SmallVector<SDValue, 12> Ops = {FixedIntrinsic->getChain(), IntID};
9631
for (unsigned i = 0; i < NF; i++)
9632
Ops.push_back(convertToScalableVector(
9633
ContainerVT, FixedIntrinsic->getOperand(2 + i), DAG, Subtarget));
9634
Ops.append({Ptr, VL});
9635
9636
return DAG.getMemIntrinsicNode(
9637
ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), Ops,
9638
FixedIntrinsic->getMemoryVT(), FixedIntrinsic->getMemOperand());
9639
}
9640
case Intrinsic::riscv_sf_vc_xv_se:
9641
return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_XV_SE);
9642
case Intrinsic::riscv_sf_vc_iv_se:
9643
return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_IV_SE);
9644
case Intrinsic::riscv_sf_vc_vv_se:
9645
return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_VV_SE);
9646
case Intrinsic::riscv_sf_vc_fv_se:
9647
return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_FV_SE);
9648
case Intrinsic::riscv_sf_vc_xvv_se:
9649
return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_XVV_SE);
9650
case Intrinsic::riscv_sf_vc_ivv_se:
9651
return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_IVV_SE);
9652
case Intrinsic::riscv_sf_vc_vvv_se:
9653
return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_VVV_SE);
9654
case Intrinsic::riscv_sf_vc_fvv_se:
9655
return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_FVV_SE);
9656
case Intrinsic::riscv_sf_vc_xvw_se:
9657
return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_XVW_SE);
9658
case Intrinsic::riscv_sf_vc_ivw_se:
9659
return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_IVW_SE);
9660
case Intrinsic::riscv_sf_vc_vvw_se:
9661
return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_VVW_SE);
9662
case Intrinsic::riscv_sf_vc_fvw_se:
9663
return getVCIXISDNodeVOID(Op, DAG, RISCVISD::SF_VC_FVW_SE);
9664
}
9665
9666
return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
9667
}
9668
9669
static unsigned getRVVReductionOp(unsigned ISDOpcode) {
9670
switch (ISDOpcode) {
9671
default:
9672
llvm_unreachable("Unhandled reduction");
9673
case ISD::VP_REDUCE_ADD:
9674
case ISD::VECREDUCE_ADD:
9675
return RISCVISD::VECREDUCE_ADD_VL;
9676
case ISD::VP_REDUCE_UMAX:
9677
case ISD::VECREDUCE_UMAX:
9678
return RISCVISD::VECREDUCE_UMAX_VL;
9679
case ISD::VP_REDUCE_SMAX:
9680
case ISD::VECREDUCE_SMAX:
9681
return RISCVISD::VECREDUCE_SMAX_VL;
9682
case ISD::VP_REDUCE_UMIN:
9683
case ISD::VECREDUCE_UMIN:
9684
return RISCVISD::VECREDUCE_UMIN_VL;
9685
case ISD::VP_REDUCE_SMIN:
9686
case ISD::VECREDUCE_SMIN:
9687
return RISCVISD::VECREDUCE_SMIN_VL;
9688
case ISD::VP_REDUCE_AND:
9689
case ISD::VECREDUCE_AND:
9690
return RISCVISD::VECREDUCE_AND_VL;
9691
case ISD::VP_REDUCE_OR:
9692
case ISD::VECREDUCE_OR:
9693
return RISCVISD::VECREDUCE_OR_VL;
9694
case ISD::VP_REDUCE_XOR:
9695
case ISD::VECREDUCE_XOR:
9696
return RISCVISD::VECREDUCE_XOR_VL;
9697
case ISD::VP_REDUCE_FADD:
9698
return RISCVISD::VECREDUCE_FADD_VL;
9699
case ISD::VP_REDUCE_SEQ_FADD:
9700
return RISCVISD::VECREDUCE_SEQ_FADD_VL;
9701
case ISD::VP_REDUCE_FMAX:
9702
case ISD::VP_REDUCE_FMAXIMUM:
9703
return RISCVISD::VECREDUCE_FMAX_VL;
9704
case ISD::VP_REDUCE_FMIN:
9705
case ISD::VP_REDUCE_FMINIMUM:
9706
return RISCVISD::VECREDUCE_FMIN_VL;
9707
}
9708
9709
}
9710
9711
SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
9712
SelectionDAG &DAG,
9713
bool IsVP) const {
9714
SDLoc DL(Op);
9715
SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
9716
MVT VecVT = Vec.getSimpleValueType();
9717
assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
9718
Op.getOpcode() == ISD::VECREDUCE_OR ||
9719
Op.getOpcode() == ISD::VECREDUCE_XOR ||
9720
Op.getOpcode() == ISD::VP_REDUCE_AND ||
9721
Op.getOpcode() == ISD::VP_REDUCE_OR ||
9722
Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
9723
"Unexpected reduction lowering");
9724
9725
MVT XLenVT = Subtarget.getXLenVT();
9726
9727
MVT ContainerVT = VecVT;
9728
if (VecVT.isFixedLengthVector()) {
9729
ContainerVT = getContainerForFixedLengthVector(VecVT);
9730
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
9731
}
9732
9733
SDValue Mask, VL;
9734
if (IsVP) {
9735
Mask = Op.getOperand(2);
9736
VL = Op.getOperand(3);
9737
} else {
9738
std::tie(Mask, VL) =
9739
getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
9740
}
9741
9742
unsigned BaseOpc;
9743
ISD::CondCode CC;
9744
SDValue Zero = DAG.getConstant(0, DL, XLenVT);
9745
9746
switch (Op.getOpcode()) {
9747
default:
9748
llvm_unreachable("Unhandled reduction");
9749
case ISD::VECREDUCE_AND:
9750
case ISD::VP_REDUCE_AND: {
9751
// vcpop ~x == 0
9752
SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
9753
Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
9754
Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
9755
CC = ISD::SETEQ;
9756
BaseOpc = ISD::AND;
9757
break;
9758
}
9759
case ISD::VECREDUCE_OR:
9760
case ISD::VP_REDUCE_OR:
9761
// vcpop x != 0
9762
Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
9763
CC = ISD::SETNE;
9764
BaseOpc = ISD::OR;
9765
break;
9766
case ISD::VECREDUCE_XOR:
9767
case ISD::VP_REDUCE_XOR: {
9768
// ((vcpop x) & 1) != 0
9769
SDValue One = DAG.getConstant(1, DL, XLenVT);
9770
Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
9771
Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
9772
CC = ISD::SETNE;
9773
BaseOpc = ISD::XOR;
9774
break;
9775
}
9776
}
9777
9778
SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
9779
SetCC = DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), SetCC);
9780
9781
if (!IsVP)
9782
return SetCC;
9783
9784
// Now include the start value in the operation.
9785
// Note that we must return the start value when no elements are operated
9786
// upon. The vcpop instructions we've emitted in each case above will return
9787
// 0 for an inactive vector, and so we've already received the neutral value:
9788
// AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
9789
// can simply include the start value.
9790
return DAG.getNode(BaseOpc, DL, Op.getValueType(), SetCC, Op.getOperand(0));
9791
}
9792
9793
static bool isNonZeroAVL(SDValue AVL) {
9794
auto *RegisterAVL = dyn_cast<RegisterSDNode>(AVL);
9795
auto *ImmAVL = dyn_cast<ConstantSDNode>(AVL);
9796
return (RegisterAVL && RegisterAVL->getReg() == RISCV::X0) ||
9797
(ImmAVL && ImmAVL->getZExtValue() >= 1);
9798
}
9799
9800
/// Helper to lower a reduction sequence of the form:
9801
/// scalar = reduce_op vec, scalar_start
9802
static SDValue lowerReductionSeq(unsigned RVVOpcode, MVT ResVT,
9803
SDValue StartValue, SDValue Vec, SDValue Mask,
9804
SDValue VL, const SDLoc &DL, SelectionDAG &DAG,
9805
const RISCVSubtarget &Subtarget) {
9806
const MVT VecVT = Vec.getSimpleValueType();
9807
const MVT M1VT = getLMUL1VT(VecVT);
9808
const MVT XLenVT = Subtarget.getXLenVT();
9809
const bool NonZeroAVL = isNonZeroAVL(VL);
9810
9811
// The reduction needs an LMUL1 input; do the splat at either LMUL1
9812
// or the original VT if fractional.
9813
auto InnerVT = VecVT.bitsLE(M1VT) ? VecVT : M1VT;
9814
// We reuse the VL of the reduction to reduce vsetvli toggles if we can
9815
// prove it is non-zero. For the AVL=0 case, we need the scalar to
9816
// be the result of the reduction operation.
9817
auto InnerVL = NonZeroAVL ? VL : DAG.getConstant(1, DL, XLenVT);
9818
SDValue InitialValue = lowerScalarInsert(StartValue, InnerVL, InnerVT, DL,
9819
DAG, Subtarget);
9820
if (M1VT != InnerVT)
9821
InitialValue =
9822
DAG.getNode(ISD::INSERT_SUBVECTOR, DL, M1VT, DAG.getUNDEF(M1VT),
9823
InitialValue, DAG.getVectorIdxConstant(0, DL));
9824
SDValue PassThru = NonZeroAVL ? DAG.getUNDEF(M1VT) : InitialValue;
9825
SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
9826
SDValue Ops[] = {PassThru, Vec, InitialValue, Mask, VL, Policy};
9827
SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, Ops);
9828
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
9829
DAG.getVectorIdxConstant(0, DL));
9830
}
9831
9832
SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
9833
SelectionDAG &DAG) const {
9834
SDLoc DL(Op);
9835
SDValue Vec = Op.getOperand(0);
9836
EVT VecEVT = Vec.getValueType();
9837
9838
unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
9839
9840
// Due to ordering in legalize types we may have a vector type that needs to
9841
// be split. Do that manually so we can get down to a legal type.
9842
while (getTypeAction(*DAG.getContext(), VecEVT) ==
9843
TargetLowering::TypeSplitVector) {
9844
auto [Lo, Hi] = DAG.SplitVector(Vec, DL);
9845
VecEVT = Lo.getValueType();
9846
Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
9847
}
9848
9849
// TODO: The type may need to be widened rather than split. Or widened before
9850
// it can be split.
9851
if (!isTypeLegal(VecEVT))
9852
return SDValue();
9853
9854
MVT VecVT = VecEVT.getSimpleVT();
9855
MVT VecEltVT = VecVT.getVectorElementType();
9856
unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
9857
9858
MVT ContainerVT = VecVT;
9859
if (VecVT.isFixedLengthVector()) {
9860
ContainerVT = getContainerForFixedLengthVector(VecVT);
9861
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
9862
}
9863
9864
auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
9865
9866
SDValue StartV = DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
9867
switch (BaseOpc) {
9868
case ISD::AND:
9869
case ISD::OR:
9870
case ISD::UMAX:
9871
case ISD::UMIN:
9872
case ISD::SMAX:
9873
case ISD::SMIN:
9874
StartV = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Vec,
9875
DAG.getVectorIdxConstant(0, DL));
9876
}
9877
return lowerReductionSeq(RVVOpcode, Op.getSimpleValueType(), StartV, Vec,
9878
Mask, VL, DL, DAG, Subtarget);
9879
}
9880
9881
// Given a reduction op, this function returns the matching reduction opcode,
9882
// the vector SDValue and the scalar SDValue required to lower this to a
9883
// RISCVISD node.
9884
static std::tuple<unsigned, SDValue, SDValue>
9885
getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT,
9886
const RISCVSubtarget &Subtarget) {
9887
SDLoc DL(Op);
9888
auto Flags = Op->getFlags();
9889
unsigned Opcode = Op.getOpcode();
9890
switch (Opcode) {
9891
default:
9892
llvm_unreachable("Unhandled reduction");
9893
case ISD::VECREDUCE_FADD: {
9894
// Use positive zero if we can. It is cheaper to materialize.
9895
SDValue Zero =
9896
DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
9897
return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
9898
}
9899
case ISD::VECREDUCE_SEQ_FADD:
9900
return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
9901
Op.getOperand(0));
9902
case ISD::VECREDUCE_FMINIMUM:
9903
case ISD::VECREDUCE_FMAXIMUM:
9904
case ISD::VECREDUCE_FMIN:
9905
case ISD::VECREDUCE_FMAX: {
9906
SDValue Front =
9907
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Op.getOperand(0),
9908
DAG.getVectorIdxConstant(0, DL));
9909
unsigned RVVOpc =
9910
(Opcode == ISD::VECREDUCE_FMIN || Opcode == ISD::VECREDUCE_FMINIMUM)
9911
? RISCVISD::VECREDUCE_FMIN_VL
9912
: RISCVISD::VECREDUCE_FMAX_VL;
9913
return std::make_tuple(RVVOpc, Op.getOperand(0), Front);
9914
}
9915
}
9916
}
9917
9918
SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
9919
SelectionDAG &DAG) const {
9920
SDLoc DL(Op);
9921
MVT VecEltVT = Op.getSimpleValueType();
9922
9923
unsigned RVVOpcode;
9924
SDValue VectorVal, ScalarVal;
9925
std::tie(RVVOpcode, VectorVal, ScalarVal) =
9926
getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT, Subtarget);
9927
MVT VecVT = VectorVal.getSimpleValueType();
9928
9929
MVT ContainerVT = VecVT;
9930
if (VecVT.isFixedLengthVector()) {
9931
ContainerVT = getContainerForFixedLengthVector(VecVT);
9932
VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
9933
}
9934
9935
MVT ResVT = Op.getSimpleValueType();
9936
auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
9937
SDValue Res = lowerReductionSeq(RVVOpcode, ResVT, ScalarVal, VectorVal, Mask,
9938
VL, DL, DAG, Subtarget);
9939
if (Op.getOpcode() != ISD::VECREDUCE_FMINIMUM &&
9940
Op.getOpcode() != ISD::VECREDUCE_FMAXIMUM)
9941
return Res;
9942
9943
if (Op->getFlags().hasNoNaNs())
9944
return Res;
9945
9946
// Force output to NaN if any element is Nan.
9947
SDValue IsNan =
9948
DAG.getNode(RISCVISD::SETCC_VL, DL, Mask.getValueType(),
9949
{VectorVal, VectorVal, DAG.getCondCode(ISD::SETNE),
9950
DAG.getUNDEF(Mask.getValueType()), Mask, VL});
9951
MVT XLenVT = Subtarget.getXLenVT();
9952
SDValue CPop = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, IsNan, Mask, VL);
9953
SDValue NoNaNs = DAG.getSetCC(DL, XLenVT, CPop,
9954
DAG.getConstant(0, DL, XLenVT), ISD::SETEQ);
9955
return DAG.getSelect(
9956
DL, ResVT, NoNaNs, Res,
9957
DAG.getConstantFP(APFloat::getNaN(DAG.EVTToAPFloatSemantics(ResVT)), DL,
9958
ResVT));
9959
}
9960
9961
SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
9962
SelectionDAG &DAG) const {
9963
SDLoc DL(Op);
9964
unsigned Opc = Op.getOpcode();
9965
SDValue Start = Op.getOperand(0);
9966
SDValue Vec = Op.getOperand(1);
9967
EVT VecEVT = Vec.getValueType();
9968
MVT XLenVT = Subtarget.getXLenVT();
9969
9970
// TODO: The type may need to be widened rather than split. Or widened before
9971
// it can be split.
9972
if (!isTypeLegal(VecEVT))
9973
return SDValue();
9974
9975
MVT VecVT = VecEVT.getSimpleVT();
9976
unsigned RVVOpcode = getRVVReductionOp(Opc);
9977
9978
if (VecVT.isFixedLengthVector()) {
9979
auto ContainerVT = getContainerForFixedLengthVector(VecVT);
9980
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
9981
}
9982
9983
SDValue VL = Op.getOperand(3);
9984
SDValue Mask = Op.getOperand(2);
9985
SDValue Res =
9986
lowerReductionSeq(RVVOpcode, Op.getSimpleValueType(), Op.getOperand(0),
9987
Vec, Mask, VL, DL, DAG, Subtarget);
9988
if ((Opc != ISD::VP_REDUCE_FMINIMUM && Opc != ISD::VP_REDUCE_FMAXIMUM) ||
9989
Op->getFlags().hasNoNaNs())
9990
return Res;
9991
9992
// Propagate NaNs.
9993
MVT PredVT = getMaskTypeFor(Vec.getSimpleValueType());
9994
// Check if any of the elements in Vec is NaN.
9995
SDValue IsNaN = DAG.getNode(
9996
RISCVISD::SETCC_VL, DL, PredVT,
9997
{Vec, Vec, DAG.getCondCode(ISD::SETNE), DAG.getUNDEF(PredVT), Mask, VL});
9998
SDValue VCPop = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, IsNaN, Mask, VL);
9999
// Check if the start value is NaN.
10000
SDValue StartIsNaN = DAG.getSetCC(DL, XLenVT, Start, Start, ISD::SETUO);
10001
VCPop = DAG.getNode(ISD::OR, DL, XLenVT, VCPop, StartIsNaN);
10002
SDValue NoNaNs = DAG.getSetCC(DL, XLenVT, VCPop,
10003
DAG.getConstant(0, DL, XLenVT), ISD::SETEQ);
10004
MVT ResVT = Res.getSimpleValueType();
10005
return DAG.getSelect(
10006
DL, ResVT, NoNaNs, Res,
10007
DAG.getConstantFP(APFloat::getNaN(DAG.EVTToAPFloatSemantics(ResVT)), DL,
10008
ResVT));
10009
}
10010
10011
SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
10012
SelectionDAG &DAG) const {
10013
SDValue Vec = Op.getOperand(0);
10014
SDValue SubVec = Op.getOperand(1);
10015
MVT VecVT = Vec.getSimpleValueType();
10016
MVT SubVecVT = SubVec.getSimpleValueType();
10017
10018
SDLoc DL(Op);
10019
MVT XLenVT = Subtarget.getXLenVT();
10020
unsigned OrigIdx = Op.getConstantOperandVal(2);
10021
const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
10022
10023
// We don't have the ability to slide mask vectors up indexed by their i1
10024
// elements; the smallest we can do is i8. Often we are able to bitcast to
10025
// equivalent i8 vectors. Note that when inserting a fixed-length vector
10026
// into a scalable one, we might not necessarily have enough scalable
10027
// elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
10028
if (SubVecVT.getVectorElementType() == MVT::i1 &&
10029
(OrigIdx != 0 || !Vec.isUndef())) {
10030
if (VecVT.getVectorMinNumElements() >= 8 &&
10031
SubVecVT.getVectorMinNumElements() >= 8) {
10032
assert(OrigIdx % 8 == 0 && "Invalid index");
10033
assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
10034
SubVecVT.getVectorMinNumElements() % 8 == 0 &&
10035
"Unexpected mask vector lowering");
10036
OrigIdx /= 8;
10037
SubVecVT =
10038
MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
10039
SubVecVT.isScalableVector());
10040
VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
10041
VecVT.isScalableVector());
10042
Vec = DAG.getBitcast(VecVT, Vec);
10043
SubVec = DAG.getBitcast(SubVecVT, SubVec);
10044
} else {
10045
// We can't slide this mask vector up indexed by its i1 elements.
10046
// This poses a problem when we wish to insert a scalable vector which
10047
// can't be re-expressed as a larger type. Just choose the slow path and
10048
// extend to a larger type, then truncate back down.
10049
MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
10050
MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
10051
Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
10052
SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
10053
Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
10054
Op.getOperand(2));
10055
SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
10056
return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
10057
}
10058
}
10059
10060
// If the subvector vector is a fixed-length type and we don't know VLEN
10061
// exactly, we cannot use subregister manipulation to simplify the codegen; we
10062
// don't know which register of a LMUL group contains the specific subvector
10063
// as we only know the minimum register size. Therefore we must slide the
10064
// vector group up the full amount.
10065
const auto VLen = Subtarget.getRealVLen();
10066
if (SubVecVT.isFixedLengthVector() && !VLen) {
10067
if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
10068
return Op;
10069
MVT ContainerVT = VecVT;
10070
if (VecVT.isFixedLengthVector()) {
10071
ContainerVT = getContainerForFixedLengthVector(VecVT);
10072
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
10073
}
10074
10075
if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
10076
SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
10077
DAG.getUNDEF(ContainerVT), SubVec,
10078
DAG.getVectorIdxConstant(0, DL));
10079
SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
10080
return DAG.getBitcast(Op.getValueType(), SubVec);
10081
}
10082
10083
SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
10084
DAG.getUNDEF(ContainerVT), SubVec,
10085
DAG.getVectorIdxConstant(0, DL));
10086
SDValue Mask =
10087
getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
10088
// Set the vector length to only the number of elements we care about. Note
10089
// that for slideup this includes the offset.
10090
unsigned EndIndex = OrigIdx + SubVecVT.getVectorNumElements();
10091
SDValue VL = getVLOp(EndIndex, ContainerVT, DL, DAG, Subtarget);
10092
10093
// Use tail agnostic policy if we're inserting over Vec's tail.
10094
unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED;
10095
if (VecVT.isFixedLengthVector() && EndIndex == VecVT.getVectorNumElements())
10096
Policy = RISCVII::TAIL_AGNOSTIC;
10097
10098
// If we're inserting into the lowest elements, use a tail undisturbed
10099
// vmv.v.v.
10100
if (OrigIdx == 0) {
10101
SubVec =
10102
DAG.getNode(RISCVISD::VMV_V_V_VL, DL, ContainerVT, Vec, SubVec, VL);
10103
} else {
10104
SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
10105
SubVec = getVSlideup(DAG, Subtarget, DL, ContainerVT, Vec, SubVec,
10106
SlideupAmt, Mask, VL, Policy);
10107
}
10108
10109
if (VecVT.isFixedLengthVector())
10110
SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
10111
return DAG.getBitcast(Op.getValueType(), SubVec);
10112
}
10113
10114
MVT ContainerVecVT = VecVT;
10115
if (VecVT.isFixedLengthVector()) {
10116
ContainerVecVT = getContainerForFixedLengthVector(VecVT);
10117
Vec = convertToScalableVector(ContainerVecVT, Vec, DAG, Subtarget);
10118
}
10119
10120
MVT ContainerSubVecVT = SubVecVT;
10121
if (SubVecVT.isFixedLengthVector()) {
10122
ContainerSubVecVT = getContainerForFixedLengthVector(SubVecVT);
10123
SubVec = convertToScalableVector(ContainerSubVecVT, SubVec, DAG, Subtarget);
10124
}
10125
10126
unsigned SubRegIdx;
10127
ElementCount RemIdx;
10128
// insert_subvector scales the index by vscale if the subvector is scalable,
10129
// and decomposeSubvectorInsertExtractToSubRegs takes this into account. So if
10130
// we have a fixed length subvector, we need to adjust the index by 1/vscale.
10131
if (SubVecVT.isFixedLengthVector()) {
10132
assert(VLen);
10133
unsigned Vscale = *VLen / RISCV::RVVBitsPerBlock;
10134
auto Decompose =
10135
RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
10136
ContainerVecVT, ContainerSubVecVT, OrigIdx / Vscale, TRI);
10137
SubRegIdx = Decompose.first;
10138
RemIdx = ElementCount::getFixed((Decompose.second * Vscale) +
10139
(OrigIdx % Vscale));
10140
} else {
10141
auto Decompose =
10142
RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
10143
ContainerVecVT, ContainerSubVecVT, OrigIdx, TRI);
10144
SubRegIdx = Decompose.first;
10145
RemIdx = ElementCount::getScalable(Decompose.second);
10146
}
10147
10148
TypeSize VecRegSize = TypeSize::getScalable(RISCV::RVVBitsPerBlock);
10149
assert(isPowerOf2_64(
10150
Subtarget.expandVScale(SubVecVT.getSizeInBits()).getKnownMinValue()));
10151
bool ExactlyVecRegSized =
10152
Subtarget.expandVScale(SubVecVT.getSizeInBits())
10153
.isKnownMultipleOf(Subtarget.expandVScale(VecRegSize));
10154
10155
// 1. If the Idx has been completely eliminated and this subvector's size is
10156
// a vector register or a multiple thereof, or the surrounding elements are
10157
// undef, then this is a subvector insert which naturally aligns to a vector
10158
// register. These can easily be handled using subregister manipulation.
10159
// 2. If the subvector isn't an exact multiple of a valid register group size,
10160
// then the insertion must preserve the undisturbed elements of the register.
10161
// We do this by lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1
10162
// vector type (which resolves to a subregister copy), performing a VSLIDEUP
10163
// to place the subvector within the vector register, and an INSERT_SUBVECTOR
10164
// of that LMUL=1 type back into the larger vector (resolving to another
10165
// subregister operation). See below for how our VSLIDEUP works. We go via a
10166
// LMUL=1 type to avoid allocating a large register group to hold our
10167
// subvector.
10168
if (RemIdx.isZero() && (ExactlyVecRegSized || Vec.isUndef())) {
10169
if (SubVecVT.isFixedLengthVector()) {
10170
// We may get NoSubRegister if inserting at index 0 and the subvec
10171
// container is the same as the vector, e.g. vec=v4i32,subvec=v4i32,idx=0
10172
if (SubRegIdx == RISCV::NoSubRegister) {
10173
assert(OrigIdx == 0);
10174
return Op;
10175
}
10176
10177
SDValue Insert =
10178
DAG.getTargetInsertSubreg(SubRegIdx, DL, ContainerVecVT, Vec, SubVec);
10179
if (VecVT.isFixedLengthVector())
10180
Insert = convertFromScalableVector(VecVT, Insert, DAG, Subtarget);
10181
return Insert;
10182
}
10183
return Op;
10184
}
10185
10186
// VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
10187
// OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
10188
// (in our case undisturbed). This means we can set up a subvector insertion
10189
// where OFFSET is the insertion offset, and the VL is the OFFSET plus the
10190
// size of the subvector.
10191
MVT InterSubVT = ContainerVecVT;
10192
SDValue AlignedExtract = Vec;
10193
unsigned AlignedIdx = OrigIdx - RemIdx.getKnownMinValue();
10194
if (SubVecVT.isFixedLengthVector())
10195
AlignedIdx /= *VLen / RISCV::RVVBitsPerBlock;
10196
if (ContainerVecVT.bitsGT(getLMUL1VT(ContainerVecVT))) {
10197
InterSubVT = getLMUL1VT(ContainerVecVT);
10198
// Extract a subvector equal to the nearest full vector register type. This
10199
// should resolve to a EXTRACT_SUBREG instruction.
10200
AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
10201
DAG.getVectorIdxConstant(AlignedIdx, DL));
10202
}
10203
10204
SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
10205
DAG.getUNDEF(InterSubVT), SubVec,
10206
DAG.getVectorIdxConstant(0, DL));
10207
10208
auto [Mask, VL] = getDefaultVLOps(VecVT, ContainerVecVT, DL, DAG, Subtarget);
10209
10210
ElementCount EndIndex = RemIdx + SubVecVT.getVectorElementCount();
10211
VL = DAG.getElementCount(DL, XLenVT, SubVecVT.getVectorElementCount());
10212
10213
// Use tail agnostic policy if we're inserting over InterSubVT's tail.
10214
unsigned Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED;
10215
if (Subtarget.expandVScale(EndIndex) ==
10216
Subtarget.expandVScale(InterSubVT.getVectorElementCount()))
10217
Policy = RISCVII::TAIL_AGNOSTIC;
10218
10219
// If we're inserting into the lowest elements, use a tail undisturbed
10220
// vmv.v.v.
10221
if (RemIdx.isZero()) {
10222
SubVec = DAG.getNode(RISCVISD::VMV_V_V_VL, DL, InterSubVT, AlignedExtract,
10223
SubVec, VL);
10224
} else {
10225
SDValue SlideupAmt = DAG.getElementCount(DL, XLenVT, RemIdx);
10226
10227
// Construct the vector length corresponding to RemIdx + length(SubVecVT).
10228
VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
10229
10230
SubVec = getVSlideup(DAG, Subtarget, DL, InterSubVT, AlignedExtract, SubVec,
10231
SlideupAmt, Mask, VL, Policy);
10232
}
10233
10234
// If required, insert this subvector back into the correct vector register.
10235
// This should resolve to an INSERT_SUBREG instruction.
10236
if (ContainerVecVT.bitsGT(InterSubVT))
10237
SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVecVT, Vec, SubVec,
10238
DAG.getVectorIdxConstant(AlignedIdx, DL));
10239
10240
if (VecVT.isFixedLengthVector())
10241
SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
10242
10243
// We might have bitcast from a mask type: cast back to the original type if
10244
// required.
10245
return DAG.getBitcast(Op.getSimpleValueType(), SubVec);
10246
}
10247
10248
SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
10249
SelectionDAG &DAG) const {
10250
SDValue Vec = Op.getOperand(0);
10251
MVT SubVecVT = Op.getSimpleValueType();
10252
MVT VecVT = Vec.getSimpleValueType();
10253
10254
SDLoc DL(Op);
10255
MVT XLenVT = Subtarget.getXLenVT();
10256
unsigned OrigIdx = Op.getConstantOperandVal(1);
10257
const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
10258
10259
// We don't have the ability to slide mask vectors down indexed by their i1
10260
// elements; the smallest we can do is i8. Often we are able to bitcast to
10261
// equivalent i8 vectors. Note that when extracting a fixed-length vector
10262
// from a scalable one, we might not necessarily have enough scalable
10263
// elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
10264
if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
10265
if (VecVT.getVectorMinNumElements() >= 8 &&
10266
SubVecVT.getVectorMinNumElements() >= 8) {
10267
assert(OrigIdx % 8 == 0 && "Invalid index");
10268
assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
10269
SubVecVT.getVectorMinNumElements() % 8 == 0 &&
10270
"Unexpected mask vector lowering");
10271
OrigIdx /= 8;
10272
SubVecVT =
10273
MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
10274
SubVecVT.isScalableVector());
10275
VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
10276
VecVT.isScalableVector());
10277
Vec = DAG.getBitcast(VecVT, Vec);
10278
} else {
10279
// We can't slide this mask vector down, indexed by its i1 elements.
10280
// This poses a problem when we wish to extract a scalable vector which
10281
// can't be re-expressed as a larger type. Just choose the slow path and
10282
// extend to a larger type, then truncate back down.
10283
// TODO: We could probably improve this when extracting certain fixed
10284
// from fixed, where we can extract as i8 and shift the correct element
10285
// right to reach the desired subvector?
10286
MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
10287
MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
10288
Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
10289
Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
10290
Op.getOperand(1));
10291
SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
10292
return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
10293
}
10294
}
10295
10296
// With an index of 0 this is a cast-like subvector, which can be performed
10297
// with subregister operations.
10298
if (OrigIdx == 0)
10299
return Op;
10300
10301
const auto VLen = Subtarget.getRealVLen();
10302
10303
// If the subvector vector is a fixed-length type and we don't know VLEN
10304
// exactly, we cannot use subregister manipulation to simplify the codegen; we
10305
// don't know which register of a LMUL group contains the specific subvector
10306
// as we only know the minimum register size. Therefore we must slide the
10307
// vector group down the full amount.
10308
if (SubVecVT.isFixedLengthVector() && !VLen) {
10309
MVT ContainerVT = VecVT;
10310
if (VecVT.isFixedLengthVector()) {
10311
ContainerVT = getContainerForFixedLengthVector(VecVT);
10312
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
10313
}
10314
10315
// Shrink down Vec so we're performing the slidedown on a smaller LMUL.
10316
unsigned LastIdx = OrigIdx + SubVecVT.getVectorNumElements() - 1;
10317
if (auto ShrunkVT =
10318
getSmallestVTForIndex(ContainerVT, LastIdx, DL, DAG, Subtarget)) {
10319
ContainerVT = *ShrunkVT;
10320
Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ContainerVT, Vec,
10321
DAG.getVectorIdxConstant(0, DL));
10322
}
10323
10324
SDValue Mask =
10325
getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
10326
// Set the vector length to only the number of elements we care about. This
10327
// avoids sliding down elements we're going to discard straight away.
10328
SDValue VL = getVLOp(SubVecVT.getVectorNumElements(), ContainerVT, DL, DAG,
10329
Subtarget);
10330
SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
10331
SDValue Slidedown =
10332
getVSlidedown(DAG, Subtarget, DL, ContainerVT,
10333
DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
10334
// Now we can use a cast-like subvector extract to get the result.
10335
Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
10336
DAG.getVectorIdxConstant(0, DL));
10337
return DAG.getBitcast(Op.getValueType(), Slidedown);
10338
}
10339
10340
if (VecVT.isFixedLengthVector()) {
10341
VecVT = getContainerForFixedLengthVector(VecVT);
10342
Vec = convertToScalableVector(VecVT, Vec, DAG, Subtarget);
10343
}
10344
10345
MVT ContainerSubVecVT = SubVecVT;
10346
if (SubVecVT.isFixedLengthVector())
10347
ContainerSubVecVT = getContainerForFixedLengthVector(SubVecVT);
10348
10349
unsigned SubRegIdx;
10350
ElementCount RemIdx;
10351
// extract_subvector scales the index by vscale if the subvector is scalable,
10352
// and decomposeSubvectorInsertExtractToSubRegs takes this into account. So if
10353
// we have a fixed length subvector, we need to adjust the index by 1/vscale.
10354
if (SubVecVT.isFixedLengthVector()) {
10355
assert(VLen);
10356
unsigned Vscale = *VLen / RISCV::RVVBitsPerBlock;
10357
auto Decompose =
10358
RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
10359
VecVT, ContainerSubVecVT, OrigIdx / Vscale, TRI);
10360
SubRegIdx = Decompose.first;
10361
RemIdx = ElementCount::getFixed((Decompose.second * Vscale) +
10362
(OrigIdx % Vscale));
10363
} else {
10364
auto Decompose =
10365
RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
10366
VecVT, ContainerSubVecVT, OrigIdx, TRI);
10367
SubRegIdx = Decompose.first;
10368
RemIdx = ElementCount::getScalable(Decompose.second);
10369
}
10370
10371
// If the Idx has been completely eliminated then this is a subvector extract
10372
// which naturally aligns to a vector register. These can easily be handled
10373
// using subregister manipulation.
10374
if (RemIdx.isZero()) {
10375
if (SubVecVT.isFixedLengthVector()) {
10376
Vec = DAG.getTargetExtractSubreg(SubRegIdx, DL, ContainerSubVecVT, Vec);
10377
return convertFromScalableVector(SubVecVT, Vec, DAG, Subtarget);
10378
}
10379
return Op;
10380
}
10381
10382
// Else SubVecVT is M1 or smaller and may need to be slid down: if SubVecVT
10383
// was > M1 then the index would need to be a multiple of VLMAX, and so would
10384
// divide exactly.
10385
assert(RISCVVType::decodeVLMUL(getLMUL(ContainerSubVecVT)).second ||
10386
getLMUL(ContainerSubVecVT) == RISCVII::VLMUL::LMUL_1);
10387
10388
// If the vector type is an LMUL-group type, extract a subvector equal to the
10389
// nearest full vector register type.
10390
MVT InterSubVT = VecVT;
10391
if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
10392
// If VecVT has an LMUL > 1, then SubVecVT should have a smaller LMUL, and
10393
// we should have successfully decomposed the extract into a subregister.
10394
assert(SubRegIdx != RISCV::NoSubRegister);
10395
InterSubVT = getLMUL1VT(VecVT);
10396
Vec = DAG.getTargetExtractSubreg(SubRegIdx, DL, InterSubVT, Vec);
10397
}
10398
10399
// Slide this vector register down by the desired number of elements in order
10400
// to place the desired subvector starting at element 0.
10401
SDValue SlidedownAmt = DAG.getElementCount(DL, XLenVT, RemIdx);
10402
auto [Mask, VL] = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
10403
if (SubVecVT.isFixedLengthVector())
10404
VL = getVLOp(SubVecVT.getVectorNumElements(), InterSubVT, DL, DAG,
10405
Subtarget);
10406
SDValue Slidedown =
10407
getVSlidedown(DAG, Subtarget, DL, InterSubVT, DAG.getUNDEF(InterSubVT),
10408
Vec, SlidedownAmt, Mask, VL);
10409
10410
// Now the vector is in the right position, extract our final subvector. This
10411
// should resolve to a COPY.
10412
Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
10413
DAG.getVectorIdxConstant(0, DL));
10414
10415
// We might have bitcast from a mask type: cast back to the original type if
10416
// required.
10417
return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
10418
}
10419
10420
// Widen a vector's operands to i8, then truncate its results back to the
10421
// original type, typically i1. All operand and result types must be the same.
10422
static SDValue widenVectorOpsToi8(SDValue N, const SDLoc &DL,
10423
SelectionDAG &DAG) {
10424
MVT VT = N.getSimpleValueType();
10425
MVT WideVT = VT.changeVectorElementType(MVT::i8);
10426
SmallVector<SDValue, 4> WideOps;
10427
for (SDValue Op : N->ops()) {
10428
assert(Op.getSimpleValueType() == VT &&
10429
"Operands and result must be same type");
10430
WideOps.push_back(DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Op));
10431
}
10432
10433
unsigned NumVals = N->getNumValues();
10434
10435
SDVTList VTs = DAG.getVTList(SmallVector<EVT, 4>(
10436
NumVals, N.getValueType().changeVectorElementType(MVT::i8)));
10437
SDValue WideN = DAG.getNode(N.getOpcode(), DL, VTs, WideOps);
10438
SmallVector<SDValue, 4> TruncVals;
10439
for (unsigned I = 0; I < NumVals; I++) {
10440
TruncVals.push_back(
10441
DAG.getSetCC(DL, N->getSimpleValueType(I), WideN.getValue(I),
10442
DAG.getConstant(0, DL, WideVT), ISD::SETNE));
10443
}
10444
10445
if (TruncVals.size() > 1)
10446
return DAG.getMergeValues(TruncVals, DL);
10447
return TruncVals.front();
10448
}
10449
10450
SDValue RISCVTargetLowering::lowerVECTOR_DEINTERLEAVE(SDValue Op,
10451
SelectionDAG &DAG) const {
10452
SDLoc DL(Op);
10453
MVT VecVT = Op.getSimpleValueType();
10454
10455
assert(VecVT.isScalableVector() &&
10456
"vector_interleave on non-scalable vector!");
10457
10458
// 1 bit element vectors need to be widened to e8
10459
if (VecVT.getVectorElementType() == MVT::i1)
10460
return widenVectorOpsToi8(Op, DL, DAG);
10461
10462
// If the VT is LMUL=8, we need to split and reassemble.
10463
if (VecVT.getSizeInBits().getKnownMinValue() ==
10464
(8 * RISCV::RVVBitsPerBlock)) {
10465
auto [Op0Lo, Op0Hi] = DAG.SplitVectorOperand(Op.getNode(), 0);
10466
auto [Op1Lo, Op1Hi] = DAG.SplitVectorOperand(Op.getNode(), 1);
10467
EVT SplitVT = Op0Lo.getValueType();
10468
10469
SDValue ResLo = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
10470
DAG.getVTList(SplitVT, SplitVT), Op0Lo, Op0Hi);
10471
SDValue ResHi = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
10472
DAG.getVTList(SplitVT, SplitVT), Op1Lo, Op1Hi);
10473
10474
SDValue Even = DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT,
10475
ResLo.getValue(0), ResHi.getValue(0));
10476
SDValue Odd = DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT, ResLo.getValue(1),
10477
ResHi.getValue(1));
10478
return DAG.getMergeValues({Even, Odd}, DL);
10479
}
10480
10481
// Concatenate the two vectors as one vector to deinterleave
10482
MVT ConcatVT =
10483
MVT::getVectorVT(VecVT.getVectorElementType(),
10484
VecVT.getVectorElementCount().multiplyCoefficientBy(2));
10485
SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatVT,
10486
Op.getOperand(0), Op.getOperand(1));
10487
10488
// We want to operate on all lanes, so get the mask and VL and mask for it
10489
auto [Mask, VL] = getDefaultScalableVLOps(ConcatVT, DL, DAG, Subtarget);
10490
SDValue Passthru = DAG.getUNDEF(ConcatVT);
10491
10492
// We can deinterleave through vnsrl.wi if the element type is smaller than
10493
// ELEN
10494
if (VecVT.getScalarSizeInBits() < Subtarget.getELen()) {
10495
SDValue Even =
10496
getDeinterleaveViaVNSRL(DL, VecVT, Concat, true, Subtarget, DAG);
10497
SDValue Odd =
10498
getDeinterleaveViaVNSRL(DL, VecVT, Concat, false, Subtarget, DAG);
10499
return DAG.getMergeValues({Even, Odd}, DL);
10500
}
10501
10502
// For the indices, use the same SEW to avoid an extra vsetvli
10503
MVT IdxVT = ConcatVT.changeVectorElementTypeToInteger();
10504
// Create a vector of even indices {0, 2, 4, ...}
10505
SDValue EvenIdx =
10506
DAG.getStepVector(DL, IdxVT, APInt(IdxVT.getScalarSizeInBits(), 2));
10507
// Create a vector of odd indices {1, 3, 5, ... }
10508
SDValue OddIdx =
10509
DAG.getNode(ISD::ADD, DL, IdxVT, EvenIdx, DAG.getConstant(1, DL, IdxVT));
10510
10511
// Gather the even and odd elements into two separate vectors
10512
SDValue EvenWide = DAG.getNode(RISCVISD::VRGATHER_VV_VL, DL, ConcatVT,
10513
Concat, EvenIdx, Passthru, Mask, VL);
10514
SDValue OddWide = DAG.getNode(RISCVISD::VRGATHER_VV_VL, DL, ConcatVT,
10515
Concat, OddIdx, Passthru, Mask, VL);
10516
10517
// Extract the result half of the gather for even and odd
10518
SDValue Even = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VecVT, EvenWide,
10519
DAG.getVectorIdxConstant(0, DL));
10520
SDValue Odd = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VecVT, OddWide,
10521
DAG.getVectorIdxConstant(0, DL));
10522
10523
return DAG.getMergeValues({Even, Odd}, DL);
10524
}
10525
10526
SDValue RISCVTargetLowering::lowerVECTOR_INTERLEAVE(SDValue Op,
10527
SelectionDAG &DAG) const {
10528
SDLoc DL(Op);
10529
MVT VecVT = Op.getSimpleValueType();
10530
10531
assert(VecVT.isScalableVector() &&
10532
"vector_interleave on non-scalable vector!");
10533
10534
// i1 vectors need to be widened to i8
10535
if (VecVT.getVectorElementType() == MVT::i1)
10536
return widenVectorOpsToi8(Op, DL, DAG);
10537
10538
MVT XLenVT = Subtarget.getXLenVT();
10539
SDValue VL = DAG.getRegister(RISCV::X0, XLenVT);
10540
10541
// If the VT is LMUL=8, we need to split and reassemble.
10542
if (VecVT.getSizeInBits().getKnownMinValue() == (8 * RISCV::RVVBitsPerBlock)) {
10543
auto [Op0Lo, Op0Hi] = DAG.SplitVectorOperand(Op.getNode(), 0);
10544
auto [Op1Lo, Op1Hi] = DAG.SplitVectorOperand(Op.getNode(), 1);
10545
EVT SplitVT = Op0Lo.getValueType();
10546
10547
SDValue ResLo = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
10548
DAG.getVTList(SplitVT, SplitVT), Op0Lo, Op1Lo);
10549
SDValue ResHi = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
10550
DAG.getVTList(SplitVT, SplitVT), Op0Hi, Op1Hi);
10551
10552
SDValue Lo = DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT,
10553
ResLo.getValue(0), ResLo.getValue(1));
10554
SDValue Hi = DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT,
10555
ResHi.getValue(0), ResHi.getValue(1));
10556
return DAG.getMergeValues({Lo, Hi}, DL);
10557
}
10558
10559
SDValue Interleaved;
10560
10561
// If the element type is smaller than ELEN, then we can interleave with
10562
// vwaddu.vv and vwmaccu.vx
10563
if (VecVT.getScalarSizeInBits() < Subtarget.getELen()) {
10564
Interleaved = getWideningInterleave(Op.getOperand(0), Op.getOperand(1), DL,
10565
DAG, Subtarget);
10566
} else {
10567
// Otherwise, fallback to using vrgathere16.vv
10568
MVT ConcatVT =
10569
MVT::getVectorVT(VecVT.getVectorElementType(),
10570
VecVT.getVectorElementCount().multiplyCoefficientBy(2));
10571
SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatVT,
10572
Op.getOperand(0), Op.getOperand(1));
10573
10574
MVT IdxVT = ConcatVT.changeVectorElementType(MVT::i16);
10575
10576
// 0 1 2 3 4 5 6 7 ...
10577
SDValue StepVec = DAG.getStepVector(DL, IdxVT);
10578
10579
// 1 1 1 1 1 1 1 1 ...
10580
SDValue Ones = DAG.getSplatVector(IdxVT, DL, DAG.getConstant(1, DL, XLenVT));
10581
10582
// 1 0 1 0 1 0 1 0 ...
10583
SDValue OddMask = DAG.getNode(ISD::AND, DL, IdxVT, StepVec, Ones);
10584
OddMask = DAG.getSetCC(
10585
DL, IdxVT.changeVectorElementType(MVT::i1), OddMask,
10586
DAG.getSplatVector(IdxVT, DL, DAG.getConstant(0, DL, XLenVT)),
10587
ISD::CondCode::SETNE);
10588
10589
SDValue VLMax = DAG.getSplatVector(IdxVT, DL, computeVLMax(VecVT, DL, DAG));
10590
10591
// Build up the index vector for interleaving the concatenated vector
10592
// 0 0 1 1 2 2 3 3 ...
10593
SDValue Idx = DAG.getNode(ISD::SRL, DL, IdxVT, StepVec, Ones);
10594
// 0 n 1 n+1 2 n+2 3 n+3 ...
10595
Idx =
10596
DAG.getNode(RISCVISD::ADD_VL, DL, IdxVT, Idx, VLMax, Idx, OddMask, VL);
10597
10598
// Then perform the interleave
10599
// v[0] v[n] v[1] v[n+1] v[2] v[n+2] v[3] v[n+3] ...
10600
SDValue TrueMask = getAllOnesMask(IdxVT, VL, DL, DAG);
10601
Interleaved = DAG.getNode(RISCVISD::VRGATHEREI16_VV_VL, DL, ConcatVT,
10602
Concat, Idx, DAG.getUNDEF(ConcatVT), TrueMask, VL);
10603
}
10604
10605
// Extract the two halves from the interleaved result
10606
SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VecVT, Interleaved,
10607
DAG.getVectorIdxConstant(0, DL));
10608
SDValue Hi = DAG.getNode(
10609
ISD::EXTRACT_SUBVECTOR, DL, VecVT, Interleaved,
10610
DAG.getVectorIdxConstant(VecVT.getVectorMinNumElements(), DL));
10611
10612
return DAG.getMergeValues({Lo, Hi}, DL);
10613
}
10614
10615
// Lower step_vector to the vid instruction. Any non-identity step value must
10616
// be accounted for my manual expansion.
10617
SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
10618
SelectionDAG &DAG) const {
10619
SDLoc DL(Op);
10620
MVT VT = Op.getSimpleValueType();
10621
assert(VT.isScalableVector() && "Expected scalable vector");
10622
MVT XLenVT = Subtarget.getXLenVT();
10623
auto [Mask, VL] = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
10624
SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
10625
uint64_t StepValImm = Op.getConstantOperandVal(0);
10626
if (StepValImm != 1) {
10627
if (isPowerOf2_64(StepValImm)) {
10628
SDValue StepVal =
10629
DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
10630
DAG.getConstant(Log2_64(StepValImm), DL, XLenVT), VL);
10631
StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
10632
} else {
10633
SDValue StepVal = lowerScalarSplat(
10634
SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
10635
VL, VT, DL, DAG, Subtarget);
10636
StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
10637
}
10638
}
10639
return StepVec;
10640
}
10641
10642
// Implement vector_reverse using vrgather.vv with indices determined by
10643
// subtracting the id of each element from (VLMAX-1). This will convert
10644
// the indices like so:
10645
// (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
10646
// TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
10647
SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
10648
SelectionDAG &DAG) const {
10649
SDLoc DL(Op);
10650
MVT VecVT = Op.getSimpleValueType();
10651
if (VecVT.getVectorElementType() == MVT::i1) {
10652
MVT WidenVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
10653
SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenVT, Op.getOperand(0));
10654
SDValue Op2 = DAG.getNode(ISD::VECTOR_REVERSE, DL, WidenVT, Op1);
10655
return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Op2);
10656
}
10657
unsigned EltSize = VecVT.getScalarSizeInBits();
10658
unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
10659
unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
10660
unsigned MaxVLMAX =
10661
RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
10662
10663
unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
10664
MVT IntVT = VecVT.changeVectorElementTypeToInteger();
10665
10666
// If this is SEW=8 and VLMAX is potentially more than 256, we need
10667
// to use vrgatherei16.vv.
10668
// TODO: It's also possible to use vrgatherei16.vv for other types to
10669
// decrease register width for the index calculation.
10670
if (MaxVLMAX > 256 && EltSize == 8) {
10671
// If this is LMUL=8, we have to split before can use vrgatherei16.vv.
10672
// Reverse each half, then reassemble them in reverse order.
10673
// NOTE: It's also possible that after splitting that VLMAX no longer
10674
// requires vrgatherei16.vv.
10675
if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
10676
auto [Lo, Hi] = DAG.SplitVectorOperand(Op.getNode(), 0);
10677
auto [LoVT, HiVT] = DAG.GetSplitDestVTs(VecVT);
10678
Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
10679
Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
10680
// Reassemble the low and high pieces reversed.
10681
// FIXME: This is a CONCAT_VECTORS.
10682
SDValue Res =
10683
DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
10684
DAG.getVectorIdxConstant(0, DL));
10685
return DAG.getNode(
10686
ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
10687
DAG.getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
10688
}
10689
10690
// Just promote the int type to i16 which will double the LMUL.
10691
IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
10692
GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
10693
}
10694
10695
MVT XLenVT = Subtarget.getXLenVT();
10696
auto [Mask, VL] = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
10697
10698
// Calculate VLMAX-1 for the desired SEW.
10699
SDValue VLMinus1 = DAG.getNode(ISD::SUB, DL, XLenVT,
10700
computeVLMax(VecVT, DL, DAG),
10701
DAG.getConstant(1, DL, XLenVT));
10702
10703
// Splat VLMAX-1 taking care to handle SEW==64 on RV32.
10704
bool IsRV32E64 =
10705
!Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
10706
SDValue SplatVL;
10707
if (!IsRV32E64)
10708
SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
10709
else
10710
SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
10711
VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
10712
10713
SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
10714
SDValue Indices = DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID,
10715
DAG.getUNDEF(IntVT), Mask, VL);
10716
10717
return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices,
10718
DAG.getUNDEF(VecVT), Mask, VL);
10719
}
10720
10721
SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op,
10722
SelectionDAG &DAG) const {
10723
SDLoc DL(Op);
10724
SDValue V1 = Op.getOperand(0);
10725
SDValue V2 = Op.getOperand(1);
10726
MVT XLenVT = Subtarget.getXLenVT();
10727
MVT VecVT = Op.getSimpleValueType();
10728
10729
SDValue VLMax = computeVLMax(VecVT, DL, DAG);
10730
10731
int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
10732
SDValue DownOffset, UpOffset;
10733
if (ImmValue >= 0) {
10734
// The operand is a TargetConstant, we need to rebuild it as a regular
10735
// constant.
10736
DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
10737
UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset);
10738
} else {
10739
// The operand is a TargetConstant, we need to rebuild it as a regular
10740
// constant rather than negating the original operand.
10741
UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
10742
DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset);
10743
}
10744
10745
SDValue TrueMask = getAllOnesMask(VecVT, VLMax, DL, DAG);
10746
10747
SDValue SlideDown =
10748
getVSlidedown(DAG, Subtarget, DL, VecVT, DAG.getUNDEF(VecVT), V1,
10749
DownOffset, TrueMask, UpOffset);
10750
return getVSlideup(DAG, Subtarget, DL, VecVT, SlideDown, V2, UpOffset,
10751
TrueMask, DAG.getRegister(RISCV::X0, XLenVT),
10752
RISCVII::TAIL_AGNOSTIC);
10753
}
10754
10755
SDValue
10756
RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
10757
SelectionDAG &DAG) const {
10758
SDLoc DL(Op);
10759
auto *Load = cast<LoadSDNode>(Op);
10760
10761
assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
10762
Load->getMemoryVT(),
10763
*Load->getMemOperand()) &&
10764
"Expecting a correctly-aligned load");
10765
10766
MVT VT = Op.getSimpleValueType();
10767
MVT XLenVT = Subtarget.getXLenVT();
10768
MVT ContainerVT = getContainerForFixedLengthVector(VT);
10769
10770
// If we know the exact VLEN and our fixed length vector completely fills
10771
// the container, use a whole register load instead.
10772
const auto [MinVLMAX, MaxVLMAX] =
10773
RISCVTargetLowering::computeVLMAXBounds(ContainerVT, Subtarget);
10774
if (MinVLMAX == MaxVLMAX && MinVLMAX == VT.getVectorNumElements() &&
10775
getLMUL1VT(ContainerVT).bitsLE(ContainerVT)) {
10776
MachineMemOperand *MMO = Load->getMemOperand();
10777
SDValue NewLoad =
10778
DAG.getLoad(ContainerVT, DL, Load->getChain(), Load->getBasePtr(),
10779
MMO->getPointerInfo(), MMO->getBaseAlign(), MMO->getFlags(),
10780
MMO->getAAInfo(), MMO->getRanges());
10781
SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
10782
return DAG.getMergeValues({Result, NewLoad.getValue(1)}, DL);
10783
}
10784
10785
SDValue VL = getVLOp(VT.getVectorNumElements(), ContainerVT, DL, DAG, Subtarget);
10786
10787
bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
10788
SDValue IntID = DAG.getTargetConstant(
10789
IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT);
10790
SmallVector<SDValue, 4> Ops{Load->getChain(), IntID};
10791
if (!IsMaskOp)
10792
Ops.push_back(DAG.getUNDEF(ContainerVT));
10793
Ops.push_back(Load->getBasePtr());
10794
Ops.push_back(VL);
10795
SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
10796
SDValue NewLoad =
10797
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
10798
Load->getMemoryVT(), Load->getMemOperand());
10799
10800
SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
10801
return DAG.getMergeValues({Result, NewLoad.getValue(1)}, DL);
10802
}
10803
10804
SDValue
10805
RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
10806
SelectionDAG &DAG) const {
10807
SDLoc DL(Op);
10808
auto *Store = cast<StoreSDNode>(Op);
10809
10810
assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
10811
Store->getMemoryVT(),
10812
*Store->getMemOperand()) &&
10813
"Expecting a correctly-aligned store");
10814
10815
SDValue StoreVal = Store->getValue();
10816
MVT VT = StoreVal.getSimpleValueType();
10817
MVT XLenVT = Subtarget.getXLenVT();
10818
10819
// If the size less than a byte, we need to pad with zeros to make a byte.
10820
if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
10821
VT = MVT::v8i1;
10822
StoreVal =
10823
DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getConstant(0, DL, VT),
10824
StoreVal, DAG.getVectorIdxConstant(0, DL));
10825
}
10826
10827
MVT ContainerVT = getContainerForFixedLengthVector(VT);
10828
10829
SDValue NewValue =
10830
convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
10831
10832
10833
// If we know the exact VLEN and our fixed length vector completely fills
10834
// the container, use a whole register store instead.
10835
const auto [MinVLMAX, MaxVLMAX] =
10836
RISCVTargetLowering::computeVLMAXBounds(ContainerVT, Subtarget);
10837
if (MinVLMAX == MaxVLMAX && MinVLMAX == VT.getVectorNumElements() &&
10838
getLMUL1VT(ContainerVT).bitsLE(ContainerVT)) {
10839
MachineMemOperand *MMO = Store->getMemOperand();
10840
return DAG.getStore(Store->getChain(), DL, NewValue, Store->getBasePtr(),
10841
MMO->getPointerInfo(), MMO->getBaseAlign(),
10842
MMO->getFlags(), MMO->getAAInfo());
10843
}
10844
10845
SDValue VL = getVLOp(VT.getVectorNumElements(), ContainerVT, DL, DAG,
10846
Subtarget);
10847
10848
bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
10849
SDValue IntID = DAG.getTargetConstant(
10850
IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT);
10851
return DAG.getMemIntrinsicNode(
10852
ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
10853
{Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL},
10854
Store->getMemoryVT(), Store->getMemOperand());
10855
}
10856
10857
SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
10858
SelectionDAG &DAG) const {
10859
SDLoc DL(Op);
10860
MVT VT = Op.getSimpleValueType();
10861
10862
const auto *MemSD = cast<MemSDNode>(Op);
10863
EVT MemVT = MemSD->getMemoryVT();
10864
MachineMemOperand *MMO = MemSD->getMemOperand();
10865
SDValue Chain = MemSD->getChain();
10866
SDValue BasePtr = MemSD->getBasePtr();
10867
10868
SDValue Mask, PassThru, VL;
10869
if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
10870
Mask = VPLoad->getMask();
10871
PassThru = DAG.getUNDEF(VT);
10872
VL = VPLoad->getVectorLength();
10873
} else {
10874
const auto *MLoad = cast<MaskedLoadSDNode>(Op);
10875
Mask = MLoad->getMask();
10876
PassThru = MLoad->getPassThru();
10877
}
10878
10879
bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
10880
10881
MVT XLenVT = Subtarget.getXLenVT();
10882
10883
MVT ContainerVT = VT;
10884
if (VT.isFixedLengthVector()) {
10885
ContainerVT = getContainerForFixedLengthVector(VT);
10886
PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
10887
if (!IsUnmasked) {
10888
MVT MaskVT = getMaskTypeFor(ContainerVT);
10889
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
10890
}
10891
}
10892
10893
if (!VL)
10894
VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
10895
10896
unsigned IntID =
10897
IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
10898
SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
10899
if (IsUnmasked)
10900
Ops.push_back(DAG.getUNDEF(ContainerVT));
10901
else
10902
Ops.push_back(PassThru);
10903
Ops.push_back(BasePtr);
10904
if (!IsUnmasked)
10905
Ops.push_back(Mask);
10906
Ops.push_back(VL);
10907
if (!IsUnmasked)
10908
Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
10909
10910
SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
10911
10912
SDValue Result =
10913
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
10914
Chain = Result.getValue(1);
10915
10916
if (VT.isFixedLengthVector())
10917
Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
10918
10919
return DAG.getMergeValues({Result, Chain}, DL);
10920
}
10921
10922
SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
10923
SelectionDAG &DAG) const {
10924
SDLoc DL(Op);
10925
10926
const auto *MemSD = cast<MemSDNode>(Op);
10927
EVT MemVT = MemSD->getMemoryVT();
10928
MachineMemOperand *MMO = MemSD->getMemOperand();
10929
SDValue Chain = MemSD->getChain();
10930
SDValue BasePtr = MemSD->getBasePtr();
10931
SDValue Val, Mask, VL;
10932
10933
bool IsCompressingStore = false;
10934
if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
10935
Val = VPStore->getValue();
10936
Mask = VPStore->getMask();
10937
VL = VPStore->getVectorLength();
10938
} else {
10939
const auto *MStore = cast<MaskedStoreSDNode>(Op);
10940
Val = MStore->getValue();
10941
Mask = MStore->getMask();
10942
IsCompressingStore = MStore->isCompressingStore();
10943
}
10944
10945
bool IsUnmasked =
10946
ISD::isConstantSplatVectorAllOnes(Mask.getNode()) || IsCompressingStore;
10947
10948
MVT VT = Val.getSimpleValueType();
10949
MVT XLenVT = Subtarget.getXLenVT();
10950
10951
MVT ContainerVT = VT;
10952
if (VT.isFixedLengthVector()) {
10953
ContainerVT = getContainerForFixedLengthVector(VT);
10954
10955
Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
10956
if (!IsUnmasked || IsCompressingStore) {
10957
MVT MaskVT = getMaskTypeFor(ContainerVT);
10958
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
10959
}
10960
}
10961
10962
if (!VL)
10963
VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
10964
10965
if (IsCompressingStore) {
10966
Val = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ContainerVT,
10967
DAG.getConstant(Intrinsic::riscv_vcompress, DL, XLenVT),
10968
DAG.getUNDEF(ContainerVT), Val, Mask, VL);
10969
VL =
10970
DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Mask,
10971
getAllOnesMask(Mask.getSimpleValueType(), VL, DL, DAG), VL);
10972
}
10973
10974
unsigned IntID =
10975
IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
10976
SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
10977
Ops.push_back(Val);
10978
Ops.push_back(BasePtr);
10979
if (!IsUnmasked)
10980
Ops.push_back(Mask);
10981
Ops.push_back(VL);
10982
10983
return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
10984
DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
10985
}
10986
10987
SDValue
10988
RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
10989
SelectionDAG &DAG) const {
10990
MVT InVT = Op.getOperand(0).getSimpleValueType();
10991
MVT ContainerVT = getContainerForFixedLengthVector(InVT);
10992
10993
MVT VT = Op.getSimpleValueType();
10994
10995
SDValue Op1 =
10996
convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
10997
SDValue Op2 =
10998
convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
10999
11000
SDLoc DL(Op);
11001
auto [Mask, VL] = getDefaultVLOps(VT.getVectorNumElements(), ContainerVT, DL,
11002
DAG, Subtarget);
11003
MVT MaskVT = getMaskTypeFor(ContainerVT);
11004
11005
SDValue Cmp =
11006
DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT,
11007
{Op1, Op2, Op.getOperand(2), DAG.getUNDEF(MaskVT), Mask, VL});
11008
11009
return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
11010
}
11011
11012
SDValue RISCVTargetLowering::lowerVectorStrictFSetcc(SDValue Op,
11013
SelectionDAG &DAG) const {
11014
unsigned Opc = Op.getOpcode();
11015
SDLoc DL(Op);
11016
SDValue Chain = Op.getOperand(0);
11017
SDValue Op1 = Op.getOperand(1);
11018
SDValue Op2 = Op.getOperand(2);
11019
SDValue CC = Op.getOperand(3);
11020
ISD::CondCode CCVal = cast<CondCodeSDNode>(CC)->get();
11021
MVT VT = Op.getSimpleValueType();
11022
MVT InVT = Op1.getSimpleValueType();
11023
11024
// RVV VMFEQ/VMFNE ignores qNan, so we expand strict_fsetccs with OEQ/UNE
11025
// condition code.
11026
if (Opc == ISD::STRICT_FSETCCS) {
11027
// Expand strict_fsetccs(x, oeq) to
11028
// (and strict_fsetccs(x, y, oge), strict_fsetccs(x, y, ole))
11029
SDVTList VTList = Op->getVTList();
11030
if (CCVal == ISD::SETEQ || CCVal == ISD::SETOEQ) {
11031
SDValue OLECCVal = DAG.getCondCode(ISD::SETOLE);
11032
SDValue Tmp1 = DAG.getNode(ISD::STRICT_FSETCCS, DL, VTList, Chain, Op1,
11033
Op2, OLECCVal);
11034
SDValue Tmp2 = DAG.getNode(ISD::STRICT_FSETCCS, DL, VTList, Chain, Op2,
11035
Op1, OLECCVal);
11036
SDValue OutChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
11037
Tmp1.getValue(1), Tmp2.getValue(1));
11038
// Tmp1 and Tmp2 might be the same node.
11039
if (Tmp1 != Tmp2)
11040
Tmp1 = DAG.getNode(ISD::AND, DL, VT, Tmp1, Tmp2);
11041
return DAG.getMergeValues({Tmp1, OutChain}, DL);
11042
}
11043
11044
// Expand (strict_fsetccs x, y, une) to (not (strict_fsetccs x, y, oeq))
11045
if (CCVal == ISD::SETNE || CCVal == ISD::SETUNE) {
11046
SDValue OEQCCVal = DAG.getCondCode(ISD::SETOEQ);
11047
SDValue OEQ = DAG.getNode(ISD::STRICT_FSETCCS, DL, VTList, Chain, Op1,
11048
Op2, OEQCCVal);
11049
SDValue Res = DAG.getNOT(DL, OEQ, VT);
11050
return DAG.getMergeValues({Res, OEQ.getValue(1)}, DL);
11051
}
11052
}
11053
11054
MVT ContainerInVT = InVT;
11055
if (InVT.isFixedLengthVector()) {
11056
ContainerInVT = getContainerForFixedLengthVector(InVT);
11057
Op1 = convertToScalableVector(ContainerInVT, Op1, DAG, Subtarget);
11058
Op2 = convertToScalableVector(ContainerInVT, Op2, DAG, Subtarget);
11059
}
11060
MVT MaskVT = getMaskTypeFor(ContainerInVT);
11061
11062
auto [Mask, VL] = getDefaultVLOps(InVT, ContainerInVT, DL, DAG, Subtarget);
11063
11064
SDValue Res;
11065
if (Opc == ISD::STRICT_FSETCC &&
11066
(CCVal == ISD::SETLT || CCVal == ISD::SETOLT || CCVal == ISD::SETLE ||
11067
CCVal == ISD::SETOLE)) {
11068
// VMFLT/VMFLE/VMFGT/VMFGE raise exception for qNan. Generate a mask to only
11069
// active when both input elements are ordered.
11070
SDValue True = getAllOnesMask(ContainerInVT, VL, DL, DAG);
11071
SDValue OrderMask1 = DAG.getNode(
11072
RISCVISD::STRICT_FSETCC_VL, DL, DAG.getVTList(MaskVT, MVT::Other),
11073
{Chain, Op1, Op1, DAG.getCondCode(ISD::SETOEQ), DAG.getUNDEF(MaskVT),
11074
True, VL});
11075
SDValue OrderMask2 = DAG.getNode(
11076
RISCVISD::STRICT_FSETCC_VL, DL, DAG.getVTList(MaskVT, MVT::Other),
11077
{Chain, Op2, Op2, DAG.getCondCode(ISD::SETOEQ), DAG.getUNDEF(MaskVT),
11078
True, VL});
11079
Mask =
11080
DAG.getNode(RISCVISD::VMAND_VL, DL, MaskVT, OrderMask1, OrderMask2, VL);
11081
// Use Mask as the merge operand to let the result be 0 if either of the
11082
// inputs is unordered.
11083
Res = DAG.getNode(RISCVISD::STRICT_FSETCCS_VL, DL,
11084
DAG.getVTList(MaskVT, MVT::Other),
11085
{Chain, Op1, Op2, CC, Mask, Mask, VL});
11086
} else {
11087
unsigned RVVOpc = Opc == ISD::STRICT_FSETCC ? RISCVISD::STRICT_FSETCC_VL
11088
: RISCVISD::STRICT_FSETCCS_VL;
11089
Res = DAG.getNode(RVVOpc, DL, DAG.getVTList(MaskVT, MVT::Other),
11090
{Chain, Op1, Op2, CC, DAG.getUNDEF(MaskVT), Mask, VL});
11091
}
11092
11093
if (VT.isFixedLengthVector()) {
11094
SDValue SubVec = convertFromScalableVector(VT, Res, DAG, Subtarget);
11095
return DAG.getMergeValues({SubVec, Res.getValue(1)}, DL);
11096
}
11097
return Res;
11098
}
11099
11100
// Lower vector ABS to smax(X, sub(0, X)).
11101
SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
11102
SDLoc DL(Op);
11103
MVT VT = Op.getSimpleValueType();
11104
SDValue X = Op.getOperand(0);
11105
11106
assert((Op.getOpcode() == ISD::VP_ABS || VT.isFixedLengthVector()) &&
11107
"Unexpected type for ISD::ABS");
11108
11109
MVT ContainerVT = VT;
11110
if (VT.isFixedLengthVector()) {
11111
ContainerVT = getContainerForFixedLengthVector(VT);
11112
X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
11113
}
11114
11115
SDValue Mask, VL;
11116
if (Op->getOpcode() == ISD::VP_ABS) {
11117
Mask = Op->getOperand(1);
11118
if (VT.isFixedLengthVector())
11119
Mask = convertToScalableVector(getMaskTypeFor(ContainerVT), Mask, DAG,
11120
Subtarget);
11121
VL = Op->getOperand(2);
11122
} else
11123
std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
11124
11125
SDValue SplatZero = DAG.getNode(
11126
RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
11127
DAG.getConstant(0, DL, Subtarget.getXLenVT()), VL);
11128
SDValue NegX = DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X,
11129
DAG.getUNDEF(ContainerVT), Mask, VL);
11130
SDValue Max = DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX,
11131
DAG.getUNDEF(ContainerVT), Mask, VL);
11132
11133
if (VT.isFixedLengthVector())
11134
Max = convertFromScalableVector(VT, Max, DAG, Subtarget);
11135
return Max;
11136
}
11137
11138
SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
11139
SDValue Op, SelectionDAG &DAG) const {
11140
SDLoc DL(Op);
11141
MVT VT = Op.getSimpleValueType();
11142
SDValue Mag = Op.getOperand(0);
11143
SDValue Sign = Op.getOperand(1);
11144
assert(Mag.getValueType() == Sign.getValueType() &&
11145
"Can only handle COPYSIGN with matching types.");
11146
11147
MVT ContainerVT = getContainerForFixedLengthVector(VT);
11148
Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
11149
Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
11150
11151
auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
11152
11153
SDValue CopySign = DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag,
11154
Sign, DAG.getUNDEF(ContainerVT), Mask, VL);
11155
11156
return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
11157
}
11158
11159
SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
11160
SDValue Op, SelectionDAG &DAG) const {
11161
MVT VT = Op.getSimpleValueType();
11162
MVT ContainerVT = getContainerForFixedLengthVector(VT);
11163
11164
MVT I1ContainerVT =
11165
MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
11166
11167
SDValue CC =
11168
convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
11169
SDValue Op1 =
11170
convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
11171
SDValue Op2 =
11172
convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
11173
11174
SDLoc DL(Op);
11175
SDValue VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
11176
11177
SDValue Select = DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, CC, Op1,
11178
Op2, DAG.getUNDEF(ContainerVT), VL);
11179
11180
return convertFromScalableVector(VT, Select, DAG, Subtarget);
11181
}
11182
11183
SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op,
11184
SelectionDAG &DAG) const {
11185
unsigned NewOpc = getRISCVVLOp(Op);
11186
bool HasMergeOp = hasMergeOp(NewOpc);
11187
bool HasMask = hasMaskOp(NewOpc);
11188
11189
MVT VT = Op.getSimpleValueType();
11190
MVT ContainerVT = getContainerForFixedLengthVector(VT);
11191
11192
// Create list of operands by converting existing ones to scalable types.
