Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp
35294 views
1
//===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include "MCTargetDesc/SystemZInstPrinter.h"
10
#include "MCTargetDesc/SystemZMCAsmInfo.h"
11
#include "MCTargetDesc/SystemZMCTargetDesc.h"
12
#include "SystemZTargetStreamer.h"
13
#include "TargetInfo/SystemZTargetInfo.h"
14
#include "llvm/ADT/STLExtras.h"
15
#include "llvm/ADT/SmallVector.h"
16
#include "llvm/ADT/StringExtras.h"
17
#include "llvm/ADT/StringRef.h"
18
#include "llvm/MC/MCAsmInfo.h"
19
#include "llvm/MC/MCContext.h"
20
#include "llvm/MC/MCExpr.h"
21
#include "llvm/MC/MCInst.h"
22
#include "llvm/MC/MCInstBuilder.h"
23
#include "llvm/MC/MCInstrInfo.h"
24
#include "llvm/MC/MCParser/MCAsmLexer.h"
25
#include "llvm/MC/MCParser/MCAsmParser.h"
26
#include "llvm/MC/MCParser/MCAsmParserExtension.h"
27
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
28
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
29
#include "llvm/MC/MCStreamer.h"
30
#include "llvm/MC/MCSubtargetInfo.h"
31
#include "llvm/MC/TargetRegistry.h"
32
#include "llvm/Support/Casting.h"
33
#include "llvm/Support/ErrorHandling.h"
34
#include "llvm/Support/SMLoc.h"
35
#include <algorithm>
36
#include <cassert>
37
#include <cstddef>
38
#include <cstdint>
39
#include <iterator>
40
#include <memory>
41
#include <string>
42
43
using namespace llvm;
44
45
// Return true if Expr is in the range [MinValue, MaxValue]. If AllowSymbol
46
// is true any MCExpr is accepted (address displacement).
47
static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue,
48
bool AllowSymbol = false) {
49
if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
50
int64_t Value = CE->getValue();
51
return Value >= MinValue && Value <= MaxValue;
52
}
53
return AllowSymbol;
54
}
55
56
namespace {
57
58
enum RegisterKind {
59
GR32Reg,
60
GRH32Reg,
61
GR64Reg,
62
GR128Reg,
63
FP32Reg,
64
FP64Reg,
65
FP128Reg,
66
VR32Reg,
67
VR64Reg,
68
VR128Reg,
69
AR32Reg,
70
CR64Reg,
71
};
72
73
enum MemoryKind {
74
BDMem,
75
BDXMem,
76
BDLMem,
77
BDRMem,
78
BDVMem
79
};
80
81
class SystemZOperand : public MCParsedAsmOperand {
82
private:
83
enum OperandKind {
84
KindInvalid,
85
KindToken,
86
KindReg,
87
KindImm,
88
KindImmTLS,
89
KindMem
90
};
91
92
OperandKind Kind;
93
SMLoc StartLoc, EndLoc;
94
95
// A string of length Length, starting at Data.
96
struct TokenOp {
97
const char *Data;
98
unsigned Length;
99
};
100
101
// LLVM register Num, which has kind Kind. In some ways it might be
102
// easier for this class to have a register bank (general, floating-point
103
// or access) and a raw register number (0-15). This would postpone the
104
// interpretation of the operand to the add*() methods and avoid the need
105
// for context-dependent parsing. However, we do things the current way
106
// because of the virtual getReg() method, which needs to distinguish
107
// between (say) %r0 used as a single register and %r0 used as a pair.
108
// Context-dependent parsing can also give us slightly better error
109
// messages when invalid pairs like %r1 are used.
110
struct RegOp {
111
RegisterKind Kind;
112
unsigned Num;
113
};
114
115
// Base + Disp + Index, where Base and Index are LLVM registers or 0.
116
// MemKind says what type of memory this is and RegKind says what type
117
// the base register has (GR32Reg or GR64Reg). Length is the operand
118
// length for D(L,B)-style operands, otherwise it is null.
119
struct MemOp {
120
unsigned Base : 12;
121
unsigned Index : 12;
122
unsigned MemKind : 4;
123
unsigned RegKind : 4;
124
const MCExpr *Disp;
125
union {
126
const MCExpr *Imm;
127
unsigned Reg;
128
} Length;
129
};
130
131
// Imm is an immediate operand, and Sym is an optional TLS symbol
132
// for use with a __tls_get_offset marker relocation.
133
struct ImmTLSOp {
134
const MCExpr *Imm;
135
const MCExpr *Sym;
136
};
137
138
union {
139
TokenOp Token;
140
RegOp Reg;
141
const MCExpr *Imm;
142
ImmTLSOp ImmTLS;
143
MemOp Mem;
144
};
145
146
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
147
// Add as immediates when possible. Null MCExpr = 0.
148
if (!Expr)
149
Inst.addOperand(MCOperand::createImm(0));
150
else if (auto *CE = dyn_cast<MCConstantExpr>(Expr))
151
Inst.addOperand(MCOperand::createImm(CE->getValue()));
152
else
153
Inst.addOperand(MCOperand::createExpr(Expr));
154
}
155
156
public:
157
SystemZOperand(OperandKind Kind, SMLoc StartLoc, SMLoc EndLoc)
158
: Kind(Kind), StartLoc(StartLoc), EndLoc(EndLoc) {}
159
160
// Create particular kinds of operand.
161
static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc,
162
SMLoc EndLoc) {
163
return std::make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc);
164
}
165
166
static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) {
167
auto Op = std::make_unique<SystemZOperand>(KindToken, Loc, Loc);
168
Op->Token.Data = Str.data();
169
Op->Token.Length = Str.size();
170
return Op;
171
}
172
173
static std::unique_ptr<SystemZOperand>
174
createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
175
auto Op = std::make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc);
176
Op->Reg.Kind = Kind;
177
Op->Reg.Num = Num;
178
return Op;
179
}
180
181
static std::unique_ptr<SystemZOperand>
182
createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) {
183
auto Op = std::make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc);
184
Op->Imm = Expr;
185
return Op;
186
}
187
188
static std::unique_ptr<SystemZOperand>
189
createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base,
190
const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm,
191
unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) {
192
auto Op = std::make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc);
193
Op->Mem.MemKind = MemKind;
194
Op->Mem.RegKind = RegKind;
195
Op->Mem.Base = Base;
196
Op->Mem.Index = Index;
197
Op->Mem.Disp = Disp;
198
if (MemKind == BDLMem)
199
Op->Mem.Length.Imm = LengthImm;
200
if (MemKind == BDRMem)
201
Op->Mem.Length.Reg = LengthReg;
202
return Op;
203
}
204
205
static std::unique_ptr<SystemZOperand>
206
createImmTLS(const MCExpr *Imm, const MCExpr *Sym,
207
SMLoc StartLoc, SMLoc EndLoc) {
208
auto Op = std::make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc);
209
Op->ImmTLS.Imm = Imm;
210
Op->ImmTLS.Sym = Sym;
211
return Op;
212
}
213
214
// Token operands
215
bool isToken() const override {
216
return Kind == KindToken;
217
}
218
StringRef getToken() const {
219
assert(Kind == KindToken && "Not a token");
220
return StringRef(Token.Data, Token.Length);
221
}
222
223
// Register operands.
224
bool isReg() const override {
225
return Kind == KindReg;
226
}
227
bool isReg(RegisterKind RegKind) const {
228
return Kind == KindReg && Reg.Kind == RegKind;
229
}
230
MCRegister getReg() const override {
231
assert(Kind == KindReg && "Not a register");
232
return Reg.Num;
233
}
234
235
// Immediate operands.
236
bool isImm() const override {
237
return Kind == KindImm;
238
}
239
bool isImm(int64_t MinValue, int64_t MaxValue) const {
240
return Kind == KindImm && inRange(Imm, MinValue, MaxValue, true);
241
}
242
const MCExpr *getImm() const {
243
assert(Kind == KindImm && "Not an immediate");
244
return Imm;
245
}
246
247
// Immediate operands with optional TLS symbol.
248
bool isImmTLS() const {
249
return Kind == KindImmTLS;
250
}
251
252
const ImmTLSOp getImmTLS() const {
253
assert(Kind == KindImmTLS && "Not a TLS immediate");
254
return ImmTLS;
255
}
256
257
// Memory operands.
