Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp
35269 views
1
//===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines an instruction selector for the SystemZ target.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "SystemZTargetMachine.h"
14
#include "SystemZISelLowering.h"
15
#include "llvm/Analysis/AliasAnalysis.h"
16
#include "llvm/CodeGen/SelectionDAGISel.h"
17
#include "llvm/Support/Debug.h"
18
#include "llvm/Support/KnownBits.h"
19
#include "llvm/Support/raw_ostream.h"
20
21
using namespace llvm;
22
23
#define DEBUG_TYPE "systemz-isel"
24
#define PASS_NAME "SystemZ DAG->DAG Pattern Instruction Selection"
25
26
namespace {
27
// Used to build addressing modes.
28
struct SystemZAddressingMode {
29
// The shape of the address.
30
enum AddrForm {
31
// base+displacement
32
FormBD,
33
34
// base+displacement+index for load and store operands
35
FormBDXNormal,
36
37
// base+displacement+index for load address operands
38
FormBDXLA,
39
40
// base+displacement+index+ADJDYNALLOC
41
FormBDXDynAlloc
42
};
43
AddrForm Form;
44
45
// The type of displacement. The enum names here correspond directly
46
// to the definitions in SystemZOperand.td. We could split them into
47
// flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
48
enum DispRange {
49
Disp12Only,
50
Disp12Pair,
51
Disp20Only,
52
Disp20Only128,
53
Disp20Pair
54
};
55
DispRange DR;
56
57
// The parts of the address. The address is equivalent to:
58
//
59
// Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
60
SDValue Base;
61
int64_t Disp;
62
SDValue Index;
63
bool IncludesDynAlloc;
64
65
SystemZAddressingMode(AddrForm form, DispRange dr)
66
: Form(form), DR(dr), Disp(0), IncludesDynAlloc(false) {}
67
68
// True if the address can have an index register.
69
bool hasIndexField() { return Form != FormBD; }
70
71
// True if the address can (and must) include ADJDYNALLOC.
72
bool isDynAlloc() { return Form == FormBDXDynAlloc; }
73
74
void dump(const llvm::SelectionDAG *DAG) {
75
errs() << "SystemZAddressingMode " << this << '\n';
76
77
errs() << " Base ";
78
if (Base.getNode())
79
Base.getNode()->dump(DAG);
80
else
81
errs() << "null\n";
82
83
if (hasIndexField()) {
84
errs() << " Index ";
85
if (Index.getNode())
86
Index.getNode()->dump(DAG);
87
else
88
errs() << "null\n";
89
}
90
91
errs() << " Disp " << Disp;
92
if (IncludesDynAlloc)
93
errs() << " + ADJDYNALLOC";
94
errs() << '\n';
95
}
96
};
97
98
// Return a mask with Count low bits set.
99
static uint64_t allOnes(unsigned int Count) {
100
assert(Count <= 64);
101
if (Count > 63)
102
return UINT64_MAX;
103
return (uint64_t(1) << Count) - 1;
104
}
105
106
// Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
107
// given by Opcode. The operands are: Input (R2), Start (I3), End (I4) and
108
// Rotate (I5). The combined operand value is effectively:
109
//
110
// (or (rotl Input, Rotate), ~Mask)
111
//
112
// for RNSBG and:
113
//
114
// (and (rotl Input, Rotate), Mask)
115
//
116
// otherwise. The output value has BitSize bits, although Input may be
117
// narrower (in which case the upper bits are don't care), or wider (in which
118
// case the result will be truncated as part of the operation).
119
struct RxSBGOperands {
120
RxSBGOperands(unsigned Op, SDValue N)
121
: Opcode(Op), BitSize(N.getValueSizeInBits()),
122
Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
123
Rotate(0) {}
124
125
unsigned Opcode;
126
unsigned BitSize;
127
uint64_t Mask;
128
SDValue Input;
129
unsigned Start;
130
unsigned End;
131
unsigned Rotate;
132
};
133
134
class SystemZDAGToDAGISel : public SelectionDAGISel {
135
const SystemZSubtarget *Subtarget;
136
137
// Used by SystemZOperands.td to create integer constants.
138
inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
139
return CurDAG->getTargetConstant(Imm, SDLoc(Node), Node->getValueType(0));
140
}
141
142
const SystemZTargetMachine &getTargetMachine() const {
143
return static_cast<const SystemZTargetMachine &>(TM);
144
}
145
146
const SystemZInstrInfo *getInstrInfo() const {
147
return Subtarget->getInstrInfo();
148
}
149
150
// Try to fold more of the base or index of AM into AM, where IsBase
151
// selects between the base and index.
152
bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;
153
154
// Try to describe N in AM, returning true on success.
155
bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;
156
157
// Extract individual target operands from matched address AM.
158
void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
159
SDValue &Base, SDValue &Disp) const;
160
void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
161
SDValue &Base, SDValue &Disp, SDValue &Index) const;
162
163
// Try to match Addr as a FormBD address with displacement type DR.
164
// Return true on success, storing the base and displacement in
165
// Base and Disp respectively.
166
bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
167
SDValue &Base, SDValue &Disp) const;
168
169
// Try to match Addr as a FormBDX address with displacement type DR.
170
// Return true on success and if the result had no index. Store the
171
// base and displacement in Base and Disp respectively.
172
bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
173
SDValue &Base, SDValue &Disp) const;
174
175
// Try to match Addr as a FormBDX* address of form Form with
176
// displacement type DR. Return true on success, storing the base,
177
// displacement and index in Base, Disp and Index respectively.
178
bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
179
SystemZAddressingMode::DispRange DR, SDValue Addr,
180
SDValue &Base, SDValue &Disp, SDValue &Index) const;
181
182
// PC-relative address matching routines used by SystemZOperands.td.
183
bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
184
if (SystemZISD::isPCREL(Addr.getOpcode())) {
185
Target = Addr.getOperand(0);
186
return true;
187
}
188
return false;
189
}
190
191
// BD matching routines used by SystemZOperands.td.
192
bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
193
return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
194
}
195
bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
196
return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
197
}
198
bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
199
return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
200
}
201
bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
202
return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
203
}
204
205
// MVI matching routines used by SystemZOperands.td.
206
bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
207
return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
208
}
209
bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
210
return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
211
}
212
213
// BDX matching routines used by SystemZOperands.td.
214
bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
215
SDValue &Index) const {
216
return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
217
SystemZAddressingMode::Disp12Only,
218
Addr, Base, Disp, Index);
219
}
220
bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
221
SDValue &Index) const {
222
return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
223
SystemZAddressingMode::Disp12Pair,
224
Addr, Base, Disp, Index);
225
}
226
bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
227
SDValue &Index) const {
228
return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
229
SystemZAddressingMode::Disp12Only,
230
Addr, Base, Disp, Index);
231
}
232
bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
233
SDValue &Index) const {
234
return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
235
SystemZAddressingMode::Disp20Only,
236
Addr, Base, Disp, Index);
237
}
238
bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
239
SDValue &Index) const {
240
return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
241
SystemZAddressingMode::Disp20Only128,
242
Addr, Base, Disp, Index);
243
}
244
bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
245
SDValue &Index) const {
246
return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
247
SystemZAddressingMode::Disp20Pair,
248
Addr, Base, Disp, Index);
249
}
250
bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
251
SDValue &Index) const {
252
return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
253
SystemZAddressingMode::Disp12Pair,
254
Addr, Base, Disp, Index);
255
}
256
bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
257
SDValue &Index) const {
258
return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
259
SystemZAddressingMode::Disp20Pair,
260
Addr, Base, Disp, Index);
261
}
262
263
// Try to match Addr as an address with a base, 12-bit displacement
264
// and index, where the index is element Elem of a vector.
265
// Return true on success, storing the base, displacement and vector
266
// in Base, Disp and Index respectively.
267
bool selectBDVAddr12Only(SDValue Addr, SDValue Elem, SDValue &Base,
268
SDValue &Disp, SDValue &Index) const;
269
270
// Check whether (or Op (and X InsertMask)) is effectively an insertion
271
// of X into bits InsertMask of some Y != Op. Return true if so and
272
// set Op to that Y.
273
bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;
274
275
// Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
276
// Return true on success.
277
bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;
278
279
// Try to fold some of RxSBG.Input into other fields of RxSBG.
280
// Return true on success.
281
bool expandRxSBG(RxSBGOperands &RxSBG) const;
282
283
// Return an undefined value of type VT.
284
SDValue getUNDEF(const SDLoc &DL, EVT VT) const;
285
286
// Convert N to VT, if it isn't already.
287
SDValue convertTo(const SDLoc &DL, EVT VT, SDValue N) const;
288
289
// Try to implement AND or shift node N using RISBG with the zero flag set.
290
// Return the selected node on success, otherwise return null.
291
bool tryRISBGZero(SDNode *N);
292
293
// Try to use RISBG or Opcode to implement OR or XOR node N.
294
// Return the selected node on success, otherwise return null.
295
bool tryRxSBG(SDNode *N, unsigned Opcode);
296
297
// If Op0 is null, then Node is a constant that can be loaded using:
298
//
299
// (Opcode UpperVal LowerVal)
300
//
301
// If Op0 is nonnull, then Node can be implemented using:
302
//
303
// (Opcode (Opcode Op0 UpperVal) LowerVal)
304
void splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
305
uint64_t UpperVal, uint64_t LowerVal);
306
307
void loadVectorConstant(const SystemZVectorConstantInfo &VCI,
308
SDNode *Node);
309
310
SDNode *loadPoolVectorConstant(APInt Val, EVT VT, SDLoc DL);
311
312
// Try to use gather instruction Opcode to implement vector insertion N.
313
bool tryGather(SDNode *N, unsigned Opcode);
314
315
// Try to use scatter instruction Opcode to implement store Store.
316
bool tryScatter(StoreSDNode *Store, unsigned Opcode);
317
318
// Change a chain of {load; op; store} of the same value into a simple op
319
// through memory of that value, if the uses of the modified value and its
320
// address are suitable.
321
bool tryFoldLoadStoreIntoMemOperand(SDNode *Node);
322
323
// Return true if Load and Store are loads and stores of the same size
324
// and are guaranteed not to overlap. Such operations can be implemented
325
// using block (SS-format) instructions.