11193
SmallVector<SDValue, 6> Ops;
11194
for (const SDValue &V : Op->op_values()) {
11195
assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
11196
11197
// Pass through non-vector operands.
11198
if (!V.getValueType().isVector()) {
11199
Ops.push_back(V);
11200
continue;
11201
}
11202
11203
// "cast" fixed length vector to a scalable vector.
11204
assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
11205
"Only fixed length vectors are supported!");
11206
Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
11207
}
11208
11209
SDLoc DL(Op);
11210
auto [Mask, VL] = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
11211
if (HasMergeOp)
11212
Ops.push_back(DAG.getUNDEF(ContainerVT));
11213
if (HasMask)
11214
Ops.push_back(Mask);
11215
Ops.push_back(VL);
11216
11217
// StrictFP operations have two result values. Their lowered result should
11218
// have same result count.
11219
if (Op->isStrictFPOpcode()) {
11220
SDValue ScalableRes =
11221
DAG.getNode(NewOpc, DL, DAG.getVTList(ContainerVT, MVT::Other), Ops,
11222
Op->getFlags());
11223
SDValue SubVec = convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
11224
return DAG.getMergeValues({SubVec, ScalableRes.getValue(1)}, DL);
11225
}
11226
11227
SDValue ScalableRes =
11228
DAG.getNode(NewOpc, DL, ContainerVT, Ops, Op->getFlags());
11229
return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
11230
}
11231
11232
// Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
11233
// * Operands of each node are assumed to be in the same order.
11234
// * The EVL operand is promoted from i32 to i64 on RV64.
11235
// * Fixed-length vectors are converted to their scalable-vector container
11236
// types.
11237
SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG) const {
11238
unsigned RISCVISDOpc = getRISCVVLOp(Op);
11239
bool HasMergeOp = hasMergeOp(RISCVISDOpc);
11240
11241
SDLoc DL(Op);
11242
MVT VT = Op.getSimpleValueType();
11243
SmallVector<SDValue, 4> Ops;
11244
11245
MVT ContainerVT = VT;
11246
if (VT.isFixedLengthVector())
11247
ContainerVT = getContainerForFixedLengthVector(VT);
11248
11249
for (const auto &OpIdx : enumerate(Op->ops())) {
11250
SDValue V = OpIdx.value();
11251
assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
11252
// Add dummy merge value before the mask. Or if there isn't a mask, before
11253
// EVL.
11254
if (HasMergeOp) {
11255
auto MaskIdx = ISD::getVPMaskIdx(Op.getOpcode());
11256
if (MaskIdx) {
11257
if (*MaskIdx == OpIdx.index())
11258
Ops.push_back(DAG.getUNDEF(ContainerVT));
11259
} else if (ISD::getVPExplicitVectorLengthIdx(Op.getOpcode()) ==
11260
OpIdx.index()) {
11261
if (Op.getOpcode() == ISD::VP_MERGE) {
11262
// For VP_MERGE, copy the false operand instead of an undef value.
11263
Ops.push_back(Ops.back());
11264
} else {
11265
assert(Op.getOpcode() == ISD::VP_SELECT);
11266
// For VP_SELECT, add an undef value.
11267
Ops.push_back(DAG.getUNDEF(ContainerVT));
11268
}
11269
}
11270
}
11271
// Pass through operands which aren't fixed-length vectors.
11272
if (!V.getValueType().isFixedLengthVector()) {
11273
Ops.push_back(V);
11274
continue;
11275
}
11276
// "cast" fixed length vector to a scalable vector.
11277
MVT OpVT = V.getSimpleValueType();
11278
MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
11279
assert(useRVVForFixedLengthVectorVT(OpVT) &&
11280
"Only fixed length vectors are supported!");
11281
Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
11282
}
11283
11284
if (!VT.isFixedLengthVector())
11285
return DAG.getNode(RISCVISDOpc, DL, VT, Ops, Op->getFlags());
11286
11287
SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops, Op->getFlags());
11288
11289
return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
11290
}
11291
11292
SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op,
11293
SelectionDAG &DAG) const {
11294
SDLoc DL(Op);
11295
MVT VT = Op.getSimpleValueType();
11296
11297
SDValue Src = Op.getOperand(0);
11298
// NOTE: Mask is dropped.
11299
SDValue VL = Op.getOperand(2);
11300
11301
MVT ContainerVT = VT;
11302
if (VT.isFixedLengthVector()) {
11303
ContainerVT = getContainerForFixedLengthVector(VT);
11304
MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
11305
Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
11306
}
11307
11308
MVT XLenVT = Subtarget.getXLenVT();
11309
SDValue Zero = DAG.getConstant(0, DL, XLenVT);
11310
SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
11311
DAG.getUNDEF(ContainerVT), Zero, VL);
11312
11313
SDValue SplatValue = DAG.getConstant(
11314
Op.getOpcode() == ISD::VP_ZERO_EXTEND ? 1 : -1, DL, XLenVT);
11315
SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
11316
DAG.getUNDEF(ContainerVT), SplatValue, VL);
11317
11318
SDValue Result = DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, Src, Splat,
11319
ZeroSplat, DAG.getUNDEF(ContainerVT), VL);
11320
if (!VT.isFixedLengthVector())
11321
return Result;
11322
return convertFromScalableVector(VT, Result, DAG, Subtarget);
11323
}
11324
11325
SDValue RISCVTargetLowering::lowerVPSetCCMaskOp(SDValue Op,
11326
SelectionDAG &DAG) const {
11327
SDLoc DL(Op);
11328
MVT VT = Op.getSimpleValueType();
11329
11330
SDValue Op1 = Op.getOperand(0);
11331
SDValue Op2 = Op.getOperand(1);
11332
ISD::CondCode Condition = cast<CondCodeSDNode>(Op.getOperand(2))->get();
11333
// NOTE: Mask is dropped.
11334
SDValue VL = Op.getOperand(4);
11335
11336
MVT ContainerVT = VT;
11337
if (VT.isFixedLengthVector()) {
11338
ContainerVT = getContainerForFixedLengthVector(VT);
11339
Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
11340
Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
11341
}
11342
11343
SDValue Result;
11344
SDValue AllOneMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
11345
11346
switch (Condition) {
11347
default:
11348
break;
11349
// X != Y --> (X^Y)
11350
case ISD::SETNE:
11351
Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
11352
break;
11353
// X == Y --> ~(X^Y)
11354
case ISD::SETEQ: {
11355
SDValue Temp =
11356
DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
11357
Result =
11358
DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, AllOneMask, VL);
11359
break;
11360
}
11361
// X >s Y --> X == 0 & Y == 1 --> ~X & Y
11362
// X <u Y --> X == 0 & Y == 1 --> ~X & Y
11363
case ISD::SETGT:
11364
case ISD::SETULT: {
11365
SDValue Temp =
11366
DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
11367
Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Temp, Op2, VL);
11368
break;
11369
}
11370
// X <s Y --> X == 1 & Y == 0 --> ~Y & X
11371
// X >u Y --> X == 1 & Y == 0 --> ~Y & X
11372
case ISD::SETLT:
11373
case ISD::SETUGT: {
11374
SDValue Temp =
11375
DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
11376
Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Op1, Temp, VL);
11377
break;
11378
}
11379
// X >=s Y --> X == 0 | Y == 1 --> ~X | Y
11380
// X <=u Y --> X == 0 | Y == 1 --> ~X | Y
11381
case ISD::SETGE:
11382
case ISD::SETULE: {
11383
SDValue Temp =
11384
DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
11385
Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op2, VL);
11386
break;
11387
}
11388
// X <=s Y --> X == 1 | Y == 0 --> ~Y | X
11389
// X >=u Y --> X == 1 | Y == 0 --> ~Y | X
11390
case ISD::SETLE:
11391
case ISD::SETUGE: {
11392
SDValue Temp =
11393
DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
11394
Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op1, VL);
11395
break;
11396
}
11397
}
11398
11399
if (!VT.isFixedLengthVector())
11400
return Result;
11401
return convertFromScalableVector(VT, Result, DAG, Subtarget);
11402
}
11403
11404
// Lower Floating-Point/Integer Type-Convert VP SDNodes
11405
SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op,
11406
SelectionDAG &DAG) const {
11407
SDLoc DL(Op);
11408
11409
SDValue Src = Op.getOperand(0);
11410
SDValue Mask = Op.getOperand(1);
11411
SDValue VL = Op.getOperand(2);
11412
unsigned RISCVISDOpc = getRISCVVLOp(Op);
11413
11414
MVT DstVT = Op.getSimpleValueType();
11415
MVT SrcVT = Src.getSimpleValueType();
11416
if (DstVT.isFixedLengthVector()) {
11417
DstVT = getContainerForFixedLengthVector(DstVT);
11418
SrcVT = getContainerForFixedLengthVector(SrcVT);
11419
Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
11420
MVT MaskVT = getMaskTypeFor(DstVT);
11421
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
11422
}
11423
11424
unsigned DstEltSize = DstVT.getScalarSizeInBits();
11425
unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
11426
11427
SDValue Result;
11428
if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion.
11429
if (SrcVT.isInteger()) {
11430
assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
11431
11432
unsigned RISCVISDExtOpc = RISCVISDOpc == RISCVISD::SINT_TO_FP_VL
11433
? RISCVISD::VSEXT_VL
11434
: RISCVISD::VZEXT_VL;
11435
11436
// Do we need to do any pre-widening before converting?
11437
if (SrcEltSize == 1) {
11438
MVT IntVT = DstVT.changeVectorElementTypeToInteger();
11439
MVT XLenVT = Subtarget.getXLenVT();
11440
SDValue Zero = DAG.getConstant(0, DL, XLenVT);
11441
SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
11442
DAG.getUNDEF(IntVT), Zero, VL);
11443
SDValue One = DAG.getConstant(
11444
RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT);
11445
SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
11446
DAG.getUNDEF(IntVT), One, VL);
11447
Src = DAG.getNode(RISCVISD::VMERGE_VL, DL, IntVT, Src, OneSplat,
11448
ZeroSplat, DAG.getUNDEF(IntVT), VL);
11449
} else if (DstEltSize > (2 * SrcEltSize)) {
11450
// Widen before converting.
11451
MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2),
11452
DstVT.getVectorElementCount());
11453
Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL);
11454
}
11455
11456
Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
11457
} else {
11458
assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
11459
"Wrong input/output vector types");
11460
11461
// Convert f16 to f32 then convert f32 to i64.
11462
if (DstEltSize > (2 * SrcEltSize)) {
11463
assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
11464
MVT InterimFVT =
11465
MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
11466
Src =
11467
DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL);
11468
}
11469
11470
Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
11471
}
11472
} else { // Narrowing + Conversion
11473
if (SrcVT.isInteger()) {
11474
assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
11475
// First do a narrowing convert to an FP type half the size, then round
11476
// the FP type to a small FP type if needed.
11477
11478
MVT InterimFVT = DstVT;
11479
if (SrcEltSize > (2 * DstEltSize)) {
11480
assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!");
11481
assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
11482
InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
11483
}
11484
11485
Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL);
11486
11487
if (InterimFVT != DstVT) {
11488
Src = Result;
11489
Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL);
11490
}
11491
} else {
11492
assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
11493
"Wrong input/output vector types");
11494
// First do a narrowing conversion to an integer half the size, then
11495
// truncate if needed.
11496
11497
if (DstEltSize == 1) {
11498
// First convert to the same size integer, then convert to mask using
11499
// setcc.
11500
assert(SrcEltSize >= 16 && "Unexpected FP type!");
11501
MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize),
11502
DstVT.getVectorElementCount());
11503
Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
11504
11505
// Compare the integer result to 0. The integer should be 0 or 1/-1,
11506
// otherwise the conversion was undefined.
11507
MVT XLenVT = Subtarget.getXLenVT();
11508
SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
11509
SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT,
11510
DAG.getUNDEF(InterimIVT), SplatZero, VL);
11511
Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT,
11512
{Result, SplatZero, DAG.getCondCode(ISD::SETNE),
11513
DAG.getUNDEF(DstVT), Mask, VL});
11514
} else {
11515
MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
11516
DstVT.getVectorElementCount());
11517
11518
Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
11519
11520
while (InterimIVT != DstVT) {
11521
SrcEltSize /= 2;
11522
Src = Result;
11523
InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
11524
DstVT.getVectorElementCount());
11525
Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT,
11526
Src, Mask, VL);
11527
}
11528
}
11529
}
11530
}
11531
11532
MVT VT = Op.getSimpleValueType();
11533
if (!VT.isFixedLengthVector())
11534
return Result;
11535
return convertFromScalableVector(VT, Result, DAG, Subtarget);
11536
}
11537
11538
SDValue
11539
RISCVTargetLowering::lowerVPSpliceExperimental(SDValue Op,
11540
SelectionDAG &DAG) const {
11541
SDLoc DL(Op);
11542
11543
SDValue Op1 = Op.getOperand(0);
11544
SDValue Op2 = Op.getOperand(1);
11545
SDValue Offset = Op.getOperand(2);
11546
SDValue Mask = Op.getOperand(3);
11547
SDValue EVL1 = Op.getOperand(4);
11548
SDValue EVL2 = Op.getOperand(5);
11549
11550
const MVT XLenVT = Subtarget.getXLenVT();
11551
MVT VT = Op.getSimpleValueType();
11552
MVT ContainerVT = VT;
11553
if (VT.isFixedLengthVector()) {
11554
ContainerVT = getContainerForFixedLengthVector(VT);
11555
Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
11556
Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
11557
MVT MaskVT = getMaskTypeFor(ContainerVT);
11558
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
11559
}
11560
11561
// EVL1 may need to be extended to XLenVT with RV64LegalI32.
11562
EVL1 = DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, EVL1);
11563
11564
bool IsMaskVector = VT.getVectorElementType() == MVT::i1;
11565
if (IsMaskVector) {
11566
ContainerVT = ContainerVT.changeVectorElementType(MVT::i8);
11567
11568
// Expand input operands
11569
SDValue SplatOneOp1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
11570
DAG.getUNDEF(ContainerVT),
11571
DAG.getConstant(1, DL, XLenVT), EVL1);
11572
SDValue SplatZeroOp1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
11573
DAG.getUNDEF(ContainerVT),
11574
DAG.getConstant(0, DL, XLenVT), EVL1);
11575
Op1 = DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, Op1, SplatOneOp1,
11576
SplatZeroOp1, DAG.getUNDEF(ContainerVT), EVL1);
11577
11578
SDValue SplatOneOp2 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
11579
DAG.getUNDEF(ContainerVT),
11580
DAG.getConstant(1, DL, XLenVT), EVL2);
11581
SDValue SplatZeroOp2 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
11582
DAG.getUNDEF(ContainerVT),
11583
DAG.getConstant(0, DL, XLenVT), EVL2);
11584
Op2 = DAG.getNode(RISCVISD::VMERGE_VL, DL, ContainerVT, Op2, SplatOneOp2,
11585
SplatZeroOp2, DAG.getUNDEF(ContainerVT), EVL2);
11586
}
11587
11588
int64_t ImmValue = cast<ConstantSDNode>(Offset)->getSExtValue();
11589
SDValue DownOffset, UpOffset;
11590
if (ImmValue >= 0) {
11591
// The operand is a TargetConstant, we need to rebuild it as a regular
11592
// constant.
11593
DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
11594
UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, EVL1, DownOffset);
11595
} else {
11596
// The operand is a TargetConstant, we need to rebuild it as a regular
11597
// constant rather than negating the original operand.
11598
UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
11599
DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, EVL1, UpOffset);
11600
}
11601
11602
SDValue SlideDown =
11603
getVSlidedown(DAG, Subtarget, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
11604
Op1, DownOffset, Mask, UpOffset);
11605
SDValue Result = getVSlideup(DAG, Subtarget, DL, ContainerVT, SlideDown, Op2,
11606
UpOffset, Mask, EVL2, RISCVII::TAIL_AGNOSTIC);
11607
11608
if (IsMaskVector) {
11609
// Truncate Result back to a mask vector (Result has same EVL as Op2)
11610
Result = DAG.getNode(
11611
RISCVISD::SETCC_VL, DL, ContainerVT.changeVectorElementType(MVT::i1),
11612
{Result, DAG.getConstant(0, DL, ContainerVT),
11613
DAG.getCondCode(ISD::SETNE), DAG.getUNDEF(getMaskTypeFor(ContainerVT)),
11614
Mask, EVL2});
11615
}
11616
11617
if (!VT.isFixedLengthVector())
11618
return Result;
11619
return convertFromScalableVector(VT, Result, DAG, Subtarget);
11620
}
11621
11622
SDValue RISCVTargetLowering::lowerVPSplatExperimental(SDValue Op,
11623
SelectionDAG &DAG) const {
11624
SDLoc DL(Op);
11625
SDValue Val = Op.getOperand(0);
11626
SDValue Mask = Op.getOperand(1);
11627
SDValue VL = Op.getOperand(2);
11628
MVT VT = Op.getSimpleValueType();
11629
11630
MVT ContainerVT = VT;
11631
if (VT.isFixedLengthVector()) {
11632
ContainerVT = getContainerForFixedLengthVector(VT);
11633
MVT MaskVT = getMaskTypeFor(ContainerVT);
11634
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
11635
}
11636
11637
SDValue Result =
11638
lowerScalarSplat(SDValue(), Val, VL, ContainerVT, DL, DAG, Subtarget);
11639
11640
if (!VT.isFixedLengthVector())
11641
return Result;
11642
return convertFromScalableVector(VT, Result, DAG, Subtarget);
11643
}
11644
11645
SDValue
11646
RISCVTargetLowering::lowerVPReverseExperimental(SDValue Op,
11647
SelectionDAG &DAG) const {
11648
SDLoc DL(Op);
11649
MVT VT = Op.getSimpleValueType();
11650
MVT XLenVT = Subtarget.getXLenVT();
11651
11652
SDValue Op1 = Op.getOperand(0);
11653
SDValue Mask = Op.getOperand(1);
11654
SDValue EVL = Op.getOperand(2);
11655
11656
MVT ContainerVT = VT;
11657
if (VT.isFixedLengthVector()) {
11658
ContainerVT = getContainerForFixedLengthVector(VT);
11659
Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
11660
MVT MaskVT = getMaskTypeFor(ContainerVT);
11661
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
11662
}
11663
11664
MVT GatherVT = ContainerVT;
11665
MVT IndicesVT = ContainerVT.changeVectorElementTypeToInteger();
11666
// Check if we are working with mask vectors
11667
bool IsMaskVector = ContainerVT.getVectorElementType() == MVT::i1;
11668
if (IsMaskVector) {
11669
GatherVT = IndicesVT = ContainerVT.changeVectorElementType(MVT::i8);
11670
11671
// Expand input operand
11672
SDValue SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IndicesVT,
11673
DAG.getUNDEF(IndicesVT),
11674
DAG.getConstant(1, DL, XLenVT), EVL);
11675
SDValue SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IndicesVT,
11676
DAG.getUNDEF(IndicesVT),
11677
DAG.getConstant(0, DL, XLenVT), EVL);
11678
Op1 = DAG.getNode(RISCVISD::VMERGE_VL, DL, IndicesVT, Op1, SplatOne,
11679
SplatZero, DAG.getUNDEF(IndicesVT), EVL);
11680
}
11681
11682
unsigned EltSize = GatherVT.getScalarSizeInBits();
11683
unsigned MinSize = GatherVT.getSizeInBits().getKnownMinValue();
11684
unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
11685
unsigned MaxVLMAX =
11686
RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
11687
11688
unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
11689
// If this is SEW=8 and VLMAX is unknown or more than 256, we need
11690
// to use vrgatherei16.vv.
11691
// TODO: It's also possible to use vrgatherei16.vv for other types to
11692
// decrease register width for the index calculation.
11693
// NOTE: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
11694
if (MaxVLMAX > 256 && EltSize == 8) {
11695
// If this is LMUL=8, we have to split before using vrgatherei16.vv.
11696
// Split the vector in half and reverse each half using a full register
11697
// reverse.
11698
// Swap the halves and concatenate them.
11699
// Slide the concatenated result by (VLMax - VL).
11700
if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
11701
auto [LoVT, HiVT] = DAG.GetSplitDestVTs(GatherVT);
11702
auto [Lo, Hi] = DAG.SplitVector(Op1, DL);
11703
11704
SDValue LoRev = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
11705
SDValue HiRev = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
11706
11707
// Reassemble the low and high pieces reversed.
11708
// NOTE: this Result is unmasked (because we do not need masks for
11709
// shuffles). If in the future this has to change, we can use a SELECT_VL
11710
// between Result and UNDEF using the mask originally passed to VP_REVERSE
11711
SDValue Result =
11712
DAG.getNode(ISD::CONCAT_VECTORS, DL, GatherVT, HiRev, LoRev);
11713
11714
// Slide off any elements from past EVL that were reversed into the low
11715
// elements.
11716
unsigned MinElts = GatherVT.getVectorMinNumElements();
11717
SDValue VLMax =
11718
DAG.getVScale(DL, XLenVT, APInt(XLenVT.getSizeInBits(), MinElts));
11719
SDValue Diff = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, EVL);
11720
11721
Result = getVSlidedown(DAG, Subtarget, DL, GatherVT,
11722
DAG.getUNDEF(GatherVT), Result, Diff, Mask, EVL);
11723
11724
if (IsMaskVector) {
11725
// Truncate Result back to a mask vector
11726
Result =
11727
DAG.getNode(RISCVISD::SETCC_VL, DL, ContainerVT,
11728
{Result, DAG.getConstant(0, DL, GatherVT),
11729
DAG.getCondCode(ISD::SETNE),
11730
DAG.getUNDEF(getMaskTypeFor(ContainerVT)), Mask, EVL});
11731
}
11732
11733
if (!VT.isFixedLengthVector())
11734
return Result;
11735
return convertFromScalableVector(VT, Result, DAG, Subtarget);
11736
}
11737
11738
// Just promote the int type to i16 which will double the LMUL.
11739
IndicesVT = MVT::getVectorVT(MVT::i16, IndicesVT.getVectorElementCount());
11740
GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
11741
}
11742
11743
SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IndicesVT, Mask, EVL);
11744
SDValue VecLen =
11745
DAG.getNode(ISD::SUB, DL, XLenVT, EVL, DAG.getConstant(1, DL, XLenVT));
11746
SDValue VecLenSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IndicesVT,
11747
DAG.getUNDEF(IndicesVT), VecLen, EVL);
11748
SDValue VRSUB = DAG.getNode(RISCVISD::SUB_VL, DL, IndicesVT, VecLenSplat, VID,
11749
DAG.getUNDEF(IndicesVT), Mask, EVL);
11750
SDValue Result = DAG.getNode(GatherOpc, DL, GatherVT, Op1, VRSUB,
11751
DAG.getUNDEF(GatherVT), Mask, EVL);
11752
11753
if (IsMaskVector) {
11754
// Truncate Result back to a mask vector
11755
Result = DAG.getNode(
11756
RISCVISD::SETCC_VL, DL, ContainerVT,
11757
{Result, DAG.getConstant(0, DL, GatherVT), DAG.getCondCode(ISD::SETNE),
11758
DAG.getUNDEF(getMaskTypeFor(ContainerVT)), Mask, EVL});
11759
}
11760
11761
if (!VT.isFixedLengthVector())
11762
return Result;
11763
return convertFromScalableVector(VT, Result, DAG, Subtarget);
11764
}
11765
11766
SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op,
11767
SelectionDAG &DAG) const {
11768
MVT VT = Op.getSimpleValueType();
11769
if (VT.getVectorElementType() != MVT::i1)
11770
return lowerVPOp(Op, DAG);
11771
11772
// It is safe to drop mask parameter as masked-off elements are undef.
11773
SDValue Op1 = Op->getOperand(0);
11774
SDValue Op2 = Op->getOperand(1);
11775
SDValue VL = Op->getOperand(3);
11776
11777
MVT ContainerVT = VT;
11778
const bool IsFixed = VT.isFixedLengthVector();
11779
if (IsFixed) {
11780
ContainerVT = getContainerForFixedLengthVector(VT);
11781
Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
11782
Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
11783
}
11784
11785
SDLoc DL(Op);
11786
SDValue Val = DAG.getNode(getRISCVVLOp(Op), DL, ContainerVT, Op1, Op2, VL);
11787
if (!IsFixed)
11788
return Val;
11789
return convertFromScalableVector(VT, Val, DAG, Subtarget);
11790
}
11791
11792
SDValue RISCVTargetLowering::lowerVPStridedLoad(SDValue Op,
11793
SelectionDAG &DAG) const {
11794
SDLoc DL(Op);
11795
MVT XLenVT = Subtarget.getXLenVT();
11796
MVT VT = Op.getSimpleValueType();
11797
MVT ContainerVT = VT;
11798
if (VT.isFixedLengthVector())
11799
ContainerVT = getContainerForFixedLengthVector(VT);
11800
11801
SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
11802
11803
auto *VPNode = cast<VPStridedLoadSDNode>(Op);
11804
// Check if the mask is known to be all ones
11805
SDValue Mask = VPNode->getMask();
11806
bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
11807
11808
SDValue IntID = DAG.getTargetConstant(IsUnmasked ? Intrinsic::riscv_vlse
11809
: Intrinsic::riscv_vlse_mask,
11810
DL, XLenVT);
11811
SmallVector<SDValue, 8> Ops{VPNode->getChain(), IntID,
11812
DAG.getUNDEF(ContainerVT), VPNode->getBasePtr(),
11813
VPNode->getStride()};
11814
if (!IsUnmasked) {
11815
if (VT.isFixedLengthVector()) {
11816
MVT MaskVT = ContainerVT.changeVectorElementType(MVT::i1);
11817
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
11818
}
11819
Ops.push_back(Mask);
11820
}
11821
Ops.push_back(VPNode->getVectorLength());
11822
if (!IsUnmasked) {
11823
SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
11824
Ops.push_back(Policy);
11825
}
11826
11827
SDValue Result =
11828
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
11829
VPNode->getMemoryVT(), VPNode->getMemOperand());
11830
SDValue Chain = Result.getValue(1);
11831
11832
if (VT.isFixedLengthVector())
11833
Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
11834
11835
return DAG.getMergeValues({Result, Chain}, DL);
11836
}
11837
11838
SDValue RISCVTargetLowering::lowerVPStridedStore(SDValue Op,
11839
SelectionDAG &DAG) const {
11840
SDLoc DL(Op);
11841
MVT XLenVT = Subtarget.getXLenVT();
11842
11843
auto *VPNode = cast<VPStridedStoreSDNode>(Op);
11844
SDValue StoreVal = VPNode->getValue();
11845
MVT VT = StoreVal.getSimpleValueType();
11846
MVT ContainerVT = VT;
11847
if (VT.isFixedLengthVector()) {
11848
ContainerVT = getContainerForFixedLengthVector(VT);
11849
StoreVal = convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
11850
}
11851
11852
// Check if the mask is known to be all ones
11853
SDValue Mask = VPNode->getMask();
11854
bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
11855
11856
SDValue IntID = DAG.getTargetConstant(IsUnmasked ? Intrinsic::riscv_vsse
11857
: Intrinsic::riscv_vsse_mask,
11858
DL, XLenVT);
11859
SmallVector<SDValue, 8> Ops{VPNode->getChain(), IntID, StoreVal,
11860
VPNode->getBasePtr(), VPNode->getStride()};
11861
if (!IsUnmasked) {
11862
if (VT.isFixedLengthVector()) {
11863
MVT MaskVT = ContainerVT.changeVectorElementType(MVT::i1);
11864
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
11865
}
11866
Ops.push_back(Mask);
11867
}
11868
Ops.push_back(VPNode->getVectorLength());
11869
11870
return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, VPNode->getVTList(),
11871
Ops, VPNode->getMemoryVT(),
11872
VPNode->getMemOperand());
11873
}
11874
11875
// Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
11876
// matched to a RVV indexed load. The RVV indexed load instructions only
11877
// support the "unsigned unscaled" addressing mode; indices are implicitly
11878
// zero-extended or truncated to XLEN and are treated as byte offsets. Any
11879
// signed or scaled indexing is extended to the XLEN value type and scaled
11880
// accordingly.
11881
SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
11882
SelectionDAG &DAG) const {
11883
SDLoc DL(Op);
11884
MVT VT = Op.getSimpleValueType();
11885
11886
const auto *MemSD = cast<MemSDNode>(Op.getNode());
11887
EVT MemVT = MemSD->getMemoryVT();
11888
MachineMemOperand *MMO = MemSD->getMemOperand();
11889
SDValue Chain = MemSD->getChain();
11890
SDValue BasePtr = MemSD->getBasePtr();
11891
11892
[[maybe_unused]] ISD::LoadExtType LoadExtType;
11893
SDValue Index, Mask, PassThru, VL;
11894
11895
if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
11896
Index = VPGN->getIndex();
11897
Mask = VPGN->getMask();
11898
PassThru = DAG.getUNDEF(VT);
11899
VL = VPGN->getVectorLength();
11900
// VP doesn't support extending loads.
11901
LoadExtType = ISD::NON_EXTLOAD;
11902
} else {
11903
// Else it must be a MGATHER.
11904
auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
11905
Index = MGN->getIndex();
11906
Mask = MGN->getMask();
11907
PassThru = MGN->getPassThru();
11908
LoadExtType = MGN->getExtensionType();
11909
}
11910
11911
MVT IndexVT = Index.getSimpleValueType();
11912
MVT XLenVT = Subtarget.getXLenVT();
11913
11914
assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
11915
"Unexpected VTs!");
11916
assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
11917
// Targets have to explicitly opt-in for extending vector loads.
11918
assert(LoadExtType == ISD::NON_EXTLOAD &&
11919
"Unexpected extending MGATHER/VP_GATHER");
11920
11921
// If the mask is known to be all ones, optimize to an unmasked intrinsic;
11922
// the selection of the masked intrinsics doesn't do this for us.
11923
bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
11924
11925
MVT ContainerVT = VT;
11926
if (VT.isFixedLengthVector()) {
11927
ContainerVT = getContainerForFixedLengthVector(VT);
11928
IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
11929
ContainerVT.getVectorElementCount());
11930
11931
Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
11932
11933
if (!IsUnmasked) {
11934
MVT MaskVT = getMaskTypeFor(ContainerVT);
11935
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
11936
PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
11937
}
11938
}
11939
11940
if (!VL)
11941
VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
11942
11943
if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
11944
IndexVT = IndexVT.changeVectorElementType(XLenVT);
11945
Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index);
11946
}
11947
11948
unsigned IntID =
11949
IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
11950
SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
11951
if (IsUnmasked)
11952
Ops.push_back(DAG.getUNDEF(ContainerVT));
11953
else
11954
Ops.push_back(PassThru);
11955
Ops.push_back(BasePtr);
11956
Ops.push_back(Index);
11957
if (!IsUnmasked)
11958
Ops.push_back(Mask);
11959
Ops.push_back(VL);
11960
if (!IsUnmasked)
11961
Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
11962
11963
SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
11964
SDValue Result =
11965
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
11966
Chain = Result.getValue(1);
11967
11968
if (VT.isFixedLengthVector())
11969
Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
11970
11971
return DAG.getMergeValues({Result, Chain}, DL);
11972
}
11973
11974
// Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
11975
// matched to a RVV indexed store. The RVV indexed store instructions only
11976
// support the "unsigned unscaled" addressing mode; indices are implicitly
11977
// zero-extended or truncated to XLEN and are treated as byte offsets. Any
11978
// signed or scaled indexing is extended to the XLEN value type and scaled
11979
// accordingly.
11980
SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
11981
SelectionDAG &DAG) const {
11982
SDLoc DL(Op);
11983
const auto *MemSD = cast<MemSDNode>(Op.getNode());
11984
EVT MemVT = MemSD->getMemoryVT();
11985
MachineMemOperand *MMO = MemSD->getMemOperand();
11986
SDValue Chain = MemSD->getChain();
11987
SDValue BasePtr = MemSD->getBasePtr();
11988
11989
[[maybe_unused]] bool IsTruncatingStore = false;
11990
SDValue Index, Mask, Val, VL;
11991
11992
if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
11993
Index = VPSN->getIndex();
11994
Mask = VPSN->getMask();
11995
Val = VPSN->getValue();
11996
VL = VPSN->getVectorLength();
11997
// VP doesn't support truncating stores.
11998
IsTruncatingStore = false;
11999
} else {
12000
// Else it must be a MSCATTER.
12001
auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
12002
Index = MSN->getIndex();
12003
Mask = MSN->getMask();
12004
Val = MSN->getValue();
12005
IsTruncatingStore = MSN->isTruncatingStore();
12006
}
12007
12008
MVT VT = Val.getSimpleValueType();
12009
MVT IndexVT = Index.getSimpleValueType();
12010
MVT XLenVT = Subtarget.getXLenVT();
12011
12012
assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
12013
"Unexpected VTs!");
12014
assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
12015
// Targets have to explicitly opt-in for extending vector loads and
12016
// truncating vector stores.
12017
assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
12018
12019
// If the mask is known to be all ones, optimize to an unmasked intrinsic;
12020
// the selection of the masked intrinsics doesn't do this for us.
12021
bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
12022
12023
MVT ContainerVT = VT;
12024
if (VT.isFixedLengthVector()) {
12025
ContainerVT = getContainerForFixedLengthVector(VT);
12026
IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
12027
ContainerVT.getVectorElementCount());
12028
12029
Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
12030
Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
12031
12032
if (!IsUnmasked) {
12033
MVT MaskVT = getMaskTypeFor(ContainerVT);
12034
Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
12035
}
12036
}
12037
12038
if (!VL)
12039
VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
12040
12041
if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
12042
IndexVT = IndexVT.changeVectorElementType(XLenVT);
12043
Index = DAG.getNode(ISD::TRUNCATE, DL, IndexVT, Index);
12044
}
12045
12046
unsigned IntID =
12047
IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
12048
SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
12049
Ops.push_back(Val);
12050
Ops.push_back(BasePtr);
12051
Ops.push_back(Index);
12052
if (!IsUnmasked)
12053
Ops.push_back(Mask);
12054
Ops.push_back(VL);
12055
12056
return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
12057
DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
12058
}
12059
12060
SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
12061
SelectionDAG &DAG) const {
12062
const MVT XLenVT = Subtarget.getXLenVT();
12063
SDLoc DL(Op);
12064
SDValue Chain = Op->getOperand(0);
12065
SDValue SysRegNo = DAG.getTargetConstant(
12066
RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
12067
SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
12068
SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
12069
12070
// Encoding used for rounding mode in RISC-V differs from that used in
12071
// FLT_ROUNDS. To convert it the RISC-V rounding mode is used as an index in a
12072
// table, which consists of a sequence of 4-bit fields, each representing
12073
// corresponding FLT_ROUNDS mode.
12074
static const int Table =
12075
(int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
12076
(int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
12077
(int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
12078
(int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
12079
(int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
12080
12081
SDValue Shift =
12082
DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
12083
SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
12084
DAG.getConstant(Table, DL, XLenVT), Shift);
12085
SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
12086
DAG.getConstant(7, DL, XLenVT));
12087
12088
return DAG.getMergeValues({Masked, Chain}, DL);
12089
}
12090
12091
SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
12092
SelectionDAG &DAG) const {
12093
const MVT XLenVT = Subtarget.getXLenVT();
12094
SDLoc DL(Op);
12095
SDValue Chain = Op->getOperand(0);
12096
SDValue RMValue = Op->getOperand(1);
12097
SDValue SysRegNo = DAG.getTargetConstant(
12098
RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
12099
12100
// Encoding used for rounding mode in RISC-V differs from that used in
12101
// FLT_ROUNDS. To convert it the C rounding mode is used as an index in
12102
// a table, which consists of a sequence of 4-bit fields, each representing
12103
// corresponding RISC-V mode.
12104
static const unsigned Table =
12105
(RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
12106
(RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
12107
(RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
12108
(RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
12109
(RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
12110
12111
RMValue = DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, RMValue);
12112
12113
SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
12114
DAG.getConstant(2, DL, XLenVT));
12115
SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
12116
DAG.getConstant(Table, DL, XLenVT), Shift);
12117
RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
12118
DAG.getConstant(0x7, DL, XLenVT));
12119
return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
12120
RMValue);
12121
}
12122
12123
SDValue RISCVTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
12124
SelectionDAG &DAG) const {
12125
MachineFunction &MF = DAG.getMachineFunction();
12126
12127
bool isRISCV64 = Subtarget.is64Bit();
12128
EVT PtrVT = getPointerTy(DAG.getDataLayout());
12129
12130
int FI = MF.getFrameInfo().CreateFixedObject(isRISCV64 ? 8 : 4, 0, false);
12131
return DAG.getFrameIndex(FI, PtrVT);
12132
}
12133
12134
// Returns the opcode of the target-specific SDNode that implements the 32-bit
12135
// form of the given Opcode.
12136
static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
12137
switch (Opcode) {
12138
default:
12139
llvm_unreachable("Unexpected opcode");
12140
case ISD::SHL:
12141
return RISCVISD::SLLW;
12142
case ISD::SRA:
12143
return RISCVISD::SRAW;
12144
case ISD::SRL:
12145
return RISCVISD::SRLW;
12146
case ISD::SDIV:
12147
return RISCVISD::DIVW;
12148
case ISD::UDIV:
12149
return RISCVISD::DIVUW;
12150
case ISD::UREM:
12151
return RISCVISD::REMUW;
12152
case ISD::ROTL:
12153
return RISCVISD::ROLW;
12154
case ISD::ROTR:
12155
return RISCVISD::RORW;
12156
}
12157
}
12158
12159
// Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
12160
// node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
12161
// otherwise be promoted to i64, making it difficult to select the
12162
// SLLW/DIVUW/.../*W later one because the fact the operation was originally of
12163
// type i8/i16/i32 is lost.
12164
static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
12165
unsigned ExtOpc = ISD::ANY_EXTEND) {
12166
SDLoc DL(N);
12167
RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
12168
SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
12169
SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
12170
SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
12171
// ReplaceNodeResults requires we maintain the same type for the return value.
12172
return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
12173
}
12174
12175
// Converts the given 32-bit operation to a i64 operation with signed extension
12176
// semantic to reduce the signed extension instructions.
12177
static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
12178
SDLoc DL(N);
12179
SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
12180
SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
12181
SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
12182
SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
12183
DAG.getValueType(MVT::i32));
12184
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
12185
}
12186
12187
void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
12188
SmallVectorImpl<SDValue> &Results,
12189
SelectionDAG &DAG) const {
12190
SDLoc DL(N);
12191
switch (N->getOpcode()) {
12192
default:
12193
llvm_unreachable("Don't know how to custom type legalize this operation!");
12194
case ISD::STRICT_FP_TO_SINT:
12195
case ISD::STRICT_FP_TO_UINT:
12196
case ISD::FP_TO_SINT:
12197
case ISD::FP_TO_UINT: {
12198
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
12199
"Unexpected custom legalisation");
12200
bool IsStrict = N->isStrictFPOpcode();
12201
bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
12202
N->getOpcode() == ISD::STRICT_FP_TO_SINT;
12203
SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
12204
if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
12205
TargetLowering::TypeSoftenFloat) {
12206
if (!isTypeLegal(Op0.getValueType()))
12207
return;
12208
if (IsStrict) {
12209
SDValue Chain = N->getOperand(0);
12210
// In absense of Zfh, promote f16 to f32, then convert.
12211
if (Op0.getValueType() == MVT::f16 &&
12212
!Subtarget.hasStdExtZfhOrZhinx()) {
12213
Op0 = DAG.getNode(ISD::STRICT_FP_EXTEND, DL, {MVT::f32, MVT::Other},
12214
{Chain, Op0});
12215
Chain = Op0.getValue(1);
12216
}
12217
unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
12218
: RISCVISD::STRICT_FCVT_WU_RV64;
12219
SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
12220
SDValue Res = DAG.getNode(
12221
Opc, DL, VTs, Chain, Op0,
12222
DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
12223
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
12224
Results.push_back(Res.getValue(1));
12225
return;
12226
}
12227
// For bf16, or f16 in absense of Zfh, promote [b]f16 to f32 and then
12228
// convert.
12229
if ((Op0.getValueType() == MVT::f16 &&
12230
!Subtarget.hasStdExtZfhOrZhinx()) ||
12231
Op0.getValueType() == MVT::bf16)
12232
Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op0);
12233
12234
unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
12235
SDValue Res =
12236
DAG.getNode(Opc, DL, MVT::i64, Op0,
12237
DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
12238
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
12239
return;
12240
}
12241
// If the FP type needs to be softened, emit a library call using the 'si'
12242
// version. If we left it to default legalization we'd end up with 'di'. If
12243
// the FP type doesn't need to be softened just let generic type
12244
// legalization promote the result type.
12245
RTLIB::Libcall LC;
12246
if (IsSigned)
12247
LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
12248
else
12249
LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
12250
MakeLibCallOptions CallOptions;
12251
EVT OpVT = Op0.getValueType();
12252
CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
12253
SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
12254
SDValue Result;
12255
std::tie(Result, Chain) =
12256
makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
12257
Results.push_back(Result);
12258
if (IsStrict)
12259
Results.push_back(Chain);
12260
break;
12261
}
12262
case ISD::LROUND: {
12263
SDValue Op0 = N->getOperand(0);
12264
EVT Op0VT = Op0.getValueType();
12265
if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
12266
TargetLowering::TypeSoftenFloat) {
12267
if (!isTypeLegal(Op0VT))
12268
return;
12269
12270
// In absense of Zfh, promote f16 to f32, then convert.
12271
if (Op0.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfhOrZhinx())
12272
Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op0);
12273
12274
SDValue Res =
12275
DAG.getNode(RISCVISD::FCVT_W_RV64, DL, MVT::i64, Op0,
12276
DAG.getTargetConstant(RISCVFPRndMode::RMM, DL, MVT::i64));
12277
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
12278
return;
12279
}
12280
// If the FP type needs to be softened, emit a library call to lround. We'll
12281
// need to truncate the result. We assume any value that doesn't fit in i32
12282
// is allowed to return an unspecified value.
12283
RTLIB::Libcall LC =
12284
Op0.getValueType() == MVT::f64 ? RTLIB::LROUND_F64 : RTLIB::LROUND_F32;
12285
MakeLibCallOptions CallOptions;
12286
EVT OpVT = Op0.getValueType();
12287
CallOptions.setTypeListBeforeSoften(OpVT, MVT::i64, true);
12288
SDValue Result = makeLibCall(DAG, LC, MVT::i64, Op0, CallOptions, DL).first;
12289
Result = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Result);
12290
Results.push_back(Result);
12291
break;
12292
}
12293
case ISD::READCYCLECOUNTER:
12294
case ISD::READSTEADYCOUNTER: {
12295
assert(!Subtarget.is64Bit() && "READCYCLECOUNTER/READSTEADYCOUNTER only "
12296
"has custom type legalization on riscv32");
12297
12298
SDValue LoCounter, HiCounter;
12299
MVT XLenVT = Subtarget.getXLenVT();
12300
if (N->getOpcode() == ISD::READCYCLECOUNTER) {
12301
LoCounter = DAG.getTargetConstant(
12302
RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding, DL, XLenVT);
12303
HiCounter = DAG.getTargetConstant(
12304
RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding, DL, XLenVT);
12305
} else {
12306
LoCounter = DAG.getTargetConstant(
12307
RISCVSysReg::lookupSysRegByName("TIME")->Encoding, DL, XLenVT);
12308
HiCounter = DAG.getTargetConstant(
12309
RISCVSysReg::lookupSysRegByName("TIMEH")->Encoding, DL, XLenVT);
12310
}
12311
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
12312
SDValue RCW = DAG.getNode(RISCVISD::READ_COUNTER_WIDE, DL, VTs,
12313
N->getOperand(0), LoCounter, HiCounter);
12314
12315
Results.push_back(
12316
DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
12317
Results.push_back(RCW.getValue(2));
12318
break;
12319
}
12320
case ISD::LOAD: {
12321
if (!ISD::isNON_EXTLoad(N))
12322
return;
12323
12324
// Use a SEXTLOAD instead of the default EXTLOAD. Similar to the
12325
// sext_inreg we emit for ADD/SUB/MUL/SLLI.
12326
LoadSDNode *Ld = cast<LoadSDNode>(N);
12327
12328
SDLoc dl(N);
12329
SDValue Res = DAG.getExtLoad(ISD::SEXTLOAD, dl, MVT::i64, Ld->getChain(),
12330
Ld->getBasePtr(), Ld->getMemoryVT(),
12331
Ld->getMemOperand());
12332
Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Res));
12333
Results.push_back(Res.getValue(1));
12334
return;
12335
}
12336
case ISD::MUL: {
12337
unsigned Size = N->getSimpleValueType(0).getSizeInBits();
12338
unsigned XLen = Subtarget.getXLen();
12339
// This multiply needs to be expanded, try to use MULHSU+MUL if possible.
12340
if (Size > XLen) {
12341
assert(Size == (XLen * 2) && "Unexpected custom legalisation");
12342
SDValue LHS = N->getOperand(0);
12343
SDValue RHS = N->getOperand(1);
12344
APInt HighMask = APInt::getHighBitsSet(Size, XLen);
12345
12346
bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
12347
bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
12348
// We need exactly one side to be unsigned.
12349
if (LHSIsU == RHSIsU)
12350
return;
12351
12352
auto MakeMULPair = [&](SDValue S, SDValue U) {
12353
MVT XLenVT = Subtarget.getXLenVT();
12354
S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
12355
U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
12356
SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
12357
SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
12358
return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
12359
};
12360
12361
bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
12362
bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
12363
12364
// The other operand should be signed, but still prefer MULH when
12365
// possible.
12366
if (RHSIsU && LHSIsS && !RHSIsS)
12367
Results.push_back(MakeMULPair(LHS, RHS));
12368
else if (LHSIsU && RHSIsS && !LHSIsS)
12369
Results.push_back(MakeMULPair(RHS, LHS));
12370
12371
return;
12372
}
12373
[[fallthrough]];
12374
}
12375
case ISD::ADD:
12376
case ISD::SUB:
12377
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
12378
"Unexpected custom legalisation");
12379
Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
12380
break;
12381
case ISD::SHL:
12382
case ISD::SRA:
12383
case ISD::SRL:
12384
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
12385
"Unexpected custom legalisation");
12386
if (N->getOperand(1).getOpcode() != ISD::Constant) {
12387
// If we can use a BSET instruction, allow default promotion to apply.
12388
if (N->getOpcode() == ISD::SHL && Subtarget.hasStdExtZbs() &&
12389
isOneConstant(N->getOperand(0)))
12390
break;
12391
Results.push_back(customLegalizeToWOp(N, DAG));
12392
break;
12393
}
12394
12395
// Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
12396
// similar to customLegalizeToWOpWithSExt, but we must zero_extend the
12397
// shift amount.
12398
if (N->getOpcode() == ISD::SHL) {
12399
SDLoc DL(N);
12400
SDValue NewOp0 =
12401
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
12402
SDValue NewOp1 =
12403
DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
12404
SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
12405
SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
12406
DAG.getValueType(MVT::i32));
12407
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
12408
}
12409
12410
break;
12411
case ISD::ROTL:
12412
case ISD::ROTR:
12413
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
12414
"Unexpected custom legalisation");
12415
assert((Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb() ||
12416
Subtarget.hasVendorXTHeadBb()) &&
12417
"Unexpected custom legalization");
12418
if (!isa<ConstantSDNode>(N->getOperand(1)) &&
12419
!(Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb()))
12420
return;
12421
Results.push_back(customLegalizeToWOp(N, DAG));
12422
break;
12423
case ISD::CTTZ:
12424
case ISD::CTTZ_ZERO_UNDEF:
12425
case ISD::CTLZ:
12426
case ISD::CTLZ_ZERO_UNDEF: {
12427
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
12428
"Unexpected custom legalisation");
12429
12430
SDValue NewOp0 =
12431
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
12432
bool IsCTZ =
12433
N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
12434
unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
12435
SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
12436
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
12437
return;
12438
}
12439
case ISD::SDIV:
12440
case ISD::UDIV:
12441
case ISD::UREM: {
12442
MVT VT = N->getSimpleValueType(0);
12443
assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
12444
Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
12445
"Unexpected custom legalisation");
12446
// Don't promote division/remainder by constant since we should expand those
12447
// to multiply by magic constant.
12448
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
12449
if (N->getOperand(1).getOpcode() == ISD::Constant &&
12450
!isIntDivCheap(N->getValueType(0), Attr))
12451
return;
12452
12453
// If the input is i32, use ANY_EXTEND since the W instructions don't read
12454
// the upper 32 bits. For other types we need to sign or zero extend
12455
// based on the opcode.
12456
unsigned ExtOpc = ISD::ANY_EXTEND;
12457
if (VT != MVT::i32)
12458
ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
12459
: ISD::ZERO_EXTEND;
12460
12461
Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
12462
break;
12463
}
12464
case ISD::SADDO: {
12465
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
12466
"Unexpected custom legalisation");
12467
12468
// If the RHS is a constant, we can simplify ConditionRHS below. Otherwise
12469
// use the default legalization.
12470
if (!isa<ConstantSDNode>(N->getOperand(1)))
12471
return;
12472
12473
SDValue LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
12474
SDValue RHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
12475
SDValue Res = DAG.getNode(ISD::ADD, DL, MVT::i64, LHS, RHS);
12476
Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
12477
DAG.getValueType(MVT::i32));
12478
12479
SDValue Zero = DAG.getConstant(0, DL, MVT::i64);
12480
12481
// For an addition, the result should be less than one of the operands (LHS)
12482
// if and only if the other operand (RHS) is negative, otherwise there will
12483
// be overflow.
12484
// For a subtraction, the result should be less than one of the operands
12485
// (LHS) if and only if the other operand (RHS) is (non-zero) positive,
12486
// otherwise there will be overflow.
12487
EVT OType = N->getValueType(1);
12488
SDValue ResultLowerThanLHS = DAG.getSetCC(DL, OType, Res, LHS, ISD::SETLT);
12489
SDValue ConditionRHS = DAG.getSetCC(DL, OType, RHS, Zero, ISD::SETLT);
12490
12491
SDValue Overflow =
12492
DAG.getNode(ISD::XOR, DL, OType, ConditionRHS, ResultLowerThanLHS);
12493
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
12494
Results.push_back(Overflow);
12495
return;
12496
}
12497
case ISD::UADDO:
12498
case ISD::USUBO: {
12499
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
12500
"Unexpected custom legalisation");
12501
bool IsAdd = N->getOpcode() == ISD::UADDO;
12502
// Create an ADDW or SUBW.
12503
SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
12504
SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
12505
SDValue Res =
12506
DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
12507
Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
12508
DAG.getValueType(MVT::i32));
12509
12510
SDValue Overflow;
12511
if (IsAdd && isOneConstant(RHS)) {
12512
// Special case uaddo X, 1 overflowed if the addition result is 0.
12513
// The general case (X + C) < C is not necessarily beneficial. Although we
12514
// reduce the live range of X, we may introduce the materialization of
12515
// constant C, especially when the setcc result is used by branch. We have
12516
// no compare with constant and branch instructions.
12517
Overflow = DAG.getSetCC(DL, N->getValueType(1), Res,
12518
DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ);
12519
} else if (IsAdd && isAllOnesConstant(RHS)) {
12520
// Special case uaddo X, -1 overflowed if X != 0.
12521
Overflow = DAG.getSetCC(DL, N->getValueType(1), N->getOperand(0),
12522
DAG.getConstant(0, DL, MVT::i32), ISD::SETNE);
12523
} else {
12524
// Sign extend the LHS and perform an unsigned compare with the ADDW
12525
// result. Since the inputs are sign extended from i32, this is equivalent
12526
// to comparing the lower 32 bits.
12527
LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
12528
Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
12529
IsAdd ? ISD::SETULT : ISD::SETUGT);
12530
}
12531
12532
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
12533
Results.push_back(Overflow);
12534
return;
12535
}
12536
case ISD::UADDSAT:
12537
case ISD::USUBSAT: {
12538
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
12539
"Unexpected custom legalisation");
12540
if (Subtarget.hasStdExtZbb()) {
12541
// With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
12542
// sign extend allows overflow of the lower 32 bits to be detected on
12543
// the promoted size.
12544
SDValue LHS =
12545
DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
12546
SDValue RHS =
12547
DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
12548
SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
12549
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
12550
return;
12551
}
12552
12553
// Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
12554
// promotion for UADDO/USUBO.
12555
Results.push_back(expandAddSubSat(N, DAG));
12556
return;
12557
}
12558
case ISD::SADDSAT:
12559
case ISD::SSUBSAT: {
12560
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
12561
"Unexpected custom legalisation");
12562
Results.push_back(expandAddSubSat(N, DAG));
12563
return;
12564
}
12565
case ISD::ABS: {
12566
assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
12567
"Unexpected custom legalisation");
12568
12569
if (Subtarget.hasStdExtZbb()) {
12570
// Emit a special ABSW node that will be expanded to NEGW+MAX at isel.
12571
// This allows us to remember that the result is sign extended. Expanding
12572
// to NEGW+MAX here requires a Freeze which breaks ComputeNumSignBits.
12573
SDValue Src = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64,
12574
N->getOperand(0));
12575
SDValue Abs = DAG.getNode(RISCVISD::ABSW, DL, MVT::i64, Src);
12576
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Abs));
12577
return;
12578
}
12579
12580
// Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y)
12581
SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
12582
12583
// Freeze the source so we can increase it's use count.
12584
Src = DAG.getFreeze(Src);
12585
12586
// Copy sign bit to all bits using the sraiw pattern.
12587
SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src,
12588
DAG.getValueType(MVT::i32));
12589
SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill,
12590
DAG.getConstant(31, DL, MVT::i64));
12591
12592
SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill);
12593
NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill);
12594
12595
// NOTE: The result is only required to be anyextended, but sext is
12596
// consistent with type legalization of sub.
12597
NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes,
12598
DAG.getValueType(MVT::i32));
12599
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
12600
return;
12601
}
12602
case ISD::BITCAST: {
12603
EVT VT = N->getValueType(0);
12604
assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
12605
SDValue Op0 = N->getOperand(0);
12606
EVT Op0VT = Op0.getValueType();
12607
MVT XLenVT = Subtarget.getXLenVT();
12608
if (VT == MVT::i16 && Op0VT == MVT::f16 &&
12609
Subtarget.hasStdExtZfhminOrZhinxmin()) {
12610
SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
12611
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
12612
} else if (VT == MVT::i16 && Op0VT == MVT::bf16 &&
12613
Subtarget.hasStdExtZfbfmin()) {
12614
SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
12615
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
12616
} else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
12617
Subtarget.hasStdExtFOrZfinx()) {
12618
SDValue FPConv =
12619
DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
12620
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
12621
} else if (VT == MVT::i64 && Op0VT == MVT::f64 && !Subtarget.is64Bit() &&
12622
Subtarget.hasStdExtDOrZdinx()) {
12623
SDValue NewReg = DAG.getNode(RISCVISD::SplitF64, DL,
12624
DAG.getVTList(MVT::i32, MVT::i32), Op0);
12625
SDValue RetReg = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64,
12626
NewReg.getValue(0), NewReg.getValue(1));
12627
Results.push_back(RetReg);
12628
} else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
12629
isTypeLegal(Op0VT)) {
12630
// Custom-legalize bitcasts from fixed-length vector types to illegal
12631
// scalar types in order to improve codegen. Bitcast the vector to a
12632
// one-element vector type whose element type is the same as the result
12633
// type, and extract the first element.
12634
EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
12635
if (isTypeLegal(BVT)) {
12636
SDValue BVec = DAG.getBitcast(BVT, Op0);
12637
Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
12638
DAG.getVectorIdxConstant(0, DL)));
12639
}
12640
}
12641
break;
12642
}
12643
case RISCVISD::BREV8:
12644
case RISCVISD::ORC_B: {
12645
MVT VT = N->getSimpleValueType(0);
12646
MVT XLenVT = Subtarget.getXLenVT();
12647
assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
12648
"Unexpected custom legalisation");
12649
assert(((N->getOpcode() == RISCVISD::BREV8 && Subtarget.hasStdExtZbkb()) ||
12650
(N->getOpcode() == RISCVISD::ORC_B && Subtarget.hasStdExtZbb())) &&
12651
"Unexpected extension");
12652
SDValue NewOp = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
12653
SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp);
12654
// ReplaceNodeResults requires we maintain the same type for the return
12655
// value.
12656
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes));
12657
break;
12658
}
12659
case ISD::EXTRACT_VECTOR_ELT: {
12660
// Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
12661
// type is illegal (currently only vXi64 RV32).
12662
// With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
12663
// transferred to the destination register. We issue two of these from the
12664
// upper- and lower- halves of the SEW-bit vector element, slid down to the
12665
// first element.
12666
SDValue Vec = N->getOperand(0);
12667
SDValue Idx = N->getOperand(1);
12668
12669
// The vector type hasn't been legalized yet so we can't issue target
12670
// specific nodes if it needs legalization.
12671
// FIXME: We would manually legalize if it's important.
12672
if (!isTypeLegal(Vec.getValueType()))
12673
return;
12674
12675
MVT VecVT = Vec.getSimpleValueType();
12676
12677
assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
12678
VecVT.getVectorElementType() == MVT::i64 &&
12679
"Unexpected EXTRACT_VECTOR_ELT legalization");
12680
12681
// If this is a fixed vector, we need to convert it to a scalable vector.
12682
MVT ContainerVT = VecVT;
12683
if (VecVT.isFixedLengthVector()) {
12684
ContainerVT = getContainerForFixedLengthVector(VecVT);
12685
Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
12686
}
12687
12688
MVT XLenVT = Subtarget.getXLenVT();
12689
12690
// Use a VL of 1 to avoid processing more elements than we need.
12691
auto [Mask, VL] = getDefaultVLOps(1, ContainerVT, DL, DAG, Subtarget);
12692
12693
// Unless the index is known to be 0, we must slide the vector down to get
12694
// the desired element into index 0.
12695
if (!isNullConstant(Idx)) {
12696
Vec = getVSlidedown(DAG, Subtarget, DL, ContainerVT,
12697
DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
12698
}
12699
12700
// Extract the lower XLEN bits of the correct vector element.
12701
SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
12702
12703
// To extract the upper XLEN bits of the vector element, shift the first
12704
// element right by 32 bits and re-extract the lower XLEN bits.
12705
SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
12706
DAG.getUNDEF(ContainerVT),
12707
DAG.getConstant(32, DL, XLenVT), VL);
12708
SDValue LShr32 =
12709
DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, ThirtyTwoV,
12710
DAG.getUNDEF(ContainerVT), Mask, VL);
12711
12712
SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
12713
12714
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
12715
break;
12716
}
12717
case ISD::INTRINSIC_WO_CHAIN: {
12718
unsigned IntNo = N->getConstantOperandVal(0);
12719
switch (IntNo) {
12720
default:
12721
llvm_unreachable(
12722
"Don't know how to custom type legalize this intrinsic!");
12723
case Intrinsic::experimental_get_vector_length: {
12724
SDValue Res = lowerGetVectorLength(N, DAG, Subtarget);
12725
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
12726
return;
12727
}
12728
case Intrinsic::experimental_cttz_elts: {
12729
SDValue Res = lowerCttzElts(N, DAG, Subtarget);
12730
Results.push_back(
12731
DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), Res));
12732
return;
12733
}
12734
case Intrinsic::riscv_orc_b:
12735
case Intrinsic::riscv_brev8:
12736
case Intrinsic::riscv_sha256sig0:
12737
case Intrinsic::riscv_sha256sig1:
12738
case Intrinsic::riscv_sha256sum0:
12739
case Intrinsic::riscv_sha256sum1:
12740
case Intrinsic::riscv_sm3p0:
12741
case Intrinsic::riscv_sm3p1: {
12742
if (!Subtarget.is64Bit() || N->getValueType(0) != MVT::i32)
12743
return;
12744
unsigned Opc;
12745
switch (IntNo) {
12746
case Intrinsic::riscv_orc_b: Opc = RISCVISD::ORC_B; break;
12747
case Intrinsic::riscv_brev8: Opc = RISCVISD::BREV8; break;
12748
case Intrinsic::riscv_sha256sig0: Opc = RISCVISD::SHA256SIG0; break;
12749
case Intrinsic::riscv_sha256sig1: Opc = RISCVISD::SHA256SIG1; break;
12750
case Intrinsic::riscv_sha256sum0: Opc = RISCVISD::SHA256SUM0; break;
12751
case Intrinsic::riscv_sha256sum1: Opc = RISCVISD::SHA256SUM1; break;
12752
case Intrinsic::riscv_sm3p0: Opc = RISCVISD::SM3P0; break;
12753
case Intrinsic::riscv_sm3p1: Opc = RISCVISD::SM3P1; break;
12754
}
12755
12756
SDValue NewOp =
12757
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
12758
SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp);
12759
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
12760
return;
12761
}
12762
case Intrinsic::riscv_sm4ks:
12763
case Intrinsic::riscv_sm4ed: {
12764
unsigned Opc =
12765
IntNo == Intrinsic::riscv_sm4ks ? RISCVISD::SM4KS : RISCVISD::SM4ED;
12766
SDValue NewOp0 =
12767
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
12768
SDValue NewOp1 =
12769
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
12770
SDValue Res =
12771
DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, N->getOperand(3));
12772
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
12773
return;
12774
}
12775
case Intrinsic::riscv_mopr: {
12776
if (!Subtarget.is64Bit() || N->getValueType(0) != MVT::i32)
12777
return;
12778
SDValue NewOp =
12779
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
12780
SDValue Res = DAG.getNode(
12781
RISCVISD::MOPR, DL, MVT::i64, NewOp,
12782
DAG.getTargetConstant(N->getConstantOperandVal(2), DL, MVT::i64));
12783
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
12784
return;
12785
}
12786
case Intrinsic::riscv_moprr: {
12787
if (!Subtarget.is64Bit() || N->getValueType(0) != MVT::i32)
12788
return;
12789
SDValue NewOp0 =
12790
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
12791
SDValue NewOp1 =
12792
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
12793
SDValue Res = DAG.getNode(
12794
RISCVISD::MOPRR, DL, MVT::i64, NewOp0, NewOp1,
12795
DAG.getTargetConstant(N->getConstantOperandVal(3), DL, MVT::i64));
12796
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
12797
return;
12798
}
12799
case Intrinsic::riscv_clmul: {
12800
if (!Subtarget.is64Bit() || N->getValueType(0) != MVT::i32)
12801
return;
12802
12803
SDValue NewOp0 =
12804
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
12805
SDValue NewOp1 =
12806
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
12807
SDValue Res = DAG.getNode(RISCVISD::CLMUL, DL, MVT::i64, NewOp0, NewOp1);
12808
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
12809
return;
12810
}
12811
case Intrinsic::riscv_clmulh:
12812
case Intrinsic::riscv_clmulr: {
12813
if (!Subtarget.is64Bit() || N->getValueType(0) != MVT::i32)
12814
return;
12815
12816
// Extend inputs to XLen, and shift by 32. This will add 64 trailing zeros
12817
// to the full 128-bit clmul result of multiplying two xlen values.
12818
// Perform clmulr or clmulh on the shifted values. Finally, extract the
12819
// upper 32 bits.
12820
//
12821
// The alternative is to mask the inputs to 32 bits and use clmul, but
12822
// that requires two shifts to mask each input without zext.w.
12823
// FIXME: If the inputs are known zero extended or could be freely
12824
// zero extended, the mask form would be better.
12825
SDValue NewOp0 =
12826
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
12827
SDValue NewOp1 =
12828
DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
12829
NewOp0 = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0,
12830
DAG.getConstant(32, DL, MVT::i64));
12831
NewOp1 = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp1,
12832
DAG.getConstant(32, DL, MVT::i64));
12833
unsigned Opc = IntNo == Intrinsic::riscv_clmulh ? RISCVISD::CLMULH
12834
: RISCVISD::CLMULR;
12835
SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1);
12836
Res = DAG.getNode(ISD::SRL, DL, MVT::i64, Res,
12837
DAG.getConstant(32, DL, MVT::i64));
12838
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
12839
return;
12840
}
12841
case Intrinsic::riscv_vmv_x_s: {
12842
EVT VT = N->getValueType(0);
12843
MVT XLenVT = Subtarget.getXLenVT();
12844
if (VT.bitsLT(XLenVT)) {
12845
// Simple case just extract using vmv.x.s and truncate.
12846
SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
12847
Subtarget.getXLenVT(), N->getOperand(1));
12848
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
12849
return;
12850
}
12851
12852
assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
12853
"Unexpected custom legalization");
12854
12855
// We need to do the move in two steps.
12856
SDValue Vec = N->getOperand(1);
12857
MVT VecVT = Vec.getSimpleValueType();
12858
12859
// First extract the lower XLEN bits of the element.
12860
SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
12861
12862
// To extract the upper XLEN bits of the vector element, shift the first
12863
// element right by 32 bits and re-extract the lower XLEN bits.
12864
auto [Mask, VL] = getDefaultVLOps(1, VecVT, DL, DAG, Subtarget);
12865
12866
SDValue ThirtyTwoV =
12867
DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
12868
DAG.getConstant(32, DL, XLenVT), VL);
12869
SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV,
12870
DAG.getUNDEF(VecVT), Mask, VL);
12871
SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
12872
12873
Results.push_back(
12874
DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
12875
break;
12876
}
12877
}
12878
break;
12879
}
12880
case ISD::VECREDUCE_ADD:
12881
case ISD::VECREDUCE_AND:
12882
case ISD::VECREDUCE_OR:
12883
case ISD::VECREDUCE_XOR:
12884
case ISD::VECREDUCE_SMAX:
12885
case ISD::VECREDUCE_UMAX:
12886
case ISD::VECREDUCE_SMIN:
12887
case ISD::VECREDUCE_UMIN:
12888
if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
12889
Results.push_back(V);
12890
break;
12891
case ISD::VP_REDUCE_ADD:
12892
case ISD::VP_REDUCE_AND:
12893
case ISD::VP_REDUCE_OR:
12894
case ISD::VP_REDUCE_XOR:
12895
case ISD::VP_REDUCE_SMAX:
12896
case ISD::VP_REDUCE_UMAX:
12897
case ISD::VP_REDUCE_SMIN:
12898
case ISD::VP_REDUCE_UMIN:
12899
if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
12900
Results.push_back(V);
12901
break;
12902
case ISD::GET_ROUNDING: {
12903
SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
12904
SDValue Res = DAG.getNode(ISD::GET_ROUNDING, DL, VTs, N->getOperand(0));
12905
Results.push_back(Res.getValue(0));
12906
Results.push_back(Res.getValue(1));
12907
break;
12908
}
12909
}
12910
}
12911
12912
/// Given a binary operator, return the *associative* generic ISD::VECREDUCE_OP
12913
/// which corresponds to it.
12914
static unsigned getVecReduceOpcode(unsigned Opc) {
12915
switch (Opc) {
12916
default:
12917
llvm_unreachable("Unhandled binary to transfrom reduction");
12918
case ISD::ADD:
12919
return ISD::VECREDUCE_ADD;
12920
case ISD::UMAX:
12921
return ISD::VECREDUCE_UMAX;
12922
case ISD::SMAX:
12923
return ISD::VECREDUCE_SMAX;
12924
case ISD::UMIN:
12925
return ISD::VECREDUCE_UMIN;
12926
case ISD::SMIN:
12927
return ISD::VECREDUCE_SMIN;
12928
case ISD::AND:
12929
return ISD::VECREDUCE_AND;
12930
case ISD::OR:
12931
return ISD::VECREDUCE_OR;
12932
case ISD::XOR:
12933
return ISD::VECREDUCE_XOR;
12934
case ISD::FADD:
12935
// Note: This is the associative form of the generic reduction opcode.