258
bool isMem() const override {
259
return Kind == KindMem;
260
}
261
bool isMem(MemoryKind MemKind) const {
262
return (Kind == KindMem &&
263
(Mem.MemKind == MemKind ||
264
// A BDMem can be treated as a BDXMem in which the index
265
// register field is 0.
266
(Mem.MemKind == BDMem && MemKind == BDXMem)));
267
}
268
bool isMem(MemoryKind MemKind, RegisterKind RegKind) const {
269
return isMem(MemKind) && Mem.RegKind == RegKind;
270
}
271
bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const {
272
return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff, true);
273
}
274
bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const {
275
return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287, true);
276
}
277
bool isMemDisp12Len4(RegisterKind RegKind) const {
278
return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10);
279
}
280
bool isMemDisp12Len8(RegisterKind RegKind) const {
281
return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100);
282
}
283
284
const MemOp& getMem() const {
285
assert(Kind == KindMem && "Not a Mem operand");
286
return Mem;
287
}
288
289
// Override MCParsedAsmOperand.
290
SMLoc getStartLoc() const override { return StartLoc; }
291
SMLoc getEndLoc() const override { return EndLoc; }
292
void print(raw_ostream &OS) const override;
293
294
/// getLocRange - Get the range between the first and last token of this
295
/// operand.
296
SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
297
298
// Used by the TableGen code to add particular types of operand
299
// to an instruction.
300
void addRegOperands(MCInst &Inst, unsigned N) const {
301
assert(N == 1 && "Invalid number of operands");
302
Inst.addOperand(MCOperand::createReg(getReg()));
303
}
304
void addImmOperands(MCInst &Inst, unsigned N) const {
305
assert(N == 1 && "Invalid number of operands");
306
addExpr(Inst, getImm());
307
}
308
void addBDAddrOperands(MCInst &Inst, unsigned N) const {
309
assert(N == 2 && "Invalid number of operands");
310
assert(isMem(BDMem) && "Invalid operand type");
311
Inst.addOperand(MCOperand::createReg(Mem.Base));
312
addExpr(Inst, Mem.Disp);
313
}
314
void addBDXAddrOperands(MCInst &Inst, unsigned N) const {
315
assert(N == 3 && "Invalid number of operands");
316
assert(isMem(BDXMem) && "Invalid operand type");
317
Inst.addOperand(MCOperand::createReg(Mem.Base));
318
addExpr(Inst, Mem.Disp);
319
Inst.addOperand(MCOperand::createReg(Mem.Index));
320
}
321
void addBDLAddrOperands(MCInst &Inst, unsigned N) const {
322
assert(N == 3 && "Invalid number of operands");
323
assert(isMem(BDLMem) && "Invalid operand type");
324
Inst.addOperand(MCOperand::createReg(Mem.Base));
325
addExpr(Inst, Mem.Disp);
326
addExpr(Inst, Mem.Length.Imm);
327
}
328
void addBDRAddrOperands(MCInst &Inst, unsigned N) const {
329
assert(N == 3 && "Invalid number of operands");
330
assert(isMem(BDRMem) && "Invalid operand type");
331
Inst.addOperand(MCOperand::createReg(Mem.Base));
332
addExpr(Inst, Mem.Disp);
333
Inst.addOperand(MCOperand::createReg(Mem.Length.Reg));
334
}
335
void addBDVAddrOperands(MCInst &Inst, unsigned N) const {
336
assert(N == 3 && "Invalid number of operands");
337
assert(isMem(BDVMem) && "Invalid operand type");
338
Inst.addOperand(MCOperand::createReg(Mem.Base));
339
addExpr(Inst, Mem.Disp);
340
Inst.addOperand(MCOperand::createReg(Mem.Index));
341
}
342
void addImmTLSOperands(MCInst &Inst, unsigned N) const {
343
assert(N == 2 && "Invalid number of operands");
344
assert(Kind == KindImmTLS && "Invalid operand type");
345
addExpr(Inst, ImmTLS.Imm);
346
if (ImmTLS.Sym)
347
addExpr(Inst, ImmTLS.Sym);
348
}
349
350
// Used by the TableGen code to check for particular operand types.
351
bool isGR32() const { return isReg(GR32Reg); }
352
bool isGRH32() const { return isReg(GRH32Reg); }
353
bool isGRX32() const { return false; }
354
bool isGR64() const { return isReg(GR64Reg); }
355
bool isGR128() const { return isReg(GR128Reg); }
356
bool isADDR32() const { return isReg(GR32Reg); }
357
bool isADDR64() const { return isReg(GR64Reg); }
358
bool isADDR128() const { return false; }
359
bool isFP32() const { return isReg(FP32Reg); }
360
bool isFP64() const { return isReg(FP64Reg); }
361
bool isFP128() const { return isReg(FP128Reg); }
362
bool isVR32() const { return isReg(VR32Reg); }
363
bool isVR64() const { return isReg(VR64Reg); }
364
bool isVF128() const { return false; }
365
bool isVR128() const { return isReg(VR128Reg); }
366
bool isAR32() const { return isReg(AR32Reg); }
367
bool isCR64() const { return isReg(CR64Reg); }
368
bool isAnyReg() const { return (isReg() || isImm(0, 15)); }
369
bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, GR32Reg); }
370
bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, GR32Reg); }
371
bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, GR64Reg); }
372
bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, GR64Reg); }
373
bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, GR64Reg); }
374
bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, GR64Reg); }
375
bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(GR64Reg); }
376
bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(GR64Reg); }
377
bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, GR64Reg); }
378
bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, GR64Reg); }
379
bool isU1Imm() const { return isImm(0, 1); }
380
bool isU2Imm() const { return isImm(0, 3); }
381
bool isU3Imm() const { return isImm(0, 7); }
382
bool isU4Imm() const { return isImm(0, 15); }
383
bool isU8Imm() const { return isImm(0, 255); }
384
bool isS8Imm() const { return isImm(-128, 127); }
385
bool isU12Imm() const { return isImm(0, 4095); }
386
bool isU16Imm() const { return isImm(0, 65535); }
387
bool isS16Imm() const { return isImm(-32768, 32767); }
388
bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); }
389
bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); }
390
bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); }
391
};
392
393
class SystemZAsmParser : public MCTargetAsmParser {
394
#define GET_ASSEMBLER_HEADER
395
#include "SystemZGenAsmMatcher.inc"
396
397
private:
398
MCAsmParser &Parser;
399
enum RegisterGroup {
400
RegGR,
401
RegFP,
402
RegV,
403
RegAR,
404
RegCR
405
};
406
struct Register {
407
RegisterGroup Group;
408
unsigned Num;
409
SMLoc StartLoc, EndLoc;
410
};
411
412
SystemZTargetStreamer &getTargetStreamer() {
413
assert(getParser().getStreamer().getTargetStreamer() &&
414
"do not have a target streamer");
415
MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
416
return static_cast<SystemZTargetStreamer &>(TS);
417
}
418
419
bool parseRegister(Register &Reg, bool RestoreOnFailure = false);
420
421
bool parseIntegerRegister(Register &Reg, RegisterGroup Group);
422
423
ParseStatus parseRegister(OperandVector &Operands, RegisterKind Kind);
424
425
ParseStatus parseAnyRegister(OperandVector &Operands);
426
427
bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2,
428
Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length,
429
bool HasLength = false, bool HasVectorIndex = false);
430
bool parseAddressRegister(Register &Reg);
431
432
bool ParseDirectiveInsn(SMLoc L);
433
bool ParseDirectiveMachine(SMLoc L);
434
bool ParseGNUAttribute(SMLoc L);
435
436
ParseStatus parseAddress(OperandVector &Operands, MemoryKind MemKind,
437
RegisterKind RegKind);
438
439
ParseStatus parsePCRel(OperandVector &Operands, int64_t MinVal,
440
int64_t MaxVal, bool AllowTLS);
441
442
bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
443
444
// Both the hlasm and att variants still rely on the basic gnu asm
445
// format with respect to inputs, clobbers, outputs etc.
446
//
447
// However, calling the overriden getAssemblerDialect() method in
448
// AsmParser is problematic. It either returns the AssemblerDialect field
449
// in the MCAsmInfo instance if the AssemblerDialect field in AsmParser is
450
// unset, otherwise it returns the private AssemblerDialect field in
451
// AsmParser.
