Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp
35266 views
1
//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the SystemZTargetLowering class.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "SystemZISelLowering.h"
14
#include "SystemZCallingConv.h"
15
#include "SystemZConstantPoolValue.h"
16
#include "SystemZMachineFunctionInfo.h"
17
#include "SystemZTargetMachine.h"
18
#include "llvm/CodeGen/CallingConvLower.h"
19
#include "llvm/CodeGen/ISDOpcodes.h"
20
#include "llvm/CodeGen/MachineInstrBuilder.h"
21
#include "llvm/CodeGen/MachineRegisterInfo.h"
22
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
23
#include "llvm/IR/GlobalAlias.h"
24
#include "llvm/IR/IntrinsicInst.h"
25
#include "llvm/IR/Intrinsics.h"
26
#include "llvm/IR/IntrinsicsS390.h"
27
#include "llvm/Support/CommandLine.h"
28
#include "llvm/Support/ErrorHandling.h"
29
#include "llvm/Support/KnownBits.h"
30
#include <cctype>
31
#include <optional>
32
33
using namespace llvm;
34
35
#define DEBUG_TYPE "systemz-lower"
36
37
namespace {
38
// Represents information about a comparison.
39
struct Comparison {
40
Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
41
: Op0(Op0In), Op1(Op1In), Chain(ChainIn),
42
Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
43
44
// The operands to the comparison.
45
SDValue Op0, Op1;
46
47
// Chain if this is a strict floating-point comparison.
48
SDValue Chain;
49
50
// The opcode that should be used to compare Op0 and Op1.
51
unsigned Opcode;
52
53
// A SystemZICMP value. Only used for integer comparisons.
54
unsigned ICmpType;
55
56
// The mask of CC values that Opcode can produce.
57
unsigned CCValid;
58
59
// The mask of CC values for which the original condition is true.
60
unsigned CCMask;
61
};
62
} // end anonymous namespace
63
64
// Classify VT as either 32 or 64 bit.
65
static bool is32Bit(EVT VT) {
66
switch (VT.getSimpleVT().SimpleTy) {
67
case MVT::i32:
68
return true;
69
case MVT::i64:
70
return false;
71
default:
72
llvm_unreachable("Unsupported type");
73
}
74
}
75
76
// Return a version of MachineOperand that can be safely used before the
77
// final use.
78
static MachineOperand earlyUseOperand(MachineOperand Op) {
79
if (Op.isReg())
80
Op.setIsKill(false);
81
return Op;
82
}
83
84
SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
85
const SystemZSubtarget &STI)
86
: TargetLowering(TM), Subtarget(STI) {
87
MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0));
88
89
auto *Regs = STI.getSpecialRegisters();
90
91
// Set up the register classes.
92
if (Subtarget.hasHighWord())
93
addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
94
else
95
addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
96
addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
97
if (!useSoftFloat()) {
98
if (Subtarget.hasVector()) {
99
addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
100
addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
101
} else {
102
addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
103
addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
104
}
105
if (Subtarget.hasVectorEnhancements1())
106
addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
107
else
108
addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
109
110
if (Subtarget.hasVector()) {
111
addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
112
addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
113
addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
114
addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
115
addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
116
addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
117
}
118
119
if (Subtarget.hasVector())
120
addRegisterClass(MVT::i128, &SystemZ::VR128BitRegClass);
121
}
122
123
// Compute derived properties from the register classes
124
computeRegisterProperties(Subtarget.getRegisterInfo());
125
126
// Set up special registers.
127
setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister());
128
129
// TODO: It may be better to default to latency-oriented scheduling, however
130
// LLVM's current latency-oriented scheduler can't handle physreg definitions
131
// such as SystemZ has with CC, so set this to the register-pressure
132
// scheduler, because it can.
133
setSchedulingPreference(Sched::RegPressure);
134
135
setBooleanContents(ZeroOrOneBooleanContent);
136
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
137
138
setMaxAtomicSizeInBitsSupported(128);
139
140
// Instructions are strings of 2-byte aligned 2-byte values.
141
setMinFunctionAlignment(Align(2));
142
// For performance reasons we prefer 16-byte alignment.
143
setPrefFunctionAlignment(Align(16));
144
145
// Handle operations that are handled in a similar way for all types.
146
for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
147
I <= MVT::LAST_FP_VALUETYPE;
148
++I) {
149
MVT VT = MVT::SimpleValueType(I);
150
if (isTypeLegal(VT)) {
151
// Lower SET_CC into an IPM-based sequence.
152
setOperationAction(ISD::SETCC, VT, Custom);
153
setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
154
setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
155
156
// Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
157
setOperationAction(ISD::SELECT, VT, Expand);
158
159
// Lower SELECT_CC and BR_CC into separate comparisons and branches.
160
setOperationAction(ISD::SELECT_CC, VT, Custom);
161
setOperationAction(ISD::BR_CC, VT, Custom);
162
}
163
}
164
165
// Expand jump table branches as address arithmetic followed by an
166
// indirect jump.
167
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
168
169
// Expand BRCOND into a BR_CC (see above).
170
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
171
172
// Handle integer types except i128.
173
for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
174
I <= MVT::LAST_INTEGER_VALUETYPE;
175
++I) {
176
MVT VT = MVT::SimpleValueType(I);
177
if (isTypeLegal(VT) && VT != MVT::i128) {
178
setOperationAction(ISD::ABS, VT, Legal);
179
180
// Expand individual DIV and REMs into DIVREMs.
181
setOperationAction(ISD::SDIV, VT, Expand);
182
setOperationAction(ISD::UDIV, VT, Expand);
183
setOperationAction(ISD::SREM, VT, Expand);
184
setOperationAction(ISD::UREM, VT, Expand);
185
setOperationAction(ISD::SDIVREM, VT, Custom);
186
setOperationAction(ISD::UDIVREM, VT, Custom);
187
188
// Support addition/subtraction with overflow.
189
setOperationAction(ISD::SADDO, VT, Custom);
190
setOperationAction(ISD::SSUBO, VT, Custom);
191
192
// Support addition/subtraction with carry.
193
setOperationAction(ISD::UADDO, VT, Custom);
194
setOperationAction(ISD::USUBO, VT, Custom);
195
196
// Support carry in as value rather than glue.
197
setOperationAction(ISD::UADDO_CARRY, VT, Custom);
198
setOperationAction(ISD::USUBO_CARRY, VT, Custom);
199
200
// Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
201
// available, or if the operand is constant.
202
setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
203
204
// Use POPCNT on z196 and above.
205
if (Subtarget.hasPopulationCount())
206
setOperationAction(ISD::CTPOP, VT, Custom);
207
else
208
setOperationAction(ISD::CTPOP, VT, Expand);
209
210
// No special instructions for these.
211
setOperationAction(ISD::CTTZ, VT, Expand);
212
setOperationAction(ISD::ROTR, VT, Expand);
213
214
// Use *MUL_LOHI where possible instead of MULH*.
215
setOperationAction(ISD::MULHS, VT, Expand);
216
setOperationAction(ISD::MULHU, VT, Expand);
217
setOperationAction(ISD::SMUL_LOHI, VT, Custom);
218
setOperationAction(ISD::UMUL_LOHI, VT, Custom);
219
220
// Only z196 and above have native support for conversions to unsigned.
221
// On z10, promoting to i64 doesn't generate an inexact condition for
222
// values that are outside the i32 range but in the i64 range, so use
223
// the default expansion.
224
if (!Subtarget.hasFPExtension())
225
setOperationAction(ISD::FP_TO_UINT, VT, Expand);
226
227
// Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all
228
// default to Expand, so need to be modified to Legal where appropriate.
229
setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
230
if (Subtarget.hasFPExtension())
231
setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
232
233
// And similarly for STRICT_[SU]INT_TO_FP.
234
setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
235
if (Subtarget.hasFPExtension())
236
setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
237
}
238
}
239
240
// Handle i128 if legal.
241
if (isTypeLegal(MVT::i128)) {
242
// No special instructions for these.
243
setOperationAction(ISD::SDIVREM, MVT::i128, Expand);
244
setOperationAction(ISD::UDIVREM, MVT::i128, Expand);
245
setOperationAction(ISD::SMUL_LOHI, MVT::i128, Expand);
246
setOperationAction(ISD::UMUL_LOHI, MVT::i128, Expand);
247
setOperationAction(ISD::ROTR, MVT::i128, Expand);
248
setOperationAction(ISD::ROTL, MVT::i128, Expand);
249
setOperationAction(ISD::MUL, MVT::i128, Expand);
250
setOperationAction(ISD::MULHS, MVT::i128, Expand);
251
setOperationAction(ISD::MULHU, MVT::i128, Expand);
252
setOperationAction(ISD::SDIV, MVT::i128, Expand);
253
setOperationAction(ISD::UDIV, MVT::i128, Expand);
254
setOperationAction(ISD::SREM, MVT::i128, Expand);
255
setOperationAction(ISD::UREM, MVT::i128, Expand);
256
setOperationAction(ISD::CTLZ, MVT::i128, Expand);
257
setOperationAction(ISD::CTTZ, MVT::i128, Expand);
258
259
// Support addition/subtraction with carry.
260
setOperationAction(ISD::UADDO, MVT::i128, Custom);
261
setOperationAction(ISD::USUBO, MVT::i128, Custom);
262
setOperationAction(ISD::UADDO_CARRY, MVT::i128, Custom);
263
setOperationAction(ISD::USUBO_CARRY, MVT::i128, Custom);
264
265
// Use VPOPCT and add up partial results.
266
setOperationAction(ISD::CTPOP, MVT::i128, Custom);
267
268
// We have to use libcalls for these.
269
setOperationAction(ISD::FP_TO_UINT, MVT::i128, LibCall);
270
setOperationAction(ISD::FP_TO_SINT, MVT::i128, LibCall);
271
setOperationAction(ISD::UINT_TO_FP, MVT::i128, LibCall);
272
setOperationAction(ISD::SINT_TO_FP, MVT::i128, LibCall);
273
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i128, LibCall);
274
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i128, LibCall);
275
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i128, LibCall);
276
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i128, LibCall);
277
}
278
279
// Type legalization will convert 8- and 16-bit atomic operations into
280
// forms that operate on i32s (but still keeping the original memory VT).
281
// Lower them into full i32 operations.
282
setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom);
283
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom);
284
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
285
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
286
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom);
287
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom);
288
setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
289
setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom);
290
setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom);
291
setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
292
setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
293
294
// Whether or not i128 is not a legal type, we need to custom lower
295
// the atomic operations in order to exploit SystemZ instructions.
296
setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom);
297
setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom);
298
setOperationAction(ISD::ATOMIC_LOAD, MVT::f128, Custom);
299
setOperationAction(ISD::ATOMIC_STORE, MVT::f128, Custom);
300
301
// Mark sign/zero extending atomic loads as legal, which will make
302
// DAGCombiner fold extensions into atomic loads if possible.
303
setAtomicLoadExtAction({ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::i64,
304
{MVT::i8, MVT::i16, MVT::i32}, Legal);
305
setAtomicLoadExtAction({ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::i32,
306
{MVT::i8, MVT::i16}, Legal);
307
setAtomicLoadExtAction({ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::i16,
308
MVT::i8, Legal);
309
310
// We can use the CC result of compare-and-swap to implement
311
// the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
312
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
313
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
314
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
315
316
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
317
318
// Traps are legal, as we will convert them to "j .+2".
319
setOperationAction(ISD::TRAP, MVT::Other, Legal);
320
321
// z10 has instructions for signed but not unsigned FP conversion.
322
// Handle unsigned 32-bit types as signed 64-bit types.
323
if (!Subtarget.hasFPExtension()) {
324
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
325
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
326
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
327
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
328
}
329
330
// We have native support for a 64-bit CTLZ, via FLOGR.
331
setOperationAction(ISD::CTLZ, MVT::i32, Promote);
332
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
333
setOperationAction(ISD::CTLZ, MVT::i64, Legal);
334
335
// On z15 we have native support for a 64-bit CTPOP.
336
if (Subtarget.hasMiscellaneousExtensions3()) {
337
setOperationAction(ISD::CTPOP, MVT::i32, Promote);
338
setOperationAction(ISD::CTPOP, MVT::i64, Legal);
339
}
340
341
// Give LowerOperation the chance to replace 64-bit ORs with subregs.
342
setOperationAction(ISD::OR, MVT::i64, Custom);
343
344
// Expand 128 bit shifts without using a libcall.
345
setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
346
setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
347
setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
348
349
// Also expand 256 bit shifts if i128 is a legal type.
350
if (isTypeLegal(MVT::i128)) {
351
setOperationAction(ISD::SRL_PARTS, MVT::i128, Expand);
352
setOperationAction(ISD::SHL_PARTS, MVT::i128, Expand);
353
setOperationAction(ISD::SRA_PARTS, MVT::i128, Expand);
354
}
355
356
// Handle bitcast from fp128 to i128.
357
if (!isTypeLegal(MVT::i128))
358
setOperationAction(ISD::BITCAST, MVT::i128, Custom);
359
360
// We have native instructions for i8, i16 and i32 extensions, but not i1.
361
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
362
for (MVT VT : MVT::integer_valuetypes()) {
363
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
364
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
365
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
366
}
367
368
// Handle the various types of symbolic address.
369
setOperationAction(ISD::ConstantPool, PtrVT, Custom);
370
setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
371
setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
372
setOperationAction(ISD::BlockAddress, PtrVT, Custom);
373
setOperationAction(ISD::JumpTable, PtrVT, Custom);
374
375
// We need to handle dynamic allocations specially because of the
376
// 160-byte area at the bottom of the stack.
377
setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
378
setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
379
380
setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
381
setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
382
383
// Handle prefetches with PFD or PFDRL.
384
setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
385
386
// Handle readcyclecounter with STCKF.
387
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
388
389
for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
390
// Assume by default that all vector operations need to be expanded.
391
for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
392
if (getOperationAction(Opcode, VT) == Legal)
393
setOperationAction(Opcode, VT, Expand);
394
395
// Likewise all truncating stores and extending loads.
396
for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
397
setTruncStoreAction(VT, InnerVT, Expand);
398
setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
399
setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
400
setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
401
}
402
403
if (isTypeLegal(VT)) {
404
// These operations are legal for anything that can be stored in a
405
// vector register, even if there is no native support for the format
406
// as such. In particular, we can do these for v4f32 even though there
407
// are no specific instructions for that format.
408
setOperationAction(ISD::LOAD, VT, Legal);
409
setOperationAction(ISD::STORE, VT, Legal);
410
setOperationAction(ISD::VSELECT, VT, Legal);
411
setOperationAction(ISD::BITCAST, VT, Legal);
412
setOperationAction(ISD::UNDEF, VT, Legal);
413
414
// Likewise, except that we need to replace the nodes with something
415
// more specific.
416
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
417
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
418
}
419
}
420
421
// Handle integer vector types.
422
for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
423
if (isTypeLegal(VT)) {
424
// These operations have direct equivalents.
425
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
426
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
427
setOperationAction(ISD::ADD, VT, Legal);
428
setOperationAction(ISD::SUB, VT, Legal);
429
if (VT != MVT::v2i64)
430
setOperationAction(ISD::MUL, VT, Legal);
431
setOperationAction(ISD::ABS, VT, Legal);
432
setOperationAction(ISD::AND, VT, Legal);
433
setOperationAction(ISD::OR, VT, Legal);
434
setOperationAction(ISD::XOR, VT, Legal);
435
if (Subtarget.hasVectorEnhancements1())
436
setOperationAction(ISD::CTPOP, VT, Legal);
437
else
438
setOperationAction(ISD::CTPOP, VT, Custom);
439
setOperationAction(ISD::CTTZ, VT, Legal);
440
setOperationAction(ISD::CTLZ, VT, Legal);
441
442
// Convert a GPR scalar to a vector by inserting it into element 0.
443
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
444
445
// Use a series of unpacks for extensions.
446
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
447
setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
448
449
// Detect shifts/rotates by a scalar amount and convert them into
450
// V*_BY_SCALAR.
451
setOperationAction(ISD::SHL, VT, Custom);
452
setOperationAction(ISD::SRA, VT, Custom);
453
setOperationAction(ISD::SRL, VT, Custom);
454
setOperationAction(ISD::ROTL, VT, Custom);
455
456
// Add ISD::VECREDUCE_ADD as custom in order to implement
457
// it with VZERO+VSUM
458
setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
459
460
// Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
461
// and inverting the result as necessary.
462
setOperationAction(ISD::SETCC, VT, Custom);
463
}
464
}
465
466
if (Subtarget.hasVector()) {
467
// There should be no need to check for float types other than v2f64
468
// since <2 x f32> isn't a legal type.
469
setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
470
setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
471
setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
472
setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
473
setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
474
setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
475
setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
476
setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
477
478
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
479
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
480
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
481
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
482
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
483
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
484
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
485
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
486
}
487
488
if (Subtarget.hasVectorEnhancements2()) {
489
setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
490
setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
491
setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
492
setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
493
setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
494
setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
495
setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
496
setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
497
498
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
499
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
500
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
501
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
502
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
503
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
504
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
505
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
506
}
507
508
// Handle floating-point types.
509
for (unsigned I = MVT::FIRST_FP_VALUETYPE;
510
I <= MVT::LAST_FP_VALUETYPE;
511
++I) {
512
MVT VT = MVT::SimpleValueType(I);
513
if (isTypeLegal(VT)) {
514
// We can use FI for FRINT.
515
setOperationAction(ISD::FRINT, VT, Legal);
516
517
// We can use the extended form of FI for other rounding operations.
518
if (Subtarget.hasFPExtension()) {
519
setOperationAction(ISD::FNEARBYINT, VT, Legal);
520
setOperationAction(ISD::FFLOOR, VT, Legal);
521
setOperationAction(ISD::FCEIL, VT, Legal);
522
setOperationAction(ISD::FTRUNC, VT, Legal);
523
setOperationAction(ISD::FROUND, VT, Legal);
524
}
525
526
// No special instructions for these.
527
setOperationAction(ISD::FSIN, VT, Expand);
528
setOperationAction(ISD::FCOS, VT, Expand);
529
setOperationAction(ISD::FSINCOS, VT, Expand);
530
setOperationAction(ISD::FREM, VT, Expand);
531
setOperationAction(ISD::FPOW, VT, Expand);
532
533
// Special treatment.
534
setOperationAction(ISD::IS_FPCLASS, VT, Custom);
535
536
// Handle constrained floating-point operations.
537
setOperationAction(ISD::STRICT_FADD, VT, Legal);
538
setOperationAction(ISD::STRICT_FSUB, VT, Legal);
539
setOperationAction(ISD::STRICT_FMUL, VT, Legal);
540
setOperationAction(ISD::STRICT_FDIV, VT, Legal);
541
setOperationAction(ISD::STRICT_FMA, VT, Legal);
542
setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
543
setOperationAction(ISD::STRICT_FRINT, VT, Legal);
544
setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
545
setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
546
if (Subtarget.hasFPExtension()) {
547
setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
548
setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
549
setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
550
setOperationAction(ISD::STRICT_FROUND, VT, Legal);
551
setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
552
}
553
}
554
}
555
556
// Handle floating-point vector types.
557
if (Subtarget.hasVector()) {
558
// Scalar-to-vector conversion is just a subreg.
559
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
560
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
561
562
// Some insertions and extractions can be done directly but others
563
// need to go via integers.
564
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
565
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
566
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
567
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
568
569
// These operations have direct equivalents.
570
setOperationAction(ISD::FADD, MVT::v2f64, Legal);
571
setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
572
setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
573
setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
574
setOperationAction(ISD::FMA, MVT::v2f64, Legal);
575
setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
576
setOperationAction(ISD::FABS, MVT::v2f64, Legal);
577
setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
578
setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
579
setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
580
setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
581
setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
582
setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
583
setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
584
585
// Handle constrained floating-point operations.
586
setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
587
setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
588
setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
589
setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
590
setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
591
setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
592
setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
593
setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
594
setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
595
setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
596
setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
597
setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
598
599
setOperationAction(ISD::SETCC, MVT::v2f64, Custom);
600
setOperationAction(ISD::SETCC, MVT::v4f32, Custom);
601
setOperationAction(ISD::STRICT_FSETCC, MVT::v2f64, Custom);
602
setOperationAction(ISD::STRICT_FSETCC, MVT::v4f32, Custom);
603
if (Subtarget.hasVectorEnhancements1()) {
604
setOperationAction(ISD::STRICT_FSETCCS, MVT::v2f64, Custom);
605
setOperationAction(ISD::STRICT_FSETCCS, MVT::v4f32, Custom);
606
}
607
}
608
609
// The vector enhancements facility 1 has instructions for these.
610
if (Subtarget.hasVectorEnhancements1()) {
611
setOperationAction(ISD::FADD, MVT::v4f32, Legal);
612
setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
613
setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
614
setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
615
setOperationAction(ISD::FMA, MVT::v4f32, Legal);
616
setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
617
setOperationAction(ISD::FABS, MVT::v4f32, Legal);
618
setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
619
setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
620
setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
621
setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
622
setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
623
setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
624
setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
625
626
setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
627
setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
628
setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
629
setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
630
631
setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
632
setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
633
setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
634
setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
635
636
setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
637
setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
638
setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
639
setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
640
641
setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
642
setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
643
setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
644
setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
645
646
setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
647
setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
648
setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
649
setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
650
651
// Handle constrained floating-point operations.
652
setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
653
setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
654
setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
655
setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
656
setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
657
setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
658
setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
659
setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
660
setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
661
setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
662
setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
663
setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
664
for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
665
MVT::v4f32, MVT::v2f64 }) {
666
setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
667
setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
668
setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
669
setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
670
}
671
}
672
673
// We only have fused f128 multiply-addition on vector registers.
674
if (!Subtarget.hasVectorEnhancements1()) {
675
setOperationAction(ISD::FMA, MVT::f128, Expand);
676
setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
677
}
678
679
// We don't have a copysign instruction on vector registers.
680
if (Subtarget.hasVectorEnhancements1())
681
setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
682
683
// Needed so that we don't try to implement f128 constant loads using
684
// a load-and-extend of a f80 constant (in cases where the constant
685
// would fit in an f80).
686
for (MVT VT : MVT::fp_valuetypes())
687
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
688
689
// We don't have extending load instruction on vector registers.
690
if (Subtarget.hasVectorEnhancements1()) {
691
setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
692
setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
693
}
694
695
// Floating-point truncation and stores need to be done separately.
696
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
697
setTruncStoreAction(MVT::f128, MVT::f32, Expand);
698
setTruncStoreAction(MVT::f128, MVT::f64, Expand);
699
700
// We have 64-bit FPR<->GPR moves, but need special handling for
701
// 32-bit forms.
702
if (!Subtarget.hasVector()) {
703
setOperationAction(ISD::BITCAST, MVT::i32, Custom);
704
setOperationAction(ISD::BITCAST, MVT::f32, Custom);
705
}
706
707
// VASTART and VACOPY need to deal with the SystemZ-specific varargs
708
// structure, but VAEND is a no-op.
709
setOperationAction(ISD::VASTART, MVT::Other, Custom);
710
setOperationAction(ISD::VACOPY, MVT::Other, Custom);
711
setOperationAction(ISD::VAEND, MVT::Other, Expand);
712
713
setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom);
714
715
// Codes for which we want to perform some z-specific combinations.
716
setTargetDAGCombine({ISD::ZERO_EXTEND,
717
ISD::SIGN_EXTEND,
718
ISD::SIGN_EXTEND_INREG,
719
ISD::LOAD,
720
ISD::STORE,
721
ISD::VECTOR_SHUFFLE,
722
ISD::EXTRACT_VECTOR_ELT,
723
ISD::FP_ROUND,
724
ISD::STRICT_FP_ROUND,
725
ISD::FP_EXTEND,
726
ISD::SINT_TO_FP,
727
ISD::UINT_TO_FP,
728
ISD::STRICT_FP_EXTEND,
729
ISD::BSWAP,
730
ISD::SDIV,
731
ISD::UDIV,
732
ISD::SREM,
733
ISD::UREM,
734
ISD::INTRINSIC_VOID,
735
ISD::INTRINSIC_W_CHAIN});
736
737
// Handle intrinsics.
738
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
739
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
740
741
// We want to use MVC in preference to even a single load/store pair.
742
MaxStoresPerMemcpy = Subtarget.hasVector() ? 2 : 0;
743
MaxStoresPerMemcpyOptSize = 0;
744
745
// The main memset sequence is a byte store followed by an MVC.
746
// Two STC or MV..I stores win over that, but the kind of fused stores
747
// generated by target-independent code don't when the byte value is
748
// variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better
749
// than "STC;MVC". Handle the choice in target-specific code instead.
750
MaxStoresPerMemset = Subtarget.hasVector() ? 2 : 0;
751
MaxStoresPerMemsetOptSize = 0;
752
753
// Default to having -disable-strictnode-mutation on
754
IsStrictFPEnabled = true;
755
756
if (Subtarget.isTargetzOS()) {
757
struct RTLibCallMapping {
758
RTLIB::Libcall Code;
759
const char *Name;
760
};
761
static RTLibCallMapping RTLibCallCommon[] = {
762
#define HANDLE_LIBCALL(code, name) {RTLIB::code, name},
763
#include "ZOSLibcallNames.def"
764
};
765
for (auto &E : RTLibCallCommon)
766
setLibcallName(E.Code, E.Name);
767
}
768
}
769
770
bool SystemZTargetLowering::useSoftFloat() const {
771
return Subtarget.hasSoftFloat();
772
}
773
774
EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
775
LLVMContext &, EVT VT) const {
776
if (!VT.isVector())
777
return MVT::i32;
778
return VT.changeVectorElementTypeToInteger();
779
}
780
781
bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
782
const MachineFunction &MF, EVT VT) const {
783
VT = VT.getScalarType();
784
785
if (!VT.isSimple())
786
return false;
787
788
switch (VT.getSimpleVT().SimpleTy) {
789
case MVT::f32:
790
case MVT::f64:
791
return true;
792
case MVT::f128:
793
return Subtarget.hasVectorEnhancements1();
794
default:
795
break;
796
}
797
798
return false;
799
}
800
801
// Return true if the constant can be generated with a vector instruction,
802
// such as VGM, VGMB or VREPI.
803
bool SystemZVectorConstantInfo::isVectorConstantLegal(
804
const SystemZSubtarget &Subtarget) {
805
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
806
if (!Subtarget.hasVector() ||
807
(isFP128 && !Subtarget.hasVectorEnhancements1()))
808
return false;
809
810
// Try using VECTOR GENERATE BYTE MASK. This is the architecturally-
811
// preferred way of creating all-zero and all-one vectors so give it
812
// priority over other methods below.
813
unsigned Mask = 0;
814
unsigned I = 0;
815
for (; I < SystemZ::VectorBytes; ++I) {
816
uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
817
if (Byte == 0xff)
818
Mask |= 1ULL << I;
819
else if (Byte != 0)
820
break;
821
}
822
if (I == SystemZ::VectorBytes) {
823
Opcode = SystemZISD::BYTE_MASK;
824
OpVals.push_back(Mask);
825
VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
826
return true;
827
}
828
829
if (SplatBitSize > 64)
830
return false;
831
832
auto tryValue = [&](uint64_t Value) -> bool {
833
// Try VECTOR REPLICATE IMMEDIATE
834
int64_t SignedValue = SignExtend64(Value, SplatBitSize);
835
if (isInt<16>(SignedValue)) {
836
OpVals.push_back(((unsigned) SignedValue));
837
Opcode = SystemZISD::REPLICATE;
838
VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
839
SystemZ::VectorBits / SplatBitSize);
840
return true;
841
}
842
// Try VECTOR GENERATE MASK
843
unsigned Start, End;
844
if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
845
// isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
846
// denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for
847
// an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
848
OpVals.push_back(Start - (64 - SplatBitSize));
849
OpVals.push_back(End - (64 - SplatBitSize));
850
Opcode = SystemZISD::ROTATE_MASK;
851
VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
852
SystemZ::VectorBits / SplatBitSize);
853
return true;
854
}
855
return false;
856
};
857
858
// First try assuming that any undefined bits above the highest set bit
859
// and below the lowest set bit are 1s. This increases the likelihood of
860
// being able to use a sign-extended element value in VECTOR REPLICATE
861
// IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
862
uint64_t SplatBitsZ = SplatBits.getZExtValue();
863
uint64_t SplatUndefZ = SplatUndef.getZExtValue();
864
unsigned LowerBits = llvm::countr_zero(SplatBitsZ);
865
unsigned UpperBits = llvm::countl_zero(SplatBitsZ);
866
uint64_t Lower = SplatUndefZ & maskTrailingOnes<uint64_t>(LowerBits);
867
uint64_t Upper = SplatUndefZ & maskLeadingOnes<uint64_t>(UpperBits);
868
if (tryValue(SplatBitsZ | Upper | Lower))
869
return true;
870
871
// Now try assuming that any undefined bits between the first and
872
// last defined set bits are set. This increases the chances of
873
// using a non-wraparound mask.
874
uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
875
return tryValue(SplatBitsZ | Middle);
876
}
877
878
SystemZVectorConstantInfo::SystemZVectorConstantInfo(APInt IntImm) {
879
if (IntImm.isSingleWord()) {
880
IntBits = APInt(128, IntImm.getZExtValue());
881
IntBits <<= (SystemZ::VectorBits - IntImm.getBitWidth());
882
} else
883
IntBits = IntImm;
884
assert(IntBits.getBitWidth() == 128 && "Unsupported APInt.");
885
886
// Find the smallest splat.
887
SplatBits = IntImm;
888
unsigned Width = SplatBits.getBitWidth();
889
while (Width > 8) {
890
unsigned HalfSize = Width / 2;
891
APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
892
APInt LowValue = SplatBits.trunc(HalfSize);
893
894
// If the two halves do not match, stop here.
895
if (HighValue != LowValue || 8 > HalfSize)
896
break;
897
898
SplatBits = HighValue;
899
Width = HalfSize;
900
}
901
SplatUndef = 0;
902
SplatBitSize = Width;
903
}
904
905
SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
906
assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
907
bool HasAnyUndefs;
908
909
// Get IntBits by finding the 128 bit splat.
910
BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
911
true);
912
913
// Get SplatBits by finding the 8 bit or greater splat.
914
BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
915
true);
916
}
917
918
bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
919
bool ForCodeSize) const {
920
// We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
921
if (Imm.isZero() || Imm.isNegZero())
922
return true;
923
924
return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
925
}
926
927
/// Returns true if stack probing through inline assembly is requested.
928
bool SystemZTargetLowering::hasInlineStackProbe(const MachineFunction &MF) const {
929
// If the function specifically requests inline stack probes, emit them.
930
if (MF.getFunction().hasFnAttribute("probe-stack"))
931
return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
932
"inline-asm";
933
return false;
934
}
935
936
TargetLowering::AtomicExpansionKind
937
SystemZTargetLowering::shouldCastAtomicLoadInIR(LoadInst *LI) const {
938
return AtomicExpansionKind::None;
939
}
940
941
TargetLowering::AtomicExpansionKind
942
SystemZTargetLowering::shouldCastAtomicStoreInIR(StoreInst *SI) const {
943
return AtomicExpansionKind::None;
944
}
945
946
TargetLowering::AtomicExpansionKind
947
SystemZTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
948
// Don't expand subword operations as they require special treatment.
949
if (RMW->getType()->isIntegerTy(8) || RMW->getType()->isIntegerTy(16))
950
return AtomicExpansionKind::None;
951
952
// Don't expand if there is a target instruction available.
953
if (Subtarget.hasInterlockedAccess1() &&
954
(RMW->getType()->isIntegerTy(32) || RMW->getType()->isIntegerTy(64)) &&
955
(RMW->getOperation() == AtomicRMWInst::BinOp::Add ||
956
RMW->getOperation() == AtomicRMWInst::BinOp::Sub ||
957
RMW->getOperation() == AtomicRMWInst::BinOp::And ||
958
RMW->getOperation() == AtomicRMWInst::BinOp::Or ||
959
RMW->getOperation() == AtomicRMWInst::BinOp::Xor))
960
return AtomicExpansionKind::None;
961
962
return AtomicExpansionKind::CmpXChg;
963
}
964
965
bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
966
// We can use CGFI or CLGFI.
967
return isInt<32>(Imm) || isUInt<32>(Imm);
968
}
969
970
bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
971
// We can use ALGFI or SLGFI.
972
return isUInt<32>(Imm) || isUInt<32>(-Imm);
973
}
974
975
bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
976
EVT VT, unsigned, Align, MachineMemOperand::Flags, unsigned *Fast) const {
977
// Unaligned accesses should never be slower than the expanded version.
978
// We check specifically for aligned accesses in the few cases where
979
// they are required.
980
if (Fast)
981
*Fast = 1;
982
return true;
983
}
984
985
// Information about the addressing mode for a memory access.
986
struct AddressingMode {
987
// True if a long displacement is supported.
988
bool LongDisplacement;
989
990
// True if use of index register is supported.
991
bool IndexReg;
992
993
AddressingMode(bool LongDispl, bool IdxReg) :
994
LongDisplacement(LongDispl), IndexReg(IdxReg) {}
995
};
996
997
// Return the desired addressing mode for a Load which has only one use (in
998
// the same block) which is a Store.
999
static AddressingMode getLoadStoreAddrMode(bool HasVector,
1000
Type *Ty) {
1001
// With vector support a Load->Store combination may be combined to either
1002
// an MVC or vector operations and it seems to work best to allow the
1003
// vector addressing mode.
1004
if (HasVector)
1005
return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
1006
1007
// Otherwise only the MVC case is special.
1008
bool MVC = Ty->isIntegerTy(8);
1009
return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
1010
}
1011
1012
// Return the addressing mode which seems most desirable given an LLVM
1013
// Instruction pointer.
1014
static AddressingMode
1015
supportedAddressingMode(Instruction *I, bool HasVector) {
1016
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1017
switch (II->getIntrinsicID()) {
1018
default: break;
1019
case Intrinsic::memset:
1020
case Intrinsic::memmove:
1021
case Intrinsic::memcpy:
1022
return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
1023
}
1024
}
1025
1026
if (isa<LoadInst>(I) && I->hasOneUse()) {
1027
auto *SingleUser = cast<Instruction>(*I->user_begin());
1028
if (SingleUser->getParent() == I->getParent()) {
1029
if (isa<ICmpInst>(SingleUser)) {
1030
if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
1031
if (C->getBitWidth() <= 64 &&
1032
(isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
1033
// Comparison of memory with 16 bit signed / unsigned immediate
1034
return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
1035
} else if (isa<StoreInst>(SingleUser))
1036
// Load->Store
1037
return getLoadStoreAddrMode(HasVector, I->getType());
1038
}
1039
} else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
1040
if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
1041
if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
1042
// Load->Store
1043
return getLoadStoreAddrMode(HasVector, LoadI->getType());
1044
}
1045
1046
if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
1047
1048
// * Use LDE instead of LE/LEY for z13 to avoid partial register
1049
// dependencies (LDE only supports small offsets).