12936
return ISD::VECREDUCE_FADD;
12937
}
12938
}
12939
12940
/// Perform two related transforms whose purpose is to incrementally recognize
12941
/// an explode_vector followed by scalar reduction as a vector reduction node.
12942
/// This exists to recover from a deficiency in SLP which can't handle
12943
/// forests with multiple roots sharing common nodes. In some cases, one
12944
/// of the trees will be vectorized, and the other will remain (unprofitably)
12945
/// scalarized.
12946
static SDValue
12947
combineBinOpOfExtractToReduceTree(SDNode *N, SelectionDAG &DAG,
12948
const RISCVSubtarget &Subtarget) {
12949
12950
// This transforms need to run before all integer types have been legalized
12951
// to i64 (so that the vector element type matches the add type), and while
12952
// it's safe to introduce odd sized vector types.
12953
if (DAG.NewNodesMustHaveLegalTypes)
12954
return SDValue();
12955
12956
// Without V, this transform isn't useful. We could form the (illegal)
12957
// operations and let them be scalarized again, but there's really no point.
12958
if (!Subtarget.hasVInstructions())
12959
return SDValue();
12960
12961
const SDLoc DL(N);
12962
const EVT VT = N->getValueType(0);
12963
const unsigned Opc = N->getOpcode();
12964
12965
// For FADD, we only handle the case with reassociation allowed. We
12966
// could handle strict reduction order, but at the moment, there's no
12967
// known reason to, and the complexity isn't worth it.
12968
// TODO: Handle fminnum and fmaxnum here
12969
if (!VT.isInteger() &&
12970
(Opc != ISD::FADD || !N->getFlags().hasAllowReassociation()))
12971
return SDValue();
12972
12973
const unsigned ReduceOpc = getVecReduceOpcode(Opc);
12974
assert(Opc == ISD::getVecReduceBaseOpcode(ReduceOpc) &&
12975
"Inconsistent mappings");
12976
SDValue LHS = N->getOperand(0);
12977
SDValue RHS = N->getOperand(1);
12978
12979
if (!LHS.hasOneUse() || !RHS.hasOneUse())
12980
return SDValue();
12981
12982
if (RHS.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12983
std::swap(LHS, RHS);
12984
12985
if (RHS.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
12986
!isa<ConstantSDNode>(RHS.getOperand(1)))
12987
return SDValue();
12988
12989
uint64_t RHSIdx = cast<ConstantSDNode>(RHS.getOperand(1))->getLimitedValue();
12990
SDValue SrcVec = RHS.getOperand(0);
12991
EVT SrcVecVT = SrcVec.getValueType();
12992
assert(SrcVecVT.getVectorElementType() == VT);
12993
if (SrcVecVT.isScalableVector())
12994
return SDValue();
12995
12996
if (SrcVecVT.getScalarSizeInBits() > Subtarget.getELen())
12997
return SDValue();
12998
12999
// match binop (extract_vector_elt V, 0), (extract_vector_elt V, 1) to
13000
// reduce_op (extract_subvector [2 x VT] from V). This will form the
13001
// root of our reduction tree. TODO: We could extend this to any two
13002
// adjacent aligned constant indices if desired.
13003
if (LHS.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
13004
LHS.getOperand(0) == SrcVec && isa<ConstantSDNode>(LHS.getOperand(1))) {
13005
uint64_t LHSIdx =
13006
cast<ConstantSDNode>(LHS.getOperand(1))->getLimitedValue();
13007
if (0 == std::min(LHSIdx, RHSIdx) && 1 == std::max(LHSIdx, RHSIdx)) {
13008
EVT ReduceVT = EVT::getVectorVT(*DAG.getContext(), VT, 2);
13009
SDValue Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ReduceVT, SrcVec,
13010
DAG.getVectorIdxConstant(0, DL));
13011
return DAG.getNode(ReduceOpc, DL, VT, Vec, N->getFlags());
13012
}
13013
}
13014
13015
// Match (binop (reduce (extract_subvector V, 0),
13016
// (extract_vector_elt V, sizeof(SubVec))))
13017
// into a reduction of one more element from the original vector V.
13018
if (LHS.getOpcode() != ReduceOpc)
13019
return SDValue();
13020
13021
SDValue ReduceVec = LHS.getOperand(0);
13022
if (ReduceVec.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
13023
ReduceVec.hasOneUse() && ReduceVec.getOperand(0) == RHS.getOperand(0) &&
13024
isNullConstant(ReduceVec.getOperand(1)) &&
13025
ReduceVec.getValueType().getVectorNumElements() == RHSIdx) {
13026
// For illegal types (e.g. 3xi32), most will be combined again into a
13027
// wider (hopefully legal) type. If this is a terminal state, we are
13028
// relying on type legalization here to produce something reasonable
13029
// and this lowering quality could probably be improved. (TODO)
13030
EVT ReduceVT = EVT::getVectorVT(*DAG.getContext(), VT, RHSIdx + 1);
13031
SDValue Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ReduceVT, SrcVec,
13032
DAG.getVectorIdxConstant(0, DL));
13033
auto Flags = ReduceVec->getFlags();
13034
Flags.intersectWith(N->getFlags());
13035
return DAG.getNode(ReduceOpc, DL, VT, Vec, Flags);
13036
}
13037
13038
return SDValue();
13039
}
13040
13041
13042
// Try to fold (<bop> x, (reduction.<bop> vec, start))
13043
static SDValue combineBinOpToReduce(SDNode *N, SelectionDAG &DAG,
13044
const RISCVSubtarget &Subtarget) {
13045
auto BinOpToRVVReduce = [](unsigned Opc) {
13046
switch (Opc) {
13047
default:
13048
llvm_unreachable("Unhandled binary to transfrom reduction");
13049
case ISD::ADD:
13050
return RISCVISD::VECREDUCE_ADD_VL;
13051
case ISD::UMAX:
13052
return RISCVISD::VECREDUCE_UMAX_VL;
13053
case ISD::SMAX:
13054
return RISCVISD::VECREDUCE_SMAX_VL;
13055
case ISD::UMIN:
13056
return RISCVISD::VECREDUCE_UMIN_VL;
13057
case ISD::SMIN:
13058
return RISCVISD::VECREDUCE_SMIN_VL;
13059
case ISD::AND:
13060
return RISCVISD::VECREDUCE_AND_VL;
13061
case ISD::OR:
13062
return RISCVISD::VECREDUCE_OR_VL;
13063
case ISD::XOR:
13064
return RISCVISD::VECREDUCE_XOR_VL;
13065
case ISD::FADD:
13066
return RISCVISD::VECREDUCE_FADD_VL;
13067
case ISD::FMAXNUM:
13068
return RISCVISD::VECREDUCE_FMAX_VL;
13069
case ISD::FMINNUM:
13070
return RISCVISD::VECREDUCE_FMIN_VL;
13071
}
13072
};
13073
13074
auto IsReduction = [&BinOpToRVVReduce](SDValue V, unsigned Opc) {
13075
return V.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
13076
isNullConstant(V.getOperand(1)) &&
13077
V.getOperand(0).getOpcode() == BinOpToRVVReduce(Opc);
13078
};
13079
13080
unsigned Opc = N->getOpcode();
13081
unsigned ReduceIdx;
13082
if (IsReduction(N->getOperand(0), Opc))
13083
ReduceIdx = 0;
13084
else if (IsReduction(N->getOperand(1), Opc))
13085
ReduceIdx = 1;
13086
else
13087
return SDValue();
13088
13089
// Skip if FADD disallows reassociation but the combiner needs.
13090
if (Opc == ISD::FADD && !N->getFlags().hasAllowReassociation())
13091
return SDValue();
13092
13093
SDValue Extract = N->getOperand(ReduceIdx);
13094
SDValue Reduce = Extract.getOperand(0);
13095
if (!Extract.hasOneUse() || !Reduce.hasOneUse())
13096
return SDValue();
13097
13098
SDValue ScalarV = Reduce.getOperand(2);
13099
EVT ScalarVT = ScalarV.getValueType();
13100
if (ScalarV.getOpcode() == ISD::INSERT_SUBVECTOR &&
13101
ScalarV.getOperand(0)->isUndef() &&
13102
isNullConstant(ScalarV.getOperand(2)))
13103
ScalarV = ScalarV.getOperand(1);
13104
13105
// Make sure that ScalarV is a splat with VL=1.
13106
if (ScalarV.getOpcode() != RISCVISD::VFMV_S_F_VL &&
13107
ScalarV.getOpcode() != RISCVISD::VMV_S_X_VL &&
13108
ScalarV.getOpcode() != RISCVISD::VMV_V_X_VL)
13109
return SDValue();
13110
13111
if (!isNonZeroAVL(ScalarV.getOperand(2)))
13112
return SDValue();
13113
13114
// Check the scalar of ScalarV is neutral element
13115
// TODO: Deal with value other than neutral element.
13116
if (!isNeutralConstant(N->getOpcode(), N->getFlags(), ScalarV.getOperand(1),
13117
0))
13118
return SDValue();
13119
13120
// If the AVL is zero, operand 0 will be returned. So it's not safe to fold.
13121
// FIXME: We might be able to improve this if operand 0 is undef.
13122
if (!isNonZeroAVL(Reduce.getOperand(5)))
13123
return SDValue();
13124
13125
SDValue NewStart = N->getOperand(1 - ReduceIdx);
13126
13127
SDLoc DL(N);
13128
SDValue NewScalarV =
13129
lowerScalarInsert(NewStart, ScalarV.getOperand(2),
13130
ScalarV.getSimpleValueType(), DL, DAG, Subtarget);
13131
13132
// If we looked through an INSERT_SUBVECTOR we need to restore it.
13133
if (ScalarVT != ScalarV.getValueType())
13134
NewScalarV =
13135
DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ScalarVT, DAG.getUNDEF(ScalarVT),
13136
NewScalarV, DAG.getVectorIdxConstant(0, DL));
13137
13138
SDValue Ops[] = {Reduce.getOperand(0), Reduce.getOperand(1),
13139
NewScalarV, Reduce.getOperand(3),
13140
Reduce.getOperand(4), Reduce.getOperand(5)};
13141
SDValue NewReduce =
13142
DAG.getNode(Reduce.getOpcode(), DL, Reduce.getValueType(), Ops);
13143
return DAG.getNode(Extract.getOpcode(), DL, Extract.getValueType(), NewReduce,
13144
Extract.getOperand(1));
13145
}
13146
13147
// Optimize (add (shl x, c0), (shl y, c1)) ->
13148
// (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
13149
static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
13150
const RISCVSubtarget &Subtarget) {
13151
// Perform this optimization only in the zba extension.
13152
if (!Subtarget.hasStdExtZba())
13153
return SDValue();
13154
13155
// Skip for vector types and larger types.
13156
EVT VT = N->getValueType(0);
13157
if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
13158
return SDValue();
13159
13160
// The two operand nodes must be SHL and have no other use.
13161
SDValue N0 = N->getOperand(0);
13162
SDValue N1 = N->getOperand(1);
13163
if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
13164
!N0->hasOneUse() || !N1->hasOneUse())
13165
return SDValue();
13166
13167
// Check c0 and c1.
13168
auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
13169
auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
13170
if (!N0C || !N1C)
13171
return SDValue();
13172
int64_t C0 = N0C->getSExtValue();
13173
int64_t C1 = N1C->getSExtValue();
13174
if (C0 <= 0 || C1 <= 0)
13175
return SDValue();
13176
13177
// Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
13178
int64_t Bits = std::min(C0, C1);
13179
int64_t Diff = std::abs(C0 - C1);
13180
if (Diff != 1 && Diff != 2 && Diff != 3)
13181
return SDValue();
13182
13183
// Build nodes.
13184
SDLoc DL(N);
13185
SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
13186
SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
13187
SDValue SHADD = DAG.getNode(RISCVISD::SHL_ADD, DL, VT, NL,
13188
DAG.getConstant(Diff, DL, VT), NS);
13189
return DAG.getNode(ISD::SHL, DL, VT, SHADD, DAG.getConstant(Bits, DL, VT));
13190
}
13191
13192
// Combine a constant select operand into its use:
13193
//
13194
// (and (select cond, -1, c), x)
13195
// -> (select cond, x, (and x, c)) [AllOnes=1]
13196
// (or (select cond, 0, c), x)
13197
// -> (select cond, x, (or x, c)) [AllOnes=0]
13198
// (xor (select cond, 0, c), x)
13199
// -> (select cond, x, (xor x, c)) [AllOnes=0]
13200
// (add (select cond, 0, c), x)
13201
// -> (select cond, x, (add x, c)) [AllOnes=0]
13202
// (sub x, (select cond, 0, c))
13203
// -> (select cond, x, (sub x, c)) [AllOnes=0]
13204
static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
13205
SelectionDAG &DAG, bool AllOnes,
13206
const RISCVSubtarget &Subtarget) {
13207
EVT VT = N->getValueType(0);
13208
13209
// Skip vectors.
13210
if (VT.isVector())
13211
return SDValue();
13212
13213
if (!Subtarget.hasConditionalMoveFusion()) {
13214
// (select cond, x, (and x, c)) has custom lowering with Zicond.
13215
if ((!Subtarget.hasStdExtZicond() &&
13216
!Subtarget.hasVendorXVentanaCondOps()) ||
13217
N->getOpcode() != ISD::AND)
13218
return SDValue();
13219
13220
// Maybe harmful when condition code has multiple use.
13221
if (Slct.getOpcode() == ISD::SELECT && !Slct.getOperand(0).hasOneUse())
13222
return SDValue();
13223
13224
// Maybe harmful when VT is wider than XLen.
13225
if (VT.getSizeInBits() > Subtarget.getXLen())
13226
return SDValue();
13227
}
13228
13229
if ((Slct.getOpcode() != ISD::SELECT &&
13230
Slct.getOpcode() != RISCVISD::SELECT_CC) ||
13231
!Slct.hasOneUse())
13232
return SDValue();
13233
13234
auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
13235
return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
13236
};
13237
13238
bool SwapSelectOps;
13239
unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
13240
SDValue TrueVal = Slct.getOperand(1 + OpOffset);
13241
SDValue FalseVal = Slct.getOperand(2 + OpOffset);
13242
SDValue NonConstantVal;
13243
if (isZeroOrAllOnes(TrueVal, AllOnes)) {
13244
SwapSelectOps = false;
13245
NonConstantVal = FalseVal;
13246
} else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
13247
SwapSelectOps = true;
13248
NonConstantVal = TrueVal;
13249
} else
13250
return SDValue();
13251
13252
// Slct is now know to be the desired identity constant when CC is true.
13253
TrueVal = OtherOp;
13254
FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
13255
// Unless SwapSelectOps says the condition should be false.
13256
if (SwapSelectOps)
13257
std::swap(TrueVal, FalseVal);
13258
13259
if (Slct.getOpcode() == RISCVISD::SELECT_CC)
13260
return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
13261
{Slct.getOperand(0), Slct.getOperand(1),
13262
Slct.getOperand(2), TrueVal, FalseVal});
13263
13264
return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
13265
{Slct.getOperand(0), TrueVal, FalseVal});
13266
}
13267
13268
// Attempt combineSelectAndUse on each operand of a commutative operator N.
13269
static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
13270
bool AllOnes,
13271
const RISCVSubtarget &Subtarget) {
13272
SDValue N0 = N->getOperand(0);
13273
SDValue N1 = N->getOperand(1);
13274
if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes, Subtarget))
13275
return Result;
13276
if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes, Subtarget))
13277
return Result;
13278
return SDValue();
13279
}
13280
13281
// Transform (add (mul x, c0), c1) ->
13282
// (add (mul (add x, c1/c0), c0), c1%c0).
13283
// if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
13284
// that should be excluded is when c0*(c1/c0) is simm12, which will lead
13285
// to an infinite loop in DAGCombine if transformed.
13286
// Or transform (add (mul x, c0), c1) ->
13287
// (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
13288
// if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
13289
// case that should be excluded is when c0*(c1/c0+1) is simm12, which will
13290
// lead to an infinite loop in DAGCombine if transformed.
13291
// Or transform (add (mul x, c0), c1) ->
13292
// (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
13293
// if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
13294
// case that should be excluded is when c0*(c1/c0-1) is simm12, which will
13295
// lead to an infinite loop in DAGCombine if transformed.
13296
// Or transform (add (mul x, c0), c1) ->
13297
// (mul (add x, c1/c0), c0).
13298
// if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
13299
static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
13300
const RISCVSubtarget &Subtarget) {
13301
// Skip for vector types and larger types.
13302
EVT VT = N->getValueType(0);
13303
if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
13304
return SDValue();
13305
// The first operand node must be a MUL and has no other use.
13306
SDValue N0 = N->getOperand(0);
13307
if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
13308
return SDValue();
13309
// Check if c0 and c1 match above conditions.
13310
auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
13311
auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13312
if (!N0C || !N1C)
13313
return SDValue();
13314
// If N0C has multiple uses it's possible one of the cases in
13315
// DAGCombiner::isMulAddWithConstProfitable will be true, which would result
13316
// in an infinite loop.
13317
if (!N0C->hasOneUse())
13318
return SDValue();
13319
int64_t C0 = N0C->getSExtValue();
13320
int64_t C1 = N1C->getSExtValue();
13321
int64_t CA, CB;
13322
if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
13323
return SDValue();
13324
// Search for proper CA (non-zero) and CB that both are simm12.
13325
if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
13326
!isInt<12>(C0 * (C1 / C0))) {
13327
CA = C1 / C0;
13328
CB = C1 % C0;
13329
} else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
13330
isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
13331
CA = C1 / C0 + 1;
13332
CB = C1 % C0 - C0;
13333
} else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
13334
isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
13335
CA = C1 / C0 - 1;
13336
CB = C1 % C0 + C0;
13337
} else
13338
return SDValue();
13339
// Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
13340
SDLoc DL(N);
13341
SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
13342
DAG.getConstant(CA, DL, VT));
13343
SDValue New1 =
13344
DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
13345
return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
13346
}
13347
13348
// add (zext, zext) -> zext (add (zext, zext))
13349
// sub (zext, zext) -> sext (sub (zext, zext))
13350
// mul (zext, zext) -> zext (mul (zext, zext))
13351
// sdiv (zext, zext) -> zext (sdiv (zext, zext))
13352
// udiv (zext, zext) -> zext (udiv (zext, zext))
13353
// srem (zext, zext) -> zext (srem (zext, zext))
13354
// urem (zext, zext) -> zext (urem (zext, zext))
13355
//
13356
// where the sum of the extend widths match, and the the range of the bin op
13357
// fits inside the width of the narrower bin op. (For profitability on rvv, we
13358
// use a power of two for both inner and outer extend.)
13359
static SDValue combineBinOpOfZExt(SDNode *N, SelectionDAG &DAG) {
13360
13361
EVT VT = N->getValueType(0);
13362
if (!VT.isVector() || !DAG.getTargetLoweringInfo().isTypeLegal(VT))
13363
return SDValue();
13364
13365
SDValue N0 = N->getOperand(0);
13366
SDValue N1 = N->getOperand(1);
13367
if (N0.getOpcode() != ISD::ZERO_EXTEND || N1.getOpcode() != ISD::ZERO_EXTEND)
13368
return SDValue();
13369
if (!N0.hasOneUse() || !N1.hasOneUse())
13370
return SDValue();
13371
13372
SDValue Src0 = N0.getOperand(0);
13373
SDValue Src1 = N1.getOperand(0);
13374
EVT SrcVT = Src0.getValueType();
13375
if (!DAG.getTargetLoweringInfo().isTypeLegal(SrcVT) ||
13376
SrcVT != Src1.getValueType() || SrcVT.getScalarSizeInBits() < 8 ||
13377
SrcVT.getScalarSizeInBits() >= VT.getScalarSizeInBits() / 2)
13378
return SDValue();
13379
13380
LLVMContext &C = *DAG.getContext();
13381
EVT ElemVT = VT.getVectorElementType().getHalfSizedIntegerVT(C);
13382
EVT NarrowVT = EVT::getVectorVT(C, ElemVT, VT.getVectorElementCount());
13383
13384
Src0 = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(Src0), NarrowVT, Src0);
13385
Src1 = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(Src1), NarrowVT, Src1);
13386
13387
// Src0 and Src1 are zero extended, so they're always positive if signed.
13388
//
13389
// sub can produce a negative from two positive operands, so it needs sign
13390
// extended. Other nodes produce a positive from two positive operands, so
13391
// zero extend instead.
13392
unsigned OuterExtend =
13393
N->getOpcode() == ISD::SUB ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
13394
13395
return DAG.getNode(
13396
OuterExtend, SDLoc(N), VT,
13397
DAG.getNode(N->getOpcode(), SDLoc(N), NarrowVT, Src0, Src1));
13398
}
13399
13400
// Try to turn (add (xor bool, 1) -1) into (neg bool).
13401
static SDValue combineAddOfBooleanXor(SDNode *N, SelectionDAG &DAG) {
13402
SDValue N0 = N->getOperand(0);
13403
SDValue N1 = N->getOperand(1);
13404
EVT VT = N->getValueType(0);
13405
SDLoc DL(N);
13406
13407
// RHS should be -1.
13408
if (!isAllOnesConstant(N1))
13409
return SDValue();
13410
13411
// Look for (xor X, 1).
13412
if (N0.getOpcode() != ISD::XOR || !isOneConstant(N0.getOperand(1)))
13413
return SDValue();
13414
13415
// First xor input should be 0 or 1.
13416
APInt Mask = APInt::getBitsSetFrom(VT.getSizeInBits(), 1);
13417
if (!DAG.MaskedValueIsZero(N0.getOperand(0), Mask))
13418
return SDValue();
13419
13420
// Emit a negate of the setcc.
13421
return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
13422
N0.getOperand(0));
13423
}
13424
13425
static SDValue performADDCombine(SDNode *N,
13426
TargetLowering::DAGCombinerInfo &DCI,
13427
const RISCVSubtarget &Subtarget) {
13428
SelectionDAG &DAG = DCI.DAG;
13429
if (SDValue V = combineAddOfBooleanXor(N, DAG))
13430
return V;
13431
if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
13432
return V;
13433
if (!DCI.isBeforeLegalize() && !DCI.isCalledByLegalizer())
13434
if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
13435
return V;
13436
if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget))
13437
return V;
13438
if (SDValue V = combineBinOpOfExtractToReduceTree(N, DAG, Subtarget))
13439
return V;
13440
if (SDValue V = combineBinOpOfZExt(N, DAG))
13441
return V;
13442
13443
// fold (add (select lhs, rhs, cc, 0, y), x) ->
13444
// (select lhs, rhs, cc, x, (add x, y))
13445
return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false, Subtarget);
13446
}
13447
13448
// Try to turn a sub boolean RHS and constant LHS into an addi.
13449
static SDValue combineSubOfBoolean(SDNode *N, SelectionDAG &DAG) {
13450
SDValue N0 = N->getOperand(0);
13451
SDValue N1 = N->getOperand(1);
13452
EVT VT = N->getValueType(0);
13453
SDLoc DL(N);
13454
13455
// Require a constant LHS.
13456
auto *N0C = dyn_cast<ConstantSDNode>(N0);
13457
if (!N0C)
13458
return SDValue();
13459
13460
// All our optimizations involve subtracting 1 from the immediate and forming
13461
// an ADDI. Make sure the new immediate is valid for an ADDI.
13462
APInt ImmValMinus1 = N0C->getAPIntValue() - 1;
13463
if (!ImmValMinus1.isSignedIntN(12))
13464
return SDValue();
13465
13466
SDValue NewLHS;
13467
if (N1.getOpcode() == ISD::SETCC && N1.hasOneUse()) {
13468
// (sub constant, (setcc x, y, eq/neq)) ->
13469
// (add (setcc x, y, neq/eq), constant - 1)
13470
ISD::CondCode CCVal = cast<CondCodeSDNode>(N1.getOperand(2))->get();
13471
EVT SetCCOpVT = N1.getOperand(0).getValueType();
13472
if (!isIntEqualitySetCC(CCVal) || !SetCCOpVT.isInteger())
13473
return SDValue();
13474
CCVal = ISD::getSetCCInverse(CCVal, SetCCOpVT);
13475
NewLHS =
13476
DAG.getSetCC(SDLoc(N1), VT, N1.getOperand(0), N1.getOperand(1), CCVal);
13477
} else if (N1.getOpcode() == ISD::XOR && isOneConstant(N1.getOperand(1)) &&
13478
N1.getOperand(0).getOpcode() == ISD::SETCC) {
13479
// (sub C, (xor (setcc), 1)) -> (add (setcc), C-1).
13480
// Since setcc returns a bool the xor is equivalent to 1-setcc.
13481
NewLHS = N1.getOperand(0);
13482
} else
13483
return SDValue();
13484
13485
SDValue NewRHS = DAG.getConstant(ImmValMinus1, DL, VT);
13486
return DAG.getNode(ISD::ADD, DL, VT, NewLHS, NewRHS);
13487
}
13488
13489
// Looks for (sub (shl X, 8), X) where only bits 8, 16, 24, 32, etc. of X are
13490
// non-zero. Replace with orc.b.
13491
static SDValue combineSubShiftToOrcB(SDNode *N, SelectionDAG &DAG,
13492
const RISCVSubtarget &Subtarget) {
13493
if (!Subtarget.hasStdExtZbb())
13494
return SDValue();
13495
13496
EVT VT = N->getValueType(0);
13497
13498
if (VT != Subtarget.getXLenVT() && VT != MVT::i32 && VT != MVT::i16)
13499
return SDValue();
13500
13501
SDValue N0 = N->getOperand(0);
13502
SDValue N1 = N->getOperand(1);
13503
13504
if (N0.getOpcode() != ISD::SHL || N0.getOperand(0) != N1 || !N0.hasOneUse())
13505
return SDValue();
13506
13507
auto *ShAmtC = dyn_cast<ConstantSDNode>(N0.getOperand(1));
13508
if (!ShAmtC || ShAmtC->getZExtValue() != 8)
13509
return SDValue();
13510
13511
APInt Mask = APInt::getSplat(VT.getSizeInBits(), APInt(8, 0xfe));
13512
if (!DAG.MaskedValueIsZero(N1, Mask))
13513
return SDValue();
13514
13515
return DAG.getNode(RISCVISD::ORC_B, SDLoc(N), VT, N1);
13516
}
13517
13518
static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG,
13519
const RISCVSubtarget &Subtarget) {
13520
if (SDValue V = combineSubOfBoolean(N, DAG))
13521
return V;
13522
13523
EVT VT = N->getValueType(0);
13524
SDValue N0 = N->getOperand(0);
13525
SDValue N1 = N->getOperand(1);
13526
// fold (sub 0, (setcc x, 0, setlt)) -> (sra x, xlen - 1)
13527
if (isNullConstant(N0) && N1.getOpcode() == ISD::SETCC && N1.hasOneUse() &&
13528
isNullConstant(N1.getOperand(1))) {
13529
ISD::CondCode CCVal = cast<CondCodeSDNode>(N1.getOperand(2))->get();
13530
if (CCVal == ISD::SETLT) {
13531
SDLoc DL(N);
13532
unsigned ShAmt = N0.getValueSizeInBits() - 1;
13533
return DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0),
13534
DAG.getConstant(ShAmt, DL, VT));
13535
}
13536
}
13537
13538
if (SDValue V = combineBinOpOfZExt(N, DAG))
13539
return V;
13540
if (SDValue V = combineSubShiftToOrcB(N, DAG, Subtarget))
13541
return V;
13542
13543
// fold (sub x, (select lhs, rhs, cc, 0, y)) ->
13544
// (select lhs, rhs, cc, x, (sub x, y))
13545
return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false, Subtarget);
13546
}
13547
13548
// Apply DeMorgan's law to (and/or (xor X, 1), (xor Y, 1)) if X and Y are 0/1.
13549
// Legalizing setcc can introduce xors like this. Doing this transform reduces
13550
// the number of xors and may allow the xor to fold into a branch condition.
13551
static SDValue combineDeMorganOfBoolean(SDNode *N, SelectionDAG &DAG) {
13552
SDValue N0 = N->getOperand(0);
13553
SDValue N1 = N->getOperand(1);
13554
bool IsAnd = N->getOpcode() == ISD::AND;
13555
13556
if (N0.getOpcode() != ISD::XOR || N1.getOpcode() != ISD::XOR)
13557
return SDValue();
13558
13559
if (!N0.hasOneUse() || !N1.hasOneUse())
13560
return SDValue();
13561
13562
SDValue N01 = N0.getOperand(1);
13563
SDValue N11 = N1.getOperand(1);
13564
13565
// For AND, SimplifyDemandedBits may have turned one of the (xor X, 1) into
13566
// (xor X, -1) based on the upper bits of the other operand being 0. If the
13567
// operation is And, allow one of the Xors to use -1.
13568
if (isOneConstant(N01)) {
13569
if (!isOneConstant(N11) && !(IsAnd && isAllOnesConstant(N11)))
13570
return SDValue();
13571
} else if (isOneConstant(N11)) {
13572
// N01 and N11 being 1 was already handled. Handle N11==1 and N01==-1.
13573
if (!(IsAnd && isAllOnesConstant(N01)))
13574
return SDValue();
13575
} else
13576
return SDValue();
13577
13578
EVT VT = N->getValueType(0);
13579
13580
SDValue N00 = N0.getOperand(0);
13581
SDValue N10 = N1.getOperand(0);
13582
13583
// The LHS of the xors needs to be 0/1.
13584
APInt Mask = APInt::getBitsSetFrom(VT.getSizeInBits(), 1);
13585
if (!DAG.MaskedValueIsZero(N00, Mask) || !DAG.MaskedValueIsZero(N10, Mask))
13586
return SDValue();
13587
13588
// Invert the opcode and insert a new xor.
13589
SDLoc DL(N);
13590
unsigned Opc = IsAnd ? ISD::OR : ISD::AND;
13591
SDValue Logic = DAG.getNode(Opc, DL, VT, N00, N10);
13592
return DAG.getNode(ISD::XOR, DL, VT, Logic, DAG.getConstant(1, DL, VT));
13593
}
13594
13595
// Fold (vXi8 (trunc (vselect (setltu, X, 256), X, (sext (setgt X, 0))))) to
13596
// (vXi8 (trunc (smin (smax X, 0), 255))). This represents saturating a signed
13597
// value to an unsigned value. This will be lowered to vmax and series of
13598
// vnclipu instructions later. This can be extended to other truncated types
13599
// other than i8 by replacing 256 and 255 with the equivalent constants for the
13600
// type.
13601
static SDValue combineTruncSelectToSMaxUSat(SDNode *N, SelectionDAG &DAG) {
13602
EVT VT = N->getValueType(0);
13603
SDValue N0 = N->getOperand(0);
13604
EVT SrcVT = N0.getValueType();
13605
13606
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13607
if (!VT.isVector() || !TLI.isTypeLegal(VT) || !TLI.isTypeLegal(SrcVT))
13608
return SDValue();
13609
13610
if (N0.getOpcode() != ISD::VSELECT || !N0.hasOneUse())
13611
return SDValue();
13612
13613
SDValue Cond = N0.getOperand(0);
13614
SDValue True = N0.getOperand(1);
13615
SDValue False = N0.getOperand(2);
13616
13617
if (Cond.getOpcode() != ISD::SETCC)
13618
return SDValue();
13619
13620
// FIXME: Support the version of this pattern with the select operands
13621
// swapped.
13622
ISD::CondCode CCVal = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13623
if (CCVal != ISD::SETULT)
13624
return SDValue();
13625
13626
SDValue CondLHS = Cond.getOperand(0);
13627
SDValue CondRHS = Cond.getOperand(1);
13628
13629
if (CondLHS != True)
13630
return SDValue();
13631
13632
unsigned ScalarBits = VT.getScalarSizeInBits();
13633
13634
// FIXME: Support other constants.
13635
ConstantSDNode *CondRHSC = isConstOrConstSplat(CondRHS);
13636
if (!CondRHSC || CondRHSC->getAPIntValue() != (1ULL << ScalarBits))
13637
return SDValue();
13638
13639
if (False.getOpcode() != ISD::SIGN_EXTEND)
13640
return SDValue();
13641
13642
False = False.getOperand(0);
13643
13644
if (False.getOpcode() != ISD::SETCC || False.getOperand(0) != True)
13645
return SDValue();
13646
13647
ConstantSDNode *FalseRHSC = isConstOrConstSplat(False.getOperand(1));
13648
if (!FalseRHSC || !FalseRHSC->isZero())
13649
return SDValue();
13650
13651
ISD::CondCode CCVal2 = cast<CondCodeSDNode>(False.getOperand(2))->get();
13652
if (CCVal2 != ISD::SETGT)
13653
return SDValue();
13654
13655
// Emit the signed to unsigned saturation pattern.
13656
SDLoc DL(N);
13657
SDValue Max =
13658
DAG.getNode(ISD::SMAX, DL, SrcVT, True, DAG.getConstant(0, DL, SrcVT));
13659
SDValue Min =
13660
DAG.getNode(ISD::SMIN, DL, SrcVT, Max,
13661
DAG.getConstant((1ULL << ScalarBits) - 1, DL, SrcVT));
13662
return DAG.getNode(ISD::TRUNCATE, DL, VT, Min);
13663
}
13664
13665
static SDValue performTRUNCATECombine(SDNode *N, SelectionDAG &DAG,
13666
const RISCVSubtarget &Subtarget) {
13667
SDValue N0 = N->getOperand(0);
13668
EVT VT = N->getValueType(0);
13669
13670
// Pre-promote (i1 (truncate (srl X, Y))) on RV64 with Zbs without zero
13671
// extending X. This is safe since we only need the LSB after the shift and
13672
// shift amounts larger than 31 would produce poison. If we wait until
13673
// type legalization, we'll create RISCVISD::SRLW and we can't recover it
13674
// to use a BEXT instruction.
13675
if (!RV64LegalI32 && Subtarget.is64Bit() && Subtarget.hasStdExtZbs() && VT == MVT::i1 &&
13676
N0.getValueType() == MVT::i32 && N0.getOpcode() == ISD::SRL &&
13677
!isa<ConstantSDNode>(N0.getOperand(1)) && N0.hasOneUse()) {
13678
SDLoc DL(N0);
13679
SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0));
13680
SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1));
13681
SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1);
13682
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Srl);
13683
}
13684
13685
return combineTruncSelectToSMaxUSat(N, DAG);
13686
}
13687
13688
// Combines two comparison operation and logic operation to one selection
13689
// operation(min, max) and logic operation. Returns new constructed Node if
13690
// conditions for optimization are satisfied.
13691
static SDValue performANDCombine(SDNode *N,
13692
TargetLowering::DAGCombinerInfo &DCI,
13693
const RISCVSubtarget &Subtarget) {
13694
SelectionDAG &DAG = DCI.DAG;
13695
13696
SDValue N0 = N->getOperand(0);
13697
// Pre-promote (i32 (and (srl X, Y), 1)) on RV64 with Zbs without zero
13698
// extending X. This is safe since we only need the LSB after the shift and
13699
// shift amounts larger than 31 would produce poison. If we wait until
13700
// type legalization, we'll create RISCVISD::SRLW and we can't recover it
13701
// to use a BEXT instruction.
13702
if (!RV64LegalI32 && Subtarget.is64Bit() && Subtarget.hasStdExtZbs() &&
13703
N->getValueType(0) == MVT::i32 && isOneConstant(N->getOperand(1)) &&
13704
N0.getOpcode() == ISD::SRL && !isa<ConstantSDNode>(N0.getOperand(1)) &&
13705
N0.hasOneUse()) {
13706
SDLoc DL(N);
13707
SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0));
13708
SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1));
13709
SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1);
13710
SDValue And = DAG.getNode(ISD::AND, DL, MVT::i64, Srl,
13711
DAG.getConstant(1, DL, MVT::i64));
13712
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, And);
13713
}
13714
13715
if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget))
13716
return V;
13717
if (SDValue V = combineBinOpOfExtractToReduceTree(N, DAG, Subtarget))
13718
return V;
13719
13720
if (DCI.isAfterLegalizeDAG())
13721
if (SDValue V = combineDeMorganOfBoolean(N, DAG))
13722
return V;
13723
13724
// fold (and (select lhs, rhs, cc, -1, y), x) ->
13725
// (select lhs, rhs, cc, x, (and x, y))
13726
return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true, Subtarget);
13727
}
13728
13729
// Try to pull an xor with 1 through a select idiom that uses czero_eqz/nez.
13730
// FIXME: Generalize to other binary operators with same operand.
13731
static SDValue combineOrOfCZERO(SDNode *N, SDValue N0, SDValue N1,
13732
SelectionDAG &DAG) {
13733
assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
13734
13735
if (N0.getOpcode() != RISCVISD::CZERO_EQZ ||
13736
N1.getOpcode() != RISCVISD::CZERO_NEZ ||
13737
!N0.hasOneUse() || !N1.hasOneUse())
13738
return SDValue();
13739
13740
// Should have the same condition.
13741
SDValue Cond = N0.getOperand(1);
13742
if (Cond != N1.getOperand(1))
13743
return SDValue();
13744
13745
SDValue TrueV = N0.getOperand(0);
13746
SDValue FalseV = N1.getOperand(0);
13747
13748
if (TrueV.getOpcode() != ISD::XOR || FalseV.getOpcode() != ISD::XOR ||
13749
TrueV.getOperand(1) != FalseV.getOperand(1) ||
13750
!isOneConstant(TrueV.getOperand(1)) ||
13751
!TrueV.hasOneUse() || !FalseV.hasOneUse())
13752
return SDValue();
13753
13754
EVT VT = N->getValueType(0);
13755
SDLoc DL(N);
13756
13757
SDValue NewN0 = DAG.getNode(RISCVISD::CZERO_EQZ, DL, VT, TrueV.getOperand(0),
13758
Cond);
13759
SDValue NewN1 = DAG.getNode(RISCVISD::CZERO_NEZ, DL, VT, FalseV.getOperand(0),
13760
Cond);
13761
SDValue NewOr = DAG.getNode(ISD::OR, DL, VT, NewN0, NewN1);
13762
return DAG.getNode(ISD::XOR, DL, VT, NewOr, TrueV.getOperand(1));
13763
}
13764
13765
static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
13766
const RISCVSubtarget &Subtarget) {
13767
SelectionDAG &DAG = DCI.DAG;
13768
13769
if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget))
13770
return V;
13771
if (SDValue V = combineBinOpOfExtractToReduceTree(N, DAG, Subtarget))
13772
return V;
13773
13774
if (DCI.isAfterLegalizeDAG())
13775
if (SDValue V = combineDeMorganOfBoolean(N, DAG))
13776
return V;
13777
13778
// Look for Or of CZERO_EQZ/NEZ with same condition which is the select idiom.
13779
// We may be able to pull a common operation out of the true and false value.
13780
SDValue N0 = N->getOperand(0);
13781
SDValue N1 = N->getOperand(1);
13782
if (SDValue V = combineOrOfCZERO(N, N0, N1, DAG))
13783
return V;
13784
if (SDValue V = combineOrOfCZERO(N, N1, N0, DAG))
13785
return V;
13786
13787
// fold (or (select cond, 0, y), x) ->
13788
// (select cond, x, (or x, y))
13789
return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false, Subtarget);
13790
}
13791
13792
static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
13793
const RISCVSubtarget &Subtarget) {
13794
SDValue N0 = N->getOperand(0);
13795
SDValue N1 = N->getOperand(1);
13796
13797
// Pre-promote (i32 (xor (shl -1, X), ~0)) on RV64 with Zbs so we can use
13798
// (ADDI (BSET X0, X), -1). If we wait until/ type legalization, we'll create
13799
// RISCVISD:::SLLW and we can't recover it to use a BSET instruction.
13800
if (!RV64LegalI32 && Subtarget.is64Bit() && Subtarget.hasStdExtZbs() &&
13801
N->getValueType(0) == MVT::i32 && isAllOnesConstant(N1) &&
13802
N0.getOpcode() == ISD::SHL && isAllOnesConstant(N0.getOperand(0)) &&
13803
!isa<ConstantSDNode>(N0.getOperand(1)) && N0.hasOneUse()) {
13804
SDLoc DL(N);
13805
SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0));
13806
SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1));
13807
SDValue Shl = DAG.getNode(ISD::SHL, DL, MVT::i64, Op0, Op1);
13808
SDValue And = DAG.getNOT(DL, Shl, MVT::i64);
13809
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, And);
13810
}
13811
13812
// fold (xor (sllw 1, x), -1) -> (rolw ~1, x)
13813
// NOTE: Assumes ROL being legal means ROLW is legal.
13814
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13815
if (N0.getOpcode() == RISCVISD::SLLW &&
13816
isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0)) &&
13817
TLI.isOperationLegal(ISD::ROTL, MVT::i64)) {
13818
SDLoc DL(N);
13819
return DAG.getNode(RISCVISD::ROLW, DL, MVT::i64,
13820
DAG.getConstant(~1, DL, MVT::i64), N0.getOperand(1));
13821
}
13822
13823
// Fold (xor (setcc constant, y, setlt), 1) -> (setcc y, constant + 1, setlt)
13824
if (N0.getOpcode() == ISD::SETCC && isOneConstant(N1) && N0.hasOneUse()) {
13825
auto *ConstN00 = dyn_cast<ConstantSDNode>(N0.getOperand(0));
13826
ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
13827
if (ConstN00 && CC == ISD::SETLT) {
13828
EVT VT = N0.getValueType();
13829
SDLoc DL(N0);
13830
const APInt &Imm = ConstN00->getAPIntValue();
13831
if ((Imm + 1).isSignedIntN(12))
13832
return DAG.getSetCC(DL, VT, N0.getOperand(1),
13833
DAG.getConstant(Imm + 1, DL, VT), CC);
13834
}
13835
}
13836
13837
// Combine (xor (trunc (X cc Y)) 1) -> (trunc (X !cc Y)). This is needed with
13838
// RV64LegalI32 when the setcc is created after type legalization. An i1 xor
13839
// would have been promoted to i32, but the setcc would have i64 result.
13840
if (N->getValueType(0) == MVT::i32 && N0.getOpcode() == ISD::TRUNCATE &&
13841
isOneConstant(N1) && N0.getOperand(0).getOpcode() == ISD::SETCC) {
13842
SDValue N00 = N0.getOperand(0);
13843
SDLoc DL(N);
13844
SDValue LHS = N00.getOperand(0);
13845
SDValue RHS = N00.getOperand(1);
13846
SDValue CC = N00.getOperand(2);
13847
ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
13848
LHS.getValueType());
13849
SDValue Setcc = DAG.getSetCC(SDLoc(N00), N0.getOperand(0).getValueType(),
13850
LHS, RHS, NotCC);
13851
return DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N->getValueType(0), Setcc);
13852
}
13853
13854
if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget))
13855
return V;
13856
if (SDValue V = combineBinOpOfExtractToReduceTree(N, DAG, Subtarget))
13857
return V;
13858
13859
// fold (xor (select cond, 0, y), x) ->
13860
// (select cond, x, (xor x, y))
13861
return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false, Subtarget);
13862
}
13863
13864
// Try to expand a scalar multiply to a faster sequence.
13865
static SDValue expandMul(SDNode *N, SelectionDAG &DAG,
13866
TargetLowering::DAGCombinerInfo &DCI,
13867
const RISCVSubtarget &Subtarget) {
13868
13869
EVT VT = N->getValueType(0);
13870
13871
// LI + MUL is usually smaller than the alternative sequence.
13872
if (DAG.getMachineFunction().getFunction().hasMinSize())
13873
return SDValue();
13874
13875
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13876
return SDValue();
13877
13878
if (VT != Subtarget.getXLenVT())
13879
return SDValue();
13880
13881
const bool HasShlAdd =
13882
Subtarget.hasStdExtZba() || Subtarget.hasVendorXTHeadBa();
13883
13884
ConstantSDNode *CNode = dyn_cast<ConstantSDNode>(N->getOperand(1));
13885
if (!CNode)
13886
return SDValue();
13887
uint64_t MulAmt = CNode->getZExtValue();
13888
13889
// WARNING: The code below is knowingly incorrect with regards to undef semantics.
13890
// We're adding additional uses of X here, and in principle, we should be freezing
13891
// X before doing so. However, adding freeze here causes real regressions, and no
13892
// other target properly freezes X in these cases either.
13893
SDValue X = N->getOperand(0);
13894
13895
if (HasShlAdd) {
13896
for (uint64_t Divisor : {3, 5, 9}) {
13897
if (MulAmt % Divisor != 0)
13898
continue;
13899
uint64_t MulAmt2 = MulAmt / Divisor;
13900
// 3/5/9 * 2^N -> shl (shXadd X, X), N
13901
if (isPowerOf2_64(MulAmt2)) {
13902
SDLoc DL(N);
13903
SDValue X = N->getOperand(0);
13904
// Put the shift first if we can fold a zext into the
13905
// shift forming a slli.uw.
13906
if (X.getOpcode() == ISD::AND && isa<ConstantSDNode>(X.getOperand(1)) &&
13907
X.getConstantOperandVal(1) == UINT64_C(0xffffffff)) {
13908
SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, X,
13909
DAG.getConstant(Log2_64(MulAmt2), DL, VT));
13910
return DAG.getNode(RISCVISD::SHL_ADD, DL, VT, Shl,
13911
DAG.getConstant(Log2_64(Divisor - 1), DL, VT),
13912
Shl);
13913
}
13914
// Otherwise, put rhe shl second so that it can fold with following
13915
// instructions (e.g. sext or add).
13916
SDValue Mul359 =
13917
DAG.getNode(RISCVISD::SHL_ADD, DL, VT, X,
13918
DAG.getConstant(Log2_64(Divisor - 1), DL, VT), X);
13919
return DAG.getNode(ISD::SHL, DL, VT, Mul359,
13920
DAG.getConstant(Log2_64(MulAmt2), DL, VT));
13921
}
13922
13923
// 3/5/9 * 3/5/9 -> shXadd (shYadd X, X), (shYadd X, X)
13924
if (MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9) {
13925
SDLoc DL(N);
13926
SDValue Mul359 =
13927
DAG.getNode(RISCVISD::SHL_ADD, DL, VT, X,
13928
DAG.getConstant(Log2_64(Divisor - 1), DL, VT), X);
13929
return DAG.getNode(RISCVISD::SHL_ADD, DL, VT, Mul359,
13930
DAG.getConstant(Log2_64(MulAmt2 - 1), DL, VT),
13931
Mul359);
13932
}
13933
}
13934
13935
// If this is a power 2 + 2/4/8, we can use a shift followed by a single
13936
// shXadd. First check if this a sum of two power of 2s because that's
13937
// easy. Then count how many zeros are up to the first bit.
13938
if (isPowerOf2_64(MulAmt & (MulAmt - 1))) {
13939
unsigned ScaleShift = llvm::countr_zero(MulAmt);
13940
if (ScaleShift >= 1 && ScaleShift < 4) {
13941
unsigned ShiftAmt = Log2_64((MulAmt & (MulAmt - 1)));
13942
SDLoc DL(N);
13943
SDValue Shift1 =
13944
DAG.getNode(ISD::SHL, DL, VT, X, DAG.getConstant(ShiftAmt, DL, VT));
13945
return DAG.getNode(RISCVISD::SHL_ADD, DL, VT, X,
13946
DAG.getConstant(ScaleShift, DL, VT), Shift1);
13947
}
13948
}
13949
13950
// 2^(1,2,3) * 3,5,9 + 1 -> (shXadd (shYadd x, x), x)
13951
// This is the two instruction form, there are also three instruction
13952
// variants we could implement. e.g.
13953
// (2^(1,2,3) * 3,5,9 + 1) << C2
13954
// 2^(C1>3) * 3,5,9 +/- 1
13955
for (uint64_t Divisor : {3, 5, 9}) {
13956
uint64_t C = MulAmt - 1;
13957
if (C <= Divisor)
13958
continue;
13959
unsigned TZ = llvm::countr_zero(C);
13960
if ((C >> TZ) == Divisor && (TZ == 1 || TZ == 2 || TZ == 3)) {
13961
SDLoc DL(N);
13962
SDValue Mul359 =
13963
DAG.getNode(RISCVISD::SHL_ADD, DL, VT, X,
13964
DAG.getConstant(Log2_64(Divisor - 1), DL, VT), X);
13965
return DAG.getNode(RISCVISD::SHL_ADD, DL, VT, Mul359,
13966
DAG.getConstant(TZ, DL, VT), X);
13967
}
13968
}
13969
13970
// 2^n + 2/4/8 + 1 -> (add (shl X, C1), (shXadd X, X))
13971
if (MulAmt > 2 && isPowerOf2_64((MulAmt - 1) & (MulAmt - 2))) {
13972
unsigned ScaleShift = llvm::countr_zero(MulAmt - 1);
13973
if (ScaleShift >= 1 && ScaleShift < 4) {
13974
unsigned ShiftAmt = Log2_64(((MulAmt - 1) & (MulAmt - 2)));
13975
SDLoc DL(N);
13976
SDValue Shift1 =
13977
DAG.getNode(ISD::SHL, DL, VT, X, DAG.getConstant(ShiftAmt, DL, VT));
13978
return DAG.getNode(ISD::ADD, DL, VT, Shift1,
13979
DAG.getNode(RISCVISD::SHL_ADD, DL, VT, X,
13980
DAG.getConstant(ScaleShift, DL, VT), X));
13981
}
13982
}
13983
13984
// 2^N - 3/5/9 --> (sub (shl X, C1), (shXadd X, x))
13985
for (uint64_t Offset : {3, 5, 9}) {
13986
if (isPowerOf2_64(MulAmt + Offset)) {
13987
SDLoc DL(N);
13988
SDValue Shift1 =
13989
DAG.getNode(ISD::SHL, DL, VT, X,
13990
DAG.getConstant(Log2_64(MulAmt + Offset), DL, VT));
13991
SDValue Mul359 =
13992
DAG.getNode(RISCVISD::SHL_ADD, DL, VT, X,
13993
DAG.getConstant(Log2_64(Offset - 1), DL, VT), X);
13994
return DAG.getNode(ISD::SUB, DL, VT, Shift1, Mul359);
13995
}
13996
}
13997
}
13998
13999
// 2^N - 2^M -> (sub (shl X, C1), (shl X, C2))
14000
uint64_t MulAmtLowBit = MulAmt & (-MulAmt);
14001
if (isPowerOf2_64(MulAmt + MulAmtLowBit)) {
14002
uint64_t ShiftAmt1 = MulAmt + MulAmtLowBit;
14003
SDLoc DL(N);
14004
SDValue Shift1 = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
14005
DAG.getConstant(Log2_64(ShiftAmt1), DL, VT));
14006
SDValue Shift2 =
14007
DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
14008
DAG.getConstant(Log2_64(MulAmtLowBit), DL, VT));
14009
return DAG.getNode(ISD::SUB, DL, VT, Shift1, Shift2);
14010
}
14011
14012
return SDValue();
14013
}
14014
14015
// Combine vXi32 (mul (and (lshr X, 15), 0x10001), 0xffff) ->
14016
// (bitcast (sra (v2Xi16 (bitcast X)), 15))
14017
// Same for other equivalent types with other equivalent constants.
14018
static SDValue combineVectorMulToSraBitcast(SDNode *N, SelectionDAG &DAG) {
14019
EVT VT = N->getValueType(0);
14020
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14021
14022
// Do this for legal vectors unless they are i1 or i8 vectors.
14023
if (!VT.isVector() || !TLI.isTypeLegal(VT) || VT.getScalarSizeInBits() < 16)
14024
return SDValue();
14025
14026
if (N->getOperand(0).getOpcode() != ISD::AND ||
14027
N->getOperand(0).getOperand(0).getOpcode() != ISD::SRL)
14028
return SDValue();
14029
14030
SDValue And = N->getOperand(0);
14031
SDValue Srl = And.getOperand(0);
14032
14033
APInt V1, V2, V3;
14034
if (!ISD::isConstantSplatVector(N->getOperand(1).getNode(), V1) ||
14035
!ISD::isConstantSplatVector(And.getOperand(1).getNode(), V2) ||
14036
!ISD::isConstantSplatVector(Srl.getOperand(1).getNode(), V3))
14037
return SDValue();
14038
14039
unsigned HalfSize = VT.getScalarSizeInBits() / 2;
14040
if (!V1.isMask(HalfSize) || V2 != (1ULL | 1ULL << HalfSize) ||
14041
V3 != (HalfSize - 1))
14042
return SDValue();
14043
14044
EVT HalfVT = EVT::getVectorVT(*DAG.getContext(),
14045
EVT::getIntegerVT(*DAG.getContext(), HalfSize),
14046
VT.getVectorElementCount() * 2);
14047
SDLoc DL(N);
14048
SDValue Cast = DAG.getNode(ISD::BITCAST, DL, HalfVT, Srl.getOperand(0));
14049
SDValue Sra = DAG.getNode(ISD::SRA, DL, HalfVT, Cast,
14050
DAG.getConstant(HalfSize - 1, DL, HalfVT));
14051
return DAG.getNode(ISD::BITCAST, DL, VT, Sra);
14052
}
14053
14054
static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG,
14055
TargetLowering::DAGCombinerInfo &DCI,
14056
const RISCVSubtarget &Subtarget) {
14057
EVT VT = N->getValueType(0);
14058
if (!VT.isVector())
14059
return expandMul(N, DAG, DCI, Subtarget);
14060
14061
SDLoc DL(N);
14062
SDValue N0 = N->getOperand(0);
14063
SDValue N1 = N->getOperand(1);
14064
SDValue MulOper;
14065
unsigned AddSubOpc;
14066
14067
// vmadd: (mul (add x, 1), y) -> (add (mul x, y), y)
14068
// (mul x, add (y, 1)) -> (add x, (mul x, y))
14069
// vnmsub: (mul (sub 1, x), y) -> (sub y, (mul x, y))
14070
// (mul x, (sub 1, y)) -> (sub x, (mul x, y))
14071
auto IsAddSubWith1 = [&](SDValue V) -> bool {
14072
AddSubOpc = V->getOpcode();
14073
if ((AddSubOpc == ISD::ADD || AddSubOpc == ISD::SUB) && V->hasOneUse()) {
14074
SDValue Opnd = V->getOperand(1);
14075
MulOper = V->getOperand(0);
14076
if (AddSubOpc == ISD::SUB)
14077
std::swap(Opnd, MulOper);
14078
if (isOneOrOneSplat(Opnd))
14079
return true;
14080
}
14081
return false;
14082
};
14083
14084
if (IsAddSubWith1(N0)) {
14085
SDValue MulVal = DAG.getNode(ISD::MUL, DL, VT, N1, MulOper);
14086
return DAG.getNode(AddSubOpc, DL, VT, N1, MulVal);
14087
}
14088
14089
if (IsAddSubWith1(N1)) {
14090
SDValue MulVal = DAG.getNode(ISD::MUL, DL, VT, N0, MulOper);
14091
return DAG.getNode(AddSubOpc, DL, VT, N0, MulVal);
14092
}
14093
14094
if (SDValue V = combineBinOpOfZExt(N, DAG))
14095
return V;
14096
14097
if (SDValue V = combineVectorMulToSraBitcast(N, DAG))
14098
return V;
14099
14100
return SDValue();
14101
}
14102
14103
/// According to the property that indexed load/store instructions zero-extend
14104
/// their indices, try to narrow the type of index operand.
14105
static bool narrowIndex(SDValue &N, ISD::MemIndexType IndexType, SelectionDAG &DAG) {
14106
if (isIndexTypeSigned(IndexType))
14107
return false;
14108
14109
if (!N->hasOneUse())
14110
return false;
14111
14112
EVT VT = N.getValueType();
14113
SDLoc DL(N);
14114
14115
// In general, what we're doing here is seeing if we can sink a truncate to
14116
// a smaller element type into the expression tree building our index.
14117
// TODO: We can generalize this and handle a bunch more cases if useful.
14118
14119
// Narrow a buildvector to the narrowest element type. This requires less
14120
// work and less register pressure at high LMUL, and creates smaller constants
14121
// which may be cheaper to materialize.
14122
if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) {
14123
KnownBits Known = DAG.computeKnownBits(N);
14124
unsigned ActiveBits = std::max(8u, Known.countMaxActiveBits());
14125
LLVMContext &C = *DAG.getContext();
14126
EVT ResultVT = EVT::getIntegerVT(C, ActiveBits).getRoundIntegerType(C);
14127
if (ResultVT.bitsLT(VT.getVectorElementType())) {
14128
N = DAG.getNode(ISD::TRUNCATE, DL,
14129
VT.changeVectorElementType(ResultVT), N);
14130
return true;
14131
}
14132
}
14133
14134
// Handle the pattern (shl (zext x to ty), C) and bits(x) + C < bits(ty).
14135
if (N.getOpcode() != ISD::SHL)
14136
return false;
14137
14138
SDValue N0 = N.getOperand(0);
14139
if (N0.getOpcode() != ISD::ZERO_EXTEND &&
14140
N0.getOpcode() != RISCVISD::VZEXT_VL)
14141
return false;
14142
if (!N0->hasOneUse())
14143
return false;
14144
14145
APInt ShAmt;
14146
SDValue N1 = N.getOperand(1);
14147
if (!ISD::isConstantSplatVector(N1.getNode(), ShAmt))
14148
return false;
14149
14150
SDValue Src = N0.getOperand(0);
14151
EVT SrcVT = Src.getValueType();
14152
unsigned SrcElen = SrcVT.getScalarSizeInBits();
14153
unsigned ShAmtV = ShAmt.getZExtValue();
14154
unsigned NewElen = PowerOf2Ceil(SrcElen + ShAmtV);
14155
NewElen = std::max(NewElen, 8U);
14156
14157
// Skip if NewElen is not narrower than the original extended type.
14158
if (NewElen >= N0.getValueType().getScalarSizeInBits())
14159
return false;
14160
14161
EVT NewEltVT = EVT::getIntegerVT(*DAG.getContext(), NewElen);
14162
EVT NewVT = SrcVT.changeVectorElementType(NewEltVT);
14163
14164
SDValue NewExt = DAG.getNode(N0->getOpcode(), DL, NewVT, N0->ops());
14165
SDValue NewShAmtVec = DAG.getConstant(ShAmtV, DL, NewVT);
14166
N = DAG.getNode(ISD::SHL, DL, NewVT, NewExt, NewShAmtVec);
14167
return true;
14168
}
14169
14170
// Replace (seteq (i64 (and X, 0xffffffff)), C1) with
14171
// (seteq (i64 (sext_inreg (X, i32)), C1')) where C1' is C1 sign extended from
14172
// bit 31. Same for setne. C1' may be cheaper to materialize and the sext_inreg
14173
// can become a sext.w instead of a shift pair.
14174
static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG,
14175
const RISCVSubtarget &Subtarget) {
14176
SDValue N0 = N->getOperand(0);
14177
SDValue N1 = N->getOperand(1);
14178
EVT VT = N->getValueType(0);
14179
EVT OpVT = N0.getValueType();
14180
14181
if (OpVT != MVT::i64 || !Subtarget.is64Bit())
14182
return SDValue();
14183
14184
// RHS needs to be a constant.
14185
auto *N1C = dyn_cast<ConstantSDNode>(N1);
14186
if (!N1C)
14187
return SDValue();
14188
14189
// LHS needs to be (and X, 0xffffffff).
14190
if (N0.getOpcode() != ISD::AND || !N0.hasOneUse() ||
14191
!isa<ConstantSDNode>(N0.getOperand(1)) ||
14192
N0.getConstantOperandVal(1) != UINT64_C(0xffffffff))
14193
return SDValue();
14194
14195
// Looking for an equality compare.
14196
ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get();
14197
if (!isIntEqualitySetCC(Cond))
14198
return SDValue();
14199
14200
// Don't do this if the sign bit is provably zero, it will be turned back into
14201
// an AND.
14202
APInt SignMask = APInt::getOneBitSet(64, 31);
14203
if (DAG.MaskedValueIsZero(N0.getOperand(0), SignMask))
14204
return SDValue();
14205
14206
const APInt &C1 = N1C->getAPIntValue();
14207
14208
SDLoc dl(N);
14209
// If the constant is larger than 2^32 - 1 it is impossible for both sides
14210
// to be equal.
14211
if (C1.getActiveBits() > 32)
14212
return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
14213
14214
SDValue SExtOp = DAG.getNode(ISD::SIGN_EXTEND_INREG, N, OpVT,
14215
N0.getOperand(0), DAG.getValueType(MVT::i32));
14216
return DAG.getSetCC(dl, VT, SExtOp, DAG.getConstant(C1.trunc(32).sext(64),
14217
dl, OpVT), Cond);
14218
}
14219
14220
static SDValue
14221
performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
14222
const RISCVSubtarget &Subtarget) {
14223
SDValue Src = N->getOperand(0);
14224
EVT VT = N->getValueType(0);
14225
14226
// Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
14227
if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
14228
cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
14229
return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT,
14230
Src.getOperand(0));
14231
14232
return SDValue();
14233
}
14234
14235
namespace {
14236
// Forward declaration of the structure holding the necessary information to
14237
// apply a combine.
14238
struct CombineResult;
14239
14240
enum ExtKind : uint8_t { ZExt = 1 << 0, SExt = 1 << 1, FPExt = 1 << 2 };
14241
/// Helper class for folding sign/zero extensions.
14242
/// In particular, this class is used for the following combines:
14243
/// add | add_vl | or disjoint -> vwadd(u) | vwadd(u)_w
14244
/// sub | sub_vl -> vwsub(u) | vwsub(u)_w
14245
/// mul | mul_vl -> vwmul(u) | vwmul_su
14246
/// shl | shl_vl -> vwsll
14247
/// fadd -> vfwadd | vfwadd_w
14248
/// fsub -> vfwsub | vfwsub_w
14249
/// fmul -> vfwmul
14250
/// An object of this class represents an operand of the operation we want to
14251
/// combine.
14252
/// E.g., when trying to combine `mul_vl a, b`, we will have one instance of
14253
/// NodeExtensionHelper for `a` and one for `b`.
14254
///
14255
/// This class abstracts away how the extension is materialized and
14256
/// how its number of users affect the combines.
14257
///
14258
/// In particular:
14259
/// - VWADD_W is conceptually == add(op0, sext(op1))
14260
/// - VWADDU_W == add(op0, zext(op1))
14261
/// - VWSUB_W == sub(op0, sext(op1))
14262
/// - VWSUBU_W == sub(op0, zext(op1))
14263
/// - VFWADD_W == fadd(op0, fpext(op1))
14264
/// - VFWSUB_W == fsub(op0, fpext(op1))
14265
/// And VMV_V_X_VL, depending on the value, is conceptually equivalent to
14266
/// zext|sext(smaller_value).
14267
struct NodeExtensionHelper {
14268
/// Records if this operand is like being zero extended.
14269
bool SupportsZExt;
14270
/// Records if this operand is like being sign extended.
14271
/// Note: SupportsZExt and SupportsSExt are not mutually exclusive. For
14272
/// instance, a splat constant (e.g., 3), would support being both sign and
14273
/// zero extended.
14274
bool SupportsSExt;
14275
/// Records if this operand is like being floating-Point extended.
14276
bool SupportsFPExt;
14277
/// This boolean captures whether we care if this operand would still be
14278
/// around after the folding happens.
14279
bool EnforceOneUse;
14280
/// Original value that this NodeExtensionHelper represents.
14281
SDValue OrigOperand;
14282
14283
/// Get the value feeding the extension or the value itself.
14284
/// E.g., for zext(a), this would return a.
14285
SDValue getSource() const {
14286
switch (OrigOperand.getOpcode()) {
14287
case ISD::ZERO_EXTEND:
14288
case ISD::SIGN_EXTEND:
14289
case RISCVISD::VSEXT_VL:
14290
case RISCVISD::VZEXT_VL:
14291
case RISCVISD::FP_EXTEND_VL:
14292
return OrigOperand.getOperand(0);
14293
default:
14294
return OrigOperand;
14295
}
14296
}
14297
14298
/// Check if this instance represents a splat.
14299
bool isSplat() const {
14300
return OrigOperand.getOpcode() == RISCVISD::VMV_V_X_VL ||
14301
OrigOperand.getOpcode() == ISD::SPLAT_VECTOR;
14302
}
14303
14304
/// Get the extended opcode.
14305
unsigned getExtOpc(ExtKind SupportsExt) const {
14306
switch (SupportsExt) {
14307
case ExtKind::SExt:
14308
return RISCVISD::VSEXT_VL;
14309
case ExtKind::ZExt:
14310
return RISCVISD::VZEXT_VL;
14311
case ExtKind::FPExt:
14312
return RISCVISD::FP_EXTEND_VL;
14313
}
14314
llvm_unreachable("Unknown ExtKind enum");
14315
}
14316
14317
/// Get or create a value that can feed \p Root with the given extension \p
14318
/// SupportsExt. If \p SExt is std::nullopt, this returns the source of this
14319
/// operand. \see ::getSource().
14320
SDValue getOrCreateExtendedOp(SDNode *Root, SelectionDAG &DAG,
14321
const RISCVSubtarget &Subtarget,
14322
std::optional<ExtKind> SupportsExt) const {
14323
if (!SupportsExt.has_value())
14324
return OrigOperand;
14325
14326
MVT NarrowVT = getNarrowType(Root, *SupportsExt);
14327
14328
SDValue Source = getSource();
14329
assert(Subtarget.getTargetLowering()->isTypeLegal(Source.getValueType()));
14330
if (Source.getValueType() == NarrowVT)
14331
return Source;
14332
14333
unsigned ExtOpc = getExtOpc(*SupportsExt);
14334
14335
// If we need an extension, we should be changing the type.
14336
SDLoc DL(OrigOperand);
14337
auto [Mask, VL] = getMaskAndVL(Root, DAG, Subtarget);
14338
switch (OrigOperand.getOpcode()) {
14339
case ISD::ZERO_EXTEND:
14340
case ISD::SIGN_EXTEND:
14341
case RISCVISD::VSEXT_VL:
14342
case RISCVISD::VZEXT_VL:
14343
case RISCVISD::FP_EXTEND_VL:
14344
return DAG.getNode(ExtOpc, DL, NarrowVT, Source, Mask, VL);
14345
case ISD::SPLAT_VECTOR:
14346
return DAG.getSplat(NarrowVT, DL, Source.getOperand(0));
14347
case RISCVISD::VMV_V_X_VL:
14348
return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
14349
DAG.getUNDEF(NarrowVT), Source.getOperand(1), VL);
14350
case RISCVISD::VFMV_V_F_VL:
14351
Source = Source.getOperand(1);
14352
assert(Source.getOpcode() == ISD::FP_EXTEND && "Unexpected source");
14353
Source = Source.getOperand(0);
14354
assert(Source.getValueType() == NarrowVT.getVectorElementType());
14355
return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, NarrowVT,
14356
DAG.getUNDEF(NarrowVT), Source, VL);
14357
default:
14358
// Other opcodes can only come from the original LHS of VW(ADD|SUB)_W_VL
14359
// and that operand should already have the right NarrowVT so no
14360
// extension should be required at this point.
14361
llvm_unreachable("Unsupported opcode");
14362
}
14363
}
14364
14365
/// Helper function to get the narrow type for \p Root.
14366
/// The narrow type is the type of \p Root where we divided the size of each
14367
/// element by 2. E.g., if Root's type <2xi16> -> narrow type <2xi8>.
14368
/// \pre Both the narrow type and the original type should be legal.
14369
static MVT getNarrowType(const SDNode *Root, ExtKind SupportsExt) {
14370
MVT VT = Root->getSimpleValueType(0);
14371
14372
// Determine the narrow size.