452
//
453
// The problematic part is because, we forcibly set the inline asm dialect
454
// in the AsmParser instance in AsmPrinterInlineAsm.cpp. Soo any query
455
// to the overriden getAssemblerDialect function in AsmParser.cpp, will
456
// not return the assembler dialect set in the respective MCAsmInfo instance.
457
//
458
// For this purpose, we explicitly query the SystemZMCAsmInfo instance
459
// here, to get the "correct" assembler dialect, and use it in various
460
// functions.
461
unsigned getMAIAssemblerDialect() {
462
return Parser.getContext().getAsmInfo()->getAssemblerDialect();
463
}
464
465
// An alphabetic character in HLASM is a letter from 'A' through 'Z',
466
// or from 'a' through 'z', or '$', '_','#', or '@'.
467
inline bool isHLASMAlpha(char C) {
468
return isAlpha(C) || llvm::is_contained("_@#$", C);
469
}
470
471
// A digit in HLASM is a number from 0 to 9.
472
inline bool isHLASMAlnum(char C) { return isHLASMAlpha(C) || isDigit(C); }
473
474
// Are we parsing using the AD_HLASM dialect?
475
inline bool isParsingHLASM() { return getMAIAssemblerDialect() == AD_HLASM; }
476
477
// Are we parsing using the AD_ATT dialect?
478
inline bool isParsingATT() { return getMAIAssemblerDialect() == AD_ATT; }
479
480
public:
481
SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser,
482
const MCInstrInfo &MII,
483
const MCTargetOptions &Options)
484
: MCTargetAsmParser(Options, sti, MII), Parser(parser) {
485
MCAsmParserExtension::Initialize(Parser);
486
487
// Alias the .word directive to .short.
488
parser.addAliasForDirective(".word", ".short");
489
490
// Initialize the set of available features.
491
setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
492
}
493
494
// Override MCTargetAsmParser.
495
ParseStatus parseDirective(AsmToken DirectiveID) override;
496
bool parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override;
497
bool ParseRegister(MCRegister &RegNo, SMLoc &StartLoc, SMLoc &EndLoc,
498
bool RestoreOnFailure);
499
ParseStatus tryParseRegister(MCRegister &Reg, SMLoc &StartLoc,
500
SMLoc &EndLoc) override;
501
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
502
SMLoc NameLoc, OperandVector &Operands) override;
503
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
504
OperandVector &Operands, MCStreamer &Out,
505
uint64_t &ErrorInfo,
506
bool MatchingInlineAsm) override;
507
bool isLabel(AsmToken &Token) override;
508
509
// Used by the TableGen code to parse particular operand types.
510
ParseStatus parseGR32(OperandVector &Operands) {
511
return parseRegister(Operands, GR32Reg);
512
}
513
ParseStatus parseGRH32(OperandVector &Operands) {
514
return parseRegister(Operands, GRH32Reg);
515
}
516
ParseStatus parseGRX32(OperandVector &Operands) {
517
llvm_unreachable("GRX32 should only be used for pseudo instructions");
518
}
519
ParseStatus parseGR64(OperandVector &Operands) {
520
return parseRegister(Operands, GR64Reg);
521
}
522
ParseStatus parseGR128(OperandVector &Operands) {
523
return parseRegister(Operands, GR128Reg);
524
}
525
ParseStatus parseADDR32(OperandVector &Operands) {
526
// For the AsmParser, we will accept %r0 for ADDR32 as well.
527
return parseRegister(Operands, GR32Reg);
528
}
529
ParseStatus parseADDR64(OperandVector &Operands) {
530
// For the AsmParser, we will accept %r0 for ADDR64 as well.
531
return parseRegister(Operands, GR64Reg);
532
}
533
ParseStatus parseADDR128(OperandVector &Operands) {
534
llvm_unreachable("Shouldn't be used as an operand");
535
}
536
ParseStatus parseFP32(OperandVector &Operands) {
537
return parseRegister(Operands, FP32Reg);
538
}
539
ParseStatus parseFP64(OperandVector &Operands) {
540
return parseRegister(Operands, FP64Reg);
541
}
542
ParseStatus parseFP128(OperandVector &Operands) {
543
return parseRegister(Operands, FP128Reg);
544
}
545
ParseStatus parseVR32(OperandVector &Operands) {
546
return parseRegister(Operands, VR32Reg);
547
}
548
ParseStatus parseVR64(OperandVector &Operands) {
549
return parseRegister(Operands, VR64Reg);
550
}
551
ParseStatus parseVF128(OperandVector &Operands) {
552
llvm_unreachable("Shouldn't be used as an operand");
553
}
554
ParseStatus parseVR128(OperandVector &Operands) {
555
return parseRegister(Operands, VR128Reg);
556
}
557
ParseStatus parseAR32(OperandVector &Operands) {
558
return parseRegister(Operands, AR32Reg);
559
}
560
ParseStatus parseCR64(OperandVector &Operands) {
561
return parseRegister(Operands, CR64Reg);
562
}
563
ParseStatus parseAnyReg(OperandVector &Operands) {
564
return parseAnyRegister(Operands);
565
}
566
ParseStatus parseBDAddr32(OperandVector &Operands) {
567
return parseAddress(Operands, BDMem, GR32Reg);
568
}
569
ParseStatus parseBDAddr64(OperandVector &Operands) {
570
return parseAddress(Operands, BDMem, GR64Reg);
571
}
572
ParseStatus parseBDXAddr64(OperandVector &Operands) {
573
return parseAddress(Operands, BDXMem, GR64Reg);
574
}
575
ParseStatus parseBDLAddr64(OperandVector &Operands) {
576
return parseAddress(Operands, BDLMem, GR64Reg);
577
}
578
ParseStatus parseBDRAddr64(OperandVector &Operands) {
579
return parseAddress(Operands, BDRMem, GR64Reg);
580
}
581
ParseStatus parseBDVAddr64(OperandVector &Operands) {
582
return parseAddress(Operands, BDVMem, GR64Reg);
583
}
584
ParseStatus parsePCRel12(OperandVector &Operands) {
585
return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false);
586
}
587
ParseStatus parsePCRel16(OperandVector &Operands) {
588
return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false);
589
}
590
ParseStatus parsePCRel24(OperandVector &Operands) {
591
return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false);
592
}
593
ParseStatus parsePCRel32(OperandVector &Operands) {
594
return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false);
595
}
596
ParseStatus parsePCRelTLS16(OperandVector &Operands) {
597
return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true);
598
}
599
ParseStatus parsePCRelTLS32(OperandVector &Operands) {
600
return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true);
601
}
602
};
603
604
} // end anonymous namespace
605
606
#define GET_REGISTER_MATCHER
607
#define GET_SUBTARGET_FEATURE_NAME
608
#define GET_MATCHER_IMPLEMENTATION
609
#define GET_MNEMONIC_SPELL_CHECKER
610
#include "SystemZGenAsmMatcher.inc"
611
612
// Used for the .insn directives; contains information needed to parse the
613
// operands in the directive.
614
struct InsnMatchEntry {
615
StringRef Format;
616
uint64_t Opcode;
617
int32_t NumOperands;
618
MatchClassKind OperandKinds[7];
619
};
620
621
// For equal_range comparison.
622
struct CompareInsn {
623
bool operator() (const InsnMatchEntry &LHS, StringRef RHS) {
624
return LHS.Format < RHS;
625
}
626
bool operator() (StringRef LHS, const InsnMatchEntry &RHS) {
627
return LHS < RHS.Format;
628
}
629
bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) {
630
return LHS.Format < RHS.Format;
631
}
632
};
633
634
// Table initializing information for parsing the .insn directive.