1050
// * Utilize the vector registers to hold floating point
1051
// values (vector load / store instructions only support small
1052
// offsets).
1053
1054
Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
1055
I->getOperand(0)->getType());
1056
bool IsFPAccess = MemAccessTy->isFloatingPointTy();
1057
bool IsVectorAccess = MemAccessTy->isVectorTy();
1058
1059
// A store of an extracted vector element will be combined into a VSTE type
1060
// instruction.
1061
if (!IsVectorAccess && isa<StoreInst>(I)) {
1062
Value *DataOp = I->getOperand(0);
1063
if (isa<ExtractElementInst>(DataOp))
1064
IsVectorAccess = true;
1065
}
1066
1067
// A load which gets inserted into a vector element will be combined into a
1068
// VLE type instruction.
1069
if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
1070
User *LoadUser = *I->user_begin();
1071
if (isa<InsertElementInst>(LoadUser))
1072
IsVectorAccess = true;
1073
}
1074
1075
if (IsFPAccess || IsVectorAccess)
1076
return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
1077
}
1078
1079
return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
1080
}
1081
1082
bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1083
const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
1084
// Punt on globals for now, although they can be used in limited
1085
// RELATIVE LONG cases.
1086
if (AM.BaseGV)
1087
return false;
1088
1089
// Require a 20-bit signed offset.
1090
if (!isInt<20>(AM.BaseOffs))
1091
return false;
1092
1093
bool RequireD12 =
1094
Subtarget.hasVector() && (Ty->isVectorTy() || Ty->isIntegerTy(128));
1095
AddressingMode SupportedAM(!RequireD12, true);
1096
if (I != nullptr)
1097
SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
1098
1099
if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
1100
return false;
1101
1102
if (!SupportedAM.IndexReg)
1103
// No indexing allowed.
1104
return AM.Scale == 0;
1105
else
1106
// Indexing is OK but no scale factor can be applied.
1107
return AM.Scale == 0 || AM.Scale == 1;
1108
}
1109
1110
bool SystemZTargetLowering::findOptimalMemOpLowering(
1111
std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
1112
unsigned SrcAS, const AttributeList &FuncAttributes) const {
1113
const int MVCFastLen = 16;
1114
1115
if (Limit != ~unsigned(0)) {
1116
// Don't expand Op into scalar loads/stores in these cases:
1117
if (Op.isMemcpy() && Op.allowOverlap() && Op.size() <= MVCFastLen)
1118
return false; // Small memcpy: Use MVC
1119
if (Op.isMemset() && Op.size() - 1 <= MVCFastLen)
1120
return false; // Small memset (first byte with STC/MVI): Use MVC
1121
if (Op.isZeroMemset())
1122
return false; // Memset zero: Use XC
1123
}
1124
1125
return TargetLowering::findOptimalMemOpLowering(MemOps, Limit, Op, DstAS,
1126
SrcAS, FuncAttributes);
1127
}
1128
1129
EVT SystemZTargetLowering::getOptimalMemOpType(const MemOp &Op,
1130
const AttributeList &FuncAttributes) const {
1131
return Subtarget.hasVector() ? MVT::v2i64 : MVT::Other;
1132
}
1133
1134
bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
1135
if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
1136
return false;
1137
unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedValue();
1138
unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedValue();
1139
return FromBits > ToBits;
1140
}
1141
1142
bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
1143
if (!FromVT.isInteger() || !ToVT.isInteger())
1144
return false;
1145
unsigned FromBits = FromVT.getFixedSizeInBits();
1146
unsigned ToBits = ToVT.getFixedSizeInBits();
1147
return FromBits > ToBits;
1148
}
1149
1150
//===----------------------------------------------------------------------===//
1151
// Inline asm support
1152
//===----------------------------------------------------------------------===//
1153
1154
TargetLowering::ConstraintType
1155
SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1156
if (Constraint.size() == 1) {
1157
switch (Constraint[0]) {
1158
case 'a': // Address register
1159
case 'd': // Data register (equivalent to 'r')
1160
case 'f': // Floating-point register
1161
case 'h': // High-part register
1162
case 'r': // General-purpose register
1163
case 'v': // Vector register
1164
return C_RegisterClass;
1165
1166
case 'Q': // Memory with base and unsigned 12-bit displacement
1167
case 'R': // Likewise, plus an index
1168
case 'S': // Memory with base and signed 20-bit displacement
1169
case 'T': // Likewise, plus an index
1170
case 'm': // Equivalent to 'T'.
1171
return C_Memory;
1172
1173
case 'I': // Unsigned 8-bit constant
1174
case 'J': // Unsigned 12-bit constant
1175
case 'K': // Signed 16-bit constant
1176
case 'L': // Signed 20-bit displacement (on all targets we support)
1177
case 'M': // 0x7fffffff
1178
return C_Immediate;
1179
1180
default:
1181
break;
1182
}
1183
} else if (Constraint.size() == 2 && Constraint[0] == 'Z') {
1184
switch (Constraint[1]) {
1185
case 'Q': // Address with base and unsigned 12-bit displacement
1186
case 'R': // Likewise, plus an index
1187
case 'S': // Address with base and signed 20-bit displacement
1188
case 'T': // Likewise, plus an index
1189
return C_Address;
1190
1191
default:
1192
break;
1193
}
1194
}
1195
return TargetLowering::getConstraintType(Constraint);
1196
}
1197
1198
TargetLowering::ConstraintWeight SystemZTargetLowering::
1199
getSingleConstraintMatchWeight(AsmOperandInfo &info,
1200
const char *constraint) const {
1201
ConstraintWeight weight = CW_Invalid;
1202
Value *CallOperandVal = info.CallOperandVal;
1203
// If we don't have a value, we can't do a match,
1204
// but allow it at the lowest weight.
1205
if (!CallOperandVal)
1206
return CW_Default;
1207
Type *type = CallOperandVal->getType();
1208
// Look at the constraint type.
1209
switch (*constraint) {
1210
default:
1211
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1212
break;
1213
1214
case 'a': // Address register
1215
case 'd': // Data register (equivalent to 'r')
1216
case 'h': // High-part register
1217
case 'r': // General-purpose register
1218
weight = CallOperandVal->getType()->isIntegerTy() ? CW_Register : CW_Default;
1219
break;
1220
1221
case 'f': // Floating-point register
1222
if (!useSoftFloat())
1223
weight = type->isFloatingPointTy() ? CW_Register : CW_Default;
1224
break;
1225
1226
case 'v': // Vector register
1227
if (Subtarget.hasVector())
1228
weight = (type->isVectorTy() || type->isFloatingPointTy()) ? CW_Register
1229
: CW_Default;
1230
break;
1231
1232
case 'I': // Unsigned 8-bit constant
1233
if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1234
if (isUInt<8>(C->getZExtValue()))
1235
weight = CW_Constant;
1236
break;
1237
1238
case 'J': // Unsigned 12-bit constant
1239
if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1240
if (isUInt<12>(C->getZExtValue()))
1241
weight = CW_Constant;
1242
break;
1243
1244
case 'K': // Signed 16-bit constant
1245
if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1246
if (isInt<16>(C->getSExtValue()))
1247
weight = CW_Constant;
1248
break;
1249
1250
case 'L': // Signed 20-bit displacement (on all targets we support)
1251
if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1252
if (isInt<20>(C->getSExtValue()))
1253
weight = CW_Constant;
1254
break;
1255
1256
case 'M': // 0x7fffffff
1257
if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1258
if (C->getZExtValue() == 0x7fffffff)
1259
weight = CW_Constant;
1260
break;
1261
}
1262
return weight;
1263
}
1264
1265
// Parse a "{tNNN}" register constraint for which the register type "t"
1266
// has already been verified. MC is the class associated with "t" and
1267
// Map maps 0-based register numbers to LLVM register numbers.
1268
static std::pair<unsigned, const TargetRegisterClass *>
1269
parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1270
const unsigned *Map, unsigned Size) {
1271
assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1272
if (isdigit(Constraint[2])) {
1273
unsigned Index;
1274
bool Failed =
1275
Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1276
if (!Failed && Index < Size && Map[Index])
1277
return std::make_pair(Map[Index], RC);
1278
}
1279
return std::make_pair(0U, nullptr);
1280
}
1281
1282
std::pair<unsigned, const TargetRegisterClass *>
1283
SystemZTargetLowering::getRegForInlineAsmConstraint(
1284
const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1285
if (Constraint.size() == 1) {
1286
// GCC Constraint Letters
1287
switch (Constraint[0]) {
1288
default: break;
1289
case 'd': // Data register (equivalent to 'r')
1290
case 'r': // General-purpose register
1291
if (VT.getSizeInBits() == 64)
1292
return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1293
else if (VT.getSizeInBits() == 128)
1294
return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1295
return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1296
1297
case 'a': // Address register
1298
if (VT == MVT::i64)
1299
return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1300
else if (VT == MVT::i128)
1301
return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1302
return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1303
1304
case 'h': // High-part register (an LLVM extension)
1305
return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1306
1307
case 'f': // Floating-point register
1308
if (!useSoftFloat()) {
1309
if (VT.getSizeInBits() == 64)
1310
return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1311
else if (VT.getSizeInBits() == 128)
1312
return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1313
return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1314
}
1315
break;
1316
1317
case 'v': // Vector register
1318
if (Subtarget.hasVector()) {
1319
if (VT.getSizeInBits() == 32)
1320
return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1321
if (VT.getSizeInBits() == 64)
1322
return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1323
return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1324
}
1325
break;
1326
}
1327
}
1328
if (Constraint.starts_with("{")) {
1329
1330
// A clobber constraint (e.g. ~{f0}) will have MVT::Other which is illegal
1331
// to check the size on.
1332
auto getVTSizeInBits = [&VT]() {
1333
return VT == MVT::Other ? 0 : VT.getSizeInBits();
1334
};
1335
1336
// We need to override the default register parsing for GPRs and FPRs
1337
// because the interpretation depends on VT. The internal names of
1338
// the registers are also different from the external names
1339
// (F0D and F0S instead of F0, etc.).
1340
if (Constraint[1] == 'r') {
1341
if (getVTSizeInBits() == 32)
1342
return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1343
SystemZMC::GR32Regs, 16);
1344
if (getVTSizeInBits() == 128)
1345
return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1346
SystemZMC::GR128Regs, 16);
1347
return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1348
SystemZMC::GR64Regs, 16);
1349
}
1350
if (Constraint[1] == 'f') {
1351
if (useSoftFloat())
1352
return std::make_pair(
1353
0u, static_cast<const TargetRegisterClass *>(nullptr));
1354
if (getVTSizeInBits() == 32)
1355
return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1356
SystemZMC::FP32Regs, 16);
1357
if (getVTSizeInBits() == 128)
1358
return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1359
SystemZMC::FP128Regs, 16);
1360
return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1361
SystemZMC::FP64Regs, 16);
1362
}
1363
if (Constraint[1] == 'v') {
1364
if (!Subtarget.hasVector())
1365
return std::make_pair(
1366
0u, static_cast<const TargetRegisterClass *>(nullptr));
1367
if (getVTSizeInBits() == 32)
1368
return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1369
SystemZMC::VR32Regs, 32);
1370
if (getVTSizeInBits() == 64)
1371
return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1372
SystemZMC::VR64Regs, 32);
1373
return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1374
SystemZMC::VR128Regs, 32);
1375
}
1376
}
1377
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1378
}
1379
1380
// FIXME? Maybe this could be a TableGen attribute on some registers and
1381
// this table could be generated automatically from RegInfo.
1382
Register
1383
SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1384
const MachineFunction &MF) const {
1385
Register Reg =
1386
StringSwitch<Register>(RegName)
1387
.Case("r4", Subtarget.isTargetXPLINK64() ? SystemZ::R4D : 0)
1388
.Case("r15", Subtarget.isTargetELF() ? SystemZ::R15D : 0)
1389
.Default(0);
1390
1391
if (Reg)
1392
return Reg;
1393
report_fatal_error("Invalid register name global variable");
1394
}
1395
1396
Register SystemZTargetLowering::getExceptionPointerRegister(
1397
const Constant *PersonalityFn) const {
1398
return Subtarget.isTargetXPLINK64() ? SystemZ::R1D : SystemZ::R6D;
1399
}
1400
1401
Register SystemZTargetLowering::getExceptionSelectorRegister(
1402
const Constant *PersonalityFn) const {
1403
return Subtarget.isTargetXPLINK64() ? SystemZ::R2D : SystemZ::R7D;
1404
}
1405
1406
void SystemZTargetLowering::LowerAsmOperandForConstraint(
1407
SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops,
1408
SelectionDAG &DAG) const {
1409
// Only support length 1 constraints for now.
1410
if (Constraint.size() == 1) {
1411
switch (Constraint[0]) {
1412
case 'I': // Unsigned 8-bit constant
1413
if (auto *C = dyn_cast<ConstantSDNode>(Op))
1414
if (isUInt<8>(C->getZExtValue()))
1415
Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1416
Op.getValueType()));
1417
return;
1418
1419
case 'J': // Unsigned 12-bit constant
1420
if (auto *C = dyn_cast<ConstantSDNode>(Op))
1421
if (isUInt<12>(C->getZExtValue()))
1422
Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1423
Op.getValueType()));
1424
return;
1425
1426
case 'K': // Signed 16-bit constant
1427
if (auto *C = dyn_cast<ConstantSDNode>(Op))
1428
if (isInt<16>(C->getSExtValue()))
1429
Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1430
Op.getValueType()));
1431
return;
1432
1433
case 'L': // Signed 20-bit displacement (on all targets we support)
1434
if (auto *C = dyn_cast<ConstantSDNode>(Op))
1435
if (isInt<20>(C->getSExtValue()))
1436
Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1437
Op.getValueType()));
1438
return;
1439
1440
case 'M': // 0x7fffffff
1441
if (auto *C = dyn_cast<ConstantSDNode>(Op))
1442
if (C->getZExtValue() == 0x7fffffff)
1443
Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1444
Op.getValueType()));
1445
return;
1446
}
1447
}
1448
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1449
}
1450
1451
//===----------------------------------------------------------------------===//
1452
// Calling conventions
1453
//===----------------------------------------------------------------------===//
1454
1455
#include "SystemZGenCallingConv.inc"
1456
1457
const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1458
CallingConv::ID) const {
1459
static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1460
SystemZ::R14D, 0 };
1461
return ScratchRegs;
1462
}
1463
1464
bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1465
Type *ToType) const {
1466
return isTruncateFree(FromType, ToType);
1467
}
1468
1469
bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1470
return CI->isTailCall();
1471
}
1472
1473
// Value is a value that has been passed to us in the location described by VA
1474
// (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining
1475
// any loads onto Chain.
1476
static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1477
CCValAssign &VA, SDValue Chain,
1478
SDValue Value) {
1479
// If the argument has been promoted from a smaller type, insert an
1480
// assertion to capture this.
1481
if (VA.getLocInfo() == CCValAssign::SExt)
1482
Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1483
DAG.getValueType(VA.getValVT()));
1484
else if (VA.getLocInfo() == CCValAssign::ZExt)
1485
Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1486
DAG.getValueType(VA.getValVT()));
1487
1488
if (VA.isExtInLoc())
1489
Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1490
else if (VA.getLocInfo() == CCValAssign::BCvt) {
1491
// If this is a short vector argument loaded from the stack,
1492
// extend from i64 to full vector size and then bitcast.
1493
assert(VA.getLocVT() == MVT::i64);
1494
assert(VA.getValVT().isVector());
1495
Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1496
Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1497
} else
1498
assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1499
return Value;
1500
}
1501
1502
// Value is a value of type VA.getValVT() that we need to copy into
1503
// the location described by VA. Return a copy of Value converted to
1504
// VA.getValVT(). The caller is responsible for handling indirect values.
1505
static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1506
CCValAssign &VA, SDValue Value) {
1507
switch (VA.getLocInfo()) {
1508
case CCValAssign::SExt:
1509
return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1510
case CCValAssign::ZExt:
1511
return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1512
case CCValAssign::AExt:
1513
return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1514
case CCValAssign::BCvt: {
1515
assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128);
1516
assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f32 ||
1517
VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::f128);
1518
// For an f32 vararg we need to first promote it to an f64 and then
1519
// bitcast it to an i64.
1520
if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i64)
1521
Value = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f64, Value);
1522
MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64
1523
? MVT::v2i64
1524
: VA.getLocVT();
1525
Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value);
1526
// For ELF, this is a short vector argument to be stored to the stack,
1527
// bitcast to v2i64 and then extract first element.
1528
if (BitCastToType == MVT::v2i64)
1529
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1530
DAG.getConstant(0, DL, MVT::i32));
1531
return Value;
1532
}
1533
case CCValAssign::Full:
1534
return Value;
1535
default:
1536
llvm_unreachable("Unhandled getLocInfo()");
1537
}
1538
}
1539
1540
static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
1541
SDLoc DL(In);
1542
SDValue Lo, Hi;
1543
if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128)) {
1544
Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, In);
1545
Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64,
1546
DAG.getNode(ISD::SRL, DL, MVT::i128, In,
1547
DAG.getConstant(64, DL, MVT::i32)));
1548
} else {
1549
std::tie(Lo, Hi) = DAG.SplitScalar(In, DL, MVT::i64, MVT::i64);
1550
}
1551
1552
// FIXME: If v2i64 were a legal type, we could use it instead of
1553
// Untyped here. This might enable improved folding.
1554
SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
1555
MVT::Untyped, Hi, Lo);
1556
return SDValue(Pair, 0);
1557
}
1558
1559
static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
1560
SDLoc DL(In);
1561
SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
1562
DL, MVT::i64, In);
1563
SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
1564
DL, MVT::i64, In);
1565
1566
if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128)) {
1567
Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i128, Lo);
1568
Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i128, Hi);
1569
Hi = DAG.getNode(ISD::SHL, DL, MVT::i128, Hi,
1570
DAG.getConstant(64, DL, MVT::i32));
1571
return DAG.getNode(ISD::OR, DL, MVT::i128, Lo, Hi);
1572
} else {
1573
return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
1574
}
1575
}
1576
1577
bool SystemZTargetLowering::splitValueIntoRegisterParts(
1578
SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
1579
unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
1580
EVT ValueVT = Val.getValueType();
1581
if (ValueVT.getSizeInBits() == 128 && NumParts == 1 && PartVT == MVT::Untyped) {
1582
// Inline assembly operand.
1583
Parts[0] = lowerI128ToGR128(DAG, DAG.getBitcast(MVT::i128, Val));
1584
return true;
1585
}
1586
1587
return false;
1588
}
1589
1590
SDValue SystemZTargetLowering::joinRegisterPartsIntoValue(
1591
SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
1592
MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const {
1593
if (ValueVT.getSizeInBits() == 128 && NumParts == 1 && PartVT == MVT::Untyped) {
1594
// Inline assembly operand.
1595
SDValue Res = lowerGR128ToI128(DAG, Parts[0]);
1596
return DAG.getBitcast(ValueVT, Res);
1597
}
1598
1599
return SDValue();
1600
}
1601
1602
SDValue SystemZTargetLowering::LowerFormalArguments(
1603
SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1604
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1605
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1606
MachineFunction &MF = DAG.getMachineFunction();
1607
MachineFrameInfo &MFI = MF.getFrameInfo();
1608
MachineRegisterInfo &MRI = MF.getRegInfo();
1609
SystemZMachineFunctionInfo *FuncInfo =
1610
MF.getInfo<SystemZMachineFunctionInfo>();
1611
auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
1612
EVT PtrVT = getPointerTy(DAG.getDataLayout());
1613
1614
// Assign locations to all of the incoming arguments.
1615
SmallVector<CCValAssign, 16> ArgLocs;
1616
SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1617
CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1618
FuncInfo->setSizeOfFnParams(CCInfo.getStackSize());
1619
1620
unsigned NumFixedGPRs = 0;
1621
unsigned NumFixedFPRs = 0;
1622
for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1623
SDValue ArgValue;
1624
CCValAssign &VA = ArgLocs[I];
1625
EVT LocVT = VA.getLocVT();
1626
if (VA.isRegLoc()) {
1627
// Arguments passed in registers
1628
const TargetRegisterClass *RC;
1629
switch (LocVT.getSimpleVT().SimpleTy) {
1630
default:
1631
// Integers smaller than i64 should be promoted to i64.
1632
llvm_unreachable("Unexpected argument type");
1633
case MVT::i32:
1634
NumFixedGPRs += 1;
1635
RC = &SystemZ::GR32BitRegClass;
1636
break;
1637
case MVT::i64:
1638
NumFixedGPRs += 1;
1639
RC = &SystemZ::GR64BitRegClass;
1640
break;
1641
case MVT::f32:
1642
NumFixedFPRs += 1;
1643
RC = &SystemZ::FP32BitRegClass;
1644
break;
1645
case MVT::f64:
1646
NumFixedFPRs += 1;
1647
RC = &SystemZ::FP64BitRegClass;
1648
break;
1649
case MVT::f128:
1650
NumFixedFPRs += 2;
1651
RC = &SystemZ::FP128BitRegClass;
1652
break;
1653
case MVT::v16i8:
1654
case MVT::v8i16:
1655
case MVT::v4i32:
1656
case MVT::v2i64:
1657
case MVT::v4f32:
1658
case MVT::v2f64:
1659
RC = &SystemZ::VR128BitRegClass;
1660
break;
1661
}
1662
1663
Register VReg = MRI.createVirtualRegister(RC);
1664
MRI.addLiveIn(VA.getLocReg(), VReg);
1665
ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1666
} else {
1667
assert(VA.isMemLoc() && "Argument not register or memory");
1668
1669
// Create the frame index object for this incoming parameter.
1670
// FIXME: Pre-include call frame size in the offset, should not
1671
// need to manually add it here.
1672
int64_t ArgSPOffset = VA.getLocMemOffset();
1673
if (Subtarget.isTargetXPLINK64()) {
1674
auto &XPRegs =
1675
Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
1676
ArgSPOffset += XPRegs.getCallFrameSize();
1677
}
1678
int FI =
1679
MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true);
1680
1681
// Create the SelectionDAG nodes corresponding to a load
1682
// from this parameter. Unpromoted ints and floats are
1683
// passed as right-justified 8-byte values.
1684
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1685
if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1686
FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1687
DAG.getIntPtrConstant(4, DL));
1688
ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1689
MachinePointerInfo::getFixedStack(MF, FI));
1690
}
1691
1692
// Convert the value of the argument register into the value that's
1693
// being passed.
1694
if (VA.getLocInfo() == CCValAssign::Indirect) {
1695
InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1696
MachinePointerInfo()));
1697
// If the original argument was split (e.g. i128), we need
1698
// to load all parts of it here (using the same address).
1699
unsigned ArgIndex = Ins[I].OrigArgIndex;
1700
assert (Ins[I].PartOffset == 0);
1701
while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1702
CCValAssign &PartVA = ArgLocs[I + 1];
1703
unsigned PartOffset = Ins[I + 1].PartOffset;
1704
SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1705
DAG.getIntPtrConstant(PartOffset, DL));
1706
InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1707
MachinePointerInfo()));
1708
++I;
1709
}
1710
} else
1711
InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1712
}
1713
1714
if (IsVarArg && Subtarget.isTargetXPLINK64()) {
1715
// Save the number of non-varargs registers for later use by va_start, etc.
1716
FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1717
FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1718
1719
auto *Regs = static_cast<SystemZXPLINK64Registers *>(
1720
Subtarget.getSpecialRegisters());
1721
1722
// Likewise the address (in the form of a frame index) of where the
1723
// first stack vararg would be. The 1-byte size here is arbitrary.
1724
// FIXME: Pre-include call frame size in the offset, should not
1725
// need to manually add it here.
1726
int64_t VarArgOffset = CCInfo.getStackSize() + Regs->getCallFrameSize();
1727
int FI = MFI.CreateFixedObject(1, VarArgOffset, true);
1728
FuncInfo->setVarArgsFrameIndex(FI);
1729
}
1730
1731
if (IsVarArg && Subtarget.isTargetELF()) {
1732
// Save the number of non-varargs registers for later use by va_start, etc.
1733
FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1734
FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1735
1736
// Likewise the address (in the form of a frame index) of where the
1737
// first stack vararg would be. The 1-byte size here is arbitrary.
1738
int64_t VarArgsOffset = CCInfo.getStackSize();
1739
FuncInfo->setVarArgsFrameIndex(
1740
MFI.CreateFixedObject(1, VarArgsOffset, true));
1741
1742
// ...and a similar frame index for the caller-allocated save area
1743
// that will be used to store the incoming registers.
1744
int64_t RegSaveOffset =
1745
-SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1746
unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1747
FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1748
1749
// Store the FPR varargs in the reserved frame slots. (We store the
1750
// GPRs as part of the prologue.)
1751
if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) {
1752
SDValue MemOps[SystemZ::ELFNumArgFPRs];
1753
for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) {
1754
unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]);
1755
int FI =
1756
MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true);
1757
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1758
Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I],
1759
&SystemZ::FP64BitRegClass);
1760
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1761
MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1762
MachinePointerInfo::getFixedStack(MF, FI));
1763
}
1764
// Join the stores, which are independent of one another.
1765
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1766
ArrayRef(&MemOps[NumFixedFPRs],
1767
SystemZ::ELFNumArgFPRs - NumFixedFPRs));
1768
}
1769
}
1770
1771
if (Subtarget.isTargetXPLINK64()) {
1772
// Create virual register for handling incoming "ADA" special register (R5)
1773
const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
1774
Register ADAvReg = MRI.createVirtualRegister(RC);
1775
auto *Regs = static_cast<SystemZXPLINK64Registers *>(
1776
Subtarget.getSpecialRegisters());
1777
MRI.addLiveIn(Regs->getADARegister(), ADAvReg);
1778
FuncInfo->setADAVirtualRegister(ADAvReg);
1779
}
1780
return Chain;
1781
}
1782
1783
static bool canUseSiblingCall(const CCState &ArgCCInfo,
1784
SmallVectorImpl<CCValAssign> &ArgLocs,
1785
SmallVectorImpl<ISD::OutputArg> &Outs) {
1786
// Punt if there are any indirect or stack arguments, or if the call
1787
// needs the callee-saved argument register R6, or if the call uses
1788
// the callee-saved register arguments SwiftSelf and SwiftError.
1789
for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1790
CCValAssign &VA = ArgLocs[I];
1791
if (VA.getLocInfo() == CCValAssign::Indirect)
1792
return false;
1793
if (!VA.isRegLoc())
1794
return false;
1795
Register Reg = VA.getLocReg();
1796
if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1797
return false;
1798
if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1799
return false;
1800
}
1801
return true;
1802
}
1803
1804
static SDValue getADAEntry(SelectionDAG &DAG, SDValue Val, SDLoc DL,
1805
unsigned Offset, bool LoadAdr = false) {
1806
MachineFunction &MF = DAG.getMachineFunction();
1807
SystemZMachineFunctionInfo *MFI = MF.getInfo<SystemZMachineFunctionInfo>();
1808
unsigned ADAvReg = MFI->getADAVirtualRegister();
1809
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1810
1811
SDValue Reg = DAG.getRegister(ADAvReg, PtrVT);
1812
SDValue Ofs = DAG.getTargetConstant(Offset, DL, PtrVT);
1813
1814
SDValue Result = DAG.getNode(SystemZISD::ADA_ENTRY, DL, PtrVT, Val, Reg, Ofs);
1815
if (!LoadAdr)
1816
Result = DAG.getLoad(
1817
PtrVT, DL, DAG.getEntryNode(), Result, MachinePointerInfo(), Align(8),
1818
MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant);
1819
1820
return Result;
1821
}
1822
1823
// ADA access using Global value
1824
// Note: for functions, address of descriptor is returned
1825
static SDValue getADAEntry(SelectionDAG &DAG, const GlobalValue *GV, SDLoc DL,
1826
EVT PtrVT) {
1827
unsigned ADAtype;
1828
bool LoadAddr = false;
1829
const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV);
1830
bool IsFunction =
1831
(isa<Function>(GV)) || (GA && isa<Function>(GA->getAliaseeObject()));
1832
bool IsInternal = (GV->hasInternalLinkage() || GV->hasPrivateLinkage());
1833
1834
if (IsFunction) {
1835
if (IsInternal) {
1836
ADAtype = SystemZII::MO_ADA_DIRECT_FUNC_DESC;
1837
LoadAddr = true;
1838
} else
1839
ADAtype = SystemZII::MO_ADA_INDIRECT_FUNC_DESC;
1840
} else {
1841
ADAtype = SystemZII::MO_ADA_DATA_SYMBOL_ADDR;
1842
}
1843
SDValue Val = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, ADAtype);
1844
1845
return getADAEntry(DAG, Val, DL, 0, LoadAddr);
1846
}
1847
1848
static bool getzOSCalleeAndADA(SelectionDAG &DAG, SDValue &Callee, SDValue &ADA,
1849
SDLoc &DL, SDValue &Chain) {
1850
unsigned ADADelta = 0; // ADA offset in desc.
1851
unsigned EPADelta = 8; // EPA offset in desc.
1852
MachineFunction &MF = DAG.getMachineFunction();
1853
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1854
1855
// XPLink calling convention.
1856
if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1857
bool IsInternal = (G->getGlobal()->hasInternalLinkage() ||
1858
G->getGlobal()->hasPrivateLinkage());
1859
if (IsInternal) {
1860
SystemZMachineFunctionInfo *MFI =
1861
MF.getInfo<SystemZMachineFunctionInfo>();
1862
unsigned ADAvReg = MFI->getADAVirtualRegister();
1863
ADA = DAG.getCopyFromReg(Chain, DL, ADAvReg, PtrVT);
1864
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1865
Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1866
return true;
1867
} else {
1868
SDValue GA = DAG.getTargetGlobalAddress(
1869
G->getGlobal(), DL, PtrVT, 0, SystemZII::MO_ADA_DIRECT_FUNC_DESC);
1870
ADA = getADAEntry(DAG, GA, DL, ADADelta);
1871
Callee = getADAEntry(DAG, GA, DL, EPADelta);
1872
}
1873
} else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1874
SDValue ES = DAG.getTargetExternalSymbol(
1875
E->getSymbol(), PtrVT, SystemZII::MO_ADA_DIRECT_FUNC_DESC);
1876
ADA = getADAEntry(DAG, ES, DL, ADADelta);
1877
Callee = getADAEntry(DAG, ES, DL, EPADelta);
1878
} else {
1879
// Function pointer case
1880
ADA = DAG.getNode(ISD::ADD, DL, PtrVT, Callee,
1881
DAG.getConstant(ADADelta, DL, PtrVT));
1882
ADA = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), ADA,
1883
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
1884
Callee = DAG.getNode(ISD::ADD, DL, PtrVT, Callee,
1885
DAG.getConstant(EPADelta, DL, PtrVT));
1886
Callee = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Callee,
1887
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
1888
}
1889
return false;
1890
}
1891
1892
SDValue
1893
SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1894
SmallVectorImpl<SDValue> &InVals) const {
1895
SelectionDAG &DAG = CLI.DAG;
1896
SDLoc &DL = CLI.DL;
1897
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1898
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1899
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1900
SDValue Chain = CLI.Chain;
1901
SDValue Callee = CLI.Callee;
1902
bool &IsTailCall = CLI.IsTailCall;
1903
CallingConv::ID CallConv = CLI.CallConv;
1904
bool IsVarArg = CLI.IsVarArg;
1905
MachineFunction &MF = DAG.getMachineFunction();
1906
EVT PtrVT = getPointerTy(MF.getDataLayout());
1907
LLVMContext &Ctx = *DAG.getContext();
1908
SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters();
1909
1910
// FIXME: z/OS support to be added in later.
1911
if (Subtarget.isTargetXPLINK64())
1912
IsTailCall = false;
1913
1914
// Analyze the operands of the call, assigning locations to each operand.
1915
SmallVector<CCValAssign, 16> ArgLocs;
1916
SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx);
1917
ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1918
1919
// We don't support GuaranteedTailCallOpt, only automatically-detected
1920
// sibling calls.
1921
if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1922
IsTailCall = false;
1923
1924
// Get a count of how many bytes are to be pushed on the stack.
1925
unsigned NumBytes = ArgCCInfo.getStackSize();
1926
1927
// Mark the start of the call.
1928
if (!IsTailCall)
1929
Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1930
1931
// Copy argument values to their designated locations.
1932
SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1933
SmallVector<SDValue, 8> MemOpChains;
1934
SDValue StackPtr;
1935
for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1936
CCValAssign &VA = ArgLocs[I];
1937
SDValue ArgValue = OutVals[I];
1938
1939
if (VA.getLocInfo() == CCValAssign::Indirect) {
1940
// Store the argument in a stack slot and pass its address.
1941
unsigned ArgIndex = Outs[I].OrigArgIndex;
1942
EVT SlotVT;
1943
if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1944
// Allocate the full stack space for a promoted (and split) argument.
1945
Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty;
1946
EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType);
1947
MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1948
unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1949
SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N);
1950
} else {
1951
SlotVT = Outs[I].VT;
1952
}
1953
SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT);
1954
int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1955
MemOpChains.push_back(
1956
DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1957
MachinePointerInfo::getFixedStack(MF, FI)));
1958
// If the original argument was split (e.g. i128), we need
1959
// to store all parts of it here (and pass just one address).
1960
assert (Outs[I].PartOffset == 0);
1961
while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1962
SDValue PartValue = OutVals[I + 1];
1963
unsigned PartOffset = Outs[I + 1].PartOffset;
1964
SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1965
DAG.getIntPtrConstant(PartOffset, DL));
1966
MemOpChains.push_back(
1967
DAG.getStore(Chain, DL, PartValue, Address,
1968
MachinePointerInfo::getFixedStack(MF, FI)));
1969
assert((PartOffset + PartValue.getValueType().getStoreSize() <=
1970
SlotVT.getStoreSize()) && "Not enough space for argument part!");
1971
++I;
1972
}
1973
ArgValue = SpillSlot;
1974
} else
1975
ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1976
1977
if (VA.isRegLoc()) {
1978
// In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a
1979
// MVT::i128 type. We decompose the 128-bit type to a pair of its high
1980
// and low values.
1981
if (VA.getLocVT() == MVT::i128)
1982
ArgValue = lowerI128ToGR128(DAG, ArgValue);
1983
// Queue up the argument copies and emit them at the end.
1984
RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1985
} else {
1986
assert(VA.isMemLoc() && "Argument not register or memory");
1987
1988
// Work out the address of the stack slot. Unpromoted ints and
1989
// floats are passed as right-justified 8-byte values.
1990
if (!StackPtr.getNode())
1991
StackPtr = DAG.getCopyFromReg(Chain, DL,
1992
Regs->getStackPointerRegister(), PtrVT);
1993
unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() +
1994
VA.getLocMemOffset();
1995
if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1996
Offset += 4;
1997
SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1998
DAG.getIntPtrConstant(Offset, DL));
1999
2000
// Emit the store.