326
//
327
// Partial overlap would lead to incorrect code, since the block operations
328
// are logically bytewise, even though they have a fast path for the
329
// non-overlapping case. We also need to avoid full overlap (i.e. two
330
// addresses that might be equal at run time) because although that case
331
// would be handled correctly, it might be implemented by millicode.
332
bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;
333
334
// N is a (store (load Y), X) pattern. Return true if it can use an MVC
335
// from Y to X.
336
bool storeLoadCanUseMVC(SDNode *N) const;
337
338
// N is a (store (op (load A[0]), (load A[1])), X) pattern. Return true
339
// if A[1 - I] == X and if N can use a block operation like NC from A[I]
340
// to X.
341
bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
342
343
// Return true if N (a load or a store) fullfills the alignment
344
// requirements for a PC-relative access.
345
bool storeLoadIsAligned(SDNode *N) const;
346
347
// Return the load extension type of a load or atomic load.
348
ISD::LoadExtType getLoadExtType(SDNode *N) const;
349
350
// Try to expand a boolean SELECT_CCMASK using an IPM sequence.
351
SDValue expandSelectBoolean(SDNode *Node);
352
353
// Return true if the flags of N and the subtarget allows for
354
// reassociation, in which case a reg/reg opcode is needed as input to the
355
// MachineCombiner.
356
bool shouldSelectForReassoc(SDNode *N) const;
357
358
public:
359
SystemZDAGToDAGISel() = delete;
360
361
SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOptLevel OptLevel)
362
: SelectionDAGISel(TM, OptLevel) {}
363
364
bool runOnMachineFunction(MachineFunction &MF) override {
365
const Function &F = MF.getFunction();
366
if (F.getFnAttribute("fentry-call").getValueAsString() != "true") {
367
if (F.hasFnAttribute("mnop-mcount"))
368
report_fatal_error("mnop-mcount only supported with fentry-call");
369
if (F.hasFnAttribute("mrecord-mcount"))
370
report_fatal_error("mrecord-mcount only supported with fentry-call");
371
}
372
373
Subtarget = &MF.getSubtarget<SystemZSubtarget>();
374
return SelectionDAGISel::runOnMachineFunction(MF);
375
}
376
377
// Override SelectionDAGISel.
378
void Select(SDNode *Node) override;
379
bool SelectInlineAsmMemoryOperand(const SDValue &Op,
380
InlineAsm::ConstraintCode ConstraintID,
381
std::vector<SDValue> &OutOps) override;
382
bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
383
void PreprocessISelDAG() override;
384
385
// Include the pieces autogenerated from the target description.
386
#include "SystemZGenDAGISel.inc"
387
};
388
389
class SystemZDAGToDAGISelLegacy : public SelectionDAGISelLegacy {
390
public:
391
static char ID;
392
explicit SystemZDAGToDAGISelLegacy(SystemZTargetMachine &TM,
393
CodeGenOptLevel OptLevel)
394
: SelectionDAGISelLegacy(
395
ID, std::make_unique<SystemZDAGToDAGISel>(TM, OptLevel)) {}
396
};
397
} // end anonymous namespace
398
399
char SystemZDAGToDAGISelLegacy::ID = 0;
400
401
INITIALIZE_PASS(SystemZDAGToDAGISelLegacy, DEBUG_TYPE, PASS_NAME, false, false)
402
403
FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
404
CodeGenOptLevel OptLevel) {
405
return new SystemZDAGToDAGISelLegacy(TM, OptLevel);
406
}
407
408
// Return true if Val should be selected as a displacement for an address
409
// with range DR. Here we're interested in the range of both the instruction
410
// described by DR and of any pairing instruction.
411
static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
412
switch (DR) {
413
case SystemZAddressingMode::Disp12Only:
414
return isUInt<12>(Val);
415
416
case SystemZAddressingMode::Disp12Pair:
417
case SystemZAddressingMode::Disp20Only:
418
case SystemZAddressingMode::Disp20Pair:
419
return isInt<20>(Val);
420
421
case SystemZAddressingMode::Disp20Only128:
422
return isInt<20>(Val) && isInt<20>(Val + 8);
423
}
424
llvm_unreachable("Unhandled displacement range");
425
}
426
427
// Change the base or index in AM to Value, where IsBase selects
428
// between the base and index.
429
static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
430
SDValue Value) {
431
if (IsBase)
432
AM.Base = Value;
433
else
434
AM.Index = Value;
435
}
436
437
// The base or index of AM is equivalent to Value + ADJDYNALLOC,
438
// where IsBase selects between the base and index. Try to fold the
439
// ADJDYNALLOC into AM.
440
static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
441
SDValue Value) {
442
if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
443
changeComponent(AM, IsBase, Value);
444
AM.IncludesDynAlloc = true;
445
return true;
446
}
447
return false;
448
}
449
450
// The base of AM is equivalent to Base + Index. Try to use Index as
451
// the index register.
452
static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
453
SDValue Index) {
454
if (AM.hasIndexField() && !AM.Index.getNode()) {
455
AM.Base = Base;
456
AM.Index = Index;
457
return true;
458
}
459
return false;
460
}
461
462
// The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
463
// between the base and index. Try to fold Op1 into AM's displacement.
464
static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
465
SDValue Op0, uint64_t Op1) {
466
// First try adjusting the displacement.
467
int64_t TestDisp = AM.Disp + Op1;
468
if (selectDisp(AM.DR, TestDisp)) {
469
changeComponent(AM, IsBase, Op0);
470
AM.Disp = TestDisp;
471
return true;
472
}
473
474
// We could consider forcing the displacement into a register and
475
// using it as an index, but it would need to be carefully tuned.
476
return false;
477
}
478
479
bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
480
bool IsBase) const {
481
SDValue N = IsBase ? AM.Base : AM.Index;
482
unsigned Opcode = N.getOpcode();
483
// Look through no-op truncations.
484
if (Opcode == ISD::TRUNCATE && N.getOperand(0).getValueSizeInBits() <= 64) {
485
N = N.getOperand(0);
486
Opcode = N.getOpcode();
487
}
488
if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
489
SDValue Op0 = N.getOperand(0);
490
SDValue Op1 = N.getOperand(1);
491
492
unsigned Op0Code = Op0->getOpcode();
493
unsigned Op1Code = Op1->getOpcode();
494
495
if (Op0Code == SystemZISD::ADJDYNALLOC)
496
return expandAdjDynAlloc(AM, IsBase, Op1);
497
if (Op1Code == SystemZISD::ADJDYNALLOC)
498
return expandAdjDynAlloc(AM, IsBase, Op0);
499
500
if (Op0Code == ISD::Constant)
501
return expandDisp(AM, IsBase, Op1,
502
cast<ConstantSDNode>(Op0)->getSExtValue());
503
if (Op1Code == ISD::Constant)
504
return expandDisp(AM, IsBase, Op0,
505
cast<ConstantSDNode>(Op1)->getSExtValue());
506
507
if (IsBase && expandIndex(AM, Op0, Op1))
508
return true;
509
}
510
if (Opcode == SystemZISD::PCREL_OFFSET) {
511
SDValue Full = N.getOperand(0);
512
SDValue Base = N.getOperand(1);
513
SDValue Anchor = Base.getOperand(0);
514
uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() -
515
cast<GlobalAddressSDNode>(Anchor)->getOffset());
516
return expandDisp(AM, IsBase, Base, Offset);
517
}
518
return false;
519
}
520
521
// Return true if an instruction with displacement range DR should be
522
// used for displacement value Val. selectDisp(DR, Val) must already hold.
523
static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
524
assert(selectDisp(DR, Val) && "Invalid displacement");
525
switch (DR) {
526
case SystemZAddressingMode::Disp12Only:
527
case SystemZAddressingMode::Disp20Only:
528
case SystemZAddressingMode::Disp20Only128:
529
return true;
530
531
case SystemZAddressingMode::Disp12Pair:
532
// Use the other instruction if the displacement is too large.
533
return isUInt<12>(Val);
534
535
case SystemZAddressingMode::Disp20Pair:
536
// Use the other instruction if the displacement is small enough.
537
return !isUInt<12>(Val);
538
}
539
llvm_unreachable("Unhandled displacement range");
540
}
541
542
// Return true if Base + Disp + Index should be performed by LA(Y).
543
static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
544
// Don't use LA(Y) for constants.
545
if (!Base)
546
return false;
547
548
// Always use LA(Y) for frame addresses, since we know that the destination
549
// register is almost always (perhaps always) going to be different from
550
// the frame register.
551
if (Base->getOpcode() == ISD::FrameIndex)
552
return true;
553
554
if (Disp) {
555
// Always use LA(Y) if there is a base, displacement and index.
556
if (Index)
557
return true;
558
559
// Always use LA if the displacement is small enough. It should always
560
// be no worse than AGHI (and better if it avoids a move).
561
if (isUInt<12>(Disp))
562
return true;
563
564
// For similar reasons, always use LAY if the constant is too big for AGHI.
565
// LAY should be no worse than AGFI.
566
if (!isInt<16>(Disp))
567
return true;
568
} else {
569
// Don't use LA for plain registers.
570
if (!Index)
571
return false;
572
573
// Don't use LA for plain addition if the index operand is only used
574
// once. It should be a natural two-operand addition in that case.
575
if (Index->hasOneUse())
576
return false;
577
578
// Prefer addition if the second operation is sign-extended, in the
579
// hope of using AGF.
580
unsigned IndexOpcode = Index->getOpcode();
581
if (IndexOpcode == ISD::SIGN_EXTEND ||
582
IndexOpcode == ISD::SIGN_EXTEND_INREG)
583
return false;
584
}
585
586
// Don't use LA for two-operand addition if either operand is only
587
// used once. The addition instructions are better in that case.
588
if (Base->hasOneUse())
589
return false;
590
591
return true;
592
}
593
594
// Return true if Addr is suitable for AM, updating AM if so.
595
bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
596
SystemZAddressingMode &AM) const {
597
// Start out assuming that the address will need to be loaded separately,
598
// then try to extend it as much as we can.
599
AM.Base = Addr;
600
601
// First try treating the address as a constant.
602
if (Addr.getOpcode() == ISD::Constant &&
603
expandDisp(AM, true, SDValue(),
604
cast<ConstantSDNode>(Addr)->getSExtValue()))
605
;
606
// Also see if it's a bare ADJDYNALLOC.