635
static struct InsnMatchEntry InsnMatchTable[] = {
636
/* Format, Opcode, NumOperands, OperandKinds */
637
{ "e", SystemZ::InsnE, 1,
638
{ MCK_U16Imm } },
639
{ "ri", SystemZ::InsnRI, 3,
640
{ MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } },
641
{ "rie", SystemZ::InsnRIE, 4,
642
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
643
{ "ril", SystemZ::InsnRIL, 3,
644
{ MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } },
645
{ "rilu", SystemZ::InsnRILU, 3,
646
{ MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } },
647
{ "ris", SystemZ::InsnRIS, 5,
648
{ MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } },
649
{ "rr", SystemZ::InsnRR, 3,
650
{ MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } },
651
{ "rre", SystemZ::InsnRRE, 3,
652
{ MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } },
653
{ "rrf", SystemZ::InsnRRF, 5,
654
{ MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } },
655
{ "rrs", SystemZ::InsnRRS, 5,
656
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } },
657
{ "rs", SystemZ::InsnRS, 4,
658
{ MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
659
{ "rse", SystemZ::InsnRSE, 4,
660
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
661
{ "rsi", SystemZ::InsnRSI, 4,
662
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
663
{ "rsy", SystemZ::InsnRSY, 4,
664
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } },
665
{ "rx", SystemZ::InsnRX, 3,
666
{ MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
667
{ "rxe", SystemZ::InsnRXE, 3,
668
{ MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
669
{ "rxf", SystemZ::InsnRXF, 4,
670
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
671
{ "rxy", SystemZ::InsnRXY, 3,
672
{ MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } },
673
{ "s", SystemZ::InsnS, 2,
674
{ MCK_U32Imm, MCK_BDAddr64Disp12 } },
675
{ "si", SystemZ::InsnSI, 3,
676
{ MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } },
677
{ "sil", SystemZ::InsnSIL, 3,
678
{ MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } },
679
{ "siy", SystemZ::InsnSIY, 3,
680
{ MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } },
681
{ "ss", SystemZ::InsnSS, 4,
682
{ MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
683
{ "sse", SystemZ::InsnSSE, 3,
684
{ MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } },
685
{ "ssf", SystemZ::InsnSSF, 4,
686
{ MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
687
{ "vri", SystemZ::InsnVRI, 6,
688
{ MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_U12Imm, MCK_U4Imm, MCK_U4Imm } },
689
{ "vrr", SystemZ::InsnVRR, 7,
690
{ MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_VR128, MCK_U4Imm, MCK_U4Imm,
691
MCK_U4Imm } },
692
{ "vrs", SystemZ::InsnVRS, 5,
693
{ MCK_U48Imm, MCK_AnyReg, MCK_VR128, MCK_BDAddr64Disp12, MCK_U4Imm } },
694
{ "vrv", SystemZ::InsnVRV, 4,
695
{ MCK_U48Imm, MCK_VR128, MCK_BDVAddr64Disp12, MCK_U4Imm } },
696
{ "vrx", SystemZ::InsnVRX, 4,
697
{ MCK_U48Imm, MCK_VR128, MCK_BDXAddr64Disp12, MCK_U4Imm } },
698
{ "vsi", SystemZ::InsnVSI, 4,
699
{ MCK_U48Imm, MCK_VR128, MCK_BDAddr64Disp12, MCK_U8Imm } }
700
};
701
702
static void printMCExpr(const MCExpr *E, raw_ostream &OS) {
703
if (!E)
704
return;
705
if (auto *CE = dyn_cast<MCConstantExpr>(E))
706
OS << *CE;
707
else if (auto *UE = dyn_cast<MCUnaryExpr>(E))
708
OS << *UE;
709
else if (auto *BE = dyn_cast<MCBinaryExpr>(E))
710
OS << *BE;
711
else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E))
712
OS << *SRE;
713
else
714
OS << *E;
715
}
716
717
void SystemZOperand::print(raw_ostream &OS) const {
718
switch (Kind) {
719
case KindToken:
720
OS << "Token:" << getToken();
721
break;
722
case KindReg:
723
OS << "Reg:" << SystemZInstPrinter::getRegisterName(getReg());
724
break;
725
case KindImm:
726
OS << "Imm:";
727
printMCExpr(getImm(), OS);
728
break;
729
case KindImmTLS:
730
OS << "ImmTLS:";
731
printMCExpr(getImmTLS().Imm, OS);
732
if (getImmTLS().Sym) {
733
OS << ", ";
734
printMCExpr(getImmTLS().Sym, OS);
735
}
736
break;
737
case KindMem: {
738
const MemOp &Op = getMem();
739
OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp);
740
if (Op.Base) {
741
OS << "(";
742
if (Op.MemKind == BDLMem)
743
OS << *cast<MCConstantExpr>(Op.Length.Imm) << ",";
744
else if (Op.MemKind == BDRMem)
745
OS << SystemZInstPrinter::getRegisterName(Op.Length.Reg) << ",";
746
if (Op.Index)
747
OS << SystemZInstPrinter::getRegisterName(Op.Index) << ",";
748
OS << SystemZInstPrinter::getRegisterName(Op.Base);
749
OS << ")";
750
}
751
break;
752
}
753
case KindInvalid:
754
break;
755
}
756
}
757
758
// Parse one register of the form %<prefix><number>.
759
bool SystemZAsmParser::parseRegister(Register &Reg, bool RestoreOnFailure) {
760
Reg.StartLoc = Parser.getTok().getLoc();
761
762
// Eat the % prefix.
763
if (Parser.getTok().isNot(AsmToken::Percent))
764
return Error(Parser.getTok().getLoc(), "register expected");
765
const AsmToken &PercentTok = Parser.getTok();
766
Parser.Lex();
767
768
// Expect a register name.
769
if (Parser.getTok().isNot(AsmToken::Identifier)) {
770
if (RestoreOnFailure)
771
getLexer().UnLex(PercentTok);
772
return Error(Reg.StartLoc, "invalid register");
773
}
774
775
// Check that there's a prefix.
776
StringRef Name = Parser.getTok().getString();
777
if (Name.size() < 2) {
778
if (RestoreOnFailure)
779
getLexer().UnLex(PercentTok);
780
return Error(Reg.StartLoc, "invalid register");
781
}
782
char Prefix = Name[0];
783
784
// Treat the rest of the register name as a register number.
785
if (Name.substr(1).getAsInteger(10, Reg.Num)) {
786
if (RestoreOnFailure)
787
getLexer().UnLex(PercentTok);
788
return Error(Reg.StartLoc, "invalid register");
789
}
790
791
// Look for valid combinations of prefix and number.
792
if (Prefix == 'r' && Reg.Num < 16)
793
Reg.Group = RegGR;
794
else if (Prefix == 'f' && Reg.Num < 16)
795
Reg.Group = RegFP;
796
else if (Prefix == 'v' && Reg.Num < 32)
797
Reg.Group = RegV;
798
else if (Prefix == 'a' && Reg.Num < 16)
799
Reg.Group = RegAR;
800
else if (Prefix == 'c' && Reg.Num < 16)
801
Reg.Group = RegCR;
802
else {
803
if (RestoreOnFailure)
804
getLexer().UnLex(PercentTok);
805
return Error(Reg.StartLoc, "invalid register");
806
}
807
808
Reg.EndLoc = Parser.getTok().getLoc();
809
Parser.Lex();
810
return false;
811
}
812
813
// Parse a register of kind Kind and add it to Operands.
814
ParseStatus SystemZAsmParser::parseRegister(OperandVector &Operands,
815
RegisterKind Kind) {
816
Register Reg;
817
RegisterGroup Group;
818
switch (Kind) {
819
case GR32Reg:
820
case GRH32Reg:
821
case GR64Reg:
822
case GR128Reg:
823
Group = RegGR;
824
break;
825
case FP32Reg:
826
case FP64Reg:
827
case FP128Reg:
828
Group = RegFP;
829
break;
830
case VR32Reg:
831
case VR64Reg:
832
case VR128Reg:
833
Group = RegV;
834
break;
835
case AR32Reg:
836
Group = RegAR;
837
break;
838
case CR64Reg:
839
Group = RegCR;
840
break;
841
}
842
843
// Handle register names of the form %<prefix><number>
844
if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) {
845
if (parseRegister(Reg))
846
return ParseStatus::Failure;
847
848
// Check the parsed register group "Reg.Group" with the expected "Group"
849
// Have to error out if user specified wrong prefix.
850
switch (Group) {
851
case RegGR:
852
case RegFP:
853
case RegAR:
854
case RegCR:
855
if (Group != Reg.Group)
856
return Error(Reg.StartLoc, "invalid operand for instruction");
857
break;
858
case RegV:
859
if (Reg.Group != RegV && Reg.Group != RegFP)
860
return Error(Reg.StartLoc, "invalid operand for instruction");
861
break;
862
}
863
} else if (Parser.getTok().is(AsmToken::Integer)) {
864
if (parseIntegerRegister(Reg, Group))
865
return ParseStatus::Failure;
866
}
867
// Otherwise we didn't match a register operand.