14373
unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
14374
14375
MVT EltVT = SupportsExt == ExtKind::FPExt
14376
? MVT::getFloatingPointVT(NarrowSize)
14377
: MVT::getIntegerVT(NarrowSize);
14378
14379
assert((int)NarrowSize >= (SupportsExt == ExtKind::FPExt ? 16 : 8) &&
14380
"Trying to extend something we can't represent");
14381
MVT NarrowVT = MVT::getVectorVT(EltVT, VT.getVectorElementCount());
14382
return NarrowVT;
14383
}
14384
14385
/// Get the opcode to materialize:
14386
/// Opcode(sext(a), sext(b)) -> newOpcode(a, b)
14387
static unsigned getSExtOpcode(unsigned Opcode) {
14388
switch (Opcode) {
14389
case ISD::ADD:
14390
case RISCVISD::ADD_VL:
14391
case RISCVISD::VWADD_W_VL:
14392
case RISCVISD::VWADDU_W_VL:
14393
case ISD::OR:
14394
return RISCVISD::VWADD_VL;
14395
case ISD::SUB:
14396
case RISCVISD::SUB_VL:
14397
case RISCVISD::VWSUB_W_VL:
14398
case RISCVISD::VWSUBU_W_VL:
14399
return RISCVISD::VWSUB_VL;
14400
case ISD::MUL:
14401
case RISCVISD::MUL_VL:
14402
return RISCVISD::VWMUL_VL;
14403
default:
14404
llvm_unreachable("Unexpected opcode");
14405
}
14406
}
14407
14408
/// Get the opcode to materialize:
14409
/// Opcode(zext(a), zext(b)) -> newOpcode(a, b)
14410
static unsigned getZExtOpcode(unsigned Opcode) {
14411
switch (Opcode) {
14412
case ISD::ADD:
14413
case RISCVISD::ADD_VL:
14414
case RISCVISD::VWADD_W_VL:
14415
case RISCVISD::VWADDU_W_VL:
14416
case ISD::OR:
14417
return RISCVISD::VWADDU_VL;
14418
case ISD::SUB:
14419
case RISCVISD::SUB_VL:
14420
case RISCVISD::VWSUB_W_VL:
14421
case RISCVISD::VWSUBU_W_VL:
14422
return RISCVISD::VWSUBU_VL;
14423
case ISD::MUL:
14424
case RISCVISD::MUL_VL:
14425
return RISCVISD::VWMULU_VL;
14426
case ISD::SHL:
14427
case RISCVISD::SHL_VL:
14428
return RISCVISD::VWSLL_VL;
14429
default:
14430
llvm_unreachable("Unexpected opcode");
14431
}
14432
}
14433
14434
/// Get the opcode to materialize:
14435
/// Opcode(fpext(a), fpext(b)) -> newOpcode(a, b)
14436
static unsigned getFPExtOpcode(unsigned Opcode) {
14437
switch (Opcode) {
14438
case RISCVISD::FADD_VL:
14439
case RISCVISD::VFWADD_W_VL:
14440
return RISCVISD::VFWADD_VL;
14441
case RISCVISD::FSUB_VL:
14442
case RISCVISD::VFWSUB_W_VL:
14443
return RISCVISD::VFWSUB_VL;
14444
case RISCVISD::FMUL_VL:
14445
return RISCVISD::VFWMUL_VL;
14446
default:
14447
llvm_unreachable("Unexpected opcode");
14448
}
14449
}
14450
14451
/// Get the opcode to materialize \p Opcode(sext(a), zext(b)) ->
14452
/// newOpcode(a, b).
14453
static unsigned getSUOpcode(unsigned Opcode) {
14454
assert((Opcode == RISCVISD::MUL_VL || Opcode == ISD::MUL) &&
14455
"SU is only supported for MUL");
14456
return RISCVISD::VWMULSU_VL;
14457
}
14458
14459
/// Get the opcode to materialize
14460
/// \p Opcode(a, s|z|fpext(b)) -> newOpcode(a, b).
14461
static unsigned getWOpcode(unsigned Opcode, ExtKind SupportsExt) {
14462
switch (Opcode) {
14463
case ISD::ADD:
14464
case RISCVISD::ADD_VL:
14465
case ISD::OR:
14466
return SupportsExt == ExtKind::SExt ? RISCVISD::VWADD_W_VL
14467
: RISCVISD::VWADDU_W_VL;
14468
case ISD::SUB:
14469
case RISCVISD::SUB_VL:
14470
return SupportsExt == ExtKind::SExt ? RISCVISD::VWSUB_W_VL
14471
: RISCVISD::VWSUBU_W_VL;
14472
case RISCVISD::FADD_VL:
14473
return RISCVISD::VFWADD_W_VL;
14474
case RISCVISD::FSUB_VL:
14475
return RISCVISD::VFWSUB_W_VL;
14476
default:
14477
llvm_unreachable("Unexpected opcode");
14478
}
14479
}
14480
14481
using CombineToTry = std::function<std::optional<CombineResult>(
14482
SDNode * /*Root*/, const NodeExtensionHelper & /*LHS*/,
14483
const NodeExtensionHelper & /*RHS*/, SelectionDAG &,
14484
const RISCVSubtarget &)>;
14485
14486
/// Check if this node needs to be fully folded or extended for all users.
14487
bool needToPromoteOtherUsers() const { return EnforceOneUse; }
14488
14489
void fillUpExtensionSupportForSplat(SDNode *Root, SelectionDAG &DAG,
14490
const RISCVSubtarget &Subtarget) {
14491
unsigned Opc = OrigOperand.getOpcode();
14492
MVT VT = OrigOperand.getSimpleValueType();
14493
14494
assert((Opc == ISD::SPLAT_VECTOR || Opc == RISCVISD::VMV_V_X_VL) &&
14495
"Unexpected Opcode");
14496
14497
// The pasthru must be undef for tail agnostic.
14498
if (Opc == RISCVISD::VMV_V_X_VL && !OrigOperand.getOperand(0).isUndef())
14499
return;
14500
14501
// Get the scalar value.
14502
SDValue Op = Opc == ISD::SPLAT_VECTOR ? OrigOperand.getOperand(0)
14503
: OrigOperand.getOperand(1);
14504
14505
// See if we have enough sign bits or zero bits in the scalar to use a
14506
// widening opcode by splatting to smaller element size.
14507
unsigned EltBits = VT.getScalarSizeInBits();
14508
unsigned ScalarBits = Op.getValueSizeInBits();
14509
// If we're not getting all bits from the element, we need special handling.
14510
if (ScalarBits < EltBits) {
14511
// This should only occur on RV32.
14512
assert(Opc == RISCVISD::VMV_V_X_VL && EltBits == 64 && ScalarBits == 32 &&
14513
!Subtarget.is64Bit() && "Unexpected splat");
14514
// vmv.v.x sign extends narrow inputs.
14515
SupportsSExt = true;
14516
14517
// If the input is positive, then sign extend is also zero extend.
14518
if (DAG.SignBitIsZero(Op))
14519
SupportsZExt = true;
14520
14521
EnforceOneUse = false;
14522
return;
14523
}
14524
14525
unsigned NarrowSize = EltBits / 2;
14526
// If the narrow type cannot be expressed with a legal VMV,
14527
// this is not a valid candidate.
14528
if (NarrowSize < 8)
14529
return;
14530
14531
if (DAG.ComputeMaxSignificantBits(Op) <= NarrowSize)
14532
SupportsSExt = true;
14533
14534
if (DAG.MaskedValueIsZero(Op,
14535
APInt::getBitsSetFrom(ScalarBits, NarrowSize)))
14536
SupportsZExt = true;
14537
14538
EnforceOneUse = false;
14539
}
14540
14541
/// Helper method to set the various fields of this struct based on the
14542
/// type of \p Root.
14543
void fillUpExtensionSupport(SDNode *Root, SelectionDAG &DAG,
14544
const RISCVSubtarget &Subtarget) {
14545
SupportsZExt = false;
14546
SupportsSExt = false;
14547
SupportsFPExt = false;
14548
EnforceOneUse = true;
14549
unsigned Opc = OrigOperand.getOpcode();
14550
// For the nodes we handle below, we end up using their inputs directly: see
14551
// getSource(). However since they either don't have a passthru or we check
14552
// that their passthru is undef, we can safely ignore their mask and VL.
14553
switch (Opc) {
14554
case ISD::ZERO_EXTEND:
14555
case ISD::SIGN_EXTEND: {
14556
MVT VT = OrigOperand.getSimpleValueType();
14557
if (!VT.isVector())
14558
break;
14559
14560
SDValue NarrowElt = OrigOperand.getOperand(0);
14561
MVT NarrowVT = NarrowElt.getSimpleValueType();
14562
// i1 types are legal but we can't select V{S,Z}EXT_VLs with them.
14563
if (NarrowVT.getVectorElementType() == MVT::i1)
14564
break;
14565
14566
SupportsZExt = Opc == ISD::ZERO_EXTEND;
14567
SupportsSExt = Opc == ISD::SIGN_EXTEND;
14568
break;
14569
}
14570
case RISCVISD::VZEXT_VL:
14571
SupportsZExt = true;
14572
break;
14573
case RISCVISD::VSEXT_VL:
14574
SupportsSExt = true;
14575
break;
14576
case RISCVISD::FP_EXTEND_VL:
14577
SupportsFPExt = true;
14578
break;
14579
case ISD::SPLAT_VECTOR:
14580
case RISCVISD::VMV_V_X_VL:
14581
fillUpExtensionSupportForSplat(Root, DAG, Subtarget);
14582
break;
14583
case RISCVISD::VFMV_V_F_VL: {
14584
MVT VT = OrigOperand.getSimpleValueType();
14585
14586
if (!OrigOperand.getOperand(0).isUndef())
14587
break;
14588
14589
SDValue Op = OrigOperand.getOperand(1);
14590
if (Op.getOpcode() != ISD::FP_EXTEND)
14591
break;
14592
14593
unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
14594
unsigned ScalarBits = Op.getOperand(0).getValueSizeInBits();
14595
if (NarrowSize != ScalarBits)
14596
break;
14597
14598
SupportsFPExt = true;
14599
break;
14600
}
14601
default:
14602
break;
14603
}
14604
}
14605
14606
/// Check if \p Root supports any extension folding combines.
14607
static bool isSupportedRoot(const SDNode *Root,
14608
const RISCVSubtarget &Subtarget) {
14609
switch (Root->getOpcode()) {
14610
case ISD::ADD:
14611
case ISD::SUB:
14612
case ISD::MUL: {
14613
return Root->getValueType(0).isScalableVector();
14614
}
14615
case ISD::OR: {
14616
return Root->getValueType(0).isScalableVector() &&
14617
Root->getFlags().hasDisjoint();
14618
}
14619
// Vector Widening Integer Add/Sub/Mul Instructions
14620
case RISCVISD::ADD_VL:
14621
case RISCVISD::MUL_VL:
14622
case RISCVISD::VWADD_W_VL:
14623
case RISCVISD::VWADDU_W_VL:
14624
case RISCVISD::SUB_VL:
14625
case RISCVISD::VWSUB_W_VL:
14626
case RISCVISD::VWSUBU_W_VL:
14627
// Vector Widening Floating-Point Add/Sub/Mul Instructions
14628
case RISCVISD::FADD_VL:
14629
case RISCVISD::FSUB_VL:
14630
case RISCVISD::FMUL_VL:
14631
case RISCVISD::VFWADD_W_VL:
14632
case RISCVISD::VFWSUB_W_VL:
14633
return true;
14634
case ISD::SHL:
14635
return Root->getValueType(0).isScalableVector() &&
14636
Subtarget.hasStdExtZvbb();
14637
case RISCVISD::SHL_VL:
14638
return Subtarget.hasStdExtZvbb();
14639
default:
14640
return false;
14641
}
14642
}
14643
14644
/// Build a NodeExtensionHelper for \p Root.getOperand(\p OperandIdx).
14645
NodeExtensionHelper(SDNode *Root, unsigned OperandIdx, SelectionDAG &DAG,
14646
const RISCVSubtarget &Subtarget) {
14647
assert(isSupportedRoot(Root, Subtarget) &&
14648
"Trying to build an helper with an "
14649
"unsupported root");
14650
assert(OperandIdx < 2 && "Requesting something else than LHS or RHS");
14651
assert(DAG.getTargetLoweringInfo().isTypeLegal(Root->getValueType(0)));
14652
OrigOperand = Root->getOperand(OperandIdx);
14653
14654
unsigned Opc = Root->getOpcode();
14655
switch (Opc) {
14656
// We consider
14657
// VW<ADD|SUB>_W(LHS, RHS) -> <ADD|SUB>(LHS, SEXT(RHS))
14658
// VW<ADD|SUB>U_W(LHS, RHS) -> <ADD|SUB>(LHS, ZEXT(RHS))
14659
// VFW<ADD|SUB>_W(LHS, RHS) -> F<ADD|SUB>(LHS, FPEXT(RHS))
14660
case RISCVISD::VWADD_W_VL:
14661
case RISCVISD::VWADDU_W_VL:
14662
case RISCVISD::VWSUB_W_VL:
14663
case RISCVISD::VWSUBU_W_VL:
14664
case RISCVISD::VFWADD_W_VL:
14665
case RISCVISD::VFWSUB_W_VL:
14666
if (OperandIdx == 1) {
14667
SupportsZExt =
14668
Opc == RISCVISD::VWADDU_W_VL || Opc == RISCVISD::VWSUBU_W_VL;
14669
SupportsSExt =
14670
Opc == RISCVISD::VWADD_W_VL || Opc == RISCVISD::VWSUB_W_VL;
14671
SupportsFPExt =
14672
Opc == RISCVISD::VFWADD_W_VL || Opc == RISCVISD::VFWSUB_W_VL;
14673
// There's no existing extension here, so we don't have to worry about
14674
// making sure it gets removed.
14675
EnforceOneUse = false;
14676
break;
14677
}
14678
[[fallthrough]];
14679
default:
14680
fillUpExtensionSupport(Root, DAG, Subtarget);
14681
break;
14682
}
14683
}
14684
14685
/// Helper function to get the Mask and VL from \p Root.
14686
static std::pair<SDValue, SDValue>
14687
getMaskAndVL(const SDNode *Root, SelectionDAG &DAG,
14688
const RISCVSubtarget &Subtarget) {
14689
assert(isSupportedRoot(Root, Subtarget) && "Unexpected root");
14690
switch (Root->getOpcode()) {
14691
case ISD::ADD:
14692
case ISD::SUB:
14693
case ISD::MUL:
14694
case ISD::OR:
14695
case ISD::SHL: {
14696
SDLoc DL(Root);
14697
MVT VT = Root->getSimpleValueType(0);
14698
return getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
14699
}
14700
default:
14701
return std::make_pair(Root->getOperand(3), Root->getOperand(4));
14702
}
14703
}
14704
14705
/// Helper function to check if \p N is commutative with respect to the
14706
/// foldings that are supported by this class.
14707
static bool isCommutative(const SDNode *N) {
14708
switch (N->getOpcode()) {
14709
case ISD::ADD:
14710
case ISD::MUL:
14711
case ISD::OR:
14712
case RISCVISD::ADD_VL:
14713
case RISCVISD::MUL_VL:
14714
case RISCVISD::VWADD_W_VL:
14715
case RISCVISD::VWADDU_W_VL:
14716
case RISCVISD::FADD_VL:
14717
case RISCVISD::FMUL_VL:
14718
case RISCVISD::VFWADD_W_VL:
14719
return true;
14720
case ISD::SUB:
14721
case RISCVISD::SUB_VL:
14722
case RISCVISD::VWSUB_W_VL:
14723
case RISCVISD::VWSUBU_W_VL:
14724
case RISCVISD::FSUB_VL:
14725
case RISCVISD::VFWSUB_W_VL:
14726
case ISD::SHL:
14727
case RISCVISD::SHL_VL:
14728
return false;
14729
default:
14730
llvm_unreachable("Unexpected opcode");
14731
}
14732
}
14733
14734
/// Get a list of combine to try for folding extensions in \p Root.
14735
/// Note that each returned CombineToTry function doesn't actually modify
14736
/// anything. Instead they produce an optional CombineResult that if not None,
14737
/// need to be materialized for the combine to be applied.
14738
/// \see CombineResult::materialize.
14739
/// If the related CombineToTry function returns std::nullopt, that means the
14740
/// combine didn't match.
14741
static SmallVector<CombineToTry> getSupportedFoldings(const SDNode *Root);
14742
};
14743
14744
/// Helper structure that holds all the necessary information to materialize a
14745
/// combine that does some extension folding.
14746
struct CombineResult {
14747
/// Opcode to be generated when materializing the combine.
14748
unsigned TargetOpcode;
14749
// No value means no extension is needed.
14750
std::optional<ExtKind> LHSExt;
14751
std::optional<ExtKind> RHSExt;
14752
/// Root of the combine.
14753
SDNode *Root;
14754
/// LHS of the TargetOpcode.
14755
NodeExtensionHelper LHS;
14756
/// RHS of the TargetOpcode.
14757
NodeExtensionHelper RHS;
14758
14759
CombineResult(unsigned TargetOpcode, SDNode *Root,
14760
const NodeExtensionHelper &LHS, std::optional<ExtKind> LHSExt,
14761
const NodeExtensionHelper &RHS, std::optional<ExtKind> RHSExt)
14762
: TargetOpcode(TargetOpcode), LHSExt(LHSExt), RHSExt(RHSExt), Root(Root),
14763
LHS(LHS), RHS(RHS) {}
14764
14765
/// Return a value that uses TargetOpcode and that can be used to replace
14766
/// Root.
14767
/// The actual replacement is *not* done in that method.
14768
SDValue materialize(SelectionDAG &DAG,
14769
const RISCVSubtarget &Subtarget) const {
14770
SDValue Mask, VL, Merge;
14771
std::tie(Mask, VL) =
14772
NodeExtensionHelper::getMaskAndVL(Root, DAG, Subtarget);
14773
switch (Root->getOpcode()) {
14774
default:
14775
Merge = Root->getOperand(2);
14776
break;
14777
case ISD::ADD:
14778
case ISD::SUB:
14779
case ISD::MUL:
14780
case ISD::OR:
14781
case ISD::SHL:
14782
Merge = DAG.getUNDEF(Root->getValueType(0));
14783
break;
14784
}
14785
return DAG.getNode(TargetOpcode, SDLoc(Root), Root->getValueType(0),
14786
LHS.getOrCreateExtendedOp(Root, DAG, Subtarget, LHSExt),
14787
RHS.getOrCreateExtendedOp(Root, DAG, Subtarget, RHSExt),
14788
Merge, Mask, VL);
14789
}
14790
};
14791
14792
/// Check if \p Root follows a pattern Root(ext(LHS), ext(RHS))
14793
/// where `ext` is the same for both LHS and RHS (i.e., both are sext or both
14794
/// are zext) and LHS and RHS can be folded into Root.
14795
/// AllowExtMask define which form `ext` can take in this pattern.
14796
///
14797
/// \note If the pattern can match with both zext and sext, the returned
14798
/// CombineResult will feature the zext result.
14799
///
14800
/// \returns std::nullopt if the pattern doesn't match or a CombineResult that
14801
/// can be used to apply the pattern.
14802
static std::optional<CombineResult>
14803
canFoldToVWWithSameExtensionImpl(SDNode *Root, const NodeExtensionHelper &LHS,
14804
const NodeExtensionHelper &RHS,
14805
uint8_t AllowExtMask, SelectionDAG &DAG,
14806
const RISCVSubtarget &Subtarget) {
14807
if ((AllowExtMask & ExtKind::ZExt) && LHS.SupportsZExt && RHS.SupportsZExt)
14808
return CombineResult(NodeExtensionHelper::getZExtOpcode(Root->getOpcode()),
14809
Root, LHS, /*LHSExt=*/{ExtKind::ZExt}, RHS,
14810
/*RHSExt=*/{ExtKind::ZExt});
14811
if ((AllowExtMask & ExtKind::SExt) && LHS.SupportsSExt && RHS.SupportsSExt)
14812
return CombineResult(NodeExtensionHelper::getSExtOpcode(Root->getOpcode()),
14813
Root, LHS, /*LHSExt=*/{ExtKind::SExt}, RHS,
14814
/*RHSExt=*/{ExtKind::SExt});
14815
if ((AllowExtMask & ExtKind::FPExt) && LHS.SupportsFPExt && RHS.SupportsFPExt)
14816
return CombineResult(NodeExtensionHelper::getFPExtOpcode(Root->getOpcode()),
14817
Root, LHS, /*LHSExt=*/{ExtKind::FPExt}, RHS,
14818
/*RHSExt=*/{ExtKind::FPExt});
14819
return std::nullopt;
14820
}
14821
14822
/// Check if \p Root follows a pattern Root(ext(LHS), ext(RHS))
14823
/// where `ext` is the same for both LHS and RHS (i.e., both are sext or both
14824
/// are zext) and LHS and RHS can be folded into Root.
14825
///
14826
/// \returns std::nullopt if the pattern doesn't match or a CombineResult that
14827
/// can be used to apply the pattern.
14828
static std::optional<CombineResult>
14829
canFoldToVWWithSameExtension(SDNode *Root, const NodeExtensionHelper &LHS,
14830
const NodeExtensionHelper &RHS, SelectionDAG &DAG,
14831
const RISCVSubtarget &Subtarget) {
14832
return canFoldToVWWithSameExtensionImpl(
14833
Root, LHS, RHS, ExtKind::ZExt | ExtKind::SExt | ExtKind::FPExt, DAG,
14834
Subtarget);
14835
}
14836
14837
/// Check if \p Root follows a pattern Root(LHS, ext(RHS))
14838
///
14839
/// \returns std::nullopt if the pattern doesn't match or a CombineResult that
14840
/// can be used to apply the pattern.
14841
static std::optional<CombineResult>
14842
canFoldToVW_W(SDNode *Root, const NodeExtensionHelper &LHS,
14843
const NodeExtensionHelper &RHS, SelectionDAG &DAG,
14844
const RISCVSubtarget &Subtarget) {
14845
if (RHS.SupportsFPExt)
14846
return CombineResult(
14847
NodeExtensionHelper::getWOpcode(Root->getOpcode(), ExtKind::FPExt),
14848
Root, LHS, /*LHSExt=*/std::nullopt, RHS, /*RHSExt=*/{ExtKind::FPExt});
14849
14850
// FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
14851
// sext/zext?
14852
// Control this behavior behind an option (AllowSplatInVW_W) for testing
14853
// purposes.
14854
if (RHS.SupportsZExt && (!RHS.isSplat() || AllowSplatInVW_W))
14855
return CombineResult(
14856
NodeExtensionHelper::getWOpcode(Root->getOpcode(), ExtKind::ZExt), Root,
14857
LHS, /*LHSExt=*/std::nullopt, RHS, /*RHSExt=*/{ExtKind::ZExt});
14858
if (RHS.SupportsSExt && (!RHS.isSplat() || AllowSplatInVW_W))
14859
return CombineResult(
14860
NodeExtensionHelper::getWOpcode(Root->getOpcode(), ExtKind::SExt), Root,
14861
LHS, /*LHSExt=*/std::nullopt, RHS, /*RHSExt=*/{ExtKind::SExt});
14862
return std::nullopt;
14863
}
14864
14865
/// Check if \p Root follows a pattern Root(sext(LHS), sext(RHS))
14866
///
14867
/// \returns std::nullopt if the pattern doesn't match or a CombineResult that
14868
/// can be used to apply the pattern.
14869
static std::optional<CombineResult>
14870
canFoldToVWWithSEXT(SDNode *Root, const NodeExtensionHelper &LHS,
14871
const NodeExtensionHelper &RHS, SelectionDAG &DAG,
14872
const RISCVSubtarget &Subtarget) {
14873
return canFoldToVWWithSameExtensionImpl(Root, LHS, RHS, ExtKind::SExt, DAG,
14874
Subtarget);
14875
}
14876
14877
/// Check if \p Root follows a pattern Root(zext(LHS), zext(RHS))
14878
///
14879
/// \returns std::nullopt if the pattern doesn't match or a CombineResult that
14880
/// can be used to apply the pattern.
14881
static std::optional<CombineResult>
14882
canFoldToVWWithZEXT(SDNode *Root, const NodeExtensionHelper &LHS,
14883
const NodeExtensionHelper &RHS, SelectionDAG &DAG,
14884
const RISCVSubtarget &Subtarget) {
14885
return canFoldToVWWithSameExtensionImpl(Root, LHS, RHS, ExtKind::ZExt, DAG,
14886
Subtarget);
14887
}
14888
14889
/// Check if \p Root follows a pattern Root(fpext(LHS), fpext(RHS))
14890
///
14891
/// \returns std::nullopt if the pattern doesn't match or a CombineResult that
14892
/// can be used to apply the pattern.
14893
static std::optional<CombineResult>
14894
canFoldToVWWithFPEXT(SDNode *Root, const NodeExtensionHelper &LHS,
14895
const NodeExtensionHelper &RHS, SelectionDAG &DAG,
14896
const RISCVSubtarget &Subtarget) {
14897
return canFoldToVWWithSameExtensionImpl(Root, LHS, RHS, ExtKind::FPExt, DAG,
14898
Subtarget);
14899
}
14900
14901
/// Check if \p Root follows a pattern Root(sext(LHS), zext(RHS))
14902
///
14903
/// \returns std::nullopt if the pattern doesn't match or a CombineResult that
14904
/// can be used to apply the pattern.
14905
static std::optional<CombineResult>
14906
canFoldToVW_SU(SDNode *Root, const NodeExtensionHelper &LHS,
14907
const NodeExtensionHelper &RHS, SelectionDAG &DAG,
14908
const RISCVSubtarget &Subtarget) {
14909
14910
if (!LHS.SupportsSExt || !RHS.SupportsZExt)
14911
return std::nullopt;
14912
return CombineResult(NodeExtensionHelper::getSUOpcode(Root->getOpcode()),
14913
Root, LHS, /*LHSExt=*/{ExtKind::SExt}, RHS,
14914
/*RHSExt=*/{ExtKind::ZExt});
14915
}
14916
14917
SmallVector<NodeExtensionHelper::CombineToTry>
14918
NodeExtensionHelper::getSupportedFoldings(const SDNode *Root) {
14919
SmallVector<CombineToTry> Strategies;
14920
switch (Root->getOpcode()) {
14921
case ISD::ADD:
14922
case ISD::SUB:
14923
case ISD::OR:
14924
case RISCVISD::ADD_VL:
14925
case RISCVISD::SUB_VL:
14926
case RISCVISD::FADD_VL:
14927
case RISCVISD::FSUB_VL:
14928
// add|sub|fadd|fsub-> vwadd(u)|vwsub(u)|vfwadd|vfwsub
14929
Strategies.push_back(canFoldToVWWithSameExtension);
14930
// add|sub|fadd|fsub -> vwadd(u)_w|vwsub(u)_w}|vfwadd_w|vfwsub_w
14931
Strategies.push_back(canFoldToVW_W);
14932
break;
14933
case RISCVISD::FMUL_VL:
14934
Strategies.push_back(canFoldToVWWithSameExtension);
14935
break;
14936
case ISD::MUL:
14937
case RISCVISD::MUL_VL:
14938
// mul -> vwmul(u)
14939
Strategies.push_back(canFoldToVWWithSameExtension);
14940
// mul -> vwmulsu
14941
Strategies.push_back(canFoldToVW_SU);
14942
break;
14943
case ISD::SHL:
14944
case RISCVISD::SHL_VL:
14945
// shl -> vwsll
14946
Strategies.push_back(canFoldToVWWithZEXT);
14947
break;
14948
case RISCVISD::VWADD_W_VL:
14949
case RISCVISD::VWSUB_W_VL:
14950
// vwadd_w|vwsub_w -> vwadd|vwsub
14951
Strategies.push_back(canFoldToVWWithSEXT);
14952
break;
14953
case RISCVISD::VWADDU_W_VL:
14954
case RISCVISD::VWSUBU_W_VL:
14955
// vwaddu_w|vwsubu_w -> vwaddu|vwsubu
14956
Strategies.push_back(canFoldToVWWithZEXT);
14957
break;
14958
case RISCVISD::VFWADD_W_VL:
14959
case RISCVISD::VFWSUB_W_VL:
14960
// vfwadd_w|vfwsub_w -> vfwadd|vfwsub
14961
Strategies.push_back(canFoldToVWWithFPEXT);
14962
break;
14963
default:
14964
llvm_unreachable("Unexpected opcode");
14965
}
14966
return Strategies;
14967
}
14968
} // End anonymous namespace.
14969
14970
/// Combine a binary operation to its equivalent VW or VW_W form.
14971
/// The supported combines are:
14972
/// add | add_vl | or disjoint -> vwadd(u) | vwadd(u)_w
14973
/// sub | sub_vl -> vwsub(u) | vwsub(u)_w
14974
/// mul | mul_vl -> vwmul(u) | vwmul_su
14975
/// shl | shl_vl -> vwsll
14976
/// fadd_vl -> vfwadd | vfwadd_w
14977
/// fsub_vl -> vfwsub | vfwsub_w
14978
/// fmul_vl -> vfwmul
14979
/// vwadd_w(u) -> vwadd(u)
14980
/// vwsub_w(u) -> vwsub(u)
14981
/// vfwadd_w -> vfwadd
14982
/// vfwsub_w -> vfwsub
14983
static SDValue combineBinOp_VLToVWBinOp_VL(SDNode *N,
14984
TargetLowering::DAGCombinerInfo &DCI,
14985
const RISCVSubtarget &Subtarget) {
14986
SelectionDAG &DAG = DCI.DAG;
14987
if (DCI.isBeforeLegalize())
14988
return SDValue();
14989
14990
if (!NodeExtensionHelper::isSupportedRoot(N, Subtarget))
14991
return SDValue();
14992
14993
SmallVector<SDNode *> Worklist;
14994
SmallSet<SDNode *, 8> Inserted;
14995
Worklist.push_back(N);
14996
Inserted.insert(N);
14997
SmallVector<CombineResult> CombinesToApply;
14998
14999
while (!Worklist.empty()) {
15000
SDNode *Root = Worklist.pop_back_val();
15001
if (!NodeExtensionHelper::isSupportedRoot(Root, Subtarget))
15002
return SDValue();
15003
15004
NodeExtensionHelper LHS(Root, 0, DAG, Subtarget);
15005
NodeExtensionHelper RHS(Root, 1, DAG, Subtarget);
15006
auto AppendUsersIfNeeded = [&Worklist,
15007
&Inserted](const NodeExtensionHelper &Op) {
15008
if (Op.needToPromoteOtherUsers()) {
15009
for (SDNode *TheUse : Op.OrigOperand->uses()) {
15010
if (Inserted.insert(TheUse).second)
15011
Worklist.push_back(TheUse);
15012
}
15013
}
15014
};
15015
15016
// Control the compile time by limiting the number of node we look at in
15017
// total.
15018
if (Inserted.size() > ExtensionMaxWebSize)
15019
return SDValue();
15020
15021
SmallVector<NodeExtensionHelper::CombineToTry> FoldingStrategies =
15022
NodeExtensionHelper::getSupportedFoldings(Root);
15023
15024
assert(!FoldingStrategies.empty() && "Nothing to be folded");
15025
bool Matched = false;
15026
for (int Attempt = 0;
15027
(Attempt != 1 + NodeExtensionHelper::isCommutative(Root)) && !Matched;
15028
++Attempt) {
15029
15030
for (NodeExtensionHelper::CombineToTry FoldingStrategy :
15031
FoldingStrategies) {
15032
std::optional<CombineResult> Res =
15033
FoldingStrategy(Root, LHS, RHS, DAG, Subtarget);
15034
if (Res) {
15035
Matched = true;
15036
CombinesToApply.push_back(*Res);
15037
// All the inputs that are extended need to be folded, otherwise
15038
// we would be leaving the old input (since it is may still be used),
15039
// and the new one.
15040
if (Res->LHSExt.has_value())
15041
AppendUsersIfNeeded(LHS);
15042
if (Res->RHSExt.has_value())
15043
AppendUsersIfNeeded(RHS);
15044
break;
15045
}
15046
}
15047
std::swap(LHS, RHS);
15048
}
15049
// Right now we do an all or nothing approach.
15050
if (!Matched)
15051
return SDValue();
15052
}
15053
// Store the value for the replacement of the input node separately.
15054
SDValue InputRootReplacement;
15055
// We do the RAUW after we materialize all the combines, because some replaced
15056
// nodes may be feeding some of the yet-to-be-replaced nodes. Put differently,
15057
// some of these nodes may appear in the NodeExtensionHelpers of some of the
15058
// yet-to-be-visited CombinesToApply roots.
15059
SmallVector<std::pair<SDValue, SDValue>> ValuesToReplace;
15060
ValuesToReplace.reserve(CombinesToApply.size());
15061
for (CombineResult Res : CombinesToApply) {
15062
SDValue NewValue = Res.materialize(DAG, Subtarget);
15063
if (!InputRootReplacement) {
15064
assert(Res.Root == N &&
15065
"First element is expected to be the current node");
15066
InputRootReplacement = NewValue;
15067
} else {
15068
ValuesToReplace.emplace_back(SDValue(Res.Root, 0), NewValue);
15069
}
15070
}
15071
for (std::pair<SDValue, SDValue> OldNewValues : ValuesToReplace) {
15072
DAG.ReplaceAllUsesOfValueWith(OldNewValues.first, OldNewValues.second);
15073
DCI.AddToWorklist(OldNewValues.second.getNode());
15074
}
15075
return InputRootReplacement;
15076
}
15077
15078
// Fold (vwadd(u).wv y, (vmerge cond, x, 0)) -> vwadd(u).wv y, x, y, cond
15079
// (vwsub(u).wv y, (vmerge cond, x, 0)) -> vwsub(u).wv y, x, y, cond
15080
// y will be the Passthru and cond will be the Mask.
15081
static SDValue combineVWADDSUBWSelect(SDNode *N, SelectionDAG &DAG) {
15082
unsigned Opc = N->getOpcode();
15083
assert(Opc == RISCVISD::VWADD_W_VL || Opc == RISCVISD::VWADDU_W_VL ||
15084
Opc == RISCVISD::VWSUB_W_VL || Opc == RISCVISD::VWSUBU_W_VL);
15085
15086
SDValue Y = N->getOperand(0);
15087
SDValue MergeOp = N->getOperand(1);
15088
unsigned MergeOpc = MergeOp.getOpcode();
15089
15090
if (MergeOpc != RISCVISD::VMERGE_VL && MergeOpc != ISD::VSELECT)
15091
return SDValue();
15092
15093
SDValue X = MergeOp->getOperand(1);
15094
15095
if (!MergeOp.hasOneUse())
15096
return SDValue();
15097
15098
// Passthru should be undef
15099
SDValue Passthru = N->getOperand(2);
15100
if (!Passthru.isUndef())
15101
return SDValue();
15102
15103
// Mask should be all ones
15104
SDValue Mask = N->getOperand(3);
15105
if (Mask.getOpcode() != RISCVISD::VMSET_VL)
15106
return SDValue();
15107
15108
// False value of MergeOp should be all zeros
15109
SDValue Z = MergeOp->getOperand(2);
15110
15111
if (Z.getOpcode() == ISD::INSERT_SUBVECTOR &&
15112
(isNullOrNullSplat(Z.getOperand(0)) || Z.getOperand(0).isUndef()))
15113
Z = Z.getOperand(1);
15114
15115
if (!ISD::isConstantSplatVectorAllZeros(Z.getNode()))
15116
return SDValue();
15117
15118
return DAG.getNode(Opc, SDLoc(N), N->getValueType(0),
15119
{Y, X, Y, MergeOp->getOperand(0), N->getOperand(4)},
15120
N->getFlags());
15121
}
15122
15123
static SDValue performVWADDSUBW_VLCombine(SDNode *N,
15124
TargetLowering::DAGCombinerInfo &DCI,
15125
const RISCVSubtarget &Subtarget) {
15126
[[maybe_unused]] unsigned Opc = N->getOpcode();
15127
assert(Opc == RISCVISD::VWADD_W_VL || Opc == RISCVISD::VWADDU_W_VL ||
15128
Opc == RISCVISD::VWSUB_W_VL || Opc == RISCVISD::VWSUBU_W_VL);
15129
15130
if (SDValue V = combineBinOp_VLToVWBinOp_VL(N, DCI, Subtarget))
15131
return V;
15132
15133
return combineVWADDSUBWSelect(N, DCI.DAG);
15134
}
15135
15136
// Helper function for performMemPairCombine.
15137
// Try to combine the memory loads/stores LSNode1 and LSNode2
15138
// into a single memory pair operation.
15139
static SDValue tryMemPairCombine(SelectionDAG &DAG, LSBaseSDNode *LSNode1,
15140
LSBaseSDNode *LSNode2, SDValue BasePtr,
15141
uint64_t Imm) {
15142
SmallPtrSet<const SDNode *, 32> Visited;
15143
SmallVector<const SDNode *, 8> Worklist = {LSNode1, LSNode2};
15144
15145
if (SDNode::hasPredecessorHelper(LSNode1, Visited, Worklist) ||
15146
SDNode::hasPredecessorHelper(LSNode2, Visited, Worklist))
15147
return SDValue();
15148
15149
MachineFunction &MF = DAG.getMachineFunction();
15150
const RISCVSubtarget &Subtarget = MF.getSubtarget<RISCVSubtarget>();
15151
15152
// The new operation has twice the width.
15153
MVT XLenVT = Subtarget.getXLenVT();
15154
EVT MemVT = LSNode1->getMemoryVT();
15155
EVT NewMemVT = (MemVT == MVT::i32) ? MVT::i64 : MVT::i128;
15156
MachineMemOperand *MMO = LSNode1->getMemOperand();
15157
MachineMemOperand *NewMMO = MF.getMachineMemOperand(
15158
MMO, MMO->getPointerInfo(), MemVT == MVT::i32 ? 8 : 16);
15159
15160
if (LSNode1->getOpcode() == ISD::LOAD) {
15161
auto Ext = cast<LoadSDNode>(LSNode1)->getExtensionType();
15162
unsigned Opcode;
15163
if (MemVT == MVT::i32)
15164
Opcode = (Ext == ISD::ZEXTLOAD) ? RISCVISD::TH_LWUD : RISCVISD::TH_LWD;
15165
else
15166
Opcode = RISCVISD::TH_LDD;
15167
15168
SDValue Res = DAG.getMemIntrinsicNode(
15169
Opcode, SDLoc(LSNode1), DAG.getVTList({XLenVT, XLenVT, MVT::Other}),
15170
{LSNode1->getChain(), BasePtr,
15171
DAG.getConstant(Imm, SDLoc(LSNode1), XLenVT)},
15172
NewMemVT, NewMMO);
15173
15174
SDValue Node1 =
15175
DAG.getMergeValues({Res.getValue(0), Res.getValue(2)}, SDLoc(LSNode1));
15176
SDValue Node2 =
15177
DAG.getMergeValues({Res.getValue(1), Res.getValue(2)}, SDLoc(LSNode2));
15178
15179
DAG.ReplaceAllUsesWith(LSNode2, Node2.getNode());
15180
return Node1;
15181
} else {
15182
unsigned Opcode = (MemVT == MVT::i32) ? RISCVISD::TH_SWD : RISCVISD::TH_SDD;
15183
15184
SDValue Res = DAG.getMemIntrinsicNode(
15185
Opcode, SDLoc(LSNode1), DAG.getVTList(MVT::Other),
15186
{LSNode1->getChain(), LSNode1->getOperand(1), LSNode2->getOperand(1),
15187
BasePtr, DAG.getConstant(Imm, SDLoc(LSNode1), XLenVT)},
15188
NewMemVT, NewMMO);
15189
15190
DAG.ReplaceAllUsesWith(LSNode2, Res.getNode());
15191
return Res;
15192
}
15193
}
15194
15195
// Try to combine two adjacent loads/stores to a single pair instruction from
15196
// the XTHeadMemPair vendor extension.
15197
static SDValue performMemPairCombine(SDNode *N,
15198
TargetLowering::DAGCombinerInfo &DCI) {
15199
SelectionDAG &DAG = DCI.DAG;
15200
MachineFunction &MF = DAG.getMachineFunction();
15201
const RISCVSubtarget &Subtarget = MF.getSubtarget<RISCVSubtarget>();
15202
15203
// Target does not support load/store pair.
15204
if (!Subtarget.hasVendorXTHeadMemPair())
15205
return SDValue();
15206
15207
LSBaseSDNode *LSNode1 = cast<LSBaseSDNode>(N);
15208
EVT MemVT = LSNode1->getMemoryVT();
15209
unsigned OpNum = LSNode1->getOpcode() == ISD::LOAD ? 1 : 2;
15210
15211
// No volatile, indexed or atomic loads/stores.
15212
if (!LSNode1->isSimple() || LSNode1->isIndexed())
15213
return SDValue();
15214
15215
// Function to get a base + constant representation from a memory value.
15216
auto ExtractBaseAndOffset = [](SDValue Ptr) -> std::pair<SDValue, uint64_t> {
15217
if (Ptr->getOpcode() == ISD::ADD)
15218
if (auto *C1 = dyn_cast<ConstantSDNode>(Ptr->getOperand(1)))
15219
return {Ptr->getOperand(0), C1->getZExtValue()};
15220
return {Ptr, 0};
15221
};
15222
15223
auto [Base1, Offset1] = ExtractBaseAndOffset(LSNode1->getOperand(OpNum));
15224
15225
SDValue Chain = N->getOperand(0);
15226
for (SDNode::use_iterator UI = Chain->use_begin(), UE = Chain->use_end();
15227
UI != UE; ++UI) {
15228
SDUse &Use = UI.getUse();
15229
if (Use.getUser() != N && Use.getResNo() == 0 &&
15230
Use.getUser()->getOpcode() == N->getOpcode()) {
15231
LSBaseSDNode *LSNode2 = cast<LSBaseSDNode>(Use.getUser());
15232
15233
// No volatile, indexed or atomic loads/stores.
15234
if (!LSNode2->isSimple() || LSNode2->isIndexed())
15235
continue;
15236
15237
// Check if LSNode1 and LSNode2 have the same type and extension.
15238
if (LSNode1->getOpcode() == ISD::LOAD)
15239
if (cast<LoadSDNode>(LSNode2)->getExtensionType() !=
15240
cast<LoadSDNode>(LSNode1)->getExtensionType())
15241
continue;
15242
15243
if (LSNode1->getMemoryVT() != LSNode2->getMemoryVT())
15244
continue;
15245
15246
auto [Base2, Offset2] = ExtractBaseAndOffset(LSNode2->getOperand(OpNum));
15247
15248
// Check if the base pointer is the same for both instruction.
15249
if (Base1 != Base2)
15250
continue;
15251
15252
// Check if the offsets match the XTHeadMemPair encoding contraints.
15253
bool Valid = false;
15254
if (MemVT == MVT::i32) {
15255
// Check for adjacent i32 values and a 2-bit index.
15256
if ((Offset1 + 4 == Offset2) && isShiftedUInt<2, 3>(Offset1))
15257
Valid = true;
15258
} else if (MemVT == MVT::i64) {
15259
// Check for adjacent i64 values and a 2-bit index.
15260
if ((Offset1 + 8 == Offset2) && isShiftedUInt<2, 4>(Offset1))
15261
Valid = true;
15262
}
15263
15264
if (!Valid)
15265
continue;
15266
15267
// Try to combine.
15268
if (SDValue Res =
15269
tryMemPairCombine(DAG, LSNode1, LSNode2, Base1, Offset1))
15270
return Res;
15271
}
15272
}
15273
15274
return SDValue();
15275
}
15276
15277
// Fold
15278
// (fp_to_int (froundeven X)) -> fcvt X, rne
15279
// (fp_to_int (ftrunc X)) -> fcvt X, rtz
15280
// (fp_to_int (ffloor X)) -> fcvt X, rdn
15281
// (fp_to_int (fceil X)) -> fcvt X, rup
15282
// (fp_to_int (fround X)) -> fcvt X, rmm
15283
// (fp_to_int (frint X)) -> fcvt X
15284
static SDValue performFP_TO_INTCombine(SDNode *N,
15285
TargetLowering::DAGCombinerInfo &DCI,
15286
const RISCVSubtarget &Subtarget) {
15287
SelectionDAG &DAG = DCI.DAG;
15288
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15289
MVT XLenVT = Subtarget.getXLenVT();
15290
15291
SDValue Src = N->getOperand(0);
15292
15293
// Don't do this for strict-fp Src.
15294
if (Src->isStrictFPOpcode() || Src->isTargetStrictFPOpcode())
15295
return SDValue();
15296
15297
// Ensure the FP type is legal.
15298
if (!TLI.isTypeLegal(Src.getValueType()))
15299
return SDValue();
15300
15301
// Don't do this for f16 with Zfhmin and not Zfh.
15302
if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
15303
return SDValue();
15304
15305
RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src.getOpcode());
15306
// If the result is invalid, we didn't find a foldable instruction.
15307
if (FRM == RISCVFPRndMode::Invalid)
15308
return SDValue();
15309
15310
SDLoc DL(N);
15311
bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
15312
EVT VT = N->getValueType(0);
15313
15314
if (VT.isVector() && TLI.isTypeLegal(VT)) {
15315
MVT SrcVT = Src.getSimpleValueType();
15316
MVT SrcContainerVT = SrcVT;
15317
MVT ContainerVT = VT.getSimpleVT();
15318
SDValue XVal = Src.getOperand(0);
15319
15320
// For widening and narrowing conversions we just combine it into a
15321
// VFCVT_..._VL node, as there are no specific VFWCVT/VFNCVT VL nodes. They
15322
// end up getting lowered to their appropriate pseudo instructions based on
15323
// their operand types
15324
if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits() * 2 ||
15325
VT.getScalarSizeInBits() * 2 < SrcVT.getScalarSizeInBits())
15326
return SDValue();
15327
15328
// Make fixed-length vectors scalable first
15329
if (SrcVT.isFixedLengthVector()) {
15330
SrcContainerVT = getContainerForFixedLengthVector(DAG, SrcVT, Subtarget);
15331
XVal = convertToScalableVector(SrcContainerVT, XVal, DAG, Subtarget);
15332
ContainerVT =
15333
getContainerForFixedLengthVector(DAG, ContainerVT, Subtarget);
15334
}
15335
15336
auto [Mask, VL] =
15337
getDefaultVLOps(SrcVT, SrcContainerVT, DL, DAG, Subtarget);
15338
15339
SDValue FpToInt;
15340
if (FRM == RISCVFPRndMode::RTZ) {
15341
// Use the dedicated trunc static rounding mode if we're truncating so we
15342
// don't need to generate calls to fsrmi/fsrm
15343
unsigned Opc =
15344
IsSigned ? RISCVISD::VFCVT_RTZ_X_F_VL : RISCVISD::VFCVT_RTZ_XU_F_VL;
15345
FpToInt = DAG.getNode(Opc, DL, ContainerVT, XVal, Mask, VL);
15346
} else if (FRM == RISCVFPRndMode::DYN) {
15347
unsigned Opc =
15348
IsSigned ? RISCVISD::VFCVT_X_F_VL : RISCVISD::VFCVT_XU_F_VL;
15349
FpToInt = DAG.getNode(Opc, DL, ContainerVT, XVal, Mask, VL);
15350
} else {
15351
unsigned Opc =
15352
IsSigned ? RISCVISD::VFCVT_RM_X_F_VL : RISCVISD::VFCVT_RM_XU_F_VL;
15353
FpToInt = DAG.getNode(Opc, DL, ContainerVT, XVal, Mask,
15354
DAG.getTargetConstant(FRM, DL, XLenVT), VL);
15355
}
15356
15357
// If converted from fixed-length to scalable, convert back
15358
if (VT.isFixedLengthVector())
15359
FpToInt = convertFromScalableVector(VT, FpToInt, DAG, Subtarget);
15360
15361
return FpToInt;
15362
}
15363
15364
// Only handle XLen or i32 types. Other types narrower than XLen will
15365
// eventually be legalized to XLenVT.
15366
if (VT != MVT::i32 && VT != XLenVT)
15367
return SDValue();
15368
15369
unsigned Opc;
15370
if (VT == XLenVT)
15371
Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
15372
else
15373
Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
15374
15375
SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
15376
DAG.getTargetConstant(FRM, DL, XLenVT));
15377
return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
15378
}
15379
15380
// Fold
15381
// (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
15382
// (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz))
15383
// (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn))
15384
// (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup))
15385
// (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm))
15386
// (fp_to_int_sat (frint X)) -> (select X == nan, 0, (fcvt X, dyn))
15387
static SDValue performFP_TO_INT_SATCombine(SDNode *N,
15388
TargetLowering::DAGCombinerInfo &DCI,
15389
const RISCVSubtarget &Subtarget) {
15390
SelectionDAG &DAG = DCI.DAG;
15391
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15392
MVT XLenVT = Subtarget.getXLenVT();
15393
15394
// Only handle XLen types. Other types narrower than XLen will eventually be
15395
// legalized to XLenVT.
15396
EVT DstVT = N->getValueType(0);
15397
if (DstVT != XLenVT)
15398
return SDValue();
15399
15400
SDValue Src = N->getOperand(0);
15401
15402
// Don't do this for strict-fp Src.
15403
if (Src->isStrictFPOpcode() || Src->isTargetStrictFPOpcode())
15404
return SDValue();
15405
15406
// Ensure the FP type is also legal.
15407
if (!TLI.isTypeLegal(Src.getValueType()))
15408
return SDValue();
15409
15410
// Don't do this for f16 with Zfhmin and not Zfh.
15411
if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
15412
return SDValue();
15413
15414
EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
15415
15416
RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src.getOpcode());
15417
if (FRM == RISCVFPRndMode::Invalid)
15418
return SDValue();
15419
15420
bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
15421
15422
unsigned Opc;
15423
if (SatVT == DstVT)
15424
Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
15425
else if (DstVT == MVT::i64 && SatVT == MVT::i32)
15426
Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
15427
else
15428
return SDValue();
15429
// FIXME: Support other SatVTs by clamping before or after the conversion.
15430
15431
Src = Src.getOperand(0);
15432
15433
SDLoc DL(N);
15434
SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
15435
DAG.getTargetConstant(FRM, DL, XLenVT));
15436
15437
// fcvt.wu.* sign extends bit 31 on RV64. FP_TO_UINT_SAT expects to zero
15438
// extend.
15439
if (Opc == RISCVISD::FCVT_WU_RV64)
15440
FpToInt = DAG.getZeroExtendInReg(FpToInt, DL, MVT::i32);
15441
15442
// RISC-V FP-to-int conversions saturate to the destination register size, but
15443
// don't produce 0 for nan.
15444
SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
15445
return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
15446
}
15447
15448
// Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is
15449
// smaller than XLenVT.
15450
static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG,
15451
const RISCVSubtarget &Subtarget) {
15452
assert(Subtarget.hasStdExtZbkb() && "Unexpected extension");
15453
15454
SDValue Src = N->getOperand(0);
15455
if (Src.getOpcode() != ISD::BSWAP)
15456
return SDValue();
15457
15458
EVT VT = N->getValueType(0);
15459
if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() ||
15460
!llvm::has_single_bit<uint32_t>(VT.getSizeInBits()))
15461
return SDValue();
15462
15463
SDLoc DL(N);
15464
return DAG.getNode(RISCVISD::BREV8, DL, VT, Src.getOperand(0));
15465
}
15466
15467
// Convert from one FMA opcode to another based on whether we are negating the
15468
// multiply result and/or the accumulator.
15469
// NOTE: Only supports RVV operations with VL.
15470
static unsigned negateFMAOpcode(unsigned Opcode, bool NegMul, bool NegAcc) {
15471
// Negating the multiply result changes ADD<->SUB and toggles 'N'.
15472
if (NegMul) {
15473
// clang-format off
15474
switch (Opcode) {
15475
default: llvm_unreachable("Unexpected opcode");
15476
case RISCVISD::VFMADD_VL: Opcode = RISCVISD::VFNMSUB_VL; break;
15477
case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFMADD_VL; break;
15478
case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFMSUB_VL; break;
15479
case RISCVISD::VFMSUB_VL: Opcode = RISCVISD::VFNMADD_VL; break;
15480
case RISCVISD::STRICT_VFMADD_VL: Opcode = RISCVISD::STRICT_VFNMSUB_VL; break;
15481
case RISCVISD::STRICT_VFNMSUB_VL: Opcode = RISCVISD::STRICT_VFMADD_VL; break;
15482
case RISCVISD::STRICT_VFNMADD_VL: Opcode = RISCVISD::STRICT_VFMSUB_VL; break;
15483
case RISCVISD::STRICT_VFMSUB_VL: Opcode = RISCVISD::STRICT_VFNMADD_VL; break;
15484
}
15485
// clang-format on
15486
}
15487
15488
// Negating the accumulator changes ADD<->SUB.
15489
if (NegAcc) {
15490
// clang-format off
15491
switch (Opcode) {
15492
default: llvm_unreachable("Unexpected opcode");
15493
case RISCVISD::VFMADD_VL: Opcode = RISCVISD::VFMSUB_VL; break;
15494
case RISCVISD::VFMSUB_VL: Opcode = RISCVISD::VFMADD_VL; break;
15495
case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFNMSUB_VL; break;
15496
case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFNMADD_VL; break;
15497
case RISCVISD::STRICT_VFMADD_VL: Opcode = RISCVISD::STRICT_VFMSUB_VL; break;
15498
case RISCVISD::STRICT_VFMSUB_VL: Opcode = RISCVISD::STRICT_VFMADD_VL; break;
15499
case RISCVISD::STRICT_VFNMADD_VL: Opcode = RISCVISD::STRICT_VFNMSUB_VL; break;
15500
case RISCVISD::STRICT_VFNMSUB_VL: Opcode = RISCVISD::STRICT_VFNMADD_VL; break;
15501
}
15502
// clang-format on
15503
}
15504
15505
return Opcode;
15506
}
15507
15508
static SDValue combineVFMADD_VLWithVFNEG_VL(SDNode *N, SelectionDAG &DAG) {
15509
// Fold FNEG_VL into FMA opcodes.
15510
// The first operand of strict-fp is chain.
15511
unsigned Offset = N->isTargetStrictFPOpcode();
15512
SDValue A = N->getOperand(0 + Offset);
15513
SDValue B = N->getOperand(1 + Offset);
15514
SDValue C = N->getOperand(2 + Offset);
15515
SDValue Mask = N->getOperand(3 + Offset);
15516
SDValue VL = N->getOperand(4 + Offset);
15517
15518
auto invertIfNegative = [&Mask, &VL](SDValue &V) {
15519
if (V.getOpcode() == RISCVISD::FNEG_VL && V.getOperand(1) == Mask &&
15520
V.getOperand(2) == VL) {
15521
// Return the negated input.
15522
V = V.getOperand(0);
15523
return true;
15524
}
15525
15526
return false;
15527
};
15528
15529
bool NegA = invertIfNegative(A);
15530
bool NegB = invertIfNegative(B);
15531
bool NegC = invertIfNegative(C);
15532
15533
// If no operands are negated, we're done.
15534
if (!NegA && !NegB && !NegC)
15535
return SDValue();
15536
15537
unsigned NewOpcode = negateFMAOpcode(N->getOpcode(), NegA != NegB, NegC);
15538
if (N->isTargetStrictFPOpcode())
15539
return DAG.getNode(NewOpcode, SDLoc(N), N->getVTList(),
15540
{N->getOperand(0), A, B, C, Mask, VL});
15541
return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), A, B, C, Mask,
15542
VL);
15543
}
15544
15545
static SDValue performVFMADD_VLCombine(SDNode *N, SelectionDAG &DAG,
15546
const RISCVSubtarget &Subtarget) {
15547
if (SDValue V = combineVFMADD_VLWithVFNEG_VL(N, DAG))
15548
return V;
15549
15550
if (N->getValueType(0).getVectorElementType() == MVT::f32 &&
15551
!Subtarget.hasVInstructionsF16())
15552
return SDValue();
15553
15554
// FIXME: Ignore strict opcodes for now.
15555
if (N->isTargetStrictFPOpcode())
15556
return SDValue();
15557
15558
// Try to form widening FMA.
15559
SDValue Op0 = N->getOperand(0);
15560
SDValue Op1 = N->getOperand(1);
15561
SDValue Mask = N->getOperand(3);
15562
SDValue VL = N->getOperand(4);
15563
15564
if (Op0.getOpcode() != RISCVISD::FP_EXTEND_VL ||
15565
Op1.getOpcode() != RISCVISD::FP_EXTEND_VL)
15566
return SDValue();
15567
15568
// TODO: Refactor to handle more complex cases similar to
15569
// combineBinOp_VLToVWBinOp_VL.
15570
if ((!Op0.hasOneUse() || !Op1.hasOneUse()) &&
15571
(Op0 != Op1 || !Op0->hasNUsesOfValue(2, 0)))
15572
return SDValue();
15573
15574
// Check the mask and VL are the same.
15575
if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL ||
15576
Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
15577
return SDValue();
15578
15579
unsigned NewOpc;
15580
switch (N->getOpcode()) {
15581
default:
15582
llvm_unreachable("Unexpected opcode");
15583
case RISCVISD::VFMADD_VL:
15584
NewOpc = RISCVISD::VFWMADD_VL;
15585
break;
15586
case RISCVISD::VFNMSUB_VL:
15587
NewOpc = RISCVISD::VFWNMSUB_VL;
15588
break;
15589
case RISCVISD::VFNMADD_VL:
15590
NewOpc = RISCVISD::VFWNMADD_VL;
15591
break;
15592
case RISCVISD::VFMSUB_VL:
15593
NewOpc = RISCVISD::VFWMSUB_VL;
15594
break;
15595
}
15596
15597
Op0 = Op0.getOperand(0);
15598
Op1 = Op1.getOperand(0);
15599
15600
return DAG.getNode(NewOpc, SDLoc(N), N->getValueType(0), Op0, Op1,
15601
N->getOperand(2), Mask, VL);
15602
}
15603
15604
static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
15605
const RISCVSubtarget &Subtarget) {
15606
assert(N->getOpcode() == ISD::SRA && "Unexpected opcode");
15607
15608
if (N->getValueType(0) != MVT::i64 || !Subtarget.is64Bit())
15609
return SDValue();
15610
15611
if (!isa<ConstantSDNode>(N->getOperand(1)))
15612
return SDValue();
15613
uint64_t ShAmt = N->getConstantOperandVal(1);
15614
if (ShAmt > 32)
15615
return SDValue();
15616
15617
SDValue N0 = N->getOperand(0);
15618
15619
// Combine (sra (sext_inreg (shl X, C1), i32), C2) ->
15620
// (sra (shl X, C1+32), C2+32) so it gets selected as SLLI+SRAI instead of
15621
// SLLIW+SRAIW. SLLI+SRAI have compressed forms.
15622
if (ShAmt < 32 &&
15623
N0.getOpcode() == ISD::SIGN_EXTEND_INREG && N0.hasOneUse() &&
15624
cast<VTSDNode>(N0.getOperand(1))->getVT() == MVT::i32 &&
15625
N0.getOperand(0).getOpcode() == ISD::SHL && N0.getOperand(0).hasOneUse() &&
15626
isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
15627
uint64_t LShAmt = N0.getOperand(0).getConstantOperandVal(1);
15628
if (LShAmt < 32) {
15629
SDLoc ShlDL(N0.getOperand(0));
15630
SDValue Shl = DAG.getNode(ISD::SHL, ShlDL, MVT::i64,
15631
N0.getOperand(0).getOperand(0),
15632
DAG.getConstant(LShAmt + 32, ShlDL, MVT::i64));
15633
SDLoc DL(N);
15634
return DAG.getNode(ISD::SRA, DL, MVT::i64, Shl,
15635
DAG.getConstant(ShAmt + 32, DL, MVT::i64));
15636
}
15637
}
15638
15639
// Combine (sra (shl X, 32), 32 - C) -> (shl (sext_inreg X, i32), C)
15640
// FIXME: Should this be a generic combine? There's a similar combine on X86.
15641
//
15642
// Also try these folds where an add or sub is in the middle.
15643
// (sra (add (shl X, 32), C1), 32 - C) -> (shl (sext_inreg (add X, C1), C)
15644
// (sra (sub C1, (shl X, 32)), 32 - C) -> (shl (sext_inreg (sub C1, X), C)
15645
SDValue Shl;
15646
ConstantSDNode *AddC = nullptr;
15647
15648
// We might have an ADD or SUB between the SRA and SHL.
15649
bool IsAdd = N0.getOpcode() == ISD::ADD;
15650
if ((IsAdd || N0.getOpcode() == ISD::SUB)) {
15651
// Other operand needs to be a constant we can modify.
15652
AddC = dyn_cast<ConstantSDNode>(N0.getOperand(IsAdd ? 1 : 0));
15653
if (!AddC)
15654
return SDValue();
15655
15656
// AddC needs to have at least 32 trailing zeros.
15657
if (AddC->getAPIntValue().countr_zero() < 32)
15658
return SDValue();
15659
15660
// All users should be a shift by constant less than or equal to 32. This
15661
// ensures we'll do this optimization for each of them to produce an
15662
// add/sub+sext_inreg they can all share.
15663
for (SDNode *U : N0->uses()) {
15664
if (U->getOpcode() != ISD::SRA ||
15665
!isa<ConstantSDNode>(U->getOperand(1)) ||
15666
U->getConstantOperandVal(1) > 32)
15667
return SDValue();
15668
}
15669
15670
Shl = N0.getOperand(IsAdd ? 0 : 1);
15671
} else {
15672
// Not an ADD or SUB.
15673
Shl = N0;
15674
}
15675
15676
// Look for a shift left by 32.
15677
if (Shl.getOpcode() != ISD::SHL || !isa<ConstantSDNode>(Shl.getOperand(1)) ||
15678
Shl.getConstantOperandVal(1) != 32)
15679
return SDValue();
15680
15681
// We if we didn't look through an add/sub, then the shl should have one use.
15682
// If we did look through an add/sub, the sext_inreg we create is free so
15683
// we're only creating 2 new instructions. It's enough to only remove the
15684
// original sra+add/sub.
15685
if (!AddC && !Shl.hasOneUse())
15686
return SDValue();
15687
15688
SDLoc DL(N);
15689
SDValue In = Shl.getOperand(0);
15690
15691
// If we looked through an ADD or SUB, we need to rebuild it with the shifted
15692
// constant.
15693
if (AddC) {
15694
SDValue ShiftedAddC =
15695
DAG.getConstant(AddC->getAPIntValue().lshr(32), DL, MVT::i64);
15696
if (IsAdd)
15697
In = DAG.getNode(ISD::ADD, DL, MVT::i64, In, ShiftedAddC);
15698
else
15699
In = DAG.getNode(ISD::SUB, DL, MVT::i64, ShiftedAddC, In);
15700
}
15701
15702
SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, In,
15703
DAG.getValueType(MVT::i32));
15704
if (ShAmt == 32)
15705
return SExt;
15706
15707
return DAG.getNode(
15708
ISD::SHL, DL, MVT::i64, SExt,
15709
DAG.getConstant(32 - ShAmt, DL, MVT::i64));
15710
}
15711
15712
// Invert (and/or (set cc X, Y), (xor Z, 1)) to (or/and (set !cc X, Y)), Z) if
15713
// the result is used as the conditon of a br_cc or select_cc we can invert,
15714
// inverting the setcc is free, and Z is 0/1. Caller will invert the
15715
// br_cc/select_cc.
15716
static SDValue tryDemorganOfBooleanCondition(SDValue Cond, SelectionDAG &DAG) {
15717
bool IsAnd = Cond.getOpcode() == ISD::AND;
15718
if (!IsAnd && Cond.getOpcode() != ISD::OR)
15719
return SDValue();
15720
15721
if (!Cond.hasOneUse())
15722
return SDValue();
15723
15724
SDValue Setcc = Cond.getOperand(0);
15725
SDValue Xor = Cond.getOperand(1);
15726
// Canonicalize setcc to LHS.
15727
if (Setcc.getOpcode() != ISD::SETCC)
15728
std::swap(Setcc, Xor);
15729
// LHS should be a setcc and RHS should be an xor.
15730
if (Setcc.getOpcode() != ISD::SETCC || !Setcc.hasOneUse() ||
15731
Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse())
15732
return SDValue();
15733
15734
// If the condition is an And, SimplifyDemandedBits may have changed
15735
// (xor Z, 1) to (not Z).
15736
SDValue Xor1 = Xor.getOperand(1);
15737
if (!isOneConstant(Xor1) && !(IsAnd && isAllOnesConstant(Xor1)))
15738
return SDValue();
15739
15740
EVT VT = Cond.getValueType();
15741
SDValue Xor0 = Xor.getOperand(0);
15742
15743
// The LHS of the xor needs to be 0/1.
15744
APInt Mask = APInt::getBitsSetFrom(VT.getSizeInBits(), 1);
15745
if (!DAG.MaskedValueIsZero(Xor0, Mask))
15746
return SDValue();
15747
15748
// We can only invert integer setccs.
15749
EVT SetCCOpVT = Setcc.getOperand(0).getValueType();
15750
if (!SetCCOpVT.isScalarInteger())
15751
return SDValue();
15752
15753
ISD::CondCode CCVal = cast<CondCodeSDNode>(Setcc.getOperand(2))->get();
15754
if (ISD::isIntEqualitySetCC(CCVal)) {
15755
CCVal = ISD::getSetCCInverse(CCVal, SetCCOpVT);
15756
Setcc = DAG.getSetCC(SDLoc(Setcc), VT, Setcc.getOperand(0),
15757
Setcc.getOperand(1), CCVal);
15758
} else if (CCVal == ISD::SETLT && isNullConstant(Setcc.getOperand(0))) {
15759
// Invert (setlt 0, X) by converting to (setlt X, 1).
15760
Setcc = DAG.getSetCC(SDLoc(Setcc), VT, Setcc.getOperand(1),
15761
DAG.getConstant(1, SDLoc(Setcc), VT), CCVal);
15762
} else if (CCVal == ISD::SETLT && isOneConstant(Setcc.getOperand(1))) {
15763
// (setlt X, 1) by converting to (setlt 0, X).
15764
Setcc = DAG.getSetCC(SDLoc(Setcc), VT,
15765
DAG.getConstant(0, SDLoc(Setcc), VT),
15766
Setcc.getOperand(0), CCVal);
15767
} else
15768
return SDValue();
15769
15770
unsigned Opc = IsAnd ? ISD::OR : ISD::AND;
15771
return DAG.getNode(Opc, SDLoc(Cond), VT, Setcc, Xor.getOperand(0));
15772
}
15773
15774
// Perform common combines for BR_CC and SELECT_CC condtions.
15775
static bool combine_CC(SDValue &LHS, SDValue &RHS, SDValue &CC, const SDLoc &DL,
15776
SelectionDAG &DAG, const RISCVSubtarget &Subtarget) {
15777
ISD::CondCode CCVal = cast<CondCodeSDNode>(CC)->get();
15778
15779
// As far as arithmetic right shift always saves the sign,
15780
// shift can be omitted.
15781
// Fold setlt (sra X, N), 0 -> setlt X, 0 and
15782
// setge (sra X, N), 0 -> setge X, 0
15783
if (isNullConstant(RHS) && (CCVal == ISD::SETGE || CCVal == ISD::SETLT) &&
15784
LHS.getOpcode() == ISD::SRA) {
15785
LHS = LHS.getOperand(0);
15786
return true;
15787
}
15788
15789
if (!ISD::isIntEqualitySetCC(CCVal))
15790
return false;
15791
15792
// Fold ((setlt X, Y), 0, ne) -> (X, Y, lt)
15793
// Sometimes the setcc is introduced after br_cc/select_cc has been formed.
15794
if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
15795
LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
15796
// If we're looking for eq 0 instead of ne 0, we need to invert the
15797
// condition.
15798
bool Invert = CCVal == ISD::SETEQ;
15799
CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
15800
if (Invert)
15801
CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
15802
15803
RHS = LHS.getOperand(1);
15804
LHS = LHS.getOperand(0);
15805
translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
15806
15807
CC = DAG.getCondCode(CCVal);
15808
return true;
15809
}
15810
15811
// Fold ((xor X, Y), 0, eq/ne) -> (X, Y, eq/ne)
15812
if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) {
15813
RHS = LHS.getOperand(1);
15814
LHS = LHS.getOperand(0);
15815
return true;
15816
}
15817
15818
// Fold ((srl (and X, 1<<C), C), 0, eq/ne) -> ((shl X, XLen-1-C), 0, ge/lt)
15819
if (isNullConstant(RHS) && LHS.getOpcode() == ISD::SRL && LHS.hasOneUse() &&
15820
LHS.getOperand(1).getOpcode() == ISD::Constant) {
15821
SDValue LHS0 = LHS.getOperand(0);
15822
if (LHS0.getOpcode() == ISD::AND &&
15823
LHS0.getOperand(1).getOpcode() == ISD::Constant) {
15824
uint64_t Mask = LHS0.getConstantOperandVal(1);
15825
uint64_t ShAmt = LHS.getConstantOperandVal(1);
15826
if (isPowerOf2_64(Mask) && Log2_64(Mask) == ShAmt) {
15827
CCVal = CCVal == ISD::SETEQ ? ISD::SETGE : ISD::SETLT;
15828
CC = DAG.getCondCode(CCVal);
15829
15830
ShAmt = LHS.getValueSizeInBits() - 1 - ShAmt;
15831
LHS = LHS0.getOperand(0);
15832
if (ShAmt != 0)
15833
LHS =
15834
DAG.getNode(ISD::SHL, DL, LHS.getValueType(), LHS0.getOperand(0),
15835
DAG.getConstant(ShAmt, DL, LHS.getValueType()));
15836
return true;
15837
}
15838
}
15839
}
15840
15841
// (X, 1, setne) -> // (X, 0, seteq) if we can prove X is 0/1.