607
else if (Addr.getOpcode() == SystemZISD::ADJDYNALLOC &&
608
expandAdjDynAlloc(AM, true, SDValue()))
609
;
610
else
611
// Otherwise try expanding each component.
612
while (expandAddress(AM, true) ||
613
(AM.Index.getNode() && expandAddress(AM, false)))
614
continue;
615
616
// Reject cases where it isn't profitable to use LA(Y).
617
if (AM.Form == SystemZAddressingMode::FormBDXLA &&
618
!shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
619
return false;
620
621
// Reject cases where the other instruction in a pair should be used.
622
if (!isValidDisp(AM.DR, AM.Disp))
623
return false;
624
625
// Make sure that ADJDYNALLOC is included where necessary.
626
if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
627
return false;
628
629
LLVM_DEBUG(AM.dump(CurDAG));
630
return true;
631
}
632
633
// Insert a node into the DAG at least before Pos. This will reposition
634
// the node as needed, and will assign it a node ID that is <= Pos's ID.
635
// Note that this does *not* preserve the uniqueness of node IDs!
636
// The selection DAG must no longer depend on their uniqueness when this
637
// function is used.
638
static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
639
if (N->getNodeId() == -1 ||
640
(SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
641
SelectionDAGISel::getUninvalidatedNodeId(Pos))) {
642
DAG->RepositionNode(Pos->getIterator(), N.getNode());
643
// Mark Node as invalid for pruning as after this it may be a successor to a
644
// selected node but otherwise be in the same position of Pos.
645
// Conservatively mark it with the same -abs(Id) to assure node id
646
// invariant is preserved.
647
N->setNodeId(Pos->getNodeId());
648
SelectionDAGISel::InvalidateNodeId(N.getNode());
649
}
650
}
651
652
void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
653
EVT VT, SDValue &Base,
654
SDValue &Disp) const {
655
Base = AM.Base;
656
if (!Base.getNode())
657
// Register 0 means "no base". This is mostly useful for shifts.
658
Base = CurDAG->getRegister(0, VT);
659
else if (Base.getOpcode() == ISD::FrameIndex) {
660
// Lower a FrameIndex to a TargetFrameIndex.
661
int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
662
Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
663
} else if (Base.getValueType() != VT) {
664
// Truncate values from i64 to i32, for shifts.
665
assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
666
"Unexpected truncation");
667
SDLoc DL(Base);
668
SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
669
insertDAGNode(CurDAG, Base.getNode(), Trunc);
670
Base = Trunc;
671
}
672
673
// Lower the displacement to a TargetConstant.
674
Disp = CurDAG->getTargetConstant(AM.Disp, SDLoc(Base), VT);
675
}
676
677
void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
678
EVT VT, SDValue &Base,
679
SDValue &Disp,
680
SDValue &Index) const {
681
getAddressOperands(AM, VT, Base, Disp);
682
683
Index = AM.Index;
684
if (!Index.getNode())
685
// Register 0 means "no index".
686
Index = CurDAG->getRegister(0, VT);
687
}
688
689
bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
690
SDValue Addr, SDValue &Base,
691
SDValue &Disp) const {
692
SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
693
if (!selectAddress(Addr, AM))
694
return false;
695
696
getAddressOperands(AM, Addr.getValueType(), Base, Disp);
697
return true;
698
}
699
700
bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
701
SDValue Addr, SDValue &Base,
702
SDValue &Disp) const {
703
SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
704
if (!selectAddress(Addr, AM) || AM.Index.getNode())
705
return false;
706
707
getAddressOperands(AM, Addr.getValueType(), Base, Disp);
708
return true;
709
}
710
711
bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
712
SystemZAddressingMode::DispRange DR,
713
SDValue Addr, SDValue &Base,
714
SDValue &Disp, SDValue &Index) const {
715
SystemZAddressingMode AM(Form, DR);
716
if (!selectAddress(Addr, AM))
717
return false;
718
719
getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
720
return true;
721
}
722
723
bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr, SDValue Elem,
724
SDValue &Base,
725
SDValue &Disp,
726
SDValue &Index) const {
727
SDValue Regs[2];
728
if (selectBDXAddr12Only(Addr, Regs[0], Disp, Regs[1]) &&
729
Regs[0].getNode() && Regs[1].getNode()) {
730
for (unsigned int I = 0; I < 2; ++I) {
731
Base = Regs[I];
732
Index = Regs[1 - I];
733
// We can't tell here whether the index vector has the right type
734
// for the access; the caller needs to do that instead.
735
if (Index.getOpcode() == ISD::ZERO_EXTEND)
736
Index = Index.getOperand(0);
737
if (Index.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
738
Index.getOperand(1) == Elem) {
739
Index = Index.getOperand(0);
740
return true;
741
}
742
}
743
}
744
return false;
745
}
746
747
bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
748
uint64_t InsertMask) const {
749
// We're only interested in cases where the insertion is into some operand
750
// of Op, rather than into Op itself. The only useful case is an AND.
751
if (Op.getOpcode() != ISD::AND)
752
return false;
753
754
// We need a constant mask.
755
auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
756
if (!MaskNode)
757
return false;
758
759
// It's not an insertion of Op.getOperand(0) if the two masks overlap.
760
uint64_t AndMask = MaskNode->getZExtValue();
761
if (InsertMask & AndMask)
762
return false;
763
764
// It's only an insertion if all bits are covered or are known to be zero.
765
// The inner check covers all cases but is more expensive.
766
uint64_t Used = allOnes(Op.getValueSizeInBits());
767
if (Used != (AndMask | InsertMask)) {
768
KnownBits Known = CurDAG->computeKnownBits(Op.getOperand(0));
769
if (Used != (AndMask | InsertMask | Known.Zero.getZExtValue()))
770
return false;
771
}
772
773
Op = Op.getOperand(0);
774
return true;
775
}
776
777
bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
778
uint64_t Mask) const {
779
const SystemZInstrInfo *TII = getInstrInfo();
780
if (RxSBG.Rotate != 0)
781
Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
782
Mask &= RxSBG.Mask;
783
if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
784
RxSBG.Mask = Mask;
785
return true;
786
}
787
return false;
788
}
789
790
// Return true if any bits of (RxSBG.Input & Mask) are significant.
791
static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
792
// Rotate the mask in the same way as RxSBG.Input is rotated.
793
if (RxSBG.Rotate != 0)
794
Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
795
return (Mask & RxSBG.Mask) != 0;
796
}
797
798
bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
799
SDValue N = RxSBG.Input;
800
unsigned Opcode = N.getOpcode();
801
switch (Opcode) {
802
case ISD::TRUNCATE: {
803
if (RxSBG.Opcode == SystemZ::RNSBG)
804
return false;
805
if (N.getOperand(0).getValueSizeInBits() > 64)
806
return false;
807
uint64_t BitSize = N.getValueSizeInBits();
808
uint64_t Mask = allOnes(BitSize);
809
if (!refineRxSBGMask(RxSBG, Mask))
810
return false;
811
RxSBG.Input = N.getOperand(0);
812
return true;
813
}
814
case ISD::AND: {
815
if (RxSBG.Opcode == SystemZ::RNSBG)
816
return false;
817
818
auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
819
if (!MaskNode)
820
return false;
821
822
SDValue Input = N.getOperand(0);
823
uint64_t Mask = MaskNode->getZExtValue();
824
if (!refineRxSBGMask(RxSBG, Mask)) {
825
// If some bits of Input are already known zeros, those bits will have
826
// been removed from the mask. See if adding them back in makes the
827
// mask suitable.
828
KnownBits Known = CurDAG->computeKnownBits(Input);
829
Mask |= Known.Zero.getZExtValue();
830
if (!refineRxSBGMask(RxSBG, Mask))
831
return false;
832
}
833
RxSBG.Input = Input;
834
return true;
835
}
836
837
case ISD::OR: {
838
if (RxSBG.Opcode != SystemZ::RNSBG)
839
return false;
840
841
auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
842
if (!MaskNode)
843
return false;
844
845
SDValue Input = N.getOperand(0);
846
uint64_t Mask = ~MaskNode->getZExtValue();
847
if (!refineRxSBGMask(RxSBG, Mask)) {
848
// If some bits of Input are already known ones, those bits will have
849
// been removed from the mask. See if adding them back in makes the
850
// mask suitable.
851
KnownBits Known = CurDAG->computeKnownBits(Input);
852
Mask &= ~Known.One.getZExtValue();
853
if (!refineRxSBGMask(RxSBG, Mask))
854
return false;
855
}
856
RxSBG.Input = Input;
857
return true;
858
}
859
860
case ISD::ROTL: {
861
// Any 64-bit rotate left can be merged into the RxSBG.
862
if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
863
return false;
864
auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
865
if (!CountNode)
866
return false;
867
868
RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
869
RxSBG.Input = N.getOperand(0);
870
return true;
871
}
872
873
case ISD::ANY_EXTEND:
874
// Bits above the extended operand are don't-care.
875
RxSBG.Input = N.getOperand(0);
876
return true;
877
878
case ISD::ZERO_EXTEND:
879
if (RxSBG.Opcode != SystemZ::RNSBG) {
880
// Restrict the mask to the extended operand.
881
unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
882
if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize)))
883
return false;
884
885
RxSBG.Input = N.getOperand(0);
886
return true;
887
}
888
[[fallthrough]];
889
890
case ISD::SIGN_EXTEND: {
891
// Check that the extension bits are don't-care (i.e. are masked out
892
// by the final mask).
893
unsigned BitSize = N.getValueSizeInBits();
894
unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
895
if (maskMatters(RxSBG, allOnes(BitSize) - allOnes(InnerBitSize))) {
896
// In the case where only the sign bit is active, increase Rotate with
897
// the extension width.
898
if (RxSBG.Mask == 1 && RxSBG.Rotate == 1)
899
RxSBG.Rotate += (BitSize - InnerBitSize);
900
else
901
return false;
902
}
903
904
RxSBG.Input = N.getOperand(0);
905
return true;
906
}
907
908
case ISD::SHL: {
909
auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
910
if (!CountNode)
911
return false;
912
913
uint64_t Count = CountNode->getZExtValue();
914
unsigned BitSize = N.getValueSizeInBits();
915
if (Count < 1 || Count >= BitSize)
916
return false;
917
918
if (RxSBG.Opcode == SystemZ::RNSBG) {
919
// Treat (shl X, count) as (rotl X, size-count) as long as the bottom
920
// count bits from RxSBG.Input are ignored.