2001
MemOpChains.push_back(
2002
DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
2003
2004
// Although long doubles or vectors are passed through the stack when
2005
// they are vararg (non-fixed arguments), if a long double or vector
2006
// occupies the third and fourth slot of the argument list GPR3 should
2007
// still shadow the third slot of the argument list.
2008
if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) {
2009
SDValue ShadowArgValue =
2010
DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue,
2011
DAG.getIntPtrConstant(1, DL));
2012
RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue));
2013
}
2014
}
2015
}
2016
2017
// Join the stores, which are independent of one another.
2018
if (!MemOpChains.empty())
2019
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2020
2021
// Accept direct calls by converting symbolic call addresses to the
2022
// associated Target* opcodes. Force %r1 to be used for indirect
2023
// tail calls.
2024
SDValue Glue;
2025
2026
if (Subtarget.isTargetXPLINK64()) {
2027
SDValue ADA;
2028
bool IsBRASL = getzOSCalleeAndADA(DAG, Callee, ADA, DL, Chain);
2029
if (!IsBRASL) {
2030
unsigned CalleeReg = static_cast<SystemZXPLINK64Registers *>(Regs)
2031
->getAddressOfCalleeRegister();
2032
Chain = DAG.getCopyToReg(Chain, DL, CalleeReg, Callee, Glue);
2033
Glue = Chain.getValue(1);
2034
Callee = DAG.getRegister(CalleeReg, Callee.getValueType());
2035
}
2036
RegsToPass.push_back(std::make_pair(
2037
static_cast<SystemZXPLINK64Registers *>(Regs)->getADARegister(), ADA));
2038
} else {
2039
if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2040
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
2041
Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
2042
} else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2043
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
2044
Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
2045
} else if (IsTailCall) {
2046
Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
2047
Glue = Chain.getValue(1);
2048
Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
2049
}
2050
}
2051
2052
// Build a sequence of copy-to-reg nodes, chained and glued together.
2053
for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
2054
Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
2055
RegsToPass[I].second, Glue);
2056
Glue = Chain.getValue(1);
2057
}
2058
2059
// The first call operand is the chain and the second is the target address.
2060
SmallVector<SDValue, 8> Ops;
2061
Ops.push_back(Chain);
2062
Ops.push_back(Callee);
2063
2064
// Add argument registers to the end of the list so that they are
2065
// known live into the call.
2066
for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
2067
Ops.push_back(DAG.getRegister(RegsToPass[I].first,
2068
RegsToPass[I].second.getValueType()));
2069
2070
// Add a register mask operand representing the call-preserved registers.
2071
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2072
const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2073
assert(Mask && "Missing call preserved mask for calling convention");
2074
Ops.push_back(DAG.getRegisterMask(Mask));
2075
2076
// Glue the call to the argument copies, if any.
2077
if (Glue.getNode())
2078
Ops.push_back(Glue);
2079
2080
// Emit the call.
2081
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2082
if (IsTailCall) {
2083
SDValue Ret = DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
2084
DAG.addNoMergeSiteInfo(Ret.getNode(), CLI.NoMerge);
2085
return Ret;
2086
}
2087
Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
2088
DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
2089
Glue = Chain.getValue(1);
2090
2091
// Mark the end of the call, which is glued to the call itself.
2092
Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, DL);
2093
Glue = Chain.getValue(1);
2094
2095
// Assign locations to each value returned by this call.
2096
SmallVector<CCValAssign, 16> RetLocs;
2097
CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx);
2098
RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
2099
2100
// Copy all of the result registers out of their specified physreg.
2101
for (CCValAssign &VA : RetLocs) {
2102
// Copy the value out, gluing the copy to the end of the call sequence.
2103
SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
2104
VA.getLocVT(), Glue);
2105
Chain = RetValue.getValue(1);
2106
Glue = RetValue.getValue(2);
2107
2108
// Convert the value of the return register into the value that's
2109
// being returned.
2110
InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
2111
}
2112
2113
return Chain;
2114
}
2115
2116
// Generate a call taking the given operands as arguments and returning a
2117
// result of type RetVT.
2118
std::pair<SDValue, SDValue> SystemZTargetLowering::makeExternalCall(
2119
SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT,
2120
ArrayRef<SDValue> Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL,
2121
bool DoesNotReturn, bool IsReturnValueUsed) const {
2122
TargetLowering::ArgListTy Args;
2123
Args.reserve(Ops.size());
2124
2125
TargetLowering::ArgListEntry Entry;
2126
for (SDValue Op : Ops) {
2127
Entry.Node = Op;
2128
Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
2129
Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
2130
Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
2131
Args.push_back(Entry);
2132
}
2133
2134
SDValue Callee =
2135
DAG.getExternalSymbol(CalleeName, getPointerTy(DAG.getDataLayout()));
2136
2137
Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2138
TargetLowering::CallLoweringInfo CLI(DAG);
2139
bool SignExtend = shouldSignExtendTypeInLibCall(RetVT, IsSigned);
2140
CLI.setDebugLoc(DL)
2141
.setChain(Chain)
2142
.setCallee(CallConv, RetTy, Callee, std::move(Args))
2143
.setNoReturn(DoesNotReturn)
2144
.setDiscardResult(!IsReturnValueUsed)
2145
.setSExtResult(SignExtend)
2146
.setZExtResult(!SignExtend);
2147
return LowerCallTo(CLI);
2148
}
2149
2150
bool SystemZTargetLowering::
2151
CanLowerReturn(CallingConv::ID CallConv,
2152
MachineFunction &MF, bool isVarArg,
2153
const SmallVectorImpl<ISD::OutputArg> &Outs,
2154
LLVMContext &Context) const {
2155
// Special case that we cannot easily detect in RetCC_SystemZ since
2156
// i128 may not be a legal type.
2157
for (auto &Out : Outs)
2158
if (Out.ArgVT == MVT::i128)
2159
return false;
2160
2161
SmallVector<CCValAssign, 16> RetLocs;
2162
CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
2163
return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
2164
}
2165
2166
SDValue
2167
SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2168
bool IsVarArg,
2169
const SmallVectorImpl<ISD::OutputArg> &Outs,
2170
const SmallVectorImpl<SDValue> &OutVals,
2171
const SDLoc &DL, SelectionDAG &DAG) const {
2172
MachineFunction &MF = DAG.getMachineFunction();
2173
2174
// Assign locations to each returned value.
2175
SmallVector<CCValAssign, 16> RetLocs;
2176
CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
2177
RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
2178
2179
// Quick exit for void returns
2180
if (RetLocs.empty())
2181
return DAG.getNode(SystemZISD::RET_GLUE, DL, MVT::Other, Chain);
2182
2183
if (CallConv == CallingConv::GHC)
2184
report_fatal_error("GHC functions return void only");
2185
2186
// Copy the result values into the output registers.
2187
SDValue Glue;
2188
SmallVector<SDValue, 4> RetOps;
2189
RetOps.push_back(Chain);
2190
for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
2191
CCValAssign &VA = RetLocs[I];
2192
SDValue RetValue = OutVals[I];
2193
2194
// Make the return register live on exit.
2195
assert(VA.isRegLoc() && "Can only return in registers!");
2196
2197
// Promote the value as required.
2198
RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
2199
2200
// Chain and glue the copies together.
2201
Register Reg = VA.getLocReg();
2202
Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
2203
Glue = Chain.getValue(1);
2204
RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
2205
}
2206
2207
// Update chain and glue.
2208
RetOps[0] = Chain;
2209
if (Glue.getNode())
2210
RetOps.push_back(Glue);
2211
2212
return DAG.getNode(SystemZISD::RET_GLUE, DL, MVT::Other, RetOps);
2213
}
2214
2215
// Return true if Op is an intrinsic node with chain that returns the CC value
2216
// as its only (other) argument. Provide the associated SystemZISD opcode and
2217
// the mask of valid CC values if so.
2218
static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
2219
unsigned &CCValid) {
2220
unsigned Id = Op.getConstantOperandVal(1);
2221
switch (Id) {
2222
case Intrinsic::s390_tbegin:
2223
Opcode = SystemZISD::TBEGIN;
2224
CCValid = SystemZ::CCMASK_TBEGIN;
2225
return true;
2226
2227
case Intrinsic::s390_tbegin_nofloat:
2228
Opcode = SystemZISD::TBEGIN_NOFLOAT;
2229
CCValid = SystemZ::CCMASK_TBEGIN;
2230
return true;
2231
2232
case Intrinsic::s390_tend:
2233
Opcode = SystemZISD::TEND;
2234
CCValid = SystemZ::CCMASK_TEND;
2235
return true;
2236
2237
default:
2238
return false;
2239
}
2240
}
2241
2242
// Return true if Op is an intrinsic node without chain that returns the
2243
// CC value as its final argument. Provide the associated SystemZISD
2244
// opcode and the mask of valid CC values if so.
2245
static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
2246
unsigned Id = Op.getConstantOperandVal(0);
2247
switch (Id) {
2248
case Intrinsic::s390_vpkshs:
2249
case Intrinsic::s390_vpksfs:
2250
case Intrinsic::s390_vpksgs:
2251
Opcode = SystemZISD::PACKS_CC;
2252
CCValid = SystemZ::CCMASK_VCMP;
2253
return true;
2254
2255
case Intrinsic::s390_vpklshs:
2256
case Intrinsic::s390_vpklsfs:
2257
case Intrinsic::s390_vpklsgs:
2258
Opcode = SystemZISD::PACKLS_CC;
2259
CCValid = SystemZ::CCMASK_VCMP;
2260
return true;
2261
2262
case Intrinsic::s390_vceqbs:
2263
case Intrinsic::s390_vceqhs:
2264
case Intrinsic::s390_vceqfs:
2265
case Intrinsic::s390_vceqgs:
2266
Opcode = SystemZISD::VICMPES;
2267
CCValid = SystemZ::CCMASK_VCMP;
2268
return true;
2269
2270
case Intrinsic::s390_vchbs:
2271
case Intrinsic::s390_vchhs:
2272
case Intrinsic::s390_vchfs:
2273
case Intrinsic::s390_vchgs:
2274
Opcode = SystemZISD::VICMPHS;
2275
CCValid = SystemZ::CCMASK_VCMP;
2276
return true;
2277
2278
case Intrinsic::s390_vchlbs:
2279
case Intrinsic::s390_vchlhs:
2280
case Intrinsic::s390_vchlfs:
2281
case Intrinsic::s390_vchlgs:
2282
Opcode = SystemZISD::VICMPHLS;
2283
CCValid = SystemZ::CCMASK_VCMP;
2284
return true;
2285
2286
case Intrinsic::s390_vtm:
2287
Opcode = SystemZISD::VTM;
2288
CCValid = SystemZ::CCMASK_VCMP;
2289
return true;
2290
2291
case Intrinsic::s390_vfaebs:
2292
case Intrinsic::s390_vfaehs:
2293
case Intrinsic::s390_vfaefs:
2294
Opcode = SystemZISD::VFAE_CC;
2295
CCValid = SystemZ::CCMASK_ANY;
2296
return true;
2297
2298
case Intrinsic::s390_vfaezbs:
2299
case Intrinsic::s390_vfaezhs:
2300
case Intrinsic::s390_vfaezfs:
2301
Opcode = SystemZISD::VFAEZ_CC;
2302
CCValid = SystemZ::CCMASK_ANY;
2303
return true;
2304
2305
case Intrinsic::s390_vfeebs:
2306
case Intrinsic::s390_vfeehs:
2307
case Intrinsic::s390_vfeefs:
2308
Opcode = SystemZISD::VFEE_CC;
2309
CCValid = SystemZ::CCMASK_ANY;
2310
return true;
2311
2312
case Intrinsic::s390_vfeezbs:
2313
case Intrinsic::s390_vfeezhs:
2314
case Intrinsic::s390_vfeezfs:
2315
Opcode = SystemZISD::VFEEZ_CC;
2316
CCValid = SystemZ::CCMASK_ANY;
2317
return true;
2318
2319
case Intrinsic::s390_vfenebs:
2320
case Intrinsic::s390_vfenehs:
2321
case Intrinsic::s390_vfenefs:
2322
Opcode = SystemZISD::VFENE_CC;
2323
CCValid = SystemZ::CCMASK_ANY;
2324
return true;
2325
2326
case Intrinsic::s390_vfenezbs:
2327
case Intrinsic::s390_vfenezhs:
2328
case Intrinsic::s390_vfenezfs:
2329
Opcode = SystemZISD::VFENEZ_CC;
2330
CCValid = SystemZ::CCMASK_ANY;
2331
return true;
2332
2333
case Intrinsic::s390_vistrbs:
2334
case Intrinsic::s390_vistrhs:
2335
case Intrinsic::s390_vistrfs:
2336
Opcode = SystemZISD::VISTR_CC;
2337
CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
2338
return true;
2339
2340
case Intrinsic::s390_vstrcbs:
2341
case Intrinsic::s390_vstrchs:
2342
case Intrinsic::s390_vstrcfs:
2343
Opcode = SystemZISD::VSTRC_CC;
2344
CCValid = SystemZ::CCMASK_ANY;
2345
return true;
2346
2347
case Intrinsic::s390_vstrczbs:
2348
case Intrinsic::s390_vstrczhs:
2349
case Intrinsic::s390_vstrczfs:
2350
Opcode = SystemZISD::VSTRCZ_CC;
2351
CCValid = SystemZ::CCMASK_ANY;
2352
return true;
2353
2354
case Intrinsic::s390_vstrsb:
2355
case Intrinsic::s390_vstrsh:
2356
case Intrinsic::s390_vstrsf:
2357
Opcode = SystemZISD::VSTRS_CC;
2358
CCValid = SystemZ::CCMASK_ANY;
2359
return true;
2360
2361
case Intrinsic::s390_vstrszb:
2362
case Intrinsic::s390_vstrszh:
2363
case Intrinsic::s390_vstrszf:
2364
Opcode = SystemZISD::VSTRSZ_CC;
2365
CCValid = SystemZ::CCMASK_ANY;
2366
return true;
2367
2368
case Intrinsic::s390_vfcedbs:
2369
case Intrinsic::s390_vfcesbs:
2370
Opcode = SystemZISD::VFCMPES;
2371
CCValid = SystemZ::CCMASK_VCMP;
2372
return true;
2373
2374
case Intrinsic::s390_vfchdbs:
2375
case Intrinsic::s390_vfchsbs:
2376
Opcode = SystemZISD::VFCMPHS;
2377
CCValid = SystemZ::CCMASK_VCMP;
2378
return true;
2379
2380
case Intrinsic::s390_vfchedbs:
2381
case Intrinsic::s390_vfchesbs:
2382
Opcode = SystemZISD::VFCMPHES;
2383
CCValid = SystemZ::CCMASK_VCMP;
2384
return true;
2385
2386
case Intrinsic::s390_vftcidb:
2387
case Intrinsic::s390_vftcisb:
2388
Opcode = SystemZISD::VFTCI;
2389
CCValid = SystemZ::CCMASK_VCMP;
2390
return true;
2391
2392
case Intrinsic::s390_tdc:
2393
Opcode = SystemZISD::TDC;
2394
CCValid = SystemZ::CCMASK_TDC;
2395
return true;
2396
2397
default:
2398
return false;
2399
}
2400
}
2401
2402
// Emit an intrinsic with chain and an explicit CC register result.
2403
static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
2404
unsigned Opcode) {
2405
// Copy all operands except the intrinsic ID.
2406
unsigned NumOps = Op.getNumOperands();
2407
SmallVector<SDValue, 6> Ops;
2408
Ops.reserve(NumOps - 1);
2409
Ops.push_back(Op.getOperand(0));
2410
for (unsigned I = 2; I < NumOps; ++I)
2411
Ops.push_back(Op.getOperand(I));
2412
2413
assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
2414
SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
2415
SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
2416
SDValue OldChain = SDValue(Op.getNode(), 1);
2417
SDValue NewChain = SDValue(Intr.getNode(), 1);
2418
DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
2419
return Intr.getNode();
2420
}
2421
2422
// Emit an intrinsic with an explicit CC register result.
2423
static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
2424
unsigned Opcode) {
2425
// Copy all operands except the intrinsic ID.
2426
unsigned NumOps = Op.getNumOperands();
2427
SmallVector<SDValue, 6> Ops;
2428
Ops.reserve(NumOps - 1);
2429
for (unsigned I = 1; I < NumOps; ++I)
2430
Ops.push_back(Op.getOperand(I));
2431
2432
SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2433
return Intr.getNode();
2434
}
2435
2436
// CC is a comparison that will be implemented using an integer or
2437
// floating-point comparison. Return the condition code mask for
2438
// a branch on true. In the integer case, CCMASK_CMP_UO is set for
2439
// unsigned comparisons and clear for signed ones. In the floating-point
2440
// case, CCMASK_CMP_UO has its normal mask meaning (unordered).
2441
static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2442
#define CONV(X) \
2443
case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2444
case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2445
case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2446
2447
switch (CC) {
2448
default:
2449
llvm_unreachable("Invalid integer condition!");
2450
2451
CONV(EQ);
2452
CONV(NE);
2453
CONV(GT);
2454
CONV(GE);
2455
CONV(LT);
2456
CONV(LE);
2457
2458
case ISD::SETO: return SystemZ::CCMASK_CMP_O;
2459
case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2460
}
2461
#undef CONV
2462
}
2463
2464
// If C can be converted to a comparison against zero, adjust the operands
2465
// as necessary.
2466
static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2467
if (C.ICmpType == SystemZICMP::UnsignedOnly)
2468
return;
2469
2470
auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2471
if (!ConstOp1 || ConstOp1->getValueSizeInBits(0) > 64)
2472
return;
2473
2474
int64_t Value = ConstOp1->getSExtValue();
2475
if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2476
(Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2477
(Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2478
(Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2479
C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2480
C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2481
}
2482
}
2483
2484
// If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2485
// adjust the operands as necessary.
2486
static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2487
Comparison &C) {
2488
// For us to make any changes, it must a comparison between a single-use
2489
// load and a constant.
2490
if (!C.Op0.hasOneUse() ||
2491
C.Op0.getOpcode() != ISD::LOAD ||
2492
C.Op1.getOpcode() != ISD::Constant)
2493
return;
2494
2495
// We must have an 8- or 16-bit load.
2496
auto *Load = cast<LoadSDNode>(C.Op0);
2497
unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2498
if ((NumBits != 8 && NumBits != 16) ||
2499
NumBits != Load->getMemoryVT().getStoreSizeInBits())
2500
return;
2501
2502
// The load must be an extending one and the constant must be within the
2503
// range of the unextended value.
2504
auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2505
if (!ConstOp1 || ConstOp1->getValueSizeInBits(0) > 64)
2506
return;
2507
uint64_t Value = ConstOp1->getZExtValue();
2508
uint64_t Mask = (1 << NumBits) - 1;
2509
if (Load->getExtensionType() == ISD::SEXTLOAD) {
2510
// Make sure that ConstOp1 is in range of C.Op0.
2511
int64_t SignedValue = ConstOp1->getSExtValue();
2512
if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2513
return;
2514
if (C.ICmpType != SystemZICMP::SignedOnly) {
2515
// Unsigned comparison between two sign-extended values is equivalent
2516
// to unsigned comparison between two zero-extended values.
2517
Value &= Mask;
2518
} else if (NumBits == 8) {
2519
// Try to treat the comparison as unsigned, so that we can use CLI.
2520
// Adjust CCMask and Value as necessary.
2521
if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2522
// Test whether the high bit of the byte is set.
2523
Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2524
else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2525
// Test whether the high bit of the byte is clear.
2526
Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2527
else
2528
// No instruction exists for this combination.
2529
return;
2530
C.ICmpType = SystemZICMP::UnsignedOnly;
2531
}
2532
} else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2533
if (Value > Mask)
2534
return;
2535
// If the constant is in range, we can use any comparison.
2536
C.ICmpType = SystemZICMP::Any;
2537
} else
2538
return;
2539
2540
// Make sure that the first operand is an i32 of the right extension type.
2541
ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2542
ISD::SEXTLOAD :
2543
ISD::ZEXTLOAD);
2544
if (C.Op0.getValueType() != MVT::i32 ||
2545
Load->getExtensionType() != ExtType) {
2546
C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2547
Load->getBasePtr(), Load->getPointerInfo(),
2548
Load->getMemoryVT(), Load->getAlign(),
2549
Load->getMemOperand()->getFlags());
2550
// Update the chain uses.
2551
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2552
}
2553
2554
// Make sure that the second operand is an i32 with the right value.
2555
if (C.Op1.getValueType() != MVT::i32 ||
2556
Value != ConstOp1->getZExtValue())
2557
C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2558
}
2559
2560
// Return true if Op is either an unextended load, or a load suitable
2561
// for integer register-memory comparisons of type ICmpType.
2562
static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2563
auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2564
if (Load) {
2565
// There are no instructions to compare a register with a memory byte.
2566
if (Load->getMemoryVT() == MVT::i8)
2567
return false;
2568
// Otherwise decide on extension type.
2569
switch (Load->getExtensionType()) {
2570
case ISD::NON_EXTLOAD:
2571
return true;
2572
case ISD::SEXTLOAD:
2573
return ICmpType != SystemZICMP::UnsignedOnly;
2574
case ISD::ZEXTLOAD:
2575
return ICmpType != SystemZICMP::SignedOnly;
2576
default:
2577
break;
2578
}
2579
}
2580
return false;
2581
}
2582
2583
// Return true if it is better to swap the operands of C.
2584
static bool shouldSwapCmpOperands(const Comparison &C) {
2585
// Leave i128 and f128 comparisons alone, since they have no memory forms.
2586
if (C.Op0.getValueType() == MVT::i128)
2587
return false;
2588
if (C.Op0.getValueType() == MVT::f128)
2589
return false;
2590
2591
// Always keep a floating-point constant second, since comparisons with
2592
// zero can use LOAD TEST and comparisons with other constants make a
2593
// natural memory operand.
2594
if (isa<ConstantFPSDNode>(C.Op1))
2595
return false;
2596
2597
// Never swap comparisons with zero since there are many ways to optimize
2598
// those later.
2599
auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2600
if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2601
return false;
2602
2603
// Also keep natural memory operands second if the loaded value is
2604
// only used here. Several comparisons have memory forms.
2605
if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2606
return false;
2607
2608
// Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2609
// In that case we generally prefer the memory to be second.
2610
if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2611
// The only exceptions are when the second operand is a constant and
2612
// we can use things like CHHSI.
2613
if (!ConstOp1)
2614
return true;
2615
// The unsigned memory-immediate instructions can handle 16-bit
2616
// unsigned integers.
2617
if (C.ICmpType != SystemZICMP::SignedOnly &&
2618
isUInt<16>(ConstOp1->getZExtValue()))
2619
return false;
2620
// The signed memory-immediate instructions can handle 16-bit
2621
// signed integers.
2622
if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2623
isInt<16>(ConstOp1->getSExtValue()))
2624
return false;
2625
return true;
2626
}
2627
2628
// Try to promote the use of CGFR and CLGFR.
2629
unsigned Opcode0 = C.Op0.getOpcode();
2630
if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2631
return true;
2632
if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2633
return true;
2634
if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::AND &&
2635
C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2636
C.Op0.getConstantOperandVal(1) == 0xffffffff)
2637
return true;
2638
2639
return false;
2640
}
2641
2642
// Check whether C tests for equality between X and Y and whether X - Y
2643
// or Y - X is also computed. In that case it's better to compare the
2644
// result of the subtraction against zero.
2645
static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2646
Comparison &C) {
2647
if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2648
C.CCMask == SystemZ::CCMASK_CMP_NE) {
2649
for (SDNode *N : C.Op0->uses()) {
2650
if (N->getOpcode() == ISD::SUB &&
2651
((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2652
(N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2653
// Disable the nsw and nuw flags: the backend needs to handle
2654
// overflow as well during comparison elimination.
2655
SDNodeFlags Flags = N->getFlags();
2656
Flags.setNoSignedWrap(false);
2657
Flags.setNoUnsignedWrap(false);
2658
N->setFlags(Flags);
2659
C.Op0 = SDValue(N, 0);
2660
C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2661
return;
2662
}
2663
}
2664
}
2665
}
2666
2667
// Check whether C compares a floating-point value with zero and if that
2668
// floating-point value is also negated. In this case we can use the
2669
// negation to set CC, so avoiding separate LOAD AND TEST and
2670
// LOAD (NEGATIVE/COMPLEMENT) instructions.
2671
static void adjustForFNeg(Comparison &C) {
2672
// This optimization is invalid for strict comparisons, since FNEG
2673
// does not raise any exceptions.
2674
if (C.Chain)
2675
return;
2676
auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2677
if (C1 && C1->isZero()) {
2678
for (SDNode *N : C.Op0->uses()) {
2679
if (N->getOpcode() == ISD::FNEG) {
2680
C.Op0 = SDValue(N, 0);
2681
C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2682
return;
2683
}
2684
}
2685
}
2686
}
2687
2688
// Check whether C compares (shl X, 32) with 0 and whether X is
2689
// also sign-extended. In that case it is better to test the result
2690
// of the sign extension using LTGFR.
2691
//
2692
// This case is important because InstCombine transforms a comparison
2693
// with (sext (trunc X)) into a comparison with (shl X, 32).
2694
static void adjustForLTGFR(Comparison &C) {
2695
// Check for a comparison between (shl X, 32) and 0.
2696
if (C.Op0.getOpcode() == ISD::SHL && C.Op0.getValueType() == MVT::i64 &&
2697
C.Op1.getOpcode() == ISD::Constant && C.Op1->getAsZExtVal() == 0) {
2698
auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2699
if (C1 && C1->getZExtValue() == 32) {
2700
SDValue ShlOp0 = C.Op0.getOperand(0);
2701
// See whether X has any SIGN_EXTEND_INREG uses.
2702
for (SDNode *N : ShlOp0->uses()) {
2703
if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2704
cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2705
C.Op0 = SDValue(N, 0);
2706
return;
2707
}
2708
}
2709
}
2710
}
2711
}
2712
2713
// If C compares the truncation of an extending load, try to compare
2714
// the untruncated value instead. This exposes more opportunities to
2715
// reuse CC.
2716
static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2717
Comparison &C) {
2718
if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2719
C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2720
C.Op1.getOpcode() == ISD::Constant &&
2721
cast<ConstantSDNode>(C.Op1)->getValueSizeInBits(0) <= 64 &&
2722
C.Op1->getAsZExtVal() == 0) {
2723
auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2724
if (L->getMemoryVT().getStoreSizeInBits().getFixedValue() <=
2725
C.Op0.getValueSizeInBits().getFixedValue()) {
2726
unsigned Type = L->getExtensionType();
2727
if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2728
(Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2729
C.Op0 = C.Op0.getOperand(0);
2730
C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2731
}
2732
}
2733
}
2734
}
2735
2736
// Return true if shift operation N has an in-range constant shift value.
2737
// Store it in ShiftVal if so.
2738
static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2739
auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2740
if (!Shift)
2741
return false;
2742
2743
uint64_t Amount = Shift->getZExtValue();
2744
if (Amount >= N.getValueSizeInBits())
2745
return false;
2746
2747
ShiftVal = Amount;
2748
return true;
2749
}
2750
2751
// Check whether an AND with Mask is suitable for a TEST UNDER MASK
2752
// instruction and whether the CC value is descriptive enough to handle
2753
// a comparison of type Opcode between the AND result and CmpVal.
2754
// CCMask says which comparison result is being tested and BitSize is
2755
// the number of bits in the operands. If TEST UNDER MASK can be used,
2756
// return the corresponding CC mask, otherwise return 0.
2757
static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2758
uint64_t Mask, uint64_t CmpVal,
2759
unsigned ICmpType) {
2760
assert(Mask != 0 && "ANDs with zero should have been removed by now");
2761
2762
// Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2763
if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2764
!SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2765
return 0;
2766
2767
// Work out the masks for the lowest and highest bits.
2768
uint64_t High = llvm::bit_floor(Mask);
2769
uint64_t Low = uint64_t(1) << llvm::countr_zero(Mask);
2770
2771
// Signed ordered comparisons are effectively unsigned if the sign
2772
// bit is dropped.
2773
bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2774
2775
// Check for equality comparisons with 0, or the equivalent.
2776
if (CmpVal == 0) {
2777
if (CCMask == SystemZ::CCMASK_CMP_EQ)
2778
return SystemZ::CCMASK_TM_ALL_0;
2779
if (CCMask == SystemZ::CCMASK_CMP_NE)
2780
return SystemZ::CCMASK_TM_SOME_1;
2781
}
2782
if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2783
if (CCMask == SystemZ::CCMASK_CMP_LT)
2784
return SystemZ::CCMASK_TM_ALL_0;
2785
if (CCMask == SystemZ::CCMASK_CMP_GE)
2786
return SystemZ::CCMASK_TM_SOME_1;
2787
}
2788
if (EffectivelyUnsigned && CmpVal < Low) {
2789
if (CCMask == SystemZ::CCMASK_CMP_LE)
2790
return SystemZ::CCMASK_TM_ALL_0;
2791
if (CCMask == SystemZ::CCMASK_CMP_GT)
2792
return SystemZ::CCMASK_TM_SOME_1;
2793
}
2794
2795
// Check for equality comparisons with the mask, or the equivalent.
2796
if (CmpVal == Mask) {
2797
if (CCMask == SystemZ::CCMASK_CMP_EQ)
2798
return SystemZ::CCMASK_TM_ALL_1;
2799
if (CCMask == SystemZ::CCMASK_CMP_NE)
2800
return SystemZ::CCMASK_TM_SOME_0;
2801
}
2802
if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2803
if (CCMask == SystemZ::CCMASK_CMP_GT)
2804
return SystemZ::CCMASK_TM_ALL_1;
2805
if (CCMask == SystemZ::CCMASK_CMP_LE)
2806
return SystemZ::CCMASK_TM_SOME_0;
2807
}
2808
if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2809
if (CCMask == SystemZ::CCMASK_CMP_GE)
2810
return SystemZ::CCMASK_TM_ALL_1;
2811
if (CCMask == SystemZ::CCMASK_CMP_LT)
2812
return SystemZ::CCMASK_TM_SOME_0;
2813
}
2814
2815
// Check for ordered comparisons with the top bit.
2816
if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2817
if (CCMask == SystemZ::CCMASK_CMP_LE)
2818
return SystemZ::CCMASK_TM_MSB_0;
2819
if (CCMask == SystemZ::CCMASK_CMP_GT)
2820
return SystemZ::CCMASK_TM_MSB_1;
2821
}
2822
if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2823
if (CCMask == SystemZ::CCMASK_CMP_LT)
2824
return SystemZ::CCMASK_TM_MSB_0;
2825
if (CCMask == SystemZ::CCMASK_CMP_GE)
2826
return SystemZ::CCMASK_TM_MSB_1;
2827
}
2828
2829
// If there are just two bits, we can do equality checks for Low and High
2830
// as well.
2831
if (Mask == Low + High) {
2832
if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2833
return SystemZ::CCMASK_TM_MIXED_MSB_0;
2834
if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2835
return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2836
if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2837
return SystemZ::CCMASK_TM_MIXED_MSB_1;
2838
if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2839
return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2840
}
2841
2842
// Looks like we've exhausted our options.
2843
return 0;
2844
}
2845
2846
// See whether C can be implemented as a TEST UNDER MASK instruction.
2847
// Update the arguments with the TM version if so.
2848
static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2849
Comparison &C) {
2850
// Use VECTOR TEST UNDER MASK for i128 operations.
2851
if (C.Op0.getValueType() == MVT::i128) {
2852
// We can use VTM for EQ/NE comparisons of x & y against 0.
2853
if (C.Op0.getOpcode() == ISD::AND &&
2854
(C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2855
C.CCMask == SystemZ::CCMASK_CMP_NE)) {
2856
auto *Mask = dyn_cast<ConstantSDNode>(C.Op1);
2857
if (Mask && Mask->getAPIntValue() == 0) {
2858
C.Opcode = SystemZISD::VTM;
2859
C.Op1 = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, C.Op0.getOperand(1));
2860
C.Op0 = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, C.Op0.getOperand(0));
2861
C.CCValid = SystemZ::CCMASK_VCMP;
2862
if (C.CCMask == SystemZ::CCMASK_CMP_EQ)
2863
C.CCMask = SystemZ::CCMASK_VCMP_ALL;
2864
else
2865
C.CCMask = SystemZ::CCMASK_VCMP_ALL ^ C.CCValid;
2866
}
2867
}
2868
return;
2869
}
2870
2871
// Check that we have a comparison with a constant.
2872
auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2873
if (!ConstOp1)
2874
return;
2875
uint64_t CmpVal = ConstOp1->getZExtValue();
2876
2877
// Check whether the nonconstant input is an AND with a constant mask.
2878
Comparison NewC(C);
2879
uint64_t MaskVal;
2880
ConstantSDNode *Mask = nullptr;
2881
if (C.Op0.getOpcode() == ISD::AND) {
2882
NewC.Op0 = C.Op0.getOperand(0);
2883
NewC.Op1 = C.Op0.getOperand(1);
2884
Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2885
if (!Mask)
2886
return;
2887
MaskVal = Mask->getZExtValue();
2888
} else {
2889
// There is no instruction to compare with a 64-bit immediate
2890
// so use TMHH instead if possible. We need an unsigned ordered
2891
// comparison with an i64 immediate.
2892
if (NewC.Op0.getValueType() != MVT::i64 ||
2893
NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2894
NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2895
NewC.ICmpType == SystemZICMP::SignedOnly)
2896
return;
2897
// Convert LE and GT comparisons into LT and GE.
2898
if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2899
NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2900
if (CmpVal == uint64_t(-1))
2901
return;
2902
CmpVal += 1;
2903
NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2904
}
2905
// If the low N bits of Op1 are zero than the low N bits of Op0 can
2906
// be masked off without changing the result.
2907
MaskVal = -(CmpVal & -CmpVal);
2908
NewC.ICmpType = SystemZICMP::UnsignedOnly;
2909
}
2910
if (!MaskVal)
2911
return;
2912
2913
// Check whether the combination of mask, comparison value and comparison
2914
// type are suitable.
2915
unsigned BitSize = NewC.Op0.getValueSizeInBits();
2916
unsigned NewCCMask, ShiftVal;
2917
if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2918
NewC.Op0.getOpcode() == ISD::SHL &&
2919
isSimpleShift(NewC.Op0, ShiftVal) &&
2920
(MaskVal >> ShiftVal != 0) &&
2921
((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2922
(NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2923
MaskVal >> ShiftVal,
2924
CmpVal >> ShiftVal,
2925
SystemZICMP::Any))) {
2926
NewC.Op0 = NewC.Op0.getOperand(0);
2927
MaskVal >>= ShiftVal;
2928
} else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2929
NewC.Op0.getOpcode() == ISD::SRL &&
2930
isSimpleShift(NewC.Op0, ShiftVal) &&
2931
(MaskVal << ShiftVal != 0) &&
2932
((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2933
(NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2934
MaskVal << ShiftVal,
2935
CmpVal << ShiftVal,
2936
SystemZICMP::UnsignedOnly))) {
2937
NewC.Op0 = NewC.Op0.getOperand(0);
2938
MaskVal <<= ShiftVal;
2939
} else {
2940
NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2941
NewC.ICmpType);
2942
if (!NewCCMask)
2943
return;
2944
}
2945
2946
// Go ahead and make the change.