868
else
869
return ParseStatus::NoMatch;
870
871
// Determine the LLVM register number according to Kind.
872
const unsigned *Regs;
873
switch (Kind) {
874
case GR32Reg: Regs = SystemZMC::GR32Regs; break;
875
case GRH32Reg: Regs = SystemZMC::GRH32Regs; break;
876
case GR64Reg: Regs = SystemZMC::GR64Regs; break;
877
case GR128Reg: Regs = SystemZMC::GR128Regs; break;
878
case FP32Reg: Regs = SystemZMC::FP32Regs; break;
879
case FP64Reg: Regs = SystemZMC::FP64Regs; break;
880
case FP128Reg: Regs = SystemZMC::FP128Regs; break;
881
case VR32Reg: Regs = SystemZMC::VR32Regs; break;
882
case VR64Reg: Regs = SystemZMC::VR64Regs; break;
883
case VR128Reg: Regs = SystemZMC::VR128Regs; break;
884
case AR32Reg: Regs = SystemZMC::AR32Regs; break;
885
case CR64Reg: Regs = SystemZMC::CR64Regs; break;
886
}
887
if (Regs[Reg.Num] == 0)
888
return Error(Reg.StartLoc, "invalid register pair");
889
890
Operands.push_back(
891
SystemZOperand::createReg(Kind, Regs[Reg.Num], Reg.StartLoc, Reg.EndLoc));
892
return ParseStatus::Success;
893
}
894
895
// Parse any type of register (including integers) and add it to Operands.
896
ParseStatus SystemZAsmParser::parseAnyRegister(OperandVector &Operands) {
897
SMLoc StartLoc = Parser.getTok().getLoc();
898
899
// Handle integer values.
900
if (Parser.getTok().is(AsmToken::Integer)) {
901
const MCExpr *Register;
902
if (Parser.parseExpression(Register))
903
return ParseStatus::Failure;
904
905
if (auto *CE = dyn_cast<MCConstantExpr>(Register)) {
906
int64_t Value = CE->getValue();
907
if (Value < 0 || Value > 15)
908
return Error(StartLoc, "invalid register");
909
}
910
911
SMLoc EndLoc =
912
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
913
914
Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc));
915
}
916
else {
917
if (isParsingHLASM())
918
return ParseStatus::NoMatch;
919
920
Register Reg;
921
if (parseRegister(Reg))
922
return ParseStatus::Failure;
923
924
if (Reg.Num > 15)
925
return Error(StartLoc, "invalid register");
926
927
// Map to the correct register kind.
928
RegisterKind Kind;
929
unsigned RegNo;
930
if (Reg.Group == RegGR) {
931
Kind = GR64Reg;
932
RegNo = SystemZMC::GR64Regs[Reg.Num];
933
}
934
else if (Reg.Group == RegFP) {
935
Kind = FP64Reg;
936
RegNo = SystemZMC::FP64Regs[Reg.Num];
937
}
938
else if (Reg.Group == RegV) {
939
Kind = VR128Reg;
940
RegNo = SystemZMC::VR128Regs[Reg.Num];
941
}
942
else if (Reg.Group == RegAR) {
943
Kind = AR32Reg;
944
RegNo = SystemZMC::AR32Regs[Reg.Num];
945
}
946
else if (Reg.Group == RegCR) {
947
Kind = CR64Reg;
948
RegNo = SystemZMC::CR64Regs[Reg.Num];
949
}
950
else {
951
return ParseStatus::Failure;
952
}
953
954
Operands.push_back(SystemZOperand::createReg(Kind, RegNo,
955
Reg.StartLoc, Reg.EndLoc));
956
}
957
return ParseStatus::Success;
958
}
959
960
bool SystemZAsmParser::parseIntegerRegister(Register &Reg,
961
RegisterGroup Group) {
962
Reg.StartLoc = Parser.getTok().getLoc();
963
// We have an integer token
964
const MCExpr *Register;
965
if (Parser.parseExpression(Register))
966
return true;
967
968
const auto *CE = dyn_cast<MCConstantExpr>(Register);
969
if (!CE)
970
return true;
971
972
int64_t MaxRegNum = (Group == RegV) ? 31 : 15;
973
int64_t Value = CE->getValue();
974
if (Value < 0 || Value > MaxRegNum) {
975
Error(Parser.getTok().getLoc(), "invalid register");
976
return true;
977
}
978
979
// Assign the Register Number
980
Reg.Num = (unsigned)Value;
981
Reg.Group = Group;
982
Reg.EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
983
984
// At this point, successfully parsed an integer register.
985
return false;
986
}
987
988
// Parse a memory operand into Reg1, Reg2, Disp, and Length.
989
bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1,
990
bool &HaveReg2, Register &Reg2,
991
const MCExpr *&Disp, const MCExpr *&Length,
992
bool HasLength, bool HasVectorIndex) {
993
// Parse the displacement, which must always be present.
994
if (getParser().parseExpression(Disp))
995
return true;
996
997
// Parse the optional base and index.
998
HaveReg1 = false;
999
HaveReg2 = false;
1000
Length = nullptr;
1001
1002
// If we have a scenario as below:
1003
// vgef %v0, 0(0), 0
1004
// This is an example of a "BDVMem" instruction type.
1005
//
1006
// So when we parse this as an integer register, the register group
1007
// needs to be tied to "RegV". Usually when the prefix is passed in
1008
// as %<prefix><reg-number> its easy to check which group it should belong to
1009
// However, if we're passing in just the integer there's no real way to
1010
// "check" what register group it should belong to.
1011
//
1012
// When the user passes in the register as an integer, the user assumes that
1013
// the compiler is responsible for substituting it as the right kind of
1014
// register. Whereas, when the user specifies a "prefix", the onus is on
1015
// the user to make sure they pass in the right kind of register.
1016
//
1017
// The restriction only applies to the first Register (i.e. Reg1). Reg2 is
1018
// always a general register. Reg1 should be of group RegV if "HasVectorIndex"
1019
// (i.e. insn is of type BDVMem) is true.
1020
RegisterGroup RegGroup = HasVectorIndex ? RegV : RegGR;
1021
1022
if (getLexer().is(AsmToken::LParen)) {
1023
Parser.Lex();
1024
1025
if (isParsingATT() && getLexer().is(AsmToken::Percent)) {
1026
// Parse the first register.
1027
HaveReg1 = true;
1028
if (parseRegister(Reg1))
1029
return true;
1030
}
1031
// So if we have an integer as the first token in ([tok1], ..), it could:
1032
// 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of
1033
// instructions)
1034
// 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions)
1035
else if (getLexer().is(AsmToken::Integer)) {
1036
if (HasLength) {
1037
// Instruction has a "Length" field, safe to parse the first token as
1038
// the "Length" field
1039
if (getParser().parseExpression(Length))
1040
return true;
1041
} else {
1042
// Otherwise, if the instruction has no "Length" field, parse the
1043
// token as a "Register". We don't have to worry about whether the
1044
// instruction is invalid here, because the caller will take care of
1045
// error reporting.
1046
HaveReg1 = true;
1047
if (parseIntegerRegister(Reg1, RegGroup))
1048
return true;
1049
}
1050
} else {
1051
// If its not an integer or a percent token, then if the instruction
1052
// is reported to have a "Length" then, parse it as "Length".
1053
if (HasLength) {
1054
if (getParser().parseExpression(Length))
1055
return true;
1056
}
1057
}
1058
1059
// Check whether there's a second register.
1060
if (getLexer().is(AsmToken::Comma)) {
1061
Parser.Lex();
1062
HaveReg2 = true;
1063
1064
if (getLexer().is(AsmToken::Integer)) {
1065
if (parseIntegerRegister(Reg2, RegGR))
1066
return true;
1067
} else {
1068
if (isParsingATT() && parseRegister(Reg2))
1069
return true;
1070
}
1071
}
1072
1073
// Consume the closing bracket.
1074
if (getLexer().isNot(AsmToken::RParen))
1075
return Error(Parser.getTok().getLoc(), "unexpected token in address");
1076
Parser.Lex();
1077
}
1078
return false;
1079
}
1080
1081
// Verify that Reg is a valid address register (base or index).