15842
// This can occur when legalizing some floating point comparisons.
15843
APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
15844
if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
15845
CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
15846
CC = DAG.getCondCode(CCVal);
15847
RHS = DAG.getConstant(0, DL, LHS.getValueType());
15848
return true;
15849
}
15850
15851
if (isNullConstant(RHS)) {
15852
if (SDValue NewCond = tryDemorganOfBooleanCondition(LHS, DAG)) {
15853
CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
15854
CC = DAG.getCondCode(CCVal);
15855
LHS = NewCond;
15856
return true;
15857
}
15858
}
15859
15860
return false;
15861
}
15862
15863
// Fold
15864
// (select C, (add Y, X), Y) -> (add Y, (select C, X, 0)).
15865
// (select C, (sub Y, X), Y) -> (sub Y, (select C, X, 0)).
15866
// (select C, (or Y, X), Y) -> (or Y, (select C, X, 0)).
15867
// (select C, (xor Y, X), Y) -> (xor Y, (select C, X, 0)).
15868
static SDValue tryFoldSelectIntoOp(SDNode *N, SelectionDAG &DAG,
15869
SDValue TrueVal, SDValue FalseVal,
15870
bool Swapped) {
15871
bool Commutative = true;
15872
unsigned Opc = TrueVal.getOpcode();
15873
switch (Opc) {
15874
default:
15875
return SDValue();
15876
case ISD::SHL:
15877
case ISD::SRA:
15878
case ISD::SRL:
15879
case ISD::SUB:
15880
Commutative = false;
15881
break;
15882
case ISD::ADD:
15883
case ISD::OR:
15884
case ISD::XOR:
15885
break;
15886
}
15887
15888
if (!TrueVal.hasOneUse() || isa<ConstantSDNode>(FalseVal))
15889
return SDValue();
15890
15891
unsigned OpToFold;
15892
if (FalseVal == TrueVal.getOperand(0))
15893
OpToFold = 0;
15894
else if (Commutative && FalseVal == TrueVal.getOperand(1))
15895
OpToFold = 1;
15896
else
15897
return SDValue();
15898
15899
EVT VT = N->getValueType(0);
15900
SDLoc DL(N);
15901
SDValue OtherOp = TrueVal.getOperand(1 - OpToFold);
15902
EVT OtherOpVT = OtherOp.getValueType();
15903
SDValue IdentityOperand =
15904
DAG.getNeutralElement(Opc, DL, OtherOpVT, N->getFlags());
15905
if (!Commutative)
15906
IdentityOperand = DAG.getConstant(0, DL, OtherOpVT);
15907
assert(IdentityOperand && "No identity operand!");
15908
15909
if (Swapped)
15910
std::swap(OtherOp, IdentityOperand);
15911
SDValue NewSel =
15912
DAG.getSelect(DL, OtherOpVT, N->getOperand(0), OtherOp, IdentityOperand);
15913
return DAG.getNode(TrueVal.getOpcode(), DL, VT, FalseVal, NewSel);
15914
}
15915
15916
// This tries to get rid of `select` and `icmp` that are being used to handle
15917
// `Targets` that do not support `cttz(0)`/`ctlz(0)`.
15918
static SDValue foldSelectOfCTTZOrCTLZ(SDNode *N, SelectionDAG &DAG) {
15919
SDValue Cond = N->getOperand(0);
15920
15921
// This represents either CTTZ or CTLZ instruction.
15922
SDValue CountZeroes;
15923
15924
SDValue ValOnZero;
15925
15926
if (Cond.getOpcode() != ISD::SETCC)
15927
return SDValue();
15928
15929
if (!isNullConstant(Cond->getOperand(1)))
15930
return SDValue();
15931
15932
ISD::CondCode CCVal = cast<CondCodeSDNode>(Cond->getOperand(2))->get();
15933
if (CCVal == ISD::CondCode::SETEQ) {
15934
CountZeroes = N->getOperand(2);
15935
ValOnZero = N->getOperand(1);
15936
} else if (CCVal == ISD::CondCode::SETNE) {
15937
CountZeroes = N->getOperand(1);
15938
ValOnZero = N->getOperand(2);
15939
} else {
15940
return SDValue();
15941
}
15942
15943
if (CountZeroes.getOpcode() == ISD::TRUNCATE ||
15944
CountZeroes.getOpcode() == ISD::ZERO_EXTEND)
15945
CountZeroes = CountZeroes.getOperand(0);
15946
15947
if (CountZeroes.getOpcode() != ISD::CTTZ &&
15948
CountZeroes.getOpcode() != ISD::CTTZ_ZERO_UNDEF &&
15949
CountZeroes.getOpcode() != ISD::CTLZ &&
15950
CountZeroes.getOpcode() != ISD::CTLZ_ZERO_UNDEF)
15951
return SDValue();
15952
15953
if (!isNullConstant(ValOnZero))
15954
return SDValue();
15955
15956
SDValue CountZeroesArgument = CountZeroes->getOperand(0);
15957
if (Cond->getOperand(0) != CountZeroesArgument)
15958
return SDValue();
15959
15960
if (CountZeroes.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
15961
CountZeroes = DAG.getNode(ISD::CTTZ, SDLoc(CountZeroes),
15962
CountZeroes.getValueType(), CountZeroesArgument);
15963
} else if (CountZeroes.getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
15964
CountZeroes = DAG.getNode(ISD::CTLZ, SDLoc(CountZeroes),
15965
CountZeroes.getValueType(), CountZeroesArgument);
15966
}
15967
15968
unsigned BitWidth = CountZeroes.getValueSizeInBits();
15969
SDValue BitWidthMinusOne =
15970
DAG.getConstant(BitWidth - 1, SDLoc(N), CountZeroes.getValueType());
15971
15972
auto AndNode = DAG.getNode(ISD::AND, SDLoc(N), CountZeroes.getValueType(),
15973
CountZeroes, BitWidthMinusOne);
15974
return DAG.getZExtOrTrunc(AndNode, SDLoc(N), N->getValueType(0));
15975
}
15976
15977
static SDValue useInversedSetcc(SDNode *N, SelectionDAG &DAG,
15978
const RISCVSubtarget &Subtarget) {
15979
SDValue Cond = N->getOperand(0);
15980
SDValue True = N->getOperand(1);
15981
SDValue False = N->getOperand(2);
15982
SDLoc DL(N);
15983
EVT VT = N->getValueType(0);
15984
EVT CondVT = Cond.getValueType();
15985
15986
if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse())
15987
return SDValue();
15988
15989
// Replace (setcc eq (and x, C)) with (setcc ne (and x, C))) to generate
15990
// BEXTI, where C is power of 2.
15991
if (Subtarget.hasStdExtZbs() && VT.isScalarInteger() &&
15992
(Subtarget.hasStdExtZicond() || Subtarget.hasVendorXVentanaCondOps())) {
15993
SDValue LHS = Cond.getOperand(0);
15994
SDValue RHS = Cond.getOperand(1);
15995
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15996
if (CC == ISD::SETEQ && LHS.getOpcode() == ISD::AND &&
15997
isa<ConstantSDNode>(LHS.getOperand(1)) && isNullConstant(RHS)) {
15998
const APInt &MaskVal = LHS.getConstantOperandAPInt(1);
15999
if (MaskVal.isPowerOf2() && !MaskVal.isSignedIntN(12))
16000
return DAG.getSelect(DL, VT,
16001
DAG.getSetCC(DL, CondVT, LHS, RHS, ISD::SETNE),
16002
False, True);
16003
}
16004
}
16005
return SDValue();
16006
}
16007
16008
static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
16009
const RISCVSubtarget &Subtarget) {
16010
if (SDValue Folded = foldSelectOfCTTZOrCTLZ(N, DAG))
16011
return Folded;
16012
16013
if (SDValue V = useInversedSetcc(N, DAG, Subtarget))
16014
return V;
16015
16016
if (Subtarget.hasConditionalMoveFusion())
16017
return SDValue();
16018
16019
SDValue TrueVal = N->getOperand(1);
16020
SDValue FalseVal = N->getOperand(2);
16021
if (SDValue V = tryFoldSelectIntoOp(N, DAG, TrueVal, FalseVal, /*Swapped*/false))
16022
return V;
16023
return tryFoldSelectIntoOp(N, DAG, FalseVal, TrueVal, /*Swapped*/true);
16024
}
16025
16026
/// If we have a build_vector where each lane is binop X, C, where C
16027
/// is a constant (but not necessarily the same constant on all lanes),
16028
/// form binop (build_vector x1, x2, ...), (build_vector c1, c2, c3, ..).
16029
/// We assume that materializing a constant build vector will be no more
16030
/// expensive that performing O(n) binops.
16031
static SDValue performBUILD_VECTORCombine(SDNode *N, SelectionDAG &DAG,
16032
const RISCVSubtarget &Subtarget,
16033
const RISCVTargetLowering &TLI) {
16034
SDLoc DL(N);
16035
EVT VT = N->getValueType(0);
16036
16037
assert(!VT.isScalableVector() && "unexpected build vector");
16038
16039
if (VT.getVectorNumElements() == 1)
16040
return SDValue();
16041
16042
const unsigned Opcode = N->op_begin()->getNode()->getOpcode();
16043
if (!TLI.isBinOp(Opcode))
16044
return SDValue();
16045
16046
if (!TLI.isOperationLegalOrCustom(Opcode, VT) || !TLI.isTypeLegal(VT))
16047
return SDValue();
16048
16049
// This BUILD_VECTOR involves an implicit truncation, and sinking
16050
// truncates through binops is non-trivial.
16051
if (N->op_begin()->getValueType() != VT.getVectorElementType())
16052
return SDValue();
16053
16054
SmallVector<SDValue> LHSOps;
16055
SmallVector<SDValue> RHSOps;
16056
for (SDValue Op : N->ops()) {
16057
if (Op.isUndef()) {
16058
// We can't form a divide or remainder from undef.
16059
if (!DAG.isSafeToSpeculativelyExecute(Opcode))
16060
return SDValue();
16061
16062
LHSOps.push_back(Op);
16063
RHSOps.push_back(Op);
16064
continue;
16065
}
16066
16067
// TODO: We can handle operations which have an neutral rhs value
16068
// (e.g. x + 0, a * 1 or a << 0), but we then have to keep track
16069
// of profit in a more explicit manner.
16070
if (Op.getOpcode() != Opcode || !Op.hasOneUse())
16071
return SDValue();
16072
16073
LHSOps.push_back(Op.getOperand(0));
16074
if (!isa<ConstantSDNode>(Op.getOperand(1)) &&
16075
!isa<ConstantFPSDNode>(Op.getOperand(1)))
16076
return SDValue();
16077
// FIXME: Return failure if the RHS type doesn't match the LHS. Shifts may
16078
// have different LHS and RHS types.
16079
if (Op.getOperand(0).getValueType() != Op.getOperand(1).getValueType())
16080
return SDValue();
16081
16082
RHSOps.push_back(Op.getOperand(1));
16083
}
16084
16085
return DAG.getNode(Opcode, DL, VT, DAG.getBuildVector(VT, DL, LHSOps),
16086
DAG.getBuildVector(VT, DL, RHSOps));
16087
}
16088
16089
static SDValue performINSERT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
16090
const RISCVSubtarget &Subtarget,
16091
const RISCVTargetLowering &TLI) {
16092
SDValue InVec = N->getOperand(0);
16093
SDValue InVal = N->getOperand(1);
16094
SDValue EltNo = N->getOperand(2);
16095
SDLoc DL(N);
16096
16097
EVT VT = InVec.getValueType();
16098
if (VT.isScalableVector())
16099
return SDValue();
16100
16101
if (!InVec.hasOneUse())
16102
return SDValue();
16103
16104
// Given insert_vector_elt (binop a, VecC), (same_binop b, C2), Elt
16105
// move the insert_vector_elts into the arms of the binop. Note that
16106
// the new RHS must be a constant.
16107
const unsigned InVecOpcode = InVec->getOpcode();
16108
if (InVecOpcode == InVal->getOpcode() && TLI.isBinOp(InVecOpcode) &&
16109
InVal.hasOneUse()) {
16110
SDValue InVecLHS = InVec->getOperand(0);
16111
SDValue InVecRHS = InVec->getOperand(1);
16112
SDValue InValLHS = InVal->getOperand(0);
16113
SDValue InValRHS = InVal->getOperand(1);
16114
16115
if (!ISD::isBuildVectorOfConstantSDNodes(InVecRHS.getNode()))
16116
return SDValue();
16117
if (!isa<ConstantSDNode>(InValRHS) && !isa<ConstantFPSDNode>(InValRHS))
16118
return SDValue();
16119
// FIXME: Return failure if the RHS type doesn't match the LHS. Shifts may
16120
// have different LHS and RHS types.
16121
if (InVec.getOperand(0).getValueType() != InVec.getOperand(1).getValueType())
16122
return SDValue();
16123
SDValue LHS = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT,
16124
InVecLHS, InValLHS, EltNo);
16125
SDValue RHS = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT,
16126
InVecRHS, InValRHS, EltNo);
16127
return DAG.getNode(InVecOpcode, DL, VT, LHS, RHS);
16128
}
16129
16130
// Given insert_vector_elt (concat_vectors ...), InVal, Elt
16131
// move the insert_vector_elt to the source operand of the concat_vector.
16132
if (InVec.getOpcode() != ISD::CONCAT_VECTORS)
16133
return SDValue();
16134
16135
auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
16136
if (!IndexC)
16137
return SDValue();
16138
unsigned Elt = IndexC->getZExtValue();
16139
16140
EVT ConcatVT = InVec.getOperand(0).getValueType();
16141
if (ConcatVT.getVectorElementType() != InVal.getValueType())
16142
return SDValue();
16143
unsigned ConcatNumElts = ConcatVT.getVectorNumElements();
16144
SDValue NewIdx = DAG.getVectorIdxConstant(Elt % ConcatNumElts, DL);
16145
16146
unsigned ConcatOpIdx = Elt / ConcatNumElts;
16147
SDValue ConcatOp = InVec.getOperand(ConcatOpIdx);
16148
ConcatOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ConcatVT,
16149
ConcatOp, InVal, NewIdx);
16150
16151
SmallVector<SDValue> ConcatOps;
16152
ConcatOps.append(InVec->op_begin(), InVec->op_end());
16153
ConcatOps[ConcatOpIdx] = ConcatOp;
16154
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
16155
}
16156
16157
// If we're concatenating a series of vector loads like
16158
// concat_vectors (load v4i8, p+0), (load v4i8, p+n), (load v4i8, p+n*2) ...
16159
// Then we can turn this into a strided load by widening the vector elements
16160
// vlse32 p, stride=n
16161
static SDValue performCONCAT_VECTORSCombine(SDNode *N, SelectionDAG &DAG,
16162
const RISCVSubtarget &Subtarget,
16163
const RISCVTargetLowering &TLI) {
16164
SDLoc DL(N);
16165
EVT VT = N->getValueType(0);
16166
16167
// Only perform this combine on legal MVTs.
16168
if (!TLI.isTypeLegal(VT))
16169
return SDValue();
16170
16171
// TODO: Potentially extend this to scalable vectors
16172
if (VT.isScalableVector())
16173
return SDValue();
16174
16175
auto *BaseLd = dyn_cast<LoadSDNode>(N->getOperand(0));
16176
if (!BaseLd || !BaseLd->isSimple() || !ISD::isNormalLoad(BaseLd) ||
16177
!SDValue(BaseLd, 0).hasOneUse())
16178
return SDValue();
16179
16180
EVT BaseLdVT = BaseLd->getValueType(0);
16181
16182
// Go through the loads and check that they're strided
16183
SmallVector<LoadSDNode *> Lds;
16184
Lds.push_back(BaseLd);
16185
Align Align = BaseLd->getAlign();
16186
for (SDValue Op : N->ops().drop_front()) {
16187
auto *Ld = dyn_cast<LoadSDNode>(Op);
16188
if (!Ld || !Ld->isSimple() || !Op.hasOneUse() ||
16189
Ld->getChain() != BaseLd->getChain() || !ISD::isNormalLoad(Ld) ||
16190
Ld->getValueType(0) != BaseLdVT)
16191
return SDValue();
16192
16193
Lds.push_back(Ld);
16194
16195
// The common alignment is the most restrictive (smallest) of all the loads
16196
Align = std::min(Align, Ld->getAlign());
16197
}
16198
16199
using PtrDiff = std::pair<std::variant<int64_t, SDValue>, bool>;
16200
auto GetPtrDiff = [&DAG](LoadSDNode *Ld1,
16201
LoadSDNode *Ld2) -> std::optional<PtrDiff> {
16202
// If the load ptrs can be decomposed into a common (Base + Index) with a
16203
// common constant stride, then return the constant stride.
16204
BaseIndexOffset BIO1 = BaseIndexOffset::match(Ld1, DAG);
16205
BaseIndexOffset BIO2 = BaseIndexOffset::match(Ld2, DAG);
16206
if (BIO1.equalBaseIndex(BIO2, DAG))
16207
return {{BIO2.getOffset() - BIO1.getOffset(), false}};
16208
16209
// Otherwise try to match (add LastPtr, Stride) or (add NextPtr, Stride)
16210
SDValue P1 = Ld1->getBasePtr();
16211
SDValue P2 = Ld2->getBasePtr();
16212
if (P2.getOpcode() == ISD::ADD && P2.getOperand(0) == P1)
16213
return {{P2.getOperand(1), false}};
16214
if (P1.getOpcode() == ISD::ADD && P1.getOperand(0) == P2)
16215
return {{P1.getOperand(1), true}};
16216
16217
return std::nullopt;
16218
};
16219
16220
// Get the distance between the first and second loads
16221
auto BaseDiff = GetPtrDiff(Lds[0], Lds[1]);
16222
if (!BaseDiff)
16223
return SDValue();
16224
16225
// Check all the loads are the same distance apart
16226
for (auto *It = Lds.begin() + 1; It != Lds.end() - 1; It++)
16227
if (GetPtrDiff(*It, *std::next(It)) != BaseDiff)
16228
return SDValue();
16229
16230
// TODO: At this point, we've successfully matched a generalized gather
16231
// load. Maybe we should emit that, and then move the specialized
16232
// matchers above and below into a DAG combine?
16233
16234
// Get the widened scalar type, e.g. v4i8 -> i64
16235
unsigned WideScalarBitWidth =
16236
BaseLdVT.getScalarSizeInBits() * BaseLdVT.getVectorNumElements();
16237
MVT WideScalarVT = MVT::getIntegerVT(WideScalarBitWidth);
16238
16239
// Get the vector type for the strided load, e.g. 4 x v4i8 -> v4i64
16240
MVT WideVecVT = MVT::getVectorVT(WideScalarVT, N->getNumOperands());
16241
if (!TLI.isTypeLegal(WideVecVT))
16242
return SDValue();
16243
16244
// Check that the operation is legal
16245
if (!TLI.isLegalStridedLoadStore(WideVecVT, Align))
16246
return SDValue();
16247
16248
auto [StrideVariant, MustNegateStride] = *BaseDiff;
16249
SDValue Stride = std::holds_alternative<SDValue>(StrideVariant)
16250
? std::get<SDValue>(StrideVariant)
16251
: DAG.getConstant(std::get<int64_t>(StrideVariant), DL,
16252
Lds[0]->getOffset().getValueType());
16253
if (MustNegateStride)
16254
Stride = DAG.getNegative(Stride, DL, Stride.getValueType());
16255
16256
SDValue AllOneMask =
16257
DAG.getSplat(WideVecVT.changeVectorElementType(MVT::i1), DL,
16258
DAG.getConstant(1, DL, MVT::i1));
16259
16260
uint64_t MemSize;
16261
if (auto *ConstStride = dyn_cast<ConstantSDNode>(Stride);
16262
ConstStride && ConstStride->getSExtValue() >= 0)
16263
// total size = (elsize * n) + (stride - elsize) * (n-1)
16264
// = elsize + stride * (n-1)
16265
MemSize = WideScalarVT.getSizeInBits() +
16266
ConstStride->getSExtValue() * (N->getNumOperands() - 1);
16267
else
16268
// If Stride isn't constant, then we can't know how much it will load
16269
MemSize = MemoryLocation::UnknownSize;
16270
16271
MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
16272
BaseLd->getPointerInfo(), BaseLd->getMemOperand()->getFlags(), MemSize,
16273
Align);
16274
16275
SDValue StridedLoad = DAG.getStridedLoadVP(
16276
WideVecVT, DL, BaseLd->getChain(), BaseLd->getBasePtr(), Stride,
16277
AllOneMask,
16278
DAG.getConstant(N->getNumOperands(), DL, Subtarget.getXLenVT()), MMO);
16279
16280
for (SDValue Ld : N->ops())
16281
DAG.makeEquivalentMemoryOrdering(cast<LoadSDNode>(Ld), StridedLoad);
16282
16283
return DAG.getBitcast(VT.getSimpleVT(), StridedLoad);
16284
}
16285
16286
static SDValue combineToVWMACC(SDNode *N, SelectionDAG &DAG,
16287
const RISCVSubtarget &Subtarget) {
16288
16289
assert(N->getOpcode() == RISCVISD::ADD_VL || N->getOpcode() == ISD::ADD);
16290
16291
if (N->getValueType(0).isFixedLengthVector())
16292
return SDValue();
16293
16294
SDValue Addend = N->getOperand(0);
16295
SDValue MulOp = N->getOperand(1);
16296
16297
if (N->getOpcode() == RISCVISD::ADD_VL) {
16298
SDValue AddMergeOp = N->getOperand(2);
16299
if (!AddMergeOp.isUndef())
16300
return SDValue();
16301
}
16302
16303
auto IsVWMulOpc = [](unsigned Opc) {
16304
switch (Opc) {
16305
case RISCVISD::VWMUL_VL:
16306
case RISCVISD::VWMULU_VL:
16307
case RISCVISD::VWMULSU_VL:
16308
return true;
16309
default:
16310
return false;
16311
}
16312
};
16313
16314
if (!IsVWMulOpc(MulOp.getOpcode()))
16315
std::swap(Addend, MulOp);
16316
16317
if (!IsVWMulOpc(MulOp.getOpcode()))
16318
return SDValue();
16319
16320
SDValue MulMergeOp = MulOp.getOperand(2);
16321
16322
if (!MulMergeOp.isUndef())
16323
return SDValue();
16324
16325
auto [AddMask, AddVL] = [](SDNode *N, SelectionDAG &DAG,
16326
const RISCVSubtarget &Subtarget) {
16327
if (N->getOpcode() == ISD::ADD) {
16328
SDLoc DL(N);
16329
return getDefaultScalableVLOps(N->getSimpleValueType(0), DL, DAG,
16330
Subtarget);
16331
}
16332
return std::make_pair(N->getOperand(3), N->getOperand(4));
16333
}(N, DAG, Subtarget);
16334
16335
SDValue MulMask = MulOp.getOperand(3);
16336
SDValue MulVL = MulOp.getOperand(4);
16337
16338
if (AddMask != MulMask || AddVL != MulVL)
16339
return SDValue();
16340
16341
unsigned Opc = RISCVISD::VWMACC_VL + MulOp.getOpcode() - RISCVISD::VWMUL_VL;
16342
static_assert(RISCVISD::VWMACC_VL + 1 == RISCVISD::VWMACCU_VL,
16343
"Unexpected opcode after VWMACC_VL");
16344
static_assert(RISCVISD::VWMACC_VL + 2 == RISCVISD::VWMACCSU_VL,
16345
"Unexpected opcode after VWMACC_VL!");
16346
static_assert(RISCVISD::VWMUL_VL + 1 == RISCVISD::VWMULU_VL,
16347
"Unexpected opcode after VWMUL_VL!");
16348
static_assert(RISCVISD::VWMUL_VL + 2 == RISCVISD::VWMULSU_VL,
16349
"Unexpected opcode after VWMUL_VL!");
16350
16351
SDLoc DL(N);
16352
EVT VT = N->getValueType(0);
16353
SDValue Ops[] = {MulOp.getOperand(0), MulOp.getOperand(1), Addend, AddMask,
16354
AddVL};
16355
return DAG.getNode(Opc, DL, VT, Ops);
16356
}
16357
16358
static bool legalizeScatterGatherIndexType(SDLoc DL, SDValue &Index,
16359
ISD::MemIndexType &IndexType,
16360
RISCVTargetLowering::DAGCombinerInfo &DCI) {
16361
if (!DCI.isBeforeLegalize())
16362
return false;
16363
16364
SelectionDAG &DAG = DCI.DAG;
16365
const MVT XLenVT =
16366
DAG.getMachineFunction().getSubtarget<RISCVSubtarget>().getXLenVT();
16367
16368
const EVT IndexVT = Index.getValueType();
16369
16370
// RISC-V indexed loads only support the "unsigned unscaled" addressing
16371
// mode, so anything else must be manually legalized.
16372
if (!isIndexTypeSigned(IndexType))
16373
return false;
16374
16375
if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
16376
// Any index legalization should first promote to XLenVT, so we don't lose
16377
// bits when scaling. This may create an illegal index type so we let
16378
// LLVM's legalization take care of the splitting.
16379
// FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
16380
Index = DAG.getNode(ISD::SIGN_EXTEND, DL,
16381
IndexVT.changeVectorElementType(XLenVT), Index);
16382
}
16383
IndexType = ISD::UNSIGNED_SCALED;
16384
return true;
16385
}
16386
16387
/// Match the index vector of a scatter or gather node as the shuffle mask
16388
/// which performs the rearrangement if possible. Will only match if
16389
/// all lanes are touched, and thus replacing the scatter or gather with
16390
/// a unit strided access and shuffle is legal.
16391
static bool matchIndexAsShuffle(EVT VT, SDValue Index, SDValue Mask,
16392
SmallVector<int> &ShuffleMask) {
16393
if (!ISD::isConstantSplatVectorAllOnes(Mask.getNode()))
16394
return false;
16395
if (!ISD::isBuildVectorOfConstantSDNodes(Index.getNode()))
16396
return false;
16397
16398
const unsigned ElementSize = VT.getScalarStoreSize();
16399
const unsigned NumElems = VT.getVectorNumElements();
16400
16401
// Create the shuffle mask and check all bits active
16402
assert(ShuffleMask.empty());
16403
BitVector ActiveLanes(NumElems);
16404
for (unsigned i = 0; i < Index->getNumOperands(); i++) {
16405
// TODO: We've found an active bit of UB, and could be
16406
// more aggressive here if desired.
16407
if (Index->getOperand(i)->isUndef())
16408
return false;
16409
uint64_t C = Index->getConstantOperandVal(i);
16410
if (C % ElementSize != 0)
16411
return false;
16412
C = C / ElementSize;
16413
if (C >= NumElems)
16414
return false;
16415
ShuffleMask.push_back(C);
16416
ActiveLanes.set(C);
16417
}
16418
return ActiveLanes.all();
16419
}
16420
16421
/// Match the index of a gather or scatter operation as an operation
16422
/// with twice the element width and half the number of elements. This is
16423
/// generally profitable (if legal) because these operations are linear
16424
/// in VL, so even if we cause some extract VTYPE/VL toggles, we still
16425
/// come out ahead.
16426
static bool matchIndexAsWiderOp(EVT VT, SDValue Index, SDValue Mask,
16427
Align BaseAlign, const RISCVSubtarget &ST) {
16428
if (!ISD::isConstantSplatVectorAllOnes(Mask.getNode()))
16429
return false;
16430
if (!ISD::isBuildVectorOfConstantSDNodes(Index.getNode()))
16431
return false;
16432
16433
// Attempt a doubling. If we can use a element type 4x or 8x in
16434
// size, this will happen via multiply iterations of the transform.
16435
const unsigned NumElems = VT.getVectorNumElements();
16436
if (NumElems % 2 != 0)
16437
return false;
16438
16439
const unsigned ElementSize = VT.getScalarStoreSize();
16440
const unsigned WiderElementSize = ElementSize * 2;
16441
if (WiderElementSize > ST.getELen()/8)
16442
return false;
16443
16444
if (!ST.enableUnalignedVectorMem() && BaseAlign < WiderElementSize)
16445
return false;
16446
16447
for (unsigned i = 0; i < Index->getNumOperands(); i++) {
16448
// TODO: We've found an active bit of UB, and could be
16449
// more aggressive here if desired.
16450
if (Index->getOperand(i)->isUndef())
16451
return false;
16452
// TODO: This offset check is too strict if we support fully
16453
// misaligned memory operations.
16454
uint64_t C = Index->getConstantOperandVal(i);
16455
if (i % 2 == 0) {
16456
if (C % WiderElementSize != 0)
16457
return false;
16458
continue;
16459
}
16460
uint64_t Last = Index->getConstantOperandVal(i-1);
16461
if (C != Last + ElementSize)
16462
return false;
16463
}
16464
return true;
16465
}
16466
16467
// trunc (sra sext (X), zext (Y)) -> sra (X, smin (Y, scalarsize(Y) - 1))
16468
// This would be benefit for the cases where X and Y are both the same value
16469
// type of low precision vectors. Since the truncate would be lowered into
16470
// n-levels TRUNCATE_VECTOR_VL to satisfy RVV's SEW*2->SEW truncate
16471
// restriction, such pattern would be expanded into a series of "vsetvli"
16472
// and "vnsrl" instructions later to reach this point.
16473
static SDValue combineTruncOfSraSext(SDNode *N, SelectionDAG &DAG) {
16474
SDValue Mask = N->getOperand(1);
16475
SDValue VL = N->getOperand(2);
16476
16477
bool IsVLMAX = isAllOnesConstant(VL) ||
16478
(isa<RegisterSDNode>(VL) &&
16479
cast<RegisterSDNode>(VL)->getReg() == RISCV::X0);
16480
if (!IsVLMAX || Mask.getOpcode() != RISCVISD::VMSET_VL ||
16481
Mask.getOperand(0) != VL)
16482
return SDValue();
16483
16484
auto IsTruncNode = [&](SDValue V) {
16485
return V.getOpcode() == RISCVISD::TRUNCATE_VECTOR_VL &&
16486
V.getOperand(1) == Mask && V.getOperand(2) == VL;
16487
};
16488
16489
SDValue Op = N->getOperand(0);
16490
16491
// We need to first find the inner level of TRUNCATE_VECTOR_VL node
16492
// to distinguish such pattern.
16493
while (IsTruncNode(Op)) {
16494
if (!Op.hasOneUse())
16495
return SDValue();
16496
Op = Op.getOperand(0);
16497
}
16498
16499
if (Op.getOpcode() != ISD::SRA || !Op.hasOneUse())
16500
return SDValue();
16501
16502
SDValue N0 = Op.getOperand(0);
16503
SDValue N1 = Op.getOperand(1);
16504
if (N0.getOpcode() != ISD::SIGN_EXTEND || !N0.hasOneUse() ||
16505
N1.getOpcode() != ISD::ZERO_EXTEND || !N1.hasOneUse())
16506
return SDValue();
16507
16508
SDValue N00 = N0.getOperand(0);
16509
SDValue N10 = N1.getOperand(0);
16510
if (!N00.getValueType().isVector() ||
16511
N00.getValueType() != N10.getValueType() ||
16512
N->getValueType(0) != N10.getValueType())
16513
return SDValue();
16514
16515
unsigned MaxShAmt = N10.getValueType().getScalarSizeInBits() - 1;
16516
SDValue SMin =
16517
DAG.getNode(ISD::SMIN, SDLoc(N1), N->getValueType(0), N10,
16518
DAG.getConstant(MaxShAmt, SDLoc(N1), N->getValueType(0)));
16519
return DAG.getNode(ISD::SRA, SDLoc(N), N->getValueType(0), N00, SMin);
16520
}
16521
16522
// Combine (truncate_vector_vl (umin X, C)) -> (vnclipu_vl X) if C is the
16523
// maximum value for the truncated type.
16524
// Combine (truncate_vector_vl (smin (smax X, C2), C1)) -> (vnclip_vl X) if C1
16525
// is the signed maximum value for the truncated type and C2 is the signed
16526
// minimum value.
16527
static SDValue combineTruncToVnclip(SDNode *N, SelectionDAG &DAG,
16528
const RISCVSubtarget &Subtarget) {
16529
assert(N->getOpcode() == RISCVISD::TRUNCATE_VECTOR_VL);
16530
16531
MVT VT = N->getSimpleValueType(0);
16532
16533
SDValue Mask = N->getOperand(1);
16534
SDValue VL = N->getOperand(2);
16535
16536
auto MatchMinMax = [&VL, &Mask](SDValue V, unsigned Opc, unsigned OpcVL,
16537
APInt &SplatVal) {
16538
if (V.getOpcode() != Opc &&
16539
!(V.getOpcode() == OpcVL && V.getOperand(2).isUndef() &&
16540
V.getOperand(3) == Mask && V.getOperand(4) == VL))
16541
return SDValue();
16542
16543
SDValue Op = V.getOperand(1);
16544
16545
// Peek through conversion between fixed and scalable vectors.
16546
if (Op.getOpcode() == ISD::INSERT_SUBVECTOR && Op.getOperand(0).isUndef() &&
16547
isNullConstant(Op.getOperand(2)) &&
16548
Op.getOperand(1).getValueType().isFixedLengthVector() &&
16549
Op.getOperand(1).getOpcode() == ISD::EXTRACT_SUBVECTOR &&
16550
Op.getOperand(1).getOperand(0).getValueType() == Op.getValueType() &&
16551
isNullConstant(Op.getOperand(1).getOperand(1)))
16552
Op = Op.getOperand(1).getOperand(0);
16553
16554
if (ISD::isConstantSplatVector(Op.getNode(), SplatVal))
16555
return V.getOperand(0);
16556
16557
if (Op.getOpcode() == RISCVISD::VMV_V_X_VL && Op.getOperand(0).isUndef() &&
16558
Op.getOperand(2) == VL) {
16559
if (auto *Op1 = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
16560
SplatVal =
16561
Op1->getAPIntValue().sextOrTrunc(Op.getScalarValueSizeInBits());
16562
return V.getOperand(0);
16563
}
16564
}
16565
16566
return SDValue();
16567
};
16568
16569
SDLoc DL(N);
16570
16571
auto DetectUSatPattern = [&](SDValue V) {
16572
APInt LoC, HiC;
16573
16574
// Simple case, V is a UMIN.
16575
if (SDValue UMinOp = MatchMinMax(V, ISD::UMIN, RISCVISD::UMIN_VL, HiC))
16576
if (HiC.isMask(VT.getScalarSizeInBits()))
16577
return UMinOp;
16578
16579
// If we have an SMAX that removes negative numbers first, then we can match
16580
// SMIN instead of UMIN.
16581
if (SDValue SMinOp = MatchMinMax(V, ISD::SMIN, RISCVISD::SMIN_VL, HiC))
16582
if (SDValue SMaxOp =
16583
MatchMinMax(SMinOp, ISD::SMAX, RISCVISD::SMAX_VL, LoC))
16584
if (LoC.isNonNegative() && HiC.isMask(VT.getScalarSizeInBits()))
16585
return SMinOp;
16586
16587
// If we have an SMIN before an SMAX and the SMAX constant is less than or
16588
// equal to the SMIN constant, we can use vnclipu if we insert a new SMAX
16589
// first.
16590
if (SDValue SMaxOp = MatchMinMax(V, ISD::SMAX, RISCVISD::SMAX_VL, LoC))
16591
if (SDValue SMinOp =
16592
MatchMinMax(SMaxOp, ISD::SMIN, RISCVISD::SMIN_VL, HiC))
16593
if (LoC.isNonNegative() && HiC.isMask(VT.getScalarSizeInBits()) &&
16594
HiC.uge(LoC))
16595
return DAG.getNode(RISCVISD::SMAX_VL, DL, V.getValueType(), SMinOp,
16596
V.getOperand(1), DAG.getUNDEF(V.getValueType()),
16597
Mask, VL);
16598
16599
return SDValue();
16600
};
16601
16602
auto DetectSSatPattern = [&](SDValue V) {
16603
unsigned NumDstBits = VT.getScalarSizeInBits();
16604
unsigned NumSrcBits = V.getScalarValueSizeInBits();
16605
APInt SignedMax = APInt::getSignedMaxValue(NumDstBits).sext(NumSrcBits);
16606
APInt SignedMin = APInt::getSignedMinValue(NumDstBits).sext(NumSrcBits);
16607
16608
APInt HiC, LoC;
16609
if (SDValue SMinOp = MatchMinMax(V, ISD::SMIN, RISCVISD::SMIN_VL, HiC))
16610
if (SDValue SMaxOp =
16611
MatchMinMax(SMinOp, ISD::SMAX, RISCVISD::SMAX_VL, LoC))
16612
if (HiC == SignedMax && LoC == SignedMin)
16613
return SMaxOp;
16614
16615
if (SDValue SMaxOp = MatchMinMax(V, ISD::SMAX, RISCVISD::SMAX_VL, LoC))
16616
if (SDValue SMinOp =
16617
MatchMinMax(SMaxOp, ISD::SMIN, RISCVISD::SMIN_VL, HiC))
16618
if (HiC == SignedMax && LoC == SignedMin)
16619
return SMinOp;
16620
16621
return SDValue();
16622
};
16623
16624
SDValue Src = N->getOperand(0);
16625
16626
// Look through multiple layers of truncates.
16627
while (Src.getOpcode() == RISCVISD::TRUNCATE_VECTOR_VL &&
16628
Src.getOperand(1) == Mask && Src.getOperand(2) == VL &&
16629
Src.hasOneUse())
16630
Src = Src.getOperand(0);
16631
16632
SDValue Val;
16633
unsigned ClipOpc;
16634
if ((Val = DetectUSatPattern(Src)))
16635
ClipOpc = RISCVISD::VNCLIPU_VL;
16636
else if ((Val = DetectSSatPattern(Src)))
16637
ClipOpc = RISCVISD::VNCLIP_VL;
16638
else
16639
return SDValue();
16640
16641
MVT ValVT = Val.getSimpleValueType();
16642
16643
do {
16644
MVT ValEltVT = MVT::getIntegerVT(ValVT.getScalarSizeInBits() / 2);
16645
ValVT = ValVT.changeVectorElementType(ValEltVT);
16646
// Rounding mode here is arbitrary since we aren't shifting out any bits.
16647
Val = DAG.getNode(
16648
ClipOpc, DL, ValVT,
16649
{Val, DAG.getConstant(0, DL, ValVT), DAG.getUNDEF(VT), Mask,
16650
DAG.getTargetConstant(RISCVVXRndMode::RNU, DL, Subtarget.getXLenVT()),
16651
VL});
16652
} while (ValVT != VT);
16653
16654
return Val;
16655
}
16656
16657
SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
16658
DAGCombinerInfo &DCI) const {
16659
SelectionDAG &DAG = DCI.DAG;
16660
const MVT XLenVT = Subtarget.getXLenVT();
16661
SDLoc DL(N);
16662
16663
// Helper to call SimplifyDemandedBits on an operand of N where only some low
16664
// bits are demanded. N will be added to the Worklist if it was not deleted.
16665
// Caller should return SDValue(N, 0) if this returns true.
16666
auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
16667
SDValue Op = N->getOperand(OpNo);
16668
APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
16669
if (!SimplifyDemandedBits(Op, Mask, DCI))
16670
return false;
16671
16672
if (N->getOpcode() != ISD::DELETED_NODE)
16673
DCI.AddToWorklist(N);
16674
return true;
16675
};
16676
16677
switch (N->getOpcode()) {
16678
default:
16679
break;
16680
case RISCVISD::SplitF64: {
16681
SDValue Op0 = N->getOperand(0);
16682
// If the input to SplitF64 is just BuildPairF64 then the operation is
16683
// redundant. Instead, use BuildPairF64's operands directly.
16684
if (Op0->getOpcode() == RISCVISD::BuildPairF64)
16685
return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
16686
16687
if (Op0->isUndef()) {
16688
SDValue Lo = DAG.getUNDEF(MVT::i32);
16689
SDValue Hi = DAG.getUNDEF(MVT::i32);
16690
return DCI.CombineTo(N, Lo, Hi);
16691
}
16692
16693
// It's cheaper to materialise two 32-bit integers than to load a double
16694
// from the constant pool and transfer it to integer registers through the
16695
// stack.
16696
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
16697
APInt V = C->getValueAPF().bitcastToAPInt();
16698
SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
16699
SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
16700
return DCI.CombineTo(N, Lo, Hi);
16701
}
16702
16703
// This is a target-specific version of a DAGCombine performed in
16704
// DAGCombiner::visitBITCAST. It performs the equivalent of:
16705
// fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
16706
// fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
16707
if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
16708
!Op0.getNode()->hasOneUse())
16709
break;
16710
SDValue NewSplitF64 =
16711
DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
16712
Op0.getOperand(0));
16713
SDValue Lo = NewSplitF64.getValue(0);
16714
SDValue Hi = NewSplitF64.getValue(1);
16715
APInt SignBit = APInt::getSignMask(32);
16716
if (Op0.getOpcode() == ISD::FNEG) {
16717
SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
16718
DAG.getConstant(SignBit, DL, MVT::i32));
16719
return DCI.CombineTo(N, Lo, NewHi);
16720
}
16721
assert(Op0.getOpcode() == ISD::FABS);
16722
SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
16723
DAG.getConstant(~SignBit, DL, MVT::i32));
16724
return DCI.CombineTo(N, Lo, NewHi);
16725
}
16726
case RISCVISD::SLLW:
16727
case RISCVISD::SRAW:
16728
case RISCVISD::SRLW:
16729
case RISCVISD::RORW:
16730
case RISCVISD::ROLW: {
16731
// Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
16732
if (SimplifyDemandedLowBitsHelper(0, 32) ||
16733
SimplifyDemandedLowBitsHelper(1, 5))
16734
return SDValue(N, 0);
16735
16736
break;
16737
}
16738
case RISCVISD::CLZW:
16739
case RISCVISD::CTZW: {
16740
// Only the lower 32 bits of the first operand are read
16741
if (SimplifyDemandedLowBitsHelper(0, 32))
16742
return SDValue(N, 0);
16743
break;
16744
}
16745
case RISCVISD::FMV_W_X_RV64: {
16746
// If the input to FMV_W_X_RV64 is just FMV_X_ANYEXTW_RV64 the the
16747
// conversion is unnecessary and can be replaced with the
16748
// FMV_X_ANYEXTW_RV64 operand.
16749
SDValue Op0 = N->getOperand(0);
16750
if (Op0.getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64)
16751
return Op0.getOperand(0);
16752
break;
16753
}
16754
case RISCVISD::FMV_X_ANYEXTH:
16755
case RISCVISD::FMV_X_ANYEXTW_RV64: {
16756
SDLoc DL(N);
16757
SDValue Op0 = N->getOperand(0);
16758
MVT VT = N->getSimpleValueType(0);
16759
// If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
16760
// conversion is unnecessary and can be replaced with the FMV_W_X_RV64
16761
// operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
16762
if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
16763
Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
16764
(N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
16765
Op0->getOpcode() == RISCVISD::FMV_H_X)) {
16766
assert(Op0.getOperand(0).getValueType() == VT &&
16767
"Unexpected value type!");
16768
return Op0.getOperand(0);
16769
}
16770
16771
// This is a target-specific version of a DAGCombine performed in
16772
// DAGCombiner::visitBITCAST. It performs the equivalent of:
16773
// fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
16774
// fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
16775
if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
16776
!Op0.getNode()->hasOneUse())
16777
break;
16778
SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
16779
unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
16780
APInt SignBit = APInt::getSignMask(FPBits).sext(VT.getSizeInBits());
16781
if (Op0.getOpcode() == ISD::FNEG)
16782
return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
16783
DAG.getConstant(SignBit, DL, VT));
16784
16785
assert(Op0.getOpcode() == ISD::FABS);
16786
return DAG.getNode(ISD::AND, DL, VT, NewFMV,
16787
DAG.getConstant(~SignBit, DL, VT));
16788
}
16789
case ISD::ABS: {
16790
EVT VT = N->getValueType(0);
16791
SDValue N0 = N->getOperand(0);
16792
// abs (sext) -> zext (abs)
16793
// abs (zext) -> zext (handled elsewhere)
16794
if (VT.isVector() && N0.hasOneUse() && N0.getOpcode() == ISD::SIGN_EXTEND) {
16795
SDValue Src = N0.getOperand(0);
16796
SDLoc DL(N);
16797
return DAG.getNode(ISD::ZERO_EXTEND, DL, VT,
16798
DAG.getNode(ISD::ABS, DL, Src.getValueType(), Src));
16799
}
16800
break;
16801
}
16802
case ISD::ADD: {
16803
if (SDValue V = combineBinOp_VLToVWBinOp_VL(N, DCI, Subtarget))
16804
return V;
16805
if (SDValue V = combineToVWMACC(N, DAG, Subtarget))
16806
return V;
16807
return performADDCombine(N, DCI, Subtarget);
16808
}
16809
case ISD::SUB: {
16810
if (SDValue V = combineBinOp_VLToVWBinOp_VL(N, DCI, Subtarget))
16811
return V;
16812
return performSUBCombine(N, DAG, Subtarget);
16813
}
16814
case ISD::AND:
16815
return performANDCombine(N, DCI, Subtarget);
16816
case ISD::OR: {
16817
if (SDValue V = combineBinOp_VLToVWBinOp_VL(N, DCI, Subtarget))
16818
return V;
16819
return performORCombine(N, DCI, Subtarget);
16820
}
16821
case ISD::XOR:
16822
return performXORCombine(N, DAG, Subtarget);
16823
case ISD::MUL:
16824
if (SDValue V = combineBinOp_VLToVWBinOp_VL(N, DCI, Subtarget))
16825
return V;
16826
return performMULCombine(N, DAG, DCI, Subtarget);
16827
case ISD::SDIV:
16828
case ISD::UDIV:
16829
case ISD::SREM:
16830
case ISD::UREM:
16831
if (SDValue V = combineBinOpOfZExt(N, DAG))
16832
return V;
16833
break;
16834
case ISD::FADD:
16835
case ISD::UMAX:
16836
case ISD::UMIN:
16837
case ISD::SMAX:
16838
case ISD::SMIN:
16839
case ISD::FMAXNUM:
16840
case ISD::FMINNUM: {
16841
if (SDValue V = combineBinOpToReduce(N, DAG, Subtarget))
16842
return V;
16843
if (SDValue V = combineBinOpOfExtractToReduceTree(N, DAG, Subtarget))
16844
return V;
16845
return SDValue();
16846
}
16847
case ISD::SETCC:
16848
return performSETCCCombine(N, DAG, Subtarget);
16849
case ISD::SIGN_EXTEND_INREG:
16850
return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
16851
case ISD::ZERO_EXTEND:
16852
// Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
16853
// type legalization. This is safe because fp_to_uint produces poison if
16854
// it overflows.
16855
if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
16856
SDValue Src = N->getOperand(0);
16857
if (Src.getOpcode() == ISD::FP_TO_UINT &&
16858
isTypeLegal(Src.getOperand(0).getValueType()))
16859
return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
16860
Src.getOperand(0));
16861
if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
16862
isTypeLegal(Src.getOperand(1).getValueType())) {
16863
SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
16864
SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
16865
Src.getOperand(0), Src.getOperand(1));
16866
DCI.CombineTo(N, Res);
16867
DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
16868
DCI.recursivelyDeleteUnusedNodes(Src.getNode());
16869
return SDValue(N, 0); // Return N so it doesn't get rechecked.
16870
}
16871
}
16872
return SDValue();
16873
case RISCVISD::TRUNCATE_VECTOR_VL:
16874
if (SDValue V = combineTruncOfSraSext(N, DAG))
16875
return V;
16876
return combineTruncToVnclip(N, DAG, Subtarget);
16877
case ISD::TRUNCATE:
16878
return performTRUNCATECombine(N, DAG, Subtarget);
16879
case ISD::SELECT:
16880
return performSELECTCombine(N, DAG, Subtarget);
16881
case RISCVISD::CZERO_EQZ:
16882
case RISCVISD::CZERO_NEZ: {
16883
SDValue Val = N->getOperand(0);
16884
SDValue Cond = N->getOperand(1);
16885
16886
unsigned Opc = N->getOpcode();
16887
16888
// czero_eqz x, x -> x
16889
if (Opc == RISCVISD::CZERO_EQZ && Val == Cond)
16890
return Val;
16891
16892
unsigned InvOpc =
16893
Opc == RISCVISD::CZERO_EQZ ? RISCVISD::CZERO_NEZ : RISCVISD::CZERO_EQZ;
16894
16895
// czero_eqz X, (xor Y, 1) -> czero_nez X, Y if Y is 0 or 1.
16896
// czero_nez X, (xor Y, 1) -> czero_eqz X, Y if Y is 0 or 1.
16897
if (Cond.getOpcode() == ISD::XOR && isOneConstant(Cond.getOperand(1))) {
16898
SDValue NewCond = Cond.getOperand(0);
16899
APInt Mask = APInt::getBitsSetFrom(NewCond.getValueSizeInBits(), 1);
16900
if (DAG.MaskedValueIsZero(NewCond, Mask))
16901
return DAG.getNode(InvOpc, SDLoc(N), N->getValueType(0), Val, NewCond);
16902
}
16903
// czero_eqz x, (setcc y, 0, ne) -> czero_eqz x, y
16904
// czero_nez x, (setcc y, 0, ne) -> czero_nez x, y
16905
// czero_eqz x, (setcc y, 0, eq) -> czero_nez x, y
16906
// czero_nez x, (setcc y, 0, eq) -> czero_eqz x, y
16907
if (Cond.getOpcode() == ISD::SETCC && isNullConstant(Cond.getOperand(1))) {
16908
ISD::CondCode CCVal = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16909
if (ISD::isIntEqualitySetCC(CCVal))
16910
return DAG.getNode(CCVal == ISD::SETNE ? Opc : InvOpc, SDLoc(N),
16911
N->getValueType(0), Val, Cond.getOperand(0));
16912
}
16913
return SDValue();
16914
}
16915
case RISCVISD::SELECT_CC: {
16916
// Transform
16917
SDValue LHS = N->getOperand(0);
16918
SDValue RHS = N->getOperand(1);
16919
SDValue CC = N->getOperand(2);
16920
ISD::CondCode CCVal = cast<CondCodeSDNode>(CC)->get();
16921
SDValue TrueV = N->getOperand(3);
16922
SDValue FalseV = N->getOperand(4);
16923
SDLoc DL(N);
16924
EVT VT = N->getValueType(0);
16925
16926
// If the True and False values are the same, we don't need a select_cc.
16927
if (TrueV == FalseV)
16928
return TrueV;
16929
16930
// (select (x < 0), y, z) -> x >> (XLEN - 1) & (y - z) + z
16931
// (select (x >= 0), y, z) -> x >> (XLEN - 1) & (z - y) + y
16932
if (!Subtarget.hasShortForwardBranchOpt() && isa<ConstantSDNode>(TrueV) &&
16933
isa<ConstantSDNode>(FalseV) && isNullConstant(RHS) &&
16934
(CCVal == ISD::CondCode::SETLT || CCVal == ISD::CondCode::SETGE)) {
16935
if (CCVal == ISD::CondCode::SETGE)
16936
std::swap(TrueV, FalseV);
16937
16938
int64_t TrueSImm = cast<ConstantSDNode>(TrueV)->getSExtValue();
16939
int64_t FalseSImm = cast<ConstantSDNode>(FalseV)->getSExtValue();
16940
// Only handle simm12, if it is not in this range, it can be considered as
16941
// register.
16942
if (isInt<12>(TrueSImm) && isInt<12>(FalseSImm) &&
16943
isInt<12>(TrueSImm - FalseSImm)) {
16944
SDValue SRA =
16945
DAG.getNode(ISD::SRA, DL, VT, LHS,
16946
DAG.getConstant(Subtarget.getXLen() - 1, DL, VT));
16947
SDValue AND =
16948
DAG.getNode(ISD::AND, DL, VT, SRA,
16949
DAG.getConstant(TrueSImm - FalseSImm, DL, VT));
16950
return DAG.getNode(ISD::ADD, DL, VT, AND, FalseV);
16951
}
16952
16953
if (CCVal == ISD::CondCode::SETGE)
16954
std::swap(TrueV, FalseV);
16955
}
16956
16957
if (combine_CC(LHS, RHS, CC, DL, DAG, Subtarget))
16958
return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
16959
{LHS, RHS, CC, TrueV, FalseV});
16960
16961
if (!Subtarget.hasConditionalMoveFusion()) {
16962
// (select c, -1, y) -> -c | y
16963
if (isAllOnesConstant(TrueV)) {
16964
SDValue C = DAG.getSetCC(DL, VT, LHS, RHS, CCVal);
16965
SDValue Neg = DAG.getNegative(C, DL, VT);
16966
return DAG.getNode(ISD::OR, DL, VT, Neg, FalseV);
16967
}
16968
// (select c, y, -1) -> -!c | y
16969
if (isAllOnesConstant(FalseV)) {
16970
SDValue C =
16971
DAG.getSetCC(DL, VT, LHS, RHS, ISD::getSetCCInverse(CCVal, VT));
16972
SDValue Neg = DAG.getNegative(C, DL, VT);
16973
return DAG.getNode(ISD::OR, DL, VT, Neg, TrueV);
16974
}
16975
16976
// (select c, 0, y) -> -!c & y
16977
if (isNullConstant(TrueV)) {
16978
SDValue C =
16979
DAG.getSetCC(DL, VT, LHS, RHS, ISD::getSetCCInverse(CCVal, VT));
16980
SDValue Neg = DAG.getNegative(C, DL, VT);
16981
return DAG.getNode(ISD::AND, DL, VT, Neg, FalseV);
16982
}
16983
// (select c, y, 0) -> -c & y
16984
if (isNullConstant(FalseV)) {
16985
SDValue C = DAG.getSetCC(DL, VT, LHS, RHS, CCVal);
16986
SDValue Neg = DAG.getNegative(C, DL, VT);
16987
return DAG.getNode(ISD::AND, DL, VT, Neg, TrueV);
16988
}
16989
// (riscvisd::select_cc x, 0, ne, x, 1) -> (add x, (setcc x, 0, eq))
16990
// (riscvisd::select_cc x, 0, eq, 1, x) -> (add x, (setcc x, 0, eq))
16991
if (((isOneConstant(FalseV) && LHS == TrueV &&
16992
CCVal == ISD::CondCode::SETNE) ||
16993
(isOneConstant(TrueV) && LHS == FalseV &&
16994
CCVal == ISD::CondCode::SETEQ)) &&
16995
isNullConstant(RHS)) {
16996
// freeze it to be safe.
16997
LHS = DAG.getFreeze(LHS);
16998
SDValue C = DAG.getSetCC(DL, VT, LHS, RHS, ISD::CondCode::SETEQ);
16999
return DAG.getNode(ISD::ADD, DL, VT, LHS, C);
17000
}
17001
}
17002
17003
// If both true/false are an xor with 1, pull through the select.
17004
// This can occur after op legalization if both operands are setccs that
17005
// require an xor to invert.
17006
// FIXME: Generalize to other binary ops with identical operand?
17007
if (TrueV.getOpcode() == ISD::XOR && FalseV.getOpcode() == ISD::XOR &&
17008
TrueV.getOperand(1) == FalseV.getOperand(1) &&
17009
isOneConstant(TrueV.getOperand(1)) &&
17010
TrueV.hasOneUse() && FalseV.hasOneUse()) {
17011
SDValue NewSel = DAG.getNode(RISCVISD::SELECT_CC, DL, VT, LHS, RHS, CC,
17012
TrueV.getOperand(0), FalseV.getOperand(0));
17013
return DAG.getNode(ISD::XOR, DL, VT, NewSel, TrueV.getOperand(1));
17014
}
17015
17016
return SDValue();
17017
}
17018
case RISCVISD::BR_CC: {
17019
SDValue LHS = N->getOperand(1);
17020
SDValue RHS = N->getOperand(2);
17021
SDValue CC = N->getOperand(3);
17022
SDLoc DL(N);
17023
17024
if (combine_CC(LHS, RHS, CC, DL, DAG, Subtarget))
17025
return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
17026
N->getOperand(0), LHS, RHS, CC, N->getOperand(4));
17027
17028
return SDValue();
17029
}
17030
case ISD::BITREVERSE:
17031
return performBITREVERSECombine(N, DAG, Subtarget);
17032
case ISD::FP_TO_SINT:
17033
case ISD::FP_TO_UINT:
17034
return performFP_TO_INTCombine(N, DCI, Subtarget);
17035
case ISD::FP_TO_SINT_SAT:
17036
case ISD::FP_TO_UINT_SAT:
17037
return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
17038
case ISD::FCOPYSIGN: {
17039
EVT VT = N->getValueType(0);
17040
if (!VT.isVector())
17041
break;
17042
// There is a form of VFSGNJ which injects the negated sign of its second
17043
// operand. Try and bubble any FNEG up after the extend/round to produce
17044
// this optimized pattern. Avoid modifying cases where FP_ROUND and
17045
// TRUNC=1.
17046
SDValue In2 = N->getOperand(1);
17047
// Avoid cases where the extend/round has multiple uses, as duplicating
17048
// those is typically more expensive than removing a fneg.
17049
if (!In2.hasOneUse())
17050
break;
17051
if (In2.getOpcode() != ISD::FP_EXTEND &&
17052
(In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
17053
break;
17054
In2 = In2.getOperand(0);
17055
if (In2.getOpcode() != ISD::FNEG)
17056
break;
17057
SDLoc DL(N);
17058
SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
17059
return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
17060
DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
17061
}
17062
case ISD::MGATHER: {
17063
const auto *MGN = cast<MaskedGatherSDNode>(N);
17064
const EVT VT = N->getValueType(0);
17065
SDValue Index = MGN->getIndex();
17066
SDValue ScaleOp = MGN->getScale();
17067
ISD::MemIndexType IndexType = MGN->getIndexType();
17068
assert(!MGN->isIndexScaled() &&
17069
"Scaled gather/scatter should not be formed");
17070
17071
SDLoc DL(N);
17072
if (legalizeScatterGatherIndexType(DL, Index, IndexType, DCI))
17073
return DAG.getMaskedGather(
17074
N->getVTList(), MGN->getMemoryVT(), DL,
17075
{MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
17076
MGN->getBasePtr(), Index, ScaleOp},
17077
MGN->getMemOperand(), IndexType, MGN->getExtensionType());
17078
17079
if (narrowIndex(Index, IndexType, DAG))
17080
return DAG.getMaskedGather(
17081
N->getVTList(), MGN->getMemoryVT(), DL,
17082
{MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
17083
MGN->getBasePtr(), Index, ScaleOp},
17084
MGN->getMemOperand(), IndexType, MGN->getExtensionType());
17085
17086
if (Index.getOpcode() == ISD::BUILD_VECTOR &&
17087
MGN->getExtensionType() == ISD::NON_EXTLOAD && isTypeLegal(VT)) {
17088
// The sequence will be XLenVT, not the type of Index. Tell
17089
// isSimpleVIDSequence this so we avoid overflow.
17090
if (std::optional<VIDSequence> SimpleVID =
17091
isSimpleVIDSequence(Index, Subtarget.getXLen());
17092
SimpleVID && SimpleVID->StepDenominator == 1) {
17093
const int64_t StepNumerator = SimpleVID->StepNumerator;
17094
const int64_t Addend = SimpleVID->Addend;
17095
17096
// Note: We don't need to check alignment here since (by assumption
17097
// from the existance of the gather), our offsets must be sufficiently
17098
// aligned.
17099
17100
const EVT PtrVT = getPointerTy(DAG.getDataLayout());
17101
assert(MGN->getBasePtr()->getValueType(0) == PtrVT);
17102
assert(IndexType == ISD::UNSIGNED_SCALED);
17103
SDValue BasePtr = DAG.getNode(ISD::ADD, DL, PtrVT, MGN->getBasePtr(),
17104
DAG.getConstant(Addend, DL, PtrVT));
17105
17106
SDValue EVL = DAG.getElementCount(DL, Subtarget.getXLenVT(),
17107
VT.getVectorElementCount());
17108
SDValue StridedLoad =
17109
DAG.getStridedLoadVP(VT, DL, MGN->getChain(), BasePtr,
17110
DAG.getConstant(StepNumerator, DL, XLenVT),
17111
MGN->getMask(), EVL, MGN->getMemOperand());
17112
SDValue VPSelect = DAG.getNode(ISD::VP_SELECT, DL, VT, MGN->getMask(),
17113
StridedLoad, MGN->getPassThru(), EVL);
17114
return DAG.getMergeValues({VPSelect, SDValue(StridedLoad.getNode(), 1)},
17115
DL);
17116
}
17117
}
17118
17119
SmallVector<int> ShuffleMask;
17120
if (MGN->getExtensionType() == ISD::NON_EXTLOAD &&
17121
matchIndexAsShuffle(VT, Index, MGN->getMask(), ShuffleMask)) {
17122
SDValue Load = DAG.getMaskedLoad(VT, DL, MGN->getChain(),
17123
MGN->getBasePtr(), DAG.getUNDEF(XLenVT),
17124
MGN->getMask(), DAG.getUNDEF(VT),
17125
MGN->getMemoryVT(), MGN->getMemOperand(),
17126
ISD::UNINDEXED, ISD::NON_EXTLOAD);
17127
SDValue Shuffle =
17128
DAG.getVectorShuffle(VT, DL, Load, DAG.getUNDEF(VT), ShuffleMask);
17129
return DAG.getMergeValues({Shuffle, Load.getValue(1)}, DL);
17130
}
17131
17132
if (MGN->getExtensionType() == ISD::NON_EXTLOAD &&
17133
matchIndexAsWiderOp(VT, Index, MGN->getMask(),
17134
MGN->getMemOperand()->getBaseAlign(), Subtarget)) {
17135
SmallVector<SDValue> NewIndices;
17136
for (unsigned i = 0; i < Index->getNumOperands(); i += 2)
17137
NewIndices.push_back(Index.getOperand(i));
17138
EVT IndexVT = Index.getValueType()
17139
.getHalfNumVectorElementsVT(*DAG.getContext());
17140
Index = DAG.getBuildVector(IndexVT, DL, NewIndices);
17141
17142
unsigned ElementSize = VT.getScalarStoreSize();
17143
EVT WideScalarVT = MVT::getIntegerVT(ElementSize * 8 * 2);
17144
auto EltCnt = VT.getVectorElementCount();
17145
assert(EltCnt.isKnownEven() && "Splitting vector, but not in half!");
17146
EVT WideVT = EVT::getVectorVT(*DAG.getContext(), WideScalarVT,
17147
EltCnt.divideCoefficientBy(2));
17148
SDValue Passthru = DAG.getBitcast(WideVT, MGN->getPassThru());
17149
EVT MaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
17150
EltCnt.divideCoefficientBy(2));
17151
SDValue Mask = DAG.getSplat(MaskVT, DL, DAG.getConstant(1, DL, MVT::i1));
17152
17153
SDValue Gather =
17154
DAG.getMaskedGather(DAG.getVTList(WideVT, MVT::Other), WideVT, DL,
17155
{MGN->getChain(), Passthru, Mask, MGN->getBasePtr(),
17156
Index, ScaleOp},
17157
MGN->getMemOperand(), IndexType, ISD::NON_EXTLOAD);
17158
SDValue Result = DAG.getBitcast(VT, Gather.getValue(0));
17159
return DAG.getMergeValues({Result, Gather.getValue(1)}, DL);
17160
}
17161
break;
17162
}
17163
case ISD::MSCATTER:{
17164
const auto *MSN = cast<MaskedScatterSDNode>(N);
17165
SDValue Index = MSN->getIndex();
17166
SDValue ScaleOp = MSN->getScale();
17167
ISD::MemIndexType IndexType = MSN->getIndexType();
17168
assert(!MSN->isIndexScaled() &&
17169
"Scaled gather/scatter should not be formed");
17170
17171
SDLoc DL(N);
17172
if (legalizeScatterGatherIndexType(DL, Index, IndexType, DCI))
17173
return DAG.getMaskedScatter(
17174
N->getVTList(), MSN->getMemoryVT(), DL,
17175
{MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
17176
Index, ScaleOp},
17177
MSN->getMemOperand(), IndexType, MSN->isTruncatingStore());
17178
17179
if (narrowIndex(Index, IndexType, DAG))
17180
return DAG.getMaskedScatter(
17181
N->getVTList(), MSN->getMemoryVT(), DL,
17182
{MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
17183
Index, ScaleOp},
17184
MSN->getMemOperand(), IndexType, MSN->isTruncatingStore());
17185
17186
EVT VT = MSN->getValue()->getValueType(0);
17187
SmallVector<int> ShuffleMask;
17188
if (!MSN->isTruncatingStore() &&
17189
matchIndexAsShuffle(VT, Index, MSN->getMask(), ShuffleMask)) {
17190
SDValue Shuffle = DAG.getVectorShuffle(VT, DL, MSN->getValue(),
17191
DAG.getUNDEF(VT), ShuffleMask);
17192
return DAG.getMaskedStore(MSN->getChain(), DL, Shuffle, MSN->getBasePtr(),
17193
DAG.getUNDEF(XLenVT), MSN->getMask(),
17194
MSN->getMemoryVT(), MSN->getMemOperand(),
17195
ISD::UNINDEXED, false);
17196
}
17197
break;
17198
}
17199
case ISD::VP_GATHER: {
17200
const auto *VPGN = cast<VPGatherSDNode>(N);
17201
SDValue Index = VPGN->getIndex();
17202
SDValue ScaleOp = VPGN->getScale();
17203
ISD::MemIndexType IndexType = VPGN->getIndexType();
17204
assert(!VPGN->isIndexScaled() &&
17205
"Scaled gather/scatter should not be formed");
17206
17207
SDLoc DL(N);
17208
if (legalizeScatterGatherIndexType(DL, Index, IndexType, DCI))
17209
return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
17210
{VPGN->getChain(), VPGN->getBasePtr(), Index,
17211
ScaleOp, VPGN->getMask(),
17212
VPGN->getVectorLength()},
17213
VPGN->getMemOperand(), IndexType);
17214
17215
if (narrowIndex(Index, IndexType, DAG))
17216
return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
17217
{VPGN->getChain(), VPGN->getBasePtr(), Index,
17218
ScaleOp, VPGN->getMask(),
17219
VPGN->getVectorLength()},
17220
VPGN->getMemOperand(), IndexType);
17221
17222
break;
17223
}
17224
case ISD::VP_SCATTER: {
17225
const auto *VPSN = cast<VPScatterSDNode>(N);
17226
SDValue Index = VPSN->getIndex();
17227
SDValue ScaleOp = VPSN->getScale();
17228
ISD::MemIndexType IndexType = VPSN->getIndexType();
17229
assert(!VPSN->isIndexScaled() &&
17230
"Scaled gather/scatter should not be formed");
17231
17232
SDLoc DL(N);
17233
if (legalizeScatterGatherIndexType(DL, Index, IndexType, DCI))
17234
return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
17235
{VPSN->getChain(), VPSN->getValue(),
17236
VPSN->getBasePtr(), Index, ScaleOp,
17237
VPSN->getMask(), VPSN->getVectorLength()},
17238
VPSN->getMemOperand(), IndexType);
17239
17240
if (narrowIndex(Index, IndexType, DAG))
17241
return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
17242
{VPSN->getChain(), VPSN->getValue(),
17243
VPSN->getBasePtr(), Index, ScaleOp,
17244
VPSN->getMask(), VPSN->getVectorLength()},
17245
VPSN->getMemOperand(), IndexType);
17246
break;
17247
}
17248
case RISCVISD::SHL_VL:
17249
if (SDValue V = combineBinOp_VLToVWBinOp_VL(N, DCI, Subtarget))
17250
return V;
17251
[[fallthrough]];
17252
case RISCVISD::SRA_VL:
17253
case RISCVISD::SRL_VL: {
17254
SDValue ShAmt = N->getOperand(1);
17255
if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
17256
// We don't need the upper 32 bits of a 64-bit element for a shift amount.
17257
SDLoc DL(N);
17258
SDValue VL = N->getOperand(4);
17259
EVT VT = N->getValueType(0);
17260
ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
17261
ShAmt.getOperand(1), VL);
17262
return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
17263
N->getOperand(2), N->getOperand(3), N->getOperand(4));
17264
}
17265
break;
17266
}
17267
case ISD::SRA:
17268
if (SDValue V = performSRACombine(N, DAG, Subtarget))
17269
return V;
17270
[[fallthrough]];
17271
case ISD::SRL:
17272
case ISD::SHL: {
17273
if (N->getOpcode() == ISD::SHL) {
17274
if (SDValue V = combineBinOp_VLToVWBinOp_VL(N, DCI, Subtarget))
17275
return V;
17276
}
17277
SDValue ShAmt = N->getOperand(1);
17278
if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
17279
// We don't need the upper 32 bits of a 64-bit element for a shift amount.