2947
C.Opcode = SystemZISD::TM;
2948
C.Op0 = NewC.Op0;
2949
if (Mask && Mask->getZExtValue() == MaskVal)
2950
C.Op1 = SDValue(Mask, 0);
2951
else
2952
C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2953
C.CCValid = SystemZ::CCMASK_TM;
2954
C.CCMask = NewCCMask;
2955
}
2956
2957
// Implement i128 comparison in vector registers.
2958
static void adjustICmp128(SelectionDAG &DAG, const SDLoc &DL,
2959
Comparison &C) {
2960
if (C.Opcode != SystemZISD::ICMP)
2961
return;
2962
if (C.Op0.getValueType() != MVT::i128)
2963
return;
2964
2965
// (In-)Equality comparisons can be implemented via VCEQGS.
2966
if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2967
C.CCMask == SystemZ::CCMASK_CMP_NE) {
2968
C.Opcode = SystemZISD::VICMPES;
2969
C.Op0 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, C.Op0);
2970
C.Op1 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, C.Op1);
2971
C.CCValid = SystemZ::CCMASK_VCMP;
2972
if (C.CCMask == SystemZ::CCMASK_CMP_EQ)
2973
C.CCMask = SystemZ::CCMASK_VCMP_ALL;
2974
else
2975
C.CCMask = SystemZ::CCMASK_VCMP_ALL ^ C.CCValid;
2976
return;
2977
}
2978
2979
// Normalize other comparisons to GT.
2980
bool Swap = false, Invert = false;
2981
switch (C.CCMask) {
2982
case SystemZ::CCMASK_CMP_GT: break;
2983
case SystemZ::CCMASK_CMP_LT: Swap = true; break;
2984
case SystemZ::CCMASK_CMP_LE: Invert = true; break;
2985
case SystemZ::CCMASK_CMP_GE: Swap = Invert = true; break;
2986
default: llvm_unreachable("Invalid integer condition!");
2987
}
2988
if (Swap)
2989
std::swap(C.Op0, C.Op1);
2990
2991
if (C.ICmpType == SystemZICMP::UnsignedOnly)
2992
C.Opcode = SystemZISD::UCMP128HI;
2993
else
2994
C.Opcode = SystemZISD::SCMP128HI;
2995
C.CCValid = SystemZ::CCMASK_ANY;
2996
C.CCMask = SystemZ::CCMASK_1;
2997
2998
if (Invert)
2999
C.CCMask ^= C.CCValid;
3000
}
3001
3002
// See whether the comparison argument contains a redundant AND
3003
// and remove it if so. This sometimes happens due to the generic
3004
// BRCOND expansion.
3005
static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
3006
Comparison &C) {
3007
if (C.Op0.getOpcode() != ISD::AND)
3008
return;
3009
auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
3010
if (!Mask || Mask->getValueSizeInBits(0) > 64)
3011
return;
3012
KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
3013
if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
3014
return;
3015
3016
C.Op0 = C.Op0.getOperand(0);
3017
}
3018
3019
// Return a Comparison that tests the condition-code result of intrinsic
3020
// node Call against constant integer CC using comparison code Cond.
3021
// Opcode is the opcode of the SystemZISD operation for the intrinsic
3022
// and CCValid is the set of possible condition-code results.
3023
static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
3024
SDValue Call, unsigned CCValid, uint64_t CC,
3025
ISD::CondCode Cond) {
3026
Comparison C(Call, SDValue(), SDValue());
3027
C.Opcode = Opcode;
3028
C.CCValid = CCValid;
3029
if (Cond == ISD::SETEQ)
3030
// bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
3031
C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
3032
else if (Cond == ISD::SETNE)
3033
// ...and the inverse of that.
3034
C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
3035
else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
3036
// bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
3037
// always true for CC>3.
3038
C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
3039
else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
3040
// ...and the inverse of that.
3041
C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
3042
else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
3043
// bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
3044
// always true for CC>3.
3045
C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
3046
else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
3047
// ...and the inverse of that.
3048
C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
3049
else
3050
llvm_unreachable("Unexpected integer comparison type");
3051
C.CCMask &= CCValid;
3052
return C;
3053
}
3054
3055
// Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
3056
static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
3057
ISD::CondCode Cond, const SDLoc &DL,
3058
SDValue Chain = SDValue(),
3059
bool IsSignaling = false) {
3060
if (CmpOp1.getOpcode() == ISD::Constant) {
3061
assert(!Chain);
3062
unsigned Opcode, CCValid;
3063
if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
3064
CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
3065
isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
3066
return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid,
3067
CmpOp1->getAsZExtVal(), Cond);
3068
if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3069
CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
3070
isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
3071
return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid,
3072
CmpOp1->getAsZExtVal(), Cond);
3073
}
3074
Comparison C(CmpOp0, CmpOp1, Chain);
3075
C.CCMask = CCMaskForCondCode(Cond);
3076
if (C.Op0.getValueType().isFloatingPoint()) {
3077
C.CCValid = SystemZ::CCMASK_FCMP;
3078
if (!C.Chain)
3079
C.Opcode = SystemZISD::FCMP;
3080
else if (!IsSignaling)
3081
C.Opcode = SystemZISD::STRICT_FCMP;
3082
else
3083
C.Opcode = SystemZISD::STRICT_FCMPS;
3084
adjustForFNeg(C);
3085
} else {
3086
assert(!C.Chain);
3087
C.CCValid = SystemZ::CCMASK_ICMP;
3088
C.Opcode = SystemZISD::ICMP;
3089
// Choose the type of comparison. Equality and inequality tests can
3090
// use either signed or unsigned comparisons. The choice also doesn't
3091
// matter if both sign bits are known to be clear. In those cases we
3092
// want to give the main isel code the freedom to choose whichever
3093
// form fits best.
3094
if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
3095
C.CCMask == SystemZ::CCMASK_CMP_NE ||
3096
(DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
3097
C.ICmpType = SystemZICMP::Any;
3098
else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
3099
C.ICmpType = SystemZICMP::UnsignedOnly;
3100
else
3101
C.ICmpType = SystemZICMP::SignedOnly;
3102
C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
3103
adjustForRedundantAnd(DAG, DL, C);
3104
adjustZeroCmp(DAG, DL, C);
3105
adjustSubwordCmp(DAG, DL, C);
3106
adjustForSubtraction(DAG, DL, C);
3107
adjustForLTGFR(C);
3108
adjustICmpTruncate(DAG, DL, C);
3109
}
3110
3111
if (shouldSwapCmpOperands(C)) {
3112
std::swap(C.Op0, C.Op1);
3113
C.CCMask = SystemZ::reverseCCMask(C.CCMask);
3114
}
3115
3116
adjustForTestUnderMask(DAG, DL, C);
3117
adjustICmp128(DAG, DL, C);
3118
return C;
3119
}
3120
3121
// Emit the comparison instruction described by C.
3122
static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
3123
if (!C.Op1.getNode()) {
3124
SDNode *Node;
3125
switch (C.Op0.getOpcode()) {
3126
case ISD::INTRINSIC_W_CHAIN:
3127
Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
3128
return SDValue(Node, 0);
3129
case ISD::INTRINSIC_WO_CHAIN:
3130
Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
3131
return SDValue(Node, Node->getNumValues() - 1);
3132
default:
3133
llvm_unreachable("Invalid comparison operands");
3134
}
3135
}
3136
if (C.Opcode == SystemZISD::ICMP)
3137
return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
3138
DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
3139
if (C.Opcode == SystemZISD::TM) {
3140
bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
3141
bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
3142
return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
3143
DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
3144
}
3145
if (C.Opcode == SystemZISD::VICMPES) {
3146
SDVTList VTs = DAG.getVTList(C.Op0.getValueType(), MVT::i32);
3147
SDValue Val = DAG.getNode(C.Opcode, DL, VTs, C.Op0, C.Op1);
3148
return SDValue(Val.getNode(), 1);
3149
}
3150
if (C.Chain) {
3151
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
3152
return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
3153
}
3154
return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
3155
}
3156
3157
// Implement a 32-bit *MUL_LOHI operation by extending both operands to
3158
// 64 bits. Extend is the extension type to use. Store the high part
3159
// in Hi and the low part in Lo.
3160
static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
3161
SDValue Op0, SDValue Op1, SDValue &Hi,
3162
SDValue &Lo) {
3163
Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
3164
Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
3165
SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
3166
Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
3167
DAG.getConstant(32, DL, MVT::i64));
3168
Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
3169
Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
3170
}
3171
3172
// Lower a binary operation that produces two VT results, one in each
3173
// half of a GR128 pair. Op0 and Op1 are the VT operands to the operation,
3174
// and Opcode performs the GR128 operation. Store the even register result
3175
// in Even and the odd register result in Odd.
3176
static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
3177
unsigned Opcode, SDValue Op0, SDValue Op1,
3178
SDValue &Even, SDValue &Odd) {
3179
SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
3180
bool Is32Bit = is32Bit(VT);
3181
Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
3182
Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
3183
}
3184
3185
// Return an i32 value that is 1 if the CC value produced by CCReg is
3186
// in the mask CCMask and 0 otherwise. CC is known to have a value
3187
// in CCValid, so other values can be ignored.
3188
static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
3189
unsigned CCValid, unsigned CCMask) {
3190
SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
3191
DAG.getConstant(0, DL, MVT::i32),
3192
DAG.getTargetConstant(CCValid, DL, MVT::i32),
3193
DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
3194
return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
3195
}
3196
3197
// Return the SystemISD vector comparison operation for CC, or 0 if it cannot
3198
// be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP
3199
// for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
3200
// floating-point comparisons, and CmpMode::SignalingFP for strict signaling
3201
// floating-point comparisons.
3202
enum class CmpMode { Int, FP, StrictFP, SignalingFP };
3203
static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
3204
switch (CC) {
3205
case ISD::SETOEQ:
3206
case ISD::SETEQ:
3207
switch (Mode) {
3208
case CmpMode::Int: return SystemZISD::VICMPE;
3209
case CmpMode::FP: return SystemZISD::VFCMPE;
3210
case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE;
3211
case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
3212
}
3213
llvm_unreachable("Bad mode");
3214
3215
case ISD::SETOGE:
3216
case ISD::SETGE:
3217
switch (Mode) {
3218
case CmpMode::Int: return 0;
3219
case CmpMode::FP: return SystemZISD::VFCMPHE;
3220
case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE;
3221
case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
3222
}
3223
llvm_unreachable("Bad mode");
3224
3225
case ISD::SETOGT:
3226
case ISD::SETGT:
3227
switch (Mode) {
3228
case CmpMode::Int: return SystemZISD::VICMPH;
3229
case CmpMode::FP: return SystemZISD::VFCMPH;
3230
case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH;
3231
case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
3232
}
3233
llvm_unreachable("Bad mode");
3234
3235
case ISD::SETUGT:
3236
switch (Mode) {
3237
case CmpMode::Int: return SystemZISD::VICMPHL;
3238
case CmpMode::FP: return 0;
3239
case CmpMode::StrictFP: return 0;
3240
case CmpMode::SignalingFP: return 0;
3241
}
3242
llvm_unreachable("Bad mode");
3243
3244
default:
3245
return 0;
3246
}
3247
}
3248
3249
// Return the SystemZISD vector comparison operation for CC or its inverse,
3250
// or 0 if neither can be done directly. Indicate in Invert whether the
3251
// result is for the inverse of CC. Mode is as above.
3252
static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
3253
bool &Invert) {
3254
if (unsigned Opcode = getVectorComparison(CC, Mode)) {
3255
Invert = false;
3256
return Opcode;
3257
}
3258
3259
CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
3260
if (unsigned Opcode = getVectorComparison(CC, Mode)) {
3261
Invert = true;
3262
return Opcode;
3263
}
3264
3265
return 0;
3266
}
3267
3268
// Return a v2f64 that contains the extended form of elements Start and Start+1
3269
// of v4f32 value Op. If Chain is nonnull, return the strict form.
3270
static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
3271
SDValue Op, SDValue Chain) {
3272
int Mask[] = { Start, -1, Start + 1, -1 };
3273
Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
3274
if (Chain) {
3275
SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
3276
return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
3277
}
3278
return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
3279
}
3280
3281
// Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
3282
// producing a result of type VT. If Chain is nonnull, return the strict form.
3283
SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
3284
const SDLoc &DL, EVT VT,
3285
SDValue CmpOp0,
3286
SDValue CmpOp1,
3287
SDValue Chain) const {
3288
// There is no hardware support for v4f32 (unless we have the vector
3289
// enhancements facility 1), so extend the vector into two v2f64s
3290
// and compare those.
3291
if (CmpOp0.getValueType() == MVT::v4f32 &&
3292
!Subtarget.hasVectorEnhancements1()) {
3293
SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
3294
SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
3295
SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
3296
SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
3297
if (Chain) {
3298
SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
3299
SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
3300
SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
3301
SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
3302
SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
3303
H1.getValue(1), L1.getValue(1),
3304
HRes.getValue(1), LRes.getValue(1) };
3305
SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
3306
SDValue Ops[2] = { Res, NewChain };
3307
return DAG.getMergeValues(Ops, DL);
3308
}
3309
SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
3310
SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
3311
return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
3312
}
3313
if (Chain) {
3314
SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3315
return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
3316
}
3317
return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
3318
}
3319
3320
// Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
3321
// an integer mask of type VT. If Chain is nonnull, we have a strict
3322
// floating-point comparison. If in addition IsSignaling is true, we have
3323
// a strict signaling floating-point comparison.
3324
SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
3325
const SDLoc &DL, EVT VT,
3326
ISD::CondCode CC,
3327
SDValue CmpOp0,
3328
SDValue CmpOp1,
3329
SDValue Chain,
3330
bool IsSignaling) const {
3331
bool IsFP = CmpOp0.getValueType().isFloatingPoint();
3332
assert (!Chain || IsFP);
3333
assert (!IsSignaling || Chain);
3334
CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
3335
Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
3336
bool Invert = false;
3337
SDValue Cmp;
3338
switch (CC) {
3339
// Handle tests for order using (or (ogt y x) (oge x y)).
3340
case ISD::SETUO:
3341
Invert = true;
3342
[[fallthrough]];
3343
case ISD::SETO: {
3344
assert(IsFP && "Unexpected integer comparison");
3345
SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3346
DL, VT, CmpOp1, CmpOp0, Chain);
3347
SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
3348
DL, VT, CmpOp0, CmpOp1, Chain);
3349
Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
3350
if (Chain)
3351
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3352
LT.getValue(1), GE.getValue(1));
3353
break;
3354
}
3355
3356
// Handle <> tests using (or (ogt y x) (ogt x y)).
3357
case ISD::SETUEQ:
3358
Invert = true;
3359
[[fallthrough]];
3360
case ISD::SETONE: {
3361
assert(IsFP && "Unexpected integer comparison");
3362
SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3363
DL, VT, CmpOp1, CmpOp0, Chain);
3364
SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3365
DL, VT, CmpOp0, CmpOp1, Chain);
3366
Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
3367
if (Chain)
3368
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3369
LT.getValue(1), GT.getValue(1));
3370
break;
3371
}
3372
3373
// Otherwise a single comparison is enough. It doesn't really
3374
// matter whether we try the inversion or the swap first, since
3375
// there are no cases where both work.
3376
default:
3377
if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3378
Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
3379
else {
3380
CC = ISD::getSetCCSwappedOperands(CC);
3381
if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3382
Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
3383
else
3384
llvm_unreachable("Unhandled comparison");
3385
}
3386
if (Chain)
3387
Chain = Cmp.getValue(1);
3388
break;
3389
}
3390
if (Invert) {
3391
SDValue Mask =
3392
DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
3393
Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
3394
}
3395
if (Chain && Chain.getNode() != Cmp.getNode()) {
3396
SDValue Ops[2] = { Cmp, Chain };
3397
Cmp = DAG.getMergeValues(Ops, DL);
3398
}
3399
return Cmp;
3400
}
3401
3402
SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
3403
SelectionDAG &DAG) const {
3404
SDValue CmpOp0 = Op.getOperand(0);
3405
SDValue CmpOp1 = Op.getOperand(1);
3406
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3407
SDLoc DL(Op);
3408
EVT VT = Op.getValueType();
3409
if (VT.isVector())
3410
return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
3411
3412
Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3413
SDValue CCReg = emitCmp(DAG, DL, C);
3414
return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3415
}
3416
3417
SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
3418
SelectionDAG &DAG,
3419
bool IsSignaling) const {
3420
SDValue Chain = Op.getOperand(0);
3421
SDValue CmpOp0 = Op.getOperand(1);
3422
SDValue CmpOp1 = Op.getOperand(2);
3423
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
3424
SDLoc DL(Op);
3425
EVT VT = Op.getNode()->getValueType(0);
3426
if (VT.isVector()) {
3427
SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
3428
Chain, IsSignaling);
3429
return Res.getValue(Op.getResNo());
3430
}
3431
3432
Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
3433
SDValue CCReg = emitCmp(DAG, DL, C);
3434
CCReg->setFlags(Op->getFlags());
3435
SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3436
SDValue Ops[2] = { Result, CCReg.getValue(1) };
3437
return DAG.getMergeValues(Ops, DL);
3438
}
3439
3440
SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3441
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3442
SDValue CmpOp0 = Op.getOperand(2);
3443
SDValue CmpOp1 = Op.getOperand(3);
3444
SDValue Dest = Op.getOperand(4);
3445
SDLoc DL(Op);
3446
3447
Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3448
SDValue CCReg = emitCmp(DAG, DL, C);
3449
return DAG.getNode(
3450
SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
3451
DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3452
DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
3453
}
3454
3455
// Return true if Pos is CmpOp and Neg is the negative of CmpOp,
3456
// allowing Pos and Neg to be wider than CmpOp.
3457
static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
3458
return (Neg.getOpcode() == ISD::SUB &&
3459
Neg.getOperand(0).getOpcode() == ISD::Constant &&
3460
Neg.getConstantOperandVal(0) == 0 && Neg.getOperand(1) == Pos &&
3461
(Pos == CmpOp || (Pos.getOpcode() == ISD::SIGN_EXTEND &&
3462
Pos.getOperand(0) == CmpOp)));
3463
}
3464
3465
// Return the absolute or negative absolute of Op; IsNegative decides which.
3466
static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
3467
bool IsNegative) {
3468
Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
3469
if (IsNegative)
3470
Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
3471
DAG.getConstant(0, DL, Op.getValueType()), Op);
3472
return Op;
3473
}
3474
3475
SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
3476
SelectionDAG &DAG) const {
3477
SDValue CmpOp0 = Op.getOperand(0);
3478
SDValue CmpOp1 = Op.getOperand(1);
3479
SDValue TrueOp = Op.getOperand(2);
3480
SDValue FalseOp = Op.getOperand(3);
3481
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3482
SDLoc DL(Op);
3483
3484
Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3485
3486
// Check for absolute and negative-absolute selections, including those
3487
// where the comparison value is sign-extended (for LPGFR and LNGFR).
3488
// This check supplements the one in DAGCombiner.
3489
if (C.Opcode == SystemZISD::ICMP && C.CCMask != SystemZ::CCMASK_CMP_EQ &&
3490
C.CCMask != SystemZ::CCMASK_CMP_NE &&
3491
C.Op1.getOpcode() == ISD::Constant &&
3492
cast<ConstantSDNode>(C.Op1)->getValueSizeInBits(0) <= 64 &&
3493
C.Op1->getAsZExtVal() == 0) {
3494
if (isAbsolute(C.Op0, TrueOp, FalseOp))
3495
return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
3496
if (isAbsolute(C.Op0, FalseOp, TrueOp))
3497
return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
3498
}
3499
3500
SDValue CCReg = emitCmp(DAG, DL, C);
3501
SDValue Ops[] = {TrueOp, FalseOp,
3502
DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3503
DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
3504
3505
return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
3506
}
3507
3508
SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3509
SelectionDAG &DAG) const {
3510
SDLoc DL(Node);
3511
const GlobalValue *GV = Node->getGlobal();
3512
int64_t Offset = Node->getOffset();
3513
EVT PtrVT = getPointerTy(DAG.getDataLayout());
3514
CodeModel::Model CM = DAG.getTarget().getCodeModel();
3515
3516
SDValue Result;
3517
if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3518
if (isInt<32>(Offset)) {
3519
// Assign anchors at 1<<12 byte boundaries.
3520
uint64_t Anchor = Offset & ~uint64_t(0xfff);
3521
Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3522
Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3523
3524
// The offset can be folded into the address if it is aligned to a
3525
// halfword.
3526
Offset -= Anchor;
3527
if (Offset != 0 && (Offset & 1) == 0) {
3528
SDValue Full =
3529
DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3530
Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3531
Offset = 0;
3532
}
3533
} else {
3534
// Conservatively load a constant offset greater than 32 bits into a
3535
// register below.
3536
Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3537
Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3538
}
3539
} else if (Subtarget.isTargetELF()) {
3540
Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3541
Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3542
Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3543
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3544
} else if (Subtarget.isTargetzOS()) {
3545
Result = getADAEntry(DAG, GV, DL, PtrVT);
3546
} else
3547
llvm_unreachable("Unexpected Subtarget");
3548
3549
// If there was a non-zero offset that we didn't fold, create an explicit
3550
// addition for it.
3551
if (Offset != 0)
3552
Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3553
DAG.getConstant(Offset, DL, PtrVT));
3554
3555
return Result;
3556
}
3557
3558
SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3559
SelectionDAG &DAG,
3560
unsigned Opcode,
3561
SDValue GOTOffset) const {
3562
SDLoc DL(Node);
3563
EVT PtrVT = getPointerTy(DAG.getDataLayout());
3564
SDValue Chain = DAG.getEntryNode();
3565
SDValue Glue;
3566
3567
if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3568
CallingConv::GHC)
3569
report_fatal_error("In GHC calling convention TLS is not supported");
3570
3571
// __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3572
SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3573
Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3574
Glue = Chain.getValue(1);
3575
Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3576
Glue = Chain.getValue(1);
3577
3578
// The first call operand is the chain and the second is the TLS symbol.
3579
SmallVector<SDValue, 8> Ops;
3580
Ops.push_back(Chain);
3581
Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3582
Node->getValueType(0),
3583
0, 0));
3584
3585
// Add argument registers to the end of the list so that they are
3586
// known live into the call.
3587
Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3588
Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3589
3590
// Add a register mask operand representing the call-preserved registers.
3591
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3592
const uint32_t *Mask =
3593
TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3594
assert(Mask && "Missing call preserved mask for calling convention");
3595
Ops.push_back(DAG.getRegisterMask(Mask));
3596
3597
// Glue the call to the argument copies.
3598
Ops.push_back(Glue);
3599
3600
// Emit the call.
3601
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3602
Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3603
Glue = Chain.getValue(1);
3604
3605
// Copy the return value from %r2.
3606
return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3607
}
3608
3609
SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3610
SelectionDAG &DAG) const {
3611
SDValue Chain = DAG.getEntryNode();
3612
EVT PtrVT = getPointerTy(DAG.getDataLayout());
3613
3614
// The high part of the thread pointer is in access register 0.
3615
SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3616
TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3617
3618
// The low part of the thread pointer is in access register 1.
3619
SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3620
TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3621
3622
// Merge them into a single 64-bit address.
3623
SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3624
DAG.getConstant(32, DL, PtrVT));
3625
return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3626
}
3627
3628
SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3629
SelectionDAG &DAG) const {
3630
if (DAG.getTarget().useEmulatedTLS())
3631
return LowerToTLSEmulatedModel(Node, DAG);
3632
SDLoc DL(Node);
3633
const GlobalValue *GV = Node->getGlobal();
3634
EVT PtrVT = getPointerTy(DAG.getDataLayout());
3635
TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3636
3637
if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3638
CallingConv::GHC)
3639
report_fatal_error("In GHC calling convention TLS is not supported");
3640
3641
SDValue TP = lowerThreadPointer(DL, DAG);
3642
3643
// Get the offset of GA from the thread pointer, based on the TLS model.
3644
SDValue Offset;
3645
switch (model) {
3646
case TLSModel::GeneralDynamic: {
3647
// Load the GOT offset of the tls_index (module ID / per-symbol offset).
3648
SystemZConstantPoolValue *CPV =
3649
SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3650
3651
Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3652
Offset = DAG.getLoad(
3653
PtrVT, DL, DAG.getEntryNode(), Offset,
3654
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3655
3656
// Call __tls_get_offset to retrieve the offset.
3657
Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3658
break;
3659
}
3660
3661
case TLSModel::LocalDynamic: {
3662
// Load the GOT offset of the module ID.
3663
SystemZConstantPoolValue *CPV =
3664
SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3665
3666
Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3667
Offset = DAG.getLoad(
3668
PtrVT, DL, DAG.getEntryNode(), Offset,
3669
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3670
3671
// Call __tls_get_offset to retrieve the module base offset.
3672
Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3673
3674
// Note: The SystemZLDCleanupPass will remove redundant computations
3675
// of the module base offset. Count total number of local-dynamic
3676
// accesses to trigger execution of that pass.
3677
SystemZMachineFunctionInfo* MFI =
3678
DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3679
MFI->incNumLocalDynamicTLSAccesses();
3680
3681
// Add the per-symbol offset.
3682
CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3683
3684
SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3685
DTPOffset = DAG.getLoad(
3686
PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3687
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3688
3689
Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3690
break;
3691
}
3692
3693
case TLSModel::InitialExec: {
3694
// Load the offset from the GOT.
3695
Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3696
SystemZII::MO_INDNTPOFF);
3697
Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3698
Offset =
3699
DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3700
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3701
break;
3702
}
3703
3704
case TLSModel::LocalExec: {
3705
// Force the offset into the constant pool and load it from there.
3706
SystemZConstantPoolValue *CPV =
3707
SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3708
3709
Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3710
Offset = DAG.getLoad(
3711
PtrVT, DL, DAG.getEntryNode(), Offset,
3712
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3713
break;
3714
}
3715
}
3716
3717
// Add the base and offset together.
3718
return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3719
}
3720
3721
SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3722
SelectionDAG &DAG) const {
3723
SDLoc DL(Node);
3724
const BlockAddress *BA = Node->getBlockAddress();
3725
int64_t Offset = Node->getOffset();
3726
EVT PtrVT = getPointerTy(DAG.getDataLayout());
3727
3728
SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3729
Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3730
return Result;
3731
}
3732
3733
SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3734
SelectionDAG &DAG) const {
3735
SDLoc DL(JT);
3736
EVT PtrVT = getPointerTy(DAG.getDataLayout());
3737
SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3738
3739
// Use LARL to load the address of the table.
3740
return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3741
}
3742
3743
SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3744
SelectionDAG &DAG) const {
3745
SDLoc DL(CP);
3746
EVT PtrVT = getPointerTy(DAG.getDataLayout());
3747
3748
SDValue Result;
3749
if (CP->isMachineConstantPoolEntry())
3750
Result =
3751
DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3752
else
3753
Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3754
CP->getOffset());
3755
3756
// Use LARL to load the address of the constant pool entry.
3757
return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3758
}
3759
3760
SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3761
SelectionDAG &DAG) const {
3762
auto *TFL = Subtarget.getFrameLowering<SystemZFrameLowering>();
3763
MachineFunction &MF = DAG.getMachineFunction();
3764
MachineFrameInfo &MFI = MF.getFrameInfo();
3765
MFI.setFrameAddressIsTaken(true);
3766
3767
SDLoc DL(Op);
3768
unsigned Depth = Op.getConstantOperandVal(0);
3769
EVT PtrVT = getPointerTy(DAG.getDataLayout());
3770
3771
// By definition, the frame address is the address of the back chain. (In
3772
// the case of packed stack without backchain, return the address where the
3773
// backchain would have been stored. This will either be an unused space or
3774
// contain a saved register).
3775
int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3776
SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3777
3778
if (Depth > 0) {
3779
// FIXME The frontend should detect this case.
3780
if (!MF.getSubtarget<SystemZSubtarget>().hasBackChain())
3781
report_fatal_error("Unsupported stack frame traversal count");
3782
3783
SDValue Offset = DAG.getConstant(TFL->getBackchainOffset(MF), DL, PtrVT);
3784
while (Depth--) {
3785
BackChain = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), BackChain,
3786
MachinePointerInfo());
3787
BackChain = DAG.getNode(ISD::ADD, DL, PtrVT, BackChain, Offset);
3788
}
3789
}
3790
3791
return BackChain;
3792
}
3793
3794
SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3795
SelectionDAG &DAG) const {
3796
MachineFunction &MF = DAG.getMachineFunction();
3797
MachineFrameInfo &MFI = MF.getFrameInfo();
3798
MFI.setReturnAddressIsTaken(true);
3799
3800
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3801
return SDValue();
3802
3803
SDLoc DL(Op);
3804
unsigned Depth = Op.getConstantOperandVal(0);
3805
EVT PtrVT = getPointerTy(DAG.getDataLayout());
3806
3807
if (Depth > 0) {
3808
// FIXME The frontend should detect this case.
3809
if (!MF.getSubtarget<SystemZSubtarget>().hasBackChain())
3810
report_fatal_error("Unsupported stack frame traversal count");
3811
3812
SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3813
const auto *TFL = Subtarget.getFrameLowering<SystemZFrameLowering>();
3814
int Offset = TFL->getReturnAddressOffset(MF);
3815
SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, FrameAddr,
3816
DAG.getConstant(Offset, DL, PtrVT));
3817
return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr,
3818
MachinePointerInfo());
3819
}
3820
3821
// Return R14D (Elf) / R7D (XPLINK), which has the return address. Mark it an
3822
// implicit live-in.
3823
SystemZCallingConventionRegisters *CCR = Subtarget.getSpecialRegisters();
3824
Register LinkReg = MF.addLiveIn(CCR->getReturnFunctionAddressRegister(),
3825
&SystemZ::GR64BitRegClass);
3826
return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3827
}
3828
3829
SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3830
SelectionDAG &DAG) const {
3831
SDLoc DL(Op);
3832
SDValue In = Op.getOperand(0);
3833
EVT InVT = In.getValueType();
3834
EVT ResVT = Op.getValueType();
3835
3836
// Convert loads directly. This is normally done by DAGCombiner,
3837
// but we need this case for bitcasts that are created during lowering
3838
// and which are then lowered themselves.
3839
if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3840
if (ISD::isNormalLoad(LoadN)) {
3841
SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3842
LoadN->getBasePtr(), LoadN->getMemOperand());
3843
// Update the chain uses.
3844
DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3845
return NewLoad;
3846
}
3847
3848
if (InVT == MVT::i32 && ResVT == MVT::f32) {
3849
SDValue In64;
3850
if (Subtarget.hasHighWord()) {
3851
SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3852
MVT::i64);
3853
In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3854
MVT::i64, SDValue(U64, 0), In);
3855
} else {
3856
In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3857
In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3858
DAG.getConstant(32, DL, MVT::i64));
3859
}
3860
SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3861
return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3862
DL, MVT::f32, Out64);
3863
}
3864
if (InVT == MVT::f32 && ResVT == MVT::i32) {
3865
SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3866
SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3867
MVT::f64, SDValue(U64, 0), In);
3868
SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3869
if (Subtarget.hasHighWord())
3870
return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3871
MVT::i32, Out64);
3872
SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3873
DAG.getConstant(32, DL, MVT::i64));
3874
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3875
}
3876
llvm_unreachable("Unexpected bitcast combination");
3877
}
3878
3879
SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3880
SelectionDAG &DAG) const {
3881
3882
if (Subtarget.isTargetXPLINK64())
3883
return lowerVASTART_XPLINK(Op, DAG);
3884
else
3885
return lowerVASTART_ELF(Op, DAG);
3886
}
3887
3888
SDValue SystemZTargetLowering::lowerVASTART_XPLINK(SDValue Op,
3889
SelectionDAG &DAG) const {
3890
MachineFunction &MF = DAG.getMachineFunction();
3891
SystemZMachineFunctionInfo *FuncInfo =
3892
MF.getInfo<SystemZMachineFunctionInfo>();
3893
3894
SDLoc DL(Op);
3895
3896
// vastart just stores the address of the VarArgsFrameIndex slot into the
3897
// memory location argument.
3898
EVT PtrVT = getPointerTy(DAG.getDataLayout());
3899
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3900
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3901
return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3902
MachinePointerInfo(SV));
3903
}
3904
3905
SDValue SystemZTargetLowering::lowerVASTART_ELF(SDValue Op,
3906
SelectionDAG &DAG) const {
3907
MachineFunction &MF = DAG.getMachineFunction();
3908
SystemZMachineFunctionInfo *FuncInfo =
3909
MF.getInfo<SystemZMachineFunctionInfo>();
3910
EVT PtrVT = getPointerTy(DAG.getDataLayout());
3911
3912
SDValue Chain = Op.getOperand(0);
3913
SDValue Addr = Op.getOperand(1);
3914
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3915
SDLoc DL(Op);
3916
3917
// The initial values of each field.
3918
const unsigned NumFields = 4;
3919
SDValue Fields[NumFields] = {
3920
DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3921
DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3922
DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3923
DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3924
};
3925
3926
// Store each field into its respective slot.
3927
SDValue MemOps[NumFields];
3928
unsigned Offset = 0;
3929
for (unsigned I = 0; I < NumFields; ++I) {
3930
SDValue FieldAddr = Addr;
3931
if (Offset != 0)
3932
FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3933
DAG.getIntPtrConstant(Offset, DL));
3934
MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3935
MachinePointerInfo(SV, Offset));
3936
Offset += 8;
3937
}
3938
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3939
}
3940
3941
SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3942
SelectionDAG &DAG) const {
3943
SDValue Chain = Op.getOperand(0);
3944
SDValue DstPtr = Op.getOperand(1);
3945
SDValue SrcPtr = Op.getOperand(2);
3946
const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3947
const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3948
SDLoc DL(Op);
3949
3950
uint32_t Sz =
3951
Subtarget.isTargetXPLINK64() ? getTargetMachine().getPointerSize(0) : 32;
3952
return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(Sz, DL),
3953
Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3954
/*CI=*/nullptr, std::nullopt, MachinePointerInfo(DstSV),
3955
MachinePointerInfo(SrcSV));
3956
}
3957
3958
SDValue
3959
SystemZTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op,
3960
SelectionDAG &DAG) const {
3961
if (Subtarget.isTargetXPLINK64())
3962
return lowerDYNAMIC_STACKALLOC_XPLINK(Op, DAG);
3963
else
3964
return lowerDYNAMIC_STACKALLOC_ELF(Op, DAG);
3965
}
3966
3967
SDValue
3968
SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op,
3969
SelectionDAG &DAG) const {
3970
const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3971
MachineFunction &MF = DAG.getMachineFunction();
3972
bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3973
SDValue Chain = Op.getOperand(0);
3974
SDValue Size = Op.getOperand(1);
3975
SDValue Align = Op.getOperand(2);
3976
SDLoc DL(Op);
3977
3978
// If user has set the no alignment function attribute, ignore
3979
// alloca alignments.
