Path: blob/main/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVInstrInfoVPseudos.td
35269 views
//===-- RISCVInstrInfoVPseudos.td - RISC-V 'V' Pseudos -----*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// This file contains the required infrastructure to support code generation /// for the standard 'V' (Vector) extension, version 1.0. /// /// This file is included from RISCVInstrInfoV.td /// /// Overview of our vector instruction pseudos. Many of the instructions /// have behavior which depends on the value of VTYPE. Several core aspects of /// the compiler - e.g. register allocation - depend on fields in this /// configuration register. The details of which fields matter differ by the /// specific instruction, but the common dimensions are: /// /// LMUL/EMUL - Most instructions can write to differently sized register groups /// depending on LMUL. /// /// Masked vs Unmasked - Many instructions which allow a mask disallow register /// overlap. As a result, masked vs unmasked require different register /// allocation constraints. /// /// Policy - For each of mask and tail policy, there are three options: /// * "Undisturbed" - As defined in the specification, required to preserve the /// exact bit pattern of inactive lanes. /// * "Agnostic" - As defined in the specification, required to either preserve /// the exact bit pattern of inactive lanes, or produce the bit pattern -1 for /// those lanes. Note that each lane can make this choice independently. /// Instructions which produce masks (and only those instructions) also have the /// option of producing a result as-if VL had been VLMAX. /// * "Undefined" - The bit pattern of the inactive lanes is unspecified, and /// can be changed without impacting the semantics of the program. Note that /// this concept does not exist in the specification, and requires source /// knowledge to be preserved. /// /// SEW - Some instructions have semantics which depend on SEW. This is /// relatively rare, and mostly impacts scheduling and cost estimation. /// /// We have two techniques we use to represent the impact of these fields: /// * For fields which don't impact register classes, we largely use /// dummy operands on the pseudo instructions which convey information /// about the value of VTYPE. /// * For fields which do impact register classes (and a few bits of /// legacy - see policy discussion below), we define a family of pseudo /// instructions for each actual instruction. Said differently, we encode /// each of the preceding fields which are relevant for a given instruction /// in the opcode space. /// /// Currently, the policy is represented via the following instrinsic families: /// * _MASK - Can represent all three policy states for both tail and mask. If /// passthrough is IMPLICIT_DEF (or NoReg), then represents "undefined". /// Otherwise, policy operand and tablegen flags drive the interpretation. /// (If policy operand is not present - there are a couple, though we're /// rapidly removing them - a non-undefined policy defaults to "tail /// agnostic", and "mask undisturbed". Since this is the only variant with /// a mask, all other variants are "mask undefined". /// * Unsuffixed w/ both passthrough and policy operand. Can represent all /// three policy states. If passthrough is IMPLICIT_DEF (or NoReg), then /// represents "undefined". Otherwise, policy operand and tablegen flags /// drive the interpretation. /// * Unsuffixed w/o passthrough or policy operand -- Does not have a /// passthrough operand, and thus represents the "undefined" state. Note /// that terminology in code frequently refers to these as "TA" which is /// confusing. We're in the process of migrating away from this /// representation. /// //===----------------------------------------------------------------------===// def riscv_vmv_x_s : SDNode<"RISCVISD::VMV_X_S", SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisVec<1>, SDTCisInt<1>]>>; def riscv_read_vlenb : SDNode<"RISCVISD::READ_VLENB", SDTypeProfile<1, 0, [SDTCisVT<0, XLenVT>]>>; // Operand that is allowed to be a register other than X0, a 5 bit unsigned // immediate, or -1. -1 means VLMAX. This allows us to pick between VSETIVLI and // VSETVLI opcodes using the same pseudo instructions. def AVL : RegisterOperand<GPRNoX0> { let OperandNamespace = "RISCVOp"; let OperandType = "OPERAND_AVL"; } // X0 has special meaning for vsetvl/vsetvli. // rd | rs1 | AVL value | Effect on vl //-------------------------------------------------------------- // !X0 | X0 | VLMAX | Set vl to VLMAX // X0 | X0 | Value in vl | Keep current vl, just change vtype. def VLOp : ComplexPattern<XLenVT, 1, "selectVLOp">; def DecImm : SDNodeXForm<imm, [{ return CurDAG->getTargetConstant(N->getSExtValue() - 1, SDLoc(N), N->getValueType(0)); }]>; defvar TAIL_AGNOSTIC = 1; defvar TU_MU = 0; defvar TA_MA = 3; //===----------------------------------------------------------------------===// // Utilities. //===----------------------------------------------------------------------===// class PseudoToVInst<string PseudoInst> { defvar AffixSubsts = [["Pseudo", ""], ["_E64", ""], ["_E32", ""], ["_E16", ""], ["_E8", ""], ["FPR64", "F"], ["FPR32", "F"], ["FPR16", "F"], ["_TIED", ""], ["_MASK", ""], ["_B64", ""], ["_B32", ""], ["_B16", ""], ["_B8", ""], ["_B4", ""], ["_B2", ""], ["_B1", ""], ["_MF8", ""], ["_MF4", ""], ["_MF2", ""], ["_M1", ""], ["_M2", ""], ["_M4", ""], ["_M8", ""], ["_SE", ""], ["_RM", ""] ]; string VInst = !foldl(PseudoInst, AffixSubsts, Acc, AffixSubst, !subst(AffixSubst[0], AffixSubst[1], Acc)); } // This class describes information associated to the LMUL. class LMULInfo<int lmul, int oct, VReg regclass, VReg wregclass, VReg f2regclass, VReg f4regclass, VReg f8regclass, string mx> { bits<3> value = lmul; // This is encoded as the vlmul field of vtype. VReg vrclass = regclass; VReg wvrclass = wregclass; VReg f8vrclass = f8regclass; VReg f4vrclass = f4regclass; VReg f2vrclass = f2regclass; string MX = mx; int octuple = oct; } // Associate LMUL with tablegen records of register classes. def V_M1 : LMULInfo<0b000, 8, VR, VRM2, VR, VR, VR, "M1">; def V_M2 : LMULInfo<0b001, 16, VRM2, VRM4, VR, VR, VR, "M2">; def V_M4 : LMULInfo<0b010, 32, VRM4, VRM8, VRM2, VR, VR, "M4">; def V_M8 : LMULInfo<0b011, 64, VRM8,/*NoVReg*/VR, VRM4, VRM2, VR, "M8">; def V_MF8 : LMULInfo<0b101, 1, VR, VR,/*NoVReg*/VR,/*NoVReg*/VR,/*NoVReg*/VR, "MF8">; def V_MF4 : LMULInfo<0b110, 2, VR, VR, VR,/*NoVReg*/VR,/*NoVReg*/VR, "MF4">; def V_MF2 : LMULInfo<0b111, 4, VR, VR, VR, VR,/*NoVReg*/VR, "MF2">; // Used to iterate over all possible LMULs. defvar MxList = [V_MF8, V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8]; // For floating point which don't need MF8. defvar MxListF = [V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8]; // Used for widening and narrowing instructions as it doesn't contain M8. defvar MxListW = [V_MF8, V_MF4, V_MF2, V_M1, V_M2, V_M4]; // Used for widening reductions. It can contain M8 because wider operands are // scalar operands. defvar MxListWRed = MxList; // For floating point which don't need MF8. defvar MxListFW = [V_MF4, V_MF2, V_M1, V_M2, V_M4]; // For widening floating-point Reduction as it doesn't contain MF8. It can // contain M8 because wider operands are scalar operands. defvar MxListFWRed = [V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8]; // Use for zext/sext.vf2 defvar MxListVF2 = [V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8]; // Use for zext/sext.vf4 and vector crypto instructions defvar MxListVF4 = [V_MF2, V_M1, V_M2, V_M4, V_M8]; // Use for zext/sext.vf8 defvar MxListVF8 = [V_M1, V_M2, V_M4, V_M8]; class MxSet<int eew> { list<LMULInfo> m = !cond(!eq(eew, 8) : [V_MF8, V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8], !eq(eew, 16) : [V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8], !eq(eew, 32) : [V_MF2, V_M1, V_M2, V_M4, V_M8], !eq(eew, 64) : [V_M1, V_M2, V_M4, V_M8]); } class FPR_Info<int sew> { RegisterClass fprclass = !cast<RegisterClass>("FPR" # sew); string FX = "FPR" # sew; int SEW = sew; list<LMULInfo> MxList = MxSet<sew>.m; list<LMULInfo> MxListFW = !if(!eq(sew, 64), [], !listremove(MxList, [V_M8])); } def SCALAR_F16 : FPR_Info<16>; def SCALAR_F32 : FPR_Info<32>; def SCALAR_F64 : FPR_Info<64>; // BF16 uses the same register class as F16. def SCALAR_BF16 : FPR_Info<16>; defvar FPList = [SCALAR_F16, SCALAR_F32, SCALAR_F64]; // Used for widening instructions. It excludes F64. defvar FPListW = [SCALAR_F16, SCALAR_F32]; // Used for widening bf16 instructions. defvar BFPListW = [SCALAR_BF16]; class NFSet<LMULInfo m> { defvar lmul = !shl(1, m.value); list<int> L = NFList<lmul>.L; } class octuple_to_str<int octuple> { string ret = !cond(!eq(octuple, 1): "MF8", !eq(octuple, 2): "MF4", !eq(octuple, 4): "MF2", !eq(octuple, 8): "M1", !eq(octuple, 16): "M2", !eq(octuple, 32): "M4", !eq(octuple, 64): "M8"); } def VLOpFrag : PatFrag<(ops), (XLenVT (VLOp (XLenVT AVL:$vl)))>; // Output pattern for X0 used to represent VLMAX in the pseudo instructions. // We can't use X0 register becuase the AVL operands use GPRNoX0. // This must be kept in sync with RISCV::VLMaxSentinel. def VLMax : OutPatFrag<(ops), (XLenVT -1)>; def SelectFPImm : ComplexPattern<fAny, 1, "selectFPImm", [], [], 1>; // List of EEW. defvar EEWList = [8, 16, 32, 64]; class SegRegClass<LMULInfo m, int nf> { VReg RC = !cast<VReg>("VRN" # nf # !cond(!eq(m.value, V_MF8.value): V_M1.MX, !eq(m.value, V_MF4.value): V_M1.MX, !eq(m.value, V_MF2.value): V_M1.MX, true: m.MX)); } //===----------------------------------------------------------------------===// // Vector register and vector group type information. //===----------------------------------------------------------------------===// class VTypeInfo<ValueType Vec, ValueType Mas, int Sew, LMULInfo M, ValueType Scal = XLenVT, RegisterClass ScalarReg = GPR> { ValueType Vector = Vec; ValueType Mask = Mas; int SEW = Sew; int Log2SEW = !logtwo(Sew); VReg RegClass = M.vrclass; LMULInfo LMul = M; ValueType Scalar = Scal; RegisterClass ScalarRegClass = ScalarReg; // The pattern fragment which produces the AVL operand, representing the // "natural" vector length for this type. For scalable vectors this is VLMax. OutPatFrag AVL = VLMax; string ScalarSuffix = !cond(!eq(Scal, XLenVT) : "X", !eq(Scal, f16) : "FPR16", !eq(Scal, bf16) : "FPR16", !eq(Scal, f32) : "FPR32", !eq(Scal, f64) : "FPR64"); } class GroupVTypeInfo<ValueType Vec, ValueType VecM1, ValueType Mas, int Sew, LMULInfo M, ValueType Scal = XLenVT, RegisterClass ScalarReg = GPR> : VTypeInfo<Vec, Mas, Sew, M, Scal, ScalarReg> { ValueType VectorM1 = VecM1; } defset list<VTypeInfo> AllVectors = { defset list<VTypeInfo> AllIntegerVectors = { defset list<VTypeInfo> NoGroupIntegerVectors = { defset list<VTypeInfo> FractionalGroupIntegerVectors = { def VI8MF8: VTypeInfo<vint8mf8_t, vbool64_t, 8, V_MF8>; def VI8MF4: VTypeInfo<vint8mf4_t, vbool32_t, 8, V_MF4>; def VI8MF2: VTypeInfo<vint8mf2_t, vbool16_t, 8, V_MF2>; def VI16MF4: VTypeInfo<vint16mf4_t, vbool64_t, 16, V_MF4>; def VI16MF2: VTypeInfo<vint16mf2_t, vbool32_t, 16, V_MF2>; def VI32MF2: VTypeInfo<vint32mf2_t, vbool64_t, 32, V_MF2>; } def VI8M1: VTypeInfo<vint8m1_t, vbool8_t, 8, V_M1>; def VI16M1: VTypeInfo<vint16m1_t, vbool16_t, 16, V_M1>; def VI32M1: VTypeInfo<vint32m1_t, vbool32_t, 32, V_M1>; def VI64M1: VTypeInfo<vint64m1_t, vbool64_t, 64, V_M1>; } defset list<GroupVTypeInfo> GroupIntegerVectors = { def VI8M2: GroupVTypeInfo<vint8m2_t, vint8m1_t, vbool4_t, 8, V_M2>; def VI8M4: GroupVTypeInfo<vint8m4_t, vint8m1_t, vbool2_t, 8, V_M4>; def VI8M8: GroupVTypeInfo<vint8m8_t, vint8m1_t, vbool1_t, 8, V_M8>; def VI16M2: GroupVTypeInfo<vint16m2_t, vint16m1_t, vbool8_t, 16, V_M2>; def VI16M4: GroupVTypeInfo<vint16m4_t, vint16m1_t, vbool4_t, 16, V_M4>; def VI16M8: GroupVTypeInfo<vint16m8_t, vint16m1_t, vbool2_t, 16, V_M8>; def VI32M2: GroupVTypeInfo<vint32m2_t, vint32m1_t, vbool16_t, 32, V_M2>; def VI32M4: GroupVTypeInfo<vint32m4_t, vint32m1_t, vbool8_t, 32, V_M4>; def VI32M8: GroupVTypeInfo<vint32m8_t, vint32m1_t, vbool4_t, 32, V_M8>; def VI64M2: GroupVTypeInfo<vint64m2_t, vint64m1_t, vbool32_t, 64, V_M2>; def VI64M4: GroupVTypeInfo<vint64m4_t, vint64m1_t, vbool16_t, 64, V_M4>; def VI64M8: GroupVTypeInfo<vint64m8_t, vint64m1_t, vbool8_t, 64, V_M8>; } } defset list<VTypeInfo> AllFloatVectors = { defset list<VTypeInfo> NoGroupFloatVectors = { defset list<VTypeInfo> FractionalGroupFloatVectors = { def VF16MF4: VTypeInfo<vfloat16mf4_t, vbool64_t, 16, V_MF4, f16, FPR16>; def VF16MF2: VTypeInfo<vfloat16mf2_t, vbool32_t, 16, V_MF2, f16, FPR16>; def VF32MF2: VTypeInfo<vfloat32mf2_t, vbool64_t, 32, V_MF2, f32, FPR32>; } def VF16M1: VTypeInfo<vfloat16m1_t, vbool16_t, 16, V_M1, f16, FPR16>; def VF32M1: VTypeInfo<vfloat32m1_t, vbool32_t, 32, V_M1, f32, FPR32>; def VF64M1: VTypeInfo<vfloat64m1_t, vbool64_t, 64, V_M1, f64, FPR64>; } defset list<GroupVTypeInfo> GroupFloatVectors = { def VF16M2: GroupVTypeInfo<vfloat16m2_t, vfloat16m1_t, vbool8_t, 16, V_M2, f16, FPR16>; def VF16M4: GroupVTypeInfo<vfloat16m4_t, vfloat16m1_t, vbool4_t, 16, V_M4, f16, FPR16>; def VF16M8: GroupVTypeInfo<vfloat16m8_t, vfloat16m1_t, vbool2_t, 16, V_M8, f16, FPR16>; def VF32M2: GroupVTypeInfo<vfloat32m2_t, vfloat32m1_t, vbool16_t, 32, V_M2, f32, FPR32>; def VF32M4: GroupVTypeInfo<vfloat32m4_t, vfloat32m1_t, vbool8_t, 32, V_M4, f32, FPR32>; def VF32M8: GroupVTypeInfo<vfloat32m8_t, vfloat32m1_t, vbool4_t, 32, V_M8, f32, FPR32>; def VF64M2: GroupVTypeInfo<vfloat64m2_t, vfloat64m1_t, vbool32_t, 64, V_M2, f64, FPR64>; def VF64M4: GroupVTypeInfo<vfloat64m4_t, vfloat64m1_t, vbool16_t, 64, V_M4, f64, FPR64>; def VF64M8: GroupVTypeInfo<vfloat64m8_t, vfloat64m1_t, vbool8_t, 64, V_M8, f64, FPR64>; } } defset list<VTypeInfo> AllBFloatVectors = { defset list<VTypeInfo> NoGroupBFloatVectors = { defset list<VTypeInfo> FractionalGroupBFloatVectors = { def VBF16MF4: VTypeInfo<vbfloat16mf4_t, vbool64_t, 16, V_MF4, bf16, FPR16>; def VBF16MF2: VTypeInfo<vbfloat16mf2_t, vbool32_t, 16, V_MF2, bf16, FPR16>; } def VBF16M1: VTypeInfo<vbfloat16m1_t, vbool16_t, 16, V_M1, bf16, FPR16>; } defset list<GroupVTypeInfo> GroupBFloatVectors = { def VBF16M2: GroupVTypeInfo<vbfloat16m2_t, vbfloat16m1_t, vbool8_t, 16, V_M2, bf16, FPR16>; def VBF16M4: GroupVTypeInfo<vbfloat16m4_t, vbfloat16m1_t, vbool4_t, 16, V_M4, bf16, FPR16>; def VBF16M8: GroupVTypeInfo<vbfloat16m8_t, vbfloat16m1_t, vbool2_t, 16, V_M8, bf16, FPR16>; } } } // This functor is used to obtain the int vector type that has the same SEW and // multiplier as the input parameter type class GetIntVTypeInfo<VTypeInfo vti> { // Equivalent integer vector type. Eg. // VI8M1 → VI8M1 (identity) // VF64M4 → VI64M4 VTypeInfo Vti = !cast<VTypeInfo>(!subst("VBF", "VI", !subst("VF", "VI", !cast<string>(vti)))); } class MTypeInfo<ValueType Mas, LMULInfo M, string Bx> { ValueType Mask = Mas; // {SEW, VLMul} values set a valid VType to deal with this mask type. // we assume SEW=1 and set corresponding LMUL. vsetvli insertion will // look for SEW=1 to optimize based on surrounding instructions. int SEW = 1; int Log2SEW = 0; LMULInfo LMul = M; string BX = Bx; // Appendix of mask operations. // The pattern fragment which produces the AVL operand, representing the // "natural" vector length for this mask type. For scalable masks this is // VLMax. OutPatFrag AVL = VLMax; } defset list<MTypeInfo> AllMasks = { // vbool<n>_t, <n> = SEW/LMUL, we assume SEW=8 and corresponding LMUL. def : MTypeInfo<vbool64_t, V_MF8, "B1">; def : MTypeInfo<vbool32_t, V_MF4, "B2">; def : MTypeInfo<vbool16_t, V_MF2, "B4">; def : MTypeInfo<vbool8_t, V_M1, "B8">; def : MTypeInfo<vbool4_t, V_M2, "B16">; def : MTypeInfo<vbool2_t, V_M4, "B32">; def : MTypeInfo<vbool1_t, V_M8, "B64">; } class VTypeInfoToWide<VTypeInfo vti, VTypeInfo wti> { VTypeInfo Vti = vti; VTypeInfo Wti = wti; } class VTypeInfoToFraction<VTypeInfo vti, VTypeInfo fti> { VTypeInfo Vti = vti; VTypeInfo Fti = fti; } defset list<VTypeInfoToWide> AllWidenableIntVectors = { def : VTypeInfoToWide<VI8MF8, VI16MF4>; def : VTypeInfoToWide<VI8MF4, VI16MF2>; def : VTypeInfoToWide<VI8MF2, VI16M1>; def : VTypeInfoToWide<VI8M1, VI16M2>; def : VTypeInfoToWide<VI8M2, VI16M4>; def : VTypeInfoToWide<VI8M4, VI16M8>; def : VTypeInfoToWide<VI16MF4, VI32MF2>; def : VTypeInfoToWide<VI16MF2, VI32M1>; def : VTypeInfoToWide<VI16M1, VI32M2>; def : VTypeInfoToWide<VI16M2, VI32M4>; def : VTypeInfoToWide<VI16M4, VI32M8>; def : VTypeInfoToWide<VI32MF2, VI64M1>; def : VTypeInfoToWide<VI32M1, VI64M2>; def : VTypeInfoToWide<VI32M2, VI64M4>; def : VTypeInfoToWide<VI32M4, VI64M8>; } defset list<VTypeInfoToWide> AllWidenableFloatVectors = { def : VTypeInfoToWide<VF16MF4, VF32MF2>; def : VTypeInfoToWide<VF16MF2, VF32M1>; def : VTypeInfoToWide<VF16M1, VF32M2>; def : VTypeInfoToWide<VF16M2, VF32M4>; def : VTypeInfoToWide<VF16M4, VF32M8>; def : VTypeInfoToWide<VF32MF2, VF64M1>; def : VTypeInfoToWide<VF32M1, VF64M2>; def : VTypeInfoToWide<VF32M2, VF64M4>; def : VTypeInfoToWide<VF32M4, VF64M8>; } defset list<VTypeInfoToFraction> AllFractionableVF2IntVectors = { def : VTypeInfoToFraction<VI16MF4, VI8MF8>; def : VTypeInfoToFraction<VI16MF2, VI8MF4>; def : VTypeInfoToFraction<VI16M1, VI8MF2>; def : VTypeInfoToFraction<VI16M2, VI8M1>; def : VTypeInfoToFraction<VI16M4, VI8M2>; def : VTypeInfoToFraction<VI16M8, VI8M4>; def : VTypeInfoToFraction<VI32MF2, VI16MF4>; def : VTypeInfoToFraction<VI32M1, VI16MF2>; def : VTypeInfoToFraction<VI32M2, VI16M1>; def : VTypeInfoToFraction<VI32M4, VI16M2>; def : VTypeInfoToFraction<VI32M8, VI16M4>; def : VTypeInfoToFraction<VI64M1, VI32MF2>; def : VTypeInfoToFraction<VI64M2, VI32M1>; def : VTypeInfoToFraction<VI64M4, VI32M2>; def : VTypeInfoToFraction<VI64M8, VI32M4>; } defset list<VTypeInfoToFraction> AllFractionableVF4IntVectors = { def : VTypeInfoToFraction<VI32MF2, VI8MF8>; def : VTypeInfoToFraction<VI32M1, VI8MF4>; def : VTypeInfoToFraction<VI32M2, VI8MF2>; def : VTypeInfoToFraction<VI32M4, VI8M1>; def : VTypeInfoToFraction<VI32M8, VI8M2>; def : VTypeInfoToFraction<VI64M1, VI16MF4>; def : VTypeInfoToFraction<VI64M2, VI16MF2>; def : VTypeInfoToFraction<VI64M4, VI16M1>; def : VTypeInfoToFraction<VI64M8, VI16M2>; } defset list<VTypeInfoToFraction> AllFractionableVF8IntVectors = { def : VTypeInfoToFraction<VI64M1, VI8MF8>; def : VTypeInfoToFraction<VI64M2, VI8MF4>; def : VTypeInfoToFraction<VI64M4, VI8MF2>; def : VTypeInfoToFraction<VI64M8, VI8M1>; } defset list<VTypeInfoToWide> AllWidenableIntToFloatVectors = { def : VTypeInfoToWide<VI8MF8, VF16MF4>; def : VTypeInfoToWide<VI8MF4, VF16MF2>; def : VTypeInfoToWide<VI8MF2, VF16M1>; def : VTypeInfoToWide<VI8M1, VF16M2>; def : VTypeInfoToWide<VI8M2, VF16M4>; def : VTypeInfoToWide<VI8M4, VF16M8>; def : VTypeInfoToWide<VI16MF4, VF32MF2>; def : VTypeInfoToWide<VI16MF2, VF32M1>; def : VTypeInfoToWide<VI16M1, VF32M2>; def : VTypeInfoToWide<VI16M2, VF32M4>; def : VTypeInfoToWide<VI16M4, VF32M8>; def : VTypeInfoToWide<VI32MF2, VF64M1>; def : VTypeInfoToWide<VI32M1, VF64M2>; def : VTypeInfoToWide<VI32M2, VF64M4>; def : VTypeInfoToWide<VI32M4, VF64M8>; } defset list<VTypeInfoToWide> AllWidenableBFloatToFloatVectors = { def : VTypeInfoToWide<VBF16MF4, VF32MF2>; def : VTypeInfoToWide<VBF16MF2, VF32M1>; def : VTypeInfoToWide<VBF16M1, VF32M2>; def : VTypeInfoToWide<VBF16M2, VF32M4>; def : VTypeInfoToWide<VBF16M4, VF32M8>; } // This class holds the record of the RISCVVPseudoTable below. // This represents the information we need in codegen for each pseudo. // The definition should be consistent with `struct PseudoInfo` in // RISCVInstrInfo.h. class RISCVVPseudo { Pseudo Pseudo = !cast<Pseudo>(NAME); // Used as a key. Instruction BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst); // SEW = 0 is used to denote that the Pseudo is not SEW specific (or unknown). bits<8> SEW = 0; bit NeedBeInPseudoTable = 1; } // The actual table. def RISCVVPseudosTable : GenericTable { let FilterClass = "RISCVVPseudo"; let FilterClassField = "NeedBeInPseudoTable"; let CppTypeName = "PseudoInfo"; let Fields = [ "Pseudo", "BaseInstr" ]; let PrimaryKey = [ "Pseudo" ]; let PrimaryKeyName = "getPseudoInfo"; let PrimaryKeyEarlyOut = true; } def RISCVVInversePseudosTable : GenericTable { let FilterClass = "RISCVVPseudo"; let CppTypeName = "PseudoInfo"; let Fields = [ "Pseudo", "BaseInstr", "VLMul", "SEW"]; let PrimaryKey = [ "BaseInstr", "VLMul", "SEW"]; let PrimaryKeyName = "getBaseInfo"; let PrimaryKeyEarlyOut = true; } def RISCVVIntrinsicsTable : GenericTable { let FilterClass = "RISCVVIntrinsic"; let CppTypeName = "RISCVVIntrinsicInfo"; let Fields = ["IntrinsicID", "ScalarOperand", "VLOperand"]; let PrimaryKey = ["IntrinsicID"]; let PrimaryKeyName = "getRISCVVIntrinsicInfo"; } // Describes the relation of a masked pseudo to the unmasked variants. // Note that all masked variants (in this table) have exactly one // unmasked variant. For all but compares, both the masked and // unmasked variant have a passthru and policy operand. For compares, // neither has a policy op, and only the masked version has a passthru. class RISCVMaskedPseudo<bits<4> MaskIdx, bit ActiveAffectsRes=false> { Pseudo MaskedPseudo = !cast<Pseudo>(NAME); Pseudo UnmaskedPseudo = !cast<Pseudo>(!subst("_MASK", "", NAME)); bits<4> MaskOpIdx = MaskIdx; bit ActiveElementsAffectResult = ActiveAffectsRes; } def RISCVMaskedPseudosTable : GenericTable { let FilterClass = "RISCVMaskedPseudo"; let CppTypeName = "RISCVMaskedPseudoInfo"; let Fields = ["MaskedPseudo", "UnmaskedPseudo", "MaskOpIdx", "ActiveElementsAffectResult"]; let PrimaryKey = ["MaskedPseudo"]; let PrimaryKeyName = "getMaskedPseudoInfo"; } class RISCVVLE<bit M, bit Str, bit F, bits<3> S, bits<3> L> { bits<1> Masked = M; bits<1> Strided = Str; bits<1> FF = F; bits<3> Log2SEW = S; bits<3> LMUL = L; Pseudo Pseudo = !cast<Pseudo>(NAME); } def lookupMaskedIntrinsicByUnmasked : SearchIndex { let Table = RISCVMaskedPseudosTable; let Key = ["UnmaskedPseudo"]; } def RISCVVLETable : GenericTable { let FilterClass = "RISCVVLE"; let CppTypeName = "VLEPseudo"; let Fields = ["Masked", "Strided", "FF", "Log2SEW", "LMUL", "Pseudo"]; let PrimaryKey = ["Masked", "Strided", "FF", "Log2SEW", "LMUL"]; let PrimaryKeyName = "getVLEPseudo"; } class RISCVVSE<bit M, bit Str, bits<3> S, bits<3> L> { bits<1> Masked = M; bits<1> Strided = Str; bits<3> Log2SEW = S; bits<3> LMUL = L; Pseudo Pseudo = !cast<Pseudo>(NAME); } def RISCVVSETable : GenericTable { let FilterClass = "RISCVVSE"; let CppTypeName = "VSEPseudo"; let Fields = ["Masked", "Strided", "Log2SEW", "LMUL", "Pseudo"]; let PrimaryKey = ["Masked", "Strided", "Log2SEW", "LMUL"]; let PrimaryKeyName = "getVSEPseudo"; } class RISCVVLX_VSX<bit M, bit O, bits<3> S, bits<3> L, bits<3> IL> { bits<1> Masked = M; bits<1> Ordered = O; bits<3> Log2SEW = S; bits<3> LMUL = L; bits<3> IndexLMUL = IL; Pseudo Pseudo = !cast<Pseudo>(NAME); } class RISCVVLX<bit M, bit O, bits<3> S, bits<3> L, bits<3> IL> : RISCVVLX_VSX<M, O, S, L, IL>; class RISCVVSX<bit M, bit O, bits<3> S, bits<3> L, bits<3> IL> : RISCVVLX_VSX<M, O, S, L, IL>; class RISCVVLX_VSXTable : GenericTable { let CppTypeName = "VLX_VSXPseudo"; let Fields = ["Masked", "Ordered", "Log2SEW", "LMUL", "IndexLMUL", "Pseudo"]; let PrimaryKey = ["Masked", "Ordered", "Log2SEW", "LMUL", "IndexLMUL"]; } def RISCVVLXTable : RISCVVLX_VSXTable { let FilterClass = "RISCVVLX"; let PrimaryKeyName = "getVLXPseudo"; } def RISCVVSXTable : RISCVVLX_VSXTable { let FilterClass = "RISCVVSX"; let PrimaryKeyName = "getVSXPseudo"; } class RISCVVLSEG<bits<4> N, bit M, bit Str, bit F, bits<3> S, bits<3> L> { bits<4> NF = N; bits<1> Masked = M; bits<1> Strided = Str; bits<1> FF = F; bits<3> Log2SEW = S; bits<3> LMUL = L; Pseudo Pseudo = !cast<Pseudo>(NAME); } def RISCVVLSEGTable : GenericTable { let FilterClass = "RISCVVLSEG"; let CppTypeName = "VLSEGPseudo"; let Fields = ["NF", "Masked", "Strided", "FF", "Log2SEW", "LMUL", "Pseudo"]; let PrimaryKey = ["NF", "Masked", "Strided", "FF", "Log2SEW", "LMUL"]; let PrimaryKeyName = "getVLSEGPseudo"; } class RISCVVLXSEG<bits<4> N, bit M, bit O, bits<3> S, bits<3> L, bits<3> IL> { bits<4> NF = N; bits<1> Masked = M; bits<1> Ordered = O; bits<3> Log2SEW = S; bits<3> LMUL = L; bits<3> IndexLMUL = IL; Pseudo Pseudo = !cast<Pseudo>(NAME); } def RISCVVLXSEGTable : GenericTable { let FilterClass = "RISCVVLXSEG"; let CppTypeName = "VLXSEGPseudo"; let Fields = ["NF", "Masked", "Ordered", "Log2SEW", "LMUL", "IndexLMUL", "Pseudo"]; let PrimaryKey = ["NF", "Masked", "Ordered", "Log2SEW", "LMUL", "IndexLMUL"]; let PrimaryKeyName = "getVLXSEGPseudo"; } class RISCVVSSEG<bits<4> N, bit M, bit Str, bits<3> S, bits<3> L> { bits<4> NF = N; bits<1> Masked = M; bits<1> Strided = Str; bits<3> Log2SEW = S; bits<3> LMUL = L; Pseudo Pseudo = !cast<Pseudo>(NAME); } def RISCVVSSEGTable : GenericTable { let FilterClass = "RISCVVSSEG"; let CppTypeName = "VSSEGPseudo"; let Fields = ["NF", "Masked", "Strided", "Log2SEW", "LMUL", "Pseudo"]; let PrimaryKey = ["NF", "Masked", "Strided", "Log2SEW", "LMUL"]; let PrimaryKeyName = "getVSSEGPseudo"; } class RISCVVSXSEG<bits<4> N, bit M, bit O, bits<3> S, bits<3> L, bits<3> IL> { bits<4> NF = N; bits<1> Masked = M; bits<1> Ordered = O; bits<3> Log2SEW = S; bits<3> LMUL = L; bits<3> IndexLMUL = IL; Pseudo Pseudo = !cast<Pseudo>(NAME); } def RISCVVSXSEGTable : GenericTable { let FilterClass = "RISCVVSXSEG"; let CppTypeName = "VSXSEGPseudo"; let Fields = ["NF", "Masked", "Ordered", "Log2SEW", "LMUL", "IndexLMUL", "Pseudo"]; let PrimaryKey = ["NF", "Masked", "Ordered", "Log2SEW", "LMUL", "IndexLMUL"]; let PrimaryKeyName = "getVSXSEGPseudo"; } //===----------------------------------------------------------------------===// // Helpers to define the different pseudo instructions. //===----------------------------------------------------------------------===// // The destination vector register group for a masked vector instruction cannot // overlap the source mask register (v0), unless the destination vector register // is being written with a mask value (e.g., comparisons) or the scalar result // of a reduction. class GetVRegNoV0<VReg VRegClass> { VReg R = !cond(!eq(VRegClass, VR) : VRNoV0, !eq(VRegClass, VRM2) : VRM2NoV0, !eq(VRegClass, VRM4) : VRM4NoV0, !eq(VRegClass, VRM8) : VRM8NoV0, !eq(VRegClass, VRN2M1) : VRN2M1NoV0, !eq(VRegClass, VRN2M2) : VRN2M2NoV0, !eq(VRegClass, VRN2M4) : VRN2M4NoV0, !eq(VRegClass, VRN3M1) : VRN3M1NoV0, !eq(VRegClass, VRN3M2) : VRN3M2NoV0, !eq(VRegClass, VRN4M1) : VRN4M1NoV0, !eq(VRegClass, VRN4M2) : VRN4M2NoV0, !eq(VRegClass, VRN5M1) : VRN5M1NoV0, !eq(VRegClass, VRN6M1) : VRN6M1NoV0, !eq(VRegClass, VRN7M1) : VRN7M1NoV0, !eq(VRegClass, VRN8M1) : VRN8M1NoV0, true : VRegClass); } class VPseudo<Instruction instr, LMULInfo m, dag outs, dag ins, int sew = 0> : Pseudo<outs, ins, []>, RISCVVPseudo { let BaseInstr = instr; let VLMul = m.value; let SEW = sew; } class GetVTypePredicates<VTypeInfo vti> { list<Predicate> Predicates = !cond(!eq(vti.Scalar, f16) : [HasVInstructionsF16], !eq(vti.Scalar, bf16) : [HasVInstructionsBF16], !eq(vti.Scalar, f32) : [HasVInstructionsAnyF], !eq(vti.Scalar, f64) : [HasVInstructionsF64], !eq(vti.SEW, 64) : [HasVInstructionsI64], true : [HasVInstructions]); } class VPseudoUSLoadNoMask<VReg RetClass, int EEW> : Pseudo<(outs RetClass:$rd), (ins RetClass:$dest, GPRMem:$rs1, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLE</*Masked*/0, /*Strided*/0, /*FF*/0, !logtwo(EEW), VLMul> { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let Constraints = "$rd = $dest"; } class VPseudoUSLoadMask<VReg RetClass, int EEW> : Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd), (ins GetVRegNoV0<RetClass>.R:$merge, GPRMem:$rs1, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLE</*Masked*/1, /*Strided*/0, /*FF*/0, !logtwo(EEW), VLMul> { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let Constraints = "$rd = $merge"; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; } class VPseudoUSLoadFFNoMask<VReg RetClass, int EEW> : Pseudo<(outs RetClass:$rd, GPR:$vl), (ins RetClass:$dest, GPRMem:$rs1, AVL:$avl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLE</*Masked*/0, /*Strided*/0, /*FF*/1, !logtwo(EEW), VLMul> { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let Constraints = "$rd = $dest"; } class VPseudoUSLoadFFMask<VReg RetClass, int EEW> : Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd, GPR:$vl), (ins GetVRegNoV0<RetClass>.R:$merge, GPRMem:$rs1, VMaskOp:$vm, AVL:$avl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLE</*Masked*/1, /*Strided*/0, /*FF*/1, !logtwo(EEW), VLMul> { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let Constraints = "$rd = $merge"; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; } class VPseudoSLoadNoMask<VReg RetClass, int EEW> : Pseudo<(outs RetClass:$rd), (ins RetClass:$dest, GPRMem:$rs1, GPR:$rs2, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLE</*Masked*/0, /*Strided*/1, /*FF*/0, !logtwo(EEW), VLMul> { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let Constraints = "$rd = $dest"; } class VPseudoSLoadMask<VReg RetClass, int EEW> : Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd), (ins GetVRegNoV0<RetClass>.R:$merge, GPRMem:$rs1, GPR:$rs2, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLE</*Masked*/1, /*Strided*/1, /*FF*/0, !logtwo(EEW), VLMul> { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let Constraints = "$rd = $merge"; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; } class VPseudoILoadNoMask<VReg RetClass, VReg IdxClass, int EEW, bits<3> LMUL, bit Ordered, bit EarlyClobber, int TargetConstraintType = 1> : Pseudo<(outs RetClass:$rd), (ins RetClass:$dest, GPRMem:$rs1, IdxClass:$rs2, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLX</*Masked*/0, Ordered, !logtwo(EEW), VLMul, LMUL> { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let Constraints = !if(!eq(EarlyClobber, 1), "@earlyclobber $rd, $rd = $dest", "$rd = $dest"); let TargetOverlapConstraintType = TargetConstraintType; } class VPseudoILoadMask<VReg