921
if (maskMatters(RxSBG, allOnes(Count)))
922
return false;
923
} else {
924
// Treat (shl X, count) as (and (rotl X, count), ~0<<count).
925
if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count))
926
return false;
927
}
928
929
RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
930
RxSBG.Input = N.getOperand(0);
931
return true;
932
}
933
934
case ISD::SRL:
935
case ISD::SRA: {
936
auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
937
if (!CountNode)
938
return false;
939
940
uint64_t Count = CountNode->getZExtValue();
941
unsigned BitSize = N.getValueSizeInBits();
942
if (Count < 1 || Count >= BitSize)
943
return false;
944
945
if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
946
// Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
947
// count bits from RxSBG.Input are ignored.
948
if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count)))
949
return false;
950
} else {
951
// Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
952
// which is similar to SLL above.
953
if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count)))
954
return false;
955
}
956
957
RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
958
RxSBG.Input = N.getOperand(0);
959
return true;
960
}
961
default:
962
return false;
963
}
964
}
965
966
SDValue SystemZDAGToDAGISel::getUNDEF(const SDLoc &DL, EVT VT) const {
967
SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
968
return SDValue(N, 0);
969
}
970
971
SDValue SystemZDAGToDAGISel::convertTo(const SDLoc &DL, EVT VT,
972
SDValue N) const {
973
if (N.getValueType() == MVT::i32 && VT == MVT::i64)
974
return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32,
975
DL, VT, getUNDEF(DL, MVT::i64), N);
976
if (N.getValueType() == MVT::i64 && VT == MVT::i32)
977
return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N);
978
assert(N.getValueType() == VT && "Unexpected value types");
979
return N;
980
}
981
982
bool SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
983
SDLoc DL(N);
984
EVT VT = N->getValueType(0);
985
if (!VT.isInteger() || VT.getSizeInBits() > 64)
986
return false;
987
RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
988
unsigned Count = 0;
989
while (expandRxSBG(RISBG))
990
// The widening or narrowing is expected to be free.
991
// Counting widening or narrowing as a saved operation will result in
992
// preferring an R*SBG over a simple shift/logical instruction.
993
if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND &&
994
RISBG.Input.getOpcode() != ISD::TRUNCATE)
995
Count += 1;
996
if (Count == 0 || isa<ConstantSDNode>(RISBG.Input))
997
return false;
998
999
// Prefer to use normal shift instructions over RISBG, since they can handle
1000
// all cases and are sometimes shorter.
1001
if (Count == 1 && N->getOpcode() != ISD::AND)
1002
return false;
1003
1004
// Prefer register extensions like LLC over RISBG. Also prefer to start
1005
// out with normal ANDs if one instruction would be enough. We can convert
1006
// these ANDs into an RISBG later if a three-address instruction is useful.
1007
if (RISBG.Rotate == 0) {
1008
bool PreferAnd = false;
1009
// Prefer AND for any 32-bit and-immediate operation.
1010
if (VT == MVT::i32)
1011
PreferAnd = true;
1012
// As well as for any 64-bit operation that can be implemented via LLC(R),
1013
// LLH(R), LLGT(R), or one of the and-immediate instructions.
1014
else if (RISBG.Mask == 0xff ||
1015
RISBG.Mask == 0xffff ||
1016
RISBG.Mask == 0x7fffffff ||
1017
SystemZ::isImmLF(~RISBG.Mask) ||
1018
SystemZ::isImmHF(~RISBG.Mask))
1019
PreferAnd = true;
1020
// And likewise for the LLZRGF instruction, which doesn't have a register
1021
// to register version.
1022
else if (auto *Load = dyn_cast<LoadSDNode>(RISBG.Input)) {
1023
if (Load->getMemoryVT() == MVT::i32 &&
1024
(Load->getExtensionType() == ISD::EXTLOAD ||
1025
Load->getExtensionType() == ISD::ZEXTLOAD) &&
1026
RISBG.Mask == 0xffffff00 &&
1027
Subtarget->hasLoadAndZeroRightmostByte())
1028
PreferAnd = true;
1029
}
1030
if (PreferAnd) {
1031
// Replace the current node with an AND. Note that the current node
1032
// might already be that same AND, in which case it is already CSE'd
1033
// with it, and we must not call ReplaceNode.
1034
SDValue In = convertTo(DL, VT, RISBG.Input);
1035
SDValue Mask = CurDAG->getConstant(RISBG.Mask, DL, VT);
1036
SDValue New = CurDAG->getNode(ISD::AND, DL, VT, In, Mask);
1037
if (N != New.getNode()) {
1038
insertDAGNode(CurDAG, N, Mask);
1039
insertDAGNode(CurDAG, N, New);
1040
ReplaceNode(N, New.getNode());
1041
N = New.getNode();
1042
}
1043
// Now, select the machine opcode to implement this operation.
1044
if (!N->isMachineOpcode())
1045
SelectCode(N);
1046
return true;
1047
}
1048
}
1049
1050
unsigned Opcode = SystemZ::RISBG;
1051
// Prefer RISBGN if available, since it does not clobber CC.
1052
if (Subtarget->hasMiscellaneousExtensions())
1053
Opcode = SystemZ::RISBGN;
1054
EVT OpcodeVT = MVT::i64;
1055
if (VT == MVT::i32 && Subtarget->hasHighWord() &&
1056
// We can only use the 32-bit instructions if all source bits are
1057
// in the low 32 bits without wrapping, both after rotation (because
1058
// of the smaller range for Start and End) and before rotation
1059
// (because the input value is truncated).
1060
RISBG.Start >= 32 && RISBG.End >= RISBG.Start &&
1061
((RISBG.Start + RISBG.Rotate) & 63) >= 32 &&
1062
((RISBG.End + RISBG.Rotate) & 63) >=
1063
((RISBG.Start + RISBG.Rotate) & 63)) {
1064
Opcode = SystemZ::RISBMux;
1065
OpcodeVT = MVT::i32;
1066
RISBG.Start &= 31;
1067
RISBG.End &= 31;
1068
}
1069
SDValue Ops[5] = {
1070
getUNDEF(DL, OpcodeVT),
1071
convertTo(DL, OpcodeVT, RISBG.Input),
1072
CurDAG->getTargetConstant(RISBG.Start, DL, MVT::i32),
1073
CurDAG->getTargetConstant(RISBG.End | 128, DL, MVT::i32),
1074
CurDAG->getTargetConstant(RISBG.Rotate, DL, MVT::i32)
1075
};
1076
SDValue New = convertTo(
1077
DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, OpcodeVT, Ops), 0));
1078
ReplaceNode(N, New.getNode());
1079
return true;
1080
}
1081
1082
bool SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
1083
SDLoc DL(N);
1084
EVT VT = N->getValueType(0);
1085
if (!VT.isInteger() || VT.getSizeInBits() > 64)
1086
return false;
1087
// Try treating each operand of N as the second operand of the RxSBG
1088
// and see which goes deepest.
1089
RxSBGOperands RxSBG[] = {
1090
RxSBGOperands(Opcode, N->getOperand(0)),
1091
RxSBGOperands(Opcode, N->getOperand(1))
1092
};
1093
unsigned Count[] = { 0, 0 };
1094
for (unsigned I = 0; I < 2; ++I)
1095
while (RxSBG[I].Input->hasOneUse() && expandRxSBG(RxSBG[I]))
1096
// In cases of multiple users it seems better to keep the simple
1097
// instruction as they are one cycle faster, and it also helps in cases
1098
// where both inputs share a common node.
1099
// The widening or narrowing is expected to be free. Counting widening
1100
// or narrowing as a saved operation will result in preferring an R*SBG
1101
// over a simple shift/logical instruction.
1102
if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND &&
1103
RxSBG[I].Input.getOpcode() != ISD::TRUNCATE)
1104
Count[I] += 1;
1105
1106
// Do nothing if neither operand is suitable.
1107
if (Count[0] == 0 && Count[1] == 0)
1108
return false;
1109
1110
// Pick the deepest second operand.
1111
unsigned I = Count[0] > Count[1] ? 0 : 1;
1112
SDValue Op0 = N->getOperand(I ^ 1);
1113
1114
// Prefer IC for character insertions from memory.
1115
if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
1116
if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
1117
if (Load->getMemoryVT() == MVT::i8)
1118
return false;
1119
1120
// See whether we can avoid an AND in the first operand by converting
1121
// ROSBG to RISBG.
1122
if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask)) {
1123
Opcode = SystemZ::RISBG;
1124
// Prefer RISBGN if available, since it does not clobber CC.
1125
if (Subtarget->hasMiscellaneousExtensions())
1126
Opcode = SystemZ::RISBGN;
1127
}
1128
1129
SDValue Ops[5] = {
1130
convertTo(DL, MVT::i64, Op0),
1131
convertTo(DL, MVT::i64, RxSBG[I].Input),
1132
CurDAG->getTargetConstant(RxSBG[I].Start, DL, MVT::i32),
1133
CurDAG->getTargetConstant(RxSBG[I].End, DL, MVT::i32),
1134
CurDAG->getTargetConstant(RxSBG[I].Rotate, DL, MVT::i32)
1135
};
1136
SDValue New = convertTo(
1137
DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, MVT::i64, Ops), 0));
1138
ReplaceNode(N, New.getNode());
1139
return true;
1140
}
1141
1142
void SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
1143
SDValue Op0, uint64_t UpperVal,
1144
uint64_t LowerVal) {
1145
EVT VT = Node->getValueType(0);
1146
SDLoc DL(Node);
1147
SDValue Upper = CurDAG->getConstant(UpperVal, DL, VT);
1148
if (Op0.getNode())
1149
Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
1150
1151
{
1152
// When we haven't passed in Op0, Upper will be a constant. In order to
1153
// prevent folding back to the large immediate in `Or = getNode(...)` we run
1154
// SelectCode first and end up with an opaque machine node. This means that
1155
// we need to use a handle to keep track of Upper in case it gets CSE'd by
1156
// SelectCode.