3980
uint64_t AlignVal = (RealignOpt ? Align->getAsZExtVal() : 0);
3981
3982
uint64_t StackAlign = TFI->getStackAlignment();
3983
uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3984
uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3985
3986
SDValue NeededSpace = Size;
3987
3988
// Add extra space for alignment if needed.
3989
EVT PtrVT = getPointerTy(MF.getDataLayout());
3990
if (ExtraAlignSpace)
3991
NeededSpace = DAG.getNode(ISD::ADD, DL, PtrVT, NeededSpace,
3992
DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
3993
3994
bool IsSigned = false;
3995
bool DoesNotReturn = false;
3996
bool IsReturnValueUsed = false;
3997
EVT VT = Op.getValueType();
3998
SDValue AllocaCall =
3999
makeExternalCall(Chain, DAG, "@@ALCAXP", VT, ArrayRef(NeededSpace),
4000
CallingConv::C, IsSigned, DL, DoesNotReturn,
4001
IsReturnValueUsed)
4002
.first;
4003
4004
// Perform a CopyFromReg from %GPR4 (stack pointer register). Chain and Glue
4005
// to end of call in order to ensure it isn't broken up from the call
4006
// sequence.
4007
auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
4008
Register SPReg = Regs.getStackPointerRegister();
4009
Chain = AllocaCall.getValue(1);
4010
SDValue Glue = AllocaCall.getValue(2);
4011
SDValue NewSPRegNode = DAG.getCopyFromReg(Chain, DL, SPReg, PtrVT, Glue);
4012
Chain = NewSPRegNode.getValue(1);
4013
4014
MVT PtrMVT = getPointerMemTy(MF.getDataLayout());
4015
SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, PtrMVT);
4016
SDValue Result = DAG.getNode(ISD::ADD, DL, PtrMVT, NewSPRegNode, ArgAdjust);
4017
4018
// Dynamically realign if needed.
4019
if (ExtraAlignSpace) {
4020
Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
4021
DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
4022
Result = DAG.getNode(ISD::AND, DL, PtrVT, Result,
4023
DAG.getConstant(~(RequiredAlign - 1), DL, PtrVT));
4024
}
4025
4026
SDValue Ops[2] = {Result, Chain};
4027
return DAG.getMergeValues(Ops, DL);
4028
}
4029
4030
SDValue
4031
SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_ELF(SDValue Op,
4032
SelectionDAG &DAG) const {
4033
const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
4034
MachineFunction &MF = DAG.getMachineFunction();
4035
bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
4036
bool StoreBackchain = MF.getSubtarget<SystemZSubtarget>().hasBackChain();
4037
4038
SDValue Chain = Op.getOperand(0);
4039
SDValue Size = Op.getOperand(1);
4040
SDValue Align = Op.getOperand(2);
4041
SDLoc DL(Op);
4042
4043
// If user has set the no alignment function attribute, ignore
4044
// alloca alignments.
4045
uint64_t AlignVal = (RealignOpt ? Align->getAsZExtVal() : 0);
4046
4047
uint64_t StackAlign = TFI->getStackAlignment();
4048
uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
4049
uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
4050
4051
Register SPReg = getStackPointerRegisterToSaveRestore();
4052
SDValue NeededSpace = Size;
4053
4054
// Get a reference to the stack pointer.
4055
SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
4056
4057
// If we need a backchain, save it now.
4058
SDValue Backchain;
4059
if (StoreBackchain)
4060
Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4061
MachinePointerInfo());
4062
4063
// Add extra space for alignment if needed.
4064
if (ExtraAlignSpace)
4065
NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
4066
DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
4067
4068
// Get the new stack pointer value.
4069
SDValue NewSP;
4070
if (hasInlineStackProbe(MF)) {
4071
NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
4072
DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
4073
Chain = NewSP.getValue(1);
4074
}
4075
else {
4076
NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
4077
// Copy the new stack pointer back.
4078
Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
4079
}
4080
4081
// The allocated data lives above the 160 bytes allocated for the standard
4082
// frame, plus any outgoing stack arguments. We don't know how much that
4083
// amounts to yet, so emit a special ADJDYNALLOC placeholder.
4084
SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
4085
SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
4086
4087
// Dynamically realign if needed.
4088
if (RequiredAlign > StackAlign) {
4089
Result =
4090
DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
4091
DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
4092
Result =
4093
DAG.getNode(ISD::AND, DL, MVT::i64, Result,
4094
DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
4095
}
4096
4097
if (StoreBackchain)
4098
Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4099
MachinePointerInfo());
4100
4101
SDValue Ops[2] = { Result, Chain };
4102
return DAG.getMergeValues(Ops, DL);
4103
}
4104
4105
SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
4106
SDValue Op, SelectionDAG &DAG) const {
4107
SDLoc DL(Op);
4108
4109
return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
4110
}
4111
4112
SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
4113
SelectionDAG &DAG) const {
4114
EVT VT = Op.getValueType();
4115
SDLoc DL(Op);
4116
SDValue Ops[2];
4117
if (is32Bit(VT))
4118
// Just do a normal 64-bit multiplication and extract the results.
4119
// We define this so that it can be used for constant division.
4120
lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
4121
Op.getOperand(1), Ops[1], Ops[0]);
4122
else if (Subtarget.hasMiscellaneousExtensions2())
4123
// SystemZISD::SMUL_LOHI returns the low result in the odd register and
4124
// the high result in the even register. ISD::SMUL_LOHI is defined to
4125
// return the low half first, so the results are in reverse order.
4126
lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
4127
Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
4128
else {
4129
// Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
4130
//
4131
// (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
4132
//
4133
// but using the fact that the upper halves are either all zeros
4134
// or all ones:
4135
//
4136
// (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
4137
//
4138
// and grouping the right terms together since they are quicker than the
4139
// multiplication:
4140
//
4141
// (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
4142
SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
4143
SDValue LL = Op.getOperand(0);
4144
SDValue RL = Op.getOperand(1);
4145
SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
4146
SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
4147
// SystemZISD::UMUL_LOHI returns the low result in the odd register and
4148
// the high result in the even register. ISD::SMUL_LOHI is defined to
4149
// return the low half first, so the results are in reverse order.
4150
lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
4151
LL, RL, Ops[1], Ops[0]);
4152
SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
4153
SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
4154
SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
4155
Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
4156
}
4157
return DAG.getMergeValues(Ops, DL);
4158
}
4159
4160
SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
4161
SelectionDAG &DAG) const {
4162
EVT VT = Op.getValueType();
4163
SDLoc DL(Op);
4164
SDValue Ops[2];
4165
if (is32Bit(VT))
4166
// Just do a normal 64-bit multiplication and extract the results.
4167
// We define this so that it can be used for constant division.
4168
lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
4169
Op.getOperand(1), Ops[1], Ops[0]);
4170
else
4171
// SystemZISD::UMUL_LOHI returns the low result in the odd register and
4172
// the high result in the even register. ISD::UMUL_LOHI is defined to
4173
// return the low half first, so the results are in reverse order.
4174
lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
4175
Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
4176
return DAG.getMergeValues(Ops, DL);
4177
}
4178
4179
SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
4180
SelectionDAG &DAG) const {
4181
SDValue Op0 = Op.getOperand(0);
4182
SDValue Op1 = Op.getOperand(1);
4183
EVT VT = Op.getValueType();
4184
SDLoc DL(Op);
4185
4186
// We use DSGF for 32-bit division. This means the first operand must
4187
// always be 64-bit, and the second operand should be 32-bit whenever
4188
// that is possible, to improve performance.
4189
if (is32Bit(VT))
4190
Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
4191
else if (DAG.ComputeNumSignBits(Op1) > 32)
4192
Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
4193
4194
// DSG(F) returns the remainder in the even register and the
4195
// quotient in the odd register.
4196
SDValue Ops[2];
4197
lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
4198
return DAG.getMergeValues(Ops, DL);
4199
}
4200
4201
SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
4202
SelectionDAG &DAG) const {
4203
EVT VT = Op.getValueType();
4204
SDLoc DL(Op);
4205
4206
// DL(G) returns the remainder in the even register and the
4207
// quotient in the odd register.
4208
SDValue Ops[2];
4209
lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
4210
Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
4211
return DAG.getMergeValues(Ops, DL);
4212
}
4213
4214
SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
4215
assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
4216
4217
// Get the known-zero masks for each operand.
4218
SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
4219
KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
4220
DAG.computeKnownBits(Ops[1])};
4221
4222
// See if the upper 32 bits of one operand and the lower 32 bits of the
4223
// other are known zero. They are the low and high operands respectively.
4224
uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
4225
Known[1].Zero.getZExtValue() };
4226
unsigned High, Low;
4227
if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
4228
High = 1, Low = 0;
4229
else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
4230
High = 0, Low = 1;
4231
else
4232
return Op;
4233
4234
SDValue LowOp = Ops[Low];
4235
SDValue HighOp = Ops[High];
4236
4237
// If the high part is a constant, we're better off using IILH.
4238
if (HighOp.getOpcode() == ISD::Constant)
4239
return Op;
4240
4241
// If the low part is a constant that is outside the range of LHI,
4242
// then we're better off using IILF.
4243
if (LowOp.getOpcode() == ISD::Constant) {
4244
int64_t Value = int32_t(LowOp->getAsZExtVal());
4245
if (!isInt<16>(Value))
4246
return Op;
4247
}
4248
4249
// Check whether the high part is an AND that doesn't change the
4250
// high 32 bits and just masks out low bits. We can skip it if so.
4251
if (HighOp.getOpcode() == ISD::AND &&
4252
HighOp.getOperand(1).getOpcode() == ISD::Constant) {
4253
SDValue HighOp0 = HighOp.getOperand(0);
4254
uint64_t Mask = HighOp.getConstantOperandVal(1);
4255
if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
4256
HighOp = HighOp0;
4257
}
4258
4259
// Take advantage of the fact that all GR32 operations only change the
4260
// low 32 bits by truncating Low to an i32 and inserting it directly
4261
// using a subreg. The interesting cases are those where the truncation
4262
// can be folded.
4263
SDLoc DL(Op);
4264
SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
4265
return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
4266
MVT::i64, HighOp, Low32);
4267
}
4268
4269
// Lower SADDO/SSUBO/UADDO/USUBO nodes.
4270
SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
4271
SelectionDAG &DAG) const {
4272
SDNode *N = Op.getNode();
4273
SDValue LHS = N->getOperand(0);
4274
SDValue RHS = N->getOperand(1);
4275
SDLoc DL(N);
4276
4277
if (N->getValueType(0) == MVT::i128) {
4278
unsigned BaseOp = 0;
4279
unsigned FlagOp = 0;
4280
bool IsBorrow = false;
4281
switch (Op.getOpcode()) {
4282
default: llvm_unreachable("Unknown instruction!");
4283
case ISD::UADDO:
4284
BaseOp = ISD::ADD;
4285
FlagOp = SystemZISD::VACC;
4286
break;
4287
case ISD::USUBO:
4288
BaseOp = ISD::SUB;
4289
FlagOp = SystemZISD::VSCBI;
4290
IsBorrow = true;
4291
break;
4292
}
4293
SDValue Result = DAG.getNode(BaseOp, DL, MVT::i128, LHS, RHS);
4294
SDValue Flag = DAG.getNode(FlagOp, DL, MVT::i128, LHS, RHS);
4295
Flag = DAG.getNode(ISD::AssertZext, DL, MVT::i128, Flag,
4296
DAG.getValueType(MVT::i1));
4297
Flag = DAG.getZExtOrTrunc(Flag, DL, N->getValueType(1));
4298
if (IsBorrow)
4299
Flag = DAG.getNode(ISD::XOR, DL, Flag.getValueType(),
4300
Flag, DAG.getConstant(1, DL, Flag.getValueType()));
4301
return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Flag);
4302
}
4303
4304
unsigned BaseOp = 0;
4305
unsigned CCValid = 0;
4306
unsigned CCMask = 0;
4307
4308
switch (Op.getOpcode()) {
4309
default: llvm_unreachable("Unknown instruction!");
4310
case ISD::SADDO:
4311
BaseOp = SystemZISD::SADDO;
4312
CCValid = SystemZ::CCMASK_ARITH;
4313
CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
4314
break;
4315
case ISD::SSUBO:
4316
BaseOp = SystemZISD::SSUBO;
4317
CCValid = SystemZ::CCMASK_ARITH;
4318
CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
4319
break;
4320
case ISD::UADDO:
4321
BaseOp = SystemZISD::UADDO;
4322
CCValid = SystemZ::CCMASK_LOGICAL;
4323
CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
4324
break;
4325
case ISD::USUBO:
4326
BaseOp = SystemZISD::USUBO;
4327
CCValid = SystemZ::CCMASK_LOGICAL;
4328
CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
4329
break;
4330
}
4331
4332
SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
4333
SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
4334
4335
SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
4336
if (N->getValueType(1) == MVT::i1)
4337
SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
4338
4339
return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
4340
}
4341
4342
static bool isAddCarryChain(SDValue Carry) {
4343
while (Carry.getOpcode() == ISD::UADDO_CARRY)
4344
Carry = Carry.getOperand(2);
4345
return Carry.getOpcode() == ISD::UADDO;
4346
}
4347
4348
static bool isSubBorrowChain(SDValue Carry) {
4349
while (Carry.getOpcode() == ISD::USUBO_CARRY)
4350
Carry = Carry.getOperand(2);
4351
return Carry.getOpcode() == ISD::USUBO;
4352
}
4353
4354
// Lower UADDO_CARRY/USUBO_CARRY nodes.
4355
SDValue SystemZTargetLowering::lowerUADDSUBO_CARRY(SDValue Op,
4356
SelectionDAG &DAG) const {
4357
4358
SDNode *N = Op.getNode();
4359
MVT VT = N->getSimpleValueType(0);
4360
4361
// Let legalize expand this if it isn't a legal type yet.
4362
if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
4363
return SDValue();
4364
4365
SDValue LHS = N->getOperand(0);
4366
SDValue RHS = N->getOperand(1);
4367
SDValue Carry = Op.getOperand(2);
4368
SDLoc DL(N);
4369
4370
if (VT == MVT::i128) {
4371
unsigned BaseOp = 0;
4372
unsigned FlagOp = 0;
4373
bool IsBorrow = false;
4374
switch (Op.getOpcode()) {
4375
default: llvm_unreachable("Unknown instruction!");
4376
case ISD::UADDO_CARRY:
4377
BaseOp = SystemZISD::VAC;
4378
FlagOp = SystemZISD::VACCC;
4379
break;
4380
case ISD::USUBO_CARRY:
4381
BaseOp = SystemZISD::VSBI;
4382
FlagOp = SystemZISD::VSBCBI;
4383
IsBorrow = true;
4384
break;
4385
}
4386
if (IsBorrow)
4387
Carry = DAG.getNode(ISD::XOR, DL, Carry.getValueType(),
4388
Carry, DAG.getConstant(1, DL, Carry.getValueType()));
4389
Carry = DAG.getZExtOrTrunc(Carry, DL, MVT::i128);
4390
SDValue Result = DAG.getNode(BaseOp, DL, MVT::i128, LHS, RHS, Carry);
4391
SDValue Flag = DAG.getNode(FlagOp, DL, MVT::i128, LHS, RHS, Carry);
4392
Flag = DAG.getNode(ISD::AssertZext, DL, MVT::i128, Flag,
4393
DAG.getValueType(MVT::i1));
4394
Flag = DAG.getZExtOrTrunc(Flag, DL, N->getValueType(1));
4395
if (IsBorrow)
4396
Flag = DAG.getNode(ISD::XOR, DL, Flag.getValueType(),
4397
Flag, DAG.getConstant(1, DL, Flag.getValueType()));
4398
return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Flag);
4399
}
4400
4401
unsigned BaseOp = 0;
4402
unsigned CCValid = 0;
4403
unsigned CCMask = 0;
4404
4405
switch (Op.getOpcode()) {
4406
default: llvm_unreachable("Unknown instruction!");
4407
case ISD::UADDO_CARRY:
4408
if (!isAddCarryChain(Carry))
4409
return SDValue();
4410
4411
BaseOp = SystemZISD::ADDCARRY;
4412
CCValid = SystemZ::CCMASK_LOGICAL;
4413
CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
4414
break;
4415
case ISD::USUBO_CARRY:
4416
if (!isSubBorrowChain(Carry))
4417
return SDValue();
4418
4419
BaseOp = SystemZISD::SUBCARRY;
4420
CCValid = SystemZ::CCMASK_LOGICAL;
4421
CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
4422
break;
4423
}
4424
4425
// Set the condition code from the carry flag.
4426
Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
4427
DAG.getConstant(CCValid, DL, MVT::i32),
4428
DAG.getConstant(CCMask, DL, MVT::i32));
4429
4430
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4431
SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
4432
4433
SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
4434
if (N->getValueType(1) == MVT::i1)
4435
SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
4436
4437
return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
4438
}
4439
4440
SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
4441
SelectionDAG &DAG) const {
4442
EVT VT = Op.getValueType();
4443
SDLoc DL(Op);
4444
Op = Op.getOperand(0);
4445
4446
if (VT.getScalarSizeInBits() == 128) {
4447
Op = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op);
4448
Op = DAG.getNode(ISD::CTPOP, DL, MVT::v2i64, Op);
4449
SDValue Tmp = DAG.getSplatBuildVector(MVT::v2i64, DL,
4450
DAG.getConstant(0, DL, MVT::i64));
4451
Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4452
return Op;
4453
}
4454
4455
// Handle vector types via VPOPCT.
4456
if (VT.isVector()) {
4457
Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
4458
Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
4459
switch (VT.getScalarSizeInBits()) {
4460
case 8:
4461
break;
4462
case 16: {
4463
Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
4464
SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
4465
SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
4466
Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4467
Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
4468
break;
4469
}
4470
case 32: {
4471
SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4472
DAG.getConstant(0, DL, MVT::i32));
4473
Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4474
break;
4475
}
4476
case 64: {
4477
SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4478
DAG.getConstant(0, DL, MVT::i32));
4479
Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
4480
Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4481
break;
4482
}
4483
default:
4484
llvm_unreachable("Unexpected type");
4485
}
4486
return Op;
4487
}
4488
4489
// Get the known-zero mask for the operand.
4490
KnownBits Known = DAG.computeKnownBits(Op);
4491
unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
4492
if (NumSignificantBits == 0)
4493
return DAG.getConstant(0, DL, VT);
4494
4495
// Skip known-zero high parts of the operand.
4496
int64_t OrigBitSize = VT.getSizeInBits();
4497
int64_t BitSize = llvm::bit_ceil(NumSignificantBits);
4498
BitSize = std::min(BitSize, OrigBitSize);
4499
4500
// The POPCNT instruction counts the number of bits in each byte.
4501
Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
4502
Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
4503
Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
4504
4505
// Add up per-byte counts in a binary tree. All bits of Op at
4506
// position larger than BitSize remain zero throughout.
4507
for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
4508
SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
4509
if (BitSize != OrigBitSize)
4510
Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
4511
DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
4512
Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4513
}
4514
4515
// Extract overall result from high byte.
4516
if (BitSize > 8)
4517
Op = DAG.getNode(ISD::SRL, DL, VT, Op,
4518
DAG.getConstant(BitSize - 8, DL, VT));
4519
4520
return Op;
4521
}
4522
4523
SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
4524
SelectionDAG &DAG) const {
4525
SDLoc DL(Op);
4526
AtomicOrdering FenceOrdering =
4527
static_cast<AtomicOrdering>(Op.getConstantOperandVal(1));
4528
SyncScope::ID FenceSSID =
4529
static_cast<SyncScope::ID>(Op.getConstantOperandVal(2));
4530
4531
// The only fence that needs an instruction is a sequentially-consistent
4532
// cross-thread fence.
4533
if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
4534
FenceSSID == SyncScope::System) {
4535
return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
4536
Op.getOperand(0)),
4537
0);
4538
}
4539
4540
// MEMBARRIER is a compiler barrier; it codegens to a no-op.
4541
return DAG.getNode(ISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
4542
}
4543
4544
SDValue SystemZTargetLowering::lowerATOMIC_LDST_I128(SDValue Op,
4545
SelectionDAG &DAG) const {
4546
auto *Node = cast<AtomicSDNode>(Op.getNode());
4547
assert(
4548
(Node->getMemoryVT() == MVT::i128 || Node->getMemoryVT() == MVT::f128) &&
4549
"Only custom lowering i128 or f128.");
4550
// Use same code to handle both legal and non-legal i128 types.
4551
SmallVector<SDValue, 2> Results;
4552
LowerOperationWrapper(Node, Results, DAG);
4553
return DAG.getMergeValues(Results, SDLoc(Op));
4554
}
4555
4556
// Prepare for a Compare And Swap for a subword operation. This needs to be
4557
// done in memory with 4 bytes at natural alignment.
4558
static void getCSAddressAndShifts(SDValue Addr, SelectionDAG &DAG, SDLoc DL,
4559
SDValue &AlignedAddr, SDValue &BitShift,
4560
SDValue &NegBitShift) {
4561
EVT PtrVT = Addr.getValueType();
4562
EVT WideVT = MVT::i32;
4563
4564
// Get the address of the containing word.
4565
AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4566
DAG.getConstant(-4, DL, PtrVT));
4567
4568
// Get the number of bits that the word must be rotated left in order
4569
// to bring the field to the top bits of a GR32.
4570
BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4571
DAG.getConstant(3, DL, PtrVT));
4572
BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4573
4574
// Get the complementing shift amount, for rotating a field in the top
4575
// bits back to its proper position.
4576
NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4577
DAG.getConstant(0, DL, WideVT), BitShift);
4578
4579
}
4580
4581
// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first
4582
// two into the fullword ATOMIC_LOADW_* operation given by Opcode.
4583
SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
4584
SelectionDAG &DAG,
4585
unsigned Opcode) const {
4586
auto *Node = cast<AtomicSDNode>(Op.getNode());
4587
4588
// 32-bit operations need no special handling.
4589
EVT NarrowVT = Node->getMemoryVT();
4590
EVT WideVT = MVT::i32;
4591
if (NarrowVT == WideVT)
4592
return Op;
4593
4594
int64_t BitSize = NarrowVT.getSizeInBits();
4595
SDValue ChainIn = Node->getChain();
4596
SDValue Addr = Node->getBasePtr();
4597
SDValue Src2 = Node->getVal();
4598
MachineMemOperand *MMO = Node->getMemOperand();
4599
SDLoc DL(Node);
4600
4601
// Convert atomic subtracts of constants into additions.
4602
if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
4603
if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
4604
Opcode = SystemZISD::ATOMIC_LOADW_ADD;
4605
Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
4606
}
4607
4608
SDValue AlignedAddr, BitShift, NegBitShift;
4609
getCSAddressAndShifts(Addr, DAG, DL, AlignedAddr, BitShift, NegBitShift);
4610
4611
// Extend the source operand to 32 bits and prepare it for the inner loop.
4612
// ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
4613
// operations require the source to be shifted in advance. (This shift
4614
// can be folded if the source is constant.) For AND and NAND, the lower
4615
// bits must be set, while for other opcodes they should be left clear.
4616
if (Opcode != SystemZISD::ATOMIC_SWAPW)
4617
Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
4618
DAG.getConstant(32 - BitSize, DL, WideVT));
4619
if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
4620
Opcode == SystemZISD::ATOMIC_LOADW_NAND)
4621
Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
4622
DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
4623
4624
// Construct the ATOMIC_LOADW_* node.
4625
SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
4626
SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
4627
DAG.getConstant(BitSize, DL, WideVT) };
4628
SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
4629
NarrowVT, MMO);
4630
4631
// Rotate the result of the final CS so that the field is in the lower
4632
// bits of a GR32, then truncate it.
4633
SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
4634
DAG.getConstant(BitSize, DL, WideVT));
4635
SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
4636
4637
SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
4638
return DAG.getMergeValues(RetOps, DL);
4639
}
4640
4641
// Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations into
4642
// ATOMIC_LOADW_SUBs and convert 32- and 64-bit operations into additions.
4643
SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
4644
SelectionDAG &DAG) const {
4645
auto *Node = cast<AtomicSDNode>(Op.getNode());
4646
EVT MemVT = Node->getMemoryVT();
4647
if (MemVT == MVT::i32 || MemVT == MVT::i64) {
4648
// A full-width operation: negate and use LAA(G).
4649
assert(Op.getValueType() == MemVT && "Mismatched VTs");
4650
assert(Subtarget.hasInterlockedAccess1() &&
4651
"Should have been expanded by AtomicExpand pass.");
4652
SDValue Src2 = Node->getVal();
4653
SDLoc DL(Src2);
4654
SDValue NegSrc2 =
4655
DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), Src2);
4656
return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
4657
Node->getChain(), Node->getBasePtr(), NegSrc2,
4658
Node->getMemOperand());
4659
}
4660
4661
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
4662
}
4663
4664
// Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
4665
SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
4666
SelectionDAG &DAG) const {
4667
auto *Node = cast<AtomicSDNode>(Op.getNode());
4668
SDValue ChainIn = Node->getOperand(0);
4669
SDValue Addr = Node->getOperand(1);
4670
SDValue CmpVal = Node->getOperand(2);
4671
SDValue SwapVal = Node->getOperand(3);
4672
MachineMemOperand *MMO = Node->getMemOperand();
4673
SDLoc DL(Node);
4674
4675
if (Node->getMemoryVT() == MVT::i128) {
4676
// Use same code to handle both legal and non-legal i128 types.
4677
SmallVector<SDValue, 3> Results;
4678
LowerOperationWrapper(Node, Results, DAG);
4679
return DAG.getMergeValues(Results, DL);
4680
}
4681
4682
// We have native support for 32-bit and 64-bit compare and swap, but we
4683
// still need to expand extracting the "success" result from the CC.
4684
EVT NarrowVT = Node->getMemoryVT();
4685
EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
4686
if (NarrowVT == WideVT) {
4687
SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4688
SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
4689
SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
4690
DL, Tys, Ops, NarrowVT, MMO);
4691
SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4692
SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4693
4694
DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4695
DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4696
DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4697
return SDValue();
4698
}
4699
4700
// Convert 8-bit and 16-bit compare and swap to a loop, implemented
4701
// via a fullword ATOMIC_CMP_SWAPW operation.
4702
int64_t BitSize = NarrowVT.getSizeInBits();
4703
4704
SDValue AlignedAddr, BitShift, NegBitShift;
4705
getCSAddressAndShifts(Addr, DAG, DL, AlignedAddr, BitShift, NegBitShift);
4706
4707
// Construct the ATOMIC_CMP_SWAPW node.
4708
SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4709
SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4710
NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4711
SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4712
VTList, Ops, NarrowVT, MMO);
4713
SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4714
SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4715
4716
// emitAtomicCmpSwapW() will zero extend the result (original value).
4717
SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0),
4718
DAG.getValueType(NarrowVT));
4719
DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal);
4720
DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4721
DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4722
return SDValue();
4723
}
4724
4725
MachineMemOperand::Flags
4726
SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4727
// Because of how we convert atomic_load and atomic_store to normal loads and
4728
// stores in the DAG, we need to ensure that the MMOs are marked volatile
4729
// since DAGCombine hasn't been updated to account for atomic, but non
4730
// volatile loads. (See D57601)
4731
if (auto *SI = dyn_cast<StoreInst>(&I))
4732
if (SI->isAtomic())
4733
return MachineMemOperand::MOVolatile;
4734
if (auto *LI = dyn_cast<LoadInst>(&I))
4735
if (LI->isAtomic())
4736
return MachineMemOperand::MOVolatile;
4737
if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4738
if (AI->isAtomic())
4739
return MachineMemOperand::MOVolatile;
4740
if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4741
if (AI->isAtomic())
4742
return MachineMemOperand::MOVolatile;
4743
return MachineMemOperand::MONone;
4744
}
4745
4746
SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4747
SelectionDAG &DAG) const {
4748
MachineFunction &MF = DAG.getMachineFunction();
4749
auto *Regs = Subtarget.getSpecialRegisters();
4750
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4751
report_fatal_error("Variable-sized stack allocations are not supported "
4752
"in GHC calling convention");
4753
return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4754
Regs->getStackPointerRegister(), Op.getValueType());
4755
}
4756
4757
SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4758
SelectionDAG &DAG) const {
4759
MachineFunction &MF = DAG.getMachineFunction();
4760
auto *Regs = Subtarget.getSpecialRegisters();
4761
bool StoreBackchain = MF.getSubtarget<SystemZSubtarget>().hasBackChain();
4762
4763
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4764
report_fatal_error("Variable-sized stack allocations are not supported "
4765
"in GHC calling convention");
4766
4767
SDValue Chain = Op.getOperand(0);
4768
SDValue NewSP = Op.getOperand(1);
4769
SDValue Backchain;
4770
SDLoc DL(Op);
4771
4772
if (StoreBackchain) {
4773
SDValue OldSP = DAG.getCopyFromReg(
4774
Chain, DL, Regs->getStackPointerRegister(), MVT::i64);
4775
Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4776
MachinePointerInfo());
4777
}
4778
4779
Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP);
4780
4781
if (StoreBackchain)
4782
Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4783
MachinePointerInfo());
4784
4785
return Chain;
4786
}
4787
4788
SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4789
SelectionDAG &DAG) const {
4790
bool IsData = Op.getConstantOperandVal(4);
4791
if (!IsData)
4792
// Just preserve the chain.
4793
return Op.getOperand(0);
4794
4795
SDLoc DL(Op);
4796
bool IsWrite = Op.getConstantOperandVal(2);
4797
unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4798
auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4799
SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4800
Op.getOperand(1)};
4801
return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4802
Node->getVTList(), Ops,
4803
Node->getMemoryVT(), Node->getMemOperand());
4804
}
4805
4806
// Convert condition code in CCReg to an i32 value.
4807
static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4808
SDLoc DL(CCReg);
4809
SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4810
return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4811
DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4812
}
4813
4814
SDValue
4815
SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4816
SelectionDAG &DAG) const {
4817
unsigned Opcode, CCValid;
4818
if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4819
assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4820
SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4821
SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4822
DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4823
return SDValue();
4824
}
4825
4826
return SDValue();
4827
}
4828
4829
SDValue
4830
SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4831
SelectionDAG &DAG) const {
4832
unsigned Opcode, CCValid;
4833
if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4834
SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4835
if (Op->getNumValues() == 1)
4836
return getCCResult(DAG, SDValue(Node, 0));
4837
assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4838
return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4839
SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4840
}
4841
4842
unsigned Id = Op.getConstantOperandVal(0);
4843
switch (Id) {
4844
case Intrinsic::thread_pointer:
4845
return lowerThreadPointer(SDLoc(Op), DAG);
4846
4847
case Intrinsic::s390_vpdi:
4848
return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4849
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4850
4851
case Intrinsic::s390_vperm:
4852
return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4853
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4854
4855
case Intrinsic::s390_vuphb:
4856
case Intrinsic::s390_vuphh:
4857
case Intrinsic::s390_vuphf:
4858
return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4859
Op.getOperand(1));
4860
4861
case Intrinsic::s390_vuplhb:
4862
case Intrinsic::s390_vuplhh:
4863
case Intrinsic::s390_vuplhf:
4864
return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4865
Op.getOperand(1));
4866
4867
case Intrinsic::s390_vuplb:
4868
case Intrinsic::s390_vuplhw:
4869
case Intrinsic::s390_vuplf:
4870
return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4871
Op.getOperand(1));
4872
4873
case Intrinsic::s390_vupllb:
4874
case Intrinsic::s390_vupllh:
4875
case Intrinsic::s390_vupllf:
4876
return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4877
Op.getOperand(1));
4878
4879
case Intrinsic::s390_vsumb:
4880
case Intrinsic::s390_vsumh:
4881
case Intrinsic::s390_vsumgh:
4882
case Intrinsic::s390_vsumgf:
4883
case Intrinsic::s390_vsumqf:
4884
case Intrinsic::s390_vsumqg:
4885
return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4886
Op.getOperand(1), Op.getOperand(2));
4887
4888
case Intrinsic::s390_vaq:
4889
return DAG.getNode(ISD::ADD, SDLoc(Op), Op.getValueType(),
4890
Op.getOperand(1), Op.getOperand(2));
4891
case Intrinsic::s390_vaccb:
4892
case Intrinsic::s390_vacch:
4893
case Intrinsic::s390_vaccf:
4894
case Intrinsic::s390_vaccg:
4895
case Intrinsic::s390_vaccq:
4896
return DAG.getNode(SystemZISD::VACC, SDLoc(Op), Op.getValueType(),
4897
Op.getOperand(1), Op.getOperand(2));
4898
case Intrinsic::s390_vacq:
4899
return DAG.getNode(SystemZISD::VAC, SDLoc(Op), Op.getValueType(),
4900
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4901
case Intrinsic::s390_vacccq:
4902
return DAG.getNode(SystemZISD::VACCC, SDLoc(Op), Op.getValueType(),
4903
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4904
4905
case Intrinsic::s390_vsq:
4906
return DAG.getNode(ISD::SUB, SDLoc(Op), Op.getValueType(),
4907
Op.getOperand(1), Op.getOperand(2));
4908
case Intrinsic::s390_vscbib:
4909
case Intrinsic::s390_vscbih:
4910
case Intrinsic::s390_vscbif:
4911
case Intrinsic::s390_vscbig:
4912
case Intrinsic::s390_vscbiq:
4913
return DAG.getNode(SystemZISD::VSCBI, SDLoc(Op), Op.getValueType(),
4914
Op.getOperand(1), Op.getOperand(2));
4915
case Intrinsic::s390_vsbiq:
4916
return DAG.getNode(SystemZISD::VSBI, SDLoc(Op), Op.getValueType(),
4917
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4918
case Intrinsic::s390_vsbcbiq:
4919
return DAG.getNode(SystemZISD::VSBCBI, SDLoc(Op), Op.getValueType(),
4920
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4921
}
4922
4923
return SDValue();
4924
}
4925
4926
namespace {
4927
// Says that SystemZISD operation Opcode can be used to perform the equivalent
4928
// of a VPERM with permute vector Bytes. If Opcode takes three operands,
4929
// Operand is the constant third operand, otherwise it is the number of
4930
// bytes in each element of the result.