RetClass, VReg IdxClass, int EEW, bits<3> LMUL, bit Ordered, bit EarlyClobber, int TargetConstraintType = 1> : Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd), (ins GetVRegNoV0<RetClass>.R:$merge, GPRMem:$rs1, IdxClass:$rs2, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLX</*Masked*/1, Ordered, !logtwo(EEW), VLMul, LMUL> { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let Constraints = !if(!eq(EarlyClobber, 1), "@earlyclobber $rd, $rd = $merge", "$rd = $merge"); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; } class VPseudoUSStoreNoMask<VReg StClass, int EEW> : Pseudo<(outs), (ins StClass:$rd, GPRMem:$rs1, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo, RISCVVSE</*Masked*/0, /*Strided*/0, !logtwo(EEW), VLMul> { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoUSStoreMask<VReg StClass, int EEW> : Pseudo<(outs), (ins StClass:$rd, GPRMem:$rs1, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo, RISCVVSE</*Masked*/1, /*Strided*/0, !logtwo(EEW), VLMul> { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoSStoreNoMask<VReg StClass, int EEW> : Pseudo<(outs), (ins StClass:$rd, GPRMem:$rs1, GPR:$rs2, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo, RISCVVSE</*Masked*/0, /*Strided*/1, !logtwo(EEW), VLMul> { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoSStoreMask<VReg StClass, int EEW> : Pseudo<(outs), (ins StClass:$rd, GPRMem:$rs1, GPR:$rs2, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo, RISCVVSE</*Masked*/1, /*Strided*/1, !logtwo(EEW), VLMul> { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoNullaryNoMask<VReg RegClass> : Pseudo<(outs RegClass:$rd), (ins RegClass:$merge, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = "$rd = $merge"; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; } class VPseudoNullaryMask<VReg RegClass> : Pseudo<(outs GetVRegNoV0<RegClass>.R:$rd), (ins GetVRegNoV0<RegClass>.R:$merge, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints ="$rd = $merge"; let HasVLOp = 1; let HasSEWOp = 1; let UsesMaskPolicy = 1; let HasVecPolicyOp = 1; } // Nullary for pseudo instructions. They are expanded in // RISCVExpandPseudoInsts pass. class VPseudoNullaryPseudoM<string BaseInst> : Pseudo<(outs VR:$rd), (ins AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; // BaseInstr is not used in RISCVExpandPseudoInsts pass. // Just fill a corresponding real v-inst to pass tablegen check. let BaseInstr = !cast<Instruction>(BaseInst); // We exclude them from RISCVVPseudoTable. let NeedBeInPseudoTable = 0; } class VPseudoUnaryNoMask<DAGOperand RetClass, DAGOperand OpClass, string Constraint = "", int TargetConstraintType = 1> : Pseudo<(outs RetClass:$rd), (ins RetClass:$merge, OpClass:$rs2, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; } class VPseudoUnaryNoMaskNoPolicy<DAGOperand RetClass, DAGOperand OpClass, string Constraint = "", int TargetConstraintType = 1> : Pseudo<(outs RetClass:$rd), (ins OpClass:$rs2, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = Constraint; let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoUnaryNoMaskRoundingMode<DAGOperand RetClass, DAGOperand OpClass, string Constraint = "", int TargetConstraintType = 1> : Pseudo<(outs RetClass:$rd), (ins RetClass:$merge, OpClass:$rs2, ixlenimm:$rm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let HasRoundModeOp = 1; let UsesVXRM = 0; } class VPseudoUnaryMask<VReg RetClass, VReg OpClass, string Constraint = "", int TargetConstraintType = 1> : Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd), (ins GetVRegNoV0<RetClass>.R:$merge, OpClass:$rs2, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; } class VPseudoUnaryMaskRoundingMode<VReg RetClass, VReg OpClass, string Constraint = "", int TargetConstraintType = 1> : Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd), (ins GetVRegNoV0<RetClass>.R:$merge, OpClass:$rs2, VMaskOp:$vm, ixlenimm:$rm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; let HasRoundModeOp = 1; let UsesVXRM = 0; } class VPseudoUnaryMask_NoExcept<VReg RetClass, VReg OpClass, string Constraint = ""> : Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd), (ins GetVRegNoV0<RetClass>.R:$merge, OpClass:$rs2, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []> { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; let usesCustomInserter = 1; } class VPseudoUnaryNoMask_FRM<VReg RetClass, VReg OpClass, string Constraint = "", int TargetConstraintType = 1> : Pseudo<(outs RetClass:$rd), (ins RetClass:$merge, OpClass:$rs2, ixlenimm:$frm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let HasRoundModeOp = 1; } class VPseudoUnaryMask_FRM<VReg RetClass, VReg OpClass, string Constraint = "", int TargetConstraintType = 1> : Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd), (ins GetVRegNoV0<RetClass>.R:$merge, OpClass:$rs2, VMaskOp:$vm, ixlenimm:$frm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; let HasRoundModeOp = 1; } class VPseudoUnaryNoMaskGPROut : Pseudo<(outs GPR:$rd), (ins VR:$rs2, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoUnaryMaskGPROut : Pseudo<(outs GPR:$rd), (ins VR:$rs1, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } // Mask can be V0~V31 class VPseudoUnaryAnyMask<VReg RetClass, VReg Op1Class> : Pseudo<(outs RetClass:$rd), (ins RetClass:$merge, Op1Class:$rs2, VR:$vm, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = "@earlyclobber $rd, $rd = $merge"; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoBinaryNoMask<VReg RetClass, VReg Op1Class, DAGOperand Op2Class, string Constraint, int TargetConstraintType = 1> : Pseudo<(outs RetClass:$rd), (ins Op1Class:$rs2, Op2Class:$rs1, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = Constraint; let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoBinaryNoMaskPolicy<VReg RetClass, VReg Op1Class, DAGOperand Op2Class, string Constraint, int TargetConstraintType = 1> : Pseudo<(outs RetClass:$rd), (ins RetClass:$merge, Op1Class:$rs2, Op2Class:$rs1, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; } class VPseudoBinaryNoMaskRoundingMode<VReg RetClass, VReg Op1Class, DAGOperand Op2Class, string Constraint, int UsesVXRM_ = 1, int TargetConstraintType = 1> : Pseudo<(outs RetClass:$rd), (ins RetClass:$merge, Op1Class:$rs2, Op2Class:$rs1, ixlenimm:$rm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let HasRoundModeOp = 1; let UsesVXRM = UsesVXRM_; } class VPseudoBinaryMaskPolicyRoundingMode<VReg RetClass, RegisterClass Op1Class, DAGOperand Op2Class, string Constraint, int UsesVXRM_, int TargetConstraintType = 1> : Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd), (ins GetVRegNoV0<RetClass>.R:$merge, Op1Class:$rs2, Op2Class:$rs1, VMaskOp:$vm, ixlenimm:$rm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; let HasRoundModeOp = 1; let UsesVXRM = UsesVXRM_; } // Special version of VPseudoBinaryNoMask where we pretend the first source is // tied to the destination. // This allows maskedoff and rs2 to be the same register. class VPseudoTiedBinaryNoMask<VReg RetClass, DAGOperand Op2Class, string Constraint, int TargetConstraintType = 1> : Pseudo<(outs RetClass:$rd), (ins RetClass:$rs2, Op2Class:$rs1, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $rs2"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let isConvertibleToThreeAddress = 1; let IsTiedPseudo = 1; } class VPseudoTiedBinaryNoMaskRoundingMode<VReg RetClass, DAGOperand Op2Class, string Constraint, int TargetConstraintType = 1> : Pseudo<(outs RetClass:$rd), (ins RetClass:$rs2, Op2Class:$rs1, ixlenimm:$rm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $rs2"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let isConvertibleToThreeAddress = 1; let IsTiedPseudo = 1; let HasRoundModeOp = 1; let UsesVXRM = 0; } class VPseudoIStoreNoMask<VReg StClass, VReg IdxClass, int EEW, bits<3> LMUL, bit Ordered>: Pseudo<(outs), (ins StClass:$rd, GPRMem:$rs1, IdxClass:$rs2, AVL:$vl, ixlenimm:$sew),[]>, RISCVVPseudo, RISCVVSX</*Masked*/0, Ordered, !logtwo(EEW), VLMul, LMUL> { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoIStoreMask<VReg StClass, VReg IdxClass, int EEW, bits<3> LMUL, bit Ordered>: Pseudo<(outs), (ins StClass:$rd, GPRMem:$rs1, IdxClass:$rs2, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew),[]>, RISCVVPseudo, RISCVVSX</*Masked*/1, Ordered, !logtwo(EEW), VLMul, LMUL> { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoBinaryMaskPolicy<VReg RetClass, RegisterClass Op1Class, DAGOperand Op2Class, string Constraint, int TargetConstraintType = 1> : Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd), (ins GetVRegNoV0<RetClass>.R:$merge, Op1Class:$rs2, Op2Class:$rs1, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; } class VPseudoTernaryMaskPolicy<VReg RetClass, RegisterClass Op1Class, DAGOperand Op2Class> : Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd), (ins GetVRegNoV0<RetClass>.R:$merge, Op1Class:$rs2, Op2Class:$rs1, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = "$rd = $merge"; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; } class VPseudoTernaryMaskPolicyRoundingMode<VReg RetClass, RegisterClass Op1Class, DAGOperand Op2Class> : Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd), (ins GetVRegNoV0<RetClass>.R:$merge, Op1Class:$rs2, Op2Class:$rs1, VMaskOp:$vm, ixlenimm:$rm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = "$rd = $merge"; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let HasRoundModeOp = 1; let UsesVXRM = 0; } // Like VPseudoBinaryMaskPolicy, but output can be V0 and there is no policy. class VPseudoBinaryMOutMask<VReg RetClass, RegisterClass Op1Class, DAGOperand Op2Class, string Constraint, int TargetConstraintType = 1> : Pseudo<(outs RetClass:$rd), (ins RetClass:$merge, Op1Class:$rs2, Op2Class:$rs1, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let UsesMaskPolicy = 1; } // Special version of VPseudoBinaryMaskPolicy where we pretend the first source // is tied to the destination so we can workaround the earlyclobber constraint. // This allows maskedoff and rs2 to be the same register. class VPseudoTiedBinaryMask<VReg RetClass, DAGOperand Op2Class, string Constraint, int TargetConstraintType = 1> : Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd), (ins GetVRegNoV0<RetClass>.R:$merge, Op2Class:$rs1, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; let IsTiedPseudo = 1; } class VPseudoTiedBinaryMaskRoundingMode<VReg RetClass, DAGOperand Op2Class, string Constraint, int TargetConstraintType = 1> : Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd), (ins GetVRegNoV0<RetClass>.R:$merge, Op2Class:$rs1, VMaskOp:$vm, ixlenimm:$rm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $merge"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; let IsTiedPseudo = 1; let HasRoundModeOp = 1; let UsesVXRM = 0; } class VPseudoBinaryCarry<VReg RetClass, VReg Op1Class, DAGOperand Op2Class, LMULInfo MInfo, bit CarryIn, string Constraint, int TargetConstraintType = 1> : Pseudo<(outs RetClass:$rd), !if(CarryIn, (ins Op1Class:$rs2, Op2Class:$rs1, VMV0:$carry, AVL:$vl, ixlenimm:$sew), (ins Op1Class:$rs2, Op2Class:$rs1, AVL:$vl, ixlenimm:$sew)), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = Constraint; let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let VLMul = MInfo.value; } class VPseudoTiedBinaryCarryIn<VReg RetClass, VReg Op1Class, DAGOperand Op2Class, LMULInfo MInfo, int TargetConstraintType = 1> : Pseudo<(outs RetClass:$rd), (ins RetClass:$merge, Op1Class:$rs2, Op2Class:$rs1, VMV0:$carry, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = "$rd = $merge"; let TargetOverlapConstraintType = TargetConstraintType; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 0; let VLMul = MInfo.value; } class VPseudoTernaryNoMask<VReg RetClass, RegisterClass Op1Class, DAGOperand Op2Class, string Constraint> : Pseudo<(outs RetClass:$rd), (ins RetClass:$rs3, Op1Class:$rs1, Op2Class:$rs2, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $rs3"], ","); let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoTernaryNoMaskWithPolicy<VReg RetClass, RegisterClass Op1Class, DAGOperand Op2Class, string Constraint = "", int TargetConstraintType = 1> : Pseudo<(outs RetClass:$rd), (ins RetClass:$rs3, Op1Class:$rs1, Op2Class:$rs2, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $rs3"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVecPolicyOp = 1; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoTernaryNoMaskWithPolicyRoundingMode<VReg RetClass, RegisterClass Op1Class, DAGOperand Op2Class, string Constraint = "", int TargetConstraintType = 1> : Pseudo<(outs RetClass:$rd), (ins RetClass:$rs3, Op1Class:$rs1, Op2Class:$rs2, ixlenimm:$rm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo { let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let Constraints = !interleave([Constraint, "$rd = $rs3"], ","); let TargetOverlapConstraintType = TargetConstraintType; let HasVecPolicyOp = 1; let HasVLOp = 1; let HasSEWOp = 1; let HasRoundModeOp = 1; let UsesVXRM = 0; } class VPseudoUSSegLoadNoMask<VReg RetClass, int EEW, bits<4> NF> : Pseudo<(outs RetClass:$rd), (ins RetClass:$dest, GPRMem:$rs1, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLSEG<NF, /*Masked*/0, /*Strided*/0, /*FF*/0, !logtwo(EEW), VLMul> { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let Constraints = "$rd = $dest"; } class VPseudoUSSegLoadMask<VReg RetClass, int EEW, bits<4> NF> : Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd), (ins GetVRegNoV0<RetClass>.R:$merge, GPRMem:$rs1, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLSEG<NF, /*Masked*/1, /*Strided*/0, /*FF*/0, !logtwo(EEW), VLMul> { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let Constraints = "$rd = $merge"; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; } class VPseudoUSSegLoadFFNoMask<VReg RetClass, int EEW, bits<4> NF> : Pseudo<(outs RetClass:$rd, GPR:$vl), (ins RetClass:$dest, GPRMem:$rs1, AVL:$avl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLSEG<NF, /*Masked*/0, /*Strided*/0, /*FF*/1, !logtwo(EEW), VLMul> { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let Constraints = "$rd = $dest"; } class VPseudoUSSegLoadFFMask<VReg RetClass, int EEW, bits<4> NF> : Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd, GPR:$vl), (ins GetVRegNoV0<RetClass>.R:$merge, GPRMem:$rs1, VMaskOp:$vm, AVL:$avl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLSEG<NF, /*Masked*/1, /*Strided*/0, /*FF*/1, !logtwo(EEW), VLMul> { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let Constraints = "$rd = $merge"; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; } class VPseudoSSegLoadNoMask<VReg RetClass, int EEW, bits<4> NF> : Pseudo<(outs RetClass:$rd), (ins RetClass:$merge, GPRMem:$rs1, GPR:$offset, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLSEG<NF, /*Masked*/0, /*Strided*/1, /*FF*/0, !logtwo(EEW), VLMul> { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let Constraints = "$rd = $merge"; } class VPseudoSSegLoadMask<VReg RetClass, int EEW, bits<4> NF> : Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd), (ins GetVRegNoV0<RetClass>.R:$merge, GPRMem:$rs1, GPR:$offset, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLSEG<NF, /*Masked*/1, /*Strided*/1, /*FF*/0, !logtwo(EEW), VLMul> { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; let Constraints = "$rd = $merge"; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; } class VPseudoISegLoadNoMask<VReg RetClass, VReg IdxClass, int EEW, bits<3> LMUL, bits<4> NF, bit Ordered> : Pseudo<(outs RetClass:$rd), (ins RetClass:$merge, GPRMem:$rs1, IdxClass:$offset, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLXSEG<NF, /*Masked*/0, Ordered, !logtwo(EEW), VLMul, LMUL> { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; // For vector indexed segment loads, the destination vector register groups // cannot overlap the source vector register group let Constraints = "@earlyclobber $rd, $rd = $merge"; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; } class VPseudoISegLoadMask<VReg RetClass, VReg IdxClass, int EEW, bits<3> LMUL, bits<4> NF, bit Ordered> : Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd), (ins GetVRegNoV0<RetClass>.R:$merge, GPRMem:$rs1, IdxClass:$offset, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew, ixlenimm:$policy), []>, RISCVVPseudo, RISCVVLXSEG<NF, /*Masked*/1, Ordered, !logtwo(EEW), VLMul, LMUL> { let mayLoad = 1; let mayStore = 0; let hasSideEffects = 0; // For vector indexed segment loads, the destination vector register groups // cannot overlap the source vector register group let Constraints = "@earlyclobber $rd, $rd = $merge"; let HasVLOp = 1; let HasSEWOp = 1; let HasVecPolicyOp = 1; let UsesMaskPolicy = 1; } class VPseudoUSSegStoreNoMask<VReg ValClass, int EEW, bits<4> NF> : Pseudo<(outs), (ins ValClass:$rd, GPRMem:$rs1, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo, RISCVVSSEG<NF, /*Masked*/0, /*Strided*/0, !logtwo(EEW), VLMul> { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoUSSegStoreMask<VReg ValClass, int EEW, bits<4> NF> : Pseudo<(outs), (ins ValClass:$rd, GPRMem:$rs1, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo, RISCVVSSEG<NF, /*Masked*/1, /*Strided*/0, !logtwo(EEW), VLMul> { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoSSegStoreNoMask<VReg ValClass, int EEW, bits<4> NF> : Pseudo<(outs), (ins ValClass:$rd, GPRMem:$rs1, GPR:$offset, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo, RISCVVSSEG<NF, /*Masked*/0, /*Strided*/1, !logtwo(EEW), VLMul> { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoSSegStoreMask<VReg ValClass, int EEW, bits<4> NF> : Pseudo<(outs), (ins ValClass:$rd, GPRMem:$rs1, GPR: $offset, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo, RISCVVSSEG<NF, /*Masked*/1, /*Strided*/1, !logtwo(EEW), VLMul> { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoISegStoreNoMask<VReg ValClass, VReg IdxClass, int EEW, bits<3> LMUL, bits<4> NF, bit Ordered> : Pseudo<(outs), (ins ValClass:$rd, GPRMem:$rs1, IdxClass: $index, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo, RISCVVSXSEG<NF, /*Masked*/0, Ordered, !logtwo(EEW), VLMul, LMUL> { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } class VPseudoISegStoreMask<VReg ValClass, VReg IdxClass, int EEW, bits<3> LMUL, bits<4> NF, bit Ordered> : Pseudo<(outs), (ins ValClass:$rd, GPRMem:$rs1, IdxClass: $index, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>, RISCVVPseudo, RISCVVSXSEG<NF, /*Masked*/1, Ordered, !logtwo(EEW), VLMul, LMUL> { let mayLoad = 0; let mayStore = 1; let hasSideEffects = 0; let HasVLOp = 1; let HasSEWOp = 1; } multiclass VPseudoUSLoad { foreach eew = EEWList in { foreach lmul = MxSet<eew>.m in { defvar LInfo = lmul.MX; defvar vreg = lmul.vrclass; let VLMul = lmul.value, SEW=eew in { def "E" # eew # "_V_" # LInfo : VPseudoUSLoadNoMask<vreg, eew>, VLESched<LInfo>; def "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoUSLoadMask<vreg, eew>, RISCVMaskedPseudo<MaskIdx=2>, VLESched<LInfo>; } } } } multiclass VPseudoFFLoad { foreach eew = EEWList in { foreach lmul = MxSet<eew>.m in { defvar LInfo = lmul.MX; defvar vreg = lmul.vrclass; let VLMul = lmul.value, SEW=eew in { def "E" # eew # "FF_V_" # LInfo: VPseudoUSLoadFFNoMask<vreg, eew>, VLFSched<LInfo>; def "E" # eew # "FF_V_" # LInfo # "_MASK": VPseudoUSLoadFFMask<vreg, eew>, RISCVMaskedPseudo<MaskIdx=2>, VLFSched<LInfo>; } } } } multiclass VPseudoLoadMask { foreach mti = AllMasks in { defvar mx = mti.LMul.MX; defvar WriteVLDM_MX = !cast<SchedWrite>("WriteVLDM_" # mx); let VLMul = mti.LMul.value in { def "_V_" # mti.BX : VPseudoUSLoadNoMask<VR, EEW=1>, Sched<[WriteVLDM_MX, ReadVLDX]>; } } } multiclass VPseudoSLoad { foreach eew = EEWList in { foreach lmul = MxSet<eew>.m in { defvar LInfo = lmul.MX; defvar vreg = lmul.vrclass; let VLMul = lmul.value, SEW=eew in { def "E" # eew # "_V_" # LInfo : VPseudoSLoadNoMask<vreg, eew>, VLSSched<eew, LInfo>; def "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoSLoadMask<vreg, eew>, RISCVMaskedPseudo<MaskIdx=3>, VLSSched<eew, LInfo>; } } } } multiclass VPseudoILoad<bit Ordered> { foreach idxEEW = EEWList in { foreach dataEEW = EEWList in { foreach dataEMUL = MxSet<dataEEW>.m in { defvar dataEMULOctuple = dataEMUL.octuple; // Calculate emul = eew * lmul / sew defvar idxEMULOctuple = !srl(!mul(idxEEW, dataEMULOctuple), !logtwo(dataEEW)); if !and(!ge(idxEMULOctuple, 1), !le(idxEMULOctuple, 64)) then { defvar DataLInfo = dataEMUL.MX; defvar IdxLInfo = octuple_to_str<idxEMULOctuple>.ret; defvar idxEMUL = !cast<LMULInfo>("V_" # IdxLInfo); defvar Vreg = dataEMUL.vrclass; defvar IdxVreg = idxEMUL.vrclass; defvar HasConstraint = !ne(dataEEW, idxEEW); defvar TypeConstraints = !if(!eq(dataEEW, idxEEW), 1, !if(!gt(dataEEW, idxEEW), !if(!ge(idxEMULOctuple, 8), 3, 1), 2)); let VLMul = dataEMUL.value in { def "EI" # idxEEW # "_V_" # IdxLInfo # "_" # DataLInfo : VPseudoILoadNoMask<Vreg, IdxVreg, idxEEW, idxEMUL.value, Ordered, HasConstraint, TypeConstraints>, VLXSched<dataEEW, Ordered, DataLInfo, IdxLInfo>; def "EI" # idxEEW # "_V_" # IdxLInfo # "_" # DataLInfo # "_MASK" : VPseudoILoadMask<Vreg, IdxVreg, idxEEW, idxEMUL.value, Ordered, HasConstraint, TypeConstraints>, RISCVMaskedPseudo<MaskIdx=3>, VLXSched<dataEEW, Ordered, DataLInfo, IdxLInfo>; } } } } } } multiclass VPseudoUSStore { foreach eew = EEWList in { foreach lmul = MxSet<eew>.m in { defvar LInfo = lmul.MX; defvar vreg = lmul.vrclass; let VLMul = lmul.value, SEW=eew in { def "E" # eew # "_V_" # LInfo : VPseudoUSStoreNoMask<vreg, eew>, VSESched<LInfo>; def "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoUSStoreMask<vreg, eew>, VSESched<LInfo>; } } } } multiclass VPseudoStoreMask { foreach mti = AllMasks in { defvar mx = mti.LMul.MX; defvar WriteVSTM_MX = !cast<SchedWrite>("WriteVSTM_" # mx); let VLMul = mti.LMul.value in { def "_V_" # mti.BX : VPseudoUSStoreNoMask<VR, EEW=1>, Sched<[WriteVSTM_MX, ReadVSTX]>; } } } multiclass VPseudoSStore { foreach eew = EEWList in { foreach lmul = MxSet<eew>.m in { defvar LInfo = lmul.MX; defvar vreg = lmul.vrclass; let VLMul = lmul.value, SEW=eew in { def "E" # eew # "_V_" # LInfo : VPseudoSStoreNoMask<vreg, eew>, VSSSched<eew, LInfo>; def "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoSStoreMask<vreg, eew>, VSSSched<eew, LInfo>; } } } } multiclass VPseudoIStore<bit Ordered> { foreach idxEEW = EEWList in { foreach dataEEW = EEWList in { foreach dataEMUL = MxSet<dataEEW>.m in { defvar dataEMULOctuple = dataEMUL.octuple; // Calculate emul = eew * lmul / sew defvar idxEMULOctuple = !srl(!mul(idxEEW, dataEMULOctuple), !logtwo(dataEEW)); if !and(!ge(idxEMULOctuple, 1), !le(idxEMULOctuple, 64)) then { defvar DataLInfo = dataEMUL.MX; defvar IdxLInfo = octuple_to_str<idxEMULOctuple>.ret; defvar idxEMUL = !cast<LMULInfo>("V_" # IdxLInfo); defvar Vreg = dataEMUL.vrclass; defvar IdxVreg = idxEMUL.vrclass; let VLMul = dataEMUL.value in { def "EI" # idxEEW # "_V_" # IdxLInfo # "_" # DataLInfo : VPseudoIStoreNoMask<Vreg, IdxVreg, idxEEW, idxEMUL.value, Ordered>, VSXSched<dataEEW, Ordered, DataLInfo, IdxLInfo>; def "EI" # idxEEW # "_V_" # IdxLInfo # "_" # DataLInfo # "_MASK" : VPseudoIStoreMask<Vreg, IdxVreg, idxEEW, idxEMUL.value, Ordered>, VSXSched<dataEEW, Ordered, DataLInfo, IdxLInfo>; } } } } } } multiclass VPseudoVPOP_M { foreach mti = AllMasks in { defvar mx = mti.LMul.MX; let VLMul = mti.LMul.value in { def "_M_" # mti.BX : VPseudoUnaryNoMaskGPROut, SchedBinary<"WriteVMPopV", "ReadVMPopV", "ReadVMPopV", mx>; def "_M_" # mti.BX # "_MASK" : VPseudoUnaryMaskGPROut, SchedBinary<"WriteVMPopV", "ReadVMPopV", "ReadVMPopV", mx>; } } } multiclass VPseudoV1ST_M { foreach mti = AllMasks in { defvar mx = mti.LMul.MX; let VLMul = mti.LMul.value in { def "_M_" #mti.BX : VPseudoUnaryNoMaskGPROut, SchedBinary<"WriteVMFFSV", "ReadVMFFSV", "ReadVMFFSV", mx>; def "_M_" # mti.BX # "_MASK" : VPseudoUnaryMaskGPROut, SchedBinary<"WriteVMFFSV", "ReadVMFFSV", "ReadVMFFSV", mx>; } } } multiclass VPseudoVSFS_M { defvar constraint = "@earlyclobber $rd"; foreach mti = AllMasks in { defvar mx = mti.LMul.MX; let VLMul = mti.LMul.value in { def "_M_" # mti.BX : VPseudoUnaryNoMaskNoPolicy<VR, VR, constraint>, SchedUnary<"WriteVMSFSV", "ReadVMSFSV", mx, forceMergeOpRead=true>; let ForceTailAgnostic = true in def "_M_" # mti.BX # "_MASK" : VPseudoUnaryMask<VR, VR, constraint>, SchedUnary<"WriteVMSFSV", "ReadVMSFSV", mx, forceMergeOpRead=true>; } } } multiclass VPseudoVID_V { foreach m = MxList in { defvar mx = m.MX; let VLMul = m.value in { def "_V_" # mx : VPseudoNullaryNoMask<m.vrclass>, SchedNullary<"WriteVIdxV", mx, forceMergeOpRead=true>; def "_V_" # mx # "_MASK" : VPseudoNullaryMask<m.vrclass>, RISCVMaskedPseudo<MaskIdx=1>, SchedNullary<"WriteVIdxV", mx, forceMergeOpRead=true>; } } } multiclass VPseudoNullaryPseudoM <string BaseInst> { foreach mti = AllMasks in { let VLMul = mti.LMul.value in { def "_M_" # mti.BX : VPseudoNullaryPseudoM<BaseInst # "_MM">, SchedBinary<"WriteVMALUV", "ReadVMALUV", "ReadVMALUV", mti.LMul.MX>; } } } multiclass VPseudoVIOTA_M { defvar constraint = "@earlyclobber $rd"; foreach m = MxList in { defvar mx = m.MX; let VLMul = m.value in { def "_" # mx : VPseudoUnaryNoMask<m.vrclass, VR, constraint>, SchedUnary<"WriteVIotaV", "ReadVIotaV", mx, forceMergeOpRead=true>; def "_" # mx # "_MASK" : VPseudoUnaryMask<m.vrclass, VR, constraint>, RISCVMaskedPseudo<MaskIdx=2, ActiveAffectsRes=true>, SchedUnary<"WriteVIotaV", "ReadVIotaV", mx, forceMergeOpRead=true>; } } } multiclass VPseudoVCPR_V { foreach m = MxList in { defvar mx = m.MX; defvar sews = SchedSEWSet<mx>.val; let VLMul = m.value in foreach e = sews in { defvar suffix = "_" # m.MX # "_E" # e; let SEW = e in def _VM # suffix : VPseudoUnaryAnyMask<m.vrclass, m.vrclass>, SchedBinary<"WriteVCompressV", "ReadVCompressV", "ReadVCompressV", mx, e>; } } } multiclass VPseudoBinary<VReg RetClass, VReg Op1Class, DAGOperand Op2Class, LMULInfo MInfo, string Constraint = "", int sew = 0, int TargetConstraintType = 1, bit Commutable = 0> { let VLMul = MInfo.value, SEW=sew, isCommutable = Commutable in { defvar suffix = !if(sew, "_" # MInfo.MX # "_E" # sew, "_" # MInfo.MX); def suffix : VPseudoBinaryNoMaskPolicy<RetClass, Op1Class, Op2Class, Constraint, TargetConstraintType>; def suffix # "_MASK" : VPseudoBinaryMaskPolicy<RetClass, Op1Class, Op2Class, Constraint, TargetConstraintType>, RISCVMaskedPseudo<MaskIdx=3>; } } multiclass VPseudoBinaryRoundingMode<VReg RetClass, VReg Op1Class, DAGOperand Op2Class, LMULInfo MInfo, string Constraint = "", int sew = 0, int UsesVXRM = 1, int TargetConstraintType = 1, bit Commutable = 0> { let VLMul = MInfo.value, SEW=sew, isCommutable = Commutable in { defvar suffix = !if(sew, "_" # MInfo.MX # "_E" # sew, "_" # MInfo.MX); def suffix : VPseudoBinaryNoMaskRoundingMode<RetClass, Op1Class, Op2Class, Constraint, UsesVXRM, TargetConstraintType>; def suffix # "_MASK" : VPseudoBinaryMaskPolicyRoundingMode<RetClass, Op1Class, Op2Class, Constraint, UsesVXRM, TargetConstraintType>, RISCVMaskedPseudo<MaskIdx=3>; } } multiclass VPseudoBinaryM<VReg RetClass, VReg Op1Class, DAGOperand Op2Class, LMULInfo MInfo, string Constraint = "", int TargetConstraintType = 1, bit Commutable = 0> { let VLMul = MInfo.value, isCommutable = Commutable in { def "_" # MInfo.MX : VPseudoBinaryNoMask<RetClass, Op1Class, Op2Class, Constraint, TargetConstraintType>; let ForceTailAgnostic = true in def "_" # MInfo.MX # "_MASK" : VPseudoBinaryMOutMask<RetClass, Op1Class, Op2Class, Constraint, TargetConstraintType>, RISCVMaskedPseudo<MaskIdx=3>; } } multiclass VPseudoBinaryEmul<VReg RetClass, VReg Op1Class, DAGOperand Op2Class, LMULInfo lmul, LMULInfo emul, string Constraint = "", int sew> { let VLMul = lmul.value, SEW=sew in { defvar suffix = !if(sew, "_" # lmul.MX # "_E" # sew, "_" # lmul.MX); def suffix # "_" # emul.MX : VPseudoBinaryNoMaskPolicy<RetClass, Op1Class, Op2Class, Constraint>; def suffix # "_" # emul.MX # "_MASK" : VPseudoBinaryMaskPolicy<RetClass, Op1Class, Op2Class, Constraint>, RISCVMaskedPseudo<MaskIdx=3>; } } multiclass VPseudoTiedBinary<VReg RetClass, DAGOperand Op2Class, LMULInfo MInfo, string Constraint = "", int TargetConstraintType = 1> { let VLMul = MInfo.value in { def "_" # MInfo.MX # "_TIED": VPseudoTiedBinaryNoMask<RetClass, Op2Class, Constraint, TargetConstraintType>; def "_" # MInfo.MX # "_MASK_TIED" : VPseudoTiedBinaryMask<RetClass, Op2Class, Constraint, TargetConstraintType>, RISCVMaskedPseudo<MaskIdx=2>; } } multiclass VPseudoTiedBinaryRoundingMode<VReg RetClass, DAGOperand Op2Class, LMULInfo MInfo, string Constraint = "", int sew = 0, int TargetConstraintType = 1> { defvar suffix = !if(sew, "_" # MInfo.MX # "_E" # sew, "_" # MInfo.MX); let VLMul = MInfo.value in { def suffix # "_TIED": VPseudoTiedBinaryNoMaskRoundingMode<RetClass, Op2Class, Constraint, TargetConstraintType>; def suffix # "_MASK_TIED" : VPseudoTiedBinaryMaskRoundingMode<RetClass, Op2Class, Constraint, TargetConstraintType>, RISCVMaskedPseudo<MaskIdx=2>; } } multiclass VPseudoBinaryV_VV<LMULInfo m, string Constraint = "", int sew = 0, bit Commutable = 0> { defm _VV : VPseudoBinary<m.vrclass, m.vrclass, m.vrclass, m, Constraint, sew, Commutable=Commutable>; } multiclass VPseudoBinaryV_VV_RM<LMULInfo m, string Constraint = "", bit Commutable = 0> { defm _VV : VPseudoBinaryRoundingMode<m.vrclass, m.vrclass, m.vrclass, m, Constraint, Commutable=Commutable>; } multiclass VPseudoBinaryFV_VV_RM<LMULInfo m, int sew> { defm _VV : VPseudoBinaryRoundingMode<m.vrclass, m.vrclass, m.vrclass, m, "", sew, UsesVXRM=0>; } multiclass VPseudoVGTR_EI16_VV { defvar constraint = "@earlyclobber $rd"; foreach m = MxList in { defvar mx = m.MX; foreach sew = EEWList in { defvar dataEMULOctuple = m.octuple; // emul = lmul * 16 / sew defvar idxEMULOctuple = !srl(!mul(dataEMULOctuple, 16), !logtwo(sew)); if !and(!ge(idxEMULOctuple, 1), !le(idxEMULOctuple, 64)) then { defvar emulMX = octuple_to_str<idxEMULOctuple>.ret; defvar emul = !cast<LMULInfo>("V_" # emulMX); defvar sews = SchedSEWSet<mx>.val; foreach e = sews in { defm _VV : VPseudoBinaryEmul<m.vrclass, m.vrclass, emul.vrclass, m, emul, constraint, e>, SchedBinary<"WriteVRGatherEI16VV", "ReadVRGatherEI16VV_data", "ReadVRGatherEI16VV_index", mx, e, forceMergeOpRead=true>; } } } } } multiclass VPseudoBinaryV_VX<LMULInfo m, string Constraint = "", int sew = 0> { defm "_VX" : VPseudoBinary<m.vrclass, m.vrclass, GPR, m, Constraint, sew>; } multiclass VPseudoBinaryV_VX_RM<LMULInfo m, string Constraint = ""> { defm "_VX" : VPseudoBinaryRoundingMode<m.vrclass, m.vrclass, GPR, m, Constraint>; } multiclass VPseudoVSLD1_VX<string Constraint = ""> { foreach m = MxList in { defm "_VX" : VPseudoBinary<m.vrclass, m.vrclass, GPR, m, Constraint>, SchedBinary<"WriteVISlide1X", "ReadVISlideV", "ReadVISlideX", m.MX, forceMergeOpRead=true>; } } multiclass VPseudoBinaryV_VF<LMULInfo m, FPR_Info f, int sew> { defm "_V" # f.FX : VPseudoBinary<m.vrclass, m.vrclass, f.fprclass, m, "", sew>; } multiclass VPseudoBinaryV_VF_RM<LMULInfo m, FPR_Info f, int sew> { defm "_V" # f.FX : VPseudoBinaryRoundingMode<m.vrclass, m.vrclass, f.fprclass, m, "", sew, UsesVXRM=0>; } multiclass VPseudoVSLD1_VF<string Constraint = ""> { foreach f = FPList in { foreach m = f.MxList in { defm "_V" #f.FX : VPseudoBinary<m.vrclass, m.vrclass, f.fprclass, m, Constraint>, SchedBinary<"WriteVFSlide1F", "ReadVFSlideV", "ReadVFSlideF", m.MX, forceMergeOpRead=true>; } } } multiclass VPseudoBinaryV_VI<Operand ImmType, LMULInfo m, string Constraint = ""> { defm _VI : VPseudoBinary<m.vrclass, m.vrclass, ImmType, m, Constraint>; } multiclass VPseudoBinaryV_VI_RM<Operand ImmType, LMULInfo m, string Constraint = ""> { defm _VI : VPseudoBinaryRoundingMode<m.vrclass, m.vrclass, ImmType, m, Constraint>; } multiclass VPseudoVALU_MM<bit Commutable = 0> { foreach m = MxList in { defvar mx = m.MX; let VLMul = m.value, isCommutable = Commutable in { def "_MM_" # mx : VPseudoBinaryNoMask<VR, VR, VR, "">, SchedBinary<"WriteVMALUV", "ReadVMALUV", "ReadVMALUV", mx>; } } } // We use earlyclobber here due to // * The destination EEW is smaller than the source EEW and the overlap is // in the lowest-numbered part of the source register group is legal. // Otherwise, it is illegal. // * The destination EEW is greater than the source EEW, the source EMUL is // at least 1, and the overlap is in the highest-numbered part of the // destination register group is legal. Otherwise, it is illegal. multiclass VPseudoBinaryW_VV<LMULInfo m, bit Commutable = 0> { defm _VV : VPseudoBinary<m.wvrclass, m.vrclass, m.vrclass, m, "@earlyclobber $rd", TargetConstraintType=3, Commutable=Commutable>; } multiclass VPseudoBinaryW_VV_RM<LMULInfo m, int sew> { defm _VV : VPseudoBinaryRoundingMode<m.wvrclass, m.vrclass, m.vrclass, m, "@earlyclobber $rd", sew, UsesVXRM=0, TargetConstraintType=3>; } multiclass VPseudoBinaryW_VX<LMULInfo m> { defm "_VX" : VPseudoBinary<m.wvrclass, m.vrclass, GPR, m, "@earlyclobber $rd", TargetConstraintType=3>; } multiclass VPseudoBinaryW_VI<Operand ImmType, LMULInfo m> { defm "_VI" : VPseudoBinary<m.wvrclass, m.vrclass, ImmType, m, "@earlyclobber $rd", TargetConstraintType=3>; } multiclass VPseudoBinaryW_VF_RM<LMULInfo m, FPR_Info f, int sew> { defm "_V" # f.FX : VPseudoBinaryRoundingMode<m.wvrclass, m.vrclass, f.fprclass, m, "@earlyclobber $rd", sew, UsesVXRM=0, TargetConstraintType=3>; } multiclass VPseudoBinaryW_WV<LMULInfo m> { defm _WV : VPseudoBinary<m.wvrclass, m.wvrclass, m.vrclass, m, "@earlyclobber $rd", TargetConstraintType=3>; defm _WV : VPseudoTiedBinary<m.wvrclass, m.vrclass, m, "@earlyclobber $rd", TargetConstraintType=3>; } multiclass VPseudoBinaryW_WV_RM<LMULInfo m, int sew> { defm _WV : VPseudoBinaryRoundingMode<m.wvrclass, m.wvrclass, m.vrclass, m, "@earlyclobber $rd", sew, UsesVXRM = 0, TargetConstraintType = 3>; defm _WV : VPseudoTiedBinaryRoundingMode<m.wvrclass, m.vrclass, m, "@earlyclobber $rd", sew, TargetConstraintType = 3>; } multiclass VPseudoBinaryW_WX<LMULInfo m> { defm "_WX" : VPseudoBinary<m.wvrclass, m.wvrclass, GPR, m, /*Constraint*/ "", TargetConstraintType=3>; } multiclass VPseudoBinaryW_WF_RM<LMULInfo m, FPR_Info f, int sew> { defm "_W" # f.FX : VPseudoBinaryRoundingMode<m.wvrclass, m.wvrclass, f.fprclass, m, Constraint="", sew=sew, UsesVXRM=0, TargetConstraintType=3>; } // Narrowing instructions like vnsrl/vnsra/vnclip(u) don't need @earlyclobber // if the source and destination have an LMUL<=1. This matches this overlap // exception from the spec. // "The destination EEW is smaller than the source EEW and the overlap is in the // lowest-numbered part of the source register group." multiclass VPseudoBinaryV_WV<LMULInfo m> { defm _WV : VPseudoBinary<m.vrclass, m.wvrclass, m.vrclass, m, !if(!ge(m.octuple, 8), "@earlyclobber $rd", ""), TargetConstraintType=2>; } multiclass VPseudoBinaryV_WV_RM<LMULInfo m> { defm _WV : VPseudoBinaryRoundingMode<m.vrclass, m.wvrclass, m.vrclass, m, !if(!ge(m.octuple, 8), "@earlyclobber $rd", ""), TargetConstraintType=2>; } multiclass VPseudoBinaryV_WX<LMULInfo m> { defm _WX : VPseudoBinary<m.vrclass, m.wvrclass, GPR, m, !if(!ge(m.octuple, 8), "@earlyclobber $rd", ""), TargetConstraintType=2>; } multiclass VPseudoBinaryV_WX_RM<LMULInfo m> { defm _WX : VPseudoBinaryRoundingMode<m.vrclass, m.wvrclass, GPR, m, !if(!ge(m.octuple, 8), "@earlyclobber $rd", ""), TargetConstraintType=2>; } multiclass VPseudoBinaryV_WI<LMULInfo m> { defm _WI : VPseudoBinary<m.vrclass, m.wvrclass, uimm5, m, !if(!ge(m.octuple, 8), "@earlyclobber $rd", ""), TargetConstraintType=2>; } multiclass VPseudoBinaryV_WI_RM<LMULInfo m> { defm _WI : VPseudoBinaryRoundingMode<m.vrclass, m.wvrclass, uimm5, m, !if(!ge(m.octuple, 8), "@earlyclobber $rd", ""), TargetConstraintType=2>; } // For vadc and vsbc, the instruction encoding is reserved if the destination // vector register is v0. // For vadc and vsbc, CarryIn == 1 and CarryOut == 0 multiclass VPseudoBinaryV_VM<LMULInfo m, bit CarryOut = 0, bit CarryIn = 1, string Constraint = "", bit Commutable = 0, int TargetConstraintType = 1> { let isCommutable = Commutable in def "_VV" # !if(CarryIn, "M", "") # "_" # m.MX : VPseudoBinaryCarry<!if(CarryOut, VR, !if(!and(CarryIn, !not(CarryOut)), GetVRegNoV0<m.vrclass>.R, m.vrclass)), m.vrclass, m.vrclass, m, CarryIn, Constraint, TargetConstraintType>; } multiclass VPseudoTiedBinaryV_VM<LMULInfo m, bit Commutable = 0> { let isCommutable = Commutable in def "_VVM" # "_" # m.MX: VPseudoTiedBinaryCarryIn<GetVRegNoV0<m.vrclass>.R, m.vrclass, m.vrclass, m>; } multiclass VPseudoBinaryV_XM<LMULInfo m, bit CarryOut = 0, bit CarryIn = 1, string Constraint = "", int TargetConstraintType = 1> { def "_VX" # !if(CarryIn, "M", "") # "_" # m.MX : VPseudoBinaryCarry<!if(CarryOut, VR, !if(!and(CarryIn, !not(CarryOut)), GetVRegNoV0<m.vrclass>.R, m.vrclass)), m.vrclass, GPR, m, CarryIn, Constraint, TargetConstraintType>; } multiclass VPseudoTiedBinaryV_XM<LMULInfo m> { def "_VXM" # "_" # m.MX: VPseudoTiedBinaryCarryIn<GetVRegNoV0<m.vrclass>.R, m.vrclass, GPR, m>; } multiclass VPseudoVMRG_FM { foreach f = FPList in { foreach m = f.MxList in { defvar mx = m.MX; def "_V" # f.FX # "M_" # mx : VPseudoTiedBinaryCarryIn<GetVRegNoV0<m.vrclass>.R, m.vrclass, f.fprclass, m>, SchedBinary<"WriteVFMergeV", "ReadVFMergeV", "ReadVFMergeF", mx, forceMasked=1, forceMergeOpRead=true>; } } } multiclass VPseudoBinaryV_IM<LMULInfo m, bit CarryOut = 0, bit CarryIn = 1, string Constraint = "", int TargetConstraintType = 1> { def "_VI" # !if(CarryIn, "M", "") # "_" # m.MX : VPseudoBinaryCarry<!if(CarryOut, VR, !if(!and(CarryIn, !not(CarryOut)), GetVRegNoV0<m.vrclass>.R, m.vrclass)), m.vrclass, simm5, m, CarryIn, Constraint, TargetConstraintType>; } multiclass VPseudoTiedBinaryV_IM<LMULInfo m> { def "_VIM" # "_" # m.MX: VPseudoTiedBinaryCarryIn<GetVRegNoV0<m.vrclass>.R, m.vrclass, simm5, m>; } multiclass VPseudoUnaryVMV_V_X_I { foreach m = MxList in { let VLMul = m.value in { defvar mx = m.MX; let VLMul = m.value in { def "_V_" # mx : VPseudoUnaryNoMask<m.vrclass, m.vrclass>, SchedUnary<"WriteVIMovV", "ReadVIMovV", mx, forceMergeOpRead=true>; def "_X_" # mx : VPseudoUnaryNoMask<m.vrclass, GPR>, SchedUnary<"WriteVIMovX", "ReadVIMovX", mx, forceMergeOpRead=true>; def "_I_" # mx : VPseudoUnaryNoMask<m.vrclass, simm5>, SchedNullary<"WriteVIMovI", mx, forceMergeOpRead=true>; } } } } multiclass VPseudoVMV_F { foreach f = FPList in { foreach m = f.MxList in { defvar mx = m.MX; let VLMul = m.value in { def "_" # f.FX # "_" # mx : VPseudoUnaryNoMask<m.vrclass, f.fprclass>, SchedUnary<"WriteVFMovV", "ReadVFMovF", mx, forceMergeOpRead=true>; } } } } multiclass VPseudoVCLS_V { foreach m = MxListF in { defvar mx = m.MX; let VLMul = m.value in { def "_V_" # mx : VPseudoUnaryNoMask<m.vrclass, m.vrclass>, SchedUnary<"WriteVFClassV", "ReadVFClassV", mx, forceMergeOpRead=true>; def "_V_" # mx # "_MASK" : VPseudoUnaryMask<m.vrclass, m.vrclass>, RISCVMaskedPseudo<MaskIdx=2>, SchedUnary<"WriteVFClassV", "ReadVFClassV", mx, forceMergeOpRead=true>; } } } multiclass VPseudoVSQR_V_RM { foreach m = MxListF in { defvar mx = m.MX; defvar sews = SchedSEWSet<m.MX, isF=1>.val; let VLMul = m.value in foreach e = sews in { defvar suffix = "_" # mx # "_E" # e; let SEW = e in { def "_V" # suffix : VPseudoUnaryNoMaskRoundingMode<m.vrclass, m.vrclass>, SchedUnary<"WriteVFSqrtV", "ReadVFSqrtV", mx, e, forceMergeOpRead=true>; def "_V" #suffix # "_MASK" : VPseudoUnaryMaskRoundingMode<m.vrclass, m.vrclass>, RISCVMaskedPseudo<MaskIdx = 2>, SchedUnary<"WriteVFSqrtV", "ReadVFSqrtV", mx, e, forceMergeOpRead=true>; } } } } multiclass VPseudoVRCP_V { foreach m = MxListF in { defvar mx = m.MX; foreach e = SchedSEWSet<mx, isF=1>.val in { let VLMul = m.value in { def "_V_" # mx # "_E" # e : VPseudoUnaryNoMask<m.vrclass, m.vrclass>, SchedUnary<"WriteVFRecpV", "ReadVFRecpV", mx, e, forceMergeOpRead=true>; def "_V_" # mx # "_E" # e # "_MASK" : VPseudoUnaryMask<m.vrclass, m.vrclass>, RISCVMaskedPseudo<MaskIdx = 2>, SchedUnary<"WriteVFRecpV", "ReadVFRecpV", mx, e, forceMergeOpRead=true>; } } } } multiclass VPseudoVRCP_V_RM { foreach m = MxListF in { defvar mx = m.MX; foreach e = SchedSEWSet<mx, isF=1>.val in { let VLMul = m.value in { def "_V_" # mx # "_E" # e : VPseudoUnaryNoMaskRoundingMode<m.vrclass, m.vrclass>, SchedUnary<"WriteVFRecpV", "ReadVFRecpV", mx, e, forceMergeOpRead=true>; def "_V_" # mx # "_E" # e # "_MASK" : VPseudoUnaryMaskRoundingMode<m.vrclass, m.vrclass>, RISCVMaskedPseudo<MaskIdx = 2>, SchedUnary<"WriteVFRecpV", "ReadVFRecpV", mx, e, forceMergeOpRead=true>; } } } } multiclass PseudoVEXT_VF2 { defvar constraints = "@earlyclobber $rd"; foreach m = MxListVF2 in { defvar mx = m.MX; defvar CurrTypeConstraints = !if(!or(!eq(mx, "MF4"), !eq(mx, "MF2"), !eq(mx, "M1")), 1, 3); let VLMul = m.value in { def "_" # mx : VPseudoUnaryNoMask<m.vrclass, m.f2vrclass, constraints, CurrTypeConstraints>, SchedUnary<"WriteVExtV", "ReadVExtV", mx, forceMergeOpRead=true>; def "_" # mx # "_MASK" : VPseudoUnaryMask<m.vrclass, m.f2vrclass, constraints, CurrTypeConstraints>, RISCVMaskedPseudo<MaskIdx=2>, SchedUnary<"WriteVExtV", "ReadVExtV", mx, forceMergeOpRead=true>; } } } multiclass PseudoVEXT_VF4 { defvar constraints = "@earlyclobber $rd"; foreach m = MxListVF4 in { defvar mx = m.MX; defvar CurrTypeConstraints = !if(!or(!eq(mx, "MF2"), !eq(mx, "M1"), !eq(mx, "M2")), 1, 3); let VLMul = m.value in { def "_" # mx : VPseudoUnaryNoMask<m.vrclass, m.f4vrclass, constraints, CurrTypeConstraints>, SchedUnary<"WriteVExtV", "ReadVExtV", mx, forceMergeOpRead=true>; def "_" # mx # "_MASK" : VPseudoUnaryMask<m.vrclass, m.f4vrclass, constraints, CurrTypeConstraints>, RISCVMaskedPseudo<MaskIdx=2>, SchedUnary<"WriteVExtV", "ReadVExtV", mx, forceMergeOpRead=true>; } } } multiclass PseudoVEXT_VF8 { defvar constraints = "@earlyclobber $rd"; foreach m = MxListVF8 in { defvar mx = m.MX; defvar CurrTypeConstraints = !if(!or(!eq(mx, "M1"), !eq(mx, "M2"), !eq(mx, "M4")), 1, 3); let VLMul = m.value in { def "_" # mx : VPseudoUnaryNoMask<m.vrclass, m.f8vrclass, constraints, CurrTypeConstraints>, SchedUnary<"WriteVExtV", "ReadVExtV", mx, forceMergeOpRead=true>; def "_" # mx # "_MASK" : VPseudoUnaryMask<m.vrclass, m.f8vrclass, constraints, CurrTypeConstraints>, RISCVMaskedPseudo<MaskIdx=2>, SchedUnary<"WriteVExtV", "ReadVExtV", mx, forceMergeOpRead=true>; } } } // The destination EEW is 1 since "For the purposes of register group overlap // constraints, mask elements have EEW=1." // The source EEW is 8, 16, 32, or 64. // When the destination EEW is different from source EEW, we need to use // @earlyclobber to avoid the overlap between destination and source registers. // We don't need @earlyclobber for LMUL<=1 since that matches this overlap // exception from the spec // "The destination EEW is smaller than the source EEW and the overlap is in the // lowest-numbered part of the source register group". // With LMUL<=1 the source and dest occupy a single register so any overlap // is in the lowest-numbered part. multiclass VPseudoBinaryM_VV<LMULInfo m, int TargetConstraintType = 1, bit Commutable = 0> { defm _VV : VPseudoBinaryM<VR, m.vrclass, m.vrclass, m, !if(!ge(m.octuple, 16), "@earlyclobber $rd", ""), TargetConstraintType, Commutable=Commutable>; } multiclass VPseudoBinaryM_VX<LMULInfo m, int TargetConstraintType = 1> { defm "_VX" : VPseudoBinaryM<VR, m.vrclass, GPR, m, !if(!ge(m.octuple, 16), "@earlyclobber $rd", ""), TargetConstraintType>; } multiclass VPseudoBinaryM_VF<LMULInfo m, FPR_Info f, int TargetConstraintType = 1> { defm "_V" # f.FX : VPseudoBinaryM<VR, m.vrclass, f.fprclass, m, !if(!ge(m.octuple, 16), "@earlyclobber $rd", ""), TargetConstraintType>; } multiclass VPseudoBinaryM_VI<LMULInfo m, int TargetConstraintType = 1> { defm _VI : VPseudoBinaryM<VR, m.vrclass, simm5, m, !if(!ge(m.octuple, 16), "@earlyclobber $rd", ""), TargetConstraintType>; } multiclass VPseudoVGTR_VV_VX_VI { defvar constraint = "@earlyclobber $rd"; foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VX<m, constraint>, SchedBinary<"WriteVRGatherVX", "ReadVRGatherVX_data", "ReadVRGatherVX_index", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VI<uimm5, m, constraint>, SchedUnary<"WriteVRGatherVI", "ReadVRGatherVI_data", mx, forceMergeOpRead=true>; defvar sews = SchedSEWSet<mx>.val; foreach e = sews in { defm "" : VPseudoBinaryV_VV<m, constraint, e>, SchedBinary<"WriteVRGatherVV", "ReadVRGatherVV_data", "ReadVRGatherVV_index", mx, e, forceMergeOpRead=true>; } } } multiclass VPseudoVSALU_VV_VX_VI<bit Commutable = 0> { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VV<m, Commutable=Commutable>, SchedBinary<"WriteVSALUV", "ReadVSALUV", "ReadVSALUX", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VX<m>, SchedBinary<"WriteVSALUX", "ReadVSALUV", "ReadVSALUX", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VI<simm5, m>, SchedUnary<"WriteVSALUI", "ReadVSALUV", mx, forceMergeOpRead=true>; } } multiclass VPseudoVSHT_VV_VX_VI { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VV<m>, SchedBinary<"WriteVShiftV", "ReadVShiftV", "ReadVShiftV", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VX<m>, SchedBinary<"WriteVShiftX", "ReadVShiftV", "ReadVShiftX", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VI<uimm5, m>, SchedUnary<"WriteVShiftI", "ReadVShiftV", mx, forceMergeOpRead=true>; } } multiclass VPseudoVSSHT_VV_VX_VI_RM { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VV_RM<m>, SchedBinary<"WriteVSShiftV", "ReadVSShiftV", "ReadVSShiftV", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VX_RM<m>, SchedBinary<"WriteVSShiftX", "ReadVSShiftV", "ReadVSShiftX", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VI_RM<uimm5, m>, SchedUnary<"WriteVSShiftI", "ReadVSShiftV", mx, forceMergeOpRead=true>; } } multiclass VPseudoVALU_VV_VX_VI<bit Commutable = 0> { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VV<m, Commutable=Commutable>, SchedBinary<"WriteVIALUV", "ReadVIALUV", "ReadVIALUV", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VX<m>, SchedBinary<"WriteVIALUX", "ReadVIALUV", "ReadVIALUX", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VI<simm5, m>, SchedUnary<"WriteVIALUI", "ReadVIALUV", mx, forceMergeOpRead=true>; } } multiclass VPseudoVSALU_VV_VX { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VV<m>, SchedBinary<"WriteVSALUV", "ReadVSALUV", "ReadVSALUV", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VX<m>, SchedBinary<"WriteVSALUX", "ReadVSALUV", "ReadVSALUX", mx, forceMergeOpRead=true>; } } multiclass VPseudoVSMUL_VV_VX_RM { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VV_RM<m, Commutable=1>, SchedBinary<"WriteVSMulV", "ReadVSMulV", "ReadVSMulV", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VX_RM<m>, SchedBinary<"WriteVSMulX", "ReadVSMulV", "ReadVSMulX", mx, forceMergeOpRead=true>; } } multiclass VPseudoVAALU_VV_VX_RM<bit Commutable = 0> { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VV_RM<m, Commutable=Commutable>, SchedBinary<"WriteVAALUV", "ReadVAALUV", "ReadVAALUV", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VX_RM<m>, SchedBinary<"WriteVAALUX", "ReadVAALUV", "ReadVAALUX", mx, forceMergeOpRead=true>; } } multiclass VPseudoVMINMAX_VV_VX { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VV<m, Commutable=1>, SchedBinary<"WriteVIMinMaxV", "ReadVIMinMaxV", "ReadVIMinMaxV", mx>; defm "" : VPseudoBinaryV_VX<m>, SchedBinary<"WriteVIMinMaxX", "ReadVIMinMaxV", "ReadVIMinMaxX", mx>; } } multiclass VPseudoVMUL_VV_VX<bit Commutable = 0> { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VV<m, Commutable=Commutable>, SchedBinary<"WriteVIMulV", "ReadVIMulV", "ReadVIMulV", mx>; defm "" : VPseudoBinaryV_VX<m>, SchedBinary<"WriteVIMulX", "ReadVIMulV", "ReadVIMulX", mx>; } } multiclass VPseudoVDIV_VV_VX { foreach m = MxList in { defvar mx = m.MX; defvar sews = SchedSEWSet<mx>.val; foreach e = sews in { defm "" : VPseudoBinaryV_VV<m, "", e>, SchedBinary<"WriteVIDivV", "ReadVIDivV", "ReadVIDivV", mx, e>; defm "" : VPseudoBinaryV_VX<m, "", e>, SchedBinary<"WriteVIDivX", "ReadVIDivV", "ReadVIDivX", mx, e>; } } } multiclass VPseudoVFMUL_VV_VF_RM { foreach m = MxListF in { foreach e = SchedSEWSet<m.MX, isF=1>.val in defm "" : VPseudoBinaryFV_VV_RM<m, e>, SchedBinary<"WriteVFMulV", "ReadVFMulV", "ReadVFMulV", m.MX, e, forceMergeOpRead=true>; } foreach f = FPList in { foreach m = f.MxList in { defm "" : VPseudoBinaryV_VF_RM<m, f, f.SEW>, SchedBinary<"WriteVFMulF", "ReadVFMulV", "ReadVFMulF", m.MX, f.SEW, forceMergeOpRead=true>; } } } multiclass VPseudoVFDIV_VV_VF_RM { foreach m = MxListF in { defvar mx = m.MX; defvar sews = SchedSEWSet<mx, isF=1>.val; foreach e = sews in { defm "" : VPseudoBinaryFV_VV_RM<m, e>, SchedBinary<"WriteVFDivV", "ReadVFDivV", "ReadVFDivV", mx, e, forceMergeOpRead=true>; } } foreach f = FPList in { foreach m = f.MxList in { defm "" : VPseudoBinaryV_VF_RM<m, f, f.SEW>, SchedBinary<"WriteVFDivF", "ReadVFDivV", "ReadVFDivF", m.MX, f.SEW, forceMergeOpRead=true>; } } } multiclass VPseudoVFRDIV_VF_RM { foreach f = FPList in { foreach m = f.MxList in { defm "" : VPseudoBinaryV_VF_RM<m, f, f.SEW>, SchedBinary<"WriteVFDivF", "ReadVFDivV", "ReadVFDivF", m.MX, f.SEW, forceMergeOpRead=true>; } } } multiclass VPseudoVALU_VV_VX { foreach m = MxList in { defm "" : VPseudoBinaryV_VV<m>, SchedBinary<"WriteVIALUV", "ReadVIALUV", "ReadVIALUV", m.MX, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VX<m>, SchedBinary<"WriteVIALUX", "ReadVIALUV", "ReadVIALUX", m.MX, forceMergeOpRead=true>; } } multiclass VPseudoVSGNJ_VV_VF { foreach m = MxListF in { foreach e = SchedSEWSet<m.MX, isF=1>.val in defm "" : VPseudoBinaryV_VV<m, sew=e>, SchedBinary<"WriteVFSgnjV", "ReadVFSgnjV", "ReadVFSgnjV", m.MX, e, forceMergeOpRead=true>; } foreach f = FPList in { foreach m = f.MxList in { defm "" : VPseudoBinaryV_VF<m, f, sew=f.SEW>, SchedBinary<"WriteVFSgnjF", "ReadVFSgnjV", "ReadVFSgnjF", m.MX, f.SEW, forceMergeOpRead=true>; } } } multiclass VPseudoVMAX_VV_VF { foreach m = MxListF in { foreach e = SchedSEWSet<m.MX, isF=1>.val in defm "" : VPseudoBinaryV_VV<m, sew=e>, SchedBinary<"WriteVFMinMaxV", "ReadVFMinMaxV", "ReadVFMinMaxV", m.MX, e, forceMergeOpRead=true>; } foreach f = FPList in { foreach m = f.MxList in { defm "" : VPseudoBinaryV_VF<m, f, sew=f.SEW>, SchedBinary<"WriteVFMinMaxF", "ReadVFMinMaxV", "ReadVFMinMaxF", m.MX, f.SEW, forceMergeOpRead=true>; } } } multiclass VPseudoVALU_VV_VF_RM { foreach m = MxListF in { foreach e = SchedSEWSet<m.MX, isF=1>.val in defm "" : VPseudoBinaryFV_VV_RM<m, e>, SchedBinary<"WriteVFALUV", "ReadVFALUV", "ReadVFALUV", m.MX, e, forceMergeOpRead=true>; } foreach f = FPList in { foreach m = f.MxList in { defm "" : VPseudoBinaryV_VF_RM<m, f, f.SEW>, SchedBinary<"WriteVFALUF", "ReadVFALUV", "ReadVFALUF", m.MX, f.SEW, forceMergeOpRead=true>; } } } multiclass VPseudoVALU_VF_RM { foreach f = FPList in { foreach m = f.MxList in { defm "" : VPseudoBinaryV_VF_RM<m, f, f.SEW>, SchedBinary<"WriteVFALUF", "ReadVFALUV", "ReadVFALUF", m.MX, f.SEW, forceMergeOpRead=true>; } } } multiclass VPseudoVALU_VX_VI { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VX<m>, SchedBinary<"WriteVIALUX", "ReadVIALUV", "ReadVIALUX", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_VI<simm5, m>, SchedUnary<"WriteVIALUI", "ReadVIALUV", mx, forceMergeOpRead=true>; } } multiclass VPseudoVWALU_VV_VX<bit Commutable = 0> { foreach m = MxListW in { defvar mx = m.MX; defm "" : VPseudoBinaryW_VV<m, Commutable=Commutable>, SchedBinary<"WriteVIWALUV", "ReadVIWALUV", "ReadVIWALUV", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryW_VX<m>, SchedBinary<"WriteVIWALUX", "ReadVIWALUV", "ReadVIWALUX", mx, forceMergeOpRead=true>; } } multiclass VPseudoVWMUL_VV_VX<bit Commutable = 0> { foreach m = MxListW in { defvar mx = m.MX; defm "" : VPseudoBinaryW_VV<m, Commutable=Commutable>, SchedBinary<"WriteVIWMulV", "ReadVIWMulV", "ReadVIWMulV", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryW_VX<m>, SchedBinary<"WriteVIWMulX", "ReadVIWMulV", "ReadVIWMulX", mx, forceMergeOpRead=true>; } } multiclass VPseudoVWMUL_VV_VF_RM { foreach m = MxListFW in { foreach e = SchedSEWSet<m.MX, isF=1, isWidening=1>.val in defm "" : VPseudoBinaryW_VV_RM<m, sew=e>, SchedBinary<"WriteVFWMulV", "ReadVFWMulV", "ReadVFWMulV", m.MX, e, forceMergeOpRead=true>; } foreach f = FPListW in { foreach m = f.MxListFW in { defm "" : VPseudoBinaryW_VF_RM<m, f, sew=f.SEW>, SchedBinary<"WriteVFWMulF", "ReadVFWMulV", "ReadVFWMulF", m.MX, f.SEW, forceMergeOpRead=true>; } } } multiclass VPseudoVWALU_WV_WX { foreach m = MxListW in { defvar mx = m.MX; defm "" : VPseudoBinaryW_WV<m>, SchedBinary<"WriteVIWALUV", "ReadVIWALUV", "ReadVIWALUV", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryW_WX<m>, SchedBinary<"WriteVIWALUX", "ReadVIWALUV", "ReadVIWALUX", mx, forceMergeOpRead=true>; } } multiclass VPseudoVFWALU_VV_VF_RM { foreach m = MxListFW in { foreach e = SchedSEWSet<m.MX, isF=1, isWidening=1>.val in defm "" : VPseudoBinaryW_VV_RM<m, sew=e>, SchedBinary<"WriteVFWALUV", "ReadVFWALUV", "ReadVFWALUV", m.MX, e, forceMergeOpRead=true>; } foreach f = FPListW in { foreach m = f.MxListFW in { defm "" : VPseudoBinaryW_VF_RM<m, f, sew=f.SEW>, SchedBinary<"WriteVFWALUF", "ReadVFWALUV", "ReadVFWALUF", m.MX, f.SEW, forceMergeOpRead=true>; } } } multiclass VPseudoVFWALU_WV_WF_RM { foreach m = MxListFW in { foreach e = SchedSEWSet<m.MX, isF=1, isWidening=1>.val in defm "" : VPseudoBinaryW_WV_RM<m, sew=e>, SchedBinary<"WriteVFWALUV", "ReadVFWALUV", "ReadVFWALUV", m.MX, e, forceMergeOpRead=true>; } foreach f = FPListW in { foreach m = f.MxListFW in { defm "" : VPseudoBinaryW_WF_RM<m, f, sew=f.SEW>, SchedBinary<"WriteVFWALUF", "ReadVFWALUV", "ReadVFWALUF", m.MX, f.SEW, forceMergeOpRead=true>; } } } multiclass VPseudoVMRG_VM_XM_IM { foreach m = MxList in { defvar mx = m.MX; def "_VVM" # "_" # m.MX: VPseudoTiedBinaryCarryIn<GetVRegNoV0<m.vrclass>.R, m.vrclass, m.vrclass, m>, SchedBinary<"WriteVIMergeV", "ReadVIMergeV", "ReadVIMergeV", mx, forceMergeOpRead=true>; def "_VXM" # "_" # m.MX: VPseudoTiedBinaryCarryIn<GetVRegNoV0<m.vrclass>.R, m.vrclass, GPR, m>, SchedBinary<"WriteVIMergeX", "ReadVIMergeV", "ReadVIMergeX", mx, forceMergeOpRead=true>; def "_VIM" # "_" # m.MX: VPseudoTiedBinaryCarryIn<GetVRegNoV0<m.vrclass>.R, m.vrclass, simm5, m>, SchedUnary<"WriteVIMergeI", "ReadVIMergeV", mx, forceMergeOpRead=true>; } } multiclass VPseudoVCALU_VM_XM_IM { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoTiedBinaryV_VM<m, Commutable=1>, SchedBinary<"WriteVICALUV", "ReadVICALUV", "ReadVICALUV", mx, forceMergeOpRead=true>; defm "" : VPseudoTiedBinaryV_XM<m>, SchedBinary<"WriteVICALUX", "ReadVICALUV", "ReadVICALUX", mx, forceMergeOpRead=true>; defm "" : VPseudoTiedBinaryV_IM<m>, SchedUnary<"WriteVICALUI", "ReadVICALUV", mx, forceMergeOpRead=true>; } } multiclass VPseudoVCALU_VM_XM { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoTiedBinaryV_VM<m>, SchedBinary<"WriteVICALUV", "ReadVICALUV", "ReadVICALUV", mx, forceMergeOpRead=true>; defm "" : VPseudoTiedBinaryV_XM<m>, SchedBinary<"WriteVICALUX", "ReadVICALUV", "ReadVICALUX", mx, forceMergeOpRead=true>; } } multiclass VPseudoVCALUM_VM_XM_IM { defvar constraint = "@earlyclobber $rd"; foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VM<m, CarryOut=1, CarryIn=1, Constraint=constraint, Commutable=1, TargetConstraintType=2>, SchedBinary<"WriteVICALUV", "ReadVICALUV", "ReadVICALUV", mx, forceMasked=1, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_XM<m, CarryOut=1, CarryIn=1, Constraint=constraint, TargetConstraintType=2>, SchedBinary<"WriteVICALUX", "ReadVICALUV", "ReadVICALUX", mx, forceMasked=1, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_IM<m, CarryOut=1, CarryIn=1, Constraint=constraint, TargetConstraintType=2>, SchedUnary<"WriteVICALUI", "ReadVICALUV", mx, forceMasked=1, forceMergeOpRead=true>; } } multiclass VPseudoVCALUM_VM_XM { defvar constraint = "@earlyclobber $rd"; foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VM<m, CarryOut=1, CarryIn=1, Constraint=constraint, TargetConstraintType=2>, SchedBinary<"WriteVICALUV", "ReadVICALUV", "ReadVICALUV", mx, forceMasked=1, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_XM<m, CarryOut=1, CarryIn=1, Constraint=constraint, TargetConstraintType=2>, SchedBinary<"WriteVICALUX", "ReadVICALUV", "ReadVICALUX", mx, forceMasked=1, forceMergeOpRead=true>; } } multiclass VPseudoVCALUM_V_X_I { defvar constraint = "@earlyclobber $rd"; foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VM<m, CarryOut=1, CarryIn=0, Constraint=constraint, Commutable=1, TargetConstraintType=2>, SchedBinary<"WriteVICALUV", "ReadVICALUV", "ReadVICALUV", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_XM<m, CarryOut=1, CarryIn=0, Constraint=constraint, TargetConstraintType=2>, SchedBinary<"WriteVICALUX", "ReadVICALUV", "ReadVICALUX", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_IM<m, CarryOut=1, CarryIn=0, Constraint=constraint>, SchedUnary<"WriteVICALUI", "ReadVICALUV", mx, forceMergeOpRead=true>; } } multiclass VPseudoVCALUM_V_X { defvar constraint = "@earlyclobber $rd"; foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryV_VM<m, CarryOut=1, CarryIn=0, Constraint=constraint, TargetConstraintType=2>, SchedBinary<"WriteVICALUV", "ReadVICALUV", "ReadVICALUV", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_XM<m, CarryOut=1, CarryIn=0, Constraint=constraint, TargetConstraintType=2>, SchedBinary<"WriteVICALUX", "ReadVICALUV", "ReadVICALUX", mx, forceMergeOpRead=true>; } } multiclass VPseudoVNCLP_WV_WX_WI_RM { foreach m = MxListW in { defvar mx = m.MX; defm "" : VPseudoBinaryV_WV_RM<m>, SchedBinary<"WriteVNClipV", "ReadVNClipV", "ReadVNClipV", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_WX_RM<m>, SchedBinary<"WriteVNClipX", "ReadVNClipV", "ReadVNClipX", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_WI_RM<m>, SchedUnary<"WriteVNClipI", "ReadVNClipV", mx, forceMergeOpRead=true>; } } multiclass VPseudoVNSHT_WV_WX_WI { foreach m = MxListW in { defvar mx = m.MX; defm "" : VPseudoBinaryV_WV<m>, SchedBinary<"WriteVNShiftV", "ReadVNShiftV", "ReadVNShiftV", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_WX<m>, SchedBinary<"WriteVNShiftX", "ReadVNShiftV", "ReadVNShiftX", mx, forceMergeOpRead=true>; defm "" : VPseudoBinaryV_WI<m>, SchedUnary<"WriteVNShiftI", "ReadVNShiftV", mx, forceMergeOpRead=true>; } } multiclass VPseudoTernaryWithTailPolicy<VReg RetClass, RegisterClass Op1Class, DAGOperand Op2Class, LMULInfo MInfo, int sew> { let VLMul = MInfo.value, SEW=sew in { defvar mx = MInfo.MX; def "_" # mx # "_E" # sew : VPseudoTernaryNoMaskWithPolicy<RetClass, Op1Class, Op2Class>; def "_" # mx # "_E" # sew # "_MASK" : VPseudoTernaryMaskPolicy<RetClass, Op1Class, Op2Class>, RISCVMaskedPseudo<MaskIdx=3, ActiveAffectsRes=true>; } } multiclass VPseudoTernaryWithTailPolicyRoundingMode<VReg RetClass, RegisterClass Op1Class, DAGOperand Op2Class, LMULInfo MInfo, int sew> { let VLMul = MInfo.value, SEW=sew in { defvar mx = MInfo.MX; def "_" # mx # "_E" # sew : VPseudoTernaryNoMaskWithPolicyRoundingMode<RetClass, Op1Class, Op2Class>; def "_" # mx # "_E" # sew # "_MASK" : VPseudoTernaryMaskPolicyRoundingMode<RetClass, Op1Class, Op2Class>, RISCVMaskedPseudo<MaskIdx=3, ActiveAffectsRes=true>; } } multiclass VPseudoTernaryWithPolicy<VReg RetClass, RegisterClass Op1Class, DAGOperand Op2Class, LMULInfo MInfo, string Constraint = "", bit Commutable = 0, int TargetConstraintType = 1> { let VLMul = MInfo.value in { let isCommutable = Commutable in def "_" # MInfo.MX : VPseudoTernaryNoMaskWithPolicy<RetClass, Op1Class, Op2Class, Constraint, TargetConstraintType>; def "_" # MInfo.MX # "_MASK" : VPseudoBinaryMaskPolicy<RetClass, Op1Class, Op2Class, Constraint, TargetConstraintType>, RISCVMaskedPseudo<MaskIdx=3>; } } multiclass VPseudoTernaryWithPolicyRoundingMode<VReg RetClass, RegisterClass Op1Class, DAGOperand Op2Class, LMULInfo MInfo, string Constraint = "", int sew = 0, bit Commutable = 0, int TargetConstraintType = 1> { let VLMul = MInfo.value in { defvar suffix = !if(sew, "_" # MInfo.MX # "_E" # sew, "_" # MInfo.MX); let isCommutable = Commutable in def suffix : VPseudoTernaryNoMaskWithPolicyRoundingMode<RetClass, Op1Class, Op2Class, Constraint, TargetConstraintType>; def suffix # "_MASK" : VPseudoBinaryMaskPolicyRoundingMode<RetClass, Op1Class, Op2Class, Constraint, UsesVXRM_=0, TargetConstraintType=TargetConstraintType>, RISCVMaskedPseudo<MaskIdx=3>; } } multiclass VPseudoTernaryV_VV_AAXA<LMULInfo m> { defm _VV : VPseudoTernaryWithPolicy<m.vrclass, m.vrclass, m.vrclass, m, Commutable=1>; } multiclass VPseudoTernaryV_VV_AAXA_RM<LMULInfo m, int sew> { defm _VV : VPseudoTernaryWithPolicyRoundingMode<m.vrclass, m.vrclass, m.vrclass, m, sew=sew, Commutable=1>; } multiclass VPseudoTernaryV_VX_AAXA<LMULInfo m> { defm "_VX" : VPseudoTernaryWithPolicy<m.vrclass, GPR, m.vrclass, m, Commutable=1>; } multiclass VPseudoTernaryV_VF_AAXA_RM<LMULInfo m, FPR_Info f, int sew> { defm "_V" # f.FX : VPseudoTernaryWithPolicyRoundingMode<m.vrclass, f.fprclass, m.vrclass, m, sew=sew, Commutable=1>; } multiclass VPseudoTernaryW_VV<LMULInfo m, bit Commutable = 0> { defvar constraint = "@earlyclobber $rd"; defm _VV : VPseudoTernaryWithPolicy<m.wvrclass, m.vrclass, m.vrclass, m, constraint, Commutable=Commutable, TargetConstraintType=3>; } multiclass VPseudoTernaryW_VV_RM<LMULInfo m, int sew> { defvar constraint = "@earlyclobber $rd"; defm _VV : VPseudoTernaryWithPolicyRoundingMode<m.wvrclass, m.vrclass, m.vrclass, m, constraint, sew, TargetConstraintType=3>; } multiclass VPseudoTernaryW_VX<LMULInfo m> { defvar constraint = "@earlyclobber $rd"; defm "_VX" : VPseudoTernaryWithPolicy<m.wvrclass, GPR, m.vrclass, m, constraint, TargetConstraintType=3>; } multiclass VPseudoTernaryW_VF_RM<LMULInfo m, FPR_Info f, int sew> { defvar constraint = "@earlyclobber $rd"; defm "_V" # f.FX : VPseudoTernaryWithPolicyRoundingMode<m.wvrclass, f.fprclass, m.vrclass, m, constraint, sew=sew, TargetConstraintType=3>; } multiclass VPseudoVSLDVWithPolicy<VReg RetClass, RegisterClass Op1Class, DAGOperand Op2Class, LMULInfo MInfo, string Constraint = ""> { let VLMul = MInfo.value in { def "_" # MInfo.MX : VPseudoTernaryNoMaskWithPolicy<RetClass, Op1Class, Op2Class, Constraint>; def "_" # MInfo.MX # "_MASK" : VPseudoBinaryMaskPolicy<RetClass, Op1Class, Op2Class, Constraint>, RISCVMaskedPseudo<MaskIdx=3>; } } multiclass VPseudoVSLDV_VX<LMULInfo m, string Constraint = ""> { defm _VX : VPseudoVSLDVWithPolicy<m.vrclass, m.vrclass, GPR, m, Constraint>; } multiclass VPseudoVSLDV_VI<LMULInfo m, string Constraint = ""> { defm _VI : VPseudoVSLDVWithPolicy<m.vrclass, m.vrclass, uimm5, m, Constraint>; } multiclass VPseudoVMAC_VV_VX_AAXA { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoTernaryV_VV_AAXA<m>, SchedTernary<"WriteVIMulAddV", "ReadVIMulAddV", "ReadVIMulAddV", "ReadVIMulAddV", mx>; defm "" : VPseudoTernaryV_VX_AAXA<m>, SchedTernary<"WriteVIMulAddX", "ReadVIMulAddV", "ReadVIMulAddX", "ReadVIMulAddV", mx>; } } multiclass VPseudoVMAC_VV_VF_AAXA_RM { foreach m = MxListF in { foreach e = SchedSEWSet<m.MX, isF=1>.val in defm "" : VPseudoTernaryV_VV_AAXA_RM<m, sew=e>, SchedTernary<"WriteVFMulAddV", "ReadVFMulAddV", "ReadVFMulAddV", "ReadVFMulAddV", m.MX, e>; } foreach f = FPList in { foreach m = f.MxList in { defm "" : VPseudoTernaryV_VF_AAXA_RM<m, f, sew=f.SEW>, SchedTernary<"WriteVFMulAddF", "ReadVFMulAddV", "ReadVFMulAddF", "ReadVFMulAddV", m.MX, f.SEW>; } } } multiclass VPseudoVSLD_VX_VI<bit slidesUp = false, string Constraint = ""> { defvar WriteSlideX = !if(slidesUp, "WriteVSlideUpX", "WriteVSlideDownX"); foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoVSLDV_VX<m, Constraint>, SchedTernary<WriteSlideX, "ReadVISlideV", "ReadVISlideV", "ReadVISlideX", mx>; defm "" : VPseudoVSLDV_VI<m, Constraint>, SchedBinary<"WriteVSlideI", "ReadVISlideV", "ReadVISlideV", mx>; } } multiclass VPseudoVWMAC_VV_VX<bit Commutable = 0> { foreach m = MxListW in { defvar mx = m.MX; defm "" : VPseudoTernaryW_VV<m, Commutable=Commutable>, SchedTernary<"WriteVIWMulAddV", "ReadVIWMulAddV", "ReadVIWMulAddV", "ReadVIWMulAddV", mx>; defm "" : VPseudoTernaryW_VX<m>, SchedTernary<"WriteVIWMulAddX", "ReadVIWMulAddV", "ReadVIWMulAddX", "ReadVIWMulAddV", mx>; } } multiclass VPseudoVWMAC_VX { foreach m = MxListW in { defm "" : VPseudoTernaryW_VX<m>, SchedTernary<"WriteVIWMulAddX", "ReadVIWMulAddV", "ReadVIWMulAddX", "ReadVIWMulAddV", m.MX>; } } multiclass VPseudoVWMAC_VV_VF_RM { foreach m = MxListFW in { foreach e = SchedSEWSet<m.MX, isF=1, isWidening=1>.val in defm "" : VPseudoTernaryW_VV_RM<m, sew=e>, SchedTernary<"WriteVFWMulAddV", "ReadVFWMulAddV", "ReadVFWMulAddV", "ReadVFWMulAddV", m.MX, e>; } foreach f = FPListW in { foreach m = f.MxListFW in { defm "" : VPseudoTernaryW_VF_RM<m, f, sew=f.SEW>, SchedTernary<"WriteVFWMulAddF", "ReadVFWMulAddV", "ReadVFWMulAddF", "ReadVFWMulAddV", m.MX, f.SEW>; } } } multiclass VPseudoVWMAC_VV_VF_BF_RM { foreach m = MxListFW in { defvar mx = m.MX; foreach e = SchedSEWSet<mx, isF=1, isWidening=1>.val in defm "" : VPseudoTernaryW_VV_RM<m, sew=e>, SchedTernary<"WriteVFWMulAddV", "ReadVFWMulAddV", "ReadVFWMulAddV", "ReadVFWMulAddV", mx, e>; } foreach f = BFPListW in { foreach m = f.MxListFW in { defvar mx = m.MX; defm "" : VPseudoTernaryW_VF_RM<m, f, sew=f.SEW>, SchedTernary<"WriteVFWMulAddF", "ReadVFWMulAddV", "ReadVFWMulAddF", "ReadVFWMulAddV", mx, f.SEW>; } } } multiclass VPseudoVCMPM_VV_VX_VI<bit Commutable = 0> { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryM_VV<m, TargetConstraintType=2, Commutable=Commutable>, SchedBinary<"WriteVICmpV", "ReadVICmpV", "ReadVICmpV", mx>; defm "" : VPseudoBinaryM_VX<m, TargetConstraintType=2>, SchedBinary<"WriteVICmpX", "ReadVICmpV", "ReadVICmpX", mx>; defm "" : VPseudoBinaryM_VI<m, TargetConstraintType=2>, SchedUnary<"WriteVICmpI", "ReadVICmpV", mx>; } } multiclass VPseudoVCMPM_VV_VX { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryM_VV<m, TargetConstraintType=2>, SchedBinary<"WriteVICmpV", "ReadVICmpV", "ReadVICmpV", mx>; defm "" : VPseudoBinaryM_VX<m, TargetConstraintType=2>, SchedBinary<"WriteVICmpX", "ReadVICmpV", "ReadVICmpX", mx>; } } multiclass VPseudoVCMPM_VV_VF { foreach m = MxListF in { defm "" : VPseudoBinaryM_VV<m, TargetConstraintType=2>, SchedBinary<"WriteVFCmpV", "ReadVFCmpV", "ReadVFCmpV", m.MX>; } foreach f = FPList in { foreach m = f.MxList in { defm "" : VPseudoBinaryM_VF<m, f, TargetConstraintType=2>, SchedBinary<"WriteVFCmpF", "ReadVFCmpV", "ReadVFCmpF", m.MX>; } } } multiclass VPseudoVCMPM_VF { foreach f = FPList in { foreach m = f.MxList in { defm "" : VPseudoBinaryM_VF<m, f, TargetConstraintType=2>, SchedBinary<"WriteVFCmpF", "ReadVFCmpV", "ReadVFCmpF", m.MX>; } } } multiclass VPseudoVCMPM_VX_VI { foreach m = MxList in { defvar mx = m.MX; defm "" : VPseudoBinaryM_VX<m, TargetConstraintType=2>, SchedBinary<"WriteVICmpX", "ReadVICmpV", "ReadVICmpX", mx>; defm "" : VPseudoBinaryM_VI<m, TargetConstraintType=2>, SchedUnary<"WriteVICmpI", "ReadVICmpV", mx>; } } multiclass VPseudoVRED_VS { foreach m = MxList in { defvar mx = m.MX; foreach e = SchedSEWSet<mx>.val in { defm _VS : VPseudoTernaryWithTailPolicy<V_M1.vrclass, m.vrclass, V_M1.vrclass, m, e>, SchedReduction<"WriteVIRedV_From", "ReadVIRedV", mx, e>; } } } multiclass VPseudoVREDMINMAX_VS { foreach m = MxList in { defvar mx = m.MX; foreach e = SchedSEWSet<mx>.val in { defm _VS : VPseudoTernaryWithTailPolicy<V_M1.vrclass, m.vrclass, V_M1.vrclass, m, e>, SchedReduction<"WriteVIRedMinMaxV_From", "ReadVIRedV", mx, e>; } } } multiclass VPseudoVWRED_VS { foreach m = MxListWRed in { defvar mx = m.MX; foreach e = SchedSEWSet<mx, isWidening=1>.val in { defm _VS : VPseudoTernaryWithTailPolicy<V_M1.vrclass, m.vrclass, V_M1.vrclass, m, e>, SchedReduction<"WriteVIWRedV_From", "ReadVIWRedV", mx, e>; } } } multiclass VPseudoVFRED_VS_RM { foreach m = MxListF in { defvar mx = m.MX; foreach e = SchedSEWSet<mx, isF=1>.val in { defm _VS : VPseudoTernaryWithTailPolicyRoundingMode<V_M1.vrclass, m.vrclass, V_M1.vrclass, m, e>, SchedReduction<"WriteVFRedV_From", "ReadVFRedV", mx, e>; } } } multiclass VPseudoVFREDMINMAX_VS { foreach m = MxListF in { defvar mx = m.MX; foreach e = SchedSEWSet<mx, isF=1>.val in { defm _VS : VPseudoTernaryWithTailPolicy<V_M1.vrclass, m.vrclass, V_M1.vrclass, m, e>, SchedReduction<"WriteVFRedMinMaxV_From", "ReadVFRedV", mx, e>; } } } multiclass VPseudoVFREDO_VS_RM { foreach m = MxListF in { defvar mx = m.MX; foreach e = SchedSEWSet<mx, isF=1>.val in { defm _VS : VPseudoTernaryWithTailPolicyRoundingMode<V_M1.vrclass, m.vrclass, V_M1.vrclass, m, e>, SchedReduction<"WriteVFRedOV_From", "ReadVFRedOV", mx, e>; } } } multiclass VPseudoVFWRED_VS_RM { foreach m = MxListFWRed in { defvar mx = m.MX; foreach e = SchedSEWSet<mx, isF=1, isWidening=1>.val in { defm _VS : VPseudoTernaryWithTailPolicyRoundingMode<V_M1.vrclass, m.vrclass, V_M1.vrclass, m, e>, SchedReduction<"WriteVFWRedV_From", "ReadVFWRedV", mx, e>; } } } multiclass VPseudoVFWREDO_VS_RM { foreach m = MxListFWRed in { defvar mx = m.MX; foreach e = SchedSEWSet<mx, isF=1, isWidening=1>.val in { defm _VS : VPseudoTernaryWithTailPolicyRoundingMode<V_M1.vrclass, m.vrclass, V_M1.vrclass, m, e>, SchedReduction<"WriteVFWRedOV_From", "ReadVFWRedV", mx, e>; } } } multiclass VPseudoConversion<VReg RetClass, VReg Op1Class, LMULInfo MInfo, string Constraint = "", int sew = 0, int TargetConstraintType = 1> { defvar suffix = !if(sew, "_" # MInfo.MX # "_E" # sew, "_" # MInfo.MX); let VLMul = MInfo.value, SEW=sew in { def suffix : VPseudoUnaryNoMask<RetClass, Op1Class, Constraint, TargetConstraintType>; def suffix # "_MASK" : VPseudoUnaryMask<RetClass, Op1Class, Constraint, TargetConstraintType>, RISCVMaskedPseudo<MaskIdx=2>; } } multiclass VPseudoConversionRoundingMode<VReg RetClass, VReg Op1Class, LMULInfo MInfo, string Constraint = "", int sew = 0, int TargetConstraintType = 1> { let VLMul = MInfo.value, SEW=sew in { defvar suffix = !if(sew, "_" # MInfo.MX # "_E" # sew, "_" # MInfo.MX); def suffix : VPseudoUnaryNoMaskRoundingMode<RetClass, Op1Class, Constraint, TargetConstraintType>; def suffix # "_MASK" : VPseudoUnaryMaskRoundingMode<RetClass, Op1Class, Constraint, TargetConstraintType>, RISCVMaskedPseudo<MaskIdx=2>; } } multiclass VPseudoConversionRM<VReg RetClass, VReg Op1Class, LMULInfo MInfo, string Constraint = "", int sew = 0, int TargetConstraintType = 1> { let VLMul = MInfo.value, SEW=sew in { defvar suffix = !if(sew, "_" # MInfo.MX # "_E" # sew, "_" # MInfo.MX); def suffix : VPseudoUnaryNoMask_FRM<RetClass, Op1Class, Constraint, TargetConstraintType>; def suffix # "_MASK" : VPseudoUnaryMask_FRM<RetClass, Op1Class, Constraint, TargetConstraintType>, RISCVMaskedPseudo<MaskIdx=2>; } } multiclass VPseudoConversionNoExcept<VReg RetClass, VReg Op1Class, LMULInfo MInfo, string Constraint = ""> { let VLMul = MInfo.value in { def "_" # MInfo.MX # "_MASK" : VPseudoUnaryMask_NoExcept<RetClass, Op1Class, Constraint>; } } multiclass VPseudoVCVTI_V { foreach m = MxListF in { defm _V : VPseudoConversion<m.vrclass, m.vrclass, m>, SchedUnary<"WriteVFCvtFToIV", "ReadVFCvtFToIV", m.MX, forceMergeOpRead=true>; } } multiclass VPseudoVCVTI_V_RM { foreach m = MxListF in { defm _V : VPseudoConversionRoundingMode<m.vrclass, m.vrclass, m>, SchedUnary<"WriteVFCvtFToIV", "ReadVFCvtFToIV", m.MX, forceMergeOpRead=true>; } } multiclass VPseudoVCVTI_RM_V { foreach m = MxListF in { defm _V : VPseudoConversionRM<m.vrclass, m.vrclass, m>, SchedUnary<"WriteVFCvtFToIV", "ReadVFCvtFToIV", m.MX, forceMergeOpRead=true>; } } multiclass VPseudoVFROUND_NOEXCEPT_V { foreach m = MxListF in { defm _V : VPseudoConversionNoExcept<m.vrclass, m.vrclass, m>, SchedUnary<"WriteVFCvtFToIV", "ReadVFCvtFToIV", m.MX, forceMergeOpRead=true>; } } multiclass VPseudoVCVTF_V_RM { foreach m = MxListF in { foreach e = SchedSEWSet<m.MX, isF=1>.val in defm _V : VPseudoConversionRoundingMode<m.vrclass, m.vrclass, m, sew=e>, SchedUnary<"WriteVFCvtIToFV", "ReadVFCvtIToFV", m.MX, e, forceMergeOpRead=true>; } } multiclass VPseudoVCVTF_RM_V { foreach m = MxListF in { foreach e = SchedSEWSet<m.MX, isF=1>.val in defm _V : VPseudoConversionRM<m.vrclass, m.vrclass, m, sew=e>, SchedUnary<"WriteVFCvtIToFV", "ReadVFCvtIToFV", m.MX, e, forceMergeOpRead=true>; } } multiclass VPseudoVWCVTI_V { defvar constraint = "@earlyclobber $rd"; foreach m = MxListFW in { defm _V : VPseudoConversion<m.wvrclass, m.vrclass, m, constraint, TargetConstraintType=3>, SchedUnary<"WriteVFWCvtFToIV", "ReadVFWCvtFToIV", m.MX, forceMergeOpRead=true>; } } multiclass VPseudoVWCVTI_V_RM { defvar constraint = "@earlyclobber $rd"; foreach m = MxListFW in { defm _V : VPseudoConversionRoundingMode<m.wvrclass, m.vrclass, m, constraint, TargetConstraintType=3>, SchedUnary<"WriteVFWCvtFToIV", "ReadVFWCvtFToIV", m.MX, forceMergeOpRead=true>; } } multiclass VPseudoVWCVTI_RM_V { defvar constraint = "@earlyclobber $rd"; foreach m = MxListFW in { defm _V : VPseudoConversionRM<m.wvrclass, m.vrclass, m, constraint>, SchedUnary<"WriteVFWCvtFToIV", "ReadVFWCvtFToIV", m.MX, forceMergeOpRead=true>; } } multiclass VPseudoVWCVTF_V { defvar constraint = "@earlyclobber $rd"; foreach m = MxListW in { foreach e = SchedSEWSet<m.MX, isF=0, isWidening=1>.val in defm _V : VPseudoConversion<m.wvrclass, m.vrclass, m, constraint, sew=e, TargetConstraintType=3>, SchedUnary<"WriteVFWCvtIToFV", "ReadVFWCvtIToFV", m.MX, e, forceMergeOpRead=true>; } } multiclass VPseudoVWCVTD_V { defvar constraint = "@earlyclobber $rd"; foreach m = MxListFW in { foreach e = SchedSEWSet<m.MX, isF=1, isWidening=1>.val in defm _V : VPseudoConversion<m.wvrclass, m.vrclass, m, constraint, sew=e, TargetConstraintType=3>, SchedUnary<"WriteVFWCvtFToFV", "ReadVFWCvtFToFV", m.MX, e, forceMergeOpRead=true>; } } multiclass VPseudoVNCVTI_W { defvar constraint = "@earlyclobber $rd"; foreach m = MxListW in { defm _W : VPseudoConversion<m.vrclass, m.wvrclass, m, constraint, TargetConstraintType=2>, SchedUnary<"WriteVFNCvtFToIV", "ReadVFNCvtFToIV", m.MX, forceMergeOpRead=true>; } } multiclass VPseudoVNCVTI_W_RM { defvar constraint = "@earlyclobber $rd"; foreach m = MxListW in { defm _W : VPseudoConversionRoundingMode<m.vrclass, m.wvrclass, m, constraint, TargetConstraintType=2>, SchedUnary<"WriteVFNCvtFToIV", "ReadVFNCvtFToIV", m.MX, forceMergeOpRead=true>; } } multiclass VPseudoVNCVTI_RM_W { defvar constraint = "@earlyclobber $rd"; foreach m = MxListW in { defm _W : VPseudoConversionRM<m.vrclass, m.wvrclass, m, constraint, TargetConstraintType=2>, SchedUnary<"WriteVFNCvtFToIV", "ReadVFNCvtFToIV", m.MX, forceMergeOpRead=true>; } } multiclass VPseudoVNCVTF_W_RM { defvar constraint = "@earlyclobber $rd"; foreach m = MxListFW in { foreach e = SchedSEWSet<m.MX, isF=1, isWidening=1>.val in defm _W : VPseudoConversionRoundingMode<m.vrclass, m.wvrclass, m, constraint, sew=e, TargetConstraintType=2>, SchedUnary<"WriteVFNCvtIToFV", "ReadVFNCvtIToFV", m.MX, e, forceMergeOpRead=true>; } } multiclass VPseudoVNCVTF_RM_W { defvar constraint = "@earlyclobber $rd"; foreach m = MxListFW in { foreach e = SchedSEWSet<m.MX, isF=1, isWidening=1>.val in defm _W : VPseudoConversionRM<m.vrclass, m.wvrclass, m, constraint, sew=e>, SchedUnary<"WriteVFNCvtIToFV", "ReadVFNCvtIToFV", m.MX, e, forceMergeOpRead=true>; } } multiclass VPseudoVNCVTD_W { defvar constraint = "@earlyclobber $rd"; foreach m = MxListFW in { foreach e = SchedSEWSet<m.MX, isF=1, isWidening=1>.val in defm _W : VPseudoConversion<m.vrclass, m.wvrclass, m, constraint, sew=e, TargetConstraintType=2>, SchedUnary<"WriteVFNCvtFToFV", "ReadVFNCvtFToFV", m.MX, e, forceMergeOpRead=true>; } } multiclass VPseudoVNCVTD_W_RM { defvar constraint = "@earlyclobber $rd"; foreach m = MxListFW in { foreach e = SchedSEWSet<m.MX, isF=1, isWidening=1>.val in defm _W : VPseudoConversionRoundingMode<m.vrclass, m.wvrclass, m, constraint, sew=e, TargetConstraintType=2>, SchedUnary<"WriteVFNCvtFToFV", "ReadVFNCvtFToFV", m.MX, e, forceMergeOpRead=true>; } } multiclass VPseudoUSSegLoad { foreach eew = EEWList in { foreach lmul = MxSet<eew>.m in { defvar LInfo = lmul.MX; let VLMul = lmul.value, SEW=eew in { foreach nf = NFSet<lmul>.L in { defvar vreg = SegRegClass<lmul, nf>.RC; def nf # "E" # eew # "_V_" # LInfo : VPseudoUSSegLoadNoMask<vreg, eew, nf>, VLSEGSched<nf, eew, LInfo>; def nf # "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoUSSegLoadMask<vreg, eew, nf>, VLSEGSched<nf, eew, LInfo>; } } } } } multiclass VPseudoUSSegLoadFF { foreach eew = EEWList in { foreach lmul = MxSet<eew>.m in { defvar LInfo = lmul.MX; let VLMul = lmul.value, SEW=eew in { foreach nf = NFSet<lmul>.L in { defvar vreg = SegRegClass<lmul, nf>.RC; def nf # "E" # eew # "FF_V_" # LInfo : VPseudoUSSegLoadFFNoMask<vreg, eew, nf>, VLSEGFFSched<nf, eew, LInfo>; def nf # "E" # eew # "FF_V_" # LInfo # "_MASK" : VPseudoUSSegLoadFFMask<vreg, eew, nf>, VLSEGFFSched<nf, eew, LInfo>; } } } } } multiclass VPseudoSSegLoad { foreach eew = EEWList in { foreach lmul = MxSet<eew>.m in { defvar LInfo = lmul.MX; let VLMul = lmul.value, SEW=eew in { foreach nf = NFSet<lmul>.L in { defvar vreg = SegRegClass<lmul, nf>.RC; def nf # "E" # eew # "_V_" # LInfo : VPseudoSSegLoadNoMask<vreg, eew, nf>, VLSSEGSched<nf, eew, LInfo>; def nf # "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoSSegLoadMask<vreg, eew, nf>, VLSSEGSched<nf, eew, LInfo>; } } } } } multiclass VPseudoISegLoad<bit Ordered> { foreach idxEEW = EEWList in { foreach dataEEW = EEWList in { foreach dataEMUL = MxSet<dataEEW>.m in { defvar dataEMULOctuple = dataEMUL.octuple; // Calculate emul = eew * lmul / sew defvar idxEMULOctuple = !srl(!mul(idxEEW, dataEMULOctuple), !logtwo(dataEEW)); if !and(!ge(idxEMULOctuple, 1), !le(idxEMULOctuple, 64)) then { defvar DataLInfo = dataEMUL.MX; defvar IdxLInfo = octuple_to_str<idxEMULOctuple>.ret; defvar idxEMUL = !cast<LMULInfo>("V_" # IdxLInfo); defvar DataVreg = dataEMUL.vrclass; defvar IdxVreg = idxEMUL.vrclass; let VLMul = dataEMUL.value in { foreach nf = NFSet<dataEMUL>.L in { defvar Vreg = SegRegClass<dataEMUL, nf>.RC; def nf # "EI" # idxEEW # "_V_" # IdxLInfo # "_" # DataLInfo : VPseudoISegLoadNoMask<Vreg, IdxVreg, idxEEW, idxEMUL.value, nf, Ordered>, VLXSEGSched<nf, dataEEW, Ordered, DataLInfo>; def nf # "EI" # idxEEW # "_V_" # IdxLInfo # "_" # DataLInfo # "_MASK" : VPseudoISegLoadMask<Vreg, IdxVreg, idxEEW, idxEMUL.value, nf, Ordered>, VLXSEGSched<nf, dataEEW, Ordered, DataLInfo>; } } } } } } } multiclass VPseudoUSSegStore { foreach eew = EEWList in { foreach lmul = MxSet<eew>.m in { defvar LInfo = lmul.MX; let VLMul = lmul.value, SEW=eew in { foreach nf = NFSet<lmul>.L in { defvar vreg = SegRegClass<lmul, nf>.RC; def nf # "E" # eew # "_V_" # LInfo : VPseudoUSSegStoreNoMask<vreg, eew, nf>, VSSEGSched<nf, eew, LInfo>; def nf # "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoUSSegStoreMask<vreg, eew, nf>, VSSEGSched<nf, eew, LInfo>; } } } } } multiclass VPseudoSSegStore { foreach eew = EEWList in { foreach lmul = MxSet<eew>.m in { defvar LInfo = lmul.MX; let VLMul = lmul.value, SEW=eew in { foreach nf = NFSet<lmul>.L in { defvar vreg = SegRegClass<lmul, nf>.RC; def nf # "E" # eew # "_V_" # LInfo : VPseudoSSegStoreNoMask<vreg, eew, nf>, VSSSEGSched<nf, eew, LInfo>; def nf # "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoSSegStoreMask<vreg, eew, nf>, VSSSEGSched<nf, eew, LInfo>; } } } } } multiclass VPseudoISegStore<bit Ordered> { foreach idxEEW = EEWList in { foreach dataEEW = EEWList in { foreach dataEMUL = MxSet<dataEEW>.m in { defvar dataEMULOctuple = dataEMUL.octuple; // Calculate emul = eew * lmul / sew defvar idxEMULOctuple = !srl(!mul(idxEEW, dataEMULOctuple), !logtwo(dataEEW)); if !and(!ge(idxEMULOctuple, 1), !le(idxEMULOctuple, 64)) then { defvar DataLInfo = dataEMUL.MX; defvar IdxLInfo = octuple_to_str<idxEMULOctuple>.ret; defvar idxEMUL = !cast<LMULInfo>("V_" # IdxLInfo); defvar DataVreg = dataEMUL.vrclass; defvar IdxVreg = idxEMUL.vrclass; let VLMul = dataEMUL.value in { foreach nf = NFSet<dataEMUL>.L in { defvar Vreg = SegRegClass<dataEMUL, nf>.RC; def nf # "EI" # idxEEW # "_V_" # IdxLInfo # "_" # DataLInfo : VPseudoISegStoreNoMask<Vreg, IdxVreg, idxEEW, idxEMUL.value, nf, Ordered>, VSXSEGSched<nf, idxEEW, Ordered, DataLInfo>; def nf # "EI" # idxEEW # "_V_" # IdxLInfo # "_" # DataLInfo # "_MASK" : VPseudoISegStoreMask<Vreg, IdxVreg, idxEEW, idxEMUL.value, nf, Ordered>, VSXSEGSched<nf, idxEEW, Ordered, DataLInfo>; } } } } } } } //===----------------------------------------------------------------------===// // Helpers to define the intrinsic patterns. //===----------------------------------------------------------------------===// class VPatUnaryNoMask<string intrinsic_name, string inst, string kind, ValueType result_type, ValueType op2_type, int log2sew, LMULInfo vlmul, VReg result_reg_class, VReg op2_reg_class, bit isSEWAware = 0> : Pat<(result_type (!cast<Intrinsic>(intrinsic_name) (result_type result_reg_class:$merge), (op2_type op2_reg_class:$rs2), VLOpFrag)), (!cast<Instruction>( !if(isSEWAware, inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew), inst#"_"#kind#"_"#vlmul.MX)) (result_type result_reg_class:$merge), (op2_type op2_reg_class:$rs2), GPR:$vl, log2sew, TU_MU)>; class VPatUnaryNoMaskRoundingMode<string intrinsic_name, string inst, string kind, ValueType result_type, ValueType op2_type, int log2sew, LMULInfo vlmul, VReg result_reg_class, VReg op2_reg_class, bit isSEWAware = 0> : Pat<(result_type (!cast<Intrinsic>(intrinsic_name) (result_type result_reg_class:$merge), (op2_type op2_reg_class:$rs2), (XLenVT timm:$round), VLOpFrag)), (!cast<Instruction>( !if(isSEWAware, inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew), inst#"_"#kind#"_"#vlmul.MX)) (result_type result_reg_class:$merge), (op2_type op2_reg_class:$rs2), (XLenVT timm:$round), GPR:$vl, log2sew, TU_MU)>; class VPatUnaryNoMaskRTZ<string intrinsic_name, string inst, string kind, ValueType result_type, ValueType op2_type, int log2sew, LMULInfo vlmul, VReg result_reg_class, VReg op2_reg_class, bit isSEWAware = 0> : Pat<(result_type (!cast<Intrinsic>(intrinsic_name) (result_type result_reg_class:$merge), (op2_type op2_reg_class:$rs2), (XLenVT 0b001), VLOpFrag)), (!cast<Instruction>( !if(isSEWAware, inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew), inst#"_"#kind#"_"#vlmul.MX)) (result_type result_reg_class:$merge), (op2_type op2_reg_class:$rs2), GPR:$vl, log2sew, TU_MU)>; class VPatUnaryMask<string intrinsic_name, string inst, string kind, ValueType result_type, ValueType op2_type, ValueType mask_type, int log2sew, LMULInfo vlmul, VReg result_reg_class, VReg op2_reg_class, bit isSEWAware = 0> : Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask") (result_type result_reg_class:$merge), (op2_type op2_reg_class:$rs2), (mask_type V0), VLOpFrag, (XLenVT timm:$policy))), (!cast<Instruction>( !if(isSEWAware, inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew)#"_MASK", inst#"_"#kind#"_"#vlmul.MX#"_MASK")) (result_type result_reg_class:$merge), (op2_type op2_reg_class:$rs2), (mask_type V0), GPR:$vl, log2sew, (XLenVT timm:$policy))>; class VPatUnaryMaskRoundingMode<string intrinsic_name, string inst, string kind, ValueType result_type, ValueType op2_type, ValueType mask_type, int log2sew, LMULInfo vlmul, VReg result_reg_class, VReg op2_reg_class, bit isSEWAware = 0> : Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask") (result_type result_reg_class:$merge), (op2_type op2_reg_class:$rs2), (mask_type V0), (XLenVT timm:$round), VLOpFrag, (XLenVT timm:$policy))), (!cast<Instruction>( !if(isSEWAware, inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew)#"_MASK", inst#"_"#kind#"_"#vlmul.MX#"_MASK")) (result_type result_reg_class:$merge), (op2_type op2_reg_class:$rs2), (mask_type V0), (XLenVT timm:$round), GPR:$vl, log2sew, (XLenVT timm:$policy))>; class VPatUnaryMaskRTZ<string intrinsic_name, string inst, string kind, ValueType result_type, ValueType op2_type, ValueType mask_type, int log2sew, LMULInfo vlmul, VReg result_reg_class, VReg op2_reg_class, bit isSEWAware = 0> : Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask") (result_type result_reg_class:$merge), (op2_type op2_reg_class:$rs2), (mask_type V0), (XLenVT 0b001), VLOpFrag, (XLenVT timm:$policy))), (!cast<Instruction>( !if(isSEWAware, inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew)#"_MASK", inst#"_"#kind#"_"#vlmul.MX#"_MASK")) (result_type result_reg_class:$merge), (op2_type op2_reg_class:$rs2), (mask_type V0), GPR:$vl, log2sew, (XLenVT timm:$policy))>; class VPatMaskUnaryNoMask<string intrinsic_name, string inst, MTypeInfo mti> : Pat<(mti.Mask (!cast<Intrinsic>(intrinsic_name) (mti.Mask VR:$rs2), VLOpFrag)), (!cast<Instruction>(inst#"_M_"#mti.BX) (mti.Mask VR:$rs2), GPR:$vl, mti.Log2SEW)>; class VPatMaskUnaryMask<string intrinsic_name, string inst, MTypeInfo mti> : Pat<(mti.Mask (!cast<Intrinsic>(intrinsic_name#"_mask") (mti.Mask VR:$merge), (mti.Mask VR:$rs2), (mti.Mask V0), VLOpFrag)), (!cast<Instruction>(inst#"_M_"#mti.BX#"_MASK") (mti.Mask VR:$merge), (mti.Mask VR:$rs2), (mti.Mask V0), GPR:$vl, mti.Log2SEW, TU_MU)>; class VPatUnaryAnyMask<string intrinsic, string inst, string kind, ValueType result_type, ValueType op1_type, ValueType mask_type, int log2sew, LMULInfo vlmul, VReg result_reg_class, VReg op1_reg_class> : Pat<(result_type (!cast<Intrinsic>(intrinsic) (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (mask_type VR:$rs2), VLOpFrag)), (!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew)) (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (mask_type VR:$rs2), GPR:$vl, log2sew)>; class VPatBinaryM<string intrinsic_name, string inst, ValueType result_type, ValueType op1_type, ValueType op2_type, int sew, VReg op1_reg_class, DAGOperand op2_kind> : Pat<(result_type (!cast<Intrinsic>(intrinsic_name) (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), VLOpFrag)), (!cast<Instruction>(inst) (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), GPR:$vl, sew)>; class VPatBinaryNoMaskTU<string intrinsic_name, string inst, ValueType result_type, ValueType op1_type, ValueType op2_type, int sew, VReg result_reg_class, VReg op1_reg_class, DAGOperand op2_kind> : Pat<(result_type (!cast<Intrinsic>(intrinsic_name) (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), VLOpFrag)), (!cast<Instruction>(inst) (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), GPR:$vl, sew, TU_MU)>; class VPatBinaryNoMaskTURoundingMode<string intrinsic_name, string inst, ValueType result_type, ValueType op1_type, ValueType op2_type, int sew, VReg result_reg_class, VReg op1_reg_class, DAGOperand op2_kind> : Pat<(result_type (!cast<Intrinsic>(intrinsic_name) (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (XLenVT timm:$round), VLOpFrag)), (!cast<Instruction>(inst) (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (XLenVT timm:$round), GPR:$vl, sew, TU_MU)>; // Same as VPatBinaryM but source operands are swapped. class VPatBinaryMSwapped<string intrinsic_name, string inst, ValueType result_type, ValueType op1_type, ValueType op2_type, int sew, VReg op1_reg_class, DAGOperand op2_kind> : Pat<(result_type (!cast<Intrinsic>(intrinsic_name) (op2_type op2_kind:$rs2), (op1_type op1_reg_class:$rs1), VLOpFrag)), (!cast<Instruction>(inst) (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), GPR:$vl, sew)>; class VPatBinaryMask<string intrinsic_name, string inst, ValueType result_type, ValueType op1_type, ValueType op2_type, ValueType mask_type, int sew, VReg result_reg_class, VReg op1_reg_class, DAGOperand op2_kind> : Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask") (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), VLOpFrag)), (!cast<Instruction>(inst#"_MASK") (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), GPR:$vl, sew)>; class VPatBinaryMaskPolicy<string intrinsic_name, string inst, ValueType result_type, ValueType op1_type, ValueType op2_type, ValueType mask_type, int sew, VReg result_reg_class, VReg op1_reg_class, DAGOperand op2_kind> : Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask") (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), VLOpFrag, (XLenVT timm:$policy))), (!cast<Instruction>(inst#"_MASK") (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), GPR:$vl, sew, (XLenVT timm:$policy))>; class VPatBinaryMaskPolicyRoundingMode<string intrinsic_name, string inst, ValueType result_type, ValueType op1_type, ValueType op2_type, ValueType mask_type, int sew, VReg result_reg_class, VReg op1_reg_class, DAGOperand op2_kind> : Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask") (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), (XLenVT timm:$round), VLOpFrag, (XLenVT timm:$policy))), (!cast<Instruction>(inst#"_MASK") (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), (XLenVT timm:$round), GPR:$vl, sew, (XLenVT timm:$policy))>; // Same as VPatBinaryMask but source operands are swapped. class VPatBinaryMaskSwapped<string intrinsic_name, string inst, ValueType result_type, ValueType op1_type, ValueType op2_type, ValueType mask_type, int sew, VReg result_reg_class, VReg op1_reg_class, DAGOperand op2_kind> : Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask") (result_type result_reg_class:$merge), (op2_type op2_kind:$rs2), (op1_type op1_reg_class:$rs1), (mask_type V0), VLOpFrag)), (!cast<Instruction>(inst#"_MASK") (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), GPR:$vl, sew)>; class VPatTiedBinaryNoMask<string intrinsic_name, string inst, ValueType result_type, ValueType op2_type, int sew, VReg result_reg_class, DAGOperand op2_kind> : Pat<(result_type (!cast<Intrinsic>(intrinsic_name) (result_type (undef)), (result_type result_reg_class:$rs1), (op2_type op2_kind:$rs2), VLOpFrag)), (!cast<Instruction>(inst#"_TIED") (result_type result_reg_class:$rs1), (op2_type op2_kind:$rs2), GPR:$vl, sew, TAIL_AGNOSTIC)>; class VPatTiedBinaryNoMaskRoundingMode<string intrinsic_name, string inst, ValueType result_type, ValueType op2_type, int sew, VReg result_reg_class, DAGOperand op2_kind> : Pat<(result_type (!cast<Intrinsic>(intrinsic_name) (result_type (undef)), (result_type result_reg_class:$rs1), (op2_type op2_kind:$rs2), (XLenVT timm:$round), VLOpFrag)), (!cast<Instruction>(inst#"_TIED") (result_type result_reg_class:$rs1), (op2_type op2_kind:$rs2), (XLenVT timm:$round), GPR:$vl, sew, TAIL_AGNOSTIC)>; class VPatTiedBinaryNoMaskTU<string intrinsic_name, string inst, ValueType result_type, ValueType op2_type, int sew, VReg result_reg_class, DAGOperand op2_kind> : Pat<(result_type (!cast<Intrinsic>(intrinsic_name) (result_type result_reg_class:$merge), (result_type result_reg_class:$merge), (op2_type op2_kind:$rs2), VLOpFrag)), (!cast<Instruction>(inst#"_TIED") (result_type result_reg_class:$merge), (op2_type op2_kind:$rs2), GPR:$vl, sew, TU_MU)>; class VPatTiedBinaryNoMaskTURoundingMode<string intrinsic_name, string inst, ValueType result_type, ValueType op2_type, int sew, VReg result_reg_class, DAGOperand op2_kind> : Pat<(result_type (!cast<Intrinsic>(intrinsic_name) (result_type result_reg_class:$merge), (result_type result_reg_class:$merge), (op2_type op2_kind:$rs2), (XLenVT timm:$round), VLOpFrag)), (!cast<Instruction>(inst#"_TIED") (result_type result_reg_class:$merge), (op2_type op2_kind:$rs2), (XLenVT timm:$round), GPR:$vl, sew, TU_MU)>; class VPatTiedBinaryMask<string intrinsic_name, string inst, ValueType result_type, ValueType op2_type, ValueType mask_type, int sew, VReg result_reg_class, DAGOperand op2_kind> : Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask") (result_type result_reg_class:$merge), (result_type result_reg_class:$merge), (op2_type op2_kind:$rs2), (mask_type V0), VLOpFrag, (XLenVT timm:$policy))), (!cast<Instruction>(inst#"_MASK_TIED") (result_type result_reg_class:$merge), (op2_type op2_kind:$rs2), (mask_type V0), GPR:$vl, sew, (XLenVT timm:$policy))>; class VPatTiedBinaryMaskRoundingMode<string intrinsic_name, string inst, ValueType result_type, ValueType op2_type, ValueType mask_type, int sew, VReg result_reg_class, DAGOperand op2_kind> : Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask") (result_type result_reg_class:$merge), (result_type result_reg_class:$merge), (op2_type op2_kind:$rs2), (mask_type V0), (XLenVT timm:$round), VLOpFrag, (XLenVT timm:$policy))), (!cast<Instruction>(inst#"_MASK_TIED") (result_type result_reg_class:$merge), (op2_type op2_kind:$rs2), (mask_type V0), (XLenVT timm:$round), GPR:$vl, sew, (XLenVT timm:$policy))>; class VPatTernaryNoMaskTU<string intrinsic, string inst, string kind, ValueType result_type, ValueType op1_type, ValueType op2_type, int log2sew, LMULInfo vlmul, VReg result_reg_class, RegisterClass op1_reg_class, DAGOperand op2_kind> : Pat<(result_type (!cast<Intrinsic>(intrinsic) (result_type result_reg_class:$rs3), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), VLOpFrag)), (!