1082
bool
1083
SystemZAsmParser::parseAddressRegister(Register &Reg) {
1084
if (Reg.Group == RegV) {
1085
Error(Reg.StartLoc, "invalid use of vector addressing");
1086
return true;
1087
}
1088
if (Reg.Group != RegGR) {
1089
Error(Reg.StartLoc, "invalid address register");
1090
return true;
1091
}
1092
return false;
1093
}
1094
1095
// Parse a memory operand and add it to Operands. The other arguments
1096
// are as above.
1097
ParseStatus SystemZAsmParser::parseAddress(OperandVector &Operands,
1098
MemoryKind MemKind,
1099
RegisterKind RegKind) {
1100
SMLoc StartLoc = Parser.getTok().getLoc();
1101
unsigned Base = 0, Index = 0, LengthReg = 0;
1102
Register Reg1, Reg2;
1103
bool HaveReg1, HaveReg2;
1104
const MCExpr *Disp;
1105
const MCExpr *Length;
1106
1107
bool HasLength = (MemKind == BDLMem) ? true : false;
1108
bool HasVectorIndex = (MemKind == BDVMem) ? true : false;
1109
if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength,
1110
HasVectorIndex))
1111
return ParseStatus::Failure;
1112
1113
const unsigned *Regs;
1114
switch (RegKind) {
1115
case GR32Reg: Regs = SystemZMC::GR32Regs; break;
1116
case GR64Reg: Regs = SystemZMC::GR64Regs; break;
1117
default: llvm_unreachable("invalid RegKind");
1118
}
1119
1120
switch (MemKind) {
1121
case BDMem:
1122
// If we have Reg1, it must be an address register.
1123
if (HaveReg1) {
1124
if (parseAddressRegister(Reg1))
1125
return ParseStatus::Failure;
1126
Base = Reg1.Num == 0 ? 0 : Regs[Reg1.Num];
1127
}
1128
// There must be no Reg2.
1129
if (HaveReg2)
1130
return Error(StartLoc, "invalid use of indexed addressing");
1131
break;
1132
case BDXMem:
1133
// If we have Reg1, it must be an address register.
1134
if (HaveReg1) {
1135
if (parseAddressRegister(Reg1))
1136
return ParseStatus::Failure;
1137
// If the are two registers, the first one is the index and the
1138
// second is the base.
1139
if (HaveReg2)
1140
Index = Reg1.Num == 0 ? 0 : Regs[Reg1.Num];
1141
else
1142
Base = Reg1.Num == 0 ? 0 : Regs[Reg1.Num];
1143
}
1144
// If we have Reg2, it must be an address register.
1145
if (HaveReg2) {
1146
if (parseAddressRegister(Reg2))
1147
return ParseStatus::Failure;
1148
Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num];
1149
}
1150
break;
1151
case BDLMem:
1152
// If we have Reg2, it must be an address register.
1153
if (HaveReg2) {
1154
if (parseAddressRegister(Reg2))
1155
return ParseStatus::Failure;
1156
Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num];
1157
}
1158
// We cannot support base+index addressing.
1159
if (HaveReg1 && HaveReg2)
1160
return Error(StartLoc, "invalid use of indexed addressing");
1161
// We must have a length.
1162
if (!Length)
1163
return Error(StartLoc, "missing length in address");
1164
break;
1165
case BDRMem:
1166
// We must have Reg1, and it must be a GPR.
1167
if (!HaveReg1 || Reg1.Group != RegGR)
1168
return Error(StartLoc, "invalid operand for instruction");
1169
LengthReg = SystemZMC::GR64Regs[Reg1.Num];
1170
// If we have Reg2, it must be an address register.
1171
if (HaveReg2) {
1172
if (parseAddressRegister(Reg2))
1173
return ParseStatus::Failure;
1174
Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num];
1175
}
1176
break;
1177
case BDVMem:
1178
// We must have Reg1, and it must be a vector register.
1179
if (!HaveReg1 || Reg1.Group != RegV)
1180
return Error(StartLoc, "vector index required in address");
1181
Index = SystemZMC::VR128Regs[Reg1.Num];
1182
// If we have Reg2, it must be an address register.
1183
if (HaveReg2) {
1184
if (parseAddressRegister(Reg2))
1185
return ParseStatus::Failure;
1186
Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num];
1187
}
1188
break;
1189
}
1190
1191
SMLoc EndLoc =
1192
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1193
Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp,
1194
Index, Length, LengthReg,
1195
StartLoc, EndLoc));
1196
return ParseStatus::Success;
1197
}
1198
1199
ParseStatus SystemZAsmParser::parseDirective(AsmToken DirectiveID) {
1200
StringRef IDVal = DirectiveID.getIdentifier();
1201
1202
if (IDVal == ".insn")
1203
return ParseDirectiveInsn(DirectiveID.getLoc());
1204
if (IDVal == ".machine")
1205
return ParseDirectiveMachine(DirectiveID.getLoc());
1206
if (IDVal.starts_with(".gnu_attribute"))
1207
return ParseGNUAttribute(DirectiveID.getLoc());
1208
1209
return ParseStatus::NoMatch;
1210
}
1211
1212
/// ParseDirectiveInsn
1213
/// ::= .insn [ format, encoding, (operands (, operands)*) ]
1214
bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) {
1215
MCAsmParser &Parser = getParser();
1216
1217
// Expect instruction format as identifier.
1218
StringRef Format;
1219
SMLoc ErrorLoc = Parser.getTok().getLoc();
1220
if (Parser.parseIdentifier(Format))
1221
return Error(ErrorLoc, "expected instruction format");
1222
1223
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands;
1224
1225
// Find entry for this format in InsnMatchTable.
1226
auto EntryRange =
1227
std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable),
1228
Format, CompareInsn());
1229
1230
// If first == second, couldn't find a match in the table.
1231
if (EntryRange.first == EntryRange.second)
1232
return Error(ErrorLoc, "unrecognized format");
1233
1234
struct InsnMatchEntry *Entry = EntryRange.first;
1235
1236
// Format should match from equal_range.
1237
assert(Entry->Format == Format);
1238
1239
// Parse the following operands using the table's information.
1240
for (int I = 0; I < Entry->NumOperands; I++) {
1241
MatchClassKind Kind = Entry->OperandKinds[I];
1242
1243
SMLoc StartLoc = Parser.getTok().getLoc();
1244
1245
// Always expect commas as separators for operands.
1246
if (getLexer().isNot(AsmToken::Comma))
1247
return Error(StartLoc, "unexpected token in directive");
1248
Lex();
1249
1250
// Parse operands.
1251
ParseStatus ResTy;
1252
if (Kind == MCK_AnyReg)
1253
ResTy = parseAnyReg(Operands);
1254
else if (Kind == MCK_VR128)
1255
ResTy = parseVR128(Operands);
1256
else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20)
1257
ResTy = parseBDXAddr64(Operands);
1258
else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20)
1259
ResTy = parseBDAddr64(Operands);
1260
else if (Kind == MCK_BDVAddr64Disp12)
1261
ResTy = parseBDVAddr64(Operands);
1262
else if (Kind == MCK_PCRel32)
1263
ResTy = parsePCRel32(Operands);
1264
else if (Kind == MCK_PCRel16)
1265
ResTy = parsePCRel16(Operands);
1266
else {
1267
// Only remaining operand kind is an immediate.
1268
const MCExpr *Expr;
1269
SMLoc StartLoc = Parser.getTok().getLoc();
1270
1271
// Expect immediate expression.
1272
if (Parser.parseExpression(Expr))
1273
return Error(StartLoc, "unexpected token in directive");
1274
1275
SMLoc EndLoc =
1276
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1277
1278
Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1279
ResTy = ParseStatus::Success;
1280
}
1281
1282
if (!ResTy.isSuccess())
1283
return true;
1284
}
1285
1286
// Build the instruction with the parsed operands.
1287
MCInst Inst = MCInstBuilder(Entry->Opcode);
1288
1289
for (size_t I = 0; I < Operands.size(); I++) {
1290
MCParsedAsmOperand &Operand = *Operands[I];
1291
MatchClassKind Kind = Entry->OperandKinds[I];
1292
1293
// Verify operand.