4931
struct Permute {
4932
unsigned Opcode;
4933
unsigned Operand;
4934
unsigned char Bytes[SystemZ::VectorBytes];
4935
};
4936
}
4937
4938
static const Permute PermuteForms[] = {
4939
// VMRHG
4940
{ SystemZISD::MERGE_HIGH, 8,
4941
{ 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4942
// VMRHF
4943
{ SystemZISD::MERGE_HIGH, 4,
4944
{ 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4945
// VMRHH
4946
{ SystemZISD::MERGE_HIGH, 2,
4947
{ 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4948
// VMRHB
4949
{ SystemZISD::MERGE_HIGH, 1,
4950
{ 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4951
// VMRLG
4952
{ SystemZISD::MERGE_LOW, 8,
4953
{ 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4954
// VMRLF
4955
{ SystemZISD::MERGE_LOW, 4,
4956
{ 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4957
// VMRLH
4958
{ SystemZISD::MERGE_LOW, 2,
4959
{ 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4960
// VMRLB
4961
{ SystemZISD::MERGE_LOW, 1,
4962
{ 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4963
// VPKG
4964
{ SystemZISD::PACK, 4,
4965
{ 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4966
// VPKF
4967
{ SystemZISD::PACK, 2,
4968
{ 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4969
// VPKH
4970
{ SystemZISD::PACK, 1,
4971
{ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4972
// VPDI V1, V2, 4 (low half of V1, high half of V2)
4973
{ SystemZISD::PERMUTE_DWORDS, 4,
4974
{ 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4975
// VPDI V1, V2, 1 (high half of V1, low half of V2)
4976
{ SystemZISD::PERMUTE_DWORDS, 1,
4977
{ 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4978
};
4979
4980
// Called after matching a vector shuffle against a particular pattern.
4981
// Both the original shuffle and the pattern have two vector operands.
4982
// OpNos[0] is the operand of the original shuffle that should be used for
4983
// operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4984
// OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and
4985
// set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4986
// for operands 0 and 1 of the pattern.
4987
static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4988
if (OpNos[0] < 0) {
4989
if (OpNos[1] < 0)
4990
return false;
4991
OpNo0 = OpNo1 = OpNos[1];
4992
} else if (OpNos[1] < 0) {
4993
OpNo0 = OpNo1 = OpNos[0];
4994
} else {
4995
OpNo0 = OpNos[0];
4996
OpNo1 = OpNos[1];
4997
}
4998
return true;
4999
}
5000
5001
// Bytes is a VPERM-like permute vector, except that -1 is used for
5002
// undefined bytes. Return true if the VPERM can be implemented using P.
5003
// When returning true set OpNo0 to the VPERM operand that should be
5004
// used for operand 0 of P and likewise OpNo1 for operand 1 of P.
5005
//
5006
// For example, if swapping the VPERM operands allows P to match, OpNo0
5007
// will be 1 and OpNo1 will be 0. If instead Bytes only refers to one
5008
// operand, but rewriting it to use two duplicated operands allows it to
5009
// match P, then OpNo0 and OpNo1 will be the same.
5010
static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
5011
unsigned &OpNo0, unsigned &OpNo1) {
5012
int OpNos[] = { -1, -1 };
5013
for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
5014
int Elt = Bytes[I];
5015
if (Elt >= 0) {
5016
// Make sure that the two permute vectors use the same suboperand
5017
// byte number. Only the operand numbers (the high bits) are
5018
// allowed to differ.
5019
if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
5020
return false;
5021
int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
5022
int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
5023
// Make sure that the operand mappings are consistent with previous
5024
// elements.
5025
if (OpNos[ModelOpNo] == 1 - RealOpNo)
5026
return false;
5027
OpNos[ModelOpNo] = RealOpNo;
5028
}
5029
}
5030
return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
5031
}
5032
5033
// As above, but search for a matching permute.
5034
static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
5035
unsigned &OpNo0, unsigned &OpNo1) {
5036
for (auto &P : PermuteForms)
5037
if (matchPermute(Bytes, P, OpNo0, OpNo1))
5038
return &P;
5039
return nullptr;
5040
}
5041
5042
// Bytes is a VPERM-like permute vector, except that -1 is used for
5043
// undefined bytes. This permute is an operand of an outer permute.
5044
// See whether redistributing the -1 bytes gives a shuffle that can be
5045
// implemented using P. If so, set Transform to a VPERM-like permute vector
5046
// that, when applied to the result of P, gives the original permute in Bytes.
5047
static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
5048
const Permute &P,
5049
SmallVectorImpl<int> &Transform) {
5050
unsigned To = 0;
5051
for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
5052
int Elt = Bytes[From];
5053
if (Elt < 0)
5054
// Byte number From of the result is undefined.
5055
Transform[From] = -1;
5056
else {
5057
while (P.Bytes[To] != Elt) {
5058
To += 1;
5059
if (To == SystemZ::VectorBytes)
5060
return false;
5061
}
5062
Transform[From] = To;
5063
}
5064
}
5065
return true;
5066
}
5067
5068
// As above, but search for a matching permute.
5069
static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
5070
SmallVectorImpl<int> &Transform) {
5071
for (auto &P : PermuteForms)
5072
if (matchDoublePermute(Bytes, P, Transform))
5073
return &P;
5074
return nullptr;
5075
}
5076
5077
// Convert the mask of the given shuffle op into a byte-level mask,
5078
// as if it had type vNi8.
5079
static bool getVPermMask(SDValue ShuffleOp,
5080
SmallVectorImpl<int> &Bytes) {
5081
EVT VT = ShuffleOp.getValueType();
5082
unsigned NumElements = VT.getVectorNumElements();
5083
unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
5084
5085
if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
5086
Bytes.resize(NumElements * BytesPerElement, -1);
5087
for (unsigned I = 0; I < NumElements; ++I) {
5088
int Index = VSN->getMaskElt(I);
5089
if (Index >= 0)
5090
for (unsigned J = 0; J < BytesPerElement; ++J)
5091
Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
5092
}
5093
return true;
5094
}
5095
if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
5096
isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
5097
unsigned Index = ShuffleOp.getConstantOperandVal(1);
5098
Bytes.resize(NumElements * BytesPerElement, -1);
5099
for (unsigned I = 0; I < NumElements; ++I)
5100
for (unsigned J = 0; J < BytesPerElement; ++J)
5101
Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
5102
return true;
5103
}
5104
return false;
5105
}
5106
5107
// Bytes is a VPERM-like permute vector, except that -1 is used for
5108
// undefined bytes. See whether bytes [Start, Start + BytesPerElement) of
5109
// the result come from a contiguous sequence of bytes from one input.
5110
// Set Base to the selector for the first byte if so.
5111
static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
5112
unsigned BytesPerElement, int &Base) {
5113
Base = -1;
5114
for (unsigned I = 0; I < BytesPerElement; ++I) {
5115
if (Bytes[Start + I] >= 0) {
5116
unsigned Elem = Bytes[Start + I];
5117
if (Base < 0) {
5118
Base = Elem - I;
5119
// Make sure the bytes would come from one input operand.
5120
if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
5121
return false;
5122
} else if (unsigned(Base) != Elem - I)
5123
return false;
5124
}
5125
}
5126
return true;
5127
}
5128
5129
// Bytes is a VPERM-like permute vector, except that -1 is used for
5130
// undefined bytes. Return true if it can be performed using VSLDB.
5131
// When returning true, set StartIndex to the shift amount and OpNo0
5132
// and OpNo1 to the VPERM operands that should be used as the first
5133
// and second shift operand respectively.
5134
static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
5135
unsigned &StartIndex, unsigned &OpNo0,
5136
unsigned &OpNo1) {
5137
int OpNos[] = { -1, -1 };
5138
int Shift = -1;
5139
for (unsigned I = 0; I < 16; ++I) {
5140
int Index = Bytes[I];
5141
if (Index >= 0) {
5142
int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
5143
int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
5144
int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
5145
if (Shift < 0)
5146
Shift = ExpectedShift;
5147
else if (Shift != ExpectedShift)
5148
return false;
5149
// Make sure that the operand mappings are consistent with previous
5150
// elements.
5151
if (OpNos[ModelOpNo] == 1 - RealOpNo)
5152
return false;
5153
OpNos[ModelOpNo] = RealOpNo;
5154
}
5155
}
5156
StartIndex = Shift;
5157
return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
5158
}
5159
5160
// Create a node that performs P on operands Op0 and Op1, casting the
5161
// operands to the appropriate type. The type of the result is determined by P.
5162
static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
5163
const Permute &P, SDValue Op0, SDValue Op1) {
5164
// VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input
5165
// elements of a PACK are twice as wide as the outputs.
5166
unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
5167
P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
5168
P.Operand);
5169
// Cast both operands to the appropriate type.
5170
MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
5171
SystemZ::VectorBytes / InBytes);
5172
Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
5173
Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
5174
SDValue Op;
5175
if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
5176
SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
5177
Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
5178
} else if (P.Opcode == SystemZISD::PACK) {
5179
MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
5180
SystemZ::VectorBytes / P.Operand);
5181
Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
5182
} else {
5183
Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
5184
}
5185
return Op;
5186
}
5187
5188
static bool isZeroVector(SDValue N) {
5189
if (N->getOpcode() == ISD::BITCAST)
5190
N = N->getOperand(0);
5191
if (N->getOpcode() == ISD::SPLAT_VECTOR)
5192
if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
5193
return Op->getZExtValue() == 0;
5194
return ISD::isBuildVectorAllZeros(N.getNode());
5195
}
5196
5197
// Return the index of the zero/undef vector, or UINT32_MAX if not found.
5198
static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
5199
for (unsigned I = 0; I < Num ; I++)
5200
if (isZeroVector(Ops[I]))
5201
return I;
5202
return UINT32_MAX;
5203
}
5204
5205
// Bytes is a VPERM-like permute vector, except that -1 is used for
5206
// undefined bytes. Implement it on operands Ops[0] and Ops[1] using
5207
// VSLDB or VPERM.
5208
static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
5209
SDValue *Ops,
5210
const SmallVectorImpl<int> &Bytes) {
5211
for (unsigned I = 0; I < 2; ++I)
5212
Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
5213
5214
// First see whether VSLDB can be used.
5215
unsigned StartIndex, OpNo0, OpNo1;
5216
if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
5217
return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
5218
Ops[OpNo1],
5219
DAG.getTargetConstant(StartIndex, DL, MVT::i32));
5220
5221
// Fall back on VPERM. Construct an SDNode for the permute vector. Try to
5222
// eliminate a zero vector by reusing any zero index in the permute vector.
5223
unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
5224
if (ZeroVecIdx != UINT32_MAX) {
5225
bool MaskFirst = true;
5226
int ZeroIdx = -1;
5227
for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
5228
unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5229
unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
5230
if (OpNo == ZeroVecIdx && I == 0) {
5231
// If the first byte is zero, use mask as first operand.
5232
ZeroIdx = 0;
5233
break;
5234
}
5235
if (OpNo != ZeroVecIdx && Byte == 0) {
5236
// If mask contains a zero, use it by placing that vector first.
5237
ZeroIdx = I + SystemZ::VectorBytes;
5238
MaskFirst = false;
5239
break;
5240
}
5241
}
5242
if (ZeroIdx != -1) {
5243
SDValue IndexNodes[SystemZ::VectorBytes];
5244
for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
5245
if (Bytes[I] >= 0) {
5246
unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5247
unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
5248
if (OpNo == ZeroVecIdx)
5249
IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
5250
else {
5251
unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
5252
IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
5253
}
5254
} else
5255
IndexNodes[I] = DAG.getUNDEF(MVT::i32);
5256
}
5257
SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
5258
SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
5259
if (MaskFirst)
5260
return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
5261
Mask);
5262
else
5263
return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
5264
Mask);
5265
}
5266
}
5267
5268
SDValue IndexNodes[SystemZ::VectorBytes];
5269
for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5270
if (Bytes[I] >= 0)
5271
IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
5272
else
5273
IndexNodes[I] = DAG.getUNDEF(MVT::i32);
5274
SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
5275
return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
5276
(!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
5277
}
5278
5279
namespace {
5280
// Describes a general N-operand vector shuffle.
5281
struct GeneralShuffle {
5282
GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
5283
void addUndef();
5284
bool add(SDValue, unsigned);
5285
SDValue getNode(SelectionDAG &, const SDLoc &);
5286
void tryPrepareForUnpack();
5287
bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
5288
SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
5289
5290
// The operands of the shuffle.
5291
SmallVector<SDValue, SystemZ::VectorBytes> Ops;
5292
5293
// Index I is -1 if byte I of the result is undefined. Otherwise the
5294
// result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
5295
// Bytes[I] / SystemZ::VectorBytes.
5296
SmallVector<int, SystemZ::VectorBytes> Bytes;
5297
5298
// The type of the shuffle result.
5299
EVT VT;
5300
5301
// Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
5302
unsigned UnpackFromEltSize;
5303
};
5304
}
5305
5306
// Add an extra undefined element to the shuffle.
5307
void GeneralShuffle::addUndef() {
5308
unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
5309
for (unsigned I = 0; I < BytesPerElement; ++I)
5310
Bytes.push_back(-1);
5311
}
5312
5313
// Add an extra element to the shuffle, taking it from element Elem of Op.
5314
// A null Op indicates a vector input whose value will be calculated later;
5315
// there is at most one such input per shuffle and it always has the same
5316
// type as the result. Aborts and returns false if the source vector elements
5317
// of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
5318
// LLVM they become implicitly extended, but this is rare and not optimized.
5319
bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
5320
unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
5321
5322
// The source vector can have wider elements than the result,
5323
// either through an explicit TRUNCATE or because of type legalization.
5324
// We want the least significant part.
5325
EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
5326
unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
5327
5328
// Return false if the source elements are smaller than their destination
5329
// elements.
5330
if (FromBytesPerElement < BytesPerElement)
5331
return false;
5332
5333
unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
5334
(FromBytesPerElement - BytesPerElement));
5335
5336
// Look through things like shuffles and bitcasts.
5337
while (Op.getNode()) {
5338
if (Op.getOpcode() == ISD::BITCAST)
5339
Op = Op.getOperand(0);
5340
else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
5341
// See whether the bytes we need come from a contiguous part of one
5342
// operand.
5343
SmallVector<int, SystemZ::VectorBytes> OpBytes;
5344
if (!getVPermMask(Op, OpBytes))
5345
break;
5346
int NewByte;
5347
if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
5348
break;
5349
if (NewByte < 0) {
5350
addUndef();
5351
return true;
5352
}
5353
Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
5354
Byte = unsigned(NewByte) % SystemZ::VectorBytes;
5355
} else if (Op.isUndef()) {
5356
addUndef();
5357
return true;
5358
} else
5359
break;
5360
}
5361
5362
// Make sure that the source of the extraction is in Ops.
5363
unsigned OpNo = 0;
5364
for (; OpNo < Ops.size(); ++OpNo)
5365
if (Ops[OpNo] == Op)
5366
break;
5367
if (OpNo == Ops.size())
5368
Ops.push_back(Op);
5369
5370
// Add the element to Bytes.
5371
unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
5372
for (unsigned I = 0; I < BytesPerElement; ++I)
5373
Bytes.push_back(Base + I);
5374
5375
return true;
5376
}
5377
5378
// Return SDNodes for the completed shuffle.
5379
SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
5380
assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
5381
5382
if (Ops.size() == 0)
5383
return DAG.getUNDEF(VT);
5384
5385
// Use a single unpack if possible as the last operation.
5386
tryPrepareForUnpack();
5387
5388
// Make sure that there are at least two shuffle operands.
5389
if (Ops.size() == 1)
5390
Ops.push_back(DAG.getUNDEF(MVT::v16i8));
5391
5392
// Create a tree of shuffles, deferring root node until after the loop.
5393
// Try to redistribute the undefined elements of non-root nodes so that
5394
// the non-root shuffles match something like a pack or merge, then adjust
5395
// the parent node's permute vector to compensate for the new order.
5396
// Among other things, this copes with vectors like <2 x i16> that were
5397
// padded with undefined elements during type legalization.
5398
//
5399
// In the best case this redistribution will lead to the whole tree
5400
// using packs and merges. It should rarely be a loss in other cases.
5401
unsigned Stride = 1;
5402
for (; Stride * 2 < Ops.size(); Stride *= 2) {
5403
for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
5404
SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
5405
5406
// Create a mask for just these two operands.
5407
SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
5408
for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
5409
unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
5410
unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
5411
if (OpNo == I)
5412
NewBytes[J] = Byte;
5413
else if (OpNo == I + Stride)
5414
NewBytes[J] = SystemZ::VectorBytes + Byte;
5415
else
5416
NewBytes[J] = -1;
5417
}
5418
// See if it would be better to reorganize NewMask to avoid using VPERM.
5419
SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
5420
if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
5421
Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
5422
// Applying NewBytesMap to Ops[I] gets back to NewBytes.
5423
for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
5424
if (NewBytes[J] >= 0) {
5425
assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
5426
"Invalid double permute");
5427
Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
5428
} else
5429
assert(NewBytesMap[J] < 0 && "Invalid double permute");
5430
}
5431
} else {
5432
// Just use NewBytes on the operands.
5433
Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
5434
for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
5435
if (NewBytes[J] >= 0)
5436
Bytes[J] = I * SystemZ::VectorBytes + J;
5437
}
5438
}
5439
}
5440
5441
// Now we just have 2 inputs. Put the second operand in Ops[1].
5442
if (Stride > 1) {
5443
Ops[1] = Ops[Stride];
5444
for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5445
if (Bytes[I] >= int(SystemZ::VectorBytes))
5446
Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
5447
}
5448
5449
// Look for an instruction that can do the permute without resorting
5450
// to VPERM.
5451
unsigned OpNo0, OpNo1;
5452
SDValue Op;
5453
if (unpackWasPrepared() && Ops[1].isUndef())
5454
Op = Ops[0];
5455
else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
5456
Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
5457
else
5458
Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
5459
5460
Op = insertUnpackIfPrepared(DAG, DL, Op);
5461
5462
return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5463
}
5464
5465
#ifndef NDEBUG
5466
static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
5467
dbgs() << Msg.c_str() << " { ";
5468
for (unsigned i = 0; i < Bytes.size(); i++)
5469
dbgs() << Bytes[i] << " ";
5470
dbgs() << "}\n";
5471
}
5472
#endif
5473
5474
// If the Bytes vector matches an unpack operation, prepare to do the unpack
5475
// after all else by removing the zero vector and the effect of the unpack on
5476
// Bytes.
5477
void GeneralShuffle::tryPrepareForUnpack() {
5478
uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
5479
if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
5480
return;
5481
5482
// Only do this if removing the zero vector reduces the depth, otherwise
5483
// the critical path will increase with the final unpack.
5484
if (Ops.size() > 2 &&
5485
Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
5486
return;
5487
5488
// Find an unpack that would allow removing the zero vector from Ops.
5489
UnpackFromEltSize = 1;
5490
for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
5491
bool MatchUnpack = true;
5492
SmallVector<int, SystemZ::VectorBytes> SrcBytes;
5493
for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
5494
unsigned ToEltSize = UnpackFromEltSize * 2;
5495
bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
5496
if (!IsZextByte)
5497
SrcBytes.push_back(Bytes[Elt]);
5498
if (Bytes[Elt] != -1) {
5499
unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
5500
if (IsZextByte != (OpNo == ZeroVecOpNo)) {
5501
MatchUnpack = false;
5502
break;
5503
}
5504
}
5505
}
5506
if (MatchUnpack) {
5507
if (Ops.size() == 2) {
5508
// Don't use unpack if a single source operand needs rearrangement.
5509
for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
5510
if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
5511
UnpackFromEltSize = UINT_MAX;
5512
return;
5513
}
5514
}
5515
break;
5516
}
5517
}
5518
if (UnpackFromEltSize > 4)
5519
return;
5520
5521
LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
5522
<< UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
5523
<< ".\n";
5524
dumpBytes(Bytes, "Original Bytes vector:"););
5525
5526
// Apply the unpack in reverse to the Bytes array.
5527
unsigned B = 0;
5528
for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
5529
Elt += UnpackFromEltSize;
5530
for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
5531
Bytes[B] = Bytes[Elt];
5532
}
5533
while (B < SystemZ::VectorBytes)
5534
Bytes[B++] = -1;
5535
5536
// Remove the zero vector from Ops
5537
Ops.erase(&Ops[ZeroVecOpNo]);
5538
for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5539
if (Bytes[I] >= 0) {
5540
unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5541
if (OpNo > ZeroVecOpNo)
5542
Bytes[I] -= SystemZ::VectorBytes;
5543
}
5544
5545
LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
5546
dbgs() << "\n";);
5547
}
5548
5549
SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
5550
const SDLoc &DL,
5551
SDValue Op) {
5552
if (!unpackWasPrepared())
5553
return Op;
5554
unsigned InBits = UnpackFromEltSize * 8;
5555
EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
5556
SystemZ::VectorBits / InBits);
5557
SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
5558
unsigned OutBits = InBits * 2;
5559
EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
5560
SystemZ::VectorBits / OutBits);
5561
return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
5562
}
5563
5564
// Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
5565
static bool isScalarToVector(SDValue Op) {
5566
for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
5567
if (!Op.getOperand(I).isUndef())
5568
return false;
5569
return true;
5570
}
5571
5572
// Return a vector of type VT that contains Value in the first element.
5573
// The other elements don't matter.
5574
static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5575
SDValue Value) {
5576
// If we have a constant, replicate it to all elements and let the
5577
// BUILD_VECTOR lowering take care of it.
5578
if (Value.getOpcode() == ISD::Constant ||
5579
Value.getOpcode() == ISD::ConstantFP) {
5580
SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
5581
return DAG.getBuildVector(VT, DL, Ops);
5582
}
5583
if (Value.isUndef())
5584
return DAG.getUNDEF(VT);
5585
return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
5586
}
5587
5588
// Return a vector of type VT in which Op0 is in element 0 and Op1 is in
5589
// element 1. Used for cases in which replication is cheap.
5590
static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5591
SDValue Op0, SDValue Op1) {
5592
if (Op0.isUndef()) {
5593
if (Op1.isUndef())
5594
return DAG.getUNDEF(VT);
5595
return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
5596
}
5597
if (Op1.isUndef())
5598
return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
5599
return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
5600
buildScalarToVector(DAG, DL, VT, Op0),
5601
buildScalarToVector(DAG, DL, VT, Op1));
5602
}
5603
5604
// Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
5605
// vector for them.
5606
static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
5607
SDValue Op1) {
5608
if (Op0.isUndef() && Op1.isUndef())
5609
return DAG.getUNDEF(MVT::v2i64);
5610
// If one of the two inputs is undefined then replicate the other one,
5611
// in order to avoid using another register unnecessarily.
5612
if (Op0.isUndef())
5613
Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5614
else if (Op1.isUndef())
5615
Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5616
else {
5617
Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5618
Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5619
}
5620
return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
5621
}
5622
5623
// If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
5624
// better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
5625
// the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR
5626
// would benefit from this representation and return it if so.
5627
static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
5628
BuildVectorSDNode *BVN) {
5629
EVT VT = BVN->getValueType(0);
5630
unsigned NumElements = VT.getVectorNumElements();
5631
5632
// Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
5633
// on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still
5634
// need a BUILD_VECTOR, add an additional placeholder operand for that
5635
// BUILD_VECTOR and store its operands in ResidueOps.
5636
GeneralShuffle GS(VT);
5637
SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
5638
bool FoundOne = false;
5639
for (unsigned I = 0; I < NumElements; ++I) {
5640
SDValue Op = BVN->getOperand(I);
5641
if (Op.getOpcode() == ISD::TRUNCATE)
5642
Op = Op.getOperand(0);
5643
if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5644
Op.getOperand(1).getOpcode() == ISD::Constant) {
5645
unsigned Elem = Op.getConstantOperandVal(1);
5646
if (!GS.add(Op.getOperand(0), Elem))
5647
return SDValue();
5648
FoundOne = true;
5649
} else if (Op.isUndef()) {
5650
GS.addUndef();
5651
} else {
5652
if (!GS.add(SDValue(), ResidueOps.size()))
5653
return SDValue();
5654
ResidueOps.push_back(BVN->getOperand(I));
5655
}
5656
}
5657
5658
// Nothing to do if there are no EXTRACT_VECTOR_ELTs.
5659
if (!FoundOne)
5660
return SDValue();
5661
5662
// Create the BUILD_VECTOR for the remaining elements, if any.
5663
if (!ResidueOps.empty()) {
5664
while (ResidueOps.size() < NumElements)
5665
ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
5666
for (auto &Op : GS.Ops) {
5667
if (!Op.getNode()) {
5668
Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
5669
break;
5670
}
5671
}
5672
}
5673
return GS.getNode(DAG, SDLoc(BVN));
5674
}
5675
5676
bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
5677
if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
5678
return true;
5679
if (auto *AL = dyn_cast<AtomicSDNode>(Op))
5680
if (AL->getOpcode() == ISD::ATOMIC_LOAD)
5681
return true;
5682
if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
5683
return true;
5684
return false;
5685
}
5686
5687
// Combine GPR scalar values Elems into a vector of type VT.
5688
SDValue
5689
SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5690
SmallVectorImpl<SDValue> &Elems) const {
5691
// See whether there is a single replicated value.
5692
SDValue Single;
5693
unsigned int NumElements = Elems.size();
5694
unsigned int Count = 0;
5695
for (auto Elem : Elems) {
5696
if (!Elem.isUndef()) {
5697
if (!Single.getNode())
5698
Single = Elem;
5699
else if (Elem != Single) {
5700
Single = SDValue();
5701
break;
5702
}
5703
Count += 1;
5704
}
5705
}
5706
// There are three cases here:
5707
//
5708
// - if the only defined element is a loaded one, the best sequence
5709
// is a replicating load.
5710
//
5711
// - otherwise, if the only defined element is an i64 value, we will
5712
// end up with the same VLVGP sequence regardless of whether we short-cut
5713
// for replication or fall through to the later code.
5714
//
5715
// - otherwise, if the only defined element is an i32 or smaller value,
5716
// we would need 2 instructions to replicate it: VLVGP followed by VREPx.
5717
// This is only a win if the single defined element is used more than once.
5718
// In other cases we're better off using a single VLVGx.
5719
if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
5720
return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
5721
5722
// If all elements are loads, use VLREP/VLEs (below).
5723
bool AllLoads = true;
5724
for (auto Elem : Elems)
5725
if (!isVectorElementLoad(Elem)) {
5726
AllLoads = false;
5727
break;
5728
}
5729
5730
// The best way of building a v2i64 from two i64s is to use VLVGP.
5731
if (VT == MVT::v2i64 && !AllLoads)
5732
return joinDwords(DAG, DL, Elems[0], Elems[1]);
5733
5734
// Use a 64-bit merge high to combine two doubles.
5735
if (VT == MVT::v2f64 && !AllLoads)
5736
return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5737
5738
// Build v4f32 values directly from the FPRs:
5739
//
5740
// <Axxx> <Bxxx> <Cxxxx> <Dxxx>
5741
// V V VMRHF
5742
// <ABxx> <CDxx>
5743
// V VMRHG
5744
// <ABCD>
5745
if (VT == MVT::v4f32 && !AllLoads) {
5746
SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5747
SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
5748
// Avoid unnecessary undefs by reusing the other operand.
5749
if (Op01.isUndef())
5750
Op01 = Op23;
5751
else if (Op23.isUndef())
5752
Op23 = Op01;
5753
// Merging identical replications is a no-op.
5754
if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
5755
return Op01;
5756
Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
5757
Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
5758
SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
5759
DL, MVT::v2i64, Op01, Op23);
5760
return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5761
}
5762
5763
// Collect the constant terms.
5764
SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
5765
SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
5766
5767
unsigned NumConstants = 0;
5768
for (unsigned I = 0; I < NumElements; ++I) {
5769
SDValue Elem = Elems[I];
5770
if (Elem.getOpcode() == ISD::Constant ||
5771
Elem.getOpcode() == ISD::ConstantFP) {
5772
NumConstants += 1;
5773
Constants[I] = Elem;
5774
Done[I] = true;
5775
}
5776
}
5777
// If there was at least one constant, fill in the other elements of
5778
// Constants with undefs to get a full vector constant and use that
5779
// as the starting point.
5780
SDValue Result;
5781
SDValue ReplicatedVal;
5782
if (NumConstants > 0) {
5783
for (unsigned I = 0; I < NumElements; ++I)
5784
if (!Constants[I].getNode())
5785
Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
5786
Result = DAG.getBuildVector(VT, DL, Constants);
5787
} else {
5788
// Otherwise try to use VLREP or VLVGP to start the sequence in order to
5789
// avoid a false dependency on any previous contents of the vector
5790
// register.
5791
5792
// Use a VLREP if at least one element is a load. Make sure to replicate
5793
// the load with the most elements having its value.
5794
std::map<const SDNode*, unsigned> UseCounts;
5795
SDNode *LoadMaxUses = nullptr;
5796
for (unsigned I = 0; I < NumElements; ++I)
5797
if (isVectorElementLoad(Elems[I])) {
5798
SDNode *Ld = Elems[I].getNode();
5799
UseCounts[Ld]++;
5800
if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
5801
LoadMaxUses = Ld;
5802
}
5803
if (LoadMaxUses != nullptr) {
5804
ReplicatedVal = SDValue(LoadMaxUses, 0);
5805
Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
5806
} else {
5807
// Try to use VLVGP.
5808
unsigned I1 = NumElements / 2 - 1;
5809
unsigned I2 = NumElements - 1;
5810
bool Def1 = !Elems[I1].isUndef();
5811
bool Def2 = !Elems[I2].isUndef();
5812
if (Def1 || Def2) {
5813
SDValue Elem1 = Elems[Def1 ? I1 : I2];
5814
SDValue Elem2 = Elems[Def2 ? I2 : I1];
5815
Result = DAG.getNode(ISD::BITCAST, DL, VT,
5816
joinDwords(DAG, DL, Elem1, Elem2));
5817
Done[I1] = true;
5818
Done[I2] = true;
5819
} else
5820
Result = DAG.getUNDEF(VT);
5821
}
5822
}
5823
5824
// Use VLVGx to insert the other elements.
5825
for (unsigned I = 0; I < NumElements; ++I)
5826
if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
5827
Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
5828
DAG.getConstant(I, DL, MVT::i32));
5829
return Result;
5830
}
5831
5832
SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
5833
SelectionDAG &DAG) const {
5834
auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
5835
SDLoc DL(Op);
5836
EVT VT = Op.getValueType();
5837
5838
if (BVN->isConstant()) {
5839
if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
5840
return Op;
5841
5842
// Fall back to loading it from memory.
5843
return SDValue();
5844
}
5845
5846
// See if we should use shuffles to construct the vector from other vectors.
5847
if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5848
return Res;
5849
5850
// Detect SCALAR_TO_VECTOR conversions.
5851
if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5852
return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5853
5854
// Otherwise use buildVector to build the vector up from GPRs.
5855
unsigned NumElements = Op.getNumOperands();
5856
SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5857
for (unsigned I = 0; I < NumElements; ++I)
5858
Ops[I] = Op.getOperand(I);
5859
return buildVector(DAG, DL, VT, Ops);
5860
}
5861
5862
SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5863
SelectionDAG &DAG) const {
5864
auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5865
SDLoc DL(Op);
5866
EVT VT = Op.getValueType();
5867
unsigned NumElements = VT.getVectorNumElements();
5868
5869
if (VSN->isSplat()) {
5870
SDValue Op0 = Op.getOperand(0);
5871
unsigned Index = VSN->getSplatIndex();
5872
assert(Index < VT.getVectorNumElements() &&
5873
"Splat index should be defined and in first operand");
5874
// See whether the value we're splatting is directly available as a scalar.
5875
if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5876
Op0.getOpcode() == ISD::BUILD_VECTOR)
5877
return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5878
// Otherwise keep it as a vector-to-vector operation.
5879
return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5880
DAG.getTargetConstant(Index, DL, MVT::i32));
5881
}
5882
5883
GeneralShuffle GS(VT);
5884
for (unsigned I = 0; I < NumElements; ++I) {
5885
int Elt = VSN->getMaskElt(I);
5886
if (Elt < 0)
5887
GS.addUndef();
5888
else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5889
unsigned(Elt) % NumElements))
5890
return SDValue();
5891
}
5892
return GS.getNode(DAG, SDLoc(VSN));
5893
}
5894
5895
SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5896
SelectionDAG &DAG) const {
5897
SDLoc DL(Op);
5898
// Just insert the scalar into element 0 of an undefined vector.
5899
return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5900
Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5901
Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5902
}
5903
5904
SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5905
SelectionDAG &DAG) const {
5906
// Handle insertions of floating-point values.
5907
SDLoc DL(Op);
5908
SDValue Op0 = Op.getOperand(0);
5909
SDValue Op1 = Op.getOperand(1);
5910
SDValue Op2 = Op.getOperand(2);
5911
EVT VT = Op.getValueType();
5912
5913
// Insertions into constant indices of a v2f64 can be done using VPDI.
5914
// However, if the inserted value is a bitcast or a constant then it's
5915
// better to use GPRs, as below.
5916
if (VT == MVT::v2f64 &&
5917
Op1.getOpcode() != ISD::BITCAST &&
5918
Op1.getOpcode() != ISD::ConstantFP &&
5919
Op2.getOpcode() == ISD::Constant) {
5920
uint64_t Index = Op2->getAsZExtVal();
5921
unsigned Mask = VT.getVectorNumElements() - 1;
5922
if (Index <= Mask)
5923
return Op;
5924
}
5925
5926
// Otherwise bitcast to the equivalent integer form and insert via a GPR.
5927
MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5928
MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5929
SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5930
DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5931
DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5932
return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5933
}
5934
5935
SDValue
5936
SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5937
SelectionDAG &DAG) const {
5938
// Handle extractions of floating-point values.
5939
SDLoc DL(Op);
5940
SDValue Op0 = Op.getOperand(0);
5941
SDValue Op1 = Op.getOperand(1);
5942
EVT VT = Op.getValueType();
5943
EVT VecVT = Op0.getValueType();
5944
5945
// Extractions of constant indices can be done directly.
5946
if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5947
uint64_t Index = CIndexN->getZExtValue();
5948
unsigned Mask = VecVT.getVectorNumElements() - 1;
5949
if (Index <= Mask)
5950
return Op;
5951
}
5952
5953
// Otherwise bitcast to the equivalent integer form and extract via a GPR.
5954
MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5955
MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5956
SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5957
DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5958
return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5959
}
5960
5961
SDValue SystemZTargetLowering::
5962
lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5963
SDValue PackedOp = Op.getOperand(0);
5964
EVT OutVT = Op.getValueType();
5965
EVT InVT = PackedOp.getValueType();
5966
unsigned ToBits = OutVT.getScalarSizeInBits();
5967
unsigned FromBits = InVT.getScalarSizeInBits();
5968
do {
5969
FromBits *= 2;
5970
EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5971
SystemZ::VectorBits / FromBits);
5972
PackedOp =
5973
DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
5974
} while (FromBits != ToBits);
5975
return PackedOp;
5976
}
5977
5978
// Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
5979
SDValue SystemZTargetLowering::
5980
lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5981
SDValue PackedOp = Op.getOperand(0);
5982
SDLoc DL(Op);
5983
EVT OutVT = Op.getValueType();
5984
EVT InVT = PackedOp.getValueType();
5985
unsigned InNumElts = InVT.getVectorNumElements();
5986
unsigned OutNumElts = OutVT.getVectorNumElements();
5987
unsigned NumInPerOut = InNumElts / OutNumElts;
5988
5989
SDValue ZeroVec =
5990
DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
5991
5992
SmallVector<int, 16> Mask(InNumElts);
5993
unsigned ZeroVecElt = InNumElts;
5994
for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
5995
unsigned MaskElt = PackedElt * NumInPerOut;
5996
unsigned End = MaskElt + NumInPerOut - 1;
5997
for (; MaskElt < End; MaskElt++)
5998
Mask[MaskElt] = ZeroVecElt++;
5999
Mask[MaskElt] = PackedElt;
6000
}
6001
SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
6002
return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
6003
}
6004
6005
SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
6006
unsigned ByScalar) const {
6007
// Look for cases where a vector shift can use the *_BY_SCALAR form.