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew)) result_reg_class:$rs3, (op1_type op1_reg_class:$rs1), op2_kind:$rs2, GPR:$vl, log2sew, TU_MU)>; class VPatTernaryNoMaskTURoundingMode<string intrinsic, string inst, string kind, ValueType result_type, ValueType op1_type, ValueType op2_type, int log2sew, LMULInfo vlmul, VReg result_reg_class, RegisterClass op1_reg_class, DAGOperand op2_kind> : Pat<(result_type (!cast<Intrinsic>(intrinsic) (result_type result_reg_class:$rs3), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (XLenVT timm:$round), VLOpFrag)), (!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew)) result_reg_class:$rs3, (op1_type op1_reg_class:$rs1), op2_kind:$rs2, (XLenVT timm:$round), GPR:$vl, log2sew, TU_MU)>; class VPatTernaryNoMaskWithPolicy<string intrinsic, string inst, string kind, ValueType result_type, ValueType op1_type, ValueType op2_type, int sew, LMULInfo vlmul, VReg result_reg_class, RegisterClass op1_reg_class, DAGOperand op2_kind> : Pat<(result_type (!cast<Intrinsic>(intrinsic) (result_type result_reg_class:$rs3), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), VLOpFrag, (XLenVT timm:$policy))), (!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX) result_reg_class:$rs3, (op1_type op1_reg_class:$rs1), op2_kind:$rs2, GPR:$vl, sew, (XLenVT timm:$policy))>; class VPatTernaryNoMaskWithPolicyRoundingMode<string intrinsic, string inst, string kind, ValueType result_type, ValueType op1_type, ValueType op2_type, int log2sew, LMULInfo vlmul, VReg result_reg_class, RegisterClass op1_reg_class, DAGOperand op2_kind, bit isSEWAware = 0> : Pat<(result_type (!cast<Intrinsic>(intrinsic) (result_type result_reg_class:$rs3), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (XLenVT timm:$round), VLOpFrag, (XLenVT timm:$policy))), (!cast<Instruction>(!if(isSEWAware, inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew), inst#"_"#kind#"_"#vlmul.MX)) result_reg_class:$rs3, (op1_type op1_reg_class:$rs1), op2_kind:$rs2, (XLenVT timm:$round), GPR:$vl, log2sew, (XLenVT timm:$policy))>; class VPatTernaryMaskPolicy<string intrinsic, string inst, string kind, ValueType result_type, ValueType op1_type, ValueType op2_type, ValueType mask_type, int sew, LMULInfo vlmul, VReg result_reg_class, RegisterClass op1_reg_class, DAGOperand op2_kind> : Pat<(result_type (!cast<Intrinsic>(intrinsic#"_mask") (result_type result_reg_class:$rs3), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), VLOpFrag, (XLenVT timm:$policy))), (!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX # "_MASK") result_reg_class:$rs3, (op1_type op1_reg_class:$rs1), op2_kind:$rs2, (mask_type V0), GPR:$vl, sew, (XLenVT timm:$policy))>; class VPatTernaryMaskPolicyRoundingMode<string intrinsic, string inst, string kind, ValueType result_type, ValueType op1_type, ValueType op2_type, ValueType mask_type, int log2sew, LMULInfo vlmul, VReg result_reg_class, RegisterClass op1_reg_class, DAGOperand op2_kind, bit isSEWAware = 0> : Pat<(result_type (!cast<Intrinsic>(intrinsic#"_mask") (result_type result_reg_class:$rs3), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), (XLenVT timm:$round), VLOpFrag, (XLenVT timm:$policy))), (!cast<Instruction>(!if(isSEWAware, inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew) # "_MASK", inst#"_"#kind#"_"#vlmul.MX # "_MASK")) result_reg_class:$rs3, (op1_type op1_reg_class:$rs1), op2_kind:$rs2, (mask_type V0), (XLenVT timm:$round), GPR:$vl, log2sew, (XLenVT timm:$policy))>; class VPatTernaryMaskTU<string intrinsic, string inst, string kind, ValueType result_type, ValueType op1_type, ValueType op2_type, ValueType mask_type, int log2sew, LMULInfo vlmul, VReg result_reg_class, RegisterClass op1_reg_class, DAGOperand op2_kind> : Pat<(result_type (!cast<Intrinsic>(intrinsic#"_mask") (result_type result_reg_class:$rs3), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), VLOpFrag)), (!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew)# "_MASK") result_reg_class:$rs3, (op1_type op1_reg_class:$rs1), op2_kind:$rs2, (mask_type V0), GPR:$vl, log2sew, TU_MU)>; class VPatTernaryMaskTURoundingMode<string intrinsic, string inst, string kind, ValueType result_type, ValueType op1_type, ValueType op2_type, ValueType mask_type, int log2sew, LMULInfo vlmul, VReg result_reg_class, RegisterClass op1_reg_class, DAGOperand op2_kind> : Pat<(result_type (!cast<Intrinsic>(intrinsic#"_mask") (result_type result_reg_class:$rs3), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), (XLenVT timm:$round), VLOpFrag)), (!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX#"_E"#!shl(1, log2sew)# "_MASK") result_reg_class:$rs3, (op1_type op1_reg_class:$rs1), op2_kind:$rs2, (mask_type V0), (XLenVT timm:$round), GPR:$vl, log2sew, TU_MU)>; multiclass VPatUnaryS_M<string intrinsic_name, string inst> { foreach mti = AllMasks in { def : Pat<(XLenVT (!cast<Intrinsic>(intrinsic_name) (mti.Mask VR:$rs1), VLOpFrag)), (!cast<Instruction>(inst#"_M_"#mti.BX) $rs1, GPR:$vl, mti.Log2SEW)>; def : Pat<(XLenVT (!cast<Intrinsic>(intrinsic_name # "_mask") (mti.Mask VR:$rs1), (mti.Mask V0), VLOpFrag)), (!cast<Instruction>(inst#"_M_"#mti.BX#"_MASK") $rs1, (mti.Mask V0), GPR:$vl, mti.Log2SEW)>; } } multiclass VPatUnaryV_V_AnyMask<string intrinsic, string instruction, list<VTypeInfo> vtilist> { foreach vti = vtilist in { let Predicates = GetVTypePredicates<vti>.Predicates in def : VPatUnaryAnyMask<intrinsic, instruction, "VM", vti.Vector, vti.Vector, vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass>; } } multiclass VPatUnaryM_M<string intrinsic, string inst> { foreach mti = AllMasks in { def : VPatMaskUnaryNoMask<intrinsic, inst, mti>; def : VPatMaskUnaryMask<intrinsic, inst, mti>; } } multiclass VPatUnaryV_M<string intrinsic, string instruction> { foreach vti = AllIntegerVectors in { let Predicates = GetVTypePredicates<vti>.Predicates in { def : VPatUnaryNoMask<intrinsic, instruction, "M", vti.Vector, vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, VR>; def : VPatUnaryMask<intrinsic, instruction, "M", vti.Vector, vti.Mask, vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, VR>; } } } multiclass VPatUnaryV_VF<string intrinsic, string instruction, string suffix, list<VTypeInfoToFraction> fractionList> { foreach vtiTofti = fractionList in { defvar vti = vtiTofti.Vti; defvar fti = vtiTofti.Fti; let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates, GetVTypePredicates<fti>.Predicates) in { def : VPatUnaryNoMask<intrinsic, instruction, suffix, vti.Vector, fti.Vector, vti.Log2SEW, vti.LMul, vti.RegClass, fti.RegClass>; def : VPatUnaryMask<intrinsic, instruction, suffix, vti.Vector, fti.Vector, vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, fti.RegClass>; } } } multiclass VPatUnaryV_V<string intrinsic, string instruction, list<VTypeInfo> vtilist, bit isSEWAware = 0> { foreach vti = vtilist in { let Predicates = GetVTypePredicates<vti>.Predicates in { def : VPatUnaryNoMask<intrinsic, instruction, "V", vti.Vector, vti.Vector, vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass, isSEWAware>; def : VPatUnaryMask<intrinsic, instruction, "V", vti.Vector, vti.Vector, vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass, isSEWAware>; } } } multiclass VPatUnaryV_V_RM<string intrinsic, string instruction, list<VTypeInfo> vtilist, bit isSEWAware = 0> { foreach vti = vtilist in { let Predicates = GetVTypePredicates<vti>.Predicates in { def : VPatUnaryNoMaskRoundingMode<intrinsic, instruction, "V", vti.Vector, vti.Vector, vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass, isSEWAware>; def : VPatUnaryMaskRoundingMode<intrinsic, instruction, "V", vti.Vector, vti.Vector, vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass, isSEWAware>; } } } multiclass VPatNullaryV<string intrinsic, string instruction> { foreach vti = AllIntegerVectors in { let Predicates = GetVTypePredicates<vti>.Predicates in { def : Pat<(vti.Vector (!cast<Intrinsic>(intrinsic) (vti.Vector vti.RegClass:$merge), VLOpFrag)), (!cast<Instruction>(instruction#"_V_" # vti.LMul.MX) vti.RegClass:$merge, GPR:$vl, vti.Log2SEW, TU_MU)>; def : Pat<(vti.Vector (!cast<Intrinsic>(intrinsic # "_mask") (vti.Vector vti.RegClass:$merge), (vti.Mask V0), VLOpFrag, (XLenVT timm:$policy))), (!cast<Instruction>(instruction#"_V_" # vti.LMul.MX # "_MASK") vti.RegClass:$merge, (vti.Mask V0), GPR:$vl, vti.Log2SEW, (XLenVT timm:$policy))>; } } } multiclass VPatNullaryM<string intrinsic, string inst> { foreach mti = AllMasks in def : Pat<(mti.Mask (!cast<Intrinsic>(intrinsic) VLOpFrag)), (!cast<Instruction>(inst#"_M_"#mti.BX) GPR:$vl, mti.Log2SEW)>; } multiclass VPatBinaryM<string intrinsic, string inst, ValueType result_type, ValueType op1_type, ValueType op2_type, ValueType mask_type, int sew, VReg result_reg_class, VReg op1_reg_class, DAGOperand op2_kind> { def : VPatBinaryM<intrinsic, inst, result_type, op1_type, op2_type, sew, op1_reg_class, op2_kind>; def : VPatBinaryMask<intrinsic, inst, result_type, op1_type, op2_type, mask_type, sew, result_reg_class, op1_reg_class, op2_kind>; } multiclass VPatBinary<string intrinsic, string inst, ValueType result_type, ValueType op1_type, ValueType op2_type, ValueType mask_type, int sew, VReg result_reg_class, VReg op1_reg_class, DAGOperand op2_kind> { def : VPatBinaryNoMaskTU<intrinsic, inst, result_type, op1_type, op2_type, sew, result_reg_class, op1_reg_class, op2_kind>; def : VPatBinaryMaskPolicy<intrinsic, inst, result_type, op1_type, op2_type, mask_type, sew, result_reg_class, op1_reg_class, op2_kind>; } multiclass VPatBinaryRoundingMode<string intrinsic, string inst, ValueType result_type, ValueType op1_type, ValueType op2_type, ValueType mask_type, int sew, VReg result_reg_class, VReg op1_reg_class, DAGOperand op2_kind> { def : VPatBinaryNoMaskTURoundingMode<intrinsic, inst, result_type, op1_type, op2_type, sew, result_reg_class, op1_reg_class, op2_kind>; def : VPatBinaryMaskPolicyRoundingMode<intrinsic, inst, result_type, op1_type, op2_type, mask_type, sew, result_reg_class, op1_reg_class, op2_kind>; } multiclass VPatBinaryMSwapped<string intrinsic, string inst, ValueType result_type, ValueType op1_type, ValueType op2_type, ValueType mask_type, int sew, VReg result_reg_class, VReg op1_reg_class, DAGOperand op2_kind> { def : VPatBinaryMSwapped<intrinsic, inst, result_type, op1_type, op2_type, sew, op1_reg_class, op2_kind>; def : VPatBinaryMaskSwapped<intrinsic, inst, result_type, op1_type, op2_type, mask_type, sew, result_reg_class, op1_reg_class, op2_kind>; } multiclass VPatBinaryCarryInTAIL<string intrinsic, string inst, string kind, ValueType result_type, ValueType op1_type, ValueType op2_type, ValueType mask_type, int sew, LMULInfo vlmul, VReg result_reg_class, VReg op1_reg_class, DAGOperand op2_kind> { def : Pat<(result_type (!cast<Intrinsic>(intrinsic) (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), VLOpFrag)), (!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX) (result_type result_reg_class:$merge), (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), GPR:$vl, sew)>; } multiclass VPatBinaryCarryIn<string intrinsic, string inst, string kind, ValueType result_type, ValueType op1_type, ValueType op2_type, ValueType mask_type, int sew, LMULInfo vlmul, VReg op1_reg_class, DAGOperand op2_kind> { def : Pat<(result_type (!cast<Intrinsic>(intrinsic) (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), VLOpFrag)), (!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX) (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), (mask_type V0), GPR:$vl, sew)>; } multiclass VPatBinaryMaskOut<string intrinsic, string inst, string kind, ValueType result_type, ValueType op1_type, ValueType op2_type, int sew, LMULInfo vlmul, VReg op1_reg_class, DAGOperand op2_kind> { def : Pat<(result_type (!cast<Intrinsic>(intrinsic) (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), VLOpFrag)), (!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX) (op1_type op1_reg_class:$rs1), (op2_type op2_kind:$rs2), GPR:$vl, sew)>; } multiclass VPatConversion<string intrinsic, string inst, string kind, ValueType result_type, ValueType op1_type, ValueType mask_type, int log2sew, LMULInfo vlmul, VReg result_reg_class, VReg op1_reg_class, bit isSEWAware = 0> { def : VPatUnaryNoMask<intrinsic, inst, kind, result_type, op1_type, log2sew, vlmul, result_reg_class, op1_reg_class, isSEWAware>; def : VPatUnaryMask<intrinsic, inst, kind, result_type, op1_type, mask_type, log2sew, vlmul, result_reg_class, op1_reg_class, isSEWAware>; } multiclass VPatConversionRoundingMode<string intrinsic, string inst, string kind, ValueType result_type, ValueType op1_type, ValueType mask_type, int log2sew, LMULInfo vlmul, VReg result_reg_class, VReg op1_reg_class, bit isSEWAware = 0> { def : VPatUnaryNoMaskRoundingMode<intrinsic, inst, kind, result_type, op1_type, log2sew, vlmul, result_reg_class, op1_reg_class, isSEWAware>; def : VPatUnaryMaskRoundingMode<intrinsic, inst, kind, result_type, op1_type, mask_type, log2sew, vlmul, result_reg_class, op1_reg_class, isSEWAware>; } multiclass VPatConversionRTZ<string intrinsic, string inst, string kind, ValueType result_type, ValueType op1_type, ValueType mask_type, int log2sew, LMULInfo vlmul, VReg result_reg_class, VReg op1_reg_class, bit isSEWAware = 0> { def : VPatUnaryNoMaskRTZ<intrinsic, inst, kind, result_type, op1_type, log2sew, vlmul, result_reg_class, op1_reg_class, isSEWAware>; def : VPatUnaryMaskRTZ<intrinsic, inst, kind, result_type, op1_type, mask_type, log2sew, vlmul, result_reg_class, op1_reg_class, isSEWAware>; } multiclass VPatBinaryV_VV<string intrinsic, string instruction, list<VTypeInfo> vtilist, bit isSEWAware = 0> { foreach vti = vtilist in let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatBinary<intrinsic, !if(isSEWAware, instruction # "_VV_" # vti.LMul.MX # "_E" # vti.SEW, instruction # "_VV_" # vti.LMul.MX), vti.Vector, vti.Vector, vti.Vector,vti.Mask, vti.Log2SEW, vti.RegClass, vti.RegClass, vti.RegClass>; } multiclass VPatBinaryV_VV_RM<string intrinsic, string instruction, list<VTypeInfo> vtilist, bit isSEWAware = 0> { foreach vti = vtilist in let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatBinaryRoundingMode<intrinsic, !if(isSEWAware, instruction # "_VV_" # vti.LMul.MX # "_E" # vti.SEW, instruction # "_VV_" # vti.LMul.MX), vti.Vector, vti.Vector, vti.Vector,vti.Mask, vti.Log2SEW, vti.RegClass, vti.RegClass, vti.RegClass>; } multiclass VPatBinaryV_VV_INT<string intrinsic, string instruction, list<VTypeInfo> vtilist> { foreach vti = vtilist in { defvar ivti = GetIntVTypeInfo<vti>.Vti; let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatBinary<intrinsic, instruction # "_VV_" # vti.LMul.MX # "_E" # vti.SEW, vti.Vector, vti.Vector, ivti.Vector, vti.Mask, vti.Log2SEW, vti.RegClass, vti.RegClass, vti.RegClass>; } } multiclass VPatBinaryV_VV_INT_EEW<string intrinsic, string instruction, int eew, list<VTypeInfo> vtilist> { foreach vti = vtilist in { // emul = lmul * eew / sew defvar vlmul = vti.LMul; defvar octuple_lmul = vlmul.octuple; defvar octuple_emul = !srl(!mul(octuple_lmul, eew), vti.Log2SEW); if !and(!ge(octuple_emul, 1), !le(octuple_emul, 64)) then { defvar emul_str = octuple_to_str<octuple_emul>.ret; defvar ivti = !cast<VTypeInfo>("VI" # eew # emul_str); defvar inst = instruction # "_VV_" # vti.LMul.MX # "_E" # vti.SEW # "_" # emul_str; let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates, GetVTypePredicates<ivti>.Predicates) in defm : VPatBinary<intrinsic, inst, vti.Vector, vti.Vector, ivti.Vector, vti.Mask, vti.Log2SEW, vti.RegClass, vti.RegClass, ivti.RegClass>; } } } multiclass VPatBinaryV_VX<string intrinsic, string instruction, list<VTypeInfo> vtilist, bit isSEWAware = 0> { foreach vti = vtilist in { defvar kind = "V"#vti.ScalarSuffix; let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatBinary<intrinsic, !if(isSEWAware, instruction#"_"#kind#"_"#vti.LMul.MX#"_E"#vti.SEW, instruction#"_"#kind#"_"#vti.LMul.MX), vti.Vector, vti.Vector, vti.Scalar, vti.Mask, vti.Log2SEW, vti.RegClass, vti.RegClass, vti.ScalarRegClass>; } } multiclass VPatBinaryV_VX_RM<string intrinsic, string instruction, list<VTypeInfo> vtilist, bit isSEWAware = 0> { foreach vti = vtilist in { defvar kind = "V"#vti.ScalarSuffix; let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatBinaryRoundingMode<intrinsic, !if(isSEWAware, instruction#"_"#kind#"_"#vti.LMul.MX#"_E"#vti.SEW, instruction#"_"#kind#"_"#vti.LMul.MX), vti.Vector, vti.Vector, vti.Scalar, vti.Mask, vti.Log2SEW, vti.RegClass, vti.RegClass, vti.ScalarRegClass>; } } multiclass VPatBinaryV_VX_INT<string intrinsic, string instruction, list<VTypeInfo> vtilist> { foreach vti = vtilist in let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatBinary<intrinsic, instruction # "_VX_" # vti.LMul.MX, vti.Vector, vti.Vector, XLenVT, vti.Mask, vti.Log2SEW, vti.RegClass, vti.RegClass, GPR>; } multiclass VPatBinaryV_VI<string intrinsic, string instruction, list<VTypeInfo> vtilist, Operand imm_type> { foreach vti = vtilist in let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatBinary<intrinsic, instruction # "_VI_" # vti.LMul.MX, vti.Vector, vti.Vector, XLenVT, vti.Mask, vti.Log2SEW, vti.RegClass, vti.RegClass, imm_type>; } multiclass VPatBinaryV_VI_RM<string intrinsic, string instruction, list<VTypeInfo> vtilist, Operand imm_type> { foreach vti = vtilist in let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatBinaryRoundingMode<intrinsic, instruction # "_VI_" # vti.LMul.MX, vti.Vector, vti.Vector, XLenVT, vti.Mask, vti.Log2SEW, vti.RegClass, vti.RegClass, imm_type>; } multiclass VPatBinaryM_MM<string intrinsic, string instruction> { foreach mti = AllMasks in let Predicates = [HasVInstructions] in def : VPatBinaryM<intrinsic, instruction # "_MM_" # mti.LMul.MX, mti.Mask, mti.Mask, mti.Mask, mti.Log2SEW, VR, VR>; } multiclass VPatBinaryW_VV<string intrinsic, string instruction, list<VTypeInfoToWide> vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates, GetVTypePredicates<Wti>.Predicates) in defm : VPatBinary<intrinsic, instruction # "_VV_" # Vti.LMul.MX, Wti.Vector, Vti.Vector, Vti.Vector, Vti.Mask, Vti.Log2SEW, Wti.RegClass, Vti.RegClass, Vti.RegClass>; } } multiclass VPatBinaryW_VV_RM<string intrinsic, string instruction, list<VTypeInfoToWide> vtilist, bit isSEWAware = 0> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defvar name = !if(isSEWAware, instruction # "_VV_" # Vti.LMul.MX # "_E" # Vti.SEW, instruction # "_VV_" # Vti.LMul.MX); let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates, GetVTypePredicates<Wti>.Predicates) in defm : VPatBinaryRoundingMode<intrinsic, name, Wti.Vector, Vti.Vector, Vti.Vector, Vti.Mask, Vti.Log2SEW, Wti.RegClass, Vti.RegClass, Vti.RegClass>; } } multiclass VPatBinaryW_VX<string intrinsic, string instruction, list<VTypeInfoToWide> vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defvar kind = "V"#Vti.ScalarSuffix; let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates, GetVTypePredicates<Wti>.Predicates) in defm : VPatBinary<intrinsic, instruction#"_"#kind#"_"#Vti.LMul.MX, Wti.Vector, Vti.Vector, Vti.Scalar, Vti.Mask, Vti.Log2SEW, Wti.RegClass, Vti.RegClass, Vti.ScalarRegClass>; } } multiclass VPatBinaryW_VX_RM<string intrinsic, string instruction, list<VTypeInfoToWide> vtilist, bit isSEWAware = 0> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defvar kind = "V"#Vti.ScalarSuffix; defvar name = !if(isSEWAware, instruction#"_"#kind#"_"#Vti.LMul.MX # "_E" # Vti.SEW, instruction#"_"#kind#"_"#Vti.LMul.MX); let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates, GetVTypePredicates<Wti>.Predicates) in defm : VPatBinaryRoundingMode<intrinsic, name, Wti.Vector, Vti.Vector, Vti.Scalar, Vti.Mask, Vti.Log2SEW, Wti.RegClass, Vti.RegClass, Vti.ScalarRegClass>; } } multiclass VPatBinaryW_WV<string intrinsic, string instruction, list<VTypeInfoToWide> vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates, GetVTypePredicates<Wti>.Predicates) in { def : VPatTiedBinaryNoMask<intrinsic, instruction # "_WV_" # Vti.LMul.MX, Wti.Vector, Vti.Vector, Vti.Log2SEW, Wti.RegClass, Vti.RegClass>; def : VPatBinaryNoMaskTU<intrinsic, instruction # "_WV_" # Vti.LMul.MX, Wti.Vector, Wti.Vector, Vti.Vector, Vti.Log2SEW, Wti.RegClass, Wti.RegClass, Vti.RegClass>; let AddedComplexity = 1 in { def : VPatTiedBinaryNoMaskTU<intrinsic, instruction # "_WV_" # Vti.LMul.MX, Wti.Vector, Vti.Vector, Vti.Log2SEW, Wti.RegClass, Vti.RegClass>; def : VPatTiedBinaryMask<intrinsic, instruction # "_WV_" # Vti.LMul.MX, Wti.Vector, Vti.Vector, Vti.Mask, Vti.Log2SEW, Wti.RegClass, Vti.RegClass>; } def : VPatBinaryMaskPolicy<intrinsic, instruction # "_WV_" # Vti.LMul.MX, Wti.Vector, Wti.Vector, Vti.Vector, Vti.Mask, Vti.Log2SEW, Wti.RegClass, Wti.RegClass, Vti.RegClass>; } } } multiclass VPatBinaryW_WV_RM<string intrinsic, string instruction, list<VTypeInfoToWide> vtilist, bit isSEWAware = 0> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defvar name = !if(isSEWAware, instruction # "_WV_" # Vti.LMul.MX # "_E" # Vti.SEW, instruction # "_WV_" # Vti.LMul.MX); let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates, GetVTypePredicates<Wti>.Predicates) in { def : VPatTiedBinaryNoMaskRoundingMode<intrinsic, name, Wti.Vector, Vti.Vector, Vti.Log2SEW, Wti.RegClass, Vti.RegClass>; def : VPatBinaryNoMaskTURoundingMode<intrinsic, name, Wti.Vector, Wti.Vector, Vti.Vector, Vti.Log2SEW, Wti.RegClass, Wti.RegClass, Vti.RegClass>; let AddedComplexity = 1 in { def : VPatTiedBinaryNoMaskTURoundingMode<intrinsic, name, Wti.Vector, Vti.Vector, Vti.Log2SEW, Wti.RegClass, Vti.RegClass>; def : VPatTiedBinaryMaskRoundingMode<intrinsic, name, Wti.Vector, Vti.Vector, Vti.Mask, Vti.Log2SEW, Wti.RegClass, Vti.RegClass>; } def : VPatBinaryMaskPolicyRoundingMode<intrinsic, name, Wti.Vector, Wti.Vector, Vti.Vector, Vti.Mask, Vti.Log2SEW, Wti.RegClass, Wti.RegClass, Vti.RegClass>; } } } multiclass VPatBinaryW_WX<string intrinsic, string instruction, list<VTypeInfoToWide> vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defvar kind = "W"#Vti.ScalarSuffix; let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates, GetVTypePredicates<Wti>.Predicates) in defm : VPatBinary<intrinsic, instruction#"_"#kind#"_"#Vti.LMul.MX, Wti.Vector, Wti.Vector, Vti.Scalar, Vti.Mask, Vti.Log2SEW, Wti.RegClass, Wti.RegClass, Vti.ScalarRegClass>; } } multiclass VPatBinaryW_WX_RM<string intrinsic, string instruction, list<VTypeInfoToWide> vtilist, bit isSEWAware = 0> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defvar kind = "W"#Vti.ScalarSuffix; defvar name = !if(isSEWAware, instruction#"_"#kind#"_"#Vti.LMul.MX#"_E"#Vti.SEW, instruction#"_"#kind#"_"#Vti.LMul.MX); let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates, GetVTypePredicates<Wti>.Predicates) in defm : VPatBinaryRoundingMode<intrinsic, name, Wti.Vector, Wti.Vector, Vti.Scalar, Vti.Mask, Vti.Log2SEW, Wti.RegClass, Wti.RegClass, Vti.ScalarRegClass>; } } multiclass VPatBinaryV_WV<string intrinsic, string instruction, list<VTypeInfoToWide> vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates, GetVTypePredicates<Wti>.Predicates) in defm : VPatBinary<intrinsic, instruction # "_WV_" # Vti.LMul.MX, Vti.Vector, Wti.Vector, Vti.Vector, Vti.Mask, Vti.Log2SEW, Vti.RegClass, Wti.RegClass, Vti.RegClass>; } } multiclass VPatBinaryV_WV_RM<string intrinsic, string instruction, list<VTypeInfoToWide> vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates, GetVTypePredicates<Wti>.Predicates) in defm : VPatBinaryRoundingMode<intrinsic, instruction # "_WV_" # Vti.LMul.MX, Vti.Vector, Wti.Vector, Vti.Vector, Vti.Mask, Vti.Log2SEW, Vti.RegClass, Wti.RegClass, Vti.RegClass>; } } multiclass VPatBinaryV_WX<string intrinsic, string instruction, list<VTypeInfoToWide> vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defvar kind = "W"#Vti.ScalarSuffix; let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates, GetVTypePredicates<Wti>.Predicates) in defm : VPatBinary<intrinsic, instruction#"_"#kind#"_"#Vti.LMul.MX, Vti.Vector, Wti.Vector, Vti.Scalar, Vti.Mask, Vti.Log2SEW, Vti.RegClass, Wti.RegClass, Vti.ScalarRegClass>; } } multiclass VPatBinaryV_WX_RM<string intrinsic, string instruction, list<VTypeInfoToWide> vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; defvar kind = "W"#Vti.ScalarSuffix; let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates, GetVTypePredicates<Wti>.Predicates) in defm : VPatBinaryRoundingMode<intrinsic, instruction#"_"#kind#"_"#Vti.LMul.MX, Vti.Vector, Wti.Vector, Vti.Scalar, Vti.Mask, Vti.Log2SEW, Vti.RegClass, Wti.RegClass, Vti.ScalarRegClass>; } } multiclass VPatBinaryV_WI<string intrinsic, string instruction, list<VTypeInfoToWide> vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates, GetVTypePredicates<Wti>.Predicates) in defm : VPatBinary<intrinsic, instruction # "_WI_" # Vti.LMul.MX, Vti.Vector, Wti.Vector, XLenVT, Vti.Mask, Vti.Log2SEW, Vti.RegClass, Wti.RegClass, uimm5>; } } multiclass VPatBinaryV_WI_RM<string intrinsic, string instruction, list<VTypeInfoToWide> vtilist> { foreach VtiToWti = vtilist in { defvar Vti = VtiToWti.Vti; defvar Wti = VtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates<Vti>.Predicates, GetVTypePredicates<Wti>.Predicates) in defm : VPatBinaryRoundingMode<intrinsic, instruction # "_WI_" # Vti.LMul.MX, Vti.Vector, Wti.Vector, XLenVT, Vti.Mask, Vti.Log2SEW, Vti.RegClass, Wti.RegClass, uimm5>; } } multiclass VPatBinaryV_VM<string intrinsic, string instruction, bit CarryOut = 0, list<VTypeInfo> vtilist = AllIntegerVectors> { foreach vti = vtilist in let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatBinaryCarryIn<intrinsic, instruction, "VVM", !if(CarryOut, vti.Mask, vti.Vector), vti.Vector, vti.Vector, vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass>; } multiclass VPatBinaryV_XM<string intrinsic, string instruction, bit CarryOut = 0, list<VTypeInfo> vtilist = AllIntegerVectors> { foreach vti = vtilist in let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatBinaryCarryIn<intrinsic, instruction, "V"#vti.ScalarSuffix#"M", !if(CarryOut, vti.Mask, vti.Vector), vti.Vector, vti.Scalar, vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, vti.ScalarRegClass>; } multiclass VPatBinaryV_IM<string intrinsic, string instruction, bit CarryOut = 0> { foreach vti = AllIntegerVectors in let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatBinaryCarryIn<intrinsic, instruction, "VIM", !if(CarryOut, vti.Mask, vti.Vector), vti.Vector, XLenVT, vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, simm5>; } multiclass VPatBinaryV_VM_TAIL<string intrinsic, string instruction> { foreach vti = AllIntegerVectors in let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatBinaryCarryInTAIL<intrinsic, instruction, "VVM", vti.Vector, vti.Vector, vti.Vector, vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass, vti.RegClass>; } multiclass VPatBinaryV_XM_TAIL<string intrinsic, string instruction> { foreach vti = AllIntegerVectors in let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatBinaryCarryInTAIL<intrinsic, instruction, "V"#vti.ScalarSuffix#"M", vti.Vector, vti.Vector, vti.Scalar, vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass, vti.ScalarRegClass>; } multiclass VPatBinaryV_IM_TAIL<string intrinsic, string instruction> { foreach vti = AllIntegerVectors in