1294
unsigned Res = validateOperandClass(Operand, Kind);
1295
if (Res != Match_Success)
1296
return Error(Operand.getStartLoc(), "unexpected operand type");
1297
1298
// Add operands to instruction.
1299
SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand);
1300
if (ZOperand.isReg())
1301
ZOperand.addRegOperands(Inst, 1);
1302
else if (ZOperand.isMem(BDMem))
1303
ZOperand.addBDAddrOperands(Inst, 2);
1304
else if (ZOperand.isMem(BDXMem))
1305
ZOperand.addBDXAddrOperands(Inst, 3);
1306
else if (ZOperand.isMem(BDVMem))
1307
ZOperand.addBDVAddrOperands(Inst, 3);
1308
else if (ZOperand.isImm())
1309
ZOperand.addImmOperands(Inst, 1);
1310
else
1311
llvm_unreachable("unexpected operand type");
1312
}
1313
1314
// Emit as a regular instruction.
1315
Parser.getStreamer().emitInstruction(Inst, getSTI());
1316
1317
return false;
1318
}
1319
1320
/// ParseDirectiveMachine
1321
/// ::= .machine [ mcpu ]
1322
bool SystemZAsmParser::ParseDirectiveMachine(SMLoc L) {
1323
MCAsmParser &Parser = getParser();
1324
if (Parser.getTok().isNot(AsmToken::Identifier) &&
1325
Parser.getTok().isNot(AsmToken::String))
1326
return TokError("unexpected token in '.machine' directive");
1327
1328
StringRef CPU = Parser.getTok().getIdentifier();
1329
Parser.Lex();
1330
if (parseEOL())
1331
return true;
1332
1333
MCSubtargetInfo &STI = copySTI();
1334
STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, "");
1335
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
1336
1337
getTargetStreamer().emitMachine(CPU);
1338
1339
return false;
1340
}
1341
1342
bool SystemZAsmParser::ParseGNUAttribute(SMLoc L) {
1343
int64_t Tag;
1344
int64_t IntegerValue;
1345
if (!Parser.parseGNUAttribute(L, Tag, IntegerValue))
1346
return Error(L, "malformed .gnu_attribute directive");
1347
1348
// Tag_GNU_S390_ABI_Vector tag is '8' and can be 0, 1, or 2.
1349
if (Tag != 8 || (IntegerValue < 0 || IntegerValue > 2))
1350
return Error(L, "unrecognized .gnu_attribute tag/value pair.");
1351
1352
Parser.getStreamer().emitGNUAttribute(Tag, IntegerValue);
1353
1354
return parseEOL();
1355
}
1356
1357
bool SystemZAsmParser::ParseRegister(MCRegister &RegNo, SMLoc &StartLoc,
1358
SMLoc &EndLoc, bool RestoreOnFailure) {
1359
Register Reg;
1360
if (parseRegister(Reg, RestoreOnFailure))
1361
return true;
1362
if (Reg.Group == RegGR)
1363
RegNo = SystemZMC::GR64Regs[Reg.Num];
1364
else if (Reg.Group == RegFP)
1365
RegNo = SystemZMC::FP64Regs[Reg.Num];
1366
else if (Reg.Group == RegV)
1367
RegNo = SystemZMC::VR128Regs[Reg.Num];
1368
else if (Reg.Group == RegAR)
1369
RegNo = SystemZMC::AR32Regs[Reg.Num];
1370
else if (Reg.Group == RegCR)
1371
RegNo = SystemZMC::CR64Regs[Reg.Num];
1372
StartLoc = Reg.StartLoc;
1373
EndLoc = Reg.EndLoc;
1374
return false;
1375
}
1376
1377
bool SystemZAsmParser::parseRegister(MCRegister &Reg, SMLoc &StartLoc,
1378
SMLoc &EndLoc) {
1379
return ParseRegister(Reg, StartLoc, EndLoc, /*RestoreOnFailure=*/false);
1380
}
1381
1382
ParseStatus SystemZAsmParser::tryParseRegister(MCRegister &Reg, SMLoc &StartLoc,
1383
SMLoc &EndLoc) {
1384
bool Result = ParseRegister(Reg, StartLoc, EndLoc, /*RestoreOnFailure=*/true);
1385
bool PendingErrors = getParser().hasPendingError();
1386
getParser().clearPendingErrors();
1387
if (PendingErrors)
1388
return ParseStatus::Failure;
1389
if (Result)
1390
return ParseStatus::NoMatch;
1391
return ParseStatus::Success;
1392
}
1393
1394
bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info,
1395
StringRef Name, SMLoc NameLoc,
1396
OperandVector &Operands) {
1397
1398
// Apply mnemonic aliases first, before doing anything else, in
1399
// case the target uses it.
1400
applyMnemonicAliases(Name, getAvailableFeatures(), getMAIAssemblerDialect());
1401
1402
Operands.push_back(SystemZOperand::createToken(Name, NameLoc));
1403
1404
// Read the remaining operands.
1405
if (getLexer().isNot(AsmToken::EndOfStatement)) {
1406
// Read the first operand.
1407
if (parseOperand(Operands, Name)) {
1408
return true;
1409
}
1410
1411
// Read any subsequent operands.
1412
while (getLexer().is(AsmToken::Comma)) {
1413
Parser.Lex();
1414
1415
if (isParsingHLASM() && getLexer().is(AsmToken::Space))
1416
return Error(
1417
Parser.getTok().getLoc(),
1418
"No space allowed between comma that separates operand entries");
1419
1420
if (parseOperand(Operands, Name)) {
1421
return true;
1422
}
1423
}
1424
1425
// Under the HLASM variant, we could have the remark field
1426
// The remark field occurs after the operation entries
1427
// There is a space that separates the operation entries and the
1428
// remark field.
1429
if (isParsingHLASM() && getTok().is(AsmToken::Space)) {
1430
// We've confirmed that there is a Remark field.
1431
StringRef Remark(getLexer().LexUntilEndOfStatement());
1432
Parser.Lex();
1433
1434
// If there is nothing after the space, then there is nothing to emit
1435
// We could have a situation as this:
1436
// " \n"
1437
// After lexing above, we will have
1438
// "\n"
1439
// This isn't an explicit remark field, so we don't have to output
1440
// this as a comment.
1441
if (Remark.size())
1442
// Output the entire Remarks Field as a comment
1443
getStreamer().AddComment(Remark);
1444
}
1445
1446
if (getLexer().isNot(AsmToken::EndOfStatement)) {
1447
SMLoc Loc = getLexer().getLoc();
1448
return Error(Loc, "unexpected token in argument list");
1449
}
1450
}
1451
1452
// Consume the EndOfStatement.
1453
Parser.Lex();
1454
return false;
1455
}
1456
1457
bool SystemZAsmParser::parseOperand(OperandVector &Operands,
1458
StringRef Mnemonic) {
1459
// Check if the current operand has a custom associated parser, if so, try to
1460
// custom parse the operand, or fallback to the general approach. Force all
1461
// features to be available during the operand check, or else we will fail to
1462
// find the custom parser, and then we will later get an InvalidOperand error
1463
// instead of a MissingFeature errror.
1464
FeatureBitset AvailableFeatures = getAvailableFeatures();
1465
FeatureBitset All;
1466
All.set();
1467
setAvailableFeatures(All);
1468
ParseStatus Res = MatchOperandParserImpl(Operands, Mnemonic);
1469
setAvailableFeatures(AvailableFeatures);
1470
if (Res.isSuccess())
1471
return false;
1472
1473
// If there wasn't a custom match, try the generic matcher below. Otherwise,
1474
// there was a match, but an error occurred, in which case, just return that
1475
// the operand parsing failed.
1476
if (Res.isFailure())
1477
return true;
1478
1479
// Check for a register. All real register operands should have used
1480
// a context-dependent parse routine, which gives the required register
1481
// class. The code is here to mop up other cases, like those where
1482
// the instruction isn't recognized.
1483
if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) {
1484
Register Reg;
1485
if (parseRegister(Reg))
1486
return true;
1487
Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc));
1488
return false;
1489
}
1490
1491
// The only other type of operand is an immediate or address. As above,
1492
// real address operands should have used a context-dependent parse routine,
1493
// so we treat any plain expression as an immediate.