6008
SDValue Op0 = Op.getOperand(0);
6009
SDValue Op1 = Op.getOperand(1);
6010
SDLoc DL(Op);
6011
EVT VT = Op.getValueType();
6012
unsigned ElemBitSize = VT.getScalarSizeInBits();
6013
6014
// See whether the shift vector is a splat represented as BUILD_VECTOR.
6015
if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
6016
APInt SplatBits, SplatUndef;
6017
unsigned SplatBitSize;
6018
bool HasAnyUndefs;
6019
// Check for constant splats. Use ElemBitSize as the minimum element
6020
// width and reject splats that need wider elements.
6021
if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
6022
ElemBitSize, true) &&
6023
SplatBitSize == ElemBitSize) {
6024
SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
6025
DL, MVT::i32);
6026
return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
6027
}
6028
// Check for variable splats.
6029
BitVector UndefElements;
6030
SDValue Splat = BVN->getSplatValue(&UndefElements);
6031
if (Splat) {
6032
// Since i32 is the smallest legal type, we either need a no-op
6033
// or a truncation.
6034
SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
6035
return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
6036
}
6037
}
6038
6039
// See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
6040
// and the shift amount is directly available in a GPR.
6041
if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
6042
if (VSN->isSplat()) {
6043
SDValue VSNOp0 = VSN->getOperand(0);
6044
unsigned Index = VSN->getSplatIndex();
6045
assert(Index < VT.getVectorNumElements() &&
6046
"Splat index should be defined and in first operand");
6047
if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
6048
VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
6049
// Since i32 is the smallest legal type, we either need a no-op
6050
// or a truncation.
6051
SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
6052
VSNOp0.getOperand(Index));
6053
return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
6054
}
6055
}
6056
}
6057
6058
// Otherwise just treat the current form as legal.
6059
return Op;
6060
}
6061
6062
SDValue SystemZTargetLowering::lowerIS_FPCLASS(SDValue Op,
6063
SelectionDAG &DAG) const {
6064
SDLoc DL(Op);
6065
MVT ResultVT = Op.getSimpleValueType();
6066
SDValue Arg = Op.getOperand(0);
6067
unsigned Check = Op.getConstantOperandVal(1);
6068
6069
unsigned TDCMask = 0;
6070
if (Check & fcSNan)
6071
TDCMask |= SystemZ::TDCMASK_SNAN_PLUS | SystemZ::TDCMASK_SNAN_MINUS;
6072
if (Check & fcQNan)
6073
TDCMask |= SystemZ::TDCMASK_QNAN_PLUS | SystemZ::TDCMASK_QNAN_MINUS;
6074
if (Check & fcPosInf)
6075
TDCMask |= SystemZ::TDCMASK_INFINITY_PLUS;
6076
if (Check & fcNegInf)
6077
TDCMask |= SystemZ::TDCMASK_INFINITY_MINUS;
6078
if (Check & fcPosNormal)
6079
TDCMask |= SystemZ::TDCMASK_NORMAL_PLUS;
6080
if (Check & fcNegNormal)
6081
TDCMask |= SystemZ::TDCMASK_NORMAL_MINUS;
6082
if (Check & fcPosSubnormal)
6083
TDCMask |= SystemZ::TDCMASK_SUBNORMAL_PLUS;
6084
if (Check & fcNegSubnormal)
6085
TDCMask |= SystemZ::TDCMASK_SUBNORMAL_MINUS;
6086
if (Check & fcPosZero)
6087
TDCMask |= SystemZ::TDCMASK_ZERO_PLUS;
6088
if (Check & fcNegZero)
6089
TDCMask |= SystemZ::TDCMASK_ZERO_MINUS;
6090
SDValue TDCMaskV = DAG.getConstant(TDCMask, DL, MVT::i64);
6091
6092
SDValue Intr = DAG.getNode(SystemZISD::TDC, DL, ResultVT, Arg, TDCMaskV);
6093
return getCCResult(DAG, Intr);
6094
}
6095
6096
SDValue SystemZTargetLowering::lowerREADCYCLECOUNTER(SDValue Op,
6097
SelectionDAG &DAG) const {
6098
SDLoc DL(Op);
6099
SDValue Chain = Op.getOperand(0);
6100
6101
// STCKF only supports a memory operand, so we have to use a temporary.
6102
SDValue StackPtr = DAG.CreateStackTemporary(MVT::i64);
6103
int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6104
MachinePointerInfo MPI =
6105
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6106
6107
// Use STCFK to store the TOD clock into the temporary.
6108
SDValue StoreOps[] = {Chain, StackPtr};
6109
Chain = DAG.getMemIntrinsicNode(
6110
SystemZISD::STCKF, DL, DAG.getVTList(MVT::Other), StoreOps, MVT::i64,
6111
MPI, MaybeAlign(), MachineMemOperand::MOStore);
6112
6113
// And read it back from there.
6114
return DAG.getLoad(MVT::i64, DL, Chain, StackPtr, MPI);
6115
}
6116
6117
SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
6118
SelectionDAG &DAG) const {
6119
switch (Op.getOpcode()) {
6120
case ISD::FRAMEADDR:
6121
return lowerFRAMEADDR(Op, DAG);
6122
case ISD::RETURNADDR:
6123
return lowerRETURNADDR(Op, DAG);
6124
case ISD::BR_CC:
6125
return lowerBR_CC(Op, DAG);
6126
case ISD::SELECT_CC:
6127
return lowerSELECT_CC(Op, DAG);
6128
case ISD::SETCC:
6129
return lowerSETCC(Op, DAG);
6130
case ISD::STRICT_FSETCC:
6131
return lowerSTRICT_FSETCC(Op, DAG, false);
6132
case ISD::STRICT_FSETCCS:
6133
return lowerSTRICT_FSETCC(Op, DAG, true);
6134
case ISD::GlobalAddress:
6135
return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
6136
case ISD::GlobalTLSAddress:
6137
return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
6138
case ISD::BlockAddress:
6139
return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
6140
case ISD::JumpTable:
6141
return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
6142
case ISD::ConstantPool:
6143
return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
6144
case ISD::BITCAST:
6145
return lowerBITCAST(Op, DAG);
6146
case ISD::VASTART:
6147
return lowerVASTART(Op, DAG);
6148
case ISD::VACOPY:
6149
return lowerVACOPY(Op, DAG);
6150
case ISD::DYNAMIC_STACKALLOC:
6151
return lowerDYNAMIC_STACKALLOC(Op, DAG);
6152
case ISD::GET_DYNAMIC_AREA_OFFSET:
6153
return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
6154
case ISD::SMUL_LOHI:
6155
return lowerSMUL_LOHI(Op, DAG);
6156
case ISD::UMUL_LOHI:
6157
return lowerUMUL_LOHI(Op, DAG);
6158
case ISD::SDIVREM:
6159
return lowerSDIVREM(Op, DAG);
6160
case ISD::UDIVREM:
6161
return lowerUDIVREM(Op, DAG);
6162
case ISD::SADDO:
6163
case ISD::SSUBO:
6164
case ISD::UADDO:
6165
case ISD::USUBO:
6166
return lowerXALUO(Op, DAG);
6167
case ISD::UADDO_CARRY:
6168
case ISD::USUBO_CARRY:
6169
return lowerUADDSUBO_CARRY(Op, DAG);
6170
case ISD::OR:
6171
return lowerOR(Op, DAG);
6172
case ISD::CTPOP:
6173
return lowerCTPOP(Op, DAG);
6174
case ISD::VECREDUCE_ADD:
6175
return lowerVECREDUCE_ADD(Op, DAG);
6176
case ISD::ATOMIC_FENCE:
6177
return lowerATOMIC_FENCE(Op, DAG);
6178
case ISD::ATOMIC_SWAP:
6179
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
6180
case ISD::ATOMIC_STORE:
6181
case ISD::ATOMIC_LOAD:
6182
return lowerATOMIC_LDST_I128(Op, DAG);
6183
case ISD::ATOMIC_LOAD_ADD:
6184
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
6185
case ISD::ATOMIC_LOAD_SUB:
6186
return lowerATOMIC_LOAD_SUB(Op, DAG);
6187
case ISD::ATOMIC_LOAD_AND:
6188
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
6189
case ISD::ATOMIC_LOAD_OR:
6190
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
6191
case ISD::ATOMIC_LOAD_XOR:
6192
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
6193
case ISD::ATOMIC_LOAD_NAND:
6194
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
6195
case ISD::ATOMIC_LOAD_MIN:
6196
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
6197
case ISD::ATOMIC_LOAD_MAX:
6198
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
6199
case ISD::ATOMIC_LOAD_UMIN:
6200
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
6201
case ISD::ATOMIC_LOAD_UMAX:
6202
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
6203
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
6204
return lowerATOMIC_CMP_SWAP(Op, DAG);
6205
case ISD::STACKSAVE:
6206
return lowerSTACKSAVE(Op, DAG);
6207
case ISD::STACKRESTORE:
6208
return lowerSTACKRESTORE(Op, DAG);
6209
case ISD::PREFETCH:
6210
return lowerPREFETCH(Op, DAG);
6211
case ISD::INTRINSIC_W_CHAIN:
6212
return lowerINTRINSIC_W_CHAIN(Op, DAG);
6213
case ISD::INTRINSIC_WO_CHAIN:
6214
return lowerINTRINSIC_WO_CHAIN(Op, DAG);
6215
case ISD::BUILD_VECTOR:
6216
return lowerBUILD_VECTOR(Op, DAG);
6217
case ISD::VECTOR_SHUFFLE:
6218
return lowerVECTOR_SHUFFLE(Op, DAG);
6219
case ISD::SCALAR_TO_VECTOR:
6220
return lowerSCALAR_TO_VECTOR(Op, DAG);
6221
case ISD::INSERT_VECTOR_ELT:
6222
return lowerINSERT_VECTOR_ELT(Op, DAG);
6223
case ISD::EXTRACT_VECTOR_ELT:
6224
return lowerEXTRACT_VECTOR_ELT(Op, DAG);
6225
case ISD::SIGN_EXTEND_VECTOR_INREG:
6226
return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
6227
case ISD::ZERO_EXTEND_VECTOR_INREG:
6228
return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
6229
case ISD::SHL:
6230
return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
6231
case ISD::SRL:
6232
return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
6233
case ISD::SRA:
6234
return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
6235
case ISD::ROTL:
6236
return lowerShift(Op, DAG, SystemZISD::VROTL_BY_SCALAR);
6237
case ISD::IS_FPCLASS:
6238
return lowerIS_FPCLASS(Op, DAG);
6239
case ISD::GET_ROUNDING:
6240
return lowerGET_ROUNDING(Op, DAG);
6241
case ISD::READCYCLECOUNTER:
6242
return lowerREADCYCLECOUNTER(Op, DAG);
6243
default:
6244
llvm_unreachable("Unexpected node to lower");
6245
}
6246
}
6247
6248
static SDValue expandBitCastI128ToF128(SelectionDAG &DAG, SDValue Src,
6249
const SDLoc &SL) {
6250
// If i128 is legal, just use a normal bitcast.
6251
if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128))
6252
return DAG.getBitcast(MVT::f128, Src);
6253
6254
// Otherwise, f128 must live in FP128, so do a partwise move.
6255
assert(DAG.getTargetLoweringInfo().getRepRegClassFor(MVT::f128) ==
6256
&SystemZ::FP128BitRegClass);
6257
6258
SDValue Hi, Lo;
6259
std::tie(Lo, Hi) = DAG.SplitScalar(Src, SL, MVT::i64, MVT::i64);
6260
6261
Hi = DAG.getBitcast(MVT::f64, Hi);
6262
Lo = DAG.getBitcast(MVT::f64, Lo);
6263
6264
SDNode *Pair = DAG.getMachineNode(
6265
SystemZ::REG_SEQUENCE, SL, MVT::f128,
6266
{DAG.getTargetConstant(SystemZ::FP128BitRegClassID, SL, MVT::i32), Lo,
6267
DAG.getTargetConstant(SystemZ::subreg_l64, SL, MVT::i32), Hi,
6268
DAG.getTargetConstant(SystemZ::subreg_h64, SL, MVT::i32)});
6269
return SDValue(Pair, 0);
6270
}
6271
6272
static SDValue expandBitCastF128ToI128(SelectionDAG &DAG, SDValue Src,
6273
const SDLoc &SL) {
6274
// If i128 is legal, just use a normal bitcast.
6275
if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128))
6276
return DAG.getBitcast(MVT::i128, Src);
6277
6278
// Otherwise, f128 must live in FP128, so do a partwise move.
6279
assert(DAG.getTargetLoweringInfo().getRepRegClassFor(MVT::f128) ==
6280
&SystemZ::FP128BitRegClass);
6281
6282
SDValue LoFP =
6283
DAG.getTargetExtractSubreg(SystemZ::subreg_l64, SL, MVT::f64, Src);
6284
SDValue HiFP =
6285
DAG.getTargetExtractSubreg(SystemZ::subreg_h64, SL, MVT::f64, Src);
6286
SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i64, LoFP);
6287
SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i64, HiFP);
6288
6289
return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i128, Lo, Hi);
6290
}
6291
6292
// Lower operations with invalid operand or result types (currently used
6293
// only for 128-bit integer types).
6294
void
6295
SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
6296
SmallVectorImpl<SDValue> &Results,
6297
SelectionDAG &DAG) const {
6298
switch (N->getOpcode()) {
6299
case ISD::ATOMIC_LOAD: {
6300
SDLoc DL(N);
6301
SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
6302
SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
6303
MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
6304
SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
6305
DL, Tys, Ops, MVT::i128, MMO);
6306
6307
SDValue Lowered = lowerGR128ToI128(DAG, Res);
6308
if (N->getValueType(0) == MVT::f128)
6309
Lowered = expandBitCastI128ToF128(DAG, Lowered, DL);
6310
Results.push_back(Lowered);
6311
Results.push_back(Res.getValue(1));
6312
break;
6313
}
6314
case ISD::ATOMIC_STORE: {
6315
SDLoc DL(N);
6316
SDVTList Tys = DAG.getVTList(MVT::Other);
6317
SDValue Val = N->getOperand(1);
6318
if (Val.getValueType() == MVT::f128)
6319
Val = expandBitCastF128ToI128(DAG, Val, DL);
6320
Val = lowerI128ToGR128(DAG, Val);
6321
6322
SDValue Ops[] = {N->getOperand(0), Val, N->getOperand(2)};
6323
MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
6324
SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
6325
DL, Tys, Ops, MVT::i128, MMO);
6326
// We have to enforce sequential consistency by performing a
6327
// serialization operation after the store.
6328
if (cast<AtomicSDNode>(N)->getSuccessOrdering() ==
6329
AtomicOrdering::SequentiallyConsistent)
6330
Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
6331
MVT::Other, Res), 0);
6332
Results.push_back(Res);
6333
break;
6334
}
6335
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
6336
SDLoc DL(N);
6337
SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
6338
SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
6339
lowerI128ToGR128(DAG, N->getOperand(2)),
6340
lowerI128ToGR128(DAG, N->getOperand(3)) };
6341
MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
6342
SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
6343
DL, Tys, Ops, MVT::i128, MMO);
6344
SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
6345
SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
6346
Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
6347
Results.push_back(lowerGR128ToI128(DAG, Res));
6348
Results.push_back(Success);
6349
Results.push_back(Res.getValue(2));
6350
break;
6351
}
6352
case ISD::BITCAST: {
6353
SDValue Src = N->getOperand(0);
6354
if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 &&
6355
!useSoftFloat()) {
6356
SDLoc DL(N);
6357
Results.push_back(expandBitCastF128ToI128(DAG, Src, DL));
6358
}
6359
break;
6360
}
6361
default:
6362
llvm_unreachable("Unexpected node to lower");
6363
}
6364
}
6365
6366
void
6367
SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
6368
SmallVectorImpl<SDValue> &Results,
6369
SelectionDAG &DAG) const {
6370
return LowerOperationWrapper(N, Results, DAG);
6371
}
6372
6373
const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
6374
#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
6375
switch ((SystemZISD::NodeType)Opcode) {
6376
case SystemZISD::FIRST_NUMBER: break;
6377
OPCODE(RET_GLUE);
6378
OPCODE(CALL);
6379
OPCODE(SIBCALL);
6380
OPCODE(TLS_GDCALL);
6381
OPCODE(TLS_LDCALL);
6382
OPCODE(PCREL_WRAPPER);
6383
OPCODE(PCREL_OFFSET);
6384
OPCODE(ICMP);
6385
OPCODE(FCMP);
6386
OPCODE(STRICT_FCMP);
6387
OPCODE(STRICT_FCMPS);
6388
OPCODE(TM);
6389
OPCODE(BR_CCMASK);
6390
OPCODE(SELECT_CCMASK);
6391
OPCODE(ADJDYNALLOC);
6392
OPCODE(PROBED_ALLOCA);
6393
OPCODE(POPCNT);
6394
OPCODE(SMUL_LOHI);
6395
OPCODE(UMUL_LOHI);
6396
OPCODE(SDIVREM);
6397
OPCODE(UDIVREM);
6398
OPCODE(SADDO);
6399
OPCODE(SSUBO);
6400
OPCODE(UADDO);
6401
OPCODE(USUBO);
6402
OPCODE(ADDCARRY);
6403
OPCODE(SUBCARRY);
6404
OPCODE(GET_CCMASK);
6405
OPCODE(MVC);
6406
OPCODE(NC);
6407
OPCODE(OC);
6408
OPCODE(XC);
6409
OPCODE(CLC);
6410
OPCODE(MEMSET_MVC);
6411
OPCODE(STPCPY);
6412
OPCODE(STRCMP);
6413
OPCODE(SEARCH_STRING);
6414
OPCODE(IPM);
6415
OPCODE(TBEGIN);
6416
OPCODE(TBEGIN_NOFLOAT);
6417
OPCODE(TEND);
6418
OPCODE(BYTE_MASK);
6419
OPCODE(ROTATE_MASK);
6420
OPCODE(REPLICATE);
6421
OPCODE(JOIN_DWORDS);
6422
OPCODE(SPLAT);
6423
OPCODE(MERGE_HIGH);
6424
OPCODE(MERGE_LOW);
6425
OPCODE(SHL_DOUBLE);
6426
OPCODE(PERMUTE_DWORDS);
6427
OPCODE(PERMUTE);
6428
OPCODE(PACK);
6429
OPCODE(PACKS_CC);
6430
OPCODE(PACKLS_CC);
6431
OPCODE(UNPACK_HIGH);
6432
OPCODE(UNPACKL_HIGH);
6433
OPCODE(UNPACK_LOW);
6434
OPCODE(UNPACKL_LOW);
6435
OPCODE(VSHL_BY_SCALAR);
6436
OPCODE(VSRL_BY_SCALAR);
6437
OPCODE(VSRA_BY_SCALAR);
6438
OPCODE(VROTL_BY_SCALAR);
6439
OPCODE(VSUM);
6440
OPCODE(VACC);
6441
OPCODE(VSCBI);
6442
OPCODE(VAC);
6443
OPCODE(VSBI);
6444
OPCODE(VACCC);
6445
OPCODE(VSBCBI);
6446
OPCODE(VICMPE);
6447
OPCODE(VICMPH);
6448
OPCODE(VICMPHL);
6449
OPCODE(VICMPES);
6450
OPCODE(VICMPHS);
6451
OPCODE(VICMPHLS);
6452
OPCODE(VFCMPE);
6453
OPCODE(STRICT_VFCMPE);
6454
OPCODE(STRICT_VFCMPES);
6455
OPCODE(VFCMPH);
6456
OPCODE(STRICT_VFCMPH);
6457
OPCODE(STRICT_VFCMPHS);
6458
OPCODE(VFCMPHE);
6459
OPCODE(STRICT_VFCMPHE);
6460
OPCODE(STRICT_VFCMPHES);
6461
OPCODE(VFCMPES);
6462
OPCODE(VFCMPHS);
6463
OPCODE(VFCMPHES);
6464
OPCODE(VFTCI);
6465
OPCODE(VEXTEND);
6466
OPCODE(STRICT_VEXTEND);
6467
OPCODE(VROUND);
6468
OPCODE(STRICT_VROUND);
6469
OPCODE(VTM);
6470
OPCODE(SCMP128HI);
6471
OPCODE(UCMP128HI);
6472
OPCODE(VFAE_CC);
6473
OPCODE(VFAEZ_CC);
6474
OPCODE(VFEE_CC);
6475
OPCODE(VFEEZ_CC);
6476
OPCODE(VFENE_CC);
6477
OPCODE(VFENEZ_CC);
6478
OPCODE(VISTR_CC);
6479
OPCODE(VSTRC_CC);
6480
OPCODE(VSTRCZ_CC);
6481
OPCODE(VSTRS_CC);
6482
OPCODE(VSTRSZ_CC);
6483
OPCODE(TDC);
6484
OPCODE(ATOMIC_SWAPW);
6485
OPCODE(ATOMIC_LOADW_ADD);
6486
OPCODE(ATOMIC_LOADW_SUB);
6487
OPCODE(ATOMIC_LOADW_AND);
6488
OPCODE(ATOMIC_LOADW_OR);
6489
OPCODE(ATOMIC_LOADW_XOR);
6490
OPCODE(ATOMIC_LOADW_NAND);
6491
OPCODE(ATOMIC_LOADW_MIN);
6492
OPCODE(ATOMIC_LOADW_MAX);
6493
OPCODE(ATOMIC_LOADW_UMIN);
6494
OPCODE(ATOMIC_LOADW_UMAX);
6495
OPCODE(ATOMIC_CMP_SWAPW);
6496
OPCODE(ATOMIC_CMP_SWAP);
6497
OPCODE(ATOMIC_LOAD_128);
6498
OPCODE(ATOMIC_STORE_128);
6499
OPCODE(ATOMIC_CMP_SWAP_128);
6500
OPCODE(LRV);
6501
OPCODE(STRV);
6502
OPCODE(VLER);
6503
OPCODE(VSTER);
6504
OPCODE(STCKF);
6505
OPCODE(PREFETCH);
6506
OPCODE(ADA_ENTRY);
6507
}
6508
return nullptr;
6509
#undef OPCODE
6510
}
6511
6512
// Return true if VT is a vector whose elements are a whole number of bytes
6513
// in width. Also check for presence of vector support.
6514
bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
6515
if (!Subtarget.hasVector())
6516
return false;
6517
6518
return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
6519
}
6520
6521
// Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
6522
// producing a result of type ResVT. Op is a possibly bitcast version
6523
// of the input vector and Index is the index (based on type VecVT) that
6524
// should be extracted. Return the new extraction if a simplification
6525
// was possible or if Force is true.
6526
SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
6527
EVT VecVT, SDValue Op,
6528
unsigned Index,
6529
DAGCombinerInfo &DCI,
6530
bool Force) const {
6531
SelectionDAG &DAG = DCI.DAG;
6532
6533
// The number of bytes being extracted.
6534
unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
6535
6536
for (;;) {
6537
unsigned Opcode = Op.getOpcode();
6538
if (Opcode == ISD::BITCAST)
6539
// Look through bitcasts.
6540
Op = Op.getOperand(0);
6541
else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
6542
canTreatAsByteVector(Op.getValueType())) {
6543
// Get a VPERM-like permute mask and see whether the bytes covered
6544
// by the extracted element are a contiguous sequence from one
6545
// source operand.
6546
SmallVector<int, SystemZ::VectorBytes> Bytes;
6547
if (!getVPermMask(Op, Bytes))
6548
break;
6549
int First;
6550
if (!getShuffleInput(Bytes, Index * BytesPerElement,
6551
BytesPerElement, First))
6552
break;
6553
if (First < 0)
6554
return DAG.getUNDEF(ResVT);
6555
// Make sure the contiguous sequence starts at a multiple of the
6556
// original element size.
6557
unsigned Byte = unsigned(First) % Bytes.size();
6558
if (Byte % BytesPerElement != 0)
6559
break;
6560
// We can get the extracted value directly from an input.
6561
Index = Byte / BytesPerElement;
6562
Op = Op.getOperand(unsigned(First) / Bytes.size());
6563
Force = true;
6564
} else if (Opcode == ISD::BUILD_VECTOR &&
6565
canTreatAsByteVector(Op.getValueType())) {
6566
// We can only optimize this case if the BUILD_VECTOR elements are
6567
// at least as wide as the extracted value.
6568
EVT OpVT = Op.getValueType();
6569
unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
6570
if (OpBytesPerElement < BytesPerElement)
6571
break;
6572
// Make sure that the least-significant bit of the extracted value
6573
// is the least significant bit of an input.
6574
unsigned End = (Index + 1) * BytesPerElement;
6575
if (End % OpBytesPerElement != 0)
6576
break;
6577
// We're extracting the low part of one operand of the BUILD_VECTOR.
6578
Op = Op.getOperand(End / OpBytesPerElement - 1);
6579
if (!Op.getValueType().isInteger()) {
6580
EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
6581
Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
6582
DCI.AddToWorklist(Op.getNode());
6583
}
6584
EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
6585
Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
6586
if (VT != ResVT) {
6587
DCI.AddToWorklist(Op.getNode());
6588
Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
6589
}
6590
return Op;
6591
} else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
6592
Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
6593
Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
6594
canTreatAsByteVector(Op.getValueType()) &&
6595
canTreatAsByteVector(Op.getOperand(0).getValueType())) {
6596
// Make sure that only the unextended bits are significant.
6597
EVT ExtVT = Op.getValueType();
6598
EVT OpVT = Op.getOperand(0).getValueType();
6599
unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
6600
unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
6601
unsigned Byte = Index * BytesPerElement;
6602
unsigned SubByte = Byte % ExtBytesPerElement;
6603
unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
6604
if (SubByte < MinSubByte ||
6605
SubByte + BytesPerElement > ExtBytesPerElement)
6606
break;
6607
// Get the byte offset of the unextended element
6608
Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
6609
// ...then add the byte offset relative to that element.
6610
Byte += SubByte - MinSubByte;
6611
if (Byte % BytesPerElement != 0)
6612
break;
6613
Op = Op.getOperand(0);
6614
Index = Byte / BytesPerElement;
6615
Force = true;
6616
} else
6617
break;
6618
}
6619
if (Force) {
6620
if (Op.getValueType() != VecVT) {
6621
Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
6622
DCI.AddToWorklist(Op.getNode());
6623
}
6624
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
6625
DAG.getConstant(Index, DL, MVT::i32));
6626
}
6627
return SDValue();
6628
}
6629
6630
// Optimize vector operations in scalar value Op on the basis that Op
6631
// is truncated to TruncVT.
6632
SDValue SystemZTargetLowering::combineTruncateExtract(
6633
const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
6634
// If we have (trunc (extract_vector_elt X, Y)), try to turn it into
6635
// (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
6636
// of type TruncVT.
6637
if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6638
TruncVT.getSizeInBits() % 8 == 0) {
6639
SDValue Vec = Op.getOperand(0);
6640
EVT VecVT = Vec.getValueType();
6641
if (canTreatAsByteVector(VecVT)) {
6642
if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6643
unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
6644
unsigned TruncBytes = TruncVT.getStoreSize();
6645
if (BytesPerElement % TruncBytes == 0) {
6646
// Calculate the value of Y' in the above description. We are
6647
// splitting the original elements into Scale equal-sized pieces
6648
// and for truncation purposes want the last (least-significant)
6649
// of these pieces for IndexN. This is easiest to do by calculating
6650
// the start index of the following element and then subtracting 1.
6651
unsigned Scale = BytesPerElement / TruncBytes;
6652
unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
6653
6654
// Defer the creation of the bitcast from X to combineExtract,
6655
// which might be able to optimize the extraction.
6656
VecVT = EVT::getVectorVT(*DCI.DAG.getContext(),
6657
MVT::getIntegerVT(TruncBytes * 8),
6658
VecVT.getStoreSize() / TruncBytes);
6659
EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
6660
return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
6661
}
6662
}
6663
}
6664
}
6665
return SDValue();
6666
}
6667
6668
SDValue SystemZTargetLowering::combineZERO_EXTEND(
6669
SDNode *N, DAGCombinerInfo &DCI) const {
6670
// Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
6671
SelectionDAG &DAG = DCI.DAG;
6672
SDValue N0 = N->getOperand(0);
6673
EVT VT = N->getValueType(0);
6674
if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
6675
auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
6676
auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6677
if (TrueOp && FalseOp) {
6678
SDLoc DL(N0);
6679
SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
6680
DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
6681
N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
6682
SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
6683
// If N0 has multiple uses, change other uses as well.
6684
if (!N0.hasOneUse()) {
6685
SDValue TruncSelect =
6686
DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
6687
DCI.CombineTo(N0.getNode(), TruncSelect);
6688
}
6689
return NewSelect;
6690
}
6691
}
6692
// Convert (zext (xor (trunc X), C)) into (xor (trunc X), C') if the size
6693
// of the result is smaller than the size of X and all the truncated bits
6694
// of X are already zero.
6695
if (N0.getOpcode() == ISD::XOR &&
6696
N0.hasOneUse() && N0.getOperand(0).hasOneUse() &&
6697
N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
6698
N0.getOperand(1).getOpcode() == ISD::Constant) {
6699
SDValue X = N0.getOperand(0).getOperand(0);
6700
if (VT.isScalarInteger() && VT.getSizeInBits() < X.getValueSizeInBits()) {
6701
KnownBits Known = DAG.computeKnownBits(X);
6702
APInt TruncatedBits = APInt::getBitsSet(X.getValueSizeInBits(),
6703
N0.getValueSizeInBits(),
6704
VT.getSizeInBits());
6705
if (TruncatedBits.isSubsetOf(Known.Zero)) {
6706
X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
6707
APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
6708
return DAG.getNode(ISD::XOR, SDLoc(N0), VT,
6709
X, DAG.getConstant(Mask, SDLoc(N0), VT));
6710
}
6711
}
6712
}
6713
6714
return SDValue();
6715
}
6716
6717
SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
6718
SDNode *N, DAGCombinerInfo &DCI) const {
6719
// Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
6720
// and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
6721
// into (select_cc LHS, RHS, -1, 0, COND)
6722
SelectionDAG &DAG = DCI.DAG;
6723
SDValue N0 = N->getOperand(0);
6724
EVT VT = N->getValueType(0);
6725
EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6726
if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
6727
N0 = N0.getOperand(0);
6728
if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
6729
SDLoc DL(N0);
6730
SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
6731
DAG.getAllOnesConstant(DL, VT),
6732
DAG.getConstant(0, DL, VT), N0.getOperand(2) };
6733
return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
6734
}
6735
return SDValue();
6736
}
6737
6738
SDValue SystemZTargetLowering::combineSIGN_EXTEND(
6739
SDNode *N, DAGCombinerInfo &DCI) const {
6740
// Convert (sext (ashr (shl X, C1), C2)) to
6741
// (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
6742
// cheap as narrower ones.
6743
SelectionDAG &DAG = DCI.DAG;
6744
SDValue N0 = N->getOperand(0);
6745
EVT VT = N->getValueType(0);
6746
if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
6747
auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6748
SDValue Inner = N0.getOperand(0);
6749
if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
6750
if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
6751
unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
6752
unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
6753
unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
6754
EVT ShiftVT = N0.getOperand(1).getValueType();
6755
SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
6756
Inner.getOperand(0));
6757
SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
6758
DAG.getConstant(NewShlAmt, SDLoc(Inner),
6759
ShiftVT));
6760
return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
6761
DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
6762
}
6763
}
6764
}
6765
6766
return SDValue();
6767
}
6768
6769
SDValue SystemZTargetLowering::combineMERGE(
6770
SDNode *N, DAGCombinerInfo &DCI) const {
6771
SelectionDAG &DAG = DCI.DAG;
6772
unsigned Opcode = N->getOpcode();
6773
SDValue Op0 = N->getOperand(0);
6774
SDValue Op1 = N->getOperand(1);
6775
if (Op0.getOpcode() == ISD::BITCAST)
6776
Op0 = Op0.getOperand(0);
6777
if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
6778
// (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF
6779
// for v4f32.
6780
if (Op1 == N->getOperand(0))
6781
return Op1;
6782
// (z_merge_? 0, X) -> (z_unpackl_? 0, X).
6783
EVT VT = Op1.getValueType();
6784
unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
6785
if (ElemBytes <= 4) {
6786
Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
6787
SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
6788
EVT InVT = VT.changeVectorElementTypeToInteger();
6789
EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
6790
SystemZ::VectorBytes / ElemBytes / 2);
6791
if (VT != InVT) {
6792
Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
6793
DCI.AddToWorklist(Op1.getNode());
6794
}
6795
SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
6796
DCI.AddToWorklist(Op.getNode());
6797
return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
6798
}
6799
}
6800
return SDValue();
6801
}
6802
6803
static bool isI128MovedToParts(LoadSDNode *LD, SDNode *&LoPart,
6804
SDNode *&HiPart) {
6805
LoPart = HiPart = nullptr;
6806
6807
// Scan through all users.
6808
for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
6809
UI != UIEnd; ++UI) {
6810
// Skip the uses of the chain.
6811
if (UI.getUse().getResNo() != 0)
6812
continue;
6813
6814
// Verify every user is a TRUNCATE to i64 of the low or high half.
6815
SDNode *User = *UI;
6816
bool IsLoPart = true;
6817
if (User->getOpcode() == ISD::SRL &&
6818
User->getOperand(1).getOpcode() == ISD::Constant &&
6819
User->getConstantOperandVal(1) == 64 && User->hasOneUse()) {
6820
User = *User->use_begin();
6821
IsLoPart = false;
6822
}
6823
if (User->getOpcode() != ISD::TRUNCATE || User->getValueType(0) != MVT::i64)
6824
return false;
6825
6826
if (IsLoPart) {
6827
if (LoPart)
6828
return false;
6829
LoPart = User;
6830
} else {
6831
if (HiPart)
6832
return false;
6833
HiPart = User;
6834
}
6835
}
6836
return true;
6837
}
6838
6839
static bool isF128MovedToParts(LoadSDNode *LD, SDNode *&LoPart,
6840
SDNode *&HiPart) {
6841
LoPart = HiPart = nullptr;
6842
6843
// Scan through all users.