1157
//
1158
// Note that in the case where Op0 is passed in we could just call
1159
// SelectCode(Upper) later, along with the SelectCode(Or), and avoid needing
1160
// the handle at all, but it's fine to do it here.
1161
//
1162
// TODO: This is a pretty hacky way to do this. Can we do something that
1163
// doesn't require a two paragraph explanation?
1164
HandleSDNode Handle(Upper);
1165
SelectCode(Upper.getNode());
1166
Upper = Handle.getValue();
1167
}
1168
1169
SDValue Lower = CurDAG->getConstant(LowerVal, DL, VT);
1170
SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
1171
1172
ReplaceNode(Node, Or.getNode());
1173
1174
SelectCode(Or.getNode());
1175
}
1176
1177
void SystemZDAGToDAGISel::loadVectorConstant(
1178
const SystemZVectorConstantInfo &VCI, SDNode *Node) {
1179
assert((VCI.Opcode == SystemZISD::BYTE_MASK ||
1180
VCI.Opcode == SystemZISD::REPLICATE ||
1181
VCI.Opcode == SystemZISD::ROTATE_MASK) &&
1182
"Bad opcode!");
1183
assert(VCI.VecVT.getSizeInBits() == 128 && "Expected a vector type");
1184
EVT VT = Node->getValueType(0);
1185
SDLoc DL(Node);
1186
SmallVector<SDValue, 2> Ops;
1187
for (unsigned OpVal : VCI.OpVals)
1188
Ops.push_back(CurDAG->getTargetConstant(OpVal, DL, MVT::i32));
1189
SDValue Op = CurDAG->getNode(VCI.Opcode, DL, VCI.VecVT, Ops);
1190
1191
if (VCI.VecVT == VT.getSimpleVT())
1192
ReplaceNode(Node, Op.getNode());
1193
else if (VT.getSizeInBits() == 128) {
1194
SDValue BitCast = CurDAG->getNode(ISD::BITCAST, DL, VT, Op);
1195
ReplaceNode(Node, BitCast.getNode());
1196
SelectCode(BitCast.getNode());
1197
} else { // float or double
1198
unsigned SubRegIdx =
1199
(VT.getSizeInBits() == 32 ? SystemZ::subreg_h32 : SystemZ::subreg_h64);
1200
ReplaceNode(
1201
Node, CurDAG->getTargetExtractSubreg(SubRegIdx, DL, VT, Op).getNode());
1202
}
1203
SelectCode(Op.getNode());
1204
}
1205
1206
SDNode *SystemZDAGToDAGISel::loadPoolVectorConstant(APInt Val, EVT VT, SDLoc DL) {
1207
SDNode *ResNode;
1208
assert (VT.getSizeInBits() == 128);
1209
1210
SDValue CP = CurDAG->getTargetConstantPool(
1211
ConstantInt::get(Type::getInt128Ty(*CurDAG->getContext()), Val),
1212
TLI->getPointerTy(CurDAG->getDataLayout()));
1213
1214
EVT PtrVT = CP.getValueType();
1215
SDValue Ops[] = {
1216
SDValue(CurDAG->getMachineNode(SystemZ::LARL, DL, PtrVT, CP), 0),
1217
CurDAG->getTargetConstant(0, DL, PtrVT),
1218
CurDAG->getRegister(0, PtrVT),
1219
CurDAG->getEntryNode()
1220
};
1221
ResNode = CurDAG->getMachineNode(SystemZ::VL, DL, VT, MVT::Other, Ops);
1222
1223
// Annotate ResNode with memory operand information so that MachineInstr
1224
// queries work properly. This e.g. gives the register allocation the
1225
// required information for rematerialization.
1226
MachineFunction& MF = CurDAG->getMachineFunction();
1227
MachineMemOperand *MemOp =
1228
MF.getMachineMemOperand(MachinePointerInfo::getConstantPool(MF),
1229
MachineMemOperand::MOLoad, 16, Align(8));
1230
1231
CurDAG->setNodeMemRefs(cast<MachineSDNode>(ResNode), {MemOp});
1232
return ResNode;
1233
}
1234
1235
bool SystemZDAGToDAGISel::tryGather(SDNode *N, unsigned Opcode) {
1236
SDValue ElemV = N->getOperand(2);
1237
auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1238
if (!ElemN)
1239
return false;
1240
1241
unsigned Elem = ElemN->getZExtValue();
1242
EVT VT = N->getValueType(0);
1243
if (Elem >= VT.getVectorNumElements())
1244
return false;
1245
1246
auto *Load = dyn_cast<LoadSDNode>(N->getOperand(1));
1247
if (!Load || !Load->hasNUsesOfValue(1, 0))
1248
return false;
1249
if (Load->getMemoryVT().getSizeInBits() !=
1250
Load->getValueType(0).getSizeInBits())
1251
return false;
1252
1253
SDValue Base, Disp, Index;
1254
if (!selectBDVAddr12Only(Load->getBasePtr(), ElemV, Base, Disp, Index) ||
1255
Index.getValueType() != VT.changeVectorElementTypeToInteger())
1256
return false;
1257
1258
SDLoc DL(Load);
1259
SDValue Ops[] = {
1260
N->getOperand(0), Base, Disp, Index,
1261
CurDAG->getTargetConstant(Elem, DL, MVT::i32), Load->getChain()
1262
};
1263
SDNode *Res = CurDAG->getMachineNode(Opcode, DL, VT, MVT::Other, Ops);
1264
ReplaceUses(SDValue(Load, 1), SDValue(Res, 1));
1265
ReplaceNode(N, Res);
1266
return true;
1267
}
1268
1269
bool SystemZDAGToDAGISel::tryScatter(StoreSDNode *Store, unsigned Opcode) {
1270
SDValue Value = Store->getValue();
1271
if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1272
return false;
1273
if (Store->getMemoryVT().getSizeInBits() != Value.getValueSizeInBits())
1274
return false;
1275
1276
SDValue ElemV = Value.getOperand(1);
1277
auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1278
if (!ElemN)
1279
return false;
1280
1281
SDValue Vec = Value.getOperand(0);
1282
EVT VT = Vec.getValueType();
1283
unsigned Elem = ElemN->getZExtValue();
1284
if (Elem >= VT.getVectorNumElements())
1285
return false;
1286
1287
SDValue Base, Disp, Index;
1288
if (!selectBDVAddr12Only(Store->getBasePtr(), ElemV, Base, Disp, Index) ||
1289
Index.getValueType() != VT.changeVectorElementTypeToInteger())
1290
return false;
1291
1292
SDLoc DL(Store);
1293
SDValue Ops[] = {
1294
Vec, Base, Disp, Index, CurDAG->getTargetConstant(Elem, DL, MVT::i32),
1295
Store->getChain()
1296
};
1297
ReplaceNode(Store, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
1298
return true;
1299
}
1300
1301
// Check whether or not the chain ending in StoreNode is suitable for doing
1302
// the {load; op; store} to modify transformation.
1303
static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
1304
SDValue StoredVal, SelectionDAG *CurDAG,
1305
LoadSDNode *&LoadNode,
1306
SDValue &InputChain) {
1307
// Is the stored value result 0 of the operation?
1308
if (StoredVal.getResNo() != 0)
1309
return false;
1310
1311
// Are there other uses of the loaded value than the operation?
1312
if (!StoredVal.getNode()->hasNUsesOfValue(1, 0))
1313
return false;
1314
1315
// Is the store non-extending and non-indexed?
1316
if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
1317
return false;
1318
1319
SDValue Load = StoredVal->getOperand(0);
1320
// Is the stored value a non-extending and non-indexed load?
1321
if (!ISD::isNormalLoad(Load.getNode()))
1322
return false;
1323
1324
// Return LoadNode by reference.
1325
LoadNode = cast<LoadSDNode>(Load);
1326
1327
// Is store the only read of the loaded value?
1328
if (!Load.hasOneUse())
1329
return false;
1330
1331
// Is the address of the store the same as the load?
1332
if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1333
LoadNode->getOffset() != StoreNode->getOffset())
1334
return false;
1335
1336
// Check if the chain is produced by the load or is a TokenFactor with
1337
// the load output chain as an operand. Return InputChain by reference.
1338
SDValue Chain = StoreNode->getChain();
1339
1340
bool ChainCheck = false;
1341
if (Chain == Load.getValue(1)) {
1342
ChainCheck = true;
1343
InputChain = LoadNode->getChain();
1344
} else if (Chain.getOpcode() == ISD::TokenFactor) {
1345
SmallVector<SDValue, 4> ChainOps;
1346
SmallVector<const SDNode *, 4> LoopWorklist;
1347
SmallPtrSet<const SDNode *, 16> Visited;
1348
const unsigned int Max = 1024;
1349
for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1350
SDValue Op = Chain.getOperand(i);
1351
if (Op == Load.getValue(1)) {
1352
ChainCheck = true;
1353
// Drop Load, but keep its chain. No cycle check necessary.
1354
ChainOps.push_back(Load.getOperand(0));
1355
continue;
1356
}
1357
LoopWorklist.push_back(Op.getNode());
1358
ChainOps.push_back(Op);
1359
}
1360
1361
if (ChainCheck) {
1362
// Add the other operand of StoredVal to worklist.
1363
for (SDValue Op : StoredVal->ops())
1364
if (Op.getNode() != LoadNode)
1365
LoopWorklist.push_back(Op.getNode());
1366
1367
// Check if Load is reachable from any of the nodes in the worklist.
1368
if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max,
1369
true))
1370
return false;
1371
1372
// Make a new TokenFactor with all the other input chains except
1373
// for the load.
1374
InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
1375
MVT::Other, ChainOps);
1376
}
1377
}
1378
if (!ChainCheck)
1379
return false;
1380
1381
return true;
1382
}
1383
1384
// Change a chain of {load; op; store} of the same value into a simple op
1385
// through memory of that value, if the uses of the modified value and its
1386
// address are suitable.
1387
//
1388
// The tablegen pattern memory operand pattern is currently not able to match
1389
// the case where the CC on the original operation are used.
1390
//
1391
// See the equivalent routine in X86ISelDAGToDAG for further comments.