17280
SDLoc DL(N);
17281
EVT VT = N->getValueType(0);
17282
ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
17283
ShAmt.getOperand(1),
17284
DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
17285
return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
17286
}
17287
break;
17288
}
17289
case RISCVISD::ADD_VL:
17290
if (SDValue V = combineBinOp_VLToVWBinOp_VL(N, DCI, Subtarget))
17291
return V;
17292
return combineToVWMACC(N, DAG, Subtarget);
17293
case RISCVISD::VWADD_W_VL:
17294
case RISCVISD::VWADDU_W_VL:
17295
case RISCVISD::VWSUB_W_VL:
17296
case RISCVISD::VWSUBU_W_VL:
17297
return performVWADDSUBW_VLCombine(N, DCI, Subtarget);
17298
case RISCVISD::SUB_VL:
17299
case RISCVISD::MUL_VL:
17300
return combineBinOp_VLToVWBinOp_VL(N, DCI, Subtarget);
17301
case RISCVISD::VFMADD_VL:
17302
case RISCVISD::VFNMADD_VL:
17303
case RISCVISD::VFMSUB_VL:
17304
case RISCVISD::VFNMSUB_VL:
17305
case RISCVISD::STRICT_VFMADD_VL:
17306
case RISCVISD::STRICT_VFNMADD_VL:
17307
case RISCVISD::STRICT_VFMSUB_VL:
17308
case RISCVISD::STRICT_VFNMSUB_VL:
17309
return performVFMADD_VLCombine(N, DAG, Subtarget);
17310
case RISCVISD::FADD_VL:
17311
case RISCVISD::FSUB_VL:
17312
case RISCVISD::FMUL_VL:
17313
case RISCVISD::VFWADD_W_VL:
17314
case RISCVISD::VFWSUB_W_VL: {
17315
if (N->getValueType(0).getVectorElementType() == MVT::f32 &&
17316
!Subtarget.hasVInstructionsF16())
17317
return SDValue();
17318
return combineBinOp_VLToVWBinOp_VL(N, DCI, Subtarget);
17319
}
17320
case ISD::LOAD:
17321
case ISD::STORE: {
17322
if (DCI.isAfterLegalizeDAG())
17323
if (SDValue V = performMemPairCombine(N, DCI))
17324
return V;
17325
17326
if (N->getOpcode() != ISD::STORE)
17327
break;
17328
17329
auto *Store = cast<StoreSDNode>(N);
17330
SDValue Chain = Store->getChain();
17331
EVT MemVT = Store->getMemoryVT();
17332
SDValue Val = Store->getValue();
17333
SDLoc DL(N);
17334
17335
bool IsScalarizable =
17336
MemVT.isFixedLengthVector() && ISD::isNormalStore(Store) &&
17337
Store->isSimple() &&
17338
MemVT.getVectorElementType().bitsLE(Subtarget.getXLenVT()) &&
17339
isPowerOf2_64(MemVT.getSizeInBits()) &&
17340
MemVT.getSizeInBits() <= Subtarget.getXLen();
17341
17342
// If sufficiently aligned we can scalarize stores of constant vectors of
17343
// any power-of-two size up to XLen bits, provided that they aren't too
17344
// expensive to materialize.
17345
// vsetivli zero, 2, e8, m1, ta, ma
17346
// vmv.v.i v8, 4
17347
// vse64.v v8, (a0)
17348
// ->
17349
// li a1, 1028
17350
// sh a1, 0(a0)
17351
if (DCI.isBeforeLegalize() && IsScalarizable &&
17352
ISD::isBuildVectorOfConstantSDNodes(Val.getNode())) {
17353
// Get the constant vector bits
17354
APInt NewC(Val.getValueSizeInBits(), 0);
17355
uint64_t EltSize = Val.getScalarValueSizeInBits();
17356
for (unsigned i = 0; i < Val.getNumOperands(); i++) {
17357
if (Val.getOperand(i).isUndef())
17358
continue;
17359
NewC.insertBits(Val.getConstantOperandAPInt(i).trunc(EltSize),
17360
i * EltSize);
17361
}
17362
MVT NewVT = MVT::getIntegerVT(MemVT.getSizeInBits());
17363
17364
if (RISCVMatInt::getIntMatCost(NewC, Subtarget.getXLen(), Subtarget,
17365
true) <= 2 &&
17366
allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
17367
NewVT, *Store->getMemOperand())) {
17368
SDValue NewV = DAG.getConstant(NewC, DL, NewVT);
17369
return DAG.getStore(Chain, DL, NewV, Store->getBasePtr(),
17370
Store->getPointerInfo(), Store->getOriginalAlign(),
17371
Store->getMemOperand()->getFlags());
17372
}
17373
}
17374
17375
// Similarly, if sufficiently aligned we can scalarize vector copies, e.g.
17376
// vsetivli zero, 2, e16, m1, ta, ma
17377
// vle16.v v8, (a0)
17378
// vse16.v v8, (a1)
17379
if (auto *L = dyn_cast<LoadSDNode>(Val);
17380
L && DCI.isBeforeLegalize() && IsScalarizable && L->isSimple() &&
17381
L->hasNUsesOfValue(1, 0) && L->hasNUsesOfValue(1, 1) &&
17382
Store->getChain() == SDValue(L, 1) && ISD::isNormalLoad(L) &&
17383
L->getMemoryVT() == MemVT) {
17384
MVT NewVT = MVT::getIntegerVT(MemVT.getSizeInBits());
17385
if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
17386
NewVT, *Store->getMemOperand()) &&
17387
allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
17388
NewVT, *L->getMemOperand())) {
17389
SDValue NewL = DAG.getLoad(NewVT, DL, L->getChain(), L->getBasePtr(),
17390
L->getPointerInfo(), L->getOriginalAlign(),
17391
L->getMemOperand()->getFlags());
17392
return DAG.getStore(Chain, DL, NewL, Store->getBasePtr(),
17393
Store->getPointerInfo(), Store->getOriginalAlign(),
17394
Store->getMemOperand()->getFlags());
17395
}
17396
}
17397
17398
// Combine store of vmv.x.s/vfmv.f.s to vse with VL of 1.
17399
// vfmv.f.s is represented as extract element from 0. Match it late to avoid
17400
// any illegal types.
17401
if (Val.getOpcode() == RISCVISD::VMV_X_S ||
17402
(DCI.isAfterLegalizeDAG() &&
17403
Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
17404
isNullConstant(Val.getOperand(1)))) {
17405
SDValue Src = Val.getOperand(0);
17406
MVT VecVT = Src.getSimpleValueType();
17407
// VecVT should be scalable and memory VT should match the element type.
17408
if (!Store->isIndexed() && VecVT.isScalableVector() &&
17409
MemVT == VecVT.getVectorElementType()) {
17410
SDLoc DL(N);
17411
MVT MaskVT = getMaskTypeFor(VecVT);
17412
return DAG.getStoreVP(
17413
Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
17414
DAG.getConstant(1, DL, MaskVT),
17415
DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
17416
Store->getMemOperand(), Store->getAddressingMode(),
17417
Store->isTruncatingStore(), /*IsCompress*/ false);
17418
}
17419
}
17420
17421
break;
17422
}
17423
case ISD::SPLAT_VECTOR: {
17424
EVT VT = N->getValueType(0);
17425
// Only perform this combine on legal MVT types.
17426
if (!isTypeLegal(VT))
17427
break;
17428
if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
17429
DAG, Subtarget))
17430
return Gather;
17431
break;
17432
}
17433
case ISD::BUILD_VECTOR:
17434
if (SDValue V = performBUILD_VECTORCombine(N, DAG, Subtarget, *this))
17435
return V;
17436
break;
17437
case ISD::CONCAT_VECTORS:
17438
if (SDValue V = performCONCAT_VECTORSCombine(N, DAG, Subtarget, *this))
17439
return V;
17440
break;
17441
case ISD::INSERT_VECTOR_ELT:
17442
if (SDValue V = performINSERT_VECTOR_ELTCombine(N, DAG, Subtarget, *this))
17443
return V;
17444
break;
17445
case RISCVISD::VFMV_V_F_VL: {
17446
const MVT VT = N->getSimpleValueType(0);
17447
SDValue Passthru = N->getOperand(0);
17448
SDValue Scalar = N->getOperand(1);
17449
SDValue VL = N->getOperand(2);
17450
17451
// If VL is 1, we can use vfmv.s.f.
17452
if (isOneConstant(VL))
17453
return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
17454
break;
17455
}
17456
case RISCVISD::VMV_V_X_VL: {
17457
const MVT VT = N->getSimpleValueType(0);
17458
SDValue Passthru = N->getOperand(0);
17459
SDValue Scalar = N->getOperand(1);
17460
SDValue VL = N->getOperand(2);
17461
17462
// Tail agnostic VMV.V.X only demands the vector element bitwidth from the
17463
// scalar input.
17464
unsigned ScalarSize = Scalar.getValueSizeInBits();
17465
unsigned EltWidth = VT.getScalarSizeInBits();
17466
if (ScalarSize > EltWidth && Passthru.isUndef())
17467
if (SimplifyDemandedLowBitsHelper(1, EltWidth))
17468
return SDValue(N, 0);
17469
17470
// If VL is 1 and the scalar value won't benefit from immediate, we can
17471
// use vmv.s.x.
17472
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
17473
if (isOneConstant(VL) &&
17474
(!Const || Const->isZero() ||
17475
!Const->getAPIntValue().sextOrTrunc(EltWidth).isSignedIntN(5)))
17476
return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
17477
17478
break;
17479
}
17480
case RISCVISD::VFMV_S_F_VL: {
17481
SDValue Src = N->getOperand(1);
17482
// Try to remove vector->scalar->vector if the scalar->vector is inserting
17483
// into an undef vector.
17484
// TODO: Could use a vslide or vmv.v.v for non-undef.
17485
if (N->getOperand(0).isUndef() &&
17486
Src.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
17487
isNullConstant(Src.getOperand(1)) &&
17488
Src.getOperand(0).getValueType().isScalableVector()) {
17489
EVT VT = N->getValueType(0);
17490
EVT SrcVT = Src.getOperand(0).getValueType();
17491
assert(SrcVT.getVectorElementType() == VT.getVectorElementType());
17492
// Widths match, just return the original vector.
17493
if (SrcVT == VT)
17494
return Src.getOperand(0);
17495
// TODO: Use insert_subvector/extract_subvector to change widen/narrow?
17496
}
17497
[[fallthrough]];
17498
}
17499
case RISCVISD::VMV_S_X_VL: {
17500
const MVT VT = N->getSimpleValueType(0);
17501
SDValue Passthru = N->getOperand(0);
17502
SDValue Scalar = N->getOperand(1);
17503
SDValue VL = N->getOperand(2);
17504
17505
if (Scalar.getOpcode() == RISCVISD::VMV_X_S && Passthru.isUndef() &&
17506
Scalar.getOperand(0).getValueType() == N->getValueType(0))
17507
return Scalar.getOperand(0);
17508
17509
// Use M1 or smaller to avoid over constraining register allocation
17510
const MVT M1VT = getLMUL1VT(VT);
17511
if (M1VT.bitsLT(VT)) {
17512
SDValue M1Passthru =
17513
DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, M1VT, Passthru,
17514
DAG.getVectorIdxConstant(0, DL));
17515
SDValue Result =
17516
DAG.getNode(N->getOpcode(), DL, M1VT, M1Passthru, Scalar, VL);
17517
Result = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Passthru, Result,
17518
DAG.getVectorIdxConstant(0, DL));
17519
return Result;
17520
}
17521
17522
// We use a vmv.v.i if possible. We limit this to LMUL1. LMUL2 or
17523
// higher would involve overly constraining the register allocator for
17524
// no purpose.
17525
if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
17526
Const && !Const->isZero() && isInt<5>(Const->getSExtValue()) &&
17527
VT.bitsLE(getLMUL1VT(VT)) && Passthru.isUndef())
17528
return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
17529
17530
break;
17531
}
17532
case RISCVISD::VMV_X_S: {
17533
SDValue Vec = N->getOperand(0);
17534
MVT VecVT = N->getOperand(0).getSimpleValueType();
17535
const MVT M1VT = getLMUL1VT(VecVT);
17536
if (M1VT.bitsLT(VecVT)) {
17537
Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, M1VT, Vec,
17538
DAG.getVectorIdxConstant(0, DL));
17539
return DAG.getNode(RISCVISD::VMV_X_S, DL, N->getSimpleValueType(0), Vec);
17540
}
17541
break;
17542
}
17543
case ISD::INTRINSIC_VOID:
17544
case ISD::INTRINSIC_W_CHAIN:
17545
case ISD::INTRINSIC_WO_CHAIN: {
17546
unsigned IntOpNo = N->getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
17547
unsigned IntNo = N->getConstantOperandVal(IntOpNo);
17548
switch (IntNo) {
17549
// By default we do not combine any intrinsic.
17550
default:
17551
return SDValue();
17552
case Intrinsic::riscv_masked_strided_load: {
17553
MVT VT = N->getSimpleValueType(0);
17554
auto *Load = cast<MemIntrinsicSDNode>(N);
17555
SDValue PassThru = N->getOperand(2);
17556
SDValue Base = N->getOperand(3);
17557
SDValue Stride = N->getOperand(4);
17558
SDValue Mask = N->getOperand(5);
17559
17560
// If the stride is equal to the element size in bytes, we can use
17561
// a masked.load.
17562
const unsigned ElementSize = VT.getScalarStoreSize();
17563
if (auto *StrideC = dyn_cast<ConstantSDNode>(Stride);
17564
StrideC && StrideC->getZExtValue() == ElementSize)
17565
return DAG.getMaskedLoad(VT, DL, Load->getChain(), Base,
17566
DAG.getUNDEF(XLenVT), Mask, PassThru,
17567
Load->getMemoryVT(), Load->getMemOperand(),
17568
ISD::UNINDEXED, ISD::NON_EXTLOAD);
17569
return SDValue();
17570
}
17571
case Intrinsic::riscv_masked_strided_store: {
17572
auto *Store = cast<MemIntrinsicSDNode>(N);
17573
SDValue Value = N->getOperand(2);
17574
SDValue Base = N->getOperand(3);
17575
SDValue Stride = N->getOperand(4);
17576
SDValue Mask = N->getOperand(5);
17577
17578
// If the stride is equal to the element size in bytes, we can use
17579
// a masked.store.
17580
const unsigned ElementSize = Value.getValueType().getScalarStoreSize();
17581
if (auto *StrideC = dyn_cast<ConstantSDNode>(Stride);
17582
StrideC && StrideC->getZExtValue() == ElementSize)
17583
return DAG.getMaskedStore(Store->getChain(), DL, Value, Base,
17584
DAG.getUNDEF(XLenVT), Mask,
17585
Value.getValueType(), Store->getMemOperand(),
17586
ISD::UNINDEXED, false);
17587
return SDValue();
17588
}
17589
case Intrinsic::riscv_vcpop:
17590
case Intrinsic::riscv_vcpop_mask:
17591
case Intrinsic::riscv_vfirst:
17592
case Intrinsic::riscv_vfirst_mask: {
17593
SDValue VL = N->getOperand(2);
17594
if (IntNo == Intrinsic::riscv_vcpop_mask ||
17595
IntNo == Intrinsic::riscv_vfirst_mask)
17596
VL = N->getOperand(3);
17597
if (!isNullConstant(VL))
17598
return SDValue();
17599
// If VL is 0, vcpop -> li 0, vfirst -> li -1.
17600
SDLoc DL(N);
17601
EVT VT = N->getValueType(0);
17602
if (IntNo == Intrinsic::riscv_vfirst ||
17603
IntNo == Intrinsic::riscv_vfirst_mask)
17604
return DAG.getConstant(-1, DL, VT);
17605
return DAG.getConstant(0, DL, VT);
17606
}
17607
}
17608
}
17609
case ISD::BITCAST: {
17610
assert(Subtarget.useRVVForFixedLengthVectors());
17611
SDValue N0 = N->getOperand(0);
17612
EVT VT = N->getValueType(0);
17613
EVT SrcVT = N0.getValueType();
17614
// If this is a bitcast between a MVT::v4i1/v2i1/v1i1 and an illegal integer
17615
// type, widen both sides to avoid a trip through memory.
17616
if ((SrcVT == MVT::v1i1 || SrcVT == MVT::v2i1 || SrcVT == MVT::v4i1) &&
17617
VT.isScalarInteger()) {
17618
unsigned NumConcats = 8 / SrcVT.getVectorNumElements();
17619
SmallVector<SDValue, 4> Ops(NumConcats, DAG.getUNDEF(SrcVT));
17620
Ops[0] = N0;
17621
SDLoc DL(N);
17622
N0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i1, Ops);
17623
N0 = DAG.getBitcast(MVT::i8, N0);
17624
return DAG.getNode(ISD::TRUNCATE, DL, VT, N0);
17625
}
17626
17627
return SDValue();
17628
}
17629
}
17630
17631
return SDValue();
17632
}
17633
17634
bool RISCVTargetLowering::shouldTransformSignedTruncationCheck(
17635
EVT XVT, unsigned KeptBits) const {
17636
// For vectors, we don't have a preference..
17637
if (XVT.isVector())
17638
return false;
17639
17640
if (XVT != MVT::i32 && XVT != MVT::i64)
17641
return false;
17642
17643
// We can use sext.w for RV64 or an srai 31 on RV32.
17644
if (KeptBits == 32 || KeptBits == 64)
17645
return true;
17646
17647
// With Zbb we can use sext.h/sext.b.
17648
return Subtarget.hasStdExtZbb() &&
17649
((KeptBits == 8 && XVT == MVT::i64 && !Subtarget.is64Bit()) ||
17650
KeptBits == 16);
17651
}
17652
17653
bool RISCVTargetLowering::isDesirableToCommuteWithShift(
17654
const SDNode *N, CombineLevel Level) const {
17655
assert((N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA ||
17656
N->getOpcode() == ISD::SRL) &&
17657
"Expected shift op");
17658
17659
// The following folds are only desirable if `(OP _, c1 << c2)` can be
17660
// materialised in fewer instructions than `(OP _, c1)`:
17661
//
17662
// (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
17663
// (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
17664
SDValue N0 = N->getOperand(0);
17665
EVT Ty = N0.getValueType();
17666
if (Ty.isScalarInteger() &&
17667
(N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
17668
auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
17669
auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
17670
if (C1 && C2) {
17671
const APInt &C1Int = C1->getAPIntValue();
17672
APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
17673
17674
// We can materialise `c1 << c2` into an add immediate, so it's "free",
17675
// and the combine should happen, to potentially allow further combines
17676
// later.
17677
if (ShiftedC1Int.getSignificantBits() <= 64 &&
17678
isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
17679
return true;
17680
17681
// We can materialise `c1` in an add immediate, so it's "free", and the
17682
// combine should be prevented.
17683
if (C1Int.getSignificantBits() <= 64 &&
17684
isLegalAddImmediate(C1Int.getSExtValue()))
17685
return false;
17686
17687
// Neither constant will fit into an immediate, so find materialisation
17688
// costs.
17689
int C1Cost =
17690
RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), Subtarget,
17691
/*CompressionCost*/ true);
17692
int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
17693
ShiftedC1Int, Ty.getSizeInBits(), Subtarget,
17694
/*CompressionCost*/ true);
17695
17696
// Materialising `c1` is cheaper than materialising `c1 << c2`, so the
17697
// combine should be prevented.
17698
if (C1Cost < ShiftedC1Cost)
17699
return false;
17700
}
17701
}
17702
return true;
17703
}
17704
17705
bool RISCVTargetLowering::targetShrinkDemandedConstant(
17706
SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
17707
TargetLoweringOpt &TLO) const {
17708
// Delay this optimization as late as possible.
17709
if (!TLO.LegalOps)
17710
return false;
17711
17712
EVT VT = Op.getValueType();
17713
if (VT.isVector())
17714
return false;
17715
17716
unsigned Opcode = Op.getOpcode();
17717
if (Opcode != ISD::AND && Opcode != ISD::OR && Opcode != ISD::XOR)
17718
return false;
17719
17720
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
17721
if (!C)
17722
return false;
17723
17724
const APInt &Mask = C->getAPIntValue();
17725
17726
// Clear all non-demanded bits initially.
17727
APInt ShrunkMask = Mask & DemandedBits;
17728
17729
// Try to make a smaller immediate by setting undemanded bits.
17730
17731
APInt ExpandedMask = Mask | ~DemandedBits;
17732
17733
auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
17734
return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
17735
};
17736
auto UseMask = [Mask, Op, &TLO](const APInt &NewMask) -> bool {
17737
if (NewMask == Mask)
17738
return true;
17739
SDLoc DL(Op);
17740
SDValue NewC = TLO.DAG.getConstant(NewMask, DL, Op.getValueType());
17741
SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), DL, Op.getValueType(),
17742
Op.getOperand(0), NewC);
17743
return TLO.CombineTo(Op, NewOp);
17744
};
17745
17746
// If the shrunk mask fits in sign extended 12 bits, let the target
17747
// independent code apply it.
17748
if (ShrunkMask.isSignedIntN(12))
17749
return false;
17750
17751
// And has a few special cases for zext.
17752
if (Opcode == ISD::AND) {
17753
// Preserve (and X, 0xffff), if zext.h exists use zext.h,
17754
// otherwise use SLLI + SRLI.
17755
APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
17756
if (IsLegalMask(NewMask))
17757
return UseMask(NewMask);
17758
17759
// Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
17760
if (VT == MVT::i64) {
17761
APInt NewMask = APInt(64, 0xffffffff);
17762
if (IsLegalMask(NewMask))
17763
return UseMask(NewMask);
17764
}
17765
}
17766
17767
// For the remaining optimizations, we need to be able to make a negative
17768
// number through a combination of mask and undemanded bits.
17769
if (!ExpandedMask.isNegative())
17770
return false;
17771
17772
// What is the fewest number of bits we need to represent the negative number.
17773
unsigned MinSignedBits = ExpandedMask.getSignificantBits();
17774
17775
// Try to make a 12 bit negative immediate. If that fails try to make a 32
17776
// bit negative immediate unless the shrunk immediate already fits in 32 bits.
17777
// If we can't create a simm12, we shouldn't change opaque constants.
17778
APInt NewMask = ShrunkMask;
17779
if (MinSignedBits <= 12)
17780
NewMask.setBitsFrom(11);
17781
else if (!C->isOpaque() && MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
17782
NewMask.setBitsFrom(31);
17783
else
17784
return false;
17785
17786
// Check that our new mask is a subset of the demanded mask.
17787
assert(IsLegalMask(NewMask));
17788
return UseMask(NewMask);
17789
}
17790
17791
static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) {
17792
static const uint64_t GREVMasks[] = {
17793
0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
17794
0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
17795
17796
for (unsigned Stage = 0; Stage != 6; ++Stage) {
17797
unsigned Shift = 1 << Stage;
17798
if (ShAmt & Shift) {
17799
uint64_t Mask = GREVMasks[Stage];
17800
uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask);
17801
if (IsGORC)
17802
Res |= x;
17803
x = Res;
17804
}
17805
}
17806
17807
return x;
17808
}
17809
17810
void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
17811
KnownBits &Known,
17812
const APInt &DemandedElts,
17813
const SelectionDAG &DAG,
17814
unsigned Depth) const {
17815
unsigned BitWidth = Known.getBitWidth();
17816
unsigned Opc = Op.getOpcode();
17817
assert((Opc >= ISD::BUILTIN_OP_END ||
17818
Opc == ISD::INTRINSIC_WO_CHAIN ||
17819
Opc == ISD::INTRINSIC_W_CHAIN ||
17820
Opc == ISD::INTRINSIC_VOID) &&
17821
"Should use MaskedValueIsZero if you don't know whether Op"
17822
" is a target node!");
17823
17824
Known.resetAll();
17825
switch (Opc) {
17826
default: break;
17827
case RISCVISD::SELECT_CC: {
17828
Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
17829
// If we don't know any bits, early out.
17830
if (Known.isUnknown())
17831
break;
17832
KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
17833
17834
// Only known if known in both the LHS and RHS.
17835
Known = Known.intersectWith(Known2);
17836
break;
17837
}
17838
case RISCVISD::CZERO_EQZ:
17839
case RISCVISD::CZERO_NEZ:
17840
Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
17841
// Result is either all zero or operand 0. We can propagate zeros, but not
17842
// ones.
17843
Known.One.clearAllBits();
17844
break;
17845
case RISCVISD::REMUW: {
17846
KnownBits Known2;
17847
Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
17848
Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
17849
// We only care about the lower 32 bits.
17850
Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
17851
// Restore the original width by sign extending.
17852
Known = Known.sext(BitWidth);
17853
break;
17854
}
17855
case RISCVISD::DIVUW: {
17856
KnownBits Known2;
17857
Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
17858
Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
17859
// We only care about the lower 32 bits.
17860
Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
17861
// Restore the original width by sign extending.
17862
Known = Known.sext(BitWidth);
17863
break;
17864
}
17865
case RISCVISD::SLLW: {
17866
KnownBits Known2;
17867
Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
17868
Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
17869
Known = KnownBits::shl(Known.trunc(32), Known2.trunc(5).zext(32));
17870
// Restore the original width by sign extending.
17871
Known = Known.sext(BitWidth);
17872
break;
17873
}
17874
case RISCVISD::CTZW: {
17875
KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
17876
unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
17877
unsigned LowBits = llvm::bit_width(PossibleTZ);
17878
Known.Zero.setBitsFrom(LowBits);
17879
break;
17880
}
17881
case RISCVISD::CLZW: {
17882
KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
17883
unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
17884
unsigned LowBits = llvm::bit_width(PossibleLZ);
17885
Known.Zero.setBitsFrom(LowBits);
17886
break;
17887
}
17888
case RISCVISD::BREV8:
17889
case RISCVISD::ORC_B: {
17890
// FIXME: This is based on the non-ratified Zbp GREV and GORC where a
17891
// control value of 7 is equivalent to brev8 and orc.b.
17892
Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
17893
bool IsGORC = Op.getOpcode() == RISCVISD::ORC_B;
17894
// To compute zeros, we need to invert the value and invert it back after.
17895
Known.Zero =
17896
~computeGREVOrGORC(~Known.Zero.getZExtValue(), 7, IsGORC);
17897
Known.One = computeGREVOrGORC(Known.One.getZExtValue(), 7, IsGORC);
17898
break;
17899
}
17900
case RISCVISD::READ_VLENB: {
17901
// We can use the minimum and maximum VLEN values to bound VLENB. We
17902
// know VLEN must be a power of two.
17903
const unsigned MinVLenB = Subtarget.getRealMinVLen() / 8;
17904
const unsigned MaxVLenB = Subtarget.getRealMaxVLen() / 8;
17905
assert(MinVLenB > 0 && "READ_VLENB without vector extension enabled?");
17906
Known.Zero.setLowBits(Log2_32(MinVLenB));
17907
Known.Zero.setBitsFrom(Log2_32(MaxVLenB)+1);
17908
if (MaxVLenB == MinVLenB)
17909
Known.One.setBit(Log2_32(MinVLenB));
17910
break;
17911
}
17912
case RISCVISD::FCLASS: {
17913
// fclass will only set one of the low 10 bits.
17914
Known.Zero.setBitsFrom(10);
17915
break;
17916
}
17917
case ISD::INTRINSIC_W_CHAIN:
17918
case ISD::INTRINSIC_WO_CHAIN: {
17919
unsigned IntNo =
17920
Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
17921
switch (IntNo) {
17922
default:
17923
// We can't do anything for most intrinsics.
17924
break;
17925
case Intrinsic::riscv_vsetvli:
17926
case Intrinsic::riscv_vsetvlimax: {
17927
bool HasAVL = IntNo == Intrinsic::riscv_vsetvli;
17928
unsigned VSEW = Op.getConstantOperandVal(HasAVL + 1);
17929
RISCVII::VLMUL VLMUL =
17930
static_cast<RISCVII::VLMUL>(Op.getConstantOperandVal(HasAVL + 2));
17931
unsigned SEW = RISCVVType::decodeVSEW(VSEW);
17932
auto [LMul, Fractional] = RISCVVType::decodeVLMUL(VLMUL);
17933
uint64_t MaxVL = Subtarget.getRealMaxVLen() / SEW;
17934
MaxVL = (Fractional) ? MaxVL / LMul : MaxVL * LMul;
17935
17936
// Result of vsetvli must be not larger than AVL.
17937
if (HasAVL && isa<ConstantSDNode>(Op.getOperand(1)))
17938
MaxVL = std::min(MaxVL, Op.getConstantOperandVal(1));
17939
17940
unsigned KnownZeroFirstBit = Log2_32(MaxVL) + 1;
17941
if (BitWidth > KnownZeroFirstBit)
17942
Known.Zero.setBitsFrom(KnownZeroFirstBit);
17943
break;
17944
}
17945
}
17946
break;
17947
}
17948
}
17949
}
17950
17951
unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
17952
SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
17953
unsigned Depth) const {
17954
switch (Op.getOpcode()) {
17955
default:
17956
break;
17957
case RISCVISD::SELECT_CC: {
17958
unsigned Tmp =
17959
DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
17960
if (Tmp == 1) return 1; // Early out.
17961
unsigned Tmp2 =
17962
DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
17963
return std::min(Tmp, Tmp2);
17964
}
17965
case RISCVISD::CZERO_EQZ:
17966
case RISCVISD::CZERO_NEZ:
17967
// Output is either all zero or operand 0. We can propagate sign bit count
17968
// from operand 0.
17969
return DAG.ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
17970
case RISCVISD::ABSW: {
17971
// We expand this at isel to negw+max. The result will have 33 sign bits
17972
// if the input has at least 33 sign bits.
17973
unsigned Tmp =
17974
DAG.ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
17975
if (Tmp < 33) return 1;
17976
return 33;
17977
}
17978
case RISCVISD::SLLW:
17979
case RISCVISD::SRAW:
17980
case RISCVISD::SRLW:
17981
case RISCVISD::DIVW:
17982
case RISCVISD::DIVUW:
17983
case RISCVISD::REMUW:
17984
case RISCVISD::ROLW:
17985
case RISCVISD::RORW:
17986
case RISCVISD::FCVT_W_RV64:
17987
case RISCVISD::FCVT_WU_RV64:
17988
case RISCVISD::STRICT_FCVT_W_RV64:
17989
case RISCVISD::STRICT_FCVT_WU_RV64:
17990
// TODO: As the result is sign-extended, this is conservatively correct. A
17991
// more precise answer could be calculated for SRAW depending on known
17992
// bits in the shift amount.
17993
return 33;
17994
case RISCVISD::VMV_X_S: {
17995
// The number of sign bits of the scalar result is computed by obtaining the
17996
// element type of the input vector operand, subtracting its width from the
17997
// XLEN, and then adding one (sign bit within the element type). If the
17998
// element type is wider than XLen, the least-significant XLEN bits are
17999
// taken.
18000
unsigned XLen = Subtarget.getXLen();
18001
unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
18002
if (EltBits <= XLen)
18003
return XLen - EltBits + 1;
18004
break;
18005
}
18006
case ISD::INTRINSIC_W_CHAIN: {
18007
unsigned IntNo = Op.getConstantOperandVal(1);
18008
switch (IntNo) {
18009
default:
18010
break;
18011
case Intrinsic::riscv_masked_atomicrmw_xchg_i64:
18012
case Intrinsic::riscv_masked_atomicrmw_add_i64:
18013
case Intrinsic::riscv_masked_atomicrmw_sub_i64:
18014
case Intrinsic::riscv_masked_atomicrmw_nand_i64:
18015
case Intrinsic::riscv_masked_atomicrmw_max_i64:
18016
case Intrinsic::riscv_masked_atomicrmw_min_i64:
18017
case Intrinsic::riscv_masked_atomicrmw_umax_i64:
18018
case Intrinsic::riscv_masked_atomicrmw_umin_i64:
18019
case Intrinsic::riscv_masked_cmpxchg_i64:
18020
// riscv_masked_{atomicrmw_*,cmpxchg} intrinsics represent an emulated
18021
// narrow atomic operation. These are implemented using atomic
18022
// operations at the minimum supported atomicrmw/cmpxchg width whose
18023
// result is then sign extended to XLEN. With +A, the minimum width is
18024
// 32 for both 64 and 32.
18025
assert(Subtarget.getXLen() == 64);
18026
assert(getMinCmpXchgSizeInBits() == 32);
18027
assert(Subtarget.hasStdExtA());
18028
return 33;
18029
}
18030
break;
18031
}
18032
}
18033
18034
return 1;
18035
}
18036
18037
bool RISCVTargetLowering::canCreateUndefOrPoisonForTargetNode(
18038
SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
18039
bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const {
18040
18041
// TODO: Add more target nodes.
18042
switch (Op.getOpcode()) {
18043
case RISCVISD::SELECT_CC:
18044
// Integer select_cc cannot create poison.
18045
// TODO: What are the FP poison semantics?
18046
// TODO: This instruction blocks poison from the unselected operand, can
18047
// we do anything with that?
18048
return !Op.getValueType().isInteger();
18049
}
18050
return TargetLowering::canCreateUndefOrPoisonForTargetNode(
18051
Op, DemandedElts, DAG, PoisonOnly, ConsiderFlags, Depth);
18052
}
18053
18054
const Constant *
18055
RISCVTargetLowering::getTargetConstantFromLoad(LoadSDNode *Ld) const {
18056
assert(Ld && "Unexpected null LoadSDNode");
18057
if (!ISD::isNormalLoad(Ld))
18058
return nullptr;
18059
18060
SDValue Ptr = Ld->getBasePtr();
18061
18062
// Only constant pools with no offset are supported.
18063
auto GetSupportedConstantPool = [](SDValue Ptr) -> ConstantPoolSDNode * {
18064
auto *CNode = dyn_cast<ConstantPoolSDNode>(Ptr);
18065
if (!CNode || CNode->isMachineConstantPoolEntry() ||
18066
CNode->getOffset() != 0)
18067
return nullptr;
18068
18069
return CNode;
18070
};
18071
18072
// Simple case, LLA.
18073
if (Ptr.getOpcode() == RISCVISD::LLA) {
18074
auto *CNode = GetSupportedConstantPool(Ptr);
18075
if (!CNode || CNode->getTargetFlags() != 0)
18076
return nullptr;
18077
18078
return CNode->getConstVal();
18079
}
18080
18081
// Look for a HI and ADD_LO pair.
18082
if (Ptr.getOpcode() != RISCVISD::ADD_LO ||
18083
Ptr.getOperand(0).getOpcode() != RISCVISD::HI)
18084
return nullptr;
18085
18086
auto *CNodeLo = GetSupportedConstantPool(Ptr.getOperand(1));
18087
auto *CNodeHi = GetSupportedConstantPool(Ptr.getOperand(0).getOperand(0));
18088
18089
if (!CNodeLo || CNodeLo->getTargetFlags() != RISCVII::MO_LO ||
18090
!CNodeHi || CNodeHi->getTargetFlags() != RISCVII::MO_HI)
18091
return nullptr;
18092
18093
if (CNodeLo->getConstVal() != CNodeHi->getConstVal())
18094
return nullptr;
18095
18096
return CNodeLo->getConstVal();
18097
}
18098
18099
static MachineBasicBlock *emitReadCounterWidePseudo(MachineInstr &MI,
18100
MachineBasicBlock *BB) {
18101
assert(MI.getOpcode() == RISCV::ReadCounterWide && "Unexpected instruction");
18102
18103
// To read a 64-bit counter CSR on a 32-bit target, we read the two halves.
18104
// Should the count have wrapped while it was being read, we need to try
18105
// again.
18106
// For example:
18107
// ```
18108
// read:
18109
// csrrs x3, counterh # load high word of counter
18110
// csrrs x2, counter # load low word of counter
18111
// csrrs x4, counterh # load high word of counter
18112
// bne x3, x4, read # check if high word reads match, otherwise try again
18113
// ```
18114
18115
MachineFunction &MF = *BB->getParent();
18116
const BasicBlock *LLVMBB = BB->getBasicBlock();
18117
MachineFunction::iterator It = ++BB->getIterator();
18118
18119
MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVMBB);
18120
MF.insert(It, LoopMBB);
18121
18122
MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVMBB);
18123
MF.insert(It, DoneMBB);
18124
18125
// Transfer the remainder of BB and its successor edges to DoneMBB.
18126
DoneMBB->splice(DoneMBB->begin(), BB,
18127
std::next(MachineBasicBlock::iterator(MI)), BB->end());
18128
DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
18129
18130
BB->addSuccessor(LoopMBB);
18131
18132
MachineRegisterInfo &RegInfo = MF.getRegInfo();
18133
Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
18134
Register LoReg = MI.getOperand(0).getReg();
18135
Register HiReg = MI.getOperand(1).getReg();
18136
int64_t LoCounter = MI.getOperand(2).getImm();
18137
int64_t HiCounter = MI.getOperand(3).getImm();
18138
DebugLoc DL = MI.getDebugLoc();
18139
18140
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
18141
BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
18142
.addImm(HiCounter)
18143
.addReg(RISCV::X0);
18144
BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
18145
.addImm(LoCounter)
18146
.addReg(RISCV::X0);
18147
BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
18148
.addImm(HiCounter)
18149
.addReg(RISCV::X0);
18150
18151
BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
18152
.addReg(HiReg)
18153
.addReg(ReadAgainReg)
18154
.addMBB(LoopMBB);
18155
18156
LoopMBB->addSuccessor(LoopMBB);
18157
LoopMBB->addSuccessor(DoneMBB);
18158
18159
MI.eraseFromParent();
18160
18161
return DoneMBB;
18162
}
18163
18164
static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
18165
MachineBasicBlock *BB,
18166
const RISCVSubtarget &Subtarget) {
18167
assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
18168
18169
MachineFunction &MF = *BB->getParent();
18170
DebugLoc DL = MI.getDebugLoc();
18171
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
18172
const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
18173
Register LoReg = MI.getOperand(0).getReg();
18174
Register HiReg = MI.getOperand(1).getReg();
18175
Register SrcReg = MI.getOperand(2).getReg();
18176
18177
const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
18178
int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
18179
18180
TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
18181
RI, Register());
18182
MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
18183
MachineMemOperand *MMOLo =
18184
MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
18185
MachineMemOperand *MMOHi = MF.getMachineMemOperand(
18186
MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
18187
BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
18188
.addFrameIndex(FI)
18189
.addImm(0)
18190
.addMemOperand(MMOLo);
18191
BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
18192
.addFrameIndex(FI)
18193
.addImm(4)
18194
.addMemOperand(MMOHi);
18195
MI.eraseFromParent(); // The pseudo instruction is gone now.
18196
return BB;
18197
}
18198
18199
static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
18200
MachineBasicBlock *BB,
18201
const RISCVSubtarget &Subtarget) {
18202
assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
18203
"Unexpected instruction");
18204
18205
MachineFunction &MF = *BB->getParent();
18206
DebugLoc DL = MI.getDebugLoc();
18207
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
18208
const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
18209
Register DstReg = MI.getOperand(0).getReg();
18210
Register LoReg = MI.getOperand(1).getReg();
18211
Register HiReg = MI.getOperand(2).getReg();
18212
18213
const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
18214
int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
18215
18216
MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
18217
MachineMemOperand *MMOLo =
18218
MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
18219
MachineMemOperand *MMOHi = MF.getMachineMemOperand(
18220
MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
18221
BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
18222
.addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
18223
.addFrameIndex(FI)
18224
.addImm(0)
18225
.addMemOperand(MMOLo);
18226
BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
18227
.addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
18228
.addFrameIndex(FI)
18229
.addImm(4)
18230
.addMemOperand(MMOHi);
18231
TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI, Register());
18232
MI.eraseFromParent(); // The pseudo instruction is gone now.
18233
return BB;
18234
}
18235
18236
static bool isSelectPseudo(MachineInstr &MI) {
18237
switch (MI.getOpcode()) {
18238
default:
18239
return false;
18240
case RISCV::Select_GPR_Using_CC_GPR:
18241
case RISCV::Select_GPR_Using_CC_Imm:
18242
case RISCV::Select_FPR16_Using_CC_GPR:
18243
case RISCV::Select_FPR16INX_Using_CC_GPR:
18244
case RISCV::Select_FPR32_Using_CC_GPR:
18245
case RISCV::Select_FPR32INX_Using_CC_GPR:
18246
case RISCV::Select_FPR64_Using_CC_GPR:
18247
case RISCV::Select_FPR64INX_Using_CC_GPR:
18248
case RISCV::Select_FPR64IN32X_Using_CC_GPR:
18249
return true;
18250
}
18251
}
18252
18253
static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
18254
unsigned RelOpcode, unsigned EqOpcode,
18255
const RISCVSubtarget &Subtarget) {
18256
DebugLoc DL = MI.getDebugLoc();
18257
Register DstReg = MI.getOperand(0).getReg();
18258
Register Src1Reg = MI.getOperand(1).getReg();
18259
Register Src2Reg = MI.getOperand(2).getReg();
18260
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
18261
Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
18262
const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
18263
18264
// Save the current FFLAGS.
18265
BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
18266
18267
auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
18268
.addReg(Src1Reg)
18269
.addReg(Src2Reg);
18270
if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
18271
MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
18272
18273
// Restore the FFLAGS.
18274
BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
18275
.addReg(SavedFFlags, RegState::Kill);
18276
18277
// Issue a dummy FEQ opcode to raise exception for signaling NaNs.
18278
auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
18279
.addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
18280
.addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
18281
if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
18282
MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
18283
18284
// Erase the pseudoinstruction.
18285
MI.eraseFromParent();
18286
return BB;
18287
}
18288
18289
static MachineBasicBlock *
18290
EmitLoweredCascadedSelect(MachineInstr &First, MachineInstr &Second,
18291
MachineBasicBlock *ThisMBB,
18292
const RISCVSubtarget &Subtarget) {
18293
// Select_FPRX_ (rs1, rs2, imm, rs4, (Select_FPRX_ rs1, rs2, imm, rs4, rs5)
18294
// Without this, custom-inserter would have generated:
18295
//
18296
// A
18297
// | \
18298
// | B
18299
// | /
18300
// C
18301
// | \
18302
// | D
18303
// | /
18304
// E
18305
//
18306
// A: X = ...; Y = ...
18307
// B: empty
18308
// C: Z = PHI [X, A], [Y, B]
18309
// D: empty
18310
// E: PHI [X, C], [Z, D]
18311
//
18312
// If we lower both Select_FPRX_ in a single step, we can instead generate:
18313
//
18314
// A
18315
// | \
18316
// | C
18317
// | /|
18318
// |/ |
18319
// | |
18320
// | D
18321
// | /
18322
// E
18323
//
18324
// A: X = ...; Y = ...
18325
// D: empty
18326
// E: PHI [X, A], [X, C], [Y, D]
18327
18328
const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
18329
const DebugLoc &DL = First.getDebugLoc();
18330
const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock();
18331
MachineFunction *F = ThisMBB->getParent();
18332
MachineBasicBlock *FirstMBB = F->CreateMachineBasicBlock(LLVM_BB);
18333
MachineBasicBlock *SecondMBB = F->CreateMachineBasicBlock(LLVM_BB);
18334
MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
18335
MachineFunction::iterator It = ++ThisMBB->getIterator();
18336
F->insert(It, FirstMBB);
18337
F->insert(It, SecondMBB);
18338
F->insert(It, SinkMBB);
18339
18340
// Transfer the remainder of ThisMBB and its successor edges to SinkMBB.
18341
SinkMBB->splice(SinkMBB->begin(), ThisMBB,
18342
std::next(MachineBasicBlock::iterator(First)),
18343
ThisMBB->end());
18344
SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB);
18345
18346
// Fallthrough block for ThisMBB.
18347
ThisMBB->addSuccessor(FirstMBB);
18348
// Fallthrough block for FirstMBB.
18349
FirstMBB->addSuccessor(SecondMBB);
18350
ThisMBB->addSuccessor(SinkMBB);
18351
FirstMBB->addSuccessor(SinkMBB);
18352
// This is fallthrough.
18353
SecondMBB->addSuccessor(SinkMBB);
18354
18355
auto FirstCC = static_cast<RISCVCC::CondCode>(First.getOperand(3).getImm());
18356
Register FLHS = First.getOperand(1).getReg();
18357
Register FRHS = First.getOperand(2).getReg();
18358
// Insert appropriate branch.
18359
BuildMI(FirstMBB, DL, TII.getBrCond(FirstCC))
18360
.addReg(FLHS)
18361
.addReg(FRHS)
18362
.addMBB(SinkMBB);
18363
18364
Register SLHS = Second.getOperand(1).getReg();
18365
Register SRHS = Second.getOperand(2).getReg();
18366
Register Op1Reg4 = First.getOperand(4).getReg();
18367
Register Op1Reg5 = First.getOperand(5).getReg();
18368
18369
auto SecondCC = static_cast<RISCVCC::CondCode>(Second.getOperand(3).getImm());
18370
// Insert appropriate branch.
18371
BuildMI(ThisMBB, DL, TII.getBrCond(SecondCC))
18372
.addReg(SLHS)
18373
.addReg(SRHS)
18374
.addMBB(SinkMBB);
18375
18376
Register DestReg = Second.getOperand(0).getReg();
18377
Register Op2Reg4 = Second.getOperand(4).getReg();
18378
BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII.get(RISCV::PHI), DestReg)
18379
.addReg(Op2Reg4)
18380
.addMBB(ThisMBB)
18381
.addReg(Op1Reg4)
18382
.addMBB(FirstMBB)
18383
.addReg(Op1Reg5)
18384
.addMBB(SecondMBB);
18385
18386
// Now remove the Select_FPRX_s.
18387
First.eraseFromParent();
18388
Second.eraseFromParent();
18389
return SinkMBB;
18390
}
18391
18392
static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
18393
MachineBasicBlock *BB,
18394
const RISCVSubtarget &Subtarget) {
18395
// To "insert" Select_* instructions, we actually have to insert the triangle
18396
// control-flow pattern. The incoming instructions know the destination vreg
18397
// to set, the condition code register to branch on, the true/false values to
18398
// select between, and the condcode to use to select the appropriate branch.
18399
//
18400
// We produce the following control flow:
18401
// HeadMBB
18402
// | \
18403
// | IfFalseMBB
18404
// | /
18405
// TailMBB
18406
//
18407
// When we find a sequence of selects we attempt to optimize their emission
18408
// by sharing the control flow. Currently we only handle cases where we have
18409
// multiple selects with the exact same condition (same LHS, RHS and CC).
18410
// The selects may be interleaved with other instructions if the other
18411
// instructions meet some requirements we deem safe:
18412
// - They are not pseudo instructions.
18413
// - They are debug instructions. Otherwise,
18414
// - They do not have side-effects, do not access memory and their inputs do
18415
// not depend on the results of the select pseudo-instructions.
18416
// The TrueV/FalseV operands of the selects cannot depend on the result of
18417
// previous selects in the sequence.
18418
// These conditions could be further relaxed. See the X86 target for a
18419
// related approach and more information.
18420
//
18421
// Select_FPRX_ (rs1, rs2, imm, rs4, (Select_FPRX_ rs1, rs2, imm, rs4, rs5))
18422
// is checked here and handled by a separate function -
18423
// EmitLoweredCascadedSelect.
18424
18425
auto Next = next_nodbg(MI.getIterator(), BB->instr_end());
18426
if ((MI.getOpcode() != RISCV::Select_GPR_Using_CC_GPR &&
18427
MI.getOpcode() != RISCV::Select_GPR_Using_CC_Imm) &&
18428
Next != BB->end() && Next->getOpcode() == MI.getOpcode() &&
18429
Next->getOperand(5).getReg() == MI.getOperand(0).getReg() &&
18430
Next->getOperand(5).isKill())
18431
return EmitLoweredCascadedSelect(MI, *Next, BB, Subtarget);
18432
18433
Register LHS = MI.getOperand(1).getReg();
18434
Register RHS;
18435
if (MI.getOperand(2).isReg())
18436
RHS = MI.getOperand(2).getReg();
18437
auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
18438
18439
SmallVector<MachineInstr *, 4> SelectDebugValues;
18440
SmallSet<Register, 4> SelectDests;
18441
SelectDests.insert(MI.getOperand(0).getReg());
18442
18443
MachineInstr *LastSelectPseudo = &MI;
18444
for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
18445
SequenceMBBI != E; ++SequenceMBBI) {
18446
if (SequenceMBBI->isDebugInstr())
18447
continue;
18448
if (isSelectPseudo(*SequenceMBBI)) {
18449
if (SequenceMBBI->getOperand(1).getReg() != LHS ||
18450
!SequenceMBBI->getOperand(2).isReg() ||
18451
SequenceMBBI->getOperand(2).getReg() != RHS ||
18452
SequenceMBBI->getOperand(3).getImm() != CC ||
18453
SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
18454
SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
18455
break;
18456
LastSelectPseudo = &*SequenceMBBI;
18457
SequenceMBBI->collectDebugValues(SelectDebugValues);
18458
SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
18459
continue;
18460
}
18461
if (SequenceMBBI->hasUnmodeledSideEffects() ||
18462
SequenceMBBI->mayLoadOrStore() ||
18463
SequenceMBBI->usesCustomInsertionHook())
18464
break;
18465
if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
18466
return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
18467
}))
18468
break;
18469
}
18470
18471
const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
18472
const BasicBlock *LLVM_BB = BB->getBasicBlock();
18473
DebugLoc DL = MI.getDebugLoc();
18474
MachineFunction::iterator I = ++BB->getIterator();
18475
18476
MachineBasicBlock *HeadMBB = BB;
18477
MachineFunction *F = BB->getParent();
18478
MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
18479
MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
18480
18481
F->insert(I, IfFalseMBB);
18482
F->insert(I, TailMBB);
18483
18484
// Set the call frame size on entry to the new basic blocks.
18485
unsigned CallFrameSize = TII.getCallFrameSizeAt(*LastSelectPseudo);
18486
IfFalseMBB->setCallFrameSize(CallFrameSize);
18487
TailMBB->setCallFrameSize(CallFrameSize);
18488
18489
// Transfer debug instructions associated with the selects to TailMBB.
18490
for (MachineInstr *DebugInstr : SelectDebugValues) {
18491
TailMBB->push_back(DebugInstr->removeFromParent());
18492
}
18493
18494
// Move all instructions after the sequence to TailMBB.
18495
TailMBB->splice(TailMBB->end(), HeadMBB,
18496
std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
18497
// Update machine-CFG edges by transferring all successors of the current
18498
// block to the new block which will contain the Phi nodes for the selects.
18499
TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
18500
// Set the successors for HeadMBB.
18501
HeadMBB->addSuccessor(IfFalseMBB);
18502
HeadMBB->addSuccessor(TailMBB);
18503
18504
// Insert appropriate branch.
18505
if (MI.getOperand(2).isImm())
18506
BuildMI(HeadMBB, DL, TII.getBrCond(CC, MI.getOperand(2).isImm()))
18507
.addReg(LHS)
18508
.addImm(MI.getOperand(2).getImm())
18509
.addMBB(TailMBB);
18510
else
18511
BuildMI(HeadMBB, DL, TII.getBrCond(CC))
18512
.addReg(LHS)
18513
.addReg(RHS)
18514
.addMBB(TailMBB);
18515
18516
// IfFalseMBB just falls through to TailMBB.
18517
IfFalseMBB->addSuccessor(TailMBB);
18518
18519
// Create PHIs for all of the select pseudo-instructions.
18520
auto SelectMBBI = MI.getIterator();
18521
auto SelectEnd = std::next(LastSelectPseudo->getIterator());
18522
auto InsertionPoint = TailMBB->begin();
18523
while (SelectMBBI != SelectEnd) {
18524
auto Next = std::next(SelectMBBI);
18525
if (isSelectPseudo(*SelectMBBI)) {
18526
// %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
18527
BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
18528
TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
18529
.addReg(SelectMBBI->getOperand(4).getReg())
18530
.addMBB(HeadMBB)
18531
.addReg(SelectMBBI->getOperand(5).getReg())
18532
.addMBB(IfFalseMBB);
18533
SelectMBBI->eraseFromParent();
18534
}
18535
SelectMBBI = Next;
18536
}
18537
18538
F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
18539
return TailMBB;
18540
}
18541
18542
// Helper to find Masked Pseudo instruction from MC instruction, LMUL and SEW.
18543
static const RISCV::RISCVMaskedPseudoInfo *
18544
lookupMaskedIntrinsic(uint16_t MCOpcode, RISCVII::VLMUL LMul, unsigned SEW) {
18545
const RISCVVInversePseudosTable::PseudoInfo *Inverse =
18546
RISCVVInversePseudosTable::getBaseInfo(MCOpcode, LMul, SEW);
18547
assert(Inverse && "Unexpected LMUL and SEW pair for instruction");
18548
const RISCV::RISCVMaskedPseudoInfo *Masked =
18549
RISCV::lookupMaskedIntrinsicByUnmasked(Inverse->Pseudo);
18550
assert(Masked && "Could not find masked instruction for LMUL and SEW pair");
18551
return Masked;
18552
}
18553
18554
static MachineBasicBlock *emitVFROUND_NOEXCEPT_MASK(MachineInstr &MI,
18555
MachineBasicBlock *BB,
18556
unsigned CVTXOpc) {
18557
DebugLoc DL = MI.getDebugLoc();
18558
18559
const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
18560
18561
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
18562
Register SavedFFLAGS = MRI.createVirtualRegister(&RISCV::GPRRegClass);
18563
18564
// Save the old value of FFLAGS.
18565
BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFLAGS);
18566
18567
assert(MI.getNumOperands() == 7);
18568
18569
// Emit a VFCVT_X_F
18570
const TargetRegisterInfo *TRI =
18571
BB->getParent()->getSubtarget().getRegisterInfo();
18572
const TargetRegisterClass *RC = MI.getRegClassConstraint(0, &TII, TRI);
18573
Register Tmp = MRI.createVirtualRegister(RC);
18574
BuildMI(*BB, MI, DL, TII.get(CVTXOpc), Tmp)
18575
.add(MI.getOperand(1))
18576
.add(MI.getOperand(2))
18577
.add(MI.getOperand(3))
18578
.add(MachineOperand::CreateImm(7)) // frm = DYN
18579
.add(MI.getOperand(4))
18580
.add(MI.getOperand(5))
18581
.add(MI.getOperand(6))
18582
.add(MachineOperand::CreateReg(RISCV::FRM,
18583
/*IsDef*/ false,
18584
/*IsImp*/ true));
18585
18586
// Emit a VFCVT_F_X
18587
RISCVII::VLMUL LMul = RISCVII::getLMul(MI.getDesc().TSFlags);
18588
unsigned Log2SEW = MI.getOperand(RISCVII::getSEWOpNum(MI.getDesc())).getImm();
18589
// There is no E8 variant for VFCVT_F_X.
18590
assert(Log2SEW >= 4);
18591
unsigned CVTFOpc =
18592
lookupMaskedIntrinsic(RISCV::VFCVT_F_X_V, LMul, 1 << Log2SEW)
18593
->MaskedPseudo;
18594
18595
BuildMI(*BB, MI, DL, TII.get(CVTFOpc))
18596
.add(MI.getOperand(0))
18597
.add(MI.getOperand(1))
18598
.addReg(Tmp)
18599
.add(MI.getOperand(3))
18600
.add(MachineOperand::CreateImm(7)) // frm = DYN
18601
.add(MI.getOperand(4))
18602
.add(MI.getOperand(5))
18603
.add(MI.getOperand(6))
18604
.add(MachineOperand::CreateReg(RISCV::FRM,
18605
/*IsDef*/ false,
18606
/*IsImp*/ true));
18607
18608
// Restore FFLAGS.
18609
BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
18610
.addReg(SavedFFLAGS, RegState::Kill);
18611
18612
// Erase the pseudoinstruction.
18613
MI.eraseFromParent();
18614
return BB;
18615
}
18616
18617
static MachineBasicBlock *emitFROUND(MachineInstr &MI, MachineBasicBlock *MBB,
18618
const RISCVSubtarget &Subtarget) {
18619
unsigned CmpOpc, F2IOpc, I2FOpc, FSGNJOpc, FSGNJXOpc;
18620
const TargetRegisterClass *RC;
18621
switch (MI.getOpcode()) {
18622
default:
18623
llvm_unreachable("Unexpected opcode");
18624
case RISCV::PseudoFROUND_H:
18625
CmpOpc = RISCV::FLT_H;
18626
F2IOpc = RISCV::FCVT_W_H;
18627
I2FOpc = RISCV::FCVT_H_W;
18628
FSGNJOpc = RISCV::FSGNJ_H;
18629
FSGNJXOpc = RISCV::FSGNJX_H;
18630
RC = &RISCV::FPR16RegClass;
18631
break;
18632
case RISCV::PseudoFROUND_H_INX:
18633
CmpOpc = RISCV::FLT_H_INX;
18634
F2IOpc = RISCV::FCVT_W_H_INX;
18635
I2FOpc = RISCV::FCVT_H_W_INX;
18636
FSGNJOpc = RISCV::FSGNJ_H_INX;
18637
FSGNJXOpc = RISCV::FSGNJX_H_INX;
18638
RC = &RISCV::GPRF16RegClass;
18639
break;
18640
case RISCV::PseudoFROUND_S:
18641
CmpOpc = RISCV::FLT_S;
18642
F2IOpc = RISCV::FCVT_W_S;
18643
I2FOpc = RISCV::FCVT_S_W;
18644
FSGNJOpc = RISCV::FSGNJ_S;
18645
FSGNJXOpc = RISCV::FSGNJX_S;
18646
RC = &RISCV::FPR32RegClass;
18647
break;
18648
case RISCV::PseudoFROUND_S_INX:
18649
CmpOpc = RISCV::FLT_S_INX;
18650
F2IOpc = RISCV::FCVT_W_S_INX;
18651
I2FOpc = RISCV::FCVT_S_W_INX;
18652
FSGNJOpc = RISCV::FSGNJ_S_INX;
18653
FSGNJXOpc = RISCV::FSGNJX_S_INX;
18654
RC = &RISCV::GPRF32RegClass;
18655
break;
18656
case RISCV::PseudoFROUND_D:
18657
assert(Subtarget.is64Bit() && "Expected 64-bit GPR.");
18658
CmpOpc = RISCV::FLT_D;
18659
F2IOpc = RISCV::FCVT_L_D;
18660
I2FOpc = RISCV::FCVT_D_L;
18661
FSGNJOpc = RISCV::FSGNJ_D;
18662
FSGNJXOpc = RISCV::FSGNJX_D;
18663
RC = &RISCV::FPR64RegClass;
18664
break;
18665
case RISCV::PseudoFROUND_D_INX:
18666
assert(Subtarget.is64Bit() && "Expected 64-bit GPR.");
18667
CmpOpc = RISCV::FLT_D_INX;
18668
F2IOpc = RISCV::FCVT_L_D_INX;
18669
I2FOpc = RISCV::FCVT_D_L_INX;
18670
FSGNJOpc = RISCV::FSGNJ_D_INX;
18671
FSGNJXOpc = RISCV::FSGNJX_D_INX;
18672
RC = &RISCV::GPRRegClass;
18673
break;
18674
}
18675
18676
const BasicBlock *BB = MBB->getBasicBlock();
18677
DebugLoc DL = MI.getDebugLoc();
18678
MachineFunction::iterator I = ++MBB->getIterator();
18679
18680
MachineFunction *F = MBB->getParent();
18681
MachineBasicBlock *CvtMBB = F->CreateMachineBasicBlock(BB);
18682
MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(BB);
18683
18684
F->insert(I, CvtMBB);
18685
F->insert(I, DoneMBB);
18686
// Move all instructions after the sequence to DoneMBB.
18687
DoneMBB->splice(DoneMBB->end(), MBB, MachineBasicBlock::iterator(MI),
18688
MBB->end());
18689
// Update machine-CFG edges by transferring all successors of the current
18690
// block to the new block which will contain the Phi nodes for the selects.
18691
DoneMBB->transferSuccessorsAndUpdatePHIs(MBB);
18692
// Set the successors for MBB.
18693
MBB->addSuccessor(CvtMBB);
18694
MBB->addSuccessor(DoneMBB);
18695
18696
Register DstReg = MI.getOperand(0).getReg();
18697
Register SrcReg = MI.getOperand(1).getReg();
18698
Register MaxReg = MI.getOperand(2).getReg();
18699
int64_t FRM = MI.getOperand(3).getImm();
18700
18701
const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
18702
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
18703
18704
Register FabsReg = MRI.createVirtualRegister(RC);
18705
BuildMI(MBB, DL, TII.get(FSGNJXOpc), FabsReg).addReg(SrcReg).addReg(SrcReg);
18706
18707
// Compare the FP value to the max value.
18708
Register CmpReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
18709
auto MIB =
18710
BuildMI(MBB, DL, TII.get(CmpOpc), CmpReg).addReg(FabsReg).addReg(MaxReg);
18711
if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
18712
MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
18713
18714
// Insert branch.
18715
BuildMI(MBB, DL, TII.get(RISCV::BEQ))
18716
.addReg(CmpReg)
18717
.addReg(RISCV::X0)
18718
.addMBB(DoneMBB);
18719
18720
CvtMBB->addSuccessor(DoneMBB);
18721
18722
// Convert to integer.
18723
Register F2IReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
18724
MIB = BuildMI(CvtMBB, DL, TII.get(F2IOpc), F2IReg).addReg(SrcReg).addImm(FRM);
18725
if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
18726
MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
18727
18728
// Convert back to FP.
18729
Register I2FReg = MRI.createVirtualRegister(RC);
18730
MIB = BuildMI(CvtMBB, DL, TII.get(I2FOpc), I2FReg).addReg(F2IReg).addImm(FRM);
18731
if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
18732
MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
18733
18734
// Restore the sign bit.
18735
Register CvtReg = MRI.createVirtualRegister(RC);
18736
BuildMI(CvtMBB, DL, TII.get(FSGNJOpc), CvtReg).addReg(I2FReg).addReg(SrcReg);
18737
18738
// Merge the results.
18739
BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(RISCV::PHI), DstReg)
18740
.addReg(SrcReg)
18741
.addMBB(MBB)
18742
.addReg(CvtReg)
18743
.addMBB(CvtMBB);
18744
18745
MI.eraseFromParent();
18746
return DoneMBB;
18747
}
18748
18749
MachineBasicBlock *
18750
RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
18751
MachineBasicBlock *BB) const {
18752
switch (MI.getOpcode()) {
18753
default:
18754
llvm_unreachable("Unexpected instr type to insert");
18755
case RISCV::ReadCounterWide:
18756
assert(!Subtarget.is64Bit() &&
18757
"ReadCounterWide is only to be used on riscv32");
18758
return emitReadCounterWidePseudo(MI, BB);
18759
case RISCV::Select_GPR_Using_CC_GPR:
18760
case RISCV::Select_GPR_Using_CC_Imm:
18761
case RISCV::Select_FPR16_Using_CC_GPR:
18762
case RISCV::Select_FPR16INX_Using_CC_GPR:
18763
case RISCV::Select_FPR32_Using_CC_GPR:
18764
case RISCV::Select_FPR32INX_Using_CC_GPR:
18765
case RISCV::Select_FPR64_Using_CC_GPR:
18766
case RISCV::Select_FPR64INX_Using_CC_GPR:
18767
case RISCV::Select_FPR64IN32X_Using_CC_GPR:
18768
return emitSelectPseudo(MI, BB, Subtarget);
18769
case RISCV::BuildPairF64Pseudo:
18770
return emitBuildPairF64Pseudo(MI, BB, Subtarget);
18771
case RISCV::SplitF64Pseudo:
18772
return emitSplitF64Pseudo(MI, BB, Subtarget);
18773
case RISCV::PseudoQuietFLE_H:
18774
return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
18775
case RISCV::PseudoQuietFLE_H_INX:
18776
return emitQuietFCMP(MI, BB, RISCV::FLE_H_INX, RISCV::FEQ_H_INX, Subtarget);
18777
case RISCV::PseudoQuietFLT_H:
18778
return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
18779
case RISCV::PseudoQuietFLT_H_INX:
18780
return emitQuietFCMP(MI, BB, RISCV::FLT_H_INX, RISCV::FEQ_H_INX, Subtarget);
18781
case RISCV::PseudoQuietFLE_S:
18782
return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
18783
case RISCV::PseudoQuietFLE_S_INX:
18784
return emitQuietFCMP(MI, BB, RISCV::FLE_S_INX, RISCV::FEQ_S_INX, Subtarget);
18785
case RISCV::PseudoQuietFLT_S:
18786
return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
18787
case RISCV::PseudoQuietFLT_S_INX:
18788
return emitQuietFCMP(MI, BB, RISCV::FLT_S_INX, RISCV::FEQ_S_INX, Subtarget);
18789
case RISCV::PseudoQuietFLE_D:
18790
return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
18791
case RISCV::PseudoQuietFLE_D_INX:
18792
return emitQuietFCMP(MI, BB, RISCV::FLE_D_INX, RISCV::FEQ_D_INX, Subtarget);
18793
case RISCV::PseudoQuietFLE_D_IN32X:
18794
return emitQuietFCMP(MI, BB, RISCV::FLE_D_IN32X, RISCV::FEQ_D_IN32X,
18795
Subtarget);
18796
case RISCV::PseudoQuietFLT_D:
18797
return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
18798
case RISCV::PseudoQuietFLT_D_INX:
18799
return emitQuietFCMP(MI, BB, RISCV::FLT_D_INX, RISCV::FEQ_D_INX, Subtarget);
18800
case RISCV::PseudoQuietFLT_D_IN32X:
18801
return emitQuietFCMP(MI, BB, RISCV::FLT_D_IN32X, RISCV::FEQ_D_IN32X,
18802
Subtarget);
18803
18804
case RISCV::PseudoVFROUND_NOEXCEPT_V_M1_MASK:
18805
return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M1_MASK);
18806
case RISCV::PseudoVFROUND_NOEXCEPT_V_M2_MASK:
18807
return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M2_MASK);
18808
case RISCV::PseudoVFROUND_NOEXCEPT_V_M4_MASK:
18809
return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M4_MASK);
18810
case RISCV::PseudoVFROUND_NOEXCEPT_V_M8_MASK:
18811
return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_M8_MASK);
18812
case RISCV::PseudoVFROUND_NOEXCEPT_V_MF2_MASK:
18813
return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_MF2_MASK);
18814
case RISCV::PseudoVFROUND_NOEXCEPT_V_MF4_MASK:
18815
return emitVFROUND_NOEXCEPT_MASK(MI, BB, RISCV::PseudoVFCVT_X_F_V_MF4_MASK);
18816
case RISCV::PseudoFROUND_H:
18817
case RISCV::PseudoFROUND_H_INX:
18818
case RISCV::PseudoFROUND_S:
18819
case RISCV::PseudoFROUND_S_INX:
18820
case RISCV::PseudoFROUND_D:
18821
case RISCV::PseudoFROUND_D_INX:
18822
case RISCV::PseudoFROUND_D_IN32X:
18823
return emitFROUND(MI, BB, Subtarget);
18824
case TargetOpcode::STATEPOINT:
18825
// STATEPOINT is a pseudo instruction which has no implicit defs/uses
18826
// while jal call instruction (where statepoint will be lowered at the end)
18827
// has implicit def. This def is early-clobber as it will be set at
18828
// the moment of the call and earlier than any use is read.
18829
// Add this implicit dead def here as a workaround.
18830
MI.addOperand(*MI.getMF(),
18831
MachineOperand::CreateReg(
18832
RISCV::X1, /*isDef*/ true,
18833
/*isImp*/ true, /*isKill*/ false, /*isDead*/ true,
18834
/*isUndef*/ false, /*isEarlyClobber*/ true));
18835
[[fallthrough]];
18836
case TargetOpcode::STACKMAP:
18837
case TargetOpcode::PATCHPOINT:
18838
if (!Subtarget.is64Bit())
18839
report_fatal_error("STACKMAP, PATCHPOINT and STATEPOINT are only "
18840
"supported on 64-bit targets");
18841
return emitPatchPoint(MI, BB);
18842
}
18843
}
18844
18845
void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
18846
SDNode *Node) const {
18847
// Add FRM dependency to any instructions with dynamic rounding mode.
18848
int Idx = RISCV::getNamedOperandIdx(MI.getOpcode(), RISCV::OpName::frm);
18849
if (Idx < 0) {
18850
// Vector pseudos have FRM index indicated by TSFlags.
18851
Idx = RISCVII::getFRMOpNum(MI.getDesc());
18852
if (Idx < 0)
18853
return;
18854
}
18855
if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
18856
return;
18857
// If the instruction already reads FRM, don't add another read.
18858
if (MI.readsRegister(RISCV::FRM, /*TRI=*/nullptr))
18859
return;
18860
MI.addOperand(
18861
MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
18862
}
18863
18864
// Calling Convention Implementation.
18865
// The expectations for frontend ABI lowering vary from target to target.