let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatBinaryCarryInTAIL<intrinsic, instruction, "VIM", vti.Vector, vti.Vector, XLenVT, vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass, simm5>; } multiclass VPatBinaryV_V<string intrinsic, string instruction> { foreach vti = AllIntegerVectors in let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatBinaryMaskOut<intrinsic, instruction, "VV", vti.Mask, vti.Vector, vti.Vector, vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass>; } multiclass VPatBinaryV_X<string intrinsic, string instruction> { foreach vti = AllIntegerVectors in let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatBinaryMaskOut<intrinsic, instruction, "VX", vti.Mask, vti.Vector, XLenVT, vti.Log2SEW, vti.LMul, vti.RegClass, GPR>; } multiclass VPatBinaryV_I<string intrinsic, string instruction> { foreach vti = AllIntegerVectors in let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatBinaryMaskOut<intrinsic, instruction, "VI", vti.Mask, vti.Vector, XLenVT, vti.Log2SEW, vti.LMul, vti.RegClass, simm5>; } multiclass VPatBinaryM_VV<string intrinsic, string instruction, list<VTypeInfo> vtilist> { foreach vti = vtilist in let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatBinaryM<intrinsic, instruction # "_VV_" # vti.LMul.MX, vti.Mask, vti.Vector, vti.Vector, vti.Mask, vti.Log2SEW, VR, vti.RegClass, vti.RegClass>; } multiclass VPatBinarySwappedM_VV<string intrinsic, string instruction, list<VTypeInfo> vtilist> { foreach vti = vtilist in let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatBinaryMSwapped<intrinsic, instruction # "_VV_" # vti.LMul.MX, vti.Mask, vti.Vector, vti.Vector, vti.Mask, vti.Log2SEW, VR, vti.RegClass, vti.RegClass>; } multiclass VPatBinaryM_VX<string intrinsic, string instruction, list<VTypeInfo> vtilist> { foreach vti = vtilist in { defvar kind = "V"#vti.ScalarSuffix; let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatBinaryM<intrinsic, instruction#"_"#kind#"_"#vti.LMul.MX, vti.Mask, vti.Vector, vti.Scalar, vti.Mask, vti.Log2SEW, VR, vti.RegClass, vti.ScalarRegClass>; } } multiclass VPatBinaryM_VI<string intrinsic, string instruction, list<VTypeInfo> vtilist> { foreach vti = vtilist in let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatBinaryM<intrinsic, instruction # "_VI_" # vti.LMul.MX, vti.Mask, vti.Vector, XLenVT, vti.Mask, vti.Log2SEW, VR, vti.RegClass, simm5>; } multiclass VPatBinaryV_VV_VX_VI<string intrinsic, string instruction, list<VTypeInfo> vtilist, Operand ImmType = simm5> : VPatBinaryV_VV<intrinsic, instruction, vtilist>, VPatBinaryV_VX<intrinsic, instruction, vtilist>, VPatBinaryV_VI<intrinsic, instruction, vtilist, ImmType>; multiclass VPatBinaryV_VV_VX_VI_RM<string intrinsic, string instruction, list<VTypeInfo> vtilist, Operand ImmType> : VPatBinaryV_VV_RM<intrinsic, instruction, vtilist>, VPatBinaryV_VX_RM<intrinsic, instruction, vtilist>, VPatBinaryV_VI_RM<intrinsic, instruction, vtilist, ImmType>; multiclass VPatBinaryV_VV_VX<string intrinsic, string instruction, list<VTypeInfo> vtilist, bit isSEWAware = 0> : VPatBinaryV_VV<intrinsic, instruction, vtilist, isSEWAware>, VPatBinaryV_VX<intrinsic, instruction, vtilist, isSEWAware>; multiclass VPatBinaryV_VV_VX_RM<string intrinsic, string instruction, list<VTypeInfo> vtilist, bit isSEWAware = 0> : VPatBinaryV_VV_RM<intrinsic, instruction, vtilist, isSEWAware>, VPatBinaryV_VX_RM<intrinsic, instruction, vtilist, isSEWAware>; multiclass VPatBinaryV_VX_VI<string intrinsic, string instruction, list<VTypeInfo> vtilist> : VPatBinaryV_VX<intrinsic, instruction, vtilist>, VPatBinaryV_VI<intrinsic, instruction, vtilist, simm5>; multiclass VPatBinaryW_VV_VX<string intrinsic, string instruction, list<VTypeInfoToWide> vtilist> : VPatBinaryW_VV<intrinsic, instruction, vtilist>, VPatBinaryW_VX<intrinsic, instruction, vtilist>; multiclass VPatBinaryW_VV_VX_RM<string intrinsic, string instruction, list<VTypeInfoToWide> vtilist, bit isSEWAware = 0> : VPatBinaryW_VV_RM<intrinsic, instruction, vtilist, isSEWAware>, VPatBinaryW_VX_RM<intrinsic, instruction, vtilist, isSEWAware>; multiclass VPatBinaryW_WV_WX<string intrinsic, string instruction, list<VTypeInfoToWide> vtilist> : VPatBinaryW_WV<intrinsic, instruction, vtilist>, VPatBinaryW_WX<intrinsic, instruction, vtilist>; multiclass VPatBinaryW_WV_WX_RM<string intrinsic, string instruction, list<VTypeInfoToWide> vtilist, bit isSEWAware = 0> : VPatBinaryW_WV_RM<intrinsic, instruction, vtilist, isSEWAware>, VPatBinaryW_WX_RM<intrinsic, instruction, vtilist, isSEWAware>; multiclass VPatBinaryV_WV_WX_WI<string intrinsic, string instruction, list<VTypeInfoToWide> vtilist> : VPatBinaryV_WV<intrinsic, instruction, vtilist>, VPatBinaryV_WX<intrinsic, instruction, vtilist>, VPatBinaryV_WI<intrinsic, instruction, vtilist>; multiclass VPatBinaryV_WV_WX_WI_RM<string intrinsic, string instruction, list<VTypeInfoToWide> vtilist> : VPatBinaryV_WV_RM<intrinsic, instruction, vtilist>, VPatBinaryV_WX_RM<intrinsic, instruction, vtilist>, VPatBinaryV_WI_RM<intrinsic, instruction, vtilist>; multiclass VPatBinaryV_VM_XM_IM<string intrinsic, string instruction> : VPatBinaryV_VM_TAIL<intrinsic, instruction>, VPatBinaryV_XM_TAIL<intrinsic, instruction>, VPatBinaryV_IM_TAIL<intrinsic, instruction>; multiclass VPatBinaryM_VM_XM_IM<string intrinsic, string instruction> : VPatBinaryV_VM<intrinsic, instruction, CarryOut=1>, VPatBinaryV_XM<intrinsic, instruction, CarryOut=1>, VPatBinaryV_IM<intrinsic, instruction, CarryOut=1>; multiclass VPatBinaryM_V_X_I<string intrinsic, string instruction> : VPatBinaryV_V<intrinsic, instruction>, VPatBinaryV_X<intrinsic, instruction>, VPatBinaryV_I<intrinsic, instruction>; multiclass VPatBinaryV_VM_XM<string intrinsic, string instruction> : VPatBinaryV_VM_TAIL<intrinsic, instruction>, VPatBinaryV_XM_TAIL<intrinsic, instruction>; multiclass VPatBinaryM_VM_XM<string intrinsic, string instruction> : VPatBinaryV_VM<intrinsic, instruction, CarryOut=1>, VPatBinaryV_XM<intrinsic, instruction, CarryOut=1>; multiclass VPatBinaryM_V_X<string intrinsic, string instruction> : VPatBinaryV_V<intrinsic, instruction>, VPatBinaryV_X<intrinsic, instruction>; multiclass VPatTernaryWithPolicy<string intrinsic, string inst, string kind, ValueType result_type, ValueType op1_type, ValueType op2_type, ValueType mask_type, int sew, LMULInfo vlmul, VReg result_reg_class, RegisterClass op1_reg_class, DAGOperand op2_kind> { def : VPatTernaryNoMaskWithPolicy<intrinsic, inst, kind, result_type, op1_type, op2_type, sew, vlmul, result_reg_class, op1_reg_class, op2_kind>; def : VPatTernaryMaskPolicy<intrinsic, inst, kind, result_type, op1_type, op2_type, mask_type, sew, vlmul, result_reg_class, op1_reg_class, op2_kind>; } multiclass VPatTernaryWithPolicyRoundingMode<string intrinsic, string inst, string kind, ValueType result_type, ValueType op1_type, ValueType op2_type, ValueType mask_type, int sew, LMULInfo vlmul, VReg result_reg_class, RegisterClass op1_reg_class, DAGOperand op2_kind, bit isSEWAware = 0> { def : VPatTernaryNoMaskWithPolicyRoundingMode<intrinsic, inst, kind, result_type, op1_type, op2_type, sew, vlmul, result_reg_class, op1_reg_class, op2_kind, isSEWAware>; def : VPatTernaryMaskPolicyRoundingMode<intrinsic, inst, kind, result_type, op1_type, op2_type, mask_type, sew, vlmul, result_reg_class, op1_reg_class, op2_kind, isSEWAware>; } multiclass VPatTernaryTU<string intrinsic, string inst, string kind, ValueType result_type, ValueType op1_type, ValueType op2_type, ValueType mask_type, int log2sew, LMULInfo vlmul, VReg result_reg_class, RegisterClass op1_reg_class, DAGOperand op2_kind> { def : VPatTernaryNoMaskTU<intrinsic, inst, kind, result_type, op1_type, op2_type, log2sew, vlmul, result_reg_class, op1_reg_class, op2_kind>; def : VPatTernaryMaskTU<intrinsic, inst, kind, result_type, op1_type, op2_type, mask_type, log2sew, vlmul, result_reg_class, op1_reg_class, op2_kind>; } multiclass VPatTernaryTURoundingMode<string intrinsic, string inst, string kind, ValueType result_type, ValueType op1_type, ValueType op2_type, ValueType mask_type, int log2sew, LMULInfo vlmul, VReg result_reg_class, RegisterClass op1_reg_class, DAGOperand op2_kind> { def : VPatTernaryNoMaskTURoundingMode<intrinsic, inst, kind, result_type, op1_type, op2_type, log2sew, vlmul, result_reg_class, op1_reg_class, op2_kind>; def : VPatTernaryMaskTURoundingMode<intrinsic, inst, kind, result_type, op1_type, op2_type, mask_type, log2sew, vlmul, result_reg_class, op1_reg_class, op2_kind>; } multiclass VPatTernaryV_VV_AAXA<string intrinsic, string instruction, list<VTypeInfo> vtilist> { foreach vti = vtilist in let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatTernaryWithPolicy<intrinsic, instruction, "VV", vti.Vector, vti.Vector, vti.Vector, vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass, vti.RegClass>; } multiclass VPatTernaryV_VV_AAXA_RM<string intrinsic, string instruction, list<VTypeInfo> vtilist, bit isSEWAware = 0> { foreach vti = vtilist in let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatTernaryWithPolicyRoundingMode<intrinsic, instruction, "VV", vti.Vector, vti.Vector, vti.Vector, vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass, vti.RegClass, isSEWAware>; } multiclass VPatTernaryV_VX<string intrinsic, string instruction, list<VTypeInfo> vtilist> { foreach vti = vtilist in let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatTernaryWithPolicy<intrinsic, instruction, "VX", vti.Vector, vti.Vector, XLenVT, vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass, GPR>; } multiclass VPatTernaryV_VX_AAXA<string intrinsic, string instruction, list<VTypeInfo> vtilist> { foreach vti = vtilist in let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatTernaryWithPolicy<intrinsic, instruction, "V"#vti.ScalarSuffix, vti.Vector, vti.Scalar, vti.Vector, vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, vti.ScalarRegClass, vti.RegClass>; } multiclass VPatTernaryV_VX_AAXA_RM<string intrinsic, string instruction, list<VTypeInfo> vtilist, bit isSEWAware = 0> { foreach vti = vtilist in let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatTernaryWithPolicyRoundingMode<intrinsic, instruction, "V"#vti.ScalarSuffix, vti.Vector, vti.Scalar, vti.Vector, vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, vti.ScalarRegClass, vti.RegClass, isSEWAware>; } multiclass VPatTernaryV_VI<string intrinsic, string instruction, list<VTypeInfo> vtilist, Operand Imm_type> { foreach vti = vtilist in let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatTernaryWithPolicy<intrinsic, instruction, "VI", vti.Vector, vti.Vector, XLenVT, vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass, Imm_type>; } multiclass VPatTernaryW_VV<string intrinsic, string instruction, list<VTypeInfoToWide> vtilist> { foreach vtiToWti = vtilist in { defvar vti = vtiToWti.Vti; defvar wti = vtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates, GetVTypePredicates<wti>.Predicates) in defm : VPatTernaryWithPolicy<intrinsic, instruction, "VV", wti.Vector, vti.Vector, vti.Vector, vti.Mask, vti.Log2SEW, vti.LMul, wti.RegClass, vti.RegClass, vti.RegClass>; } } multiclass VPatTernaryW_VV_RM<string intrinsic, string instruction, list<VTypeInfoToWide> vtilist, bit isSEWAware = 0> { foreach vtiToWti = vtilist in { defvar vti = vtiToWti.Vti; defvar wti = vtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates, GetVTypePredicates<wti>.Predicates) in defm : VPatTernaryWithPolicyRoundingMode<intrinsic, instruction, "VV", wti.Vector, vti.Vector, vti.Vector, vti.Mask, vti.Log2SEW, vti.LMul, wti.RegClass, vti.RegClass, vti.RegClass, isSEWAware>; } } multiclass VPatTernaryW_VX<string intrinsic, string instruction, list<VTypeInfoToWide> vtilist> { foreach vtiToWti = vtilist in { defvar vti = vtiToWti.Vti; defvar wti = vtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates, GetVTypePredicates<wti>.Predicates) in defm : VPatTernaryWithPolicy<intrinsic, instruction, "V"#vti.ScalarSuffix, wti.Vector, vti.Scalar, vti.Vector, vti.Mask, vti.Log2SEW, vti.LMul, wti.RegClass, vti.ScalarRegClass, vti.RegClass>; } } multiclass VPatTernaryW_VX_RM<string intrinsic, string instruction, list<VTypeInfoToWide> vtilist, bit isSEWAware = 0> { foreach vtiToWti = vtilist in { defvar vti = vtiToWti.Vti; defvar wti = vtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates, GetVTypePredicates<wti>.Predicates) in defm : VPatTernaryWithPolicyRoundingMode< intrinsic, instruction, "V" #vti.ScalarSuffix, wti.Vector, vti.Scalar, vti.Vector, vti.Mask, vti.Log2SEW, vti.LMul, wti.RegClass, vti.ScalarRegClass, vti.RegClass, isSEWAware>; } } multiclass VPatTernaryV_VV_VX_AAXA<string intrinsic, string instruction, list<VTypeInfo> vtilist> : VPatTernaryV_VV_AAXA<intrinsic, instruction, vtilist>, VPatTernaryV_VX_AAXA<intrinsic, instruction, vtilist>; multiclass VPatTernaryV_VV_VX_AAXA_RM<string intrinsic, string instruction, list<VTypeInfo> vtilist, bit isSEWAware = 0> : VPatTernaryV_VV_AAXA_RM<intrinsic, instruction, vtilist, isSEWAware>, VPatTernaryV_VX_AAXA_RM<intrinsic, instruction, vtilist, isSEWAware>; multiclass VPatTernaryV_VX_VI<string intrinsic, string instruction, list<VTypeInfo> vtilist, Operand Imm_type> : VPatTernaryV_VX<intrinsic, instruction, vtilist>, VPatTernaryV_VI<intrinsic, instruction, vtilist, Imm_type>; multiclass VPatBinaryM_VV_VX_VI<string intrinsic, string instruction, list<VTypeInfo> vtilist> : VPatBinaryM_VV<intrinsic, instruction, vtilist>, VPatBinaryM_VX<intrinsic, instruction, vtilist>, VPatBinaryM_VI<intrinsic, instruction, vtilist>; multiclass VPatTernaryW_VV_VX<string intrinsic, string instruction, list<VTypeInfoToWide> vtilist> : VPatTernaryW_VV<intrinsic, instruction, vtilist>, VPatTernaryW_VX<intrinsic, instruction, vtilist>; multiclass VPatTernaryW_VV_VX_RM<string intrinsic, string instruction, list<VTypeInfoToWide> vtilist, bit isSEWAware = 1> : VPatTernaryW_VV_RM<intrinsic, instruction, vtilist, isSEWAware>, VPatTernaryW_VX_RM<intrinsic, instruction, vtilist, isSEWAware>; multiclass VPatBinaryM_VV_VX<string intrinsic, string instruction, list<VTypeInfo> vtilist> : VPatBinaryM_VV<intrinsic, instruction, vtilist>, VPatBinaryM_VX<intrinsic, instruction, vtilist>; multiclass VPatBinaryM_VX_VI<string intrinsic, string instruction, list<VTypeInfo> vtilist> : VPatBinaryM_VX<intrinsic, instruction, vtilist>, VPatBinaryM_VI<intrinsic, instruction, vtilist>; multiclass VPatBinaryV_VV_VX_VI_INT<string intrinsic, string instruction, list<VTypeInfo> vtilist, Operand ImmType> : VPatBinaryV_VV_INT<intrinsic#"_vv", instruction, vtilist>, VPatBinaryV_VX_INT<intrinsic#"_vx", instruction, vtilist>, VPatBinaryV_VI<intrinsic#"_vx", instruction, vtilist, ImmType>; multiclass VPatReductionV_VS<string intrinsic, string instruction, bit IsFloat = 0> { foreach vti = !if(IsFloat, NoGroupFloatVectors, NoGroupIntegerVectors) in { defvar vectorM1 = !cast<VTypeInfo>(!if(IsFloat, "VF", "VI") # vti.SEW # "M1"); let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatTernaryTU<intrinsic, instruction, "VS", vectorM1.Vector, vti.Vector, vectorM1.Vector, vti.Mask, vti.Log2SEW, vti.LMul, VR, vti.RegClass, VR>; } foreach gvti = !if(IsFloat, GroupFloatVectors, GroupIntegerVectors) in { let Predicates = GetVTypePredicates<gvti>.Predicates in defm : VPatTernaryTU<intrinsic, instruction, "VS", gvti.VectorM1, gvti.Vector, gvti.VectorM1, gvti.Mask, gvti.Log2SEW, gvti.LMul, VR, gvti.RegClass, VR>; } } multiclass VPatReductionV_VS_RM<string intrinsic, string instruction, bit IsFloat = 0> { foreach vti = !if(IsFloat, NoGroupFloatVectors, NoGroupIntegerVectors) in { defvar vectorM1 = !cast<VTypeInfo>(!if(IsFloat, "VF", "VI") # vti.SEW # "M1"); let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatTernaryTURoundingMode<intrinsic, instruction, "VS", vectorM1.Vector, vti.Vector, vectorM1.Vector, vti.Mask, vti.Log2SEW, vti.LMul, VR, vti.RegClass, VR>; } foreach gvti = !if(IsFloat, GroupFloatVectors, GroupIntegerVectors) in { let Predicates = GetVTypePredicates<gvti>.Predicates in defm : VPatTernaryTURoundingMode<intrinsic, instruction, "VS", gvti.VectorM1, gvti.Vector, gvti.VectorM1, gvti.Mask, gvti.Log2SEW, gvti.LMul, VR, gvti.RegClass, VR>; } } multiclass VPatReductionW_VS<string intrinsic, string instruction, bit IsFloat = 0> { foreach vti = !if(IsFloat, AllFloatVectors, AllIntegerVectors) in { defvar wtiSEW = !mul(vti.SEW, 2); if !le(wtiSEW, 64) then { defvar wtiM1 = !cast<VTypeInfo>(!if(IsFloat, "VF", "VI") # wtiSEW # "M1"); let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatTernaryTU<intrinsic, instruction, "VS", wtiM1.Vector, vti.Vector, wtiM1.Vector, vti.Mask, vti.Log2SEW, vti.LMul, wtiM1.RegClass, vti.RegClass, wtiM1.RegClass>; } } } multiclass VPatReductionW_VS_RM<string intrinsic, string instruction, bit IsFloat = 0> { foreach vti = !if(IsFloat, AllFloatVectors, AllIntegerVectors) in { defvar wtiSEW = !mul(vti.SEW, 2); if !le(wtiSEW, 64) then { defvar wtiM1 = !cast<VTypeInfo>(!if(IsFloat, "VF", "VI") # wtiSEW # "M1"); let Predicates = GetVTypePredicates<vti>.Predicates in defm : VPatTernaryTURoundingMode<intrinsic, instruction, "VS", wtiM1.Vector, vti.Vector, wtiM1.Vector, vti.Mask, vti.Log2SEW, vti.LMul, wtiM1.RegClass, vti.RegClass, wtiM1.RegClass>; } } } multiclass VPatConversionVI_VF<string intrinsic, string instruction> { foreach fvti = AllFloatVectors in { defvar ivti = GetIntVTypeInfo<fvti>.Vti; let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates, GetVTypePredicates<ivti>.Predicates) in defm : VPatConversion<intrinsic, instruction, "V", ivti.Vector, fvti.Vector, ivti.Mask, fvti.Log2SEW, fvti.LMul, ivti.RegClass, fvti.RegClass>; } } multiclass VPatConversionVI_VF_RM<string intrinsic, string instruction> { foreach fvti = AllFloatVectors in { defvar ivti = GetIntVTypeInfo<fvti>.Vti; let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates, GetVTypePredicates<ivti>.Predicates) in defm : VPatConversionRoundingMode<intrinsic, instruction, "V", ivti.Vector, fvti.Vector, ivti.Mask, fvti.Log2SEW, fvti.LMul, ivti.RegClass, fvti.RegClass>; } } multiclass VPatConversionVI_VF_RTZ<string intrinsic, string instruction> { foreach fvti = AllFloatVectors in { defvar ivti = GetIntVTypeInfo<fvti>.Vti; let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates, GetVTypePredicates<ivti>.Predicates) in defm : VPatConversionRTZ<intrinsic, instruction, "V", ivti.Vector, fvti.Vector, ivti.Mask, fvti.Log2SEW, fvti.LMul, ivti.RegClass, fvti.RegClass>; } } multiclass VPatConversionVF_VI_RM<string intrinsic, string instruction, bit isSEWAware = 0> { foreach fvti = AllFloatVectors in { defvar ivti = GetIntVTypeInfo<fvti>.Vti; let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates, GetVTypePredicates<ivti>.Predicates) in defm : VPatConversionRoundingMode<intrinsic, instruction, "V", fvti.Vector, ivti.Vector, fvti.Mask, ivti.Log2SEW, ivti.LMul, fvti.RegClass, ivti.RegClass, isSEWAware>; } } multiclass VPatConversionWI_VF<string intrinsic, string instruction> { foreach fvtiToFWti = AllWidenableFloatVectors in { defvar fvti = fvtiToFWti.Vti; defvar iwti = GetIntVTypeInfo<fvtiToFWti.Wti>.Vti; let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates, GetVTypePredicates<iwti>.Predicates) in defm : VPatConversion<intrinsic, instruction, "V", iwti.Vector, fvti.Vector, iwti.Mask, fvti.Log2SEW, fvti.LMul, iwti.RegClass, fvti.RegClass>; } } multiclass VPatConversionWI_VF_RM<string intrinsic, string instruction> { foreach fvtiToFWti = AllWidenableFloatVectors in { defvar fvti = fvtiToFWti.Vti; defvar iwti = GetIntVTypeInfo<fvtiToFWti.Wti>.Vti; let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates, GetVTypePredicates<iwti>.Predicates) in defm : VPatConversionRoundingMode<intrinsic, instruction, "V", iwti.Vector, fvti.Vector, iwti.Mask, fvti.Log2SEW, fvti.LMul, iwti.RegClass, fvti.RegClass>; } } multiclass VPatConversionWI_VF_RTZ<string intrinsic, string instruction> { foreach fvtiToFWti = AllWidenableFloatVectors in { defvar fvti = fvtiToFWti.Vti; defvar iwti = GetIntVTypeInfo<fvtiToFWti.Wti>.Vti; let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates, GetVTypePredicates<iwti>.Predicates) in defm : VPatConversionRTZ<intrinsic, instruction, "V", iwti.Vector, fvti.Vector, iwti.Mask, fvti.Log2SEW, fvti.LMul, iwti.RegClass, fvti.RegClass>; } } multiclass VPatConversionWF_VI<string intrinsic, string instruction, bit isSEWAware = 0> { foreach vtiToWti = AllWidenableIntToFloatVectors in { defvar vti = vtiToWti.Vti; defvar fwti = vtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates, GetVTypePredicates<fwti>.Predicates) in defm : VPatConversion<intrinsic, instruction, "V", fwti.Vector, vti.Vector, fwti.Mask, vti.Log2SEW, vti.LMul, fwti.RegClass, vti.RegClass, isSEWAware>; } } multiclass VPatConversionWF_VF<string intrinsic, string instruction, bit isSEWAware = 0> { foreach fvtiToFWti = AllWidenableFloatVectors in { defvar fvti = fvtiToFWti.Vti; defvar fwti = fvtiToFWti.Wti; // Define vfwcvt.f.f.v for f16 when Zvfhmin is enable. let Predicates = !if(!eq(fvti.Scalar, f16), [HasVInstructionsF16Minimal], !listconcat(GetVTypePredicates<fvti>.Predicates, GetVTypePredicates<fwti>.Predicates)) in defm : VPatConversion<intrinsic, instruction, "V", fwti.Vector, fvti.Vector, fwti.Mask, fvti.Log2SEW, fvti.LMul, fwti.RegClass, fvti.RegClass, isSEWAware>; } } multiclass VPatConversionWF_VF_BF<string intrinsic, string instruction, bit isSEWAware = 0> { foreach fvtiToFWti = AllWidenableBFloatToFloatVectors in { defvar fvti = fvtiToFWti.Vti; defvar fwti = fvtiToFWti.Wti; let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates, GetVTypePredicates<fwti>.Predicates) in defm : VPatConversion<intrinsic, instruction, "V", fwti.Vector, fvti.Vector, fwti.Mask, fvti.Log2SEW, fvti.LMul, fwti.RegClass, fvti.RegClass, isSEWAware>; } } multiclass VPatConversionVI_WF<string intrinsic, string instruction> { foreach vtiToWti = AllWidenableIntToFloatVectors in { defvar vti = vtiToWti.Vti; defvar fwti = vtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates, GetVTypePredicates<fwti>.Predicates) in defm : VPatConversion<intrinsic, instruction, "W", vti.Vector, fwti.Vector, vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, fwti.RegClass>; } } multiclass VPatConversionVI_WF_RM <string intrinsic, string instruction> { foreach vtiToWti = AllWidenableIntToFloatVectors in { defvar vti = vtiToWti.Vti; defvar fwti = vtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates, GetVTypePredicates<fwti>.Predicates) in defm : VPatConversionRoundingMode<intrinsic, instruction, "W", vti.Vector, fwti.Vector, vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, fwti.RegClass>; } } multiclass VPatConversionVI_WF_RTZ <string intrinsic, string instruction> { foreach vtiToWti = AllWidenableIntToFloatVectors in { defvar vti = vtiToWti.Vti; defvar fwti = vtiToWti.Wti; let Predicates = !listconcat(GetVTypePredicates<vti>.Predicates, GetVTypePredicates<fwti>.Predicates) in defm : VPatConversionRTZ<intrinsic, instruction, "W", vti.Vector, fwti.Vector, vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, fwti.RegClass>; } } multiclass VPatConversionVF_WI_RM <string intrinsic, string instruction, bit isSEWAware = 0> { foreach fvtiToFWti = AllWidenableFloatVectors in { defvar fvti = fvtiToFWti.Vti; defvar iwti = GetIntVTypeInfo<fvtiToFWti.Wti>.Vti; let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates, GetVTypePredicates<iwti>.Predicates) in defm : VPatConversionRoundingMode<intrinsic, instruction, "W", fvti.Vector, iwti.Vector, fvti.Mask, fvti.Log2SEW, fvti.LMul, fvti.RegClass, iwti.RegClass, isSEWAware>; } } multiclass VPatConversionVF_WF<string intrinsic, string instruction, bit isSEWAware = 0> { foreach fvtiToFWti = AllWidenableFloatVectors in { defvar fvti = fvtiToFWti.Vti; defvar fwti = fvtiToFWti.Wti; let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates, GetVTypePredicates<fwti>.Predicates) in defm : VPatConversion<intrinsic, instruction, "W", fvti.Vector, fwti.Vector, fvti.Mask, fvti.Log2SEW, fvti.LMul, fvti.RegClass, fwti.RegClass, isSEWAware>; } } multiclass VPatConversionVF_WF_RM<string intrinsic, string instruction, list<VTypeInfoToWide> wlist = AllWidenableFloatVectors, bit isSEWAware = 0> { foreach fvtiToFWti = wlist in { defvar fvti = fvtiToFWti.Vti; defvar fwti = fvtiToFWti.Wti; let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates, GetVTypePredicates<fwti>.Predicates) in defm : VPatConversionRoundingMode<intrinsic, instruction, "W", fvti.Vector, fwti.Vector, fvti.Mask, fvti.Log2SEW, fvti.LMul, fvti.RegClass, fwti.RegClass, isSEWAware>; } } multiclass VPatConversionVF_WF_RTZ<string intrinsic, string instruction, list<VTypeInfoToWide> wlist = AllWidenableFloatVectors, bit isSEWAware = 0> { foreach fvtiToFWti = wlist in { defvar fvti = fvtiToFWti.Vti; defvar fwti = fvtiToFWti.Wti; let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates, GetVTypePredicates<fwti>.Predicates) in defm : VPatConversionRTZ<intrinsic, instruction, "W", fvti.Vector, fwti.Vector, fvti.Mask, fvti.Log2SEW, fvti.LMul, fvti.RegClass, fwti.RegClass, isSEWAware>; } } multiclass VPatConversionVF_WF_BF_RM<string intrinsic, string instruction, bit isSEWAware = 0> { foreach fvtiToFWti = AllWidenableBFloatToFloatVectors in { defvar fvti = fvtiToFWti.Vti; defvar fwti = fvtiToFWti.Wti; let Predicates = !listconcat(GetVTypePredicates<fvti>.Predicates, GetVTypePredicates<fwti>.Predicates) in defm : VPatConversionRoundingMode<intrinsic, instruction, "W", fvti.Vector, fwti.Vector, fvti.Mask, fvti.Log2SEW, fvti.LMul, fvti.RegClass, fwti.RegClass, isSEWAware>; } } multiclass VPatCompare_VI<string intrinsic, string inst, ImmLeaf ImmType> { foreach vti = AllIntegerVectors in { defvar Intr = !cast<Intrinsic>(intrinsic); defvar Pseudo = !cast<Instruction>(inst#"_VI_"#vti.LMul.MX); let Predicates = GetVTypePredicates<vti>.Predicates in def : Pat<(vti.Mask (Intr (vti.Vector vti.RegClass:$rs1), (vti.Scalar ImmType:$rs2), VLOpFrag)), (Pseudo vti.RegClass:$rs1, (DecImm ImmType:$rs2), GPR:$vl, vti.Log2SEW)>; defvar IntrMask = !cast<Intrinsic>(intrinsic # "_mask"); defvar PseudoMask = !cast<Instruction>(inst#"_VI_"#vti.LMul.MX#"_MASK"); let Predicates = GetVTypePredicates<vti>.Predicates in def : Pat<(vti.Mask (IntrMask (vti.Mask VR:$merge), (vti.Vector vti.RegClass:$rs1), (vti.Scalar ImmType:$rs2), (vti.Mask V0), VLOpFrag)), (PseudoMask VR:$merge, vti.RegClass:$rs1, (DecImm ImmType:$rs2), (vti.Mask V0), GPR:$vl, vti.Log2SEW)>; } } //===----------------------------------------------------------------------===// // Pseudo instructions //===----------------------------------------------------------------------===// let Predicates = [HasVInstructions] in { //===----------------------------------------------------------------------===// // Pseudo Instructions for CodeGen //===----------------------------------------------------------------------===// let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 1 in { def PseudoReadVLENB : Pseudo<(outs GPR:$rd), (ins), [(set GPR:$rd, (riscv_read_vlenb))]>, PseudoInstExpansion<(CSRRS GPR:$rd, SysRegVLENB.Encoding, X0)>, Sched<[WriteRdVLENB]>; } let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 1, Uses = [VL] in def PseudoReadVL : Pseudo<(outs GPR:$rd), (ins), []>, PseudoInstExpansion<(CSRRS GPR:$rd, SysRegVL.Encoding, X0)>; foreach lmul = MxList in { foreach nf = NFSet<lmul>.L in { defvar vreg = SegRegClass<lmul, nf>.RC; let hasSideEffects = 0, mayLoad = 0, mayStore = 1, isCodeGenOnly = 1, Size = !mul(4, !sub(!mul(nf, 2), 1)) in { def "PseudoVSPILL" # nf # "_" # lmul.MX : Pseudo<(outs), (ins vreg:$rs1, GPR:$rs2), []>; } let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 1, Size = !mul(4, !sub(!mul(nf, 2), 1)) in { def "PseudoVRELOAD" # nf # "_" # lmul.MX : Pseudo<(outs vreg:$rs1), (ins GPR:$rs2), []>; } } } /// Empty pseudo for RISCVInitUndefPass let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 0, isCodeGenOnly = 1 in { def PseudoRVVInitUndefM1 : Pseudo<(outs VR:$vd), (ins), [], "">; def PseudoRVVInitUndefM2 : Pseudo<(outs VRM2:$vd), (ins), [], "">; def PseudoRVVInitUndefM4 : Pseudo<(outs VRM4:$vd), (ins), [], "">; def PseudoRVVInitUndefM8 : Pseudo<(outs VRM8:$vd), (ins), [], "">; } //===----------------------------------------------------------------------===// // 6. Configuration-Setting Instructions //===----------------------------------------------------------------------===// // Pseudos. let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Defs = [VL, VTYPE] in { // Due to rs1=X0 having special meaning, we need a GPRNoX0 register class for // the when we aren't using one of the special X0 encodings. Otherwise it could // be accidentally be made X0 by MachineIR optimizations. To satisfy the // verifier, we also need a GPRX0 instruction for the special encodings. def PseudoVSETVLI : Pseudo<(outs GPR:$rd), (ins GPRNoX0:$rs1, VTypeIOp11:$vtypei), []>, Sched<[WriteVSETVLI, ReadVSETVLI]>; def PseudoVSETVLIX0 : Pseudo<(outs GPR:$rd), (ins GPRX0:$rs1, VTypeIOp11:$vtypei), []>, Sched<[WriteVSETVLI, ReadVSETVLI]>; def PseudoVSETIVLI : Pseudo<(outs GPR:$rd), (ins uimm5:$rs1, VTypeIOp10:$vtypei), []>, Sched<[WriteVSETIVLI]>; } //===----------------------------------------------------------------------===// // 7. Vector Loads and Stores //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 7.4 Vector Unit-Stride Instructions //===----------------------------------------------------------------------===// // Pseudos Unit-Stride Loads and Stores defm PseudoVL : VPseudoUSLoad; defm PseudoVS : VPseudoUSStore; defm PseudoVLM : VPseudoLoadMask; defm PseudoVSM : VPseudoStoreMask; //===----------------------------------------------------------------------===// // 7.5 Vector Strided Instructions //===----------------------------------------------------------------------===// // Vector Strided Loads and Stores defm PseudoVLS : VPseudoSLoad; defm PseudoVSS : VPseudoSStore; //===----------------------------------------------------------------------===// // 7.6 Vector Indexed Instructions //===----------------------------------------------------------------------===// // Vector Indexed Loads and Stores defm PseudoVLUX : VPseudoILoad<Ordered=false>; defm PseudoVLOX : VPseudoILoad<Ordered=true>; defm PseudoVSOX : VPseudoIStore<Ordered=true>; defm PseudoVSUX : VPseudoIStore<Ordered=false>; //===----------------------------------------------------------------------===// // 7.7. Unit-stride Fault-Only-First Loads //===----------------------------------------------------------------------===// // vleff may update VL register let Defs = [VL] in defm PseudoVL : VPseudoFFLoad; //===----------------------------------------------------------------------===// // 7.8. Vector Load/Store Segment Instructions //===----------------------------------------------------------------------===// defm PseudoVLSEG : VPseudoUSSegLoad; defm PseudoVLSSEG : VPseudoSSegLoad; defm PseudoVLOXSEG : VPseudoISegLoad<Ordered=true>; defm PseudoVLUXSEG : VPseudoISegLoad<Ordered=false>; defm PseudoVSSEG : VPseudoUSSegStore; defm PseudoVSSSEG : VPseudoSSegStore; defm PseudoVSOXSEG : VPseudoISegStore<Ordered=true>; defm PseudoVSUXSEG : VPseudoISegStore<Ordered=false>; // vlseg<nf>e<eew>ff.v may update VL register let Defs = [VL] in { defm PseudoVLSEG : VPseudoUSSegLoadFF; } //===----------------------------------------------------------------------===// // 11. Vector Integer Arithmetic Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 11.1. Vector Single-Width Integer Add and Subtract //===----------------------------------------------------------------------===// defm PseudoVADD : VPseudoVALU_VV_VX_VI<Commutable=1>; defm PseudoVSUB : VPseudoVALU_VV_VX; defm PseudoVRSUB : VPseudoVALU_VX_VI; foreach vti = AllIntegerVectors in { // Match vrsub with 2 vector operands to vsub.vv by swapping operands. This // Occurs when legalizing vrsub.vx intrinsics for i64 on RV32 since we need // to use a more complex splat sequence. Add the pattern for all VTs for // consistency. let Predicates = GetVTypePredicates<vti>.Predicates in { def : Pat<(vti.Vector (int_riscv_vrsub (vti.Vector vti.RegClass:$merge), (vti.Vector vti.RegClass:$rs2), (vti.Vector vti.RegClass:$rs1), VLOpFrag)), (!cast<Instruction>("PseudoVSUB_VV_"#vti.LMul.MX) vti.RegClass:$merge, vti.RegClass:$rs1, vti.RegClass:$rs2, GPR:$vl, vti.Log2SEW, TU_MU)>; def : Pat<(vti.Vector (int_riscv_vrsub_mask (vti.Vector vti.RegClass:$merge), (vti.Vector vti.RegClass:$rs2), (vti.Vector vti.RegClass:$rs1), (vti.Mask V0), VLOpFrag, (XLenVT timm:$policy))), (!cast<Instruction>("PseudoVSUB_VV_"#vti.LMul.MX#"_MASK") vti.RegClass:$merge, vti.RegClass:$rs1, vti.RegClass:$rs2, (vti.Mask V0), GPR:$vl, vti.Log2SEW, (XLenVT timm:$policy))>; // Match VSUB with a small immediate to vadd.vi by negating the immediate. def : Pat<(vti.Vector (int_riscv_vsub (vti.Vector vti.RegClass:$merge), (vti.Vector vti.RegClass:$rs1), (vti.Scalar simm5_plus1:$rs2), VLOpFrag)), (!cast<Instruction>("PseudoVADD_VI_"#vti.LMul.MX) vti.RegClass:$merge, vti.RegClass:$rs1, (NegImm simm5_plus1:$rs2), GPR:$vl, vti.Log2SEW, TU_MU)>; def : Pat<(vti.Vector (int_riscv_vsub_mask (vti.Vector vti.RegClass:$merge), (vti.Vector vti.RegClass:$rs1), (vti.Scalar simm5_plus1:$rs2), (vti.Mask V0), VLOpFrag, (XLenVT timm:$policy))), (!cast<Instruction>("PseudoVADD_VI_"#vti.LMul.MX#"_MASK") vti.RegClass:$merge, vti.RegClass:$rs1, (NegImm simm5_plus1:$rs2), (vti.Mask V0), GPR:$vl, vti.Log2SEW, (XLenVT timm:$policy))>; } } //===----------------------------------------------------------------------===// // 11.2. Vector Widening Integer Add/Subtract //===----------------------------------------------------------------------===// defm PseudoVWADDU : VPseudoVWALU_VV_VX<Commutable=1>; defm PseudoVWSUBU : VPseudoVWALU_VV_VX; defm PseudoVWADD : VPseudoVWALU_VV_VX<Commutable=1>; defm PseudoVWSUB : VPseudoVWALU_VV_VX; defm PseudoVWADDU : VPseudoVWALU_WV_WX; defm PseudoVWSUBU : VPseudoVWALU_WV_WX; defm PseudoVWADD : VPseudoVWALU_WV_WX; defm PseudoVWSUB : VPseudoVWALU_WV_WX; //===----------------------------------------------------------------------===// // 11.3. Vector Integer Extension //===----------------------------------------------------------------------===// defm PseudoVZEXT_VF2 : PseudoVEXT_VF2; defm PseudoVZEXT_VF4 : PseudoVEXT_VF4; defm PseudoVZEXT_VF8 : PseudoVEXT_VF8; defm PseudoVSEXT_VF2 : PseudoVEXT_VF2; defm PseudoVSEXT_VF4 : PseudoVEXT_VF4; defm PseudoVSEXT_VF8 : PseudoVEXT_VF8; //===----------------------------------------------------------------------===// // 11.4. Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions //===----------------------------------------------------------------------===// defm PseudoVADC : VPseudoVCALU_VM_XM_IM; defm PseudoVMADC : VPseudoVCALUM_VM_XM_IM; defm PseudoVMADC : VPseudoVCALUM_V_X_I; defm PseudoVSBC : VPseudoVCALU_VM_XM; defm PseudoVMSBC : VPseudoVCALUM_VM_XM; defm PseudoVMSBC : VPseudoVCALUM_V_X; //===----------------------------------------------------------------------===// // 11.5. Vector Bitwise Logical Instructions //===----------------------------------------------------------------------===// defm PseudoVAND : VPseudoVALU_VV_VX_VI<Commutable=1>; defm PseudoVOR : VPseudoVALU_VV_VX_VI<Commutable=1>; defm PseudoVXOR : VPseudoVALU_VV_VX_VI<Commutable=1>; //===----------------------------------------------------------------------===// // 11.6. Vector Single-Width Bit Shift Instructions //===----------------------------------------------------------------------===// defm PseudoVSLL : VPseudoVSHT_VV_VX_VI; defm PseudoVSRL : VPseudoVSHT_VV_VX_VI; defm PseudoVSRA : VPseudoVSHT_VV_VX_VI; //===----------------------------------------------------------------------===// // 11.7. Vector Narrowing Integer Right Shift Instructions //===----------------------------------------------------------------------===// defm PseudoVNSRL : VPseudoVNSHT_WV_WX_WI; defm PseudoVNSRA : VPseudoVNSHT_WV_WX_WI; //===----------------------------------------------------------------------===// // 11.8. Vector Integer Comparison Instructions //===----------------------------------------------------------------------===// defm PseudoVMSEQ : VPseudoVCMPM_VV_VX_VI<Commutable=1>; defm PseudoVMSNE : VPseudoVCMPM_VV_VX_VI<Commutable=1>; defm PseudoVMSLTU : VPseudoVCMPM_VV_VX; defm PseudoVMSLT : VPseudoVCMPM_VV_VX; defm PseudoVMSLEU : VPseudoVCMPM_VV_VX_VI; defm PseudoVMSLE : VPseudoVCMPM_VV_VX_VI; defm PseudoVMSGTU : VPseudoVCMPM_VX_VI; defm PseudoVMSGT : VPseudoVCMPM_VX_VI; //===----------------------------------------------------------------------===// // 11.9. Vector Integer Min/Max Instructions //===----------------------------------------------------------------------===// defm PseudoVMINU : VPseudoVMINMAX_VV_VX; defm PseudoVMIN : VPseudoVMINMAX_VV_VX; defm PseudoVMAXU : VPseudoVMINMAX_VV_VX; defm PseudoVMAX : VPseudoVMINMAX_VV_VX; //===----------------------------------------------------------------------===// // 11.10. Vector Single-Width Integer Multiply Instructions //===----------------------------------------------------------------------===// defm PseudoVMUL : VPseudoVMUL_VV_VX<Commutable=1>; defm PseudoVMULH : VPseudoVMUL_VV_VX<Commutable=1>; defm PseudoVMULHU : VPseudoVMUL_VV_VX<Commutable=1>; defm PseudoVMULHSU : VPseudoVMUL_VV_VX; //===----------------------------------------------------------------------===// // 11.11. Vector Integer Divide Instructions //===----------------------------------------------------------------------===// defm PseudoVDIVU : VPseudoVDIV_VV_VX; defm PseudoVDIV : VPseudoVDIV_VV_VX; defm PseudoVREMU : VPseudoVDIV_VV_VX; defm PseudoVREM : VPseudoVDIV_VV_VX; //===----------------------------------------------------------------------===// // 11.12. Vector Widening Integer Multiply Instructions //===----------------------------------------------------------------------===// defm PseudoVWMUL : VPseudoVWMUL_VV_VX<Commutable=1>; defm PseudoVWMULU : VPseudoVWMUL_VV_VX<Commutable=1>; defm PseudoVWMULSU : VPseudoVWMUL_VV_VX; //===----------------------------------------------------------------------===// // 11.13. Vector Single-Width Integer Multiply-Add Instructions //===----------------------------------------------------------------------===// defm PseudoVMACC : VPseudoVMAC_VV_VX_AAXA; defm PseudoVNMSAC : VPseudoVMAC_VV_VX_AAXA; defm PseudoVMADD : VPseudoVMAC_VV_VX_AAXA; defm PseudoVNMSUB : VPseudoVMAC_VV_VX_AAXA; //===----------------------------------------------------------------------===// // 11.14. Vector Widening Integer Multiply-Add Instructions //===----------------------------------------------------------------------===// defm PseudoVWMACCU : VPseudoVWMAC_VV_VX<Commutable=1>; defm PseudoVWMACC : VPseudoVWMAC_VV_VX<Commutable=1>; defm PseudoVWMACCSU : VPseudoVWMAC_VV_VX; defm PseudoVWMACCUS : VPseudoVWMAC_VX; //===----------------------------------------------------------------------===// // 11.15. Vector Integer Merge Instructions //===----------------------------------------------------------------------===// defm PseudoVMERGE : VPseudoVMRG_VM_XM_IM; //===----------------------------------------------------------------------===// // 11.16. Vector Integer Move Instructions //===----------------------------------------------------------------------===// defm PseudoVMV_V : VPseudoUnaryVMV_V_X_I; //===----------------------------------------------------------------------===// // 12. Vector Fixed-Point Arithmetic Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 12.1. Vector Single-Width Saturating Add and Subtract //===----------------------------------------------------------------------===// let Defs = [VXSAT] in { defm PseudoVSADDU : VPseudoVSALU_VV_VX_VI<Commutable=1>; defm PseudoVSADD : VPseudoVSALU_VV_VX_VI<Commutable=1>; defm PseudoVSSUBU : VPseudoVSALU_VV_VX; defm PseudoVSSUB : VPseudoVSALU_VV_VX; } //===----------------------------------------------------------------------===// // 12.2. Vector Single-Width Averaging Add and Subtract //===----------------------------------------------------------------------===// defm PseudoVAADDU : VPseudoVAALU_VV_VX_RM<Commutable=1>; defm PseudoVAADD : VPseudoVAALU_VV_VX_RM<Commutable=1>; defm PseudoVASUBU : VPseudoVAALU_VV_VX_RM; defm PseudoVASUB : VPseudoVAALU_VV_VX_RM; //===----------------------------------------------------------------------===// // 12.3. Vector Single-Width Fractional Multiply with Rounding and Saturation //===----------------------------------------------------------------------===// let Defs = [VXSAT] in { defm PseudoVSMUL : VPseudoVSMUL_VV_VX_RM; } //===----------------------------------------------------------------------===// // 12.4. Vector Single-Width Scaling Shift Instructions //===----------------------------------------------------------------------===// defm PseudoVSSRL : VPseudoVSSHT_VV_VX_VI_RM; defm PseudoVSSRA : VPseudoVSSHT_VV_VX_VI_RM; //===----------------------------------------------------------------------===// // 12.5. Vector Narrowing Fixed-Point Clip Instructions //===----------------------------------------------------------------------===// let Defs = [VXSAT] in { defm PseudoVNCLIP : VPseudoVNCLP_WV_WX_WI_RM; defm PseudoVNCLIPU : VPseudoVNCLP_WV_WX_WI_RM; } } // Predicates = [HasVInstructions] //===----------------------------------------------------------------------===// // 13. Vector Floating-Point Instructions //===----------------------------------------------------------------------===// let Predicates = [HasVInstructionsAnyF] in { //===----------------------------------------------------------------------===// // 13.2. Vector Single-Width Floating-Point Add/Subtract Instructions //===----------------------------------------------------------------------===// let mayRaiseFPException = true, hasPostISelHook = 1 in { defm PseudoVFADD : VPseudoVALU_VV_VF_RM; defm PseudoVFSUB : VPseudoVALU_VV_VF_RM; defm PseudoVFRSUB : VPseudoVALU_VF_RM; } //===----------------------------------------------------------------------===// // 13.3. Vector Widening Floating-Point Add/Subtract Instructions //===----------------------------------------------------------------------===// let mayRaiseFPException = true, hasSideEffects = 0, hasPostISelHook = 1 in { defm PseudoVFWADD : VPseudoVFWALU_VV_VF_RM; defm PseudoVFWSUB : VPseudoVFWALU_VV_VF_RM; defm PseudoVFWADD : VPseudoVFWALU_WV_WF_RM; defm PseudoVFWSUB : VPseudoVFWALU_WV_WF_RM; } //===----------------------------------------------------------------------===// // 13.4. Vector Single-Width Floating-Point Multiply/Divide Instructions //===----------------------------------------------------------------------===// let mayRaiseFPException = true, hasSideEffects = 0, hasPostISelHook = 1 in { defm PseudoVFMUL : VPseudoVFMUL_VV_VF_RM; defm PseudoVFDIV : VPseudoVFDIV_VV_VF_RM; defm PseudoVFRDIV : VPseudoVFRDIV_VF_RM; } //===----------------------------------------------------------------------===// // 13.5. Vector Widening Floating-Point Multiply //===----------------------------------------------------------------------===// let mayRaiseFPException = true, hasSideEffects = 0, hasPostISelHook = 1 in { defm PseudoVFWMUL : VPseudoVWMUL_VV_VF_RM; } //===----------------------------------------------------------------------===// // 13.6. Vector Single-Width Floating-Point Fused Multiply-Add Instructions //===----------------------------------------------------------------------===// let mayRaiseFPException = true, hasSideEffects = 0, hasPostISelHook = 1 in { defm PseudoVFMACC : VPseudoVMAC_VV_VF_AAXA_RM; defm PseudoVFNMACC : VPseudoVMAC_VV_VF_AAXA_RM; defm PseudoVFMSAC : VPseudoVMAC_VV_VF_AAXA_RM; defm PseudoVFNMSAC : VPseudoVMAC_VV_VF_AAXA_RM; defm PseudoVFMADD : VPseudoVMAC_VV_VF_AAXA_RM; defm PseudoVFNMADD : VPseudoVMAC_VV_VF_AAXA_RM; defm PseudoVFMSUB : VPseudoVMAC_VV_VF_AAXA_RM; defm PseudoVFNMSUB : VPseudoVMAC_VV_VF_AAXA_RM; } //===----------------------------------------------------------------------===// // 13.7. Vector Widening Floating-Point Fused Multiply-Add Instructions //===----------------------------------------------------------------------===// let mayRaiseFPException = true, hasSideEffects = 0, hasPostISelHook = 1 in { defm PseudoVFWMACC : VPseudoVWMAC_VV_VF_RM; defm PseudoVFWNMACC : VPseudoVWMAC_VV_VF_RM; defm PseudoVFWMSAC : VPseudoVWMAC_VV_VF_RM; defm PseudoVFWNMSAC : VPseudoVWMAC_VV_VF_RM; let Predicates = [HasStdExtZvfbfwma] in defm PseudoVFWMACCBF16 : VPseudoVWMAC_VV_VF_BF_RM; } //===----------------------------------------------------------------------===// // 13.8. Vector Floating-Point Square-Root Instruction //===----------------------------------------------------------------------===// let mayRaiseFPException = true, hasSideEffects = 0, hasPostISelHook = 1 in defm PseudoVFSQRT : VPseudoVSQR_V_RM; //===----------------------------------------------------------------------===// // 13.9. Vector Floating-Point Reciprocal Square-Root Estimate Instruction //===----------------------------------------------------------------------===// let mayRaiseFPException = true in defm PseudoVFRSQRT7 : VPseudoVRCP_V; //===----------------------------------------------------------------------===// // 13.10. Vector Floating-Point Reciprocal Estimate Instruction //===----------------------------------------------------------------------===// let mayRaiseFPException = true, hasSideEffects = 0, hasPostISelHook = 1 in defm PseudoVFREC7 : VPseudoVRCP_V_RM; //===----------------------------------------------------------------------===// // 13.11. Vector Floating-Point Min/Max Instructions //===----------------------------------------------------------------------===// let mayRaiseFPException = true in { defm PseudoVFMIN : VPseudoVMAX_VV_VF; defm PseudoVFMAX : VPseudoVMAX_VV_VF; } //===----------------------------------------------------------------------===// // 13.12. Vector Floating-Point Sign-Injection Instructions //===----------------------------------------------------------------------===// defm PseudoVFSGNJ : VPseudoVSGNJ_VV_VF; defm PseudoVFSGNJN : VPseudoVSGNJ_VV_VF; defm PseudoVFSGNJX : VPseudoVSGNJ_VV_VF; //===----------------------------------------------------------------------===// // 13.13. Vector Floating-Point Compare Instructions //===----------------------------------------------------------------------===// let mayRaiseFPException = true in { defm PseudoVMFEQ : VPseudoVCMPM_VV_VF; defm PseudoVMFNE : VPseudoVCMPM_VV_VF; defm PseudoVMFLT : VPseudoVCMPM_VV_VF; defm PseudoVMFLE : VPseudoVCMPM_VV_VF; defm PseudoVMFGT : VPseudoVCMPM_VF; defm PseudoVMFGE : VPseudoVCMPM_VF; } //===----------------------------------------------------------------------===// // 13.14. Vector Floating-Point Classify Instruction //===----------------------------------------------------------------------===// defm PseudoVFCLASS : VPseudoVCLS_V; //===----------------------------------------------------------------------===// // 13.15. Vector Floating-Point Merge Instruction //===----------------------------------------------------------------------===// defm PseudoVFMERGE : VPseudoVMRG_FM; //===----------------------------------------------------------------------===// // 13.16. Vector Floating-Point Move Instruction //===----------------------------------------------------------------------===// defm PseudoVFMV_V : VPseudoVMV_F; //===----------------------------------------------------------------------===// // 13.17. Single-Width Floating-Point/Integer Type-Convert Instructions //===----------------------------------------------------------------------===// let mayRaiseFPException = true in { let hasSideEffects = 0, hasPostISelHook = 1 in { defm PseudoVFCVT_XU_F : VPseudoVCVTI_V_RM; defm PseudoVFCVT_X_F : VPseudoVCVTI_V_RM; } defm PseudoVFCVT_RM_XU_F : VPseudoVCVTI_RM_V; defm PseudoVFCVT_RM_X_F : VPseudoVCVTI_RM_V; defm PseudoVFCVT_RTZ_XU_F : VPseudoVCVTI_V; defm PseudoVFCVT_RTZ_X_F : VPseudoVCVTI_V; defm PseudoVFROUND_NOEXCEPT : VPseudoVFROUND_NOEXCEPT_V; let hasSideEffects = 0, hasPostISelHook = 1 in { defm PseudoVFCVT_F_XU : VPseudoVCVTF_V_RM; defm PseudoVFCVT_F_X : VPseudoVCVTF_V_RM; } defm PseudoVFCVT_RM_F_XU : VPseudoVCVTF_RM_V; defm PseudoVFCVT_RM_F_X : VPseudoVCVTF_RM_V; } // mayRaiseFPException = true //===----------------------------------------------------------------------===// // 13.18. Widening Floating-Point/Integer Type-Convert Instructions //===----------------------------------------------------------------------===// let mayRaiseFPException = true in { let hasSideEffects = 0, hasPostISelHook = 1 in { defm PseudoVFWCVT_XU_F : VPseudoVWCVTI_V_RM; defm PseudoVFWCVT_X_F : VPseudoVWCVTI_V_RM; } defm PseudoVFWCVT_RM_XU_F : VPseudoVWCVTI_RM_V; defm PseudoVFWCVT_RM_X_F : VPseudoVWCVTI_RM_V; defm PseudoVFWCVT_RTZ_XU_F : VPseudoVWCVTI_V; defm PseudoVFWCVT_RTZ_X_F : VPseudoVWCVTI_V; defm PseudoVFWCVT_F_XU : VPseudoVWCVTF_V; defm PseudoVFWCVT_F_X : VPseudoVWCVTF_V; defm PseudoVFWCVT_F_F : VPseudoVWCVTD_V; defm PseudoVFWCVTBF16_F_F : VPseudoVWCVTD_V; } // mayRaiseFPException = true //===----------------------------------------------------------------------===// // 13.19. Narrowing Floating-Point/Integer Type-Convert Instructions //===----------------------------------------------------------------------===// let mayRaiseFPException = true in { let hasSideEffects = 0, hasPostISelHook = 1 in { defm PseudoVFNCVT_XU_F : VPseudoVNCVTI_W_RM; defm PseudoVFNCVT_X_F : VPseudoVNCVTI_W_RM; } defm PseudoVFNCVT_RM_XU_F : VPseudoVNCVTI_RM_W; defm PseudoVFNCVT_RM_X_F : VPseudoVNCVTI_RM_W; defm PseudoVFNCVT_RTZ_XU_F : VPseudoVNCVTI_W; defm PseudoVFNCVT_RTZ_X_F : VPseudoVNCVTI_W; let hasSideEffects = 0, hasPostISelHook = 1 in { defm PseudoVFNCVT_F_XU : VPseudoVNCVTF_W_RM; defm PseudoVFNCVT_F_X : VPseudoVNCVTF_W_RM; } defm PseudoVFNCVT_RM_F_XU : VPseudoVNCVTF_RM_W; defm PseudoVFNCVT_RM_F_X : VPseudoVNCVTF_RM_W; let hasSideEffects = 0, hasPostISelHook = 1 in { defm PseudoVFNCVT_F_F : VPseudoVNCVTD_W_RM; defm PseudoVFNCVTBF16_F_F : VPseudoVNCVTD_W_RM; } defm PseudoVFNCVT_ROD_F_F : VPseudoVNCVTD_W; } // mayRaiseFPException = true } // Predicates = [HasVInstructionsAnyF] //===----------------------------------------------------------------------===// // 14. Vector Reduction Operations //===----------------------------------------------------------------------===// let Predicates = [HasVInstructions] in { //===----------------------------------------------------------------------===// // 14.1. Vector Single-Width Integer Reduction Instructions //===----------------------------------------------------------------------===// defm PseudoVREDSUM : VPseudoVRED_VS; defm PseudoVREDAND : VPseudoVRED_VS; defm PseudoVREDOR : VPseudoVRED_VS; defm PseudoVREDXOR : VPseudoVRED_VS; defm PseudoVREDMINU : VPseudoVREDMINMAX_VS; defm PseudoVREDMIN : VPseudoVREDMINMAX_VS; defm PseudoVREDMAXU : VPseudoVREDMINMAX_VS; defm PseudoVREDMAX : VPseudoVREDMINMAX_VS; //===----------------------------------------------------------------------===// // 14.2. Vector Widening Integer Reduction Instructions //===----------------------------------------------------------------------===// let IsRVVWideningReduction = 1 in { defm PseudoVWREDSUMU : VPseudoVWRED_VS; defm PseudoVWREDSUM : VPseudoVWRED_VS; } } // Predicates = [HasVInstructions] let Predicates = [HasVInstructionsAnyF] in { //===----------------------------------------------------------------------===// // 14.3. Vector Single-Width Floating-Point Reduction Instructions //===----------------------------------------------------------------------===// let mayRaiseFPException = true, hasSideEffects = 0, hasPostISelHook = 1 in { defm PseudoVFREDOSUM : VPseudoVFREDO_VS_RM; defm PseudoVFREDUSUM : VPseudoVFRED_VS_RM; } let mayRaiseFPException = true in { defm PseudoVFREDMIN : VPseudoVFREDMINMAX_VS; defm PseudoVFREDMAX : VPseudoVFREDMINMAX_VS; } //===----------------------------------------------------------------------===// // 14.4. Vector Widening Floating-Point Reduction Instructions //===----------------------------------------------------------------------===// let IsRVVWideningReduction = 1, hasSideEffects = 0, mayRaiseFPException = true, hasPostISelHook = 1 in { defm PseudoVFWREDUSUM : VPseudoVFWRED_VS_RM; defm PseudoVFWREDOSUM : VPseudoVFWREDO_VS_RM; } } // Predicates = [HasVInstructionsAnyF] //===----------------------------------------------------------------------===// // 15. Vector Mask Instructions //===----------------------------------------------------------------------===// let Predicates = [HasVInstructions] in { //===----------------------------------------------------------------------===// // 15.1 Vector Mask-Register Logical Instructions //===----------------------------------------------------------------------===// defm PseudoVMAND: VPseudoVALU_MM<Commutable=1>; defm PseudoVMNAND: VPseudoVALU_MM<Commutable=1>; defm PseudoVMANDN: VPseudoVALU_MM; defm PseudoVMXOR: VPseudoVALU_MM<Commutable=1>; defm PseudoVMOR: VPseudoVALU_MM<Commutable=1>; defm PseudoVMNOR: VPseudoVALU_MM<Commutable=1>; defm PseudoVMORN: VPseudoVALU_MM; defm PseudoVMXNOR: VPseudoVALU_MM<Commutable=1>; // Pseudo instructions defm PseudoVMCLR : VPseudoNullaryPseudoM<"VMXOR">; defm PseudoVMSET : VPseudoNullaryPseudoM<"VMXNOR">; //===----------------------------------------------------------------------===// // 15.2. Vector mask population count vcpop //===----------------------------------------------------------------------===// let IsSignExtendingOpW = 1 in defm PseudoVCPOP: VPseudoVPOP_M; //===----------------------------------------------------------------------===// // 15.3. vfirst find-first-set mask bit //===----------------------------------------------------------------------===// let IsSignExtendingOpW = 1 in defm PseudoVFIRST: VPseudoV1ST_M; //===----------------------------------------------------------------------===// // 15.4. vmsbf.m set-before-first mask bit //===----------------------------------------------------------------------===// defm PseudoVMSBF: VPseudoVSFS_M; //===----------------------------------------------------------------------===// // 15.5. vmsif.m set-including-first mask bit //===----------------------------------------------------------------------===// defm PseudoVMSIF: VPseudoVSFS_M; //===----------------------------------------------------------------------===// // 15.6. vmsof.m set-only-first mask bit //===----------------------------------------------------------------------===// defm PseudoVMSOF: VPseudoVSFS_M; //===----------------------------------------------------------------------===// // 15.8. Vector Iota Instruction //===----------------------------------------------------------------------===// defm PseudoVIOTA_M: VPseudoVIOTA_M; //===----------------------------------------------------------------------===// // 15.9. Vector Element Index Instruction //===----------------------------------------------------------------------===// let isReMaterializable = 1 in defm PseudoVID : VPseudoVID_V; } // Predicates = [HasVInstructions] //===----------------------------------------------------------------------===// // 16. Vector Permutation Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 16.1. Integer Scalar Move Instructions //===----------------------------------------------------------------------===// let Predicates = [HasVInstructions] in { let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { let HasSEWOp = 1, BaseInstr = VMV_X_S in def PseudoVMV_X_S: Pseudo<(outs GPR:$rd), (ins VR:$rs2, ixlenimm:$sew), []>, Sched<[WriteVMovXS, ReadVMovXS]>, RISCVVPseudo; let HasVLOp = 1, HasSEWOp = 1, BaseInstr = VMV_S_X, Constraints = "$rd = $rs1" in def PseudoVMV_S_X: Pseudo<(outs VR:$rd), (ins VR:$rs1, GPR:$rs2, AVL:$vl, ixlenimm:$sew), []>, Sched<[WriteVMovSX, ReadVMovSX_V, ReadVMovSX_X]>, RISCVVPseudo; } } // Predicates = [HasVInstructions] //===----------------------------------------------------------------------===// // 16.2. Floating-Point Scalar Move Instructions //===----------------------------------------------------------------------===// let Predicates = [HasVInstructionsAnyF] in { let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { foreach f = FPList in { foreach m = f.MxList in { defvar mx = m.MX; let VLMul = m.value in { let HasSEWOp = 1, BaseInstr = VFMV_F_S in def "PseudoVFMV_" # f.FX # "_S_" # mx : Pseudo<(outs f.fprclass:$rd), (ins m.vrclass:$rs2, ixlenimm:$sew), []>, Sched<[WriteVMovFS, ReadVMovFS]>, RISCVVPseudo; let HasVLOp = 1, HasSEWOp = 1, BaseInstr = VFMV_S_F, Constraints = "$rd = $rs1" in def "PseudoVFMV_S_" # f.FX # "_" # mx : Pseudo<(outs m.vrclass:$rd), (ins m.vrclass:$rs1, f.fprclass:$rs2, AVL:$vl, ixlenimm:$sew), []>, Sched<[WriteVMovSF, ReadVMovSF_V, ReadVMovSF_F]>, RISCVVPseudo; } } } } } // Predicates = [HasVInstructionsAnyF] //===----------------------------------------------------------------------===// // 16.3. Vector Slide Instructions //===----------------------------------------------------------------------===// let Predicates = [HasVInstructions] in { defm PseudoVSLIDEUP : VPseudoVSLD_VX_VI</*slidesUp=*/true, "@earlyclobber $rd">; defm PseudoVSLIDEDOWN : VPseudoVSLD_VX_VI</*slidesUp=*/false>; defm PseudoVSLIDE1UP : VPseudoVSLD1_VX<"@earlyclobber $rd">; defm PseudoVSLIDE1DOWN : VPseudoVSLD1_VX; } // Predicates = [HasVInstructions] let Predicates = [HasVInstructionsAnyF] in { defm PseudoVFSLIDE1UP : VPseudoVSLD1_VF<"@earlyclobber $rd">; defm PseudoVFSLIDE1DOWN : VPseudoVSLD1_VF; } // Predicates = [HasVInstructionsAnyF] //===----------------------------------------------------------------------===// // 16.4. Vector Register Gather Instructions //===----------------------------------------------------------------------===// let Predicates = [HasVInstructions] in { defm PseudoVRGATHER : VPseudoVGTR_VV_VX_VI; defm PseudoVRGATHEREI16 : VPseudoVGTR_EI16_VV; //===----------------------------------------------------------------------===// // 16.5. Vector Compress Instruction //===----------------------------------------------------------------------===// defm PseudoVCOMPRESS : VPseudoVCPR_V; } // Predicates = [HasVInstructions] //===----------------------------------------------------------------------===// // Patterns. //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 11. Vector Integer Arithmetic Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 11.1. Vector Single-Width Integer Add and Subtract //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX_VI<"int_riscv_vadd", "PseudoVADD", AllIntegerVectors>; defm : VPatBinaryV_VV_VX<"int_riscv_vsub", "PseudoVSUB", AllIntegerVectors>; defm : VPatBinaryV_VX_VI<"int_riscv_vrsub", "PseudoVRSUB", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 11.2. Vector Widening Integer Add/Subtract //===----------------------------------------------------------------------===// defm : VPatBinaryW_VV_VX<"int_riscv_vwaddu", "PseudoVWADDU", AllWidenableIntVectors>; defm : VPatBinaryW_VV_VX<"int_riscv_vwsubu", "PseudoVWSUBU", AllWidenableIntVectors>; defm : VPatBinaryW_VV_VX<"int_riscv_vwadd", "PseudoVWADD", AllWidenableIntVectors>; defm : VPatBinaryW_VV_VX<"int_riscv_vwsub", "PseudoVWSUB", AllWidenableIntVectors>; defm : VPatBinaryW_WV_WX<"int_riscv_vwaddu_w", "PseudoVWADDU", AllWidenableIntVectors>; defm : VPatBinaryW_WV_WX<"int_riscv_vwsubu_w", "PseudoVWSUBU", AllWidenableIntVectors>; defm : VPatBinaryW_WV_WX<"int_riscv_vwadd_w", "PseudoVWADD", AllWidenableIntVectors>; defm : VPatBinaryW_WV_WX<"int_riscv_vwsub_w", "PseudoVWSUB", AllWidenableIntVectors>; //===----------------------------------------------------------------------===// // 11.3. Vector Integer Extension //===----------------------------------------------------------------------===// defm : VPatUnaryV_VF<"int_riscv_vzext", "PseudoVZEXT", "VF2", AllFractionableVF2IntVectors>; defm : VPatUnaryV_VF<"int_riscv_vzext", "PseudoVZEXT", "VF4", AllFractionableVF4IntVectors>; defm : VPatUnaryV_VF<"int_riscv_vzext", "PseudoVZEXT", "VF8", AllFractionableVF8IntVectors>; defm : VPatUnaryV_VF<"int_riscv_vsext", "PseudoVSEXT", "VF2", AllFractionableVF2IntVectors>; defm : VPatUnaryV_VF<"int_riscv_vsext", "PseudoVSEXT", "VF4", AllFractionableVF4IntVectors>; defm : VPatUnaryV_VF<"int_riscv_vsext", "PseudoVSEXT", "VF8", AllFractionableVF8IntVectors>; //===----------------------------------------------------------------------===// // 11.4. Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_VM_XM_IM<"int_riscv_vadc", "PseudoVADC">; defm : VPatBinaryM_VM_XM_IM<"int_riscv_vmadc_carry_in", "PseudoVMADC">; defm : VPatBinaryM_V_X_I<"int_riscv_vmadc", "PseudoVMADC">; defm : VPatBinaryV_VM_XM<"int_riscv_vsbc", "PseudoVSBC">; defm : VPatBinaryM_VM_XM<"int_riscv_vmsbc_borrow_in", "PseudoVMSBC">; defm : VPatBinaryM_V_X<"int_riscv_vmsbc", "PseudoVMSBC">; //===----------------------------------------------------------------------===// // 11.5. Vector Bitwise Logical Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX_VI<"int_riscv_vand", "PseudoVAND", AllIntegerVectors>; defm : VPatBinaryV_VV_VX_VI<"int_riscv_vor", "PseudoVOR", AllIntegerVectors>; defm : VPatBinaryV_VV_VX_VI<"int_riscv_vxor", "PseudoVXOR", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 11.6. Vector Single-Width Bit Shift Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX_VI<"int_riscv_vsll", "PseudoVSLL", AllIntegerVectors, uimm5>; defm : VPatBinaryV_VV_VX_VI<"int_riscv_vsrl", "PseudoVSRL", AllIntegerVectors, uimm5>; defm : VPatBinaryV_VV_VX_VI<"int_riscv_vsra", "PseudoVSRA", AllIntegerVectors, uimm5>; foreach vti = AllIntegerVectors in { // Emit shift by 1 as an add since it might be faster. let Predicates = GetVTypePredicates<vti>.Predicates in { def : Pat<(vti.Vector (int_riscv_vsll (vti.Vector vti.RegClass:$merge), (vti.Vector vti.RegClass:$rs1), (XLenVT 1), VLOpFrag)), (!cast<Instruction>("PseudoVADD_VV_"#vti.LMul.MX) vti.RegClass:$merge, vti.RegClass:$rs1, vti.RegClass:$rs1, GPR:$vl, vti.Log2SEW, TU_MU)>; def : Pat<(vti.Vector (int_riscv_vsll_mask (vti.Vector vti.RegClass:$merge), (vti.Vector vti.RegClass:$rs1), (XLenVT 1), (vti.Mask V0), VLOpFrag, (XLenVT timm:$policy))), (!cast<Instruction>("PseudoVADD_VV_"#vti.LMul.MX#"_MASK") vti.RegClass:$merge, vti.RegClass:$rs1, vti.RegClass:$rs1, (vti.Mask V0), GPR:$vl, vti.Log2SEW, (XLenVT timm:$policy))>; } } //===----------------------------------------------------------------------===// // 11.7. Vector Narrowing Integer Right Shift Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_WV_WX_WI<"int_riscv_vnsrl", "PseudoVNSRL", AllWidenableIntVectors>; defm : VPatBinaryV_WV_WX_WI<"int_riscv_vnsra", "PseudoVNSRA", AllWidenableIntVectors>; //===----------------------------------------------------------------------===// // 11.8. Vector Integer Comparison Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryM_VV_VX_VI<"int_riscv_vmseq", "PseudoVMSEQ", AllIntegerVectors>; defm : VPatBinaryM_VV_VX_VI<"int_riscv_vmsne", "PseudoVMSNE", AllIntegerVectors>; defm : VPatBinaryM_VV_VX<"int_riscv_vmsltu", "PseudoVMSLTU", AllIntegerVectors>; defm : VPatBinaryM_VV_VX<"int_riscv_vmslt", "PseudoVMSLT", AllIntegerVectors>; defm : VPatBinaryM_VV_VX_VI<"int_riscv_vmsleu", "PseudoVMSLEU", AllIntegerVectors>; defm : VPatBinaryM_VV_VX_VI<"int_riscv_vmsle", "PseudoVMSLE", AllIntegerVectors>; defm : VPatBinaryM_VX_VI<"int_riscv_vmsgtu", "PseudoVMSGTU", AllIntegerVectors>; defm : VPatBinaryM_VX_VI<"int_riscv_vmsgt", "PseudoVMSGT", AllIntegerVectors>; // Match vmsgt with 2 vector operands to vmslt with the operands swapped. defm : VPatBinarySwappedM_VV<"int_riscv_vmsgtu", "PseudoVMSLTU", AllIntegerVectors>; defm : VPatBinarySwappedM_VV<"int_riscv_vmsgt", "PseudoVMSLT", AllIntegerVectors>; defm : VPatBinarySwappedM_VV<"int_riscv_vmsgeu", "PseudoVMSLEU", AllIntegerVectors>; defm : VPatBinarySwappedM_VV<"int_riscv_vmsge", "PseudoVMSLE", AllIntegerVectors>; // Match vmslt(u).vx intrinsics to vmsle(u).vi if the scalar is -15 to 16 and // non-zero. Zero can be .vx with x0. This avoids the user needing to know that // there is no vmslt(u).vi instruction. Similar for vmsge(u).vx intrinsics // using vmslt(u).vi. defm : VPatCompare_VI<"int_riscv_vmslt", "PseudoVMSLE", simm5_plus1_nonzero>; defm : VPatCompare_VI<"int_riscv_vmsltu", "PseudoVMSLEU", simm5_plus1_nonzero>; // We need to handle 0 for vmsge.vi using vmslt.vi because there is no vmsge.vx. defm : VPatCompare_VI<"int_riscv_vmsge", "PseudoVMSGT", simm5_plus1>; defm : VPatCompare_VI<"int_riscv_vmsgeu", "PseudoVMSGTU", simm5_plus1_nonzero>; //===----------------------------------------------------------------------===// // 11.9. Vector Integer Min/Max Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX<"int_riscv_vminu", "PseudoVMINU", AllIntegerVectors>; defm : VPatBinaryV_VV_VX<"int_riscv_vmin", "PseudoVMIN", AllIntegerVectors>; defm : VPatBinaryV_VV_VX<"int_riscv_vmaxu", "PseudoVMAXU", AllIntegerVectors>; defm : VPatBinaryV_VV_VX<"int_riscv_vmax", "PseudoVMAX", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 11.10. Vector Single-Width Integer Multiply Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX<"int_riscv_vmul", "PseudoVMUL", AllIntegerVectors>; defvar IntegerVectorsExceptI64 = !filter(vti, AllIntegerVectors, !ne(vti.SEW, 64)); defm : VPatBinaryV_VV_VX<"int_riscv_vmulh", "PseudoVMULH", IntegerVectorsExceptI64>; defm : VPatBinaryV_VV_VX<"int_riscv_vmulhu", "PseudoVMULHU", IntegerVectorsExceptI64>; defm : VPatBinaryV_VV_VX<"int_riscv_vmulhsu", "PseudoVMULHSU", IntegerVectorsExceptI64>; // vmulh, vmulhu, vmulhsu are not included for EEW=64 in Zve64*. defvar I64IntegerVectors = !filter(vti, AllIntegerVectors, !eq(vti.SEW, 64)); let Predicates = [HasVInstructionsFullMultiply] in { defm : VPatBinaryV_VV_VX<"int_riscv_vmulh", "PseudoVMULH", I64IntegerVectors>; defm : VPatBinaryV_VV_VX<"int_riscv_vmulhu", "PseudoVMULHU", I64IntegerVectors>; defm : VPatBinaryV_VV_VX<"int_riscv_vmulhsu", "PseudoVMULHSU", I64IntegerVectors>; } //===----------------------------------------------------------------------===// // 11.11. Vector Integer Divide Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX<"int_riscv_vdivu", "PseudoVDIVU", AllIntegerVectors, isSEWAware=1>; defm : VPatBinaryV_VV_VX<"int_riscv_vdiv", "PseudoVDIV", AllIntegerVectors, isSEWAware=1>; defm : VPatBinaryV_VV_VX<"int_riscv_vremu", "PseudoVREMU", AllIntegerVectors, isSEWAware=1>; defm : VPatBinaryV_VV_VX<"int_riscv_vrem", "PseudoVREM", AllIntegerVectors, isSEWAware=1>; //===----------------------------------------------------------------------===// // 11.12. Vector Widening Integer Multiply Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryW_VV_VX<"int_riscv_vwmul", "PseudoVWMUL", AllWidenableIntVectors>; defm : VPatBinaryW_VV_VX<"int_riscv_vwmulu", "PseudoVWMULU", AllWidenableIntVectors>; defm : VPatBinaryW_VV_VX<"int_riscv_vwmulsu", "PseudoVWMULSU", AllWidenableIntVectors>; //===----------------------------------------------------------------------===// // 11.13. Vector Single-Width Integer Multiply-Add Instructions //===----------------------------------------------------------------------===// defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vmadd", "PseudoVMADD", AllIntegerVectors>; defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vnmsub", "PseudoVNMSUB", AllIntegerVectors>; defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vmacc", "PseudoVMACC", AllIntegerVectors>; defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vnmsac", "PseudoVNMSAC", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 11.14. Vector Widening Integer Multiply-Add Instructions //===----------------------------------------------------------------------===// defm : VPatTernaryW_VV_VX<"int_riscv_vwmaccu", "PseudoVWMACCU", AllWidenableIntVectors>; defm : VPatTernaryW_VV_VX<"int_riscv_vwmacc", "PseudoVWMACC", AllWidenableIntVectors>; defm : VPatTernaryW_VV_VX<"int_riscv_vwmaccsu", "PseudoVWMACCSU", AllWidenableIntVectors>; defm : VPatTernaryW_VX<"int_riscv_vwmaccus", "PseudoVWMACCUS", AllWidenableIntVectors>; //===----------------------------------------------------------------------===// // 11.15. Vector Integer Merge Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_VM_XM_IM<"int_riscv_vmerge", "PseudoVMERGE">; //===----------------------------------------------------------------------===// // 11.16. Vector Integer Move Instructions //===----------------------------------------------------------------------===// foreach vti = AllVectors in { let Predicates = GetVTypePredicates<vti>.Predicates in { def : Pat<(vti.Vector (int_riscv_vmv_v_v (vti.Vector vti.RegClass:$passthru), (vti.Vector vti.RegClass:$rs1), VLOpFrag)), (!cast<Instruction>("PseudoVMV_V_V_"#vti.LMul.MX) $passthru, $rs1, GPR:$vl, vti.Log2SEW, TU_MU)>; // vmv.v.x/vmv.v.i are handled in RISCInstrVInstrInfoVVLPatterns.td } } //===----------------------------------------------------------------------===// // 12. Vector Fixed-Point Arithmetic Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 12.1. Vector Single-Width Saturating Add and Subtract //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX_VI<"int_riscv_vsaddu", "PseudoVSADDU", AllIntegerVectors>; defm : VPatBinaryV_VV_VX_VI<"int_riscv_vsadd", "PseudoVSADD", AllIntegerVectors>; defm : VPatBinaryV_VV_VX<"int_riscv_vssubu", "PseudoVSSUBU", AllIntegerVectors>; defm : VPatBinaryV_VV_VX<"int_riscv_vssub", "PseudoVSSUB", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 12.2. Vector Single-Width Averaging Add and Subtract //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX_RM<"int_riscv_vaaddu", "PseudoVAADDU", AllIntegerVectors>; defm : VPatBinaryV_VV_VX_RM<"int_riscv_vasubu", "PseudoVASUBU", AllIntegerVectors>; defm : VPatBinaryV_VV_VX_RM<"int_riscv_vasub", "PseudoVASUB", AllIntegerVectors>; defm : VPatBinaryV_VV_VX_RM<"int_riscv_vaadd", "PseudoVAADD", AllIntegerVectors>; //===----------------------------------------------------------------------===// // 12.3. Vector Single-Width Fractional Multiply with Rounding and Saturation //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX_RM<"int_riscv_vsmul", "PseudoVSMUL", IntegerVectorsExceptI64>; // vsmul.vv and vsmul.vx are not included in EEW=64 in Zve64*. let Predicates = [HasVInstructionsFullMultiply] in defm : VPatBinaryV_VV_VX_RM<"int_riscv_vsmul", "PseudoVSMUL", I64IntegerVectors>; //===----------------------------------------------------------------------===// // 12.4. Vector Single-Width Scaling Shift Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX_VI_RM<"int_riscv_vssrl", "PseudoVSSRL", AllIntegerVectors, uimm5>; defm : VPatBinaryV_VV_VX_VI_RM<"int_riscv_vssra", "PseudoVSSRA", AllIntegerVectors, uimm5>; //===----------------------------------------------------------------------===// // 12.5. Vector Narrowing Fixed-Point Clip Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_WV_WX_WI_RM<"int_riscv_vnclipu", "PseudoVNCLIPU", AllWidenableIntVectors>; defm : VPatBinaryV_WV_WX_WI_RM<"int_riscv_vnclip", "PseudoVNCLIP", AllWidenableIntVectors>; //===----------------------------------------------------------------------===// // 13. Vector Floating-Point Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 13.2. Vector Single-Width Floating-Point Add/Subtract Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX_RM<"int_riscv_vfadd", "PseudoVFADD", AllFloatVectors, isSEWAware = 1>; defm : VPatBinaryV_VV_VX_RM<"int_riscv_vfsub", "PseudoVFSUB", AllFloatVectors, isSEWAware = 1>; defm : VPatBinaryV_VX_RM<"int_riscv_vfrsub", "PseudoVFRSUB", AllFloatVectors, isSEWAware = 1>; //===----------------------------------------------------------------------===// // 13.3. Vector Widening Floating-Point Add/Subtract Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryW_VV_VX_RM<"int_riscv_vfwadd", "PseudoVFWADD", AllWidenableFloatVectors, isSEWAware=1>; defm : VPatBinaryW_VV_VX_RM<"int_riscv_vfwsub", "PseudoVFWSUB", AllWidenableFloatVectors, isSEWAware=1>; defm : VPatBinaryW_WV_WX_RM<"int_riscv_vfwadd_w", "PseudoVFWADD", AllWidenableFloatVectors, isSEWAware=1>; defm : VPatBinaryW_WV_WX_RM<"int_riscv_vfwsub_w", "PseudoVFWSUB", AllWidenableFloatVectors, isSEWAware=1>; //===----------------------------------------------------------------------===// // 13.4. Vector Single-Width Floating-Point Multiply/Divide Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX_RM<"int_riscv_vfmul", "PseudoVFMUL", AllFloatVectors, isSEWAware=1>; defm : VPatBinaryV_VV_VX_RM<"int_riscv_vfdiv", "PseudoVFDIV", AllFloatVectors, isSEWAware=1>; defm : VPatBinaryV_VX_RM<"int_riscv_vfrdiv", "PseudoVFRDIV", AllFloatVectors, isSEWAware=1>; //===----------------------------------------------------------------------===// // 13.5. Vector Widening Floating-Point Multiply //===----------------------------------------------------------------------===// defm : VPatBinaryW_VV_VX_RM<"int_riscv_vfwmul", "PseudoVFWMUL", AllWidenableFloatVectors, isSEWAware=1>; //===----------------------------------------------------------------------===// // 13.6. Vector Single-Width Floating-Point Fused Multiply-Add Instructions //===----------------------------------------------------------------------===// defm : VPatTernaryV_VV_VX_AAXA_RM<"int_riscv_vfmacc", "PseudoVFMACC", AllFloatVectors, isSEWAware=1>; defm : VPatTernaryV_VV_VX_AAXA_RM<"int_riscv_vfnmacc", "PseudoVFNMACC", AllFloatVectors, isSEWAware=1>; defm : VPatTernaryV_VV_VX_AAXA_RM<"int_riscv_vfmsac", "PseudoVFMSAC", AllFloatVectors, isSEWAware=1>; defm : VPatTernaryV_VV_VX_AAXA_RM<"int_riscv_vfnmsac", "PseudoVFNMSAC", AllFloatVectors, isSEWAware=1>; defm : VPatTernaryV_VV_VX_AAXA_RM<"int_riscv_vfmadd", "PseudoVFMADD", AllFloatVectors, isSEWAware=1>; defm : VPatTernaryV_VV_VX_AAXA_RM<"int_riscv_vfnmadd", "PseudoVFNMADD", AllFloatVectors, isSEWAware=1>; defm : VPatTernaryV_VV_VX_AAXA_RM<"int_riscv_vfmsub", "PseudoVFMSUB", AllFloatVectors, isSEWAware=1>; defm : VPatTernaryV_VV_VX_AAXA_RM<"int_riscv_vfnmsub", "PseudoVFNMSUB", AllFloatVectors, isSEWAware=1>; //===----------------------------------------------------------------------===// // 13.7. Vector Widening Floating-Point Fused Multiply-Add Instructions //===----------------------------------------------------------------------===// defm : VPatTernaryW_VV_VX_RM<"int_riscv_vfwmacc", "PseudoVFWMACC", AllWidenableFloatVectors, isSEWAware=1>; defm : VPatTernaryW_VV_VX_RM<"int_riscv_vfwnmacc", "PseudoVFWNMACC", AllWidenableFloatVectors, isSEWAware=1>; defm : VPatTernaryW_VV_VX_RM<"int_riscv_vfwmsac", "PseudoVFWMSAC", AllWidenableFloatVectors, isSEWAware=1>; defm : VPatTernaryW_VV_VX_RM<"int_riscv_vfwnmsac", "PseudoVFWNMSAC", AllWidenableFloatVectors, isSEWAware=1>; let Predicates = [HasStdExtZvfbfwma] in defm : VPatTernaryW_VV_VX_RM<"int_riscv_vfwmaccbf16", "PseudoVFWMACCBF16", AllWidenableBFloatToFloatVectors, isSEWAware=1>; //===----------------------------------------------------------------------===// // 13.8. Vector Floating-Point Square-Root Instruction //===----------------------------------------------------------------------===// defm : VPatUnaryV_V_RM<"int_riscv_vfsqrt", "PseudoVFSQRT", AllFloatVectors, isSEWAware=1>; //===----------------------------------------------------------------------===// // 13.9. Vector Floating-Point Reciprocal Square-Root Estimate Instruction //===----------------------------------------------------------------------===// defm : VPatUnaryV_V<"int_riscv_vfrsqrt7", "PseudoVFRSQRT7", AllFloatVectors, isSEWAware=1>; //===----------------------------------------------------------------------===// // 13.10. Vector Floating-Point Reciprocal Estimate Instruction //===----------------------------------------------------------------------===// defm : VPatUnaryV_V_RM<"int_riscv_vfrec7", "PseudoVFREC7", AllFloatVectors, isSEWAware=1>; //===----------------------------------------------------------------------===// // 13.11. Vector Floating-Point Min/Max Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX<"int_riscv_vfmin", "PseudoVFMIN", AllFloatVectors, isSEWAware=1>; defm : VPatBinaryV_VV_VX<"int_riscv_vfmax", "PseudoVFMAX", AllFloatVectors, isSEWAware=1>; //===----------------------------------------------------------------------===// // 13.12. Vector Floating-Point Sign-Injection Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX<"int_riscv_vfsgnj", "PseudoVFSGNJ", AllFloatVectors, isSEWAware=1>; defm : VPatBinaryV_VV_VX<"int_riscv_vfsgnjn", "PseudoVFSGNJN", AllFloatVectors, isSEWAware=1>; defm : VPatBinaryV_VV_VX<"int_riscv_vfsgnjx", "PseudoVFSGNJX", AllFloatVectors, isSEWAware=1>; //===----------------------------------------------------------------------===// // 13.13. Vector Floating-Point Compare Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryM_VV_VX<"int_riscv_vmfeq", "PseudoVMFEQ", AllFloatVectors>; defm : VPatBinaryM_VV_VX<"int_riscv_vmfle", "PseudoVMFLE", AllFloatVectors>; defm : VPatBinaryM_VV_VX<"int_riscv_vmflt", "PseudoVMFLT", AllFloatVectors>; defm : VPatBinaryM_VV_VX<"int_riscv_vmfne", "PseudoVMFNE", AllFloatVectors>; defm : VPatBinaryM_VX<"int_riscv_vmfgt", "PseudoVMFGT", AllFloatVectors>; defm : VPatBinaryM_VX<"int_riscv_vmfge", "PseudoVMFGE", AllFloatVectors>; defm : VPatBinarySwappedM_VV<"int_riscv_vmfgt", "PseudoVMFLT", AllFloatVectors>; defm : VPatBinarySwappedM_VV<"int_riscv_vmfge", "PseudoVMFLE", AllFloatVectors>; //===----------------------------------------------------------------------===// // 13.14. Vector Floating-Point Classify Instruction //===----------------------------------------------------------------------===// defm : VPatConversionVI_VF<"int_riscv_vfclass", "PseudoVFCLASS">; //===----------------------------------------------------------------------===// // 13.15. Vector Floating-Point Merge Instruction //===----------------------------------------------------------------------===// // We can use vmerge.vvm to support vector-vector vfmerge. // NOTE: Clang previously used int_riscv_vfmerge for vector-vector, but now uses // int_riscv_vmerge. Support both for compatibility. foreach vti = AllFloatVectors in { let Predicates = GetVTypePredicates<vti>.Predicates in { defm : VPatBinaryCarryInTAIL<"int_riscv_vmerge", "PseudoVMERGE", "VVM", vti.Vector, vti.Vector, vti.Vector, vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass, vti.RegClass>; defm : VPatBinaryCarryInTAIL<"int_riscv_vfmerge", "PseudoVMERGE", "VVM", vti.Vector, vti.Vector, vti.Vector, vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass, vti.RegClass>; defm : VPatBinaryCarryInTAIL<"int_riscv_vfmerge", "PseudoVFMERGE", "V"#vti.ScalarSuffix#"M", vti.Vector, vti.Vector, vti.Scalar, vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass, vti.ScalarRegClass>; } } foreach fvti = AllFloatVectors in { defvar instr = !cast<Instruction>("PseudoVMERGE_VIM_"#fvti.LMul.MX); let Predicates = GetVTypePredicates<fvti>.Predicates in def : Pat<(fvti.Vector (int_riscv_vfmerge (fvti.Vector fvti.RegClass:$merge), (fvti.Vector fvti.RegClass:$rs2), (fvti.Scalar (fpimm0)), (fvti.Mask V0), VLOpFrag)), (instr fvti.RegClass:$merge, fvti.RegClass:$rs2, 0, (fvti.Mask V0), GPR:$vl, fvti.Log2SEW)>; } //===----------------------------------------------------------------------===// // 13.17. Single-Width Floating-Point/Integer Type-Convert Instructions //===----------------------------------------------------------------------===// defm : VPatConversionVI_VF_RTZ<"int_riscv_vfcvt_x_f_v", "PseudoVFCVT_RTZ_X_F">; defm : VPatConversionVI_VF_RTZ<"int_riscv_vfcvt_xu_f_v", "PseudoVFCVT_RTZ_XU_F">; defm : VPatConversionVI_VF_RM<"int_riscv_vfcvt_x_f_v", "PseudoVFCVT_X_F">; defm : VPatConversionVI_VF_RM<"int_riscv_vfcvt_xu_f_v", "PseudoVFCVT_XU_F">; defm : VPatConversionVI_VF<"int_riscv_vfcvt_rtz_xu_f_v", "PseudoVFCVT_RTZ_XU_F">; defm : VPatConversionVI_VF<"int_riscv_vfcvt_rtz_x_f_v", "PseudoVFCVT_RTZ_X_F">; defm : VPatConversionVF_VI_RM<"int_riscv_vfcvt_f_x_v", "PseudoVFCVT_F_X", isSEWAware=1>; defm : VPatConversionVF_VI_RM<"int_riscv_vfcvt_f_xu_v", "PseudoVFCVT_F_XU", isSEWAware=1>; //===----------------------------------------------------------------------===// // 13.18. Widening Floating-Point/Integer Type-Convert Instructions //===----------------------------------------------------------------------===// defm : VPatConversionWI_VF_RTZ<"int_riscv_vfwcvt_xu_f_v", "PseudoVFWCVT_RTZ_XU_F">; defm : VPatConversionWI_VF_RTZ<"int_riscv_vfwcvt_x_f_v", "PseudoVFWCVT_RTZ_X_F">; defm : VPatConversionWI_VF_RM<"int_riscv_vfwcvt_xu_f_v", "PseudoVFWCVT_XU_F">; defm : VPatConversionWI_VF_RM<"int_riscv_vfwcvt_x_f_v", "PseudoVFWCVT_X_F">; defm : VPatConversionWI_VF<"int_riscv_vfwcvt_rtz_xu_f_v", "PseudoVFWCVT_RTZ_XU_F">; defm : VPatConversionWI_VF<"int_riscv_vfwcvt_rtz_x_f_v", "PseudoVFWCVT_RTZ_X_F">; defm : VPatConversionWF_VI<"int_riscv_vfwcvt_f_xu_v", "PseudoVFWCVT_F_XU", isSEWAware=1>; defm : VPatConversionWF_VI<"int_riscv_vfwcvt_f_x_v", "PseudoVFWCVT_F_X", isSEWAware=1>; defm : VPatConversionWF_VF<"int_riscv_vfwcvt_f_f_v", "PseudoVFWCVT_F_F", isSEWAware=1>; defm : VPatConversionWF_VF_BF<"int_riscv_vfwcvtbf16_f_f_v", "PseudoVFWCVTBF16_F_F", isSEWAware=1>; //===----------------------------------------------------------------------===// // 13.19. Narrowing Floating-Point/Integer Type-Convert Instructions //===----------------------------------------------------------------------===// defm : VPatConversionVI_WF_RTZ<"int_riscv_vfncvt_xu_f_w", "PseudoVFNCVT_RTZ_XU_F">; defm : VPatConversionVI_WF_RTZ<"int_riscv_vfncvt_x_f_w", "PseudoVFNCVT_RTZ_X_F">; defm : VPatConversionVI_WF_RM<"int_riscv_vfncvt_xu_f_w", "PseudoVFNCVT_XU_F">; defm : VPatConversionVI_WF_RM<"int_riscv_vfncvt_x_f_w", "PseudoVFNCVT_X_F">; defm : VPatConversionVI_WF<"int_riscv_vfncvt_rtz_xu_f_w", "PseudoVFNCVT_RTZ_XU_F">; defm : VPatConversionVI_WF<"int_riscv_vfncvt_rtz_x_f_w", "PseudoVFNCVT_RTZ_X_F">; defm : VPatConversionVF_WI_RM<"int_riscv_vfncvt_f_xu_w", "PseudoVFNCVT_F_XU", isSEWAware=1>; defm : VPatConversionVF_WI_RM<"int_riscv_vfncvt_f_x_w", "PseudoVFNCVT_F_X", isSEWAware=1>; defvar WidenableFloatVectorsExceptF16 = !filter(fvtiToFWti, AllWidenableFloatVectors, !ne(fvtiToFWti.Vti.Scalar, f16)); defm : VPatConversionVF_WF_RM<"int_riscv_vfncvt_f_f_w", "PseudoVFNCVT_F_F", WidenableFloatVectorsExceptF16, isSEWAware=1>; // Define vfncvt.f.f.w for f16 when Zvfhmin is enable. defvar F16WidenableFloatVectors = !filter(fvtiToFWti, AllWidenableFloatVectors, !eq(fvtiToFWti.Vti.Scalar, f16)); let Predicates = [HasVInstructionsF16Minimal] in defm : VPatConversionVF_WF_RM<"int_riscv_vfncvt_f_f_w", "PseudoVFNCVT_F_F", F16WidenableFloatVectors, isSEWAware=1>; defm : VPatConversionVF_WF_BF_RM<"int_riscv_vfncvtbf16_f_f_w", "PseudoVFNCVTBF16_F_F", isSEWAware=1>; defm : VPatConversionVF_WF<"int_riscv_vfncvt_rod_f_f_w", "PseudoVFNCVT_ROD_F_F", isSEWAware=1>; //===----------------------------------------------------------------------===// // 14. Vector Reduction Operations //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 14.1. Vector Single-Width Integer Reduction Instructions //===----------------------------------------------------------------------===// defm : VPatReductionV_VS<"int_riscv_vredsum", "PseudoVREDSUM">; defm : VPatReductionV_VS<"int_riscv_vredand", "PseudoVREDAND">; defm : VPatReductionV_VS<"int_riscv_vredor", "PseudoVREDOR">; defm : VPatReductionV_VS<"int_riscv_vredxor", "PseudoVREDXOR">; defm : VPatReductionV_VS<"int_riscv_vredminu", "PseudoVREDMINU">; defm : VPatReductionV_VS<"int_riscv_vredmin", "PseudoVREDMIN">; defm : VPatReductionV_VS<"int_riscv_vredmaxu", "PseudoVREDMAXU">; defm : VPatReductionV_VS<"int_riscv_vredmax", "PseudoVREDMAX">; //===----------------------------------------------------------------------===// // 14.2. Vector Widening Integer Reduction Instructions //===----------------------------------------------------------------------===// defm : VPatReductionW_VS<"int_riscv_vwredsumu", "PseudoVWREDSUMU">; defm : VPatReductionW_VS<"int_riscv_vwredsum", "PseudoVWREDSUM">; //===----------------------------------------------------------------------===// // 14.3. Vector Single-Width Floating-Point Reduction Instructions //===----------------------------------------------------------------------===// defm : VPatReductionV_VS_RM<"int_riscv_vfredosum", "PseudoVFREDOSUM", IsFloat=1>; defm : VPatReductionV_VS_RM<"int_riscv_vfredusum", "PseudoVFREDUSUM", IsFloat=1>; defm : VPatReductionV_VS<"int_riscv_vfredmin", "PseudoVFREDMIN", IsFloat=1>; defm : VPatReductionV_VS<"int_riscv_vfredmax", "PseudoVFREDMAX", IsFloat=1>; //===----------------------------------------------------------------------===// // 14.4. Vector Widening Floating-Point Reduction Instructions //===----------------------------------------------------------------------===// defm : VPatReductionW_VS_RM<"int_riscv_vfwredusum", "PseudoVFWREDUSUM", IsFloat=1>; defm : VPatReductionW_VS_RM<"int_riscv_vfwredosum", "PseudoVFWREDOSUM", IsFloat=1>; //===----------------------------------------------------------------------===// // 15. Vector Mask Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 15.1 Vector Mask-Register Logical Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryM_MM<"int_riscv_vmand", "PseudoVMAND">; defm : VPatBinaryM_MM<"int_riscv_vmnand", "PseudoVMNAND">; defm : VPatBinaryM_MM<"int_riscv_vmandn", "PseudoVMANDN">; defm : VPatBinaryM_MM<"int_riscv_vmxor", "PseudoVMXOR">; defm : VPatBinaryM_MM<"int_riscv_vmor", "PseudoVMOR">; defm : VPatBinaryM_MM<"int_riscv_vmnor", "PseudoVMNOR">; defm : VPatBinaryM_MM<"int_riscv_vmorn", "PseudoVMORN">; defm : VPatBinaryM_MM<"int_riscv_vmxnor", "PseudoVMXNOR">; // pseudo instructions defm : VPatNullaryM<"int_riscv_vmclr", "PseudoVMCLR">; defm : VPatNullaryM<"int_riscv_vmset", "PseudoVMSET">; //===----------------------------------------------------------------------===// // 15.2. Vector count population in mask vcpop.m //===----------------------------------------------------------------------===// defm : VPatUnaryS_M<"int_riscv_vcpop", "PseudoVCPOP">; //===----------------------------------------------------------------------===// // 15.3. vfirst find-first-set mask bit //===----------------------------------------------------------------------===// defm : VPatUnaryS_M<"int_riscv_vfirst", "PseudoVFIRST">; //===----------------------------------------------------------------------===// // 15.4. vmsbf.m set-before-first mask bit //===----------------------------------------------------------------------===// defm : VPatUnaryM_M<"int_riscv_vmsbf", "PseudoVMSBF">; //===----------------------------------------------------------------------===// // 15.5. vmsif.m set-including-first mask bit //===----------------------------------------------------------------------===// defm : VPatUnaryM_M<"int_riscv_vmsif", "PseudoVMSIF">; //===----------------------------------------------------------------------===// // 15.6. vmsof.m set-only-first mask bit //===----------------------------------------------------------------------===// defm : VPatUnaryM_M<"int_riscv_vmsof", "PseudoVMSOF">; //===----------------------------------------------------------------------===// // 15.8. Vector Iota Instruction //===----------------------------------------------------------------------===// defm : VPatUnaryV_M<"int_riscv_viota", "PseudoVIOTA">; //===----------------------------------------------------------------------===// // 15.9. Vector Element Index Instruction //===----------------------------------------------------------------------===// defm : VPatNullaryV<"int_riscv_vid", "PseudoVID">; //===----------------------------------------------------------------------===// // 16. Vector Permutation Instructions //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 16.1. Integer Scalar Move Instructions //===----------------------------------------------------------------------===// foreach vti = NoGroupIntegerVectors in { let Predicates = GetVTypePredicates<vti>.Predicates in def : Pat<(XLenVT (riscv_vmv_x_s (vti.Vector vti.RegClass:$rs2))), (PseudoVMV_X_S $rs2, vti.Log2SEW)>; // vmv.s.x is handled with a custom node in RISCVInstrInfoVVLPatterns.td } //===----------------------------------------------------------------------===// // 16.3. Vector Slide Instructions //===----------------------------------------------------------------------===// defm : VPatTernaryV_VX_VI<"int_riscv_vslideup", "PseudoVSLIDEUP", AllIntegerVectors, uimm5>; defm : VPatTernaryV_VX_VI<"int_riscv_vslidedown", "PseudoVSLIDEDOWN", AllIntegerVectors, uimm5>; defm : VPatBinaryV_VX<"int_riscv_vslide1up", "PseudoVSLIDE1UP", AllIntegerVectors>; defm : VPatBinaryV_VX<"int_riscv_vslide1down", "PseudoVSLIDE1DOWN", AllIntegerVectors>; defm : VPatTernaryV_VX_VI<"int_riscv_vslideup", "PseudoVSLIDEUP", AllFloatVectors, uimm5>; defm : VPatTernaryV_VX_VI<"int_riscv_vslidedown", "PseudoVSLIDEDOWN", AllFloatVectors, uimm5>; defm : VPatBinaryV_VX<"int_riscv_vfslide1up", "PseudoVFSLIDE1UP", AllFloatVectors>; defm : VPatBinaryV_VX<"int_riscv_vfslide1down", "PseudoVFSLIDE1DOWN", AllFloatVectors>; //===----------------------------------------------------------------------===// // 16.4. Vector Register Gather Instructions //===----------------------------------------------------------------------===// defm : VPatBinaryV_VV_VX_VI_INT<"int_riscv_vrgather", "PseudoVRGATHER", AllIntegerVectors, uimm5>; defm : VPatBinaryV_VV_INT_EEW<"int_riscv_vrgatherei16_vv", "PseudoVRGATHEREI16", eew=16, vtilist=AllIntegerVectors>; defm : VPatBinaryV_VV_VX_VI_INT<"int_riscv_vrgather", "PseudoVRGATHER", AllFloatVectors, uimm5>; defm : VPatBinaryV_VV_INT_EEW<"int_riscv_vrgatherei16_vv", "PseudoVRGATHEREI16", eew=16, vtilist=AllFloatVectors>; //===----------------------------------------------------------------------===// // 16.5. Vector Compress Instruction //===----------------------------------------------------------------------===// defm : VPatUnaryV_V_AnyMask<"int_riscv_vcompress", "PseudoVCOMPRESS", AllIntegerVectors>; defm : VPatUnaryV_V_AnyMask<"int_riscv_vcompress", "PseudoVCOMPRESS", AllFloatVectors>; // Include the non-intrinsic ISel patterns include "RISCVInstrInfoVVLPatterns.td" include "RISCVInstrInfoVSDPatterns.td"