1392
bool SystemZDAGToDAGISel::tryFoldLoadStoreIntoMemOperand(SDNode *Node) {
1393
StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
1394
SDValue StoredVal = StoreNode->getOperand(1);
1395
unsigned Opc = StoredVal->getOpcode();
1396
SDLoc DL(StoreNode);
1397
1398
// Before we try to select anything, make sure this is memory operand size
1399
// and opcode we can handle. Note that this must match the code below that
1400
// actually lowers the opcodes.
1401
EVT MemVT = StoreNode->getMemoryVT();
1402
unsigned NewOpc = 0;
1403
bool NegateOperand = false;
1404
switch (Opc) {
1405
default:
1406
return false;
1407
case SystemZISD::SSUBO:
1408
NegateOperand = true;
1409
[[fallthrough]];
1410
case SystemZISD::SADDO:
1411
if (MemVT == MVT::i32)
1412
NewOpc = SystemZ::ASI;
1413
else if (MemVT == MVT::i64)
1414
NewOpc = SystemZ::AGSI;
1415
else
1416
return false;
1417
break;
1418
case SystemZISD::USUBO:
1419
NegateOperand = true;
1420
[[fallthrough]];
1421
case SystemZISD::UADDO:
1422
if (MemVT == MVT::i32)
1423
NewOpc = SystemZ::ALSI;
1424
else if (MemVT == MVT::i64)
1425
NewOpc = SystemZ::ALGSI;
1426
else
1427
return false;
1428
break;
1429
}
1430
1431
LoadSDNode *LoadNode = nullptr;
1432
SDValue InputChain;
1433
if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadNode,
1434
InputChain))
1435
return false;
1436
1437
SDValue Operand = StoredVal.getOperand(1);
1438
auto *OperandC = dyn_cast<ConstantSDNode>(Operand);
1439
if (!OperandC)
1440
return false;
1441
auto OperandV = OperandC->getAPIntValue();
1442
if (NegateOperand)
1443
OperandV = -OperandV;
1444
if (OperandV.getSignificantBits() > 8)
1445
return false;
1446
Operand = CurDAG->getTargetConstant(OperandV, DL, MemVT);
1447
1448
SDValue Base, Disp;
1449
if (!selectBDAddr20Only(StoreNode->getBasePtr(), Base, Disp))
1450
return false;
1451
1452
SDValue Ops[] = { Base, Disp, Operand, InputChain };
1453
MachineSDNode *Result =
1454
CurDAG->getMachineNode(NewOpc, DL, MVT::i32, MVT::Other, Ops);
1455
CurDAG->setNodeMemRefs(
1456
Result, {StoreNode->getMemOperand(), LoadNode->getMemOperand()});
1457
1458
ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
1459
ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
1460
CurDAG->RemoveDeadNode(Node);
1461
return true;
1462
}
1463
1464
bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
1465
LoadSDNode *Load) const {
1466
// Check that the two memory operands have the same size.
1467
if (Load->getMemoryVT() != Store->getMemoryVT())
1468
return false;
1469
1470
// Volatility stops an access from being decomposed.
1471
if (Load->isVolatile() || Store->isVolatile())
1472
return false;
1473
1474
// There's no chance of overlap if the load is invariant.
1475
if (Load->isInvariant() && Load->isDereferenceable())
1476
return true;
1477
1478
// Otherwise we need to check whether there's an alias.
1479
const Value *V1 = Load->getMemOperand()->getValue();
1480
const Value *V2 = Store->getMemOperand()->getValue();
1481
if (!V1 || !V2)
1482
return false;
1483
1484
// Reject equality.
1485
uint64_t Size = Load->getMemoryVT().getStoreSize();
1486
int64_t End1 = Load->getSrcValueOffset() + Size;
1487
int64_t End2 = Store->getSrcValueOffset() + Size;
1488
if (V1 == V2 && End1 == End2)
1489
return false;
1490
1491
return AA->isNoAlias(MemoryLocation(V1, End1, Load->getAAInfo()),
1492
MemoryLocation(V2, End2, Store->getAAInfo()));
1493
}
1494
1495
bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
1496
auto *Store = cast<StoreSDNode>(N);
1497
auto *Load = cast<LoadSDNode>(Store->getValue());
1498
1499
// Prefer not to use MVC if either address can use ... RELATIVE LONG
1500
// instructions.
1501
uint64_t Size = Load->getMemoryVT().getStoreSize();
1502
if (Size > 1 && Size <= 8) {
1503
// Prefer LHRL, LRL and LGRL.
1504
if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode()))
1505
return false;
1506
// Prefer STHRL, STRL and STGRL.
1507
if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode()))
1508
return false;
1509
}
1510
1511
return canUseBlockOperation(Store, Load);
1512
}
1513
1514
bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
1515
unsigned I) const {
1516
auto *StoreA = cast<StoreSDNode>(N);
1517
auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
1518
auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
1519
return !LoadA->isVolatile() && LoadA->getMemoryVT() == LoadB->getMemoryVT() &&
1520
canUseBlockOperation(StoreA, LoadB);
1521
}
1522
1523
bool SystemZDAGToDAGISel::storeLoadIsAligned(SDNode *N) const {
1524
1525
auto *MemAccess = cast<MemSDNode>(N);
1526
auto *LdSt = dyn_cast<LSBaseSDNode>(MemAccess);
1527
TypeSize StoreSize = MemAccess->getMemoryVT().getStoreSize();
1528
SDValue BasePtr = MemAccess->getBasePtr();
1529
MachineMemOperand *MMO = MemAccess->getMemOperand();
1530
assert(MMO && "Expected a memory operand.");
1531
1532
// The memory access must have a proper alignment and no index register.
1533
// Only load and store nodes have the offset operand (atomic loads do not).
1534
if (MemAccess->getAlign().value() < StoreSize ||
1535
(LdSt && !LdSt->getOffset().isUndef()))
1536
return false;
1537
1538
// The MMO must not have an unaligned offset.
1539
if (MMO->getOffset() % StoreSize != 0)
1540
return false;
1541
1542
// An access to GOT or the Constant Pool is aligned.
1543
if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1544
if ((PSV->isGOT() || PSV->isConstantPool()))
1545
return true;
1546
1547
// Check the alignment of a Global Address.
1548
if (BasePtr.getNumOperands())
1549
if (GlobalAddressSDNode *GA =
1550
dyn_cast<GlobalAddressSDNode>(BasePtr.getOperand(0))) {
1551
// The immediate offset must be aligned.
1552
if (GA->getOffset() % StoreSize != 0)
1553
return false;
1554
1555
// The alignment of the symbol itself must be at least the store size.
1556
const GlobalValue *GV = GA->getGlobal();
1557
const DataLayout &DL = GV->getDataLayout();
1558
if (GV->getPointerAlignment(DL).value() < StoreSize)
1559
return false;
1560
}
1561
1562
return true;
1563
}
1564
1565
ISD::LoadExtType SystemZDAGToDAGISel::getLoadExtType(SDNode *N) const {
1566
ISD::LoadExtType ETy;
1567
if (auto *L = dyn_cast<LoadSDNode>(N))
1568
ETy = L->getExtensionType();
1569
else if (auto *AL = dyn_cast<AtomicSDNode>(N))
1570
ETy = AL->getExtensionType();
1571
else
1572
llvm_unreachable("Unkown load node type.");
1573
return ETy;
1574
}
1575
1576
void SystemZDAGToDAGISel::Select(SDNode *Node) {
1577
// If we have a custom node, we already have selected!
1578
if (Node->isMachineOpcode()) {
1579
LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
1580
Node->setNodeId(-1);
1581
return;
1582
}
1583
1584
unsigned Opcode = Node->getOpcode();
1585
switch (Opcode) {
1586
case ISD::OR:
1587
if (Node->getOperand(1).getOpcode() != ISD::Constant)
1588
if (tryRxSBG(Node, SystemZ::ROSBG))
1589
return;
1590
goto or_xor;
1591
1592
case ISD::XOR:
1593
if (Node->getOperand(1).getOpcode() != ISD::Constant)
1594
if (tryRxSBG(Node, SystemZ::RXSBG))
1595
return;
1596
// Fall through.
1597
or_xor:
1598
// If this is a 64-bit operation in which both 32-bit halves are nonzero,
1599
// split the operation into two. If both operands here happen to be
1600
// constant, leave this to common code to optimize.
1601
if (Node->getValueType(0) == MVT::i64 &&
1602
Node->getOperand(0).getOpcode() != ISD::Constant)
1603
if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
1604
uint64_t Val = Op1->getZExtValue();
1605
// Don't split the operation if we can match one of the combined
1606
// logical operations provided by miscellaneous-extensions-3.
1607
if (Subtarget->hasMiscellaneousExtensions3()) {
1608
unsigned ChildOpcode = Node->getOperand(0).getOpcode();
1609
// Check whether this expression matches NAND/NOR/NXOR.
1610
if (Val == (uint64_t)-1 && Opcode == ISD::XOR)
1611
if (ChildOpcode == ISD::AND || ChildOpcode == ISD::OR ||
1612
ChildOpcode == ISD::XOR)
1613
break;
1614
// Check whether this expression matches OR-with-complement
1615
// (or matches an alternate pattern for NXOR).
1616
if (ChildOpcode == ISD::XOR) {
1617
auto Op0 = Node->getOperand(0);
1618
if (auto *Op0Op1 = dyn_cast<ConstantSDNode>(Op0->getOperand(1)))
1619
if (Op0Op1->getZExtValue() == (uint64_t)-1)
1620
break;
1621
}
1622
}
1623
// Don't split an XOR with -1 as LCGR/AGHI is more compact.