1494
SMLoc StartLoc = Parser.getTok().getLoc();
1495
Register Reg1, Reg2;
1496
bool HaveReg1, HaveReg2;
1497
const MCExpr *Expr;
1498
const MCExpr *Length;
1499
if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length,
1500
/*HasLength*/ true, /*HasVectorIndex*/ true))
1501
return true;
1502
// If the register combination is not valid for any instruction, reject it.
1503
// Otherwise, fall back to reporting an unrecognized instruction.
1504
if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV
1505
&& parseAddressRegister(Reg1))
1506
return true;
1507
if (HaveReg2 && parseAddressRegister(Reg2))
1508
return true;
1509
1510
SMLoc EndLoc =
1511
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1512
if (HaveReg1 || HaveReg2 || Length)
1513
Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc));
1514
else
1515
Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1516
return false;
1517
}
1518
1519
bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
1520
OperandVector &Operands,
1521
MCStreamer &Out,
1522
uint64_t &ErrorInfo,
1523
bool MatchingInlineAsm) {
1524
MCInst Inst;
1525
unsigned MatchResult;
1526
1527
unsigned Dialect = getMAIAssemblerDialect();
1528
1529
FeatureBitset MissingFeatures;
1530
MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,
1531
MatchingInlineAsm, Dialect);
1532
switch (MatchResult) {
1533
case Match_Success:
1534
Inst.setLoc(IDLoc);
1535
Out.emitInstruction(Inst, getSTI());
1536
return false;
1537
1538
case Match_MissingFeature: {
1539
assert(MissingFeatures.any() && "Unknown missing feature!");
1540
// Special case the error message for the very common case where only
1541
// a single subtarget feature is missing
1542
std::string Msg = "instruction requires:";
1543
for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) {
1544
if (MissingFeatures[I]) {
1545
Msg += " ";
1546
Msg += getSubtargetFeatureName(I);
1547
}
1548
}
1549
return Error(IDLoc, Msg);
1550
}
1551
1552
case Match_InvalidOperand: {
1553
SMLoc ErrorLoc = IDLoc;
1554
if (ErrorInfo != ~0ULL) {
1555
if (ErrorInfo >= Operands.size())
1556
return Error(IDLoc, "too few operands for instruction");
1557
1558
ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc();
1559
if (ErrorLoc == SMLoc())
1560
ErrorLoc = IDLoc;
1561
}
1562
return Error(ErrorLoc, "invalid operand for instruction");
1563
}
1564
1565
case Match_MnemonicFail: {
1566
FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
1567
std::string Suggestion = SystemZMnemonicSpellCheck(
1568
((SystemZOperand &)*Operands[0]).getToken(), FBS, Dialect);
1569
return Error(IDLoc, "invalid instruction" + Suggestion,
1570
((SystemZOperand &)*Operands[0]).getLocRange());
1571
}
1572
}
1573
1574
llvm_unreachable("Unexpected match type");
1575
}
1576
1577
ParseStatus SystemZAsmParser::parsePCRel(OperandVector &Operands,
1578
int64_t MinVal, int64_t MaxVal,
1579
bool AllowTLS) {
1580
MCContext &Ctx = getContext();
1581
MCStreamer &Out = getStreamer();
1582
const MCExpr *Expr;
1583
SMLoc StartLoc = Parser.getTok().getLoc();
1584
if (getParser().parseExpression(Expr))
1585
return ParseStatus::NoMatch;
1586
1587
auto IsOutOfRangeConstant = [&](const MCExpr *E, bool Negate) -> bool {
1588
if (auto *CE = dyn_cast<MCConstantExpr>(E)) {
1589
int64_t Value = CE->getValue();
1590
if (Negate)
1591
Value = -Value;
1592
if ((Value & 1) || Value < MinVal || Value > MaxVal)
1593
return true;
1594
}
1595
return false;
1596
};
1597
1598
// For consistency with the GNU assembler, treat immediates as offsets
1599
// from ".".
1600
if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
1601
if (isParsingHLASM())
1602
return Error(StartLoc, "Expected PC-relative expression");
1603
if (IsOutOfRangeConstant(CE, false))
1604
return Error(StartLoc, "offset out of range");
1605
int64_t Value = CE->getValue();
1606
MCSymbol *Sym = Ctx.createTempSymbol();
1607
Out.emitLabel(Sym);
1608
const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None,
1609
Ctx);
1610
Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx);
1611
}
1612
1613
// For consistency with the GNU assembler, conservatively assume that a
1614
// constant offset must by itself be within the given size range.
1615
if (const auto *BE = dyn_cast<MCBinaryExpr>(Expr))
1616
if (IsOutOfRangeConstant(BE->getLHS(), false) ||
1617
IsOutOfRangeConstant(BE->getRHS(),
1618
BE->getOpcode() == MCBinaryExpr::Sub))
1619
return Error(StartLoc, "offset out of range");
1620
1621
// Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol.
1622
const MCExpr *Sym = nullptr;
1623
if (AllowTLS && getLexer().is(AsmToken::Colon)) {
1624
Parser.Lex();
1625
1626
if (Parser.getTok().isNot(AsmToken::Identifier))
1627
return Error(Parser.getTok().getLoc(), "unexpected token");
1628
1629
MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
1630
StringRef Name = Parser.getTok().getString();
1631
if (Name == "tls_gdcall")
1632
Kind = MCSymbolRefExpr::VK_TLSGD;
1633
else if (Name == "tls_ldcall")
1634
Kind = MCSymbolRefExpr::VK_TLSLDM;
1635
else
1636
return Error(Parser.getTok().getLoc(), "unknown TLS tag");
1637
Parser.Lex();
1638
1639
if (Parser.getTok().isNot(AsmToken::Colon))
1640
return Error(Parser.getTok().getLoc(), "unexpected token");
1641
Parser.Lex();
1642
1643
if (Parser.getTok().isNot(AsmToken::Identifier))
1644
return Error(Parser.getTok().getLoc(), "unexpected token");
1645
1646
StringRef Identifier = Parser.getTok().getString();
1647
Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier),
1648
Kind, Ctx);
1649
Parser.Lex();
1650
}
1651
1652
SMLoc EndLoc =
1653
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1654
1655
if (AllowTLS)
1656
Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym,
1657
StartLoc, EndLoc));
1658
else
1659
Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1660
1661
return ParseStatus::Success;
1662
}
1663
1664
bool SystemZAsmParser::isLabel(AsmToken &Token) {
1665
if (isParsingATT())
1666
return true;
1667
1668
// HLASM labels are ordinary symbols.
1669
// An HLASM label always starts at column 1.
1670
// An ordinary symbol syntax is laid out as follows:
1671
// Rules:
1672
// 1. Has to start with an "alphabetic character". Can be followed by up to
1673
// 62 alphanumeric characters. An "alphabetic character", in this scenario,
1674
// is a letter from 'A' through 'Z', or from 'a' through 'z',
1675
// or '$', '_', '#', or '@'
1676
// 2. Labels are case-insensitive. E.g. "lab123", "LAB123", "lAb123", etc.
1677
// are all treated as the same symbol. However, the processing for the case
1678
// folding will not be done in this function.
1679
StringRef RawLabel = Token.getString();
1680
SMLoc Loc = Token.getLoc();
1681
1682
// An HLASM label cannot be empty.
1683
if (!RawLabel.size())
1684
return !Error(Loc, "HLASM Label cannot be empty");
1685
1686
// An HLASM label cannot exceed greater than 63 characters.
1687
if (RawLabel.size() > 63)
1688
return !Error(Loc, "Maximum length for HLASM Label is 63 characters");
1689
1690
// A label must start with an "alphabetic character".
1691
if (!isHLASMAlpha(RawLabel[0]))
1692
return !Error(Loc, "HLASM Label has to start with an alphabetic "
1693
"character or the underscore character");
1694
1695
// Now, we've established that the length is valid
1696
// and the first character is alphabetic.
1697
// Check whether remaining string is alphanumeric.
1698
for (unsigned I = 1; I < RawLabel.size(); ++I)
1699
if (!isHLASMAlnum(RawLabel[I]))
1700
return !Error(Loc, "HLASM Label has to be alphanumeric");
1701
1702
return true;
1703
}
1704
1705
// Force static initialization.
1706
// NOLINTNEXTLINE(readability-identifier-naming)
1707
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmParser() {
1708
RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget());
1709
}
1710
1711