18866
// Ideally, an LLVM frontend would be able to avoid worrying about many ABI
18867
// details, but this is a longer term goal. For now, we simply try to keep the
18868
// role of the frontend as simple and well-defined as possible. The rules can
18869
// be summarised as:
18870
// * Never split up large scalar arguments. We handle them here.
18871
// * If a hardfloat calling convention is being used, and the struct may be
18872
// passed in a pair of registers (fp+fp, int+fp), and both registers are
18873
// available, then pass as two separate arguments. If either the GPRs or FPRs
18874
// are exhausted, then pass according to the rule below.
18875
// * If a struct could never be passed in registers or directly in a stack
18876
// slot (as it is larger than 2*XLEN and the floating point rules don't
18877
// apply), then pass it using a pointer with the byval attribute.
18878
// * If a struct is less than 2*XLEN, then coerce to either a two-element
18879
// word-sized array or a 2*XLEN scalar (depending on alignment).
18880
// * The frontend can determine whether a struct is returned by reference or
18881
// not based on its size and fields. If it will be returned by reference, the
18882
// frontend must modify the prototype so a pointer with the sret annotation is
18883
// passed as the first argument. This is not necessary for large scalar
18884
// returns.
18885
// * Struct return values and varargs should be coerced to structs containing
18886
// register-size fields in the same situations they would be for fixed
18887
// arguments.
18888
18889
static const MCPhysReg ArgFPR16s[] = {
18890
RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
18891
RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
18892
};
18893
static const MCPhysReg ArgFPR32s[] = {
18894
RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
18895
RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
18896
};
18897
static const MCPhysReg ArgFPR64s[] = {
18898
RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
18899
RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
18900
};
18901
// This is an interim calling convention and it may be changed in the future.
18902
static const MCPhysReg ArgVRs[] = {
18903
RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
18904
RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
18905
RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
18906
static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2,
18907
RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
18908
RISCV::V20M2, RISCV::V22M2};
18909
static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
18910
RISCV::V20M4};
18911
static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
18912
18913
ArrayRef<MCPhysReg> RISCV::getArgGPRs(const RISCVABI::ABI ABI) {
18914
// The GPRs used for passing arguments in the ILP32* and LP64* ABIs, except
18915
// the ILP32E ABI.
18916
static const MCPhysReg ArgIGPRs[] = {RISCV::X10, RISCV::X11, RISCV::X12,
18917
RISCV::X13, RISCV::X14, RISCV::X15,
18918
RISCV::X16, RISCV::X17};
18919
// The GPRs used for passing arguments in the ILP32E/ILP64E ABI.
18920
static const MCPhysReg ArgEGPRs[] = {RISCV::X10, RISCV::X11, RISCV::X12,
18921
RISCV::X13, RISCV::X14, RISCV::X15};
18922
18923
if (ABI == RISCVABI::ABI_ILP32E || ABI == RISCVABI::ABI_LP64E)
18924
return ArrayRef(ArgEGPRs);
18925
18926
return ArrayRef(ArgIGPRs);
18927
}
18928
18929
static ArrayRef<MCPhysReg> getFastCCArgGPRs(const RISCVABI::ABI ABI) {
18930
// The GPRs used for passing arguments in the FastCC, X5 and X6 might be used
18931
// for save-restore libcall, so we don't use them.
18932
// Don't use X7 for fastcc, since Zicfilp uses X7 as the label register.
18933
static const MCPhysReg FastCCIGPRs[] = {
18934
RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, RISCV::X15,
18935
RISCV::X16, RISCV::X17, RISCV::X28, RISCV::X29, RISCV::X30, RISCV::X31};
18936
18937
// The GPRs used for passing arguments in the FastCC when using ILP32E/ILP64E.
18938
static const MCPhysReg FastCCEGPRs[] = {RISCV::X10, RISCV::X11, RISCV::X12,
18939
RISCV::X13, RISCV::X14, RISCV::X15};
18940
18941
if (ABI == RISCVABI::ABI_ILP32E || ABI == RISCVABI::ABI_LP64E)
18942
return ArrayRef(FastCCEGPRs);
18943
18944
return ArrayRef(FastCCIGPRs);
18945
}
18946
18947
// Pass a 2*XLEN argument that has been split into two XLEN values through
18948
// registers or the stack as necessary.
18949
static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
18950
ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
18951
MVT ValVT2, MVT LocVT2,
18952
ISD::ArgFlagsTy ArgFlags2, bool EABI) {
18953
unsigned XLenInBytes = XLen / 8;
18954
const RISCVSubtarget &STI =
18955
State.getMachineFunction().getSubtarget<RISCVSubtarget>();
18956
ArrayRef<MCPhysReg> ArgGPRs = RISCV::getArgGPRs(STI.getTargetABI());
18957
18958
if (Register Reg = State.AllocateReg(ArgGPRs)) {
18959
// At least one half can be passed via register.
18960
State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
18961
VA1.getLocVT(), CCValAssign::Full));
18962
} else {
18963
// Both halves must be passed on the stack, with proper alignment.
18964
// TODO: To be compatible with GCC's behaviors, we force them to have 4-byte
18965
// alignment. This behavior may be changed when RV32E/ILP32E is ratified.
18966
Align StackAlign(XLenInBytes);
18967
if (!EABI || XLen != 32)
18968
StackAlign = std::max(StackAlign, ArgFlags1.getNonZeroOrigAlign());
18969
State.addLoc(
18970
CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
18971
State.AllocateStack(XLenInBytes, StackAlign),
18972
VA1.getLocVT(), CCValAssign::Full));
18973
State.addLoc(CCValAssign::getMem(
18974
ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
18975
LocVT2, CCValAssign::Full));
18976
return false;
18977
}
18978
18979
if (Register Reg = State.AllocateReg(ArgGPRs)) {
18980
// The second half can also be passed via register.
18981
State.addLoc(
18982
CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
18983
} else {
18984
// The second half is passed via the stack, without additional alignment.
18985
State.addLoc(CCValAssign::getMem(
18986
ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
18987
LocVT2, CCValAssign::Full));
18988
}
18989
18990
return false;
18991
}
18992
18993
// Implements the RISC-V calling convention. Returns true upon failure.
18994
bool RISCV::CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
18995
MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
18996
ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
18997
bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
18998
RVVArgDispatcher &RVVDispatcher) {
18999
unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
19000
assert(XLen == 32 || XLen == 64);
19001
MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
19002
19003
// Static chain parameter must not be passed in normal argument registers,
19004
// so we assign t2 for it as done in GCC's __builtin_call_with_static_chain
19005
if (ArgFlags.isNest()) {
19006
if (unsigned Reg = State.AllocateReg(RISCV::X7)) {
19007
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
19008
return false;
19009
}
19010
}
19011
19012
// Any return value split in to more than two values can't be returned
19013
// directly. Vectors are returned via the available vector registers.
19014
if (!LocVT.isVector() && IsRet && ValNo > 1)
19015
return true;
19016
19017
// UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
19018
// variadic argument, or if no F16/F32 argument registers are available.
19019
bool UseGPRForF16_F32 = true;
19020
// UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
19021
// variadic argument, or if no F64 argument registers are available.
19022
bool UseGPRForF64 = true;
19023
19024
switch (ABI) {
19025
default:
19026
llvm_unreachable("Unexpected ABI");
19027
case RISCVABI::ABI_ILP32:
19028
case RISCVABI::ABI_ILP32E:
19029
case RISCVABI::ABI_LP64:
19030
case RISCVABI::ABI_LP64E:
19031
break;
19032
case RISCVABI::ABI_ILP32F:
19033
case RISCVABI::ABI_LP64F:
19034
UseGPRForF16_F32 = !IsFixed;
19035
break;
19036
case RISCVABI::ABI_ILP32D:
19037
case RISCVABI::ABI_LP64D:
19038
UseGPRForF16_F32 = !IsFixed;
19039
UseGPRForF64 = !IsFixed;
19040
break;
19041
}
19042
19043
// FPR16, FPR32, and FPR64 alias each other.
19044
if (State.getFirstUnallocated(ArgFPR32s) == std::size(ArgFPR32s)) {
19045
UseGPRForF16_F32 = true;
19046
UseGPRForF64 = true;
19047
}
19048
19049
// From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
19050
// similar local variables rather than directly checking against the target
19051
// ABI.
19052
19053
if (UseGPRForF16_F32 &&
19054
(ValVT == MVT::f16 || ValVT == MVT::bf16 || ValVT == MVT::f32)) {
19055
LocVT = XLenVT;
19056
LocInfo = CCValAssign::BCvt;
19057
} else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
19058
LocVT = MVT::i64;
19059
LocInfo = CCValAssign::BCvt;
19060
}
19061
19062
ArrayRef<MCPhysReg> ArgGPRs = RISCV::getArgGPRs(ABI);
19063
19064
// If this is a variadic argument, the RISC-V calling convention requires
19065
// that it is assigned an 'even' or 'aligned' register if it has 8-byte
19066
// alignment (RV32) or 16-byte alignment (RV64). An aligned register should
19067
// be used regardless of whether the original argument was split during
19068
// legalisation or not. The argument will not be passed by registers if the
19069
// original type is larger than 2*XLEN, so the register alignment rule does
19070
// not apply.
19071
// TODO: To be compatible with GCC's behaviors, we don't align registers
19072
// currently if we are using ILP32E calling convention. This behavior may be
19073
// changed when RV32E/ILP32E is ratified.
19074
unsigned TwoXLenInBytes = (2 * XLen) / 8;
19075
if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
19076
DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes &&
19077
ABI != RISCVABI::ABI_ILP32E) {
19078
unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
19079
// Skip 'odd' register if necessary.
19080
if (RegIdx != std::size(ArgGPRs) && RegIdx % 2 == 1)
19081
State.AllocateReg(ArgGPRs);
19082
}
19083
19084
SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
19085
SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
19086
State.getPendingArgFlags();
19087
19088
assert(PendingLocs.size() == PendingArgFlags.size() &&
19089
"PendingLocs and PendingArgFlags out of sync");
19090
19091
// Handle passing f64 on RV32D with a soft float ABI or when floating point
19092
// registers are exhausted.
19093
if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
19094
assert(PendingLocs.empty() && "Can't lower f64 if it is split");
19095
// Depending on available argument GPRS, f64 may be passed in a pair of
19096
// GPRs, split between a GPR and the stack, or passed completely on the
19097
// stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
19098
// cases.
19099
Register Reg = State.AllocateReg(ArgGPRs);
19100
if (!Reg) {
19101
unsigned StackOffset = State.AllocateStack(8, Align(8));
19102
State.addLoc(
19103
CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
19104
return false;
19105
}
19106
LocVT = MVT::i32;
19107
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
19108
Register HiReg = State.AllocateReg(ArgGPRs);
19109
if (HiReg) {
19110
State.addLoc(
19111
CCValAssign::getCustomReg(ValNo, ValVT, HiReg, LocVT, LocInfo));
19112
} else {
19113
unsigned StackOffset = State.AllocateStack(4, Align(4));
19114
State.addLoc(
19115
CCValAssign::getCustomMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
19116
}
19117
return false;
19118
}
19119
19120
// Fixed-length vectors are located in the corresponding scalable-vector
19121
// container types.
19122
if (ValVT.isFixedLengthVector())
19123
LocVT = TLI.getContainerForFixedLengthVector(LocVT);
19124
19125
// Split arguments might be passed indirectly, so keep track of the pending
19126
// values. Split vectors are passed via a mix of registers and indirectly, so
19127
// treat them as we would any other argument.
19128
if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
19129
LocVT = XLenVT;
19130
LocInfo = CCValAssign::Indirect;
19131
PendingLocs.push_back(
19132
CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
19133
PendingArgFlags.push_back(ArgFlags);
19134
if (!ArgFlags.isSplitEnd()) {
19135
return false;
19136
}
19137
}
19138
19139
// If the split argument only had two elements, it should be passed directly
19140
// in registers or on the stack.
19141
if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
19142
PendingLocs.size() <= 2) {
19143
assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
19144
// Apply the normal calling convention rules to the first half of the
19145
// split argument.
19146
CCValAssign VA = PendingLocs[0];
19147
ISD::ArgFlagsTy AF = PendingArgFlags[0];
19148
PendingLocs.clear();
19149
PendingArgFlags.clear();
19150
return CC_RISCVAssign2XLen(
19151
XLen, State, VA, AF, ValNo, ValVT, LocVT, ArgFlags,
19152
ABI == RISCVABI::ABI_ILP32E || ABI == RISCVABI::ABI_LP64E);
19153
}
19154
19155
// Allocate to a register if possible, or else a stack slot.
19156
Register Reg;
19157
unsigned StoreSizeBytes = XLen / 8;
19158
Align StackAlign = Align(XLen / 8);
19159
19160
if ((ValVT == MVT::f16 || ValVT == MVT::bf16) && !UseGPRForF16_F32)
19161
Reg = State.AllocateReg(ArgFPR16s);
19162
else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
19163
Reg = State.AllocateReg(ArgFPR32s);
19164
else if (ValVT == MVT::f64 && !UseGPRForF64)
19165
Reg = State.AllocateReg(ArgFPR64s);
19166
else if (ValVT.isVector()) {
19167
Reg = RVVDispatcher.getNextPhysReg();
19168
if (!Reg) {
19169
// For return values, the vector must be passed fully via registers or
19170
// via the stack.
19171
// FIXME: The proposed vector ABI only mandates v8-v15 for return values,
19172
// but we're using all of them.
19173
if (IsRet)
19174
return true;
19175
// Try using a GPR to pass the address
19176
if ((Reg = State.AllocateReg(ArgGPRs))) {
19177
LocVT = XLenVT;
19178
LocInfo = CCValAssign::Indirect;
19179
} else if (ValVT.isScalableVector()) {
19180
LocVT = XLenVT;
19181
LocInfo = CCValAssign::Indirect;
19182
} else {
19183
// Pass fixed-length vectors on the stack.
19184
LocVT = ValVT;
19185
StoreSizeBytes = ValVT.getStoreSize();
19186
// Align vectors to their element sizes, being careful for vXi1
19187
// vectors.
19188
StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
19189
}
19190
}
19191
} else {
19192
Reg = State.AllocateReg(ArgGPRs);
19193
}
19194
19195
unsigned StackOffset =
19196
Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
19197
19198
// If we reach this point and PendingLocs is non-empty, we must be at the
19199
// end of a split argument that must be passed indirectly.
19200
if (!PendingLocs.empty()) {
19201
assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
19202
assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
19203
19204
for (auto &It : PendingLocs) {
19205
if (Reg)
19206
It.convertToReg(Reg);
19207
else
19208
It.convertToMem(StackOffset);
19209
State.addLoc(It);
19210
}
19211
PendingLocs.clear();
19212
PendingArgFlags.clear();
19213
return false;
19214
}
19215
19216
assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
19217
(TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
19218
"Expected an XLenVT or vector types at this stage");
19219
19220
if (Reg) {
19221
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
19222
return false;
19223
}
19224
19225
// When a scalar floating-point value is passed on the stack, no
19226
// bit-conversion is needed.
19227
if (ValVT.isFloatingPoint() && LocInfo != CCValAssign::Indirect) {
19228
assert(!ValVT.isVector());
19229
LocVT = ValVT;
19230
LocInfo = CCValAssign::Full;
19231
}
19232
State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
19233
return false;
19234
}
19235
19236
template <typename ArgTy>
19237
static std::optional<unsigned> preAssignMask(const ArgTy &Args) {
19238
for (const auto &ArgIdx : enumerate(Args)) {
19239
MVT ArgVT = ArgIdx.value().VT;
19240
if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
19241
return ArgIdx.index();
19242
}
19243
return std::nullopt;
19244
}
19245
19246
void RISCVTargetLowering::analyzeInputArgs(
19247
MachineFunction &MF, CCState &CCInfo,
19248
const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
19249
RISCVCCAssignFn Fn) const {
19250
unsigned NumArgs = Ins.size();
19251
FunctionType *FType = MF.getFunction().getFunctionType();
19252
19253
RVVArgDispatcher Dispatcher;
19254
if (IsRet) {
19255
Dispatcher = RVVArgDispatcher{&MF, this, ArrayRef(Ins)};
19256
} else {
19257
SmallVector<Type *, 4> TypeList;
19258
for (const Argument &Arg : MF.getFunction().args())
19259
TypeList.push_back(Arg.getType());
19260
Dispatcher = RVVArgDispatcher{&MF, this, ArrayRef(TypeList)};
19261
}
19262
19263
for (unsigned i = 0; i != NumArgs; ++i) {
19264
MVT ArgVT = Ins[i].VT;
19265
ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
19266
19267
Type *ArgTy = nullptr;
19268
if (IsRet)
19269
ArgTy = FType->getReturnType();
19270
else if (Ins[i].isOrigArg())
19271
ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
19272
19273
RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
19274
if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
19275
ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
19276
Dispatcher)) {
19277
LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
19278
<< ArgVT << '\n');
19279
llvm_unreachable(nullptr);
19280
}
19281
}
19282
}
19283
19284
void RISCVTargetLowering::analyzeOutputArgs(
19285
MachineFunction &MF, CCState &CCInfo,
19286
const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
19287
CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
19288
unsigned NumArgs = Outs.size();
19289
19290
SmallVector<Type *, 4> TypeList;
19291
if (IsRet)
19292
TypeList.push_back(MF.getFunction().getReturnType());
19293
else if (CLI)
19294
for (const TargetLowering::ArgListEntry &Arg : CLI->getArgs())
19295
TypeList.push_back(Arg.Ty);
19296
RVVArgDispatcher Dispatcher{&MF, this, ArrayRef(TypeList)};
19297
19298
for (unsigned i = 0; i != NumArgs; i++) {
19299
MVT ArgVT = Outs[i].VT;
19300
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
19301
Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
19302
19303
RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
19304
if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
19305
ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
19306
Dispatcher)) {
19307
LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
19308
<< ArgVT << "\n");
19309
llvm_unreachable(nullptr);
19310
}
19311
}
19312
}
19313
19314
// Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
19315
// values.
19316
static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
19317
const CCValAssign &VA, const SDLoc &DL,
19318
const RISCVSubtarget &Subtarget) {
19319
switch (VA.getLocInfo()) {
19320
default:
19321
llvm_unreachable("Unexpected CCValAssign::LocInfo");
19322
case CCValAssign::Full:
19323
if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
19324
Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
19325
break;
19326
case CCValAssign::BCvt:
19327
if (VA.getLocVT().isInteger() &&
19328
(VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16)) {
19329
Val = DAG.getNode(RISCVISD::FMV_H_X, DL, VA.getValVT(), Val);
19330
} else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) {
19331
if (RV64LegalI32) {
19332
Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Val);
19333
Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
19334
} else {
19335
Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
19336
}
19337
} else {
19338
Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
19339
}
19340
break;
19341
}
19342
return Val;
19343
}
19344
19345
// The caller is responsible for loading the full value if the argument is
19346
// passed with CCValAssign::Indirect.
19347
static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
19348
const CCValAssign &VA, const SDLoc &DL,
19349
const ISD::InputArg &In,
19350
const RISCVTargetLowering &TLI) {
19351
MachineFunction &MF = DAG.getMachineFunction();
19352
MachineRegisterInfo &RegInfo = MF.getRegInfo();
19353
EVT LocVT = VA.getLocVT();
19354
SDValue Val;
19355
const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
19356
Register VReg = RegInfo.createVirtualRegister(RC);
19357
RegInfo.addLiveIn(VA.getLocReg(), VReg);
19358
Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
19359
19360
// If input is sign extended from 32 bits, note it for the SExtWRemoval pass.
19361
if (In.isOrigArg()) {
19362
Argument *OrigArg = MF.getFunction().getArg(In.getOrigArgIndex());
19363
if (OrigArg->getType()->isIntegerTy()) {
19364
unsigned BitWidth = OrigArg->getType()->getIntegerBitWidth();
19365
// An input zero extended from i31 can also be considered sign extended.
19366
if ((BitWidth <= 32 && In.Flags.isSExt()) ||
19367
(BitWidth < 32 && In.Flags.isZExt())) {
19368
RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
19369
RVFI->addSExt32Register(VReg);
19370
}
19371
}
19372
}
19373
19374
if (VA.getLocInfo() == CCValAssign::Indirect)
19375
return Val;
19376
19377
return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
19378
}
19379
19380
static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
19381
const CCValAssign &VA, const SDLoc &DL,
19382
const RISCVSubtarget &Subtarget) {
19383
EVT LocVT = VA.getLocVT();
19384
19385
switch (VA.getLocInfo()) {
19386
default:
19387
llvm_unreachable("Unexpected CCValAssign::LocInfo");
19388
case CCValAssign::Full:
19389
if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
19390
Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
19391
break;
19392
case CCValAssign::BCvt:
19393
if (LocVT.isInteger() &&
19394
(VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16)) {
19395
Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, LocVT, Val);
19396
} else if (LocVT == MVT::i64 && VA.getValVT() == MVT::f32) {
19397
if (RV64LegalI32) {
19398
Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
19399
Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Val);
19400
} else {
19401
Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
19402
}
19403
} else {
19404
Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
19405
}
19406
break;
19407
}
19408
return Val;
19409
}
19410
19411
// The caller is responsible for loading the full value if the argument is
19412
// passed with CCValAssign::Indirect.
19413
static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
19414
const CCValAssign &VA, const SDLoc &DL) {
19415
MachineFunction &MF = DAG.getMachineFunction();
19416
MachineFrameInfo &MFI = MF.getFrameInfo();
19417
EVT LocVT = VA.getLocVT();
19418
EVT ValVT = VA.getValVT();
19419
EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
19420
if (ValVT.isScalableVector()) {
19421
// When the value is a scalable vector, we save the pointer which points to
19422
// the scalable vector value in the stack. The ValVT will be the pointer
19423
// type, instead of the scalable vector type.
19424
ValVT = LocVT;
19425
}
19426
int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
19427
/*IsImmutable=*/true);
19428
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
19429
SDValue Val;
19430
19431
ISD::LoadExtType ExtType;
19432
switch (VA.getLocInfo()) {
19433
default:
19434
llvm_unreachable("Unexpected CCValAssign::LocInfo");
19435
case CCValAssign::Full:
19436
case CCValAssign::Indirect:
19437
case CCValAssign::BCvt:
19438
ExtType = ISD::NON_EXTLOAD;
19439
break;
19440
}
19441
Val = DAG.getExtLoad(
19442
ExtType, DL, LocVT, Chain, FIN,
19443
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
19444
return Val;
19445
}
19446
19447
static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
19448
const CCValAssign &VA,
19449
const CCValAssign &HiVA,
19450
const SDLoc &DL) {
19451
assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
19452
"Unexpected VA");
19453
MachineFunction &MF = DAG.getMachineFunction();
19454
MachineFrameInfo &MFI = MF.getFrameInfo();
19455
MachineRegisterInfo &RegInfo = MF.getRegInfo();
19456
19457
assert(VA.isRegLoc() && "Expected register VA assignment");
19458
19459
Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
19460
RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
19461
SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
19462
SDValue Hi;
19463
if (HiVA.isMemLoc()) {
19464
// Second half of f64 is passed on the stack.
19465
int FI = MFI.CreateFixedObject(4, HiVA.getLocMemOffset(),
19466
/*IsImmutable=*/true);
19467
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
19468
Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
19469
MachinePointerInfo::getFixedStack(MF, FI));
19470
} else {
19471
// Second half of f64 is passed in another GPR.
19472
Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
19473
RegInfo.addLiveIn(HiVA.getLocReg(), HiVReg);
19474
Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
19475
}
19476
return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
19477
}
19478
19479
// FastCC has less than 1% performance improvement for some particular
19480
// benchmark. But theoretically, it may has benenfit for some cases.
19481
bool RISCV::CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
19482
unsigned ValNo, MVT ValVT, MVT LocVT,
19483
CCValAssign::LocInfo LocInfo,
19484
ISD::ArgFlagsTy ArgFlags, CCState &State,
19485
bool IsFixed, bool IsRet, Type *OrigTy,
19486
const RISCVTargetLowering &TLI,
19487
RVVArgDispatcher &RVVDispatcher) {
19488
if (LocVT == MVT::i32 || LocVT == MVT::i64) {
19489
if (unsigned Reg = State.AllocateReg(getFastCCArgGPRs(ABI))) {
19490
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
19491
return false;
19492
}
19493
}
19494
19495
const RISCVSubtarget &Subtarget = TLI.getSubtarget();
19496
19497
if (LocVT == MVT::f16 &&
19498
(Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZfhmin())) {
19499
static const MCPhysReg FPR16List[] = {
19500
RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
19501
RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H,
19502
RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H,
19503
RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
19504
if (unsigned Reg = State.AllocateReg(FPR16List)) {
19505
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
19506
return false;
19507
}
19508
}
19509
19510
if (LocVT == MVT::f32 && Subtarget.hasStdExtF()) {
19511
static const MCPhysReg FPR32List[] = {
19512
RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
19513
RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F,
19514
RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F,
19515
RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
19516
if (unsigned Reg = State.AllocateReg(FPR32List)) {
19517
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
19518
return false;
19519
}
19520
}
19521
19522
if (LocVT == MVT::f64 && Subtarget.hasStdExtD()) {
19523
static const MCPhysReg FPR64List[] = {
19524
RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
19525
RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D,
19526
RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D,
19527
RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
19528
if (unsigned Reg = State.AllocateReg(FPR64List)) {
19529
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
19530
return false;
19531
}
19532
}
19533
19534
// Check if there is an available GPR before hitting the stack.
19535
if ((LocVT == MVT::f16 &&
19536
(Subtarget.hasStdExtZhinx() || Subtarget.hasStdExtZhinxmin())) ||
19537
(LocVT == MVT::f32 && Subtarget.hasStdExtZfinx()) ||
19538
(LocVT == MVT::f64 && Subtarget.is64Bit() &&
19539
Subtarget.hasStdExtZdinx())) {
19540
if (unsigned Reg = State.AllocateReg(getFastCCArgGPRs(ABI))) {
19541
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
19542
return false;
19543
}
19544
}
19545
19546
if (LocVT == MVT::f16) {
19547
unsigned Offset2 = State.AllocateStack(2, Align(2));
19548
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset2, LocVT, LocInfo));
19549
return false;
19550
}
19551
19552
if (LocVT == MVT::i32 || LocVT == MVT::f32) {
19553
unsigned Offset4 = State.AllocateStack(4, Align(4));
19554
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
19555
return false;
19556
}
19557
19558
if (LocVT == MVT::i64 || LocVT == MVT::f64) {
19559
unsigned Offset5 = State.AllocateStack(8, Align(8));
19560
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
19561
return false;
19562
}
19563
19564
if (LocVT.isVector()) {
19565
MCPhysReg AllocatedVReg = RVVDispatcher.getNextPhysReg();
19566
if (AllocatedVReg) {
19567
// Fixed-length vectors are located in the corresponding scalable-vector
19568
// container types.
19569
if (ValVT.isFixedLengthVector())
19570
LocVT = TLI.getContainerForFixedLengthVector(LocVT);
19571
State.addLoc(
19572
CCValAssign::getReg(ValNo, ValVT, AllocatedVReg, LocVT, LocInfo));
19573
} else {
19574
// Try and pass the address via a "fast" GPR.
19575
if (unsigned GPRReg = State.AllocateReg(getFastCCArgGPRs(ABI))) {
19576
LocInfo = CCValAssign::Indirect;
19577
LocVT = TLI.getSubtarget().getXLenVT();
19578
State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
19579
} else if (ValVT.isFixedLengthVector()) {
19580
auto StackAlign =
19581
MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
19582
unsigned StackOffset =
19583
State.AllocateStack(ValVT.getStoreSize(), StackAlign);
19584
State.addLoc(
19585
CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
19586
} else {
19587
// Can't pass scalable vectors on the stack.
19588
return true;
19589
}
19590
}
19591
19592
return false;
19593
}
19594
19595
return true; // CC didn't match.
19596
}
19597
19598
bool RISCV::CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
19599
CCValAssign::LocInfo LocInfo,
19600
ISD::ArgFlagsTy ArgFlags, CCState &State) {
19601
if (ArgFlags.isNest()) {
19602
report_fatal_error(
19603
"Attribute 'nest' is not supported in GHC calling convention");
19604
}
19605
19606
static const MCPhysReg GPRList[] = {
19607
RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
19608
RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
19609
19610
if (LocVT == MVT::i32 || LocVT == MVT::i64) {
19611
// Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
19612
// s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11
19613
if (unsigned Reg = State.AllocateReg(GPRList)) {
19614
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
19615
return false;
19616
}
19617
}
19618
19619
const RISCVSubtarget &Subtarget =
19620
State.getMachineFunction().getSubtarget<RISCVSubtarget>();
19621
19622
if (LocVT == MVT::f32 && Subtarget.hasStdExtF()) {
19623
// Pass in STG registers: F1, ..., F6
19624
// fs0 ... fs5
19625
static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
19626
RISCV::F18_F, RISCV::F19_F,
19627
RISCV::F20_F, RISCV::F21_F};
19628
if (unsigned Reg = State.AllocateReg(FPR32List)) {
19629
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
19630
return false;
19631
}
19632
}
19633
19634
if (LocVT == MVT::f64 && Subtarget.hasStdExtD()) {
19635
// Pass in STG registers: D1, ..., D6
19636
// fs6 ... fs11
19637
static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
19638
RISCV::F24_D, RISCV::F25_D,
19639
RISCV::F26_D, RISCV::F27_D};
19640
if (unsigned Reg = State.AllocateReg(FPR64List)) {
19641
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
19642
return false;
19643
}
19644
}
19645
19646
if ((LocVT == MVT::f32 && Subtarget.hasStdExtZfinx()) ||
19647
(LocVT == MVT::f64 && Subtarget.hasStdExtZdinx() &&
19648
Subtarget.is64Bit())) {
19649
if (unsigned Reg = State.AllocateReg(GPRList)) {
19650
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
19651
return false;
19652
}
19653
}
19654
19655
report_fatal_error("No registers left in GHC calling convention");
19656
return true;
19657
}
19658
19659
// Transform physical registers into virtual registers.
19660
SDValue RISCVTargetLowering::LowerFormalArguments(
19661
SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
19662
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
19663
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
19664
19665
MachineFunction &MF = DAG.getMachineFunction();
19666
19667
switch (CallConv) {
19668
default:
19669
report_fatal_error("Unsupported calling convention");
19670
case CallingConv::C:
19671
case CallingConv::Fast:
19672
case CallingConv::SPIR_KERNEL:
19673
case CallingConv::GRAAL:
19674
case CallingConv::RISCV_VectorCall:
19675
break;
19676
case CallingConv::GHC:
19677
if (Subtarget.hasStdExtE())
19678
report_fatal_error("GHC calling convention is not supported on RVE!");
19679
if (!Subtarget.hasStdExtFOrZfinx() || !Subtarget.hasStdExtDOrZdinx())
19680
report_fatal_error("GHC calling convention requires the (Zfinx/F) and "
19681
"(Zdinx/D) instruction set extensions");
19682
}
19683
19684
const Function &Func = MF.getFunction();
19685
if (Func.hasFnAttribute("interrupt")) {
19686
if (!Func.arg_empty())
19687
report_fatal_error(
19688
"Functions with the interrupt attribute cannot have arguments!");
19689
19690
StringRef Kind =
19691
MF.getFunction().getFnAttribute("interrupt").getValueAsString();
19692
19693
if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
19694
report_fatal_error(
19695
"Function interrupt attribute argument not supported!");
19696
}
19697
19698
EVT PtrVT = getPointerTy(DAG.getDataLayout());
19699
MVT XLenVT = Subtarget.getXLenVT();
19700
unsigned XLenInBytes = Subtarget.getXLen() / 8;
19701
// Used with vargs to acumulate store chains.
19702
std::vector<SDValue> OutChains;
19703
19704
// Assign locations to all of the incoming arguments.
19705
SmallVector<CCValAssign, 16> ArgLocs;
19706
CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
19707
19708
if (CallConv == CallingConv::GHC)
19709
CCInfo.AnalyzeFormalArguments(Ins, RISCV::CC_RISCV_GHC);
19710
else
19711
analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
19712
CallConv == CallingConv::Fast ? RISCV::CC_RISCV_FastCC
19713
: RISCV::CC_RISCV);
19714
19715
for (unsigned i = 0, e = ArgLocs.size(), InsIdx = 0; i != e; ++i, ++InsIdx) {
19716
CCValAssign &VA = ArgLocs[i];
19717
SDValue ArgValue;
19718
// Passing f64 on RV32D with a soft float ABI must be handled as a special
19719
// case.
19720
if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
19721
assert(VA.needsCustom());
19722
ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, ArgLocs[++i], DL);
19723
} else if (VA.isRegLoc())
19724
ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, Ins[InsIdx], *this);
19725
else
19726
ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
19727
19728
if (VA.getLocInfo() == CCValAssign::Indirect) {
19729
// If the original argument was split and passed by reference (e.g. i128
19730
// on RV32), we need to load all parts of it here (using the same
19731
// address). Vectors may be partly split to registers and partly to the
19732
// stack, in which case the base address is partly offset and subsequent
19733
// stores are relative to that.
19734
InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
19735
MachinePointerInfo()));
19736
unsigned ArgIndex = Ins[InsIdx].OrigArgIndex;
19737
unsigned ArgPartOffset = Ins[InsIdx].PartOffset;
19738
assert(VA.getValVT().isVector() || ArgPartOffset == 0);
19739
while (i + 1 != e && Ins[InsIdx + 1].OrigArgIndex == ArgIndex) {
19740
CCValAssign &PartVA = ArgLocs[i + 1];
19741
unsigned PartOffset = Ins[InsIdx + 1].PartOffset - ArgPartOffset;
19742
SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
19743
if (PartVA.getValVT().isScalableVector())
19744
Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
19745
SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
19746
InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
19747
MachinePointerInfo()));
19748
++i;
19749
++InsIdx;
19750
}
19751
continue;
19752
}
19753
InVals.push_back(ArgValue);
19754
}
19755
19756
if (any_of(ArgLocs,
19757
[](CCValAssign &VA) { return VA.getLocVT().isScalableVector(); }))
19758
MF.getInfo<RISCVMachineFunctionInfo>()->setIsVectorCall();
19759
19760
if (IsVarArg) {
19761
ArrayRef<MCPhysReg> ArgRegs = RISCV::getArgGPRs(Subtarget.getTargetABI());
19762
unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
19763
const TargetRegisterClass *RC = &RISCV::GPRRegClass;
19764
MachineFrameInfo &MFI = MF.getFrameInfo();
19765
MachineRegisterInfo &RegInfo = MF.getRegInfo();
19766
RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
19767
19768
// Size of the vararg save area. For now, the varargs save area is either
19769
// zero or large enough to hold a0-a7.
19770
int VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
19771
int FI;
19772
19773
// If all registers are allocated, then all varargs must be passed on the
19774
// stack and we don't need to save any argregs.
19775
if (VarArgsSaveSize == 0) {
19776
int VaArgOffset = CCInfo.getStackSize();
19777
FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
19778
} else {
19779
int VaArgOffset = -VarArgsSaveSize;
19780
FI = MFI.CreateFixedObject(VarArgsSaveSize, VaArgOffset, true);
19781
19782
// If saving an odd number of registers then create an extra stack slot to
19783
// ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
19784
// offsets to even-numbered registered remain 2*XLEN-aligned.
19785
if (Idx % 2) {
19786
MFI.CreateFixedObject(
19787
XLenInBytes, VaArgOffset - static_cast<int>(XLenInBytes), true);
19788
VarArgsSaveSize += XLenInBytes;
19789
}
19790
19791
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
19792
19793
// Copy the integer registers that may have been used for passing varargs
19794
// to the vararg save area.
19795
for (unsigned I = Idx; I < ArgRegs.size(); ++I) {
19796
const Register Reg = RegInfo.createVirtualRegister(RC);
19797
RegInfo.addLiveIn(ArgRegs[I], Reg);
19798
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
19799
SDValue Store = DAG.getStore(
19800
Chain, DL, ArgValue, FIN,
19801
MachinePointerInfo::getFixedStack(MF, FI, (I - Idx) * XLenInBytes));
19802
OutChains.push_back(Store);
19803
FIN =
19804
DAG.getMemBasePlusOffset(FIN, TypeSize::getFixed(XLenInBytes), DL);
19805
}
19806
}
19807
19808
// Record the frame index of the first variable argument
19809
// which is a value necessary to VASTART.
19810
RVFI->setVarArgsFrameIndex(FI);
19811
RVFI->setVarArgsSaveSize(VarArgsSaveSize);
19812
}
19813
19814
// All stores are grouped in one node to allow the matching between
19815
// the size of Ins and InVals. This only happens for vararg functions.
19816
if (!OutChains.empty()) {
19817
OutChains.push_back(Chain);
19818
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
19819
}
19820
19821
return Chain;
19822
}
19823
19824
/// isEligibleForTailCallOptimization - Check whether the call is eligible
19825
/// for tail call optimization.
19826
/// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
19827
bool RISCVTargetLowering::isEligibleForTailCallOptimization(
19828
CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
19829
const SmallVector<CCValAssign, 16> &ArgLocs) const {
19830
19831
auto CalleeCC = CLI.CallConv;
19832
auto &Outs = CLI.Outs;
19833
auto &Caller = MF.getFunction();
19834
auto CallerCC = Caller.getCallingConv();
19835
19836
// Exception-handling functions need a special set of instructions to
19837
// indicate a return to the hardware. Tail-calling another function would
19838
// probably break this.
19839
// TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
19840
// should be expanded as new function attributes are introduced.
19841
if (Caller.hasFnAttribute("interrupt"))
19842
return false;
19843
19844
// Do not tail call opt if the stack is used to pass parameters.
19845
if (CCInfo.getStackSize() != 0)
19846
return false;
19847
19848
// Do not tail call opt if any parameters need to be passed indirectly.
19849
// Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
19850
// passed indirectly. So the address of the value will be passed in a
19851
// register, or if not available, then the address is put on the stack. In
19852
// order to pass indirectly, space on the stack often needs to be allocated
19853
// in order to store the value. In this case the CCInfo.getNextStackOffset()
19854
// != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
19855
// are passed CCValAssign::Indirect.
19856
for (auto &VA : ArgLocs)
19857
if (VA.getLocInfo() == CCValAssign::Indirect)
19858
return false;
19859
19860
// Do not tail call opt if either caller or callee uses struct return
19861
// semantics.
19862
auto IsCallerStructRet = Caller.hasStructRetAttr();
19863
auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
19864
if (IsCallerStructRet || IsCalleeStructRet)
19865
return false;
19866
19867
// The callee has to preserve all registers the caller needs to preserve.
19868
const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
19869
const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
19870
if (CalleeCC != CallerCC) {
19871
const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
19872
if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
19873
return false;
19874
}
19875
19876
// Byval parameters hand the function a pointer directly into the stack area
19877
// we want to reuse during a tail call. Working around this *is* possible
19878
// but less efficient and uglier in LowerCall.
19879
for (auto &Arg : Outs)
19880
if (Arg.Flags.isByVal())
19881
return false;
19882
19883
return true;
19884
}
19885
19886
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
19887
return DAG.getDataLayout().getPrefTypeAlign(
19888
VT.getTypeForEVT(*DAG.getContext()));
19889
}
19890
19891
// Lower a call to a callseq_start + CALL + callseq_end chain, and add input
19892
// and output parameter nodes.
19893
SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
19894
SmallVectorImpl<SDValue> &InVals) const {
19895
SelectionDAG &DAG = CLI.DAG;
19896
SDLoc &DL = CLI.DL;
19897
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
19898
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
19899
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
19900
SDValue Chain = CLI.Chain;
19901
SDValue Callee = CLI.Callee;
19902
bool &IsTailCall = CLI.IsTailCall;
19903
CallingConv::ID CallConv = CLI.CallConv;
19904
bool IsVarArg = CLI.IsVarArg;
19905
EVT PtrVT = getPointerTy(DAG.getDataLayout());
19906
MVT XLenVT = Subtarget.getXLenVT();
19907
19908
MachineFunction &MF = DAG.getMachineFunction();
19909
19910
// Analyze the operands of the call, assigning locations to each operand.
19911
SmallVector<CCValAssign, 16> ArgLocs;
19912
CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
19913
19914
if (CallConv == CallingConv::GHC) {
19915
if (Subtarget.hasStdExtE())
19916
report_fatal_error("GHC calling convention is not supported on RVE!");
19917
ArgCCInfo.AnalyzeCallOperands(Outs, RISCV::CC_RISCV_GHC);
19918
} else
19919
analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
19920
CallConv == CallingConv::Fast ? RISCV::CC_RISCV_FastCC
19921
: RISCV::CC_RISCV);
19922
19923
// Check if it's really possible to do a tail call.
19924
if (IsTailCall)
19925
IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
19926
19927
if (IsTailCall)
19928
++NumTailCalls;
19929
else if (CLI.CB && CLI.CB->isMustTailCall())
19930
report_fatal_error("failed to perform tail call elimination on a call "
19931
"site marked musttail");
19932
19933
// Get a count of how many bytes are to be pushed on the stack.
19934
unsigned NumBytes = ArgCCInfo.getStackSize();
19935
19936
// Create local copies for byval args
19937
SmallVector<SDValue, 8> ByValArgs;
19938
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
19939
ISD::ArgFlagsTy Flags = Outs[i].Flags;
19940
if (!Flags.isByVal())
19941
continue;
19942
19943
SDValue Arg = OutVals[i];
19944
unsigned Size = Flags.getByValSize();
19945
Align Alignment = Flags.getNonZeroByValAlign();
19946
19947
int FI =
19948
MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
19949
SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
19950
SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
19951
19952
Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
19953
/*IsVolatile=*/false,
19954
/*AlwaysInline=*/false, /*CI*/ nullptr, IsTailCall,
19955
MachinePointerInfo(), MachinePointerInfo());
19956
ByValArgs.push_back(FIPtr);
19957
}
19958
19959
if (!IsTailCall)
19960
Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
19961
19962
// Copy argument values to their designated locations.
19963
SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
19964
SmallVector<SDValue, 8> MemOpChains;
19965
SDValue StackPtr;
19966
for (unsigned i = 0, j = 0, e = ArgLocs.size(), OutIdx = 0; i != e;
19967
++i, ++OutIdx) {
19968
CCValAssign &VA = ArgLocs[i];
19969
SDValue ArgValue = OutVals[OutIdx];
19970
ISD::ArgFlagsTy Flags = Outs[OutIdx].Flags;
19971
19972
// Handle passing f64 on RV32D with a soft float ABI as a special case.
19973
if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
19974
assert(VA.isRegLoc() && "Expected register VA assignment");
19975
assert(VA.needsCustom());
19976
SDValue SplitF64 = DAG.getNode(
19977
RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
19978
SDValue Lo = SplitF64.getValue(0);
19979
SDValue Hi = SplitF64.getValue(1);
19980
19981
Register RegLo = VA.getLocReg();
19982
RegsToPass.push_back(std::make_pair(RegLo, Lo));
19983
19984
// Get the CCValAssign for the Hi part.
19985
CCValAssign &HiVA = ArgLocs[++i];
19986
19987
if (HiVA.isMemLoc()) {
19988
// Second half of f64 is passed on the stack.
19989
if (!StackPtr.getNode())
19990
StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
19991
SDValue Address =
19992
DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
19993
DAG.getIntPtrConstant(HiVA.getLocMemOffset(), DL));
19994
// Emit the store.
19995
MemOpChains.push_back(
19996
DAG.getStore(Chain, DL, Hi, Address, MachinePointerInfo()));
19997
} else {
19998
// Second half of f64 is passed in another GPR.
19999
Register RegHigh = HiVA.getLocReg();
20000
RegsToPass.push_back(std::make_pair(RegHigh, Hi));
20001
}
20002
continue;
20003
}
20004
20005
// Promote the value if needed.
20006
// For now, only handle fully promoted and indirect arguments.
20007
if (VA.getLocInfo() == CCValAssign::Indirect) {
20008
// Store the argument in a stack slot and pass its address.
20009
Align StackAlign =
20010
std::max(getPrefTypeAlign(Outs[OutIdx].ArgVT, DAG),
20011
getPrefTypeAlign(ArgValue.getValueType(), DAG));
20012
TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
20013
// If the original argument was split (e.g. i128), we need
20014
// to store the required parts of it here (and pass just one address).
20015
// Vectors may be partly split to registers and partly to the stack, in
20016
// which case the base address is partly offset and subsequent stores are
20017
// relative to that.
20018
unsigned ArgIndex = Outs[OutIdx].OrigArgIndex;
20019
unsigned ArgPartOffset = Outs[OutIdx].PartOffset;
20020
assert(VA.getValVT().isVector() || ArgPartOffset == 0);
20021
// Calculate the total size to store. We don't have access to what we're
20022
// actually storing other than performing the loop and collecting the
20023
// info.
20024
SmallVector<std::pair<SDValue, SDValue>> Parts;
20025
while (i + 1 != e && Outs[OutIdx + 1].OrigArgIndex == ArgIndex) {
20026
SDValue PartValue = OutVals[OutIdx + 1];
20027
unsigned PartOffset = Outs[OutIdx + 1].PartOffset - ArgPartOffset;
20028
SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
20029
EVT PartVT = PartValue.getValueType();
20030
if (PartVT.isScalableVector())
20031
Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
20032
StoredSize += PartVT.getStoreSize();
20033
StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
20034
Parts.push_back(std::make_pair(PartValue, Offset));
20035
++i;
20036
++OutIdx;
20037
}
20038
SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
20039
int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
20040
MemOpChains.push_back(
20041
DAG.getStore(Chain, DL, ArgValue, SpillSlot,
20042
MachinePointerInfo::getFixedStack(MF, FI)));
20043
for (const auto &Part : Parts) {
20044
SDValue PartValue = Part.first;
20045
SDValue PartOffset = Part.second;
20046
SDValue Address =
20047
DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
20048
MemOpChains.push_back(
20049
DAG.getStore(Chain, DL, PartValue, Address,
20050
MachinePointerInfo::getFixedStack(MF, FI)));
20051
}
20052
ArgValue = SpillSlot;
20053
} else {
20054
ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
20055
}
20056
20057
// Use local copy if it is a byval arg.
20058
if (Flags.isByVal())
20059
ArgValue = ByValArgs[j++];
20060
20061
if (VA.isRegLoc()) {
20062
// Queue up the argument copies and emit them at the end.
20063
RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
20064
} else {
20065
assert(VA.isMemLoc() && "Argument not register or memory");
20066
assert(!IsTailCall && "Tail call not allowed if stack is used "
20067
"for passing parameters");
20068
20069
// Work out the address of the stack slot.
20070
if (!StackPtr.getNode())
20071
StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
20072
SDValue Address =
20073
DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
20074
DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
20075
20076
// Emit the store.
20077
MemOpChains.push_back(
20078
DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
20079
}
20080
}
20081
20082
// Join the stores, which are independent of one another.
20083
if (!MemOpChains.empty())
20084
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
20085
20086
SDValue Glue;
20087
20088
// Build a sequence of copy-to-reg nodes, chained and glued together.
20089
for (auto &Reg : RegsToPass) {
20090
Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
20091
Glue = Chain.getValue(1);
20092
}
20093
20094
// Validate that none of the argument registers have been marked as
20095
// reserved, if so report an error. Do the same for the return address if this
20096
// is not a tailcall.
20097
validateCCReservedRegs(RegsToPass, MF);
20098
if (!IsTailCall &&
20099
MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
20100
MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
20101
MF.getFunction(),
20102
"Return address register required, but has been reserved."});
20103
20104
// If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
20105
// TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
20106
// split it and then direct call can be matched by PseudoCALL.
20107
if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
20108
const GlobalValue *GV = S->getGlobal();
20109
Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, RISCVII::MO_CALL);
20110
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
20111
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, RISCVII::MO_CALL);
20112
}
20113
20114
// The first call operand is the chain and the second is the target address.
20115
SmallVector<SDValue, 8> Ops;
20116
Ops.push_back(Chain);
20117
Ops.push_back(Callee);
20118
20119
// Add argument registers to the end of the list so that they are
20120
// known live into the call.
20121
for (auto &Reg : RegsToPass)
20122
Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
20123
20124
if (!IsTailCall) {
20125
// Add a register mask operand representing the call-preserved registers.
20126
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
20127
const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
20128
assert(Mask && "Missing call preserved mask for calling convention");
20129
Ops.push_back(DAG.getRegisterMask(Mask));
20130
}
20131
20132
// Glue the call to the argument copies, if any.
20133
if (Glue.getNode())
20134
Ops.push_back(Glue);
20135
20136
assert((!CLI.CFIType || CLI.CB->isIndirectCall()) &&
20137
"Unexpected CFI type for a direct call");
20138
20139
// Emit the call.
20140
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
20141
20142
if (IsTailCall) {
20143
MF.getFrameInfo().setHasTailCall();
20144
SDValue Ret = DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
20145
if (CLI.CFIType)
20146
Ret.getNode()->setCFIType(CLI.CFIType->getZExtValue());
20147
DAG.addNoMergeSiteInfo(Ret.getNode(), CLI.NoMerge);
20148
return Ret;
20149
}
20150
20151
Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
20152
if (CLI.CFIType)
20153
Chain.getNode()->setCFIType(CLI.CFIType->getZExtValue());
20154
DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
20155
Glue = Chain.getValue(1);
20156
20157
// Mark the end of the call, which is glued to the call itself.
20158
Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, DL);
20159
Glue = Chain.getValue(1);
20160
20161
// Assign locations to each value returned by this call.
20162
SmallVector<CCValAssign, 16> RVLocs;
20163
CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
20164
analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, RISCV::CC_RISCV);
20165
20166
// Copy all of the result registers out of their specified physreg.
20167
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
20168
auto &VA = RVLocs[i];
20169
// Copy the value out
20170
SDValue RetValue =
20171
DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
20172
// Glue the RetValue to the end of the call sequence
20173
Chain = RetValue.getValue(1);
20174
Glue = RetValue.getValue(2);
20175
20176
if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
20177
assert(VA.needsCustom());
20178
SDValue RetValue2 = DAG.getCopyFromReg(Chain, DL, RVLocs[++i].getLocReg(),
20179
MVT::i32, Glue);
20180
Chain = RetValue2.getValue(1);
20181
Glue = RetValue2.getValue(2);
20182
RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
20183
RetValue2);
20184
}
20185
20186
RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
20187
20188
InVals.push_back(RetValue);
20189
}
20190
20191
return Chain;
20192
}
20193
20194
bool RISCVTargetLowering::CanLowerReturn(
20195
CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
20196
const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
20197
SmallVector<CCValAssign, 16> RVLocs;
20198
CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
20199
20200
RVVArgDispatcher Dispatcher{&MF, this, ArrayRef(Outs)};
20201
20202
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
20203
MVT VT = Outs[i].VT;
20204
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
20205
RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
20206
if (RISCV::CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
20207
ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true,
20208
nullptr, *this, Dispatcher))
20209
return false;
20210
}
20211
return true;
20212
}
20213
20214
SDValue
20215
RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
20216
bool IsVarArg,
20217
const SmallVectorImpl<ISD::OutputArg> &Outs,
20218
const SmallVectorImpl<SDValue> &OutVals,
20219
const SDLoc &DL, SelectionDAG &DAG) const {
20220
MachineFunction &MF = DAG.getMachineFunction();
20221
const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
20222
20223
// Stores the assignment of the return value to a location.
20224
SmallVector<CCValAssign, 16> RVLocs;
20225
20226
// Info about the registers and stack slot.
20227
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
20228
*DAG.getContext());
20229
20230
analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
20231
nullptr, RISCV::CC_RISCV);
20232
20233
if (CallConv == CallingConv::GHC && !RVLocs.empty())
20234
report_fatal_error("GHC functions return void only");
20235
20236
SDValue Glue;
20237
SmallVector<SDValue, 4> RetOps(1, Chain);
20238
20239
// Copy the result values into the output registers.
20240
for (unsigned i = 0, e = RVLocs.size(), OutIdx = 0; i < e; ++i, ++OutIdx) {
20241
SDValue Val = OutVals[OutIdx];
20242
CCValAssign &VA = RVLocs[i];
20243
assert(VA.isRegLoc() && "Can only return in registers!");
20244
20245
if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
20246
// Handle returning f64 on RV32D with a soft float ABI.
20247
assert(VA.isRegLoc() && "Expected return via registers");
20248
assert(VA.needsCustom());
20249
SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
20250
DAG.getVTList(MVT::i32, MVT::i32), Val);
20251
SDValue Lo = SplitF64.getValue(0);
20252
SDValue Hi = SplitF64.getValue(1);
20253
Register RegLo = VA.getLocReg();
20254
Register RegHi = RVLocs[++i].getLocReg();
20255
20256
if (STI.isRegisterReservedByUser(RegLo) ||
20257
STI.isRegisterReservedByUser(RegHi))
20258
MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
20259
MF.getFunction(),
20260
"Return value register required, but has been reserved."});
20261
20262
Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
20263
Glue = Chain.getValue(1);
20264
RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
20265
Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
20266
Glue = Chain.getValue(1);
20267
RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
20268
} else {
20269
// Handle a 'normal' return.
20270
Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
20271
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
20272
20273
if (STI.isRegisterReservedByUser(VA.getLocReg()))
20274
MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
20275
MF.getFunction(),
20276
"Return value register required, but has been reserved."});
20277
20278
// Guarantee that all emitted copies are stuck together.
20279
Glue = Chain.getValue(1);
20280
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
20281
}
20282
}
20283
20284
RetOps[0] = Chain; // Update chain.
20285
20286
// Add the glue node if we have it.
20287
if (Glue.getNode()) {
20288
RetOps.push_back(Glue);
20289
}
20290
20291
if (any_of(RVLocs,
20292
[](CCValAssign &VA) { return VA.getLocVT().isScalableVector(); }))
20293
MF.getInfo<RISCVMachineFunctionInfo>()->setIsVectorCall();
20294
20295
unsigned RetOpc = RISCVISD::RET_GLUE;
20296
// Interrupt service routines use different return instructions.
20297
const Function &Func = DAG.getMachineFunction().getFunction();
20298
if (Func.hasFnAttribute("interrupt")) {
20299
if (!Func.getReturnType()->isVoidTy())
20300
report_fatal_error(
20301
"Functions with the interrupt attribute must have void return type!");
20302
20303
MachineFunction &MF = DAG.getMachineFunction();
20304
StringRef Kind =
20305
MF.getFunction().getFnAttribute("interrupt").getValueAsString();
20306
20307
if (Kind == "supervisor")
20308
RetOpc = RISCVISD::SRET_GLUE;
20309
else
20310
RetOpc = RISCVISD::MRET_GLUE;
20311
}
20312
20313
return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
20314
}
20315
20316
void RISCVTargetLowering::validateCCReservedRegs(
20317
const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
20318
MachineFunction &MF) const {
20319
const Function &F = MF.getFunction();
20320
const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
20321
20322
if (llvm::any_of(Regs, [&STI](auto Reg) {
20323
return STI.isRegisterReservedByUser(Reg.first);
20324
}))
20325
F.getContext().diagnose(DiagnosticInfoUnsupported{
20326
F, "Argument register required, but has been reserved."});
20327
}
20328
20329
// Check if the result of the node is only used as a return value, as
20330
// otherwise we can't perform a tail-call.
20331
bool RISCVTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
20332
if (N->getNumValues() != 1)
20333
return false;
20334
if (!N->hasNUsesOfValue(1, 0))
20335
return false;
20336
20337
SDNode *Copy = *N->use_begin();
20338
20339
if (Copy->getOpcode() == ISD::BITCAST) {
20340
return isUsedByReturnOnly(Copy, Chain);
20341
}
20342
20343
// TODO: Handle additional opcodes in order to support tail-calling libcalls
20344
// with soft float ABIs.
20345
if (Copy->getOpcode() != ISD::CopyToReg) {
20346
return false;
20347
}
20348
20349
// If the ISD::CopyToReg has a glue operand, we conservatively assume it
20350
// isn't safe to perform a tail call.
20351
if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() == MVT::Glue)
20352
return false;
20353
20354
// The copy must be used by a RISCVISD::RET_GLUE, and nothing else.
20355
bool HasRet = false;
20356
for (SDNode *Node : Copy->uses()) {
20357
if (Node->getOpcode() != RISCVISD::RET_GLUE)
20358
return false;
20359
HasRet = true;
20360
}
20361
if (!HasRet)
20362
return false;
20363
20364
Chain = Copy->getOperand(0);
20365
return true;
20366
}
20367
20368
bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
20369
return CI->isTailCall();
20370
}
20371
20372
const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
20373
#define NODE_NAME_CASE(NODE) \
20374
case RISCVISD::NODE: \
20375
return "RISCVISD::" #NODE;
20376
// clang-format off
20377
switch ((RISCVISD::NodeType)Opcode) {
20378
case RISCVISD::FIRST_NUMBER:
20379
break;
20380
NODE_NAME_CASE(RET_GLUE)
20381
NODE_NAME_CASE(SRET_GLUE)
20382
NODE_NAME_CASE(MRET_GLUE)
20383
NODE_NAME_CASE(CALL)
20384
NODE_NAME_CASE(SELECT_CC)
20385
NODE_NAME_CASE(BR_CC)
20386
NODE_NAME_CASE(BuildPairF64)
20387
NODE_NAME_CASE(SplitF64)
20388
NODE_NAME_CASE(TAIL)
20389
NODE_NAME_CASE(ADD_LO)
20390
NODE_NAME_CASE(HI)
20391
NODE_NAME_CASE(LLA)
20392
NODE_NAME_CASE(ADD_TPREL)
20393
NODE_NAME_CASE(MULHSU)
20394
NODE_NAME_CASE(SHL_ADD)
20395
NODE_NAME_CASE(SLLW)
20396
NODE_NAME_CASE(SRAW)
20397
NODE_NAME_CASE(SRLW)
20398
NODE_NAME_CASE(DIVW)
20399
NODE_NAME_CASE(DIVUW)
20400
NODE_NAME_CASE(REMUW)
20401
NODE_NAME_CASE(ROLW)
20402
NODE_NAME_CASE(RORW)
20403
NODE_NAME_CASE(CLZW)
20404
NODE_NAME_CASE(CTZW)
20405
NODE_NAME_CASE(ABSW)
20406
NODE_NAME_CASE(FMV_H_X)
20407
NODE_NAME_CASE(FMV_X_ANYEXTH)
20408
NODE_NAME_CASE(FMV_X_SIGNEXTH)
20409
NODE_NAME_CASE(FMV_W_X_RV64)
20410
NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
20411
NODE_NAME_CASE(FCVT_X)
20412
NODE_NAME_CASE(FCVT_XU)
20413
NODE_NAME_CASE(FCVT_W_RV64)
20414
NODE_NAME_CASE(FCVT_WU_RV64)
20415
NODE_NAME_CASE(STRICT_FCVT_W_RV64)
20416
NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
20417
NODE_NAME_CASE(FP_ROUND_BF16)
20418
NODE_NAME_CASE(FP_EXTEND_BF16)
20419
NODE_NAME_CASE(FROUND)
20420
NODE_NAME_CASE(FCLASS)
20421
NODE_NAME_CASE(FMAX)
20422
NODE_NAME_CASE(FMIN)
20423
NODE_NAME_CASE(READ_COUNTER_WIDE)
20424
NODE_NAME_CASE(BREV8)
20425
NODE_NAME_CASE(ORC_B)
20426
NODE_NAME_CASE(ZIP)
20427
NODE_NAME_CASE(UNZIP)
20428
NODE_NAME_CASE(CLMUL)
20429
NODE_NAME_CASE(CLMULH)
20430
NODE_NAME_CASE(CLMULR)
20431
NODE_NAME_CASE(MOPR)
20432
NODE_NAME_CASE(MOPRR)
20433
NODE_NAME_CASE(SHA256SIG0)
20434
NODE_NAME_CASE(SHA256SIG1)
20435
NODE_NAME_CASE(SHA256SUM0)
20436
NODE_NAME_CASE(SHA256SUM1)
20437
NODE_NAME_CASE(SM4KS)
20438
NODE_NAME_CASE(SM4ED)
20439
NODE_NAME_CASE(SM3P0)
20440
NODE_NAME_CASE(SM3P1)
20441
NODE_NAME_CASE(TH_LWD)
20442
NODE_NAME_CASE(TH_LWUD)
20443
NODE_NAME_CASE(TH_LDD)
20444
NODE_NAME_CASE(TH_SWD)
20445
NODE_NAME_CASE(TH_SDD)
20446
NODE_NAME_CASE(VMV_V_V_VL)
20447
NODE_NAME_CASE(VMV_V_X_VL)
20448
NODE_NAME_CASE(VFMV_V_F_VL)
20449
NODE_NAME_CASE(VMV_X_S)
20450
NODE_NAME_CASE(VMV_S_X_VL)
20451
NODE_NAME_CASE(VFMV_S_F_VL)
20452
NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
20453
NODE_NAME_CASE(READ_VLENB)
20454
NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
20455
NODE_NAME_CASE(VSLIDEUP_VL)
20456
NODE_NAME_CASE(VSLIDE1UP_VL)
20457
NODE_NAME_CASE(VSLIDEDOWN_VL)
20458
NODE_NAME_CASE(VSLIDE1DOWN_VL)
20459
NODE_NAME_CASE(VFSLIDE1UP_VL)
20460
NODE_NAME_CASE(VFSLIDE1DOWN_VL)
20461
NODE_NAME_CASE(VID_VL)
20462
NODE_NAME_CASE(VFNCVT_ROD_VL)
20463
NODE_NAME_CASE(VECREDUCE_ADD_VL)
20464
NODE_NAME_CASE(VECREDUCE_UMAX_VL)
20465
NODE_NAME_CASE(VECREDUCE_SMAX_VL)
20466
NODE_NAME_CASE(VECREDUCE_UMIN_VL)
20467
NODE_NAME_CASE(VECREDUCE_SMIN_VL)
20468
NODE_NAME_CASE(VECREDUCE_AND_VL)
20469
NODE_NAME_CASE(VECREDUCE_OR_VL)
20470
NODE_NAME_CASE(VECREDUCE_XOR_VL)
20471
NODE_NAME_CASE(VECREDUCE_FADD_VL)
20472
NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
20473
NODE_NAME_CASE(VECREDUCE_FMIN_VL)
20474
NODE_NAME_CASE(VECREDUCE_FMAX_VL)
20475
NODE_NAME_CASE(ADD_VL)
20476
NODE_NAME_CASE(AND_VL)
20477
NODE_NAME_CASE(MUL_VL)
20478
NODE_NAME_CASE(OR_VL)
20479
NODE_NAME_CASE(SDIV_VL)
20480
NODE_NAME_CASE(SHL_VL)
20481
NODE_NAME_CASE(SREM_VL)
20482
NODE_NAME_CASE(SRA_VL)
20483
NODE_NAME_CASE(SRL_VL)
20484
NODE_NAME_CASE(ROTL_VL)
20485
NODE_NAME_CASE(ROTR_VL)
20486
NODE_NAME_CASE(SUB_VL)
20487
NODE_NAME_CASE(UDIV_VL)
20488
NODE_NAME_CASE(UREM_VL)
20489
NODE_NAME_CASE(XOR_VL)
20490
NODE_NAME_CASE(AVGFLOORS_VL)
20491
NODE_NAME_CASE(AVGFLOORU_VL)
20492
NODE_NAME_CASE(AVGCEILS_VL)
20493
NODE_NAME_CASE(AVGCEILU_VL)
20494
NODE_NAME_CASE(SADDSAT_VL)
20495
NODE_NAME_CASE(UADDSAT_VL)
20496
NODE_NAME_CASE(SSUBSAT_VL)
20497
NODE_NAME_CASE(USUBSAT_VL)
20498
NODE_NAME_CASE(VNCLIP_VL)
20499
NODE_NAME_CASE(VNCLIPU_VL)
20500
NODE_NAME_CASE(FADD_VL)
20501
NODE_NAME_CASE(FSUB_VL)
20502
NODE_NAME_CASE(FMUL_VL)
20503
NODE_NAME_CASE(FDIV_VL)
20504
NODE_NAME_CASE(FNEG_VL)
20505
NODE_NAME_CASE(FABS_VL)
20506
NODE_NAME_CASE(FSQRT_VL)
20507
NODE_NAME_CASE(FCLASS_VL)
20508
NODE_NAME_CASE(VFMADD_VL)
20509
NODE_NAME_CASE(VFNMADD_VL)
20510
NODE_NAME_CASE(VFMSUB_VL)
20511
NODE_NAME_CASE(VFNMSUB_VL)
20512
NODE_NAME_CASE(VFWMADD_VL)
20513
NODE_NAME_CASE(VFWNMADD_VL)
20514
NODE_NAME_CASE(VFWMSUB_VL)
20515
NODE_NAME_CASE(VFWNMSUB_VL)
20516
NODE_NAME_CASE(FCOPYSIGN_VL)
20517
NODE_NAME_CASE(SMIN_VL)
20518
NODE_NAME_CASE(SMAX_VL)
20519
NODE_NAME_CASE(UMIN_VL)
20520
NODE_NAME_CASE(UMAX_VL)
20521
NODE_NAME_CASE(BITREVERSE_VL)
20522
NODE_NAME_CASE(BSWAP_VL)
20523
NODE_NAME_CASE(CTLZ_VL)
20524
NODE_NAME_CASE(CTTZ_VL)
20525
NODE_NAME_CASE(CTPOP_VL)
20526
NODE_NAME_CASE(VFMIN_VL)
20527
NODE_NAME_CASE(VFMAX_VL)
20528
NODE_NAME_CASE(MULHS_VL)
20529
NODE_NAME_CASE(MULHU_VL)
20530
NODE_NAME_CASE(VFCVT_RTZ_X_F_VL)
20531
NODE_NAME_CASE(VFCVT_RTZ_XU_F_VL)
20532
NODE_NAME_CASE(VFCVT_RM_X_F_VL)
20533
NODE_NAME_CASE(VFCVT_RM_XU_F_VL)
20534
NODE_NAME_CASE(VFCVT_X_F_VL)
20535
NODE_NAME_CASE(VFCVT_XU_F_VL)
20536
NODE_NAME_CASE(VFROUND_NOEXCEPT_VL)
20537
NODE_NAME_CASE(SINT_TO_FP_VL)
20538
NODE_NAME_CASE(UINT_TO_FP_VL)
20539
NODE_NAME_CASE(VFCVT_RM_F_XU_VL)
20540
NODE_NAME_CASE(VFCVT_RM_F_X_VL)
20541
NODE_NAME_CASE(FP_EXTEND_VL)
20542
NODE_NAME_CASE(FP_ROUND_VL)
20543
NODE_NAME_CASE(STRICT_FADD_VL)
20544
NODE_NAME_CASE(STRICT_FSUB_VL)
20545
NODE_NAME_CASE(STRICT_FMUL_VL)
20546
NODE_NAME_CASE(STRICT_FDIV_VL)
20547
NODE_NAME_CASE(STRICT_FSQRT_VL)
20548
NODE_NAME_CASE(STRICT_VFMADD_VL)
20549
NODE_NAME_CASE(STRICT_VFNMADD_VL)
20550
NODE_NAME_CASE(STRICT_VFMSUB_VL)
20551
NODE_NAME_CASE(STRICT_VFNMSUB_VL)
20552
NODE_NAME_CASE(STRICT_FP_ROUND_VL)
20553
NODE_NAME_CASE(STRICT_FP_EXTEND_VL)
20554
NODE_NAME_CASE(STRICT_VFNCVT_ROD_VL)
20555
NODE_NAME_CASE(STRICT_SINT_TO_FP_VL)
20556
NODE_NAME_CASE(STRICT_UINT_TO_FP_VL)
20557
NODE_NAME_CASE(STRICT_VFCVT_RM_X_F_VL)
20558
NODE_NAME_CASE(STRICT_VFCVT_RTZ_X_F_VL)
20559
NODE_NAME_CASE(STRICT_VFCVT_RTZ_XU_F_VL)
20560
NODE_NAME_CASE(STRICT_FSETCC_VL)
20561
NODE_NAME_CASE(STRICT_FSETCCS_VL)
20562
NODE_NAME_CASE(STRICT_VFROUND_NOEXCEPT_VL)
20563
NODE_NAME_CASE(VWMUL_VL)
20564
NODE_NAME_CASE(VWMULU_VL)
20565
NODE_NAME_CASE(VWMULSU_VL)
20566
NODE_NAME_CASE(VWADD_VL)
20567
NODE_NAME_CASE(VWADDU_VL)
20568
NODE_NAME_CASE(VWSUB_VL)
20569
NODE_NAME_CASE(VWSUBU_VL)
20570
NODE_NAME_CASE(VWADD_W_VL)
20571
NODE_NAME_CASE(VWADDU_W_VL)
20572
NODE_NAME_CASE(VWSUB_W_VL)
20573
NODE_NAME_CASE(VWSUBU_W_VL)
20574
NODE_NAME_CASE(VWSLL_VL)
20575
NODE_NAME_CASE(VFWMUL_VL)
20576
NODE_NAME_CASE(VFWADD_VL)
20577
NODE_NAME_CASE(VFWSUB_VL)
20578
NODE_NAME_CASE(VFWADD_W_VL)
20579
NODE_NAME_CASE(VFWSUB_W_VL)
20580
NODE_NAME_CASE(VWMACC_VL)
20581
NODE_NAME_CASE(VWMACCU_VL)
20582
NODE_NAME_CASE(VWMACCSU_VL)
20583
NODE_NAME_CASE(VNSRL_VL)
20584
NODE_NAME_CASE(SETCC_VL)
20585
NODE_NAME_CASE(VMERGE_VL)
20586
NODE_NAME_CASE(VMAND_VL)
20587
NODE_NAME_CASE(VMOR_VL)
20588
NODE_NAME_CASE(VMXOR_VL)
20589
NODE_NAME_CASE(VMCLR_VL)
20590
NODE_NAME_CASE(VMSET_VL)
20591
NODE_NAME_CASE(VRGATHER_VX_VL)
20592
NODE_NAME_CASE(VRGATHER_VV_VL)
20593
NODE_NAME_CASE(VRGATHEREI16_VV_VL)
20594
NODE_NAME_CASE(VSEXT_VL)
20595
NODE_NAME_CASE(VZEXT_VL)
20596
NODE_NAME_CASE(VCPOP_VL)
20597
NODE_NAME_CASE(VFIRST_VL)
20598
NODE_NAME_CASE(READ_CSR)
20599
NODE_NAME_CASE(WRITE_CSR)
20600
NODE_NAME_CASE(SWAP_CSR)
20601
NODE_NAME_CASE(CZERO_EQZ)
20602
NODE_NAME_CASE(CZERO_NEZ)
20603
NODE_NAME_CASE(SW_GUARDED_BRIND)
20604
NODE_NAME_CASE(SF_VC_XV_SE)
20605
NODE_NAME_CASE(SF_VC_IV_SE)
20606
NODE_NAME_CASE(SF_VC_VV_SE)
20607
NODE_NAME_CASE(SF_VC_FV_SE)
20608
NODE_NAME_CASE(SF_VC_XVV_SE)
20609
NODE_NAME_CASE(SF_VC_IVV_SE)
20610
NODE_NAME_CASE(SF_VC_VVV_SE)
20611
NODE_NAME_CASE(SF_VC_FVV_SE)
20612
NODE_NAME_CASE(SF_VC_XVW_SE)
20613
NODE_NAME_CASE(SF_VC_IVW_SE)
20614
NODE_NAME_CASE(SF_VC_VVW_SE)
20615
NODE_NAME_CASE(SF_VC_FVW_SE)
20616
NODE_NAME_CASE(SF_VC_V_X_SE)
20617
NODE_NAME_CASE(SF_VC_V_I_SE)
20618
NODE_NAME_CASE(SF_VC_V_XV_SE)
20619
NODE_NAME_CASE(SF_VC_V_IV_SE)
20620
NODE_NAME_CASE(SF_VC_V_VV_SE)
20621
NODE_NAME_CASE(SF_VC_V_FV_SE)
20622
NODE_NAME_CASE(SF_VC_V_XVV_SE)
20623
NODE_NAME_CASE(SF_VC_V_IVV_SE)
20624
NODE_NAME_CASE(SF_VC_V_VVV_SE)
20625
NODE_NAME_CASE(SF_VC_V_FVV_SE)
20626
NODE_NAME_CASE(SF_VC_V_XVW_SE)
20627
NODE_NAME_CASE(SF_VC_V_IVW_SE)
20628
NODE_NAME_CASE(SF_VC_V_VVW_SE)
20629
NODE_NAME_CASE(SF_VC_V_FVW_SE)
20630
}
20631
// clang-format on
20632
return nullptr;
20633
#undef NODE_NAME_CASE
20634
}
20635
20636
/// getConstraintType - Given a constraint letter, return the type of
20637
/// constraint it is for this target.