1624
if (Opcode == ISD::XOR && Op1->isAllOnes())
1625
break;
1626
if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val)) {
1627
splitLargeImmediate(Opcode, Node, Node->getOperand(0),
1628
Val - uint32_t(Val), uint32_t(Val));
1629
return;
1630
}
1631
}
1632
break;
1633
1634
case ISD::AND:
1635
if (Node->getOperand(1).getOpcode() != ISD::Constant)
1636
if (tryRxSBG(Node, SystemZ::RNSBG))
1637
return;
1638
[[fallthrough]];
1639
case ISD::ROTL:
1640
case ISD::SHL:
1641
case ISD::SRL:
1642
case ISD::ZERO_EXTEND:
1643
if (tryRISBGZero(Node))
1644
return;
1645
break;
1646
1647
case ISD::BSWAP:
1648
if (Node->getValueType(0) == MVT::i128) {
1649
SDLoc DL(Node);
1650
SDValue Src = Node->getOperand(0);
1651
Src = CurDAG->getNode(ISD::BITCAST, DL, MVT::v16i8, Src);
1652
1653
uint64_t Bytes[2] = { 0x0706050403020100ULL, 0x0f0e0d0c0b0a0908ULL };
1654
SDNode *Mask = loadPoolVectorConstant(APInt(128, Bytes), MVT::v16i8, DL);
1655
SDValue Ops[] = { Src, Src, SDValue(Mask, 0) };
1656
SDValue Res = SDValue(CurDAG->getMachineNode(SystemZ::VPERM, DL,
1657
MVT::v16i8, Ops), 0);
1658
1659
Res = CurDAG->getNode(ISD::BITCAST, DL, MVT::i128, Res);
1660
SDNode *ResNode = Res.getNode();
1661
ReplaceNode(Node, ResNode);
1662
SelectCode(Src.getNode());
1663
SelectCode(ResNode);
1664
return;
1665
}
1666
break;
1667
1668
case ISD::Constant:
1669
// If this is a 64-bit constant that is out of the range of LLILF,
1670
// LLIHF and LGFI, split it into two 32-bit pieces.
1671
if (Node->getValueType(0) == MVT::i64) {
1672
uint64_t Val = Node->getAsZExtVal();
1673
if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val)) {
1674
splitLargeImmediate(ISD::OR, Node, SDValue(), Val - uint32_t(Val),
1675
uint32_t(Val));
1676
return;
1677
}
1678
}
1679
if (Node->getValueType(0) == MVT::i128) {
1680
const APInt &Val = Node->getAsAPIntVal();
1681
SystemZVectorConstantInfo VCI(Val);
1682
if (VCI.isVectorConstantLegal(*Subtarget)) {
1683
loadVectorConstant(VCI, Node);
1684
return;
1685
}
1686
// If we can't materialize the constant we need to use a literal pool.
1687
SDNode *ResNode = loadPoolVectorConstant(Val, MVT::i128, SDLoc(Node));
1688
ReplaceNode(Node, ResNode);
1689
return;
1690
}
1691
break;
1692
1693
case SystemZISD::SELECT_CCMASK: {
1694
SDValue Op0 = Node->getOperand(0);
1695
SDValue Op1 = Node->getOperand(1);
1696
// Prefer to put any load first, so that it can be matched as a
1697
// conditional load. Likewise for constants in range for LOCHI.
1698
if ((Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) ||
1699
(Subtarget->hasLoadStoreOnCond2() &&
1700
Node->getValueType(0).isInteger() &&
1701
Node->getValueType(0).getSizeInBits() <= 64 &&
1702
Op1.getOpcode() == ISD::Constant &&
1703
isInt<16>(cast<ConstantSDNode>(Op1)->getSExtValue()) &&
1704
!(Op0.getOpcode() == ISD::Constant &&
1705
isInt<16>(cast<ConstantSDNode>(Op0)->getSExtValue())))) {
1706
SDValue CCValid = Node->getOperand(2);
1707
SDValue CCMask = Node->getOperand(3);
1708
uint64_t ConstCCValid = CCValid.getNode()->getAsZExtVal();
1709
uint64_t ConstCCMask = CCMask.getNode()->getAsZExtVal();
1710
// Invert the condition.
1711
CCMask = CurDAG->getTargetConstant(ConstCCValid ^ ConstCCMask,
1712
SDLoc(Node), CCMask.getValueType());
1713
SDValue Op4 = Node->getOperand(4);
1714
SDNode *UpdatedNode =
1715
CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
1716
if (UpdatedNode != Node) {
1717
// In case this node already exists then replace Node with it.
1718
ReplaceNode(Node, UpdatedNode);
1719
Node = UpdatedNode;
1720
}
1721
}
1722
break;
1723
}
1724
1725
case ISD::INSERT_VECTOR_ELT: {
1726
EVT VT = Node->getValueType(0);
1727
unsigned ElemBitSize = VT.getScalarSizeInBits();
1728
if (ElemBitSize == 32) {
1729
if (tryGather(Node, SystemZ::VGEF))
1730
return;
1731
} else if (ElemBitSize == 64) {
1732
if (tryGather(Node, SystemZ::VGEG))
1733
return;
1734
}
1735
break;
1736
}
1737
1738
case ISD::BUILD_VECTOR: {
1739
auto *BVN = cast<BuildVectorSDNode>(Node);
1740
SystemZVectorConstantInfo VCI(BVN);
1741
if (VCI.isVectorConstantLegal(*Subtarget)) {
1742
loadVectorConstant(VCI, Node);
1743
return;
1744
}
1745
break;
1746
}
1747
1748
case ISD::ConstantFP: {
1749
APFloat Imm = cast<ConstantFPSDNode>(Node)->getValueAPF();
1750
if (Imm.isZero() || Imm.isNegZero())
1751
break;
1752
SystemZVectorConstantInfo VCI(Imm);
1753
bool Success = VCI.isVectorConstantLegal(*Subtarget); (void)Success;
1754
assert(Success && "Expected legal FP immediate");
1755
loadVectorConstant(VCI, Node);
1756
return;
1757
}
1758
1759
case ISD::STORE: {
1760
if (tryFoldLoadStoreIntoMemOperand(Node))
1761
return;
1762
auto *Store = cast<StoreSDNode>(Node);
1763
unsigned ElemBitSize = Store->getValue().getValueSizeInBits();
1764
if (ElemBitSize == 32) {
1765
if (tryScatter(Store, SystemZ::VSCEF))
1766
return;
1767
} else if (ElemBitSize == 64) {
1768
if (tryScatter(Store, SystemZ::VSCEG))
1769
return;
1770
}
1771
break;
1772
}
1773
1774
case ISD::ATOMIC_STORE: {
1775
auto *AtomOp = cast<AtomicSDNode>(Node);
1776
// Replace the atomic_store with a regular store and select it. This is
1777
// ok since we know all store instructions <= 8 bytes are atomic, and the
1778
// 16 byte case is already handled during lowering.
1779
StoreSDNode *St = cast<StoreSDNode>(CurDAG->getTruncStore(
1780
AtomOp->getChain(), SDLoc(AtomOp), AtomOp->getVal(),
1781
AtomOp->getBasePtr(), AtomOp->getMemoryVT(), AtomOp->getMemOperand()));
1782
assert(St->getMemOperand()->isAtomic() && "Broken MMO.");
1783
SDNode *Chain = St;
1784
// We have to enforce sequential consistency by performing a
1785
// serialization operation after the store.
1786
if (AtomOp->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent)
1787
Chain = CurDAG->getMachineNode(SystemZ::Serialize, SDLoc(AtomOp),
1788
MVT::Other, SDValue(Chain, 0));
1789
ReplaceNode(Node, Chain);
1790
SelectCode(St);
1791
return;
1792
}
1793
}
1794
1795
SelectCode(Node);
1796
}
1797
1798
bool SystemZDAGToDAGISel::SelectInlineAsmMemoryOperand(
1799
const SDValue &Op, InlineAsm::ConstraintCode ConstraintID,
1800
std::vector<SDValue> &OutOps) {
1801
SystemZAddressingMode::AddrForm Form;
1802
SystemZAddressingMode::DispRange DispRange;
1803
SDValue Base, Disp, Index;
1804
1805
switch(ConstraintID) {
1806
default:
1807
llvm_unreachable("Unexpected asm memory constraint");
1808
case InlineAsm::ConstraintCode::i:
1809
case InlineAsm::ConstraintCode::Q:
1810
case InlineAsm::ConstraintCode::ZQ:
1811
// Accept an address with a short displacement, but no index.
1812
Form = SystemZAddressingMode::FormBD;
1813
DispRange = SystemZAddressingMode::Disp12Only;
1814
break;
1815
case InlineAsm::ConstraintCode::R:
1816
case InlineAsm::ConstraintCode::ZR:
1817
// Accept an address with a short displacement and an index.
1818
Form = SystemZAddressingMode::FormBDXNormal;
1819
DispRange = SystemZAddressingMode::Disp12Only;
1820
break;
1821
case InlineAsm::ConstraintCode::S:
1822
case InlineAsm::ConstraintCode::ZS:
1823
// Accept an address with a long displacement, but no index.
1824
Form = SystemZAddressingMode::FormBD;
1825
DispRange = SystemZAddressingMode::Disp20Only;
1826
break;
1827
case InlineAsm::ConstraintCode::T:
1828
case InlineAsm::ConstraintCode::m:
1829
case InlineAsm::ConstraintCode::o:
1830
case InlineAsm::ConstraintCode::p:
1831
case InlineAsm::ConstraintCode::ZT:
1832
// Accept an address with a long displacement and an index.
1833
// m works the same as T, as this is the most general case.
1834
// We don't really have any special handling of "offsettable"
1835
// memory addresses, so just treat o the same as m.
1836
Form = SystemZAddressingMode::FormBDXNormal;
1837
DispRange = SystemZAddressingMode::Disp20Only;
1838
break;
1839
}
1840
1841
if (selectBDXAddr(Form, DispRange, Op, Base, Disp, Index)) {
1842
const TargetRegisterClass *TRC =
1843
Subtarget->getRegisterInfo()->getPointerRegClass(*MF);
1844
SDLoc DL(Base);
1845
SDValue RC = CurDAG->getTargetConstant(TRC->getID(), DL, MVT::i32);
1846
1847
// Make sure that the base address doesn't go into %r0.
1848
// If it's a TargetFrameIndex or a fixed register, we shouldn't do anything.
1849
if (Base.getOpcode() != ISD::TargetFrameIndex &&
1850
Base.getOpcode() != ISD::Register) {
1851
Base =
1852
SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1853
DL, Base.getValueType(),
1854
Base, RC), 0);
1855
}
1856
1857
// Make sure that the index register isn't assigned to %r0 either.
1858
if (Index.getOpcode() != ISD::Register) {
1859
Index =
1860
SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1861
DL, Index.getValueType(),
1862
Index, RC), 0);
1863
}
1864
1865
OutOps.push_back(Base);
1866
OutOps.push_back(Disp);
1867
OutOps.push_back(Index);
1868
return false;
1869
}
1870
1871
return true;
1872
}
1873
1874
// IsProfitableToFold - Returns true if is profitable to fold the specific
1875
// operand node N of U during instruction selection that starts at Root.