20638
RISCVTargetLowering::ConstraintType
20639
RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
20640
if (Constraint.size() == 1) {
20641
switch (Constraint[0]) {
20642
default:
20643
break;
20644
case 'f':
20645
return C_RegisterClass;
20646
case 'I':
20647
case 'J':
20648
case 'K':
20649
return C_Immediate;
20650
case 'A':
20651
return C_Memory;
20652
case 's':
20653
case 'S': // A symbolic address
20654
return C_Other;
20655
}
20656
} else {
20657
if (Constraint == "vr" || Constraint == "vm")
20658
return C_RegisterClass;
20659
}
20660
return TargetLowering::getConstraintType(Constraint);
20661
}
20662
20663
std::pair<unsigned, const TargetRegisterClass *>
20664
RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
20665
StringRef Constraint,
20666
MVT VT) const {
20667
// First, see if this is a constraint that directly corresponds to a RISC-V
20668
// register class.
20669
if (Constraint.size() == 1) {
20670
switch (Constraint[0]) {
20671
case 'r':
20672
// TODO: Support fixed vectors up to XLen for P extension?
20673
if (VT.isVector())
20674
break;
20675
if (VT == MVT::f16 && Subtarget.hasStdExtZhinxmin())
20676
return std::make_pair(0U, &RISCV::GPRF16RegClass);
20677
if (VT == MVT::f32 && Subtarget.hasStdExtZfinx())
20678
return std::make_pair(0U, &RISCV::GPRF32RegClass);
20679
if (VT == MVT::f64 && Subtarget.hasStdExtZdinx() && !Subtarget.is64Bit())
20680
return std::make_pair(0U, &RISCV::GPRPairRegClass);
20681
return std::make_pair(0U, &RISCV::GPRNoX0RegClass);
20682
case 'f':
20683
if (Subtarget.hasStdExtZfhmin() && VT == MVT::f16)
20684
return std::make_pair(0U, &RISCV::FPR16RegClass);
20685
if (Subtarget.hasStdExtF() && VT == MVT::f32)
20686
return std::make_pair(0U, &RISCV::FPR32RegClass);
20687
if (Subtarget.hasStdExtD() && VT == MVT::f64)
20688
return std::make_pair(0U, &RISCV::FPR64RegClass);
20689
break;
20690
default:
20691
break;
20692
}
20693
} else if (Constraint == "vr") {
20694
for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
20695
&RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
20696
if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
20697
return std::make_pair(0U, RC);
20698
}
20699
} else if (Constraint == "vm") {
20700
if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
20701
return std::make_pair(0U, &RISCV::VMV0RegClass);
20702
}
20703
20704
// Clang will correctly decode the usage of register name aliases into their
20705
// official names. However, other frontends like `rustc` do not. This allows
20706
// users of these frontends to use the ABI names for registers in LLVM-style
20707
// register constraints.
20708
unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
20709
.Case("{zero}", RISCV::X0)
20710
.Case("{ra}", RISCV::X1)
20711
.Case("{sp}", RISCV::X2)
20712
.Case("{gp}", RISCV::X3)
20713
.Case("{tp}", RISCV::X4)
20714
.Case("{t0}", RISCV::X5)
20715
.Case("{t1}", RISCV::X6)
20716
.Case("{t2}", RISCV::X7)
20717
.Cases("{s0}", "{fp}", RISCV::X8)
20718
.Case("{s1}", RISCV::X9)
20719
.Case("{a0}", RISCV::X10)
20720
.Case("{a1}", RISCV::X11)
20721
.Case("{a2}", RISCV::X12)
20722
.Case("{a3}", RISCV::X13)
20723
.Case("{a4}", RISCV::X14)
20724
.Case("{a5}", RISCV::X15)
20725
.Case("{a6}", RISCV::X16)
20726
.Case("{a7}", RISCV::X17)
20727
.Case("{s2}", RISCV::X18)
20728
.Case("{s3}", RISCV::X19)
20729
.Case("{s4}", RISCV::X20)
20730
.Case("{s5}", RISCV::X21)
20731
.Case("{s6}", RISCV::X22)
20732
.Case("{s7}", RISCV::X23)
20733
.Case("{s8}", RISCV::X24)
20734
.Case("{s9}", RISCV::X25)
20735
.Case("{s10}", RISCV::X26)
20736
.Case("{s11}", RISCV::X27)
20737
.Case("{t3}", RISCV::X28)
20738
.Case("{t4}", RISCV::X29)
20739
.Case("{t5}", RISCV::X30)
20740
.Case("{t6}", RISCV::X31)
20741
.Default(RISCV::NoRegister);
20742
if (XRegFromAlias != RISCV::NoRegister)
20743
return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
20744
20745
// Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
20746
// TableGen record rather than the AsmName to choose registers for InlineAsm
20747
// constraints, plus we want to match those names to the widest floating point
20748
// register type available, manually select floating point registers here.
20749
//
20750
// The second case is the ABI name of the register, so that frontends can also
20751
// use the ABI names in register constraint lists.
20752
if (Subtarget.hasStdExtF()) {
20753
unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
20754
.Cases("{f0}", "{ft0}", RISCV::F0_F)
20755
.Cases("{f1}", "{ft1}", RISCV::F1_F)
20756
.Cases("{f2}", "{ft2}", RISCV::F2_F)
20757
.Cases("{f3}", "{ft3}", RISCV::F3_F)
20758
.Cases("{f4}", "{ft4}", RISCV::F4_F)
20759
.Cases("{f5}", "{ft5}", RISCV::F5_F)
20760
.Cases("{f6}", "{ft6}", RISCV::F6_F)
20761
.Cases("{f7}", "{ft7}", RISCV::F7_F)
20762
.Cases("{f8}", "{fs0}", RISCV::F8_F)
20763
.Cases("{f9}", "{fs1}", RISCV::F9_F)
20764
.Cases("{f10}", "{fa0}", RISCV::F10_F)
20765
.Cases("{f11}", "{fa1}", RISCV::F11_F)
20766
.Cases("{f12}", "{fa2}", RISCV::F12_F)
20767
.Cases("{f13}", "{fa3}", RISCV::F13_F)
20768
.Cases("{f14}", "{fa4}", RISCV::F14_F)
20769
.Cases("{f15}", "{fa5}", RISCV::F15_F)
20770
.Cases("{f16}", "{fa6}", RISCV::F16_F)
20771
.Cases("{f17}", "{fa7}", RISCV::F17_F)
20772
.Cases("{f18}", "{fs2}", RISCV::F18_F)
20773
.Cases("{f19}", "{fs3}", RISCV::F19_F)
20774
.Cases("{f20}", "{fs4}", RISCV::F20_F)
20775
.Cases("{f21}", "{fs5}", RISCV::F21_F)
20776
.Cases("{f22}", "{fs6}", RISCV::F22_F)
20777
.Cases("{f23}", "{fs7}", RISCV::F23_F)
20778
.Cases("{f24}", "{fs8}", RISCV::F24_F)
20779
.Cases("{f25}", "{fs9}", RISCV::F25_F)
20780
.Cases("{f26}", "{fs10}", RISCV::F26_F)
20781
.Cases("{f27}", "{fs11}", RISCV::F27_F)
20782
.Cases("{f28}", "{ft8}", RISCV::F28_F)
20783
.Cases("{f29}", "{ft9}", RISCV::F29_F)
20784
.Cases("{f30}", "{ft10}", RISCV::F30_F)
20785
.Cases("{f31}", "{ft11}", RISCV::F31_F)
20786
.Default(RISCV::NoRegister);
20787
if (FReg != RISCV::NoRegister) {
20788
assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
20789
if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
20790
unsigned RegNo = FReg - RISCV::F0_F;
20791
unsigned DReg = RISCV::F0_D + RegNo;
20792
return std::make_pair(DReg, &RISCV::FPR64RegClass);
20793
}
20794
if (VT == MVT::f32 || VT == MVT::Other)
20795
return std::make_pair(FReg, &RISCV::FPR32RegClass);
20796
if (Subtarget.hasStdExtZfhmin() && VT == MVT::f16) {
20797
unsigned RegNo = FReg - RISCV::F0_F;
20798
unsigned HReg = RISCV::F0_H + RegNo;
20799
return std::make_pair(HReg, &RISCV::FPR16RegClass);
20800
}
20801
}
20802
}
20803
20804
if (Subtarget.hasVInstructions()) {
20805
Register VReg = StringSwitch<Register>(Constraint.lower())
20806
.Case("{v0}", RISCV::V0)
20807
.Case("{v1}", RISCV::V1)
20808
.Case("{v2}", RISCV::V2)
20809
.Case("{v3}", RISCV::V3)
20810
.Case("{v4}", RISCV::V4)
20811
.Case("{v5}", RISCV::V5)
20812
.Case("{v6}", RISCV::V6)
20813
.Case("{v7}", RISCV::V7)
20814
.Case("{v8}", RISCV::V8)
20815
.Case("{v9}", RISCV::V9)
20816
.Case("{v10}", RISCV::V10)
20817
.Case("{v11}", RISCV::V11)
20818
.Case("{v12}", RISCV::V12)
20819
.Case("{v13}", RISCV::V13)
20820
.Case("{v14}", RISCV::V14)
20821
.Case("{v15}", RISCV::V15)
20822
.Case("{v16}", RISCV::V16)
20823
.Case("{v17}", RISCV::V17)
20824
.Case("{v18}", RISCV::V18)
20825
.Case("{v19}", RISCV::V19)
20826
.Case("{v20}", RISCV::V20)
20827
.Case("{v21}", RISCV::V21)
20828
.Case("{v22}", RISCV::V22)
20829
.Case("{v23}", RISCV::V23)
20830
.Case("{v24}", RISCV::V24)
20831
.Case("{v25}", RISCV::V25)
20832
.Case("{v26}", RISCV::V26)
20833
.Case("{v27}", RISCV::V27)
20834
.Case("{v28}", RISCV::V28)
20835
.Case("{v29}", RISCV::V29)
20836
.Case("{v30}", RISCV::V30)
20837
.Case("{v31}", RISCV::V31)
20838
.Default(RISCV::NoRegister);
20839
if (VReg != RISCV::NoRegister) {
20840
if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
20841
return std::make_pair(VReg, &RISCV::VMRegClass);
20842
if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
20843
return std::make_pair(VReg, &RISCV::VRRegClass);
20844
for (const auto *RC :
20845
{&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
20846
if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
20847
VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
20848
return std::make_pair(VReg, RC);
20849
}
20850
}
20851
}
20852
}
20853
20854
std::pair<Register, const TargetRegisterClass *> Res =
20855
TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
20856
20857
// If we picked one of the Zfinx register classes, remap it to the GPR class.
20858
// FIXME: When Zfinx is supported in CodeGen this will need to take the
20859
// Subtarget into account.
20860
if (Res.second == &RISCV::GPRF16RegClass ||
20861
Res.second == &RISCV::GPRF32RegClass ||
20862
Res.second == &RISCV::GPRPairRegClass)
20863
return std::make_pair(Res.first, &RISCV::GPRRegClass);
20864
20865
return Res;
20866
}
20867
20868
InlineAsm::ConstraintCode
20869
RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
20870
// Currently only support length 1 constraints.
20871
if (ConstraintCode.size() == 1) {
20872
switch (ConstraintCode[0]) {
20873
case 'A':
20874
return InlineAsm::ConstraintCode::A;
20875
default:
20876
break;
20877
}
20878
}
20879
20880
return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
20881
}
20882
20883
void RISCVTargetLowering::LowerAsmOperandForConstraint(
20884
SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops,
20885
SelectionDAG &DAG) const {
20886
// Currently only support length 1 constraints.
20887
if (Constraint.size() == 1) {
20888
switch (Constraint[0]) {
20889
case 'I':
20890
// Validate & create a 12-bit signed immediate operand.
20891
if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
20892
uint64_t CVal = C->getSExtValue();
20893
if (isInt<12>(CVal))
20894
Ops.push_back(
20895
DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
20896
}
20897
return;
20898
case 'J':
20899
// Validate & create an integer zero operand.
20900
if (isNullConstant(Op))
20901
Ops.push_back(
20902
DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
20903
return;
20904
case 'K':
20905
// Validate & create a 5-bit unsigned immediate operand.
20906
if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
20907
uint64_t CVal = C->getZExtValue();
20908
if (isUInt<5>(CVal))
20909
Ops.push_back(
20910
DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
20911
}
20912
return;
20913
case 'S':
20914
TargetLowering::LowerAsmOperandForConstraint(Op, "s", Ops, DAG);
20915
return;
20916
default:
20917
break;
20918
}
20919
}
20920
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
20921
}
20922
20923
Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
20924
Instruction *Inst,
20925
AtomicOrdering Ord) const {
20926
if (Subtarget.hasStdExtZtso()) {
20927
if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
20928
return Builder.CreateFence(Ord);
20929
return nullptr;
20930
}
20931
20932
if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
20933
return Builder.CreateFence(Ord);
20934
if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
20935
return Builder.CreateFence(AtomicOrdering::Release);
20936
return nullptr;
20937
}
20938
20939
Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
20940
Instruction *Inst,
20941
AtomicOrdering Ord) const {
20942
if (Subtarget.hasStdExtZtso()) {
20943
if (isa<StoreInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
20944
return Builder.CreateFence(Ord);
20945
return nullptr;
20946
}
20947
20948
if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
20949
return Builder.CreateFence(AtomicOrdering::Acquire);
20950
if (Subtarget.enableTrailingSeqCstFence() && isa<StoreInst>(Inst) &&
20951
Ord == AtomicOrdering::SequentiallyConsistent)
20952
return Builder.CreateFence(AtomicOrdering::SequentiallyConsistent);
20953
return nullptr;
20954
}
20955
20956
TargetLowering::AtomicExpansionKind
20957
RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
20958
// atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
20959
// point operations can't be used in an lr/sc sequence without breaking the
20960
// forward-progress guarantee.
20961
if (AI->isFloatingPointOperation() ||
20962
AI->getOperation() == AtomicRMWInst::UIncWrap ||
20963
AI->getOperation() == AtomicRMWInst::UDecWrap)
20964
return AtomicExpansionKind::CmpXChg;
20965
20966
// Don't expand forced atomics, we want to have __sync libcalls instead.
20967
if (Subtarget.hasForcedAtomics())
20968
return AtomicExpansionKind::None;
20969
20970
unsigned Size = AI->getType()->getPrimitiveSizeInBits();
20971
if (AI->getOperation() == AtomicRMWInst::Nand) {
20972
if (Subtarget.hasStdExtZacas() &&
20973
(Size >= 32 || Subtarget.hasStdExtZabha()))
20974
return AtomicExpansionKind::CmpXChg;
20975
if (Size < 32)
20976
return AtomicExpansionKind::MaskedIntrinsic;
20977
}
20978
20979
if (Size < 32 && !Subtarget.hasStdExtZabha())
20980
return AtomicExpansionKind::MaskedIntrinsic;
20981
20982
return AtomicExpansionKind::None;
20983
}
20984
20985
static Intrinsic::ID
20986
getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
20987
if (XLen == 32) {
20988
switch (BinOp) {
20989
default:
20990
llvm_unreachable("Unexpected AtomicRMW BinOp");
20991
case AtomicRMWInst::Xchg:
20992
return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
20993
case AtomicRMWInst::Add:
20994
return Intrinsic::riscv_masked_atomicrmw_add_i32;
20995
case AtomicRMWInst::Sub:
20996
return Intrinsic::riscv_masked_atomicrmw_sub_i32;
20997
case AtomicRMWInst::Nand:
20998
return Intrinsic::riscv_masked_atomicrmw_nand_i32;
20999
case AtomicRMWInst::Max:
21000
return Intrinsic::riscv_masked_atomicrmw_max_i32;
21001
case AtomicRMWInst::Min:
21002
return Intrinsic::riscv_masked_atomicrmw_min_i32;
21003
case AtomicRMWInst::UMax:
21004
return Intrinsic::riscv_masked_atomicrmw_umax_i32;
21005
case AtomicRMWInst::UMin:
21006
return Intrinsic::riscv_masked_atomicrmw_umin_i32;
21007
}
21008
}
21009
21010
if (XLen == 64) {
21011
switch (BinOp) {
21012
default:
21013
llvm_unreachable("Unexpected AtomicRMW BinOp");
21014
case AtomicRMWInst::Xchg:
21015
return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
21016
case AtomicRMWInst::Add:
21017
return Intrinsic::riscv_masked_atomicrmw_add_i64;
21018
case AtomicRMWInst::Sub:
21019
return Intrinsic::riscv_masked_atomicrmw_sub_i64;
21020
case AtomicRMWInst::Nand:
21021
return Intrinsic::riscv_masked_atomicrmw_nand_i64;
21022
case AtomicRMWInst::Max:
21023
return Intrinsic::riscv_masked_atomicrmw_max_i64;
21024
case AtomicRMWInst::Min:
21025
return Intrinsic::riscv_masked_atomicrmw_min_i64;
21026
case AtomicRMWInst::UMax:
21027
return Intrinsic::riscv_masked_atomicrmw_umax_i64;
21028
case AtomicRMWInst::UMin:
21029
return Intrinsic::riscv_masked_atomicrmw_umin_i64;
21030
}
21031
}
21032
21033
llvm_unreachable("Unexpected XLen\n");
21034
}
21035
21036
Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
21037
IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
21038
Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
21039
// In the case of an atomicrmw xchg with a constant 0/-1 operand, replace
21040
// the atomic instruction with an AtomicRMWInst::And/Or with appropriate
21041
// mask, as this produces better code than the LR/SC loop emitted by
21042
// int_riscv_masked_atomicrmw_xchg.
21043
if (AI->getOperation() == AtomicRMWInst::Xchg &&
21044
isa<ConstantInt>(AI->getValOperand())) {
21045
ConstantInt *CVal = cast<ConstantInt>(AI->getValOperand());
21046
if (CVal->isZero())
21047
return Builder.CreateAtomicRMW(AtomicRMWInst::And, AlignedAddr,
21048
Builder.CreateNot(Mask, "Inv_Mask"),
21049
AI->getAlign(), Ord);
21050
if (CVal->isMinusOne())
21051
return Builder.CreateAtomicRMW(AtomicRMWInst::Or, AlignedAddr, Mask,
21052
AI->getAlign(), Ord);
21053
}
21054
21055
unsigned XLen = Subtarget.getXLen();
21056
Value *Ordering =
21057
Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
21058
Type *Tys[] = {AlignedAddr->getType()};
21059
Function *LrwOpScwLoop = Intrinsic::getDeclaration(
21060
AI->getModule(),
21061
getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
21062
21063
if (XLen == 64) {
21064
Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
21065
Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
21066
ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
21067
}
21068
21069
Value *Result;
21070
21071
// Must pass the shift amount needed to sign extend the loaded value prior
21072
// to performing a signed comparison for min/max. ShiftAmt is the number of
21073
// bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
21074
// is the number of bits to left+right shift the value in order to
21075
// sign-extend.
21076
if (AI->getOperation() == AtomicRMWInst::Min ||
21077
AI->getOperation() == AtomicRMWInst::Max) {
21078
const DataLayout &DL = AI->getDataLayout();
21079
unsigned ValWidth =
21080
DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
21081
Value *SextShamt =
21082
Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
21083
Result = Builder.CreateCall(LrwOpScwLoop,
21084
{AlignedAddr, Incr, Mask, SextShamt, Ordering});
21085
} else {
21086
Result =
21087
Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
21088
}
21089
21090
if (XLen == 64)
21091
Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
21092
return Result;
21093
}
21094
21095
TargetLowering::AtomicExpansionKind
21096
RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
21097
AtomicCmpXchgInst *CI) const {
21098
// Don't expand forced atomics, we want to have __sync libcalls instead.
21099
if (Subtarget.hasForcedAtomics())
21100
return AtomicExpansionKind::None;
21101
21102
unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
21103
if (!(Subtarget.hasStdExtZabha() && Subtarget.hasStdExtZacas()) &&
21104
(Size == 8 || Size == 16))
21105
return AtomicExpansionKind::MaskedIntrinsic;
21106
return AtomicExpansionKind::None;
21107
}
21108
21109
Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
21110
IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
21111
Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
21112
unsigned XLen = Subtarget.getXLen();
21113
Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
21114
Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
21115
if (XLen == 64) {
21116
CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
21117
NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
21118
Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
21119
CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
21120
}
21121
Type *Tys[] = {AlignedAddr->getType()};
21122
Function *MaskedCmpXchg =
21123
Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
21124
Value *Result = Builder.CreateCall(
21125
MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
21126
if (XLen == 64)
21127
Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
21128
return Result;
21129
}
21130
21131
bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(SDValue Extend,
21132
EVT DataVT) const {
21133
// We have indexed loads for all supported EEW types. Indices are always
21134
// zero extended.
21135
return Extend.getOpcode() == ISD::ZERO_EXTEND &&
21136
isTypeLegal(Extend.getValueType()) &&
21137
isTypeLegal(Extend.getOperand(0).getValueType()) &&
21138
Extend.getOperand(0).getValueType().getVectorElementType() != MVT::i1;
21139
}
21140
21141
bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
21142
EVT VT) const {
21143
if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
21144
return false;
21145
21146
switch (FPVT.getSimpleVT().SimpleTy) {
21147
case MVT::f16:
21148
return Subtarget.hasStdExtZfhmin();
21149
case MVT::f32:
21150
return Subtarget.hasStdExtF();
21151
case MVT::f64:
21152
return Subtarget.hasStdExtD();
21153
default:
21154
return false;
21155
}
21156
}
21157
21158
unsigned RISCVTargetLowering::getJumpTableEncoding() const {
21159
// If we are using the small code model, we can reduce size of jump table
21160
// entry to 4 bytes.
21161
if (Subtarget.is64Bit() && !isPositionIndependent() &&
21162
getTargetMachine().getCodeModel() == CodeModel::Small) {
21163
return MachineJumpTableInfo::EK_Custom32;
21164
}
21165
return TargetLowering::getJumpTableEncoding();
21166
}
21167
21168
const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
21169
const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
21170
unsigned uid, MCContext &Ctx) const {
21171
assert(Subtarget.is64Bit() && !isPositionIndependent() &&
21172
getTargetMachine().getCodeModel() == CodeModel::Small);
21173
return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
21174
}
21175
21176
bool RISCVTargetLowering::isVScaleKnownToBeAPowerOfTwo() const {
21177
// We define vscale to be VLEN/RVVBitsPerBlock. VLEN is always a power
21178
// of two >= 64, and RVVBitsPerBlock is 64. Thus, vscale must be
21179
// a power of two as well.
21180
// FIXME: This doesn't work for zve32, but that's already broken
21181
// elsewhere for the same reason.
21182
assert(Subtarget.getRealMinVLen() >= 64 && "zve32* unsupported");
21183
static_assert(RISCV::RVVBitsPerBlock == 64,
21184
"RVVBitsPerBlock changed, audit needed");
21185
return true;
21186
}
21187
21188
bool RISCVTargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
21189
SDValue &Offset,
21190
ISD::MemIndexedMode &AM,
21191
SelectionDAG &DAG) const {
21192
// Target does not support indexed loads.
21193
if (!Subtarget.hasVendorXTHeadMemIdx())
21194
return false;
21195
21196
if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
21197
return false;
21198
21199
Base = Op->getOperand(0);
21200
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
21201
int64_t RHSC = RHS->getSExtValue();
21202
if (Op->getOpcode() == ISD::SUB)
21203
RHSC = -(uint64_t)RHSC;
21204
21205
// The constants that can be encoded in the THeadMemIdx instructions
21206
// are of the form (sign_extend(imm5) << imm2).
21207
bool isLegalIndexedOffset = false;
21208
for (unsigned i = 0; i < 4; i++)
21209
if (isInt<5>(RHSC >> i) && ((RHSC % (1LL << i)) == 0)) {
21210
isLegalIndexedOffset = true;
21211
break;
21212
}
21213
21214
if (!isLegalIndexedOffset)
21215
return false;
21216
21217
Offset = Op->getOperand(1);
21218
return true;
21219
}
21220
21221
return false;
21222
}
21223
21224
bool RISCVTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
21225
SDValue &Offset,
21226
ISD::MemIndexedMode &AM,
21227
SelectionDAG &DAG) const {
21228
EVT VT;
21229
SDValue Ptr;
21230
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
21231
VT = LD->getMemoryVT();
21232
Ptr = LD->getBasePtr();
21233
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
21234
VT = ST->getMemoryVT();
21235
Ptr = ST->getBasePtr();
21236
} else
21237
return false;
21238
21239
if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, DAG))
21240
return false;
21241
21242
AM = ISD::PRE_INC;
21243
return true;
21244
}
21245
21246
bool RISCVTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
21247
SDValue &Base,
21248
SDValue &Offset,
21249
ISD::MemIndexedMode &AM,
21250
SelectionDAG &DAG) const {
21251
if (Subtarget.hasVendorXCVmem()) {
21252
if (Op->getOpcode() != ISD::ADD)
21253
return false;
21254
21255
if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N))
21256
Base = LS->getBasePtr();
21257
else
21258
return false;
21259
21260
if (Base == Op->getOperand(0))
21261
Offset = Op->getOperand(1);
21262
else if (Base == Op->getOperand(1))
21263
Offset = Op->getOperand(0);
21264
else
21265
return false;
21266
21267
AM = ISD::POST_INC;
21268
return true;
21269
}
21270
21271
EVT VT;
21272
SDValue Ptr;
21273
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
21274
VT = LD->getMemoryVT();
21275
Ptr = LD->getBasePtr();
21276
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
21277
VT = ST->getMemoryVT();
21278
Ptr = ST->getBasePtr();
21279
} else
21280
return false;
21281
21282
if (!getIndexedAddressParts(Op, Base, Offset, AM, DAG))
21283
return false;
21284
// Post-indexing updates the base, so it's not a valid transform
21285
// if that's not the same as the load's pointer.
21286
if (Ptr != Base)
21287
return false;
21288
21289
AM = ISD::POST_INC;
21290
return true;
21291
}
21292
21293
bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
21294
EVT VT) const {
21295
EVT SVT = VT.getScalarType();
21296
21297
if (!SVT.isSimple())
21298
return false;
21299
21300
switch (SVT.getSimpleVT().SimpleTy) {
21301
case MVT::f16:
21302
return VT.isVector() ? Subtarget.hasVInstructionsF16()
21303
: Subtarget.hasStdExtZfhOrZhinx();
21304
case MVT::f32:
21305
return Subtarget.hasStdExtFOrZfinx();
21306
case MVT::f64:
21307
return Subtarget.hasStdExtDOrZdinx();
21308
default:
21309
break;
21310
}
21311
21312
return false;
21313
}
21314
21315
ISD::NodeType RISCVTargetLowering::getExtendForAtomicCmpSwapArg() const {
21316
// Zacas will use amocas.w which does not require extension.
21317
return Subtarget.hasStdExtZacas() ? ISD::ANY_EXTEND : ISD::SIGN_EXTEND;
21318
}
21319
21320
Register RISCVTargetLowering::getExceptionPointerRegister(
21321
const Constant *PersonalityFn) const {
21322
return RISCV::X10;
21323
}
21324
21325
Register RISCVTargetLowering::getExceptionSelectorRegister(
21326
const Constant *PersonalityFn) const {
21327
return RISCV::X11;
21328
}
21329
21330
bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
21331
// Return false to suppress the unnecessary extensions if the LibCall
21332
// arguments or return value is a float narrower than XLEN on a soft FP ABI.
21333
if (Subtarget.isSoftFPABI() && (Type.isFloatingPoint() && !Type.isVector() &&
21334
Type.getSizeInBits() < Subtarget.getXLen()))
21335
return false;
21336
21337
return true;
21338
}
21339
21340
bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
21341
if (Subtarget.is64Bit() && Type == MVT::i32)
21342
return true;
21343
21344
return IsSigned;
21345
}
21346
21347
bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
21348
SDValue C) const {
21349
// Check integral scalar types.
21350
const bool HasZmmul = Subtarget.hasStdExtZmmul();
21351
if (!VT.isScalarInteger())
21352
return false;
21353
21354
// Omit the optimization if the sub target has the M extension and the data
21355
// size exceeds XLen.
21356
if (HasZmmul && VT.getSizeInBits() > Subtarget.getXLen())
21357
return false;
21358
21359
if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
21360
// Break the MUL to a SLLI and an ADD/SUB.
21361
const APInt &Imm = ConstNode->getAPIntValue();
21362
if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
21363
(1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
21364
return true;
21365
21366
// Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
21367
if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
21368
((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
21369
(Imm - 8).isPowerOf2()))
21370
return true;
21371
21372
// Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
21373
// a pair of LUI/ADDI.
21374
if (!Imm.isSignedIntN(12) && Imm.countr_zero() < 12 &&
21375
ConstNode->hasOneUse()) {
21376
APInt ImmS = Imm.ashr(Imm.countr_zero());
21377
if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
21378
(1 - ImmS).isPowerOf2())
21379
return true;
21380
}
21381
}
21382
21383
return false;
21384
}
21385
21386
bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
21387
SDValue ConstNode) const {
21388
// Let the DAGCombiner decide for vectors.
21389
EVT VT = AddNode.getValueType();
21390
if (VT.isVector())
21391
return true;
21392
21393
// Let the DAGCombiner decide for larger types.
21394
if (VT.getScalarSizeInBits() > Subtarget.getXLen())
21395
return true;
21396
21397
// It is worse if c1 is simm12 while c1*c2 is not.
21398
ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
21399
ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
21400
const APInt &C1 = C1Node->getAPIntValue();
21401
const APInt &C2 = C2Node->getAPIntValue();
21402
if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
21403
return false;
21404
21405
// Default to true and let the DAGCombiner decide.
21406
return true;
21407
}
21408
21409
bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
21410
EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
21411
unsigned *Fast) const {
21412
if (!VT.isVector()) {
21413
if (Fast)
21414
*Fast = Subtarget.enableUnalignedScalarMem();
21415
return Subtarget.enableUnalignedScalarMem();
21416
}
21417
21418
// All vector implementations must support element alignment
21419
EVT ElemVT = VT.getVectorElementType();
21420
if (Alignment >= ElemVT.getStoreSize()) {
21421
if (Fast)
21422
*Fast = 1;
21423
return true;
21424
}
21425
21426
// Note: We lower an unmasked unaligned vector access to an equally sized
21427
// e8 element type access. Given this, we effectively support all unmasked
21428
// misaligned accesses. TODO: Work through the codegen implications of
21429
// allowing such accesses to be formed, and considered fast.
21430
if (Fast)
21431
*Fast = Subtarget.enableUnalignedVectorMem();
21432
return Subtarget.enableUnalignedVectorMem();
21433
}
21434
21435
21436
EVT RISCVTargetLowering::getOptimalMemOpType(const MemOp &Op,
21437
const AttributeList &FuncAttributes) const {
21438
if (!Subtarget.hasVInstructions())
21439
return MVT::Other;
21440
21441
if (FuncAttributes.hasFnAttr(Attribute::NoImplicitFloat))
21442
return MVT::Other;
21443
21444
// We use LMUL1 memory operations here for a non-obvious reason. Our caller
21445
// has an expansion threshold, and we want the number of hardware memory
21446
// operations to correspond roughly to that threshold. LMUL>1 operations
21447
// are typically expanded linearly internally, and thus correspond to more
21448
// than one actual memory operation. Note that store merging and load
21449
// combining will typically form larger LMUL operations from the LMUL1
21450
// operations emitted here, and that's okay because combining isn't
21451
// introducing new memory operations; it's just merging existing ones.
21452
const unsigned MinVLenInBytes = Subtarget.getRealMinVLen()/8;
21453
if (Op.size() < MinVLenInBytes)
21454
// TODO: Figure out short memops. For the moment, do the default thing
21455
// which ends up using scalar sequences.
21456
return MVT::Other;
21457
21458
// Prefer i8 for non-zero memset as it allows us to avoid materializing
21459
// a large scalar constant and instead use vmv.v.x/i to do the
21460
// broadcast. For everything else, prefer ELenVT to minimize VL and thus
21461
// maximize the chance we can encode the size in the vsetvli.
21462
MVT ELenVT = MVT::getIntegerVT(Subtarget.getELen());
21463
MVT PreferredVT = (Op.isMemset() && !Op.isZeroMemset()) ? MVT::i8 : ELenVT;
21464
21465
// Do we have sufficient alignment for our preferred VT? If not, revert
21466
// to largest size allowed by our alignment criteria.
21467
if (PreferredVT != MVT::i8 && !Subtarget.enableUnalignedVectorMem()) {
21468
Align RequiredAlign(PreferredVT.getStoreSize());
21469
if (Op.isFixedDstAlign())
21470
RequiredAlign = std::min(RequiredAlign, Op.getDstAlign());
21471
if (Op.isMemcpy())
21472
RequiredAlign = std::min(RequiredAlign, Op.getSrcAlign());
21473
PreferredVT = MVT::getIntegerVT(RequiredAlign.value() * 8);
21474
}
21475
return MVT::getVectorVT(PreferredVT, MinVLenInBytes/PreferredVT.getStoreSize());
21476
}
21477
21478
bool RISCVTargetLowering::splitValueIntoRegisterParts(
21479
SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
21480
unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
21481
bool IsABIRegCopy = CC.has_value();
21482
EVT ValueVT = Val.getValueType();
21483
if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) &&
21484
PartVT == MVT::f32) {
21485
// Cast the [b]f16 to i16, extend to i32, pad with ones to make a float
21486
// nan, and cast to f32.
21487
Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
21488
Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
21489
Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
21490
DAG.getConstant(0xFFFF0000, DL, MVT::i32));
21491
Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
21492
Parts[0] = Val;
21493
return true;
21494
}
21495
21496
if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
21497
LLVMContext &Context = *DAG.getContext();
21498
EVT ValueEltVT = ValueVT.getVectorElementType();
21499
EVT PartEltVT = PartVT.getVectorElementType();
21500
unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinValue();
21501
unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinValue();
21502
if (PartVTBitSize % ValueVTBitSize == 0) {
21503
assert(PartVTBitSize >= ValueVTBitSize);
21504
// If the element types are different, bitcast to the same element type of
21505
// PartVT first.
21506
// Give an example here, we want copy a <vscale x 1 x i8> value to
21507
// <vscale x 4 x i16>.
21508
// We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
21509
// subvector, then we can bitcast to <vscale x 4 x i16>.
21510
if (ValueEltVT != PartEltVT) {
21511
if (PartVTBitSize > ValueVTBitSize) {
21512
unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
21513
assert(Count != 0 && "The number of element should not be zero.");
21514
EVT SameEltTypeVT =
21515
EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
21516
Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
21517
DAG.getUNDEF(SameEltTypeVT), Val,
21518
DAG.getVectorIdxConstant(0, DL));
21519
}
21520
Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
21521
} else {
21522
Val =
21523
DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
21524
Val, DAG.getVectorIdxConstant(0, DL));
21525
}
21526
Parts[0] = Val;
21527
return true;
21528
}
21529
}
21530
return false;
21531
}
21532
21533
SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
21534
SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
21535
MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const {
21536
bool IsABIRegCopy = CC.has_value();
21537
if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) &&
21538
PartVT == MVT::f32) {
21539
SDValue Val = Parts[0];
21540
21541
// Cast the f32 to i32, truncate to i16, and cast back to [b]f16.
21542
Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
21543
Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
21544
Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
21545
return Val;
21546
}
21547
21548
if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
21549
LLVMContext &Context = *DAG.getContext();
21550
SDValue Val = Parts[0];
21551
EVT ValueEltVT = ValueVT.getVectorElementType();
21552
EVT PartEltVT = PartVT.getVectorElementType();
21553
unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinValue();
21554
unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinValue();
21555
if (PartVTBitSize % ValueVTBitSize == 0) {
21556
assert(PartVTBitSize >= ValueVTBitSize);
21557
EVT SameEltTypeVT = ValueVT;
21558
// If the element types are different, convert it to the same element type
21559
// of PartVT.
21560
// Give an example here, we want copy a <vscale x 1 x i8> value from
21561
// <vscale x 4 x i16>.
21562
// We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
21563
// then we can extract <vscale x 1 x i8>.
21564
if (ValueEltVT != PartEltVT) {
21565
unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
21566
assert(Count != 0 && "The number of element should not be zero.");
21567
SameEltTypeVT =
21568
EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
21569
Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
21570
}
21571
Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
21572
DAG.getVectorIdxConstant(0, DL));
21573
return Val;
21574
}
21575
}
21576
return SDValue();
21577
}
21578
21579
bool RISCVTargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const {
21580
// When aggressively optimizing for code size, we prefer to use a div
21581
// instruction, as it is usually smaller than the alternative sequence.
21582
// TODO: Add vector division?
21583
bool OptSize = Attr.hasFnAttr(Attribute::MinSize);
21584
return OptSize && !VT.isVector();
21585
}
21586
21587
bool RISCVTargetLowering::preferScalarizeSplat(SDNode *N) const {
21588
// Scalarize zero_ext and sign_ext might stop match to widening instruction in
21589
// some situation.
21590
unsigned Opc = N->getOpcode();
21591
if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND)
21592
return false;
21593
return true;
21594
}
21595
21596
static Value *useTpOffset(IRBuilderBase &IRB, unsigned Offset) {
21597
Module *M = IRB.GetInsertBlock()->getParent()->getParent();
21598
Function *ThreadPointerFunc =
21599
Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
21600
return IRB.CreateConstGEP1_32(IRB.getInt8Ty(),
21601
IRB.CreateCall(ThreadPointerFunc), Offset);
21602
}
21603
21604
Value *RISCVTargetLowering::getIRStackGuard(IRBuilderBase &IRB) const {
21605
// Fuchsia provides a fixed TLS slot for the stack cookie.
21606
// <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
21607
if (Subtarget.isTargetFuchsia())
21608
return useTpOffset(IRB, -0x10);
21609
21610
// Android provides a fixed TLS slot for the stack cookie. See the definition
21611
// of TLS_SLOT_STACK_GUARD in
21612
// https://android.googlesource.com/platform/bionic/+/main/libc/platform/bionic/tls_defines.h
21613
if (Subtarget.isTargetAndroid())
21614
return useTpOffset(IRB, -0x18);
21615
21616
return TargetLowering::getIRStackGuard(IRB);
21617
}
21618
21619
bool RISCVTargetLowering::isLegalInterleavedAccessType(
21620
VectorType *VTy, unsigned Factor, Align Alignment, unsigned AddrSpace,
21621
const DataLayout &DL) const {
21622
EVT VT = getValueType(DL, VTy);
21623
// Don't lower vlseg/vsseg for vector types that can't be split.
21624
if (!isTypeLegal(VT))
21625
return false;
21626
21627
if (!isLegalElementTypeForRVV(VT.getScalarType()) ||
21628
!allowsMemoryAccessForAlignment(VTy->getContext(), DL, VT, AddrSpace,
21629
Alignment))
21630
return false;
21631
21632
MVT ContainerVT = VT.getSimpleVT();
21633
21634
if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
21635
if (!Subtarget.useRVVForFixedLengthVectors())
21636
return false;
21637
// Sometimes the interleaved access pass picks up splats as interleaves of
21638
// one element. Don't lower these.
21639
if (FVTy->getNumElements() < 2)
21640
return false;
21641
21642
ContainerVT = getContainerForFixedLengthVector(VT.getSimpleVT());
21643
} else {
21644
// The intrinsics for scalable vectors are not overloaded on pointer type
21645
// and can only handle the default address space.
21646
if (AddrSpace)
21647
return false;
21648
}
21649
21650
// Need to make sure that EMUL * NFIELDS ≤ 8
21651
auto [LMUL, Fractional] = RISCVVType::decodeVLMUL(getLMUL(ContainerVT));
21652
if (Fractional)
21653
return true;
21654
return Factor * LMUL <= 8;
21655
}
21656
21657
bool RISCVTargetLowering::isLegalStridedLoadStore(EVT DataType,
21658
Align Alignment) const {
21659
if (!Subtarget.hasVInstructions())
21660
return false;
21661
21662
// Only support fixed vectors if we know the minimum vector size.
21663
if (DataType.isFixedLengthVector() && !Subtarget.useRVVForFixedLengthVectors())
21664
return false;
21665
21666
EVT ScalarType = DataType.getScalarType();
21667
if (!isLegalElementTypeForRVV(ScalarType))
21668
return false;
21669
21670
if (!Subtarget.enableUnalignedVectorMem() &&
21671
Alignment < ScalarType.getStoreSize())
21672
return false;
21673
21674
return true;
21675
}
21676
21677
static const Intrinsic::ID FixedVlsegIntrIds[] = {
21678
Intrinsic::riscv_seg2_load, Intrinsic::riscv_seg3_load,
21679
Intrinsic::riscv_seg4_load, Intrinsic::riscv_seg5_load,
21680
Intrinsic::riscv_seg6_load, Intrinsic::riscv_seg7_load,
21681
Intrinsic::riscv_seg8_load};
21682
21683
/// Lower an interleaved load into a vlsegN intrinsic.
21684
///
21685
/// E.g. Lower an interleaved load (Factor = 2):
21686
/// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
21687
/// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
21688
/// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
21689
///
21690
/// Into:
21691
/// %ld2 = { <4 x i32>, <4 x i32> } call llvm.riscv.seg2.load.v4i32.p0.i64(
21692
/// %ptr, i64 4)
21693
/// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
21694
/// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
21695
bool RISCVTargetLowering::lowerInterleavedLoad(
21696
LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
21697
ArrayRef<unsigned> Indices, unsigned Factor) const {
21698
IRBuilder<> Builder(LI);
21699
21700
auto *VTy = cast<FixedVectorType>(Shuffles[0]->getType());
21701
if (!isLegalInterleavedAccessType(VTy, Factor, LI->getAlign(),
21702
LI->getPointerAddressSpace(),
21703
LI->getDataLayout()))
21704
return false;
21705
21706
auto *XLenTy = Type::getIntNTy(LI->getContext(), Subtarget.getXLen());
21707
21708
Function *VlsegNFunc =
21709
Intrinsic::getDeclaration(LI->getModule(), FixedVlsegIntrIds[Factor - 2],
21710
{VTy, LI->getPointerOperandType(), XLenTy});
21711
21712
Value *VL = ConstantInt::get(XLenTy, VTy->getNumElements());
21713
21714
CallInst *VlsegN =
21715
Builder.CreateCall(VlsegNFunc, {LI->getPointerOperand(), VL});
21716
21717
for (unsigned i = 0; i < Shuffles.size(); i++) {
21718
Value *SubVec = Builder.CreateExtractValue(VlsegN, Indices[i]);
21719
Shuffles[i]->replaceAllUsesWith(SubVec);
21720
}
21721
21722
return true;
21723
}
21724
21725
static const Intrinsic::ID FixedVssegIntrIds[] = {
21726
Intrinsic::riscv_seg2_store, Intrinsic::riscv_seg3_store,
21727
Intrinsic::riscv_seg4_store, Intrinsic::riscv_seg5_store,
21728
Intrinsic::riscv_seg6_store, Intrinsic::riscv_seg7_store,
21729
Intrinsic::riscv_seg8_store};
21730
21731
/// Lower an interleaved store into a vssegN intrinsic.
21732
///
21733
/// E.g. Lower an interleaved store (Factor = 3):
21734
/// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
21735
/// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
21736
/// store <12 x i32> %i.vec, <12 x i32>* %ptr
21737
///
21738
/// Into:
21739
/// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
21740
/// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
21741
/// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
21742
/// call void llvm.riscv.seg3.store.v4i32.p0.i64(%sub.v0, %sub.v1, %sub.v2,
21743
/// %ptr, i32 4)
21744
///
21745
/// Note that the new shufflevectors will be removed and we'll only generate one
21746
/// vsseg3 instruction in CodeGen.
21747
bool RISCVTargetLowering::lowerInterleavedStore(StoreInst *SI,
21748
ShuffleVectorInst *SVI,
21749
unsigned Factor) const {
21750
IRBuilder<> Builder(SI);
21751
auto *ShuffleVTy = cast<FixedVectorType>(SVI->getType());
21752
// Given SVI : <n*factor x ty>, then VTy : <n x ty>
21753
auto *VTy = FixedVectorType::get(ShuffleVTy->getElementType(),
21754
ShuffleVTy->getNumElements() / Factor);
21755
if (!isLegalInterleavedAccessType(VTy, Factor, SI->getAlign(),
21756
SI->getPointerAddressSpace(),
21757
SI->getDataLayout()))
21758
return false;
21759
21760
auto *XLenTy = Type::getIntNTy(SI->getContext(), Subtarget.getXLen());
21761
21762
Function *VssegNFunc =
21763
Intrinsic::getDeclaration(SI->getModule(), FixedVssegIntrIds[Factor - 2],
21764
{VTy, SI->getPointerOperandType(), XLenTy});
21765
21766
auto Mask = SVI->getShuffleMask();
21767
SmallVector<Value *, 10> Ops;
21768
21769
for (unsigned i = 0; i < Factor; i++) {
21770
Value *Shuffle = Builder.CreateShuffleVector(
21771
SVI->getOperand(0), SVI->getOperand(1),
21772
createSequentialMask(Mask[i], VTy->getNumElements(), 0));
21773
Ops.push_back(Shuffle);
21774
}
21775
// This VL should be OK (should be executable in one vsseg instruction,
21776
// potentially under larger LMULs) because we checked that the fixed vector
21777
// type fits in isLegalInterleavedAccessType
21778
Value *VL = ConstantInt::get(XLenTy, VTy->getNumElements());
21779
Ops.append({SI->getPointerOperand(), VL});
21780
21781
Builder.CreateCall(VssegNFunc, Ops);
21782
21783
return true;
21784
}
21785
21786
bool RISCVTargetLowering::lowerDeinterleaveIntrinsicToLoad(IntrinsicInst *DI,
21787
LoadInst *LI) const {
21788
assert(LI->isSimple());
21789
IRBuilder<> Builder(LI);
21790
21791
// Only deinterleave2 supported at present.
21792
if (DI->getIntrinsicID() != Intrinsic::vector_deinterleave2)
21793
return false;
21794
21795
unsigned Factor = 2;
21796
21797
VectorType *VTy = cast<VectorType>(DI->getOperand(0)->getType());
21798
VectorType *ResVTy = cast<VectorType>(DI->getType()->getContainedType(0));
21799
21800
if (!isLegalInterleavedAccessType(ResVTy, Factor, LI->getAlign(),
21801
LI->getPointerAddressSpace(),
21802
LI->getDataLayout()))
21803
return false;
21804
21805
Function *VlsegNFunc;
21806
Value *VL;
21807
Type *XLenTy = Type::getIntNTy(LI->getContext(), Subtarget.getXLen());
21808
SmallVector<Value *, 10> Ops;
21809
21810
if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
21811
VlsegNFunc = Intrinsic::getDeclaration(
21812
LI->getModule(), FixedVlsegIntrIds[Factor - 2],
21813
{ResVTy, LI->getPointerOperandType(), XLenTy});
21814
VL = ConstantInt::get(XLenTy, FVTy->getNumElements());
21815
} else {
21816
static const Intrinsic::ID IntrIds[] = {
21817
Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3,
21818
Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5,
21819
Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7,
21820
Intrinsic::riscv_vlseg8};
21821
21822
VlsegNFunc = Intrinsic::getDeclaration(LI->getModule(), IntrIds[Factor - 2],
21823
{ResVTy, XLenTy});
21824
VL = Constant::getAllOnesValue(XLenTy);
21825
Ops.append(Factor, PoisonValue::get(ResVTy));
21826
}
21827
21828
Ops.append({LI->getPointerOperand(), VL});
21829
21830
Value *Vlseg = Builder.CreateCall(VlsegNFunc, Ops);
21831
DI->replaceAllUsesWith(Vlseg);
21832
21833
return true;
21834
}
21835
21836
bool RISCVTargetLowering::lowerInterleaveIntrinsicToStore(IntrinsicInst *II,
21837
StoreInst *SI) const {
21838
assert(SI->isSimple());
21839
IRBuilder<> Builder(SI);
21840
21841
// Only interleave2 supported at present.
21842
if (II->getIntrinsicID() != Intrinsic::vector_interleave2)
21843
return false;
21844
21845
unsigned Factor = 2;
21846
21847
VectorType *VTy = cast<VectorType>(II->getType());
21848
VectorType *InVTy = cast<VectorType>(II->getOperand(0)->getType());
21849
21850
if (!isLegalInterleavedAccessType(InVTy, Factor, SI->getAlign(),
21851
SI->getPointerAddressSpace(),
21852
SI->getDataLayout()))
21853
return false;
21854
21855
Function *VssegNFunc;
21856
Value *VL;
21857
Type *XLenTy = Type::getIntNTy(SI->getContext(), Subtarget.getXLen());
21858
21859
if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
21860
VssegNFunc = Intrinsic::getDeclaration(
21861
SI->getModule(), FixedVssegIntrIds[Factor - 2],
21862
{InVTy, SI->getPointerOperandType(), XLenTy});
21863
VL = ConstantInt::get(XLenTy, FVTy->getNumElements());
21864
} else {
21865
static const Intrinsic::ID IntrIds[] = {
21866
Intrinsic::riscv_vsseg2, Intrinsic::riscv_vsseg3,
21867
Intrinsic::riscv_vsseg4, Intrinsic::riscv_vsseg5,
21868
Intrinsic::riscv_vsseg6, Intrinsic::riscv_vsseg7,
21869
Intrinsic::riscv_vsseg8};
21870
21871
VssegNFunc = Intrinsic::getDeclaration(SI->getModule(), IntrIds[Factor - 2],
21872
{InVTy, XLenTy});
21873
VL = Constant::getAllOnesValue(XLenTy);
21874
}
21875
21876
Builder.CreateCall(VssegNFunc, {II->getOperand(0), II->getOperand(1),
21877
SI->getPointerOperand(), VL});
21878
21879
return true;
21880
}
21881
21882
MachineInstr *
21883
RISCVTargetLowering::EmitKCFICheck(MachineBasicBlock &MBB,
21884
MachineBasicBlock::instr_iterator &MBBI,
21885
const TargetInstrInfo *TII) const {
21886
assert(MBBI->isCall() && MBBI->getCFIType() &&
21887
"Invalid call instruction for a KCFI check");
21888
assert(is_contained({RISCV::PseudoCALLIndirect, RISCV::PseudoTAILIndirect},
21889
MBBI->getOpcode()));
21890
21891
MachineOperand &Target = MBBI->getOperand(0);
21892
Target.setIsRenamable(false);
21893
21894
return BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(RISCV::KCFI_CHECK))
21895
.addReg(Target.getReg())
21896
.addImm(MBBI->getCFIType())
21897
.getInstr();
21898
}
21899
21900
#define GET_REGISTER_MATCHER
21901
#include "RISCVGenAsmMatcher.inc"
21902
21903
Register
21904
RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
21905
const MachineFunction &MF) const {
21906
Register Reg = MatchRegisterAltName(RegName);
21907
if (Reg == RISCV::NoRegister)
21908
Reg = MatchRegisterName(RegName);
21909
if (Reg == RISCV::NoRegister)
21910
report_fatal_error(
21911
Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
21912
BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
21913
if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
21914
report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
21915
StringRef(RegName) + "\"."));
21916
return Reg;
21917
}
21918
21919
MachineMemOperand::Flags
21920
RISCVTargetLowering::getTargetMMOFlags(const Instruction &I) const {
21921
const MDNode *NontemporalInfo = I.getMetadata(LLVMContext::MD_nontemporal);
21922
21923
if (NontemporalInfo == nullptr)
21924
return MachineMemOperand::MONone;
21925
21926
// 1 for default value work as __RISCV_NTLH_ALL
21927
// 2 -> __RISCV_NTLH_INNERMOST_PRIVATE
21928
// 3 -> __RISCV_NTLH_ALL_PRIVATE
21929
// 4 -> __RISCV_NTLH_INNERMOST_SHARED
21930
// 5 -> __RISCV_NTLH_ALL
21931
int NontemporalLevel = 5;
21932
const MDNode *RISCVNontemporalInfo =
21933
I.getMetadata("riscv-nontemporal-domain");
21934
if (RISCVNontemporalInfo != nullptr)
21935
NontemporalLevel =
21936
cast<ConstantInt>(
21937
cast<ConstantAsMetadata>(RISCVNontemporalInfo->getOperand(0))
21938
->getValue())
21939
->getZExtValue();
21940
21941
assert((1 <= NontemporalLevel && NontemporalLevel <= 5) &&
21942
"RISC-V target doesn't support this non-temporal domain.");
21943
21944
NontemporalLevel -= 2;
21945
MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
21946
if (NontemporalLevel & 0b1)
21947
Flags |= MONontemporalBit0;
21948
if (NontemporalLevel & 0b10)
21949
Flags |= MONontemporalBit1;
21950
21951
return Flags;
21952
}
21953
21954
MachineMemOperand::Flags
21955
RISCVTargetLowering::getTargetMMOFlags(const MemSDNode &Node) const {
21956
21957
MachineMemOperand::Flags NodeFlags = Node.getMemOperand()->getFlags();
21958
MachineMemOperand::Flags TargetFlags = MachineMemOperand::MONone;
21959
TargetFlags |= (NodeFlags & MONontemporalBit0);
21960
TargetFlags |= (NodeFlags & MONontemporalBit1);
21961
return TargetFlags;
21962
}
21963
21964
bool RISCVTargetLowering::areTwoSDNodeTargetMMOFlagsMergeable(
21965
const MemSDNode &NodeX, const MemSDNode &NodeY) const {
21966
return getTargetMMOFlags(NodeX) == getTargetMMOFlags(NodeY);
21967
}
21968
21969
bool RISCVTargetLowering::isCtpopFast(EVT VT) const {
21970
if (VT.isScalableVector())
21971
return isTypeLegal(VT) && Subtarget.hasStdExtZvbb();
21972
if (VT.isFixedLengthVector() && Subtarget.hasStdExtZvbb())
21973
return true;
21974
return Subtarget.hasStdExtZbb() &&
21975
(VT == MVT::i32 || VT == MVT::i64 || VT.isFixedLengthVector());
21976
}
21977
21978
unsigned RISCVTargetLowering::getCustomCtpopCost(EVT VT,
21979
ISD::CondCode Cond) const {
21980
return isCtpopFast(VT) ? 0 : 1;
21981
}
21982
21983
bool RISCVTargetLowering::fallBackToDAGISel(const Instruction &Inst) const {
21984
21985
// GISel support is in progress or complete for these opcodes.
21986
unsigned Op = Inst.getOpcode();
21987
if (Op == Instruction::Add || Op == Instruction::Sub ||
21988
Op == Instruction::And || Op == Instruction::Or ||
21989
Op == Instruction::Xor || Op == Instruction::InsertElement ||
21990
Op == Instruction::ShuffleVector || Op == Instruction::Load ||
21991
Op == Instruction::Freeze || Op == Instruction::Store)
21992
return false;
21993
21994
if (Inst.getType()->isScalableTy())
21995
return true;
21996
21997
for (unsigned i = 0; i < Inst.getNumOperands(); ++i)
21998
if (Inst.getOperand(i)->getType()->isScalableTy() &&
21999
!isa<ReturnInst>(&Inst))
22000
return true;
22001
22002
if (const AllocaInst *AI = dyn_cast<AllocaInst>(&Inst)) {
22003
if (AI->getAllocatedType()->isScalableTy())
22004
return true;
22005
}
22006
22007
return false;
22008
}
22009
22010
SDValue
22011
RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
22012
SelectionDAG &DAG,
22013
SmallVectorImpl<SDNode *> &Created) const {
22014
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
22015
if (isIntDivCheap(N->getValueType(0), Attr))
22016
return SDValue(N, 0); // Lower SDIV as SDIV
22017
22018
// Only perform this transform if short forward branch opt is supported.
22019
if (!Subtarget.hasShortForwardBranchOpt())
22020
return SDValue();
22021
EVT VT = N->getValueType(0);
22022
if (!(VT == MVT::i32 || (VT == MVT::i64 && Subtarget.is64Bit())))
22023
return SDValue();
22024
22025
// Ensure 2**k-1 < 2048 so that we can just emit a single addi/addiw.
22026
if (Divisor.sgt(2048) || Divisor.slt(-2048))
22027
return SDValue();
22028
return TargetLowering::buildSDIVPow2WithCMov(N, Divisor, DAG, Created);
22029
}
22030
22031
bool RISCVTargetLowering::shouldFoldSelectWithSingleBitTest(
22032
EVT VT, const APInt &AndMask) const {
22033
if (Subtarget.hasStdExtZicond() || Subtarget.hasVendorXVentanaCondOps())
22034
return !Subtarget.hasStdExtZbs() && AndMask.ugt(1024);
22035
return TargetLowering::shouldFoldSelectWithSingleBitTest(VT, AndMask);
22036
}
22037
22038
unsigned RISCVTargetLowering::getMinimumJumpTableEntries() const {
22039
return Subtarget.getMinimumJumpTableEntries();
22040
}
22041
22042
// Handle single arg such as return value.
22043
template <typename Arg>
22044
void RVVArgDispatcher::constructArgInfos(ArrayRef<Arg> ArgList) {
22045
// This lambda determines whether an array of types are constructed by
22046
// homogeneous vector types.
22047
auto isHomogeneousScalableVectorType = [](ArrayRef<Arg> ArgList) {
22048
// First, extract the first element in the argument type.
22049
auto It = ArgList.begin();
22050
MVT FirstArgRegType = It->VT;
22051
22052
// Return if there is no return or the type needs split.
22053
if (It == ArgList.end() || It->Flags.isSplit())
22054
return false;
22055
22056
++It;
22057
22058
// Return if this argument type contains only 1 element, or it's not a
22059
// vector type.
22060
if (It == ArgList.end() || !FirstArgRegType.isScalableVector())
22061
return false;
22062
22063
// Second, check if the following elements in this argument type are all the
22064
// same.
22065
for (; It != ArgList.end(); ++It)
22066
if (It->Flags.isSplit() || It->VT != FirstArgRegType)
22067
return false;
22068
22069
return true;
22070
};
22071
22072
if (isHomogeneousScalableVectorType(ArgList)) {
22073
// Handle as tuple type
22074
RVVArgInfos.push_back({(unsigned)ArgList.size(), ArgList[0].VT, false});
22075
} else {
22076
// Handle as normal vector type
22077
bool FirstVMaskAssigned = false;
22078
for (const auto &OutArg : ArgList) {
22079
MVT RegisterVT = OutArg.VT;
22080
22081
// Skip non-RVV register type
22082
if (!RegisterVT.isVector())
22083
continue;
22084
22085
if (RegisterVT.isFixedLengthVector())
22086
RegisterVT = TLI->getContainerForFixedLengthVector(RegisterVT);
22087
22088
if (!FirstVMaskAssigned && RegisterVT.getVectorElementType() == MVT::i1) {
22089
RVVArgInfos.push_back({1, RegisterVT, true});
22090
FirstVMaskAssigned = true;
22091
continue;
22092
}
22093
22094
RVVArgInfos.push_back({1, RegisterVT, false});
22095
}
22096
}
22097
}
22098
22099
// Handle multiple args.
22100
template <>
22101
void RVVArgDispatcher::constructArgInfos<Type *>(ArrayRef<Type *> TypeList) {
22102
const DataLayout &DL = MF->getDataLayout();
22103
const Function &F = MF->getFunction();
22104
LLVMContext &Context = F.getContext();
22105
22106
bool FirstVMaskAssigned = false;
22107
for (Type *Ty : TypeList) {
22108
StructType *STy = dyn_cast<StructType>(Ty);
22109
if (STy && STy->containsHomogeneousScalableVectorTypes()) {
22110
Type *ElemTy = STy->getTypeAtIndex(0U);
22111
EVT VT = TLI->getValueType(DL, ElemTy);
22112
MVT RegisterVT =
22113
TLI->getRegisterTypeForCallingConv(Context, F.getCallingConv(), VT);
22114
unsigned NumRegs =
22115
TLI->getNumRegistersForCallingConv(Context, F.getCallingConv(), VT);
22116
22117
RVVArgInfos.push_back(
22118
{NumRegs * STy->getNumElements(), RegisterVT, false});
22119
} else {
22120
SmallVector<EVT, 4> ValueVTs;
22121
ComputeValueVTs(*TLI, DL, Ty, ValueVTs);
22122
22123
for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
22124
++Value) {
22125
EVT VT = ValueVTs[Value];
22126
MVT RegisterVT =
22127
TLI->getRegisterTypeForCallingConv(Context, F.getCallingConv(), VT);
22128
unsigned NumRegs =
22129
TLI->getNumRegistersForCallingConv(Context, F.getCallingConv(), VT);
22130
22131
// Skip non-RVV register type
22132
if (!RegisterVT.isVector())
22133
continue;
22134
22135
if (RegisterVT.isFixedLengthVector())
22136
RegisterVT = TLI->getContainerForFixedLengthVector(RegisterVT);
22137
22138
if (!FirstVMaskAssigned &&
22139
RegisterVT.getVectorElementType() == MVT::i1) {
22140
RVVArgInfos.push_back({1, RegisterVT, true});
22141
FirstVMaskAssigned = true;
22142
--NumRegs;
22143
}
22144
22145
RVVArgInfos.insert(RVVArgInfos.end(), NumRegs, {1, RegisterVT, false});
22146
}
22147
}
22148
}
22149
}
22150
22151
void RVVArgDispatcher::allocatePhysReg(unsigned NF, unsigned LMul,
22152
unsigned StartReg) {
22153
assert((StartReg % LMul) == 0 &&
22154
"Start register number should be multiple of lmul");
22155
const MCPhysReg *VRArrays;
22156
switch (LMul) {
22157
default:
22158
report_fatal_error("Invalid lmul");
22159
case 1:
22160
VRArrays = ArgVRs;
22161
break;
22162
case 2:
22163
VRArrays = ArgVRM2s;
22164
break;
22165
case 4:
22166
VRArrays = ArgVRM4s;
22167
break;
22168
case 8:
22169
VRArrays = ArgVRM8s;
22170
break;
22171
}
22172
22173
for (unsigned i = 0; i < NF; ++i)
22174
if (StartReg)
22175
AllocatedPhysRegs.push_back(VRArrays[(StartReg - 8) / LMul + i]);
22176
else
22177
AllocatedPhysRegs.push_back(MCPhysReg());
22178
}
22179
22180
/// This function determines if each RVV argument is passed by register, if the
22181
/// argument can be assigned to a VR, then give it a specific register.
22182
/// Otherwise, assign the argument to 0 which is a invalid MCPhysReg.
22183
void RVVArgDispatcher::compute() {
22184
uint32_t AssignedMap = 0;
22185
auto allocate = [&](const RVVArgInfo &ArgInfo) {
22186
// Allocate first vector mask argument to V0.
22187
if (ArgInfo.FirstVMask) {
22188
AllocatedPhysRegs.push_back(RISCV::V0);
22189
return;
22190
}
22191
22192
unsigned RegsNeeded = divideCeil(
22193
ArgInfo.VT.getSizeInBits().getKnownMinValue(), RISCV::RVVBitsPerBlock);
22194
unsigned TotalRegsNeeded = ArgInfo.NF * RegsNeeded;
22195
for (unsigned StartReg = 0; StartReg + TotalRegsNeeded <= NumArgVRs;
22196
StartReg += RegsNeeded) {
22197
uint32_t Map = ((1 << TotalRegsNeeded) - 1) << StartReg;
22198
if ((AssignedMap & Map) == 0) {
22199
allocatePhysReg(ArgInfo.NF, RegsNeeded, StartReg + 8);
22200
AssignedMap |= Map;
22201
return;
22202
}
22203
}
22204
22205
allocatePhysReg(ArgInfo.NF, RegsNeeded, 0);
22206
};
22207
22208
for (unsigned i = 0; i < RVVArgInfos.size(); ++i)
22209
allocate(RVVArgInfos[i]);
22210
}
22211
22212
MCPhysReg RVVArgDispatcher::getNextPhysReg() {
22213
assert(CurIdx < AllocatedPhysRegs.size() && "Index out of range");
22214
return AllocatedPhysRegs[CurIdx++];
22215
}
22216
22217
SDValue RISCVTargetLowering::expandIndirectJTBranch(const SDLoc &dl,
22218
SDValue Value, SDValue Addr,
22219
int JTI,
22220
SelectionDAG &DAG) const {
22221
if (Subtarget.hasStdExtZicfilp()) {
22222
// When Zicfilp enabled, we need to use software guarded branch for jump
22223
// table branch.
22224
SDValue JTInfo = DAG.getJumpTableDebugInfo(JTI, Value, dl);
22225
return DAG.getNode(RISCVISD::SW_GUARDED_BRIND, dl, MVT::Other, JTInfo,
22226
Addr);
22227
}
22228
return TargetLowering::expandIndirectJTBranch(dl, Value, Addr, JTI, DAG);
22229
}
22230
22231
namespace llvm::RISCVVIntrinsicsTable {
22232
22233
#define GET_RISCVVIntrinsicsTable_IMPL
22234
#include "RISCVGenSearchableTables.inc"
22235
22236
} // namespace llvm::RISCVVIntrinsicsTable
22237
22238