1876
bool
1877
SystemZDAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1878
SDNode *Root) const {
1879
// We want to avoid folding a LOAD into an ICMP node if as a result
1880
// we would be forced to spill the condition code into a GPR.
1881
if (N.getOpcode() == ISD::LOAD && U->getOpcode() == SystemZISD::ICMP) {
1882
if (!N.hasOneUse() || !U->hasOneUse())
1883
return false;
1884
1885
// The user of the CC value will usually be a CopyToReg into the
1886
// physical CC register, which in turn is glued and chained to the
1887
// actual instruction that uses the CC value. Bail out if we have
1888
// anything else than that.
1889
SDNode *CCUser = *U->use_begin();
1890
SDNode *CCRegUser = nullptr;
1891
if (CCUser->getOpcode() == ISD::CopyToReg ||
1892
cast<RegisterSDNode>(CCUser->getOperand(1))->getReg() == SystemZ::CC) {
1893
for (auto *U : CCUser->uses()) {
1894
if (CCRegUser == nullptr)
1895
CCRegUser = U;
1896
else if (CCRegUser != U)
1897
return false;
1898
}
1899
}
1900
if (CCRegUser == nullptr)
1901
return false;
1902
1903
// If the actual instruction is a branch, the only thing that remains to be
1904
// checked is whether the CCUser chain is a predecessor of the load.
1905
if (CCRegUser->isMachineOpcode() &&
1906
CCRegUser->getMachineOpcode() == SystemZ::BRC)
1907
return !N->isPredecessorOf(CCUser->getOperand(0).getNode());
1908
1909
// Otherwise, the instruction may have multiple operands, and we need to
1910
// verify that none of them are a predecessor of the load. This is exactly
1911
// the same check that would be done by common code if the CC setter were
1912
// glued to the CC user, so simply invoke that check here.
1913
if (!IsLegalToFold(N, U, CCRegUser, OptLevel, false))
1914
return false;
1915
}
1916
1917
return true;
1918
}
1919
1920
namespace {
1921
// Represents a sequence for extracting a 0/1 value from an IPM result:
1922
// (((X ^ XORValue) + AddValue) >> Bit)
1923
struct IPMConversion {
1924
IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
1925
: XORValue(xorValue), AddValue(addValue), Bit(bit) {}
1926
1927
int64_t XORValue;
1928
int64_t AddValue;
1929
unsigned Bit;
1930
};
1931
} // end anonymous namespace
1932
1933
// Return a sequence for getting a 1 from an IPM result when CC has a
1934
// value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1935
// The handling of CC values outside CCValid doesn't matter.
1936
static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1937
// Deal with cases where the result can be taken directly from a bit
1938
// of the IPM result.
1939
if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1940
return IPMConversion(0, 0, SystemZ::IPM_CC);
1941
if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1942
return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1943
1944
// Deal with cases where we can add a value to force the sign bit
1945
// to contain the right value. Putting the bit in 31 means we can
1946
// use SRL rather than RISBG(L), and also makes it easier to get a
1947
// 0/-1 value, so it has priority over the other tests below.
1948
//
1949
// These sequences rely on the fact that the upper two bits of the
1950
// IPM result are zero.
1951
uint64_t TopBit = uint64_t(1) << 31;
1952
if (CCMask == (CCValid & SystemZ::CCMASK_0))
1953
return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1954
if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1955
return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1956
if (CCMask == (CCValid & (SystemZ::CCMASK_0
1957
| SystemZ::CCMASK_1
1958
| SystemZ::CCMASK_2)))
1959
return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1960
if (CCMask == (CCValid & SystemZ::CCMASK_3))
1961
return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1962
if (CCMask == (CCValid & (SystemZ::CCMASK_1
1963
| SystemZ::CCMASK_2
1964
| SystemZ::CCMASK_3)))
1965
return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1966
1967
// Next try inverting the value and testing a bit. 0/1 could be
1968
// handled this way too, but we dealt with that case above.
1969
if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1970
return IPMConversion(-1, 0, SystemZ::IPM_CC);
1971
1972
// Handle cases where adding a value forces a non-sign bit to contain
1973
// the right value.
1974
if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1975
return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1976
if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1977
return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1978
1979
// The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are
1980
// can be done by inverting the low CC bit and applying one of the
1981
// sign-based extractions above.
1982
if (CCMask == (CCValid & SystemZ::CCMASK_1))
1983
return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1984
if (CCMask == (CCValid & SystemZ::CCMASK_2))
1985
return IPMConversion(1 << SystemZ::IPM_CC,
1986
TopBit - (3 << SystemZ::IPM_CC), 31);
1987
if (CCMask == (CCValid & (SystemZ::CCMASK_0
1988
| SystemZ::CCMASK_1
1989
| SystemZ::CCMASK_3)))
1990
return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1991
if (CCMask == (CCValid & (SystemZ::CCMASK_0
1992
| SystemZ::CCMASK_2
1993
| SystemZ::CCMASK_3)))
1994
return IPMConversion(1 << SystemZ::IPM_CC,
1995
TopBit - (1 << SystemZ::IPM_CC), 31);
1996
1997
llvm_unreachable("Unexpected CC combination");
1998
}
1999
2000
SDValue SystemZDAGToDAGISel::expandSelectBoolean(SDNode *Node) {
2001
auto *TrueOp = dyn_cast<ConstantSDNode>(Node->getOperand(0));
2002
auto *FalseOp = dyn_cast<ConstantSDNode>(Node->getOperand(1));
2003
if (!TrueOp || !FalseOp)
2004
return SDValue();
2005
if (FalseOp->getZExtValue() != 0)
2006
return SDValue();
2007
if (TrueOp->getSExtValue() != 1 && TrueOp->getSExtValue() != -1)
2008
return SDValue();
2009
2010
auto *CCValidOp = dyn_cast<ConstantSDNode>(Node->getOperand(2));
2011
auto *CCMaskOp = dyn_cast<ConstantSDNode>(Node->getOperand(3));
2012
if (!CCValidOp || !CCMaskOp)
2013
return SDValue();
2014
int CCValid = CCValidOp->getZExtValue();
2015
int CCMask = CCMaskOp->getZExtValue();
2016
2017
SDLoc DL(Node);
2018
SDValue CCReg = Node->getOperand(4);
2019
IPMConversion IPM = getIPMConversion(CCValid, CCMask);
2020
SDValue Result = CurDAG->getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
2021
2022
if (IPM.XORValue)
2023
Result = CurDAG->getNode(ISD::XOR, DL, MVT::i32, Result,
2024
CurDAG->getConstant(IPM.XORValue, DL, MVT::i32));
2025
2026
if (IPM.AddValue)
2027
Result = CurDAG->getNode(ISD::ADD, DL, MVT::i32, Result,
2028
CurDAG->getConstant(IPM.AddValue, DL, MVT::i32));
2029
2030
EVT VT = Node->getValueType(0);
2031
if (VT == MVT::i32 && IPM.Bit == 31) {
2032
unsigned ShiftOp = TrueOp->getSExtValue() == 1 ? ISD::SRL : ISD::SRA;
2033
Result = CurDAG->getNode(ShiftOp, DL, MVT::i32, Result,
2034
CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
2035
} else {
2036
if (VT != MVT::i32)
2037
Result = CurDAG->getNode(ISD::ANY_EXTEND, DL, VT, Result);
2038
2039
if (TrueOp->getSExtValue() == 1) {
2040
// The SHR/AND sequence should get optimized to an RISBG.
2041
Result = CurDAG->getNode(ISD::SRL, DL, VT, Result,
2042
CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
2043
Result = CurDAG->getNode(ISD::AND, DL, VT, Result,
2044
CurDAG->getConstant(1, DL, VT));
2045
} else {
2046
// Sign-extend from IPM.Bit using a pair of shifts.
2047
int ShlAmt = VT.getSizeInBits() - 1 - IPM.Bit;
2048
int SraAmt = VT.getSizeInBits() - 1;
2049
Result = CurDAG->getNode(ISD::SHL, DL, VT, Result,
2050
CurDAG->getConstant(ShlAmt, DL, MVT::i32));
2051
Result = CurDAG->getNode(ISD::SRA, DL, VT, Result,
2052
CurDAG->getConstant(SraAmt, DL, MVT::i32));
2053
}
2054
}
2055
2056
return Result;
2057
}
2058
2059
bool SystemZDAGToDAGISel::shouldSelectForReassoc(SDNode *N) const {
2060
EVT VT = N->getValueType(0);
2061
assert(VT.isFloatingPoint() && "Expected FP SDNode");
2062
return N->getFlags().hasAllowReassociation() &&
2063
N->getFlags().hasNoSignedZeros() && Subtarget->hasVector() &&
2064
(VT != MVT::f32 || Subtarget->hasVectorEnhancements1()) &&
2065
!N->isStrictFPOpcode();
2066
}
2067
2068
void SystemZDAGToDAGISel::PreprocessISelDAG() {
2069
// If we have conditional immediate loads, we always prefer
2070
// using those over an IPM sequence.
2071
if (Subtarget->hasLoadStoreOnCond2())
2072
return;
2073
2074
bool MadeChange = false;
2075
2076
for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
2077
E = CurDAG->allnodes_end();
2078
I != E;) {
2079
SDNode *N = &*I++;
2080
if (N->use_empty())
2081
continue;
2082
2083
SDValue Res;
2084
switch (N->getOpcode()) {
2085
default: break;
2086
case SystemZISD::SELECT_CCMASK:
2087
Res = expandSelectBoolean(N);
2088
break;
2089
}
2090
2091
if (Res) {
2092
LLVM_DEBUG(dbgs() << "SystemZ DAG preprocessing replacing:\nOld: ");
2093
LLVM_DEBUG(N->dump(CurDAG));
2094
LLVM_DEBUG(dbgs() << "\nNew: ");
2095
LLVM_DEBUG(Res.getNode()->dump(CurDAG));
2096
LLVM_DEBUG(dbgs() << "\n");
2097
2098
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
2099
MadeChange = true;
2100
}
2101
}
2102
2103
if (MadeChange)
2104
CurDAG->RemoveDeadNodes();
2105
}
2106
2107