6844
for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
6845
UI != UIEnd; ++UI) {
6846
// Skip the uses of the chain.
6847
if (UI.getUse().getResNo() != 0)
6848
continue;
6849
6850
// Verify every user is an EXTRACT_SUBREG of the low or high half.
6851
SDNode *User = *UI;
6852
if (!User->hasOneUse() || !User->isMachineOpcode() ||
6853
User->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
6854
return false;
6855
6856
switch (User->getConstantOperandVal(1)) {
6857
case SystemZ::subreg_l64:
6858
if (LoPart)
6859
return false;
6860
LoPart = User;
6861
break;
6862
case SystemZ::subreg_h64:
6863
if (HiPart)
6864
return false;
6865
HiPart = User;
6866
break;
6867
default:
6868
return false;
6869
}
6870
}
6871
return true;
6872
}
6873
6874
SDValue SystemZTargetLowering::combineLOAD(
6875
SDNode *N, DAGCombinerInfo &DCI) const {
6876
SelectionDAG &DAG = DCI.DAG;
6877
EVT LdVT = N->getValueType(0);
6878
SDLoc DL(N);
6879
6880
// Replace a 128-bit load that is used solely to move its value into GPRs
6881
// by separate loads of both halves.
6882
LoadSDNode *LD = cast<LoadSDNode>(N);
6883
if (LD->isSimple() && ISD::isNormalLoad(LD)) {
6884
SDNode *LoPart, *HiPart;
6885
if ((LdVT == MVT::i128 && isI128MovedToParts(LD, LoPart, HiPart)) ||
6886
(LdVT == MVT::f128 && isF128MovedToParts(LD, LoPart, HiPart))) {
6887
// Rewrite each extraction as an independent load.
6888
SmallVector<SDValue, 2> ArgChains;
6889
if (HiPart) {
6890
SDValue EltLoad = DAG.getLoad(
6891
HiPart->getValueType(0), DL, LD->getChain(), LD->getBasePtr(),
6892
LD->getPointerInfo(), LD->getOriginalAlign(),
6893
LD->getMemOperand()->getFlags(), LD->getAAInfo());
6894
6895
DCI.CombineTo(HiPart, EltLoad, true);
6896
ArgChains.push_back(EltLoad.getValue(1));
6897
}
6898
if (LoPart) {
6899
SDValue EltLoad = DAG.getLoad(
6900
LoPart->getValueType(0), DL, LD->getChain(),
6901
DAG.getObjectPtrOffset(DL, LD->getBasePtr(), TypeSize::getFixed(8)),
6902
LD->getPointerInfo().getWithOffset(8), LD->getOriginalAlign(),
6903
LD->getMemOperand()->getFlags(), LD->getAAInfo());
6904
6905
DCI.CombineTo(LoPart, EltLoad, true);
6906
ArgChains.push_back(EltLoad.getValue(1));
6907
}
6908
6909
// Collect all chains via TokenFactor.
6910
SDValue Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, ArgChains);
6911
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
6912
DCI.AddToWorklist(Chain.getNode());
6913
return SDValue(N, 0);
6914
}
6915
}
6916
6917
if (LdVT.isVector() || LdVT.isInteger())
6918
return SDValue();
6919
// Transform a scalar load that is REPLICATEd as well as having other
6920
// use(s) to the form where the other use(s) use the first element of the
6921
// REPLICATE instead of the load. Otherwise instruction selection will not
6922
// produce a VLREP. Avoid extracting to a GPR, so only do this for floating
6923
// point loads.
6924
6925
SDValue Replicate;
6926
SmallVector<SDNode*, 8> OtherUses;
6927
for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
6928
UI != UE; ++UI) {
6929
if (UI->getOpcode() == SystemZISD::REPLICATE) {
6930
if (Replicate)
6931
return SDValue(); // Should never happen
6932
Replicate = SDValue(*UI, 0);
6933
}
6934
else if (UI.getUse().getResNo() == 0)
6935
OtherUses.push_back(*UI);
6936
}
6937
if (!Replicate || OtherUses.empty())
6938
return SDValue();
6939
6940
SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
6941
Replicate, DAG.getConstant(0, DL, MVT::i32));
6942
// Update uses of the loaded Value while preserving old chains.
6943
for (SDNode *U : OtherUses) {
6944
SmallVector<SDValue, 8> Ops;
6945
for (SDValue Op : U->ops())
6946
Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
6947
DAG.UpdateNodeOperands(U, Ops);
6948
}
6949
return SDValue(N, 0);
6950
}
6951
6952
bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
6953
if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
6954
return true;
6955
if (Subtarget.hasVectorEnhancements2())
6956
if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64 || VT == MVT::i128)
6957
return true;
6958
return false;
6959
}
6960
6961
static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
6962
if (!VT.isVector() || !VT.isSimple() ||
6963
VT.getSizeInBits() != 128 ||
6964
VT.getScalarSizeInBits() % 8 != 0)
6965
return false;
6966
6967
unsigned NumElts = VT.getVectorNumElements();
6968
for (unsigned i = 0; i < NumElts; ++i) {
6969
if (M[i] < 0) continue; // ignore UNDEF indices
6970
if ((unsigned) M[i] != NumElts - 1 - i)
6971
return false;
6972
}
6973
6974
return true;
6975
}
6976
6977
static bool isOnlyUsedByStores(SDValue StoredVal, SelectionDAG &DAG) {
6978
for (auto *U : StoredVal->uses()) {
6979
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(U)) {
6980
EVT CurrMemVT = ST->getMemoryVT().getScalarType();
6981
if (CurrMemVT.isRound() && CurrMemVT.getStoreSize() <= 16)
6982
continue;
6983
} else if (isa<BuildVectorSDNode>(U)) {
6984
SDValue BuildVector = SDValue(U, 0);
6985
if (DAG.isSplatValue(BuildVector, true/*AllowUndefs*/) &&
6986
isOnlyUsedByStores(BuildVector, DAG))
6987
continue;
6988
}
6989
return false;
6990
}
6991
return true;
6992
}
6993
6994
static bool isI128MovedFromParts(SDValue Val, SDValue &LoPart,
6995
SDValue &HiPart) {
6996
if (Val.getOpcode() != ISD::OR || !Val.getNode()->hasOneUse())
6997
return false;
6998
6999
SDValue Op0 = Val.getOperand(0);
7000
SDValue Op1 = Val.getOperand(1);
7001
7002
if (Op0.getOpcode() == ISD::SHL)
7003
std::swap(Op0, Op1);
7004
if (Op1.getOpcode() != ISD::SHL || !Op1.getNode()->hasOneUse() ||
7005
Op1.getOperand(1).getOpcode() != ISD::Constant ||
7006
Op1.getConstantOperandVal(1) != 64)
7007
return false;
7008
Op1 = Op1.getOperand(0);
7009
7010
if (Op0.getOpcode() != ISD::ZERO_EXTEND || !Op0.getNode()->hasOneUse() ||
7011
Op0.getOperand(0).getValueType() != MVT::i64)
7012
return false;
7013
if (Op1.getOpcode() != ISD::ANY_EXTEND || !Op1.getNode()->hasOneUse() ||
7014
Op1.getOperand(0).getValueType() != MVT::i64)
7015
return false;
7016
7017
LoPart = Op0.getOperand(0);
7018
HiPart = Op1.getOperand(0);
7019
return true;
7020
}
7021
7022
static bool isF128MovedFromParts(SDValue Val, SDValue &LoPart,
7023
SDValue &HiPart) {
7024
if (!Val.getNode()->hasOneUse() || !Val.isMachineOpcode() ||
7025
Val.getMachineOpcode() != TargetOpcode::REG_SEQUENCE)
7026
return false;
7027
7028
if (Val->getNumOperands() != 5 ||
7029
Val->getOperand(0)->getAsZExtVal() != SystemZ::FP128BitRegClassID ||
7030
Val->getOperand(2)->getAsZExtVal() != SystemZ::subreg_l64 ||
7031
Val->getOperand(4)->getAsZExtVal() != SystemZ::subreg_h64)
7032
return false;
7033
7034
LoPart = Val->getOperand(1);
7035
HiPart = Val->getOperand(3);
7036
return true;
7037
}
7038
7039
SDValue SystemZTargetLowering::combineSTORE(
7040
SDNode *N, DAGCombinerInfo &DCI) const {
7041
SelectionDAG &DAG = DCI.DAG;
7042
auto *SN = cast<StoreSDNode>(N);
7043
auto &Op1 = N->getOperand(1);
7044
EVT MemVT = SN->getMemoryVT();
7045
// If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
7046
// for the extraction to be done on a vMiN value, so that we can use VSTE.
7047
// If X has wider elements then convert it to:
7048
// (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
7049
if (MemVT.isInteger() && SN->isTruncatingStore()) {
7050
if (SDValue Value =
7051
combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
7052
DCI.AddToWorklist(Value.getNode());
7053
7054
// Rewrite the store with the new form of stored value.
7055
return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
7056
SN->getBasePtr(), SN->getMemoryVT(),
7057
SN->getMemOperand());
7058
}
7059
}
7060
// Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
7061
if (!SN->isTruncatingStore() &&
7062
Op1.getOpcode() == ISD::BSWAP &&
7063
Op1.getNode()->hasOneUse() &&
7064
canLoadStoreByteSwapped(Op1.getValueType())) {
7065
7066
SDValue BSwapOp = Op1.getOperand(0);
7067
7068
if (BSwapOp.getValueType() == MVT::i16)
7069
BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
7070
7071
SDValue Ops[] = {
7072
N->getOperand(0), BSwapOp, N->getOperand(2)
7073
};
7074
7075
return
7076
DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
7077
Ops, MemVT, SN->getMemOperand());
7078
}
7079
// Combine STORE (element-swap) into VSTER
7080
if (!SN->isTruncatingStore() &&
7081
Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
7082
Op1.getNode()->hasOneUse() &&
7083
Subtarget.hasVectorEnhancements2()) {
7084
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
7085
ArrayRef<int> ShuffleMask = SVN->getMask();
7086
if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
7087
SDValue Ops[] = {
7088
N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
7089
};
7090
7091
return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
7092
DAG.getVTList(MVT::Other),
7093
Ops, MemVT, SN->getMemOperand());
7094
}
7095
}
7096
7097
// Combine STORE (READCYCLECOUNTER) into STCKF.
7098
if (!SN->isTruncatingStore() &&
7099
Op1.getOpcode() == ISD::READCYCLECOUNTER &&
7100
Op1.hasOneUse() &&
7101
N->getOperand(0).reachesChainWithoutSideEffects(SDValue(Op1.getNode(), 1))) {
7102
SDValue Ops[] = { Op1.getOperand(0), N->getOperand(2) };
7103
return DAG.getMemIntrinsicNode(SystemZISD::STCKF, SDLoc(N),
7104
DAG.getVTList(MVT::Other),
7105
Ops, MemVT, SN->getMemOperand());
7106
}
7107
7108
// Transform a store of a 128-bit value moved from parts into two stores.
7109
if (SN->isSimple() && ISD::isNormalStore(SN)) {
7110
SDValue LoPart, HiPart;
7111
if ((MemVT == MVT::i128 && isI128MovedFromParts(Op1, LoPart, HiPart)) ||
7112
(MemVT == MVT::f128 && isF128MovedFromParts(Op1, LoPart, HiPart))) {
7113
SDLoc DL(SN);
7114
SDValue Chain0 =
7115
DAG.getStore(SN->getChain(), DL, HiPart, SN->getBasePtr(),
7116
SN->getPointerInfo(), SN->getOriginalAlign(),
7117
SN->getMemOperand()->getFlags(), SN->getAAInfo());
7118
SDValue Chain1 =
7119
DAG.getStore(SN->getChain(), DL, LoPart,
7120
DAG.getObjectPtrOffset(DL, SN->getBasePtr(),
7121
TypeSize::getFixed(8)),
7122
SN->getPointerInfo().getWithOffset(8),
7123
SN->getOriginalAlign(),
7124
SN->getMemOperand()->getFlags(), SN->getAAInfo());
7125
7126
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain0, Chain1);
7127
}
7128
}
7129
7130
// Replicate a reg or immediate with VREP instead of scalar multiply or
7131
// immediate load. It seems best to do this during the first DAGCombine as
7132
// it is straight-forward to handle the zero-extend node in the initial
7133
// DAG, and also not worry about the keeping the new MemVT legal (e.g. when
7134
// extracting an i16 element from a v16i8 vector).
7135
if (Subtarget.hasVector() && DCI.Level == BeforeLegalizeTypes &&
7136
isOnlyUsedByStores(Op1, DAG)) {
7137
SDValue Word = SDValue();
7138
EVT WordVT;
7139
7140
// Find a replicated immediate and return it if found in Word and its
7141
// type in WordVT.
7142
auto FindReplicatedImm = [&](ConstantSDNode *C, unsigned TotBytes) {
7143
// Some constants are better handled with a scalar store.
7144
if (C->getAPIntValue().getBitWidth() > 64 || C->isAllOnes() ||
7145
isInt<16>(C->getSExtValue()) || MemVT.getStoreSize() <= 2)
7146
return;
7147
SystemZVectorConstantInfo VCI(APInt(TotBytes * 8, C->getZExtValue()));
7148
if (VCI.isVectorConstantLegal(Subtarget) &&
7149
VCI.Opcode == SystemZISD::REPLICATE) {
7150
Word = DAG.getConstant(VCI.OpVals[0], SDLoc(SN), MVT::i32);
7151
WordVT = VCI.VecVT.getScalarType();
7152
}
7153
};
7154
7155
// Find a replicated register and return it if found in Word and its type
7156
// in WordVT.
7157
auto FindReplicatedReg = [&](SDValue MulOp) {
7158
EVT MulVT = MulOp.getValueType();
7159
if (MulOp->getOpcode() == ISD::MUL &&
7160
(MulVT == MVT::i16 || MulVT == MVT::i32 || MulVT == MVT::i64)) {
7161
// Find a zero extended value and its type.
7162
SDValue LHS = MulOp->getOperand(0);
7163
if (LHS->getOpcode() == ISD::ZERO_EXTEND)
7164
WordVT = LHS->getOperand(0).getValueType();
7165
else if (LHS->getOpcode() == ISD::AssertZext)
7166
WordVT = cast<VTSDNode>(LHS->getOperand(1))->getVT();
7167
else
7168
return;
7169
// Find a replicating constant, e.g. 0x00010001.
7170
if (auto *C = dyn_cast<ConstantSDNode>(MulOp->getOperand(1))) {
7171
SystemZVectorConstantInfo VCI(
7172
APInt(MulVT.getSizeInBits(), C->getZExtValue()));
7173
if (VCI.isVectorConstantLegal(Subtarget) &&
7174
VCI.Opcode == SystemZISD::REPLICATE && VCI.OpVals[0] == 1 &&
7175
WordVT == VCI.VecVT.getScalarType())
7176
Word = DAG.getZExtOrTrunc(LHS->getOperand(0), SDLoc(SN), WordVT);
7177
}
7178
}
7179
};
7180
7181
if (isa<BuildVectorSDNode>(Op1) &&
7182
DAG.isSplatValue(Op1, true/*AllowUndefs*/)) {
7183
SDValue SplatVal = Op1->getOperand(0);
7184
if (auto *C = dyn_cast<ConstantSDNode>(SplatVal))
7185
FindReplicatedImm(C, SplatVal.getValueType().getStoreSize());
7186
else
7187
FindReplicatedReg(SplatVal);
7188
} else {
7189
if (auto *C = dyn_cast<ConstantSDNode>(Op1))
7190
FindReplicatedImm(C, MemVT.getStoreSize());
7191
else
7192
FindReplicatedReg(Op1);
7193
}
7194
7195
if (Word != SDValue()) {
7196
assert(MemVT.getSizeInBits() % WordVT.getSizeInBits() == 0 &&
7197
"Bad type handling");
7198
unsigned NumElts = MemVT.getSizeInBits() / WordVT.getSizeInBits();
7199
EVT SplatVT = EVT::getVectorVT(*DAG.getContext(), WordVT, NumElts);
7200
SDValue SplatVal = DAG.getSplatVector(SplatVT, SDLoc(SN), Word);
7201
return DAG.getStore(SN->getChain(), SDLoc(SN), SplatVal,
7202
SN->getBasePtr(), SN->getMemOperand());
7203
}
7204
}
7205
7206
return SDValue();
7207
}
7208
7209
SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
7210
SDNode *N, DAGCombinerInfo &DCI) const {
7211
SelectionDAG &DAG = DCI.DAG;
7212
// Combine element-swap (LOAD) into VLER
7213
if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
7214
N->getOperand(0).hasOneUse() &&
7215
Subtarget.hasVectorEnhancements2()) {
7216
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
7217
ArrayRef<int> ShuffleMask = SVN->getMask();
7218
if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
7219
SDValue Load = N->getOperand(0);
7220
LoadSDNode *LD = cast<LoadSDNode>(Load);
7221
7222
// Create the element-swapping load.
7223
SDValue Ops[] = {
7224
LD->getChain(), // Chain
7225
LD->getBasePtr() // Ptr
7226
};
7227
SDValue ESLoad =
7228
DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
7229
DAG.getVTList(LD->getValueType(0), MVT::Other),
7230
Ops, LD->getMemoryVT(), LD->getMemOperand());
7231
7232
// First, combine the VECTOR_SHUFFLE away. This makes the value produced
7233
// by the load dead.
7234
DCI.CombineTo(N, ESLoad);
7235
7236
// Next, combine the load away, we give it a bogus result value but a real
7237
// chain result. The result value is dead because the shuffle is dead.
7238
DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
7239
7240
// Return N so it doesn't get rechecked!
7241
return SDValue(N, 0);
7242
}
7243
}
7244
7245
return SDValue();
7246
}
7247
7248
SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
7249
SDNode *N, DAGCombinerInfo &DCI) const {
7250
SelectionDAG &DAG = DCI.DAG;
7251
7252
if (!Subtarget.hasVector())
7253
return SDValue();
7254
7255
// Look through bitcasts that retain the number of vector elements.
7256
SDValue Op = N->getOperand(0);
7257
if (Op.getOpcode() == ISD::BITCAST &&
7258
Op.getValueType().isVector() &&
7259
Op.getOperand(0).getValueType().isVector() &&
7260
Op.getValueType().getVectorNumElements() ==
7261
Op.getOperand(0).getValueType().getVectorNumElements())
7262
Op = Op.getOperand(0);
7263
7264
// Pull BSWAP out of a vector extraction.
7265
if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
7266
EVT VecVT = Op.getValueType();
7267
EVT EltVT = VecVT.getVectorElementType();
7268
Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
7269
Op.getOperand(0), N->getOperand(1));
7270
DCI.AddToWorklist(Op.getNode());
7271
Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
7272
if (EltVT != N->getValueType(0)) {
7273
DCI.AddToWorklist(Op.getNode());
7274
Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
7275
}
7276
return Op;
7277
}
7278
7279
// Try to simplify a vector extraction.
7280
if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
7281
SDValue Op0 = N->getOperand(0);
7282
EVT VecVT = Op0.getValueType();
7283
return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
7284
IndexN->getZExtValue(), DCI, false);
7285
}
7286
return SDValue();
7287
}
7288
7289
SDValue SystemZTargetLowering::combineJOIN_DWORDS(
7290
SDNode *N, DAGCombinerInfo &DCI) const {
7291
SelectionDAG &DAG = DCI.DAG;
7292
// (join_dwords X, X) == (replicate X)
7293
if (N->getOperand(0) == N->getOperand(1))
7294
return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
7295
N->getOperand(0));
7296
return SDValue();
7297
}
7298
7299
static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
7300
SDValue Chain1 = N1->getOperand(0);
7301
SDValue Chain2 = N2->getOperand(0);
7302
7303
// Trivial case: both nodes take the same chain.
7304
if (Chain1 == Chain2)
7305
return Chain1;
7306
7307
// FIXME - we could handle more complex cases via TokenFactor,
7308
// assuming we can verify that this would not create a cycle.
7309
return SDValue();
7310
}
7311
7312
SDValue SystemZTargetLowering::combineFP_ROUND(
7313
SDNode *N, DAGCombinerInfo &DCI) const {
7314
7315
if (!Subtarget.hasVector())
7316
return SDValue();
7317
7318
// (fpround (extract_vector_elt X 0))
7319
// (fpround (extract_vector_elt X 1)) ->
7320
// (extract_vector_elt (VROUND X) 0)
7321
// (extract_vector_elt (VROUND X) 2)
7322
//
7323
// This is a special case since the target doesn't really support v2f32s.
7324
unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
7325
SelectionDAG &DAG = DCI.DAG;
7326
SDValue Op0 = N->getOperand(OpNo);
7327
if (N->getValueType(0) == MVT::f32 && Op0.hasOneUse() &&
7328
Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7329
Op0.getOperand(0).getValueType() == MVT::v2f64 &&
7330
Op0.getOperand(1).getOpcode() == ISD::Constant &&
7331
Op0.getConstantOperandVal(1) == 0) {
7332
SDValue Vec = Op0.getOperand(0);
7333
for (auto *U : Vec->uses()) {
7334
if (U != Op0.getNode() && U->hasOneUse() &&
7335
U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7336
U->getOperand(0) == Vec &&
7337
U->getOperand(1).getOpcode() == ISD::Constant &&
7338
U->getConstantOperandVal(1) == 1) {
7339
SDValue OtherRound = SDValue(*U->use_begin(), 0);
7340
if (OtherRound.getOpcode() == N->getOpcode() &&
7341
OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
7342
OtherRound.getValueType() == MVT::f32) {
7343
SDValue VRound, Chain;
7344
if (N->isStrictFPOpcode()) {
7345
Chain = MergeInputChains(N, OtherRound.getNode());
7346
if (!Chain)
7347
continue;
7348
VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
7349
{MVT::v4f32, MVT::Other}, {Chain, Vec});
7350
Chain = VRound.getValue(1);
7351
} else
7352
VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
7353
MVT::v4f32, Vec);
7354
DCI.AddToWorklist(VRound.getNode());
7355
SDValue Extract1 =
7356
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
7357
VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
7358
DCI.AddToWorklist(Extract1.getNode());
7359
DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
7360
if (Chain)
7361
DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
7362
SDValue Extract0 =
7363
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
7364
VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
7365
if (Chain)
7366
return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
7367
N->getVTList(), Extract0, Chain);
7368
return Extract0;
7369
}
7370
}
7371
}
7372
}
7373
return SDValue();
7374
}
7375
7376
SDValue SystemZTargetLowering::combineFP_EXTEND(
7377
SDNode *N, DAGCombinerInfo &DCI) const {
7378
7379
if (!Subtarget.hasVector())
7380
return SDValue();
7381
7382
// (fpextend (extract_vector_elt X 0))
7383
// (fpextend (extract_vector_elt X 2)) ->
7384
// (extract_vector_elt (VEXTEND X) 0)
7385
// (extract_vector_elt (VEXTEND X) 1)
7386
//
7387
// This is a special case since the target doesn't really support v2f32s.
7388
unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
7389
SelectionDAG &DAG = DCI.DAG;
7390
SDValue Op0 = N->getOperand(OpNo);
7391
if (N->getValueType(0) == MVT::f64 && Op0.hasOneUse() &&
7392
Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7393
Op0.getOperand(0).getValueType() == MVT::v4f32 &&
7394
Op0.getOperand(1).getOpcode() == ISD::Constant &&
7395
Op0.getConstantOperandVal(1) == 0) {
7396
SDValue Vec = Op0.getOperand(0);
7397
for (auto *U : Vec->uses()) {
7398
if (U != Op0.getNode() && U->hasOneUse() &&
7399
U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7400
U->getOperand(0) == Vec &&
7401
U->getOperand(1).getOpcode() == ISD::Constant &&
7402
U->getConstantOperandVal(1) == 2) {
7403
SDValue OtherExtend = SDValue(*U->use_begin(), 0);
7404
if (OtherExtend.getOpcode() == N->getOpcode() &&
7405
OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
7406
OtherExtend.getValueType() == MVT::f64) {
7407
SDValue VExtend, Chain;
7408
if (N->isStrictFPOpcode()) {
7409
Chain = MergeInputChains(N, OtherExtend.getNode());
7410
if (!Chain)
7411
continue;
7412
VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
7413
{MVT::v2f64, MVT::Other}, {Chain, Vec});
7414
Chain = VExtend.getValue(1);
7415
} else
7416
VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
7417
MVT::v2f64, Vec);
7418
DCI.AddToWorklist(VExtend.getNode());
7419
SDValue Extract1 =
7420
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
7421
VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
7422
DCI.AddToWorklist(Extract1.getNode());
7423
DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
7424
if (Chain)
7425
DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
7426
SDValue Extract0 =
7427
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
7428
VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
7429
if (Chain)
7430
return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
7431
N->getVTList(), Extract0, Chain);
7432
return Extract0;
7433
}
7434
}
7435
}
7436
}
7437
return SDValue();
7438
}
7439
7440
SDValue SystemZTargetLowering::combineINT_TO_FP(
7441
SDNode *N, DAGCombinerInfo &DCI) const {
7442
if (DCI.Level != BeforeLegalizeTypes)
7443
return SDValue();
7444
SelectionDAG &DAG = DCI.DAG;
7445
LLVMContext &Ctx = *DAG.getContext();
7446
unsigned Opcode = N->getOpcode();
7447
EVT OutVT = N->getValueType(0);
7448
Type *OutLLVMTy = OutVT.getTypeForEVT(Ctx);
7449
SDValue Op = N->getOperand(0);
7450
unsigned OutScalarBits = OutLLVMTy->getScalarSizeInBits();
7451
unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
7452
7453
// Insert an extension before type-legalization to avoid scalarization, e.g.:
7454
// v2f64 = uint_to_fp v2i16
7455
// =>
7456
// v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
7457
if (OutLLVMTy->isVectorTy() && OutScalarBits > InScalarBits &&
7458
OutScalarBits <= 64) {
7459
unsigned NumElts = cast<FixedVectorType>(OutLLVMTy)->getNumElements();
7460
EVT ExtVT = EVT::getVectorVT(
7461
Ctx, EVT::getIntegerVT(Ctx, OutLLVMTy->getScalarSizeInBits()), NumElts);
7462
unsigned ExtOpcode =
7463
(Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
7464
SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
7465
return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
7466
}
7467
return SDValue();
7468
}
7469
7470
SDValue SystemZTargetLowering::combineBSWAP(
7471
SDNode *N, DAGCombinerInfo &DCI) const {
7472
SelectionDAG &DAG = DCI.DAG;
7473
// Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
7474
if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
7475
N->getOperand(0).hasOneUse() &&
7476
canLoadStoreByteSwapped(N->getValueType(0))) {
7477
SDValue Load = N->getOperand(0);
7478
LoadSDNode *LD = cast<LoadSDNode>(Load);
7479
7480
// Create the byte-swapping load.
7481
SDValue Ops[] = {
7482
LD->getChain(), // Chain
7483
LD->getBasePtr() // Ptr
7484
};
7485
EVT LoadVT = N->getValueType(0);
7486
if (LoadVT == MVT::i16)
7487
LoadVT = MVT::i32;
7488
SDValue BSLoad =
7489
DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
7490
DAG.getVTList(LoadVT, MVT::Other),
7491
Ops, LD->getMemoryVT(), LD->getMemOperand());
7492
7493
// If this is an i16 load, insert the truncate.
7494
SDValue ResVal = BSLoad;
7495
if (N->getValueType(0) == MVT::i16)
7496
ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
7497
7498
// First, combine the bswap away. This makes the value produced by the
7499
// load dead.
7500
DCI.CombineTo(N, ResVal);
7501
7502
// Next, combine the load away, we give it a bogus result value but a real
7503
// chain result. The result value is dead because the bswap is dead.
7504
DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
7505
7506
// Return N so it doesn't get rechecked!
7507
return SDValue(N, 0);
7508
}
7509
7510
// Look through bitcasts that retain the number of vector elements.
7511
SDValue Op = N->getOperand(0);
7512
if (Op.getOpcode() == ISD::BITCAST &&
7513
Op.getValueType().isVector() &&
7514
Op.getOperand(0).getValueType().isVector() &&
7515
Op.getValueType().getVectorNumElements() ==
7516
Op.getOperand(0).getValueType().getVectorNumElements())
7517
Op = Op.getOperand(0);
7518
7519
// Push BSWAP into a vector insertion if at least one side then simplifies.
7520
if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
7521
SDValue Vec = Op.getOperand(0);
7522
SDValue Elt = Op.getOperand(1);
7523
SDValue Idx = Op.getOperand(2);
7524
7525
if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
7526
Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
7527
DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
7528
Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
7529
(canLoadStoreByteSwapped(N->getValueType(0)) &&
7530
ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
7531
EVT VecVT = N->getValueType(0);
7532
EVT EltVT = N->getValueType(0).getVectorElementType();
7533
if (VecVT != Vec.getValueType()) {
7534
Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
7535
DCI.AddToWorklist(Vec.getNode());
7536
}
7537
if (EltVT != Elt.getValueType()) {
7538
Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
7539
DCI.AddToWorklist(Elt.getNode());
7540
}
7541
Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
7542
DCI.AddToWorklist(Vec.getNode());
7543
Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
7544
DCI.AddToWorklist(Elt.getNode());
7545
return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
7546
Vec, Elt, Idx);
7547
}
7548
}
7549
7550
// Push BSWAP into a vector shuffle if at least one side then simplifies.
7551
ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
7552
if (SV && Op.hasOneUse()) {
7553
SDValue Op0 = Op.getOperand(0);
7554
SDValue Op1 = Op.getOperand(1);
7555
7556
if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
7557
Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
7558
DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
7559
Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
7560
EVT VecVT = N->getValueType(0);
7561
if (VecVT != Op0.getValueType()) {
7562
Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
7563
DCI.AddToWorklist(Op0.getNode());
7564
}
7565
if (VecVT != Op1.getValueType()) {
7566
Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
7567
DCI.AddToWorklist(Op1.getNode());
7568
}
7569
Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
7570
DCI.AddToWorklist(Op0.getNode());
7571
Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
7572
DCI.AddToWorklist(Op1.getNode());
7573
return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
7574
}
7575
}
7576
7577
return SDValue();
7578
}
7579
7580
static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
7581
// We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
7582
// set by the CCReg instruction using the CCValid / CCMask masks,
7583
// If the CCReg instruction is itself a ICMP testing the condition
7584
// code set by some other instruction, see whether we can directly
7585
// use that condition code.
7586
7587
// Verify that we have an ICMP against some constant.
7588
if (CCValid != SystemZ::CCMASK_ICMP)
7589
return false;
7590
auto *ICmp = CCReg.getNode();
7591
if (ICmp->getOpcode() != SystemZISD::ICMP)
7592
return false;
7593
auto *CompareLHS = ICmp->getOperand(0).getNode();
7594
auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
7595
if (!CompareRHS)
7596
return false;
7597
7598
// Optimize the case where CompareLHS is a SELECT_CCMASK.
7599
if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
7600
// Verify that we have an appropriate mask for a EQ or NE comparison.
7601
bool Invert = false;
7602
if (CCMask == SystemZ::CCMASK_CMP_NE)
7603
Invert = !Invert;
7604
else if (CCMask != SystemZ::CCMASK_CMP_EQ)
7605
return false;
7606
7607
// Verify that the ICMP compares against one of select values.
7608
auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
7609
if (!TrueVal)
7610
return false;
7611
auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
7612
if (!FalseVal)
7613
return false;
7614
if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
7615
Invert = !Invert;
7616
else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
7617
return false;
7618
7619
// Compute the effective CC mask for the new branch or select.
7620
auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
7621
auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
7622
if (!NewCCValid || !NewCCMask)
7623
return false;
7624
CCValid = NewCCValid->getZExtValue();
7625
CCMask = NewCCMask->getZExtValue();
7626
if (Invert)
7627
CCMask ^= CCValid;
7628
7629
// Return the updated CCReg link.
7630
CCReg = CompareLHS->getOperand(4);
7631
return true;
7632
}
7633
7634
// Optimize the case where CompareRHS is (SRA (SHL (IPM))).
7635
if (CompareLHS->getOpcode() == ISD::SRA) {
7636
auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
7637
if (!SRACount || SRACount->getZExtValue() != 30)
7638
return false;
7639
auto *SHL = CompareLHS->getOperand(0).getNode();
7640
if (SHL->getOpcode() != ISD::SHL)
7641
return false;
7642
auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
7643
if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
7644
return false;
7645
auto *IPM = SHL->getOperand(0).getNode();
7646
if (IPM->getOpcode() != SystemZISD::IPM)
7647
return false;
7648
7649
// Avoid introducing CC spills (because SRA would clobber CC).
7650
if (!CompareLHS->hasOneUse())
7651
return false;
7652
// Verify that the ICMP compares against zero.
7653
if (CompareRHS->getZExtValue() != 0)
7654
return false;
7655
7656
// Compute the effective CC mask for the new branch or select.
7657
CCMask = SystemZ::reverseCCMask(CCMask);
7658
7659
// Return the updated CCReg link.
7660
CCReg = IPM->getOperand(0);
7661
return true;
7662
}
7663
7664
return false;
7665
}
7666
7667
SDValue SystemZTargetLowering::combineBR_CCMASK(
7668
SDNode *N, DAGCombinerInfo &DCI) const {
7669
SelectionDAG &DAG = DCI.DAG;
7670
7671
// Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
7672
auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
7673
auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
7674
if (!CCValid || !CCMask)
7675
return SDValue();
7676
7677
int CCValidVal = CCValid->getZExtValue();
7678
int CCMaskVal = CCMask->getZExtValue();
7679
SDValue Chain = N->getOperand(0);
7680
SDValue CCReg = N->getOperand(4);
7681
7682
if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
7683
return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
7684
Chain,
7685
DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
7686
DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
7687
N->getOperand(3), CCReg);
7688
return SDValue();
7689
}
7690
7691
SDValue SystemZTargetLowering::combineSELECT_CCMASK(
7692
SDNode *N, DAGCombinerInfo &DCI) const {
7693
SelectionDAG &DAG = DCI.DAG;
7694
7695
// Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
7696
auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
7697
auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
7698
if (!CCValid || !CCMask)
7699
return SDValue();
7700
7701
int CCValidVal = CCValid->getZExtValue();
7702
int CCMaskVal = CCMask->getZExtValue();
7703
SDValue CCReg = N->getOperand(4);
7704
7705
if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
7706
return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
7707
N->getOperand(0), N->getOperand(1),
7708
DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
7709
DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
7710
CCReg);
7711
return SDValue();
7712
}
7713
7714
7715
SDValue SystemZTargetLowering::combineGET_CCMASK(
7716
SDNode *N, DAGCombinerInfo &DCI) const {
7717
7718
// Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
7719
auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
7720
auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
7721
if (!CCValid || !CCMask)
7722
return SDValue();
7723
int CCValidVal = CCValid->getZExtValue();
7724
int CCMaskVal = CCMask->getZExtValue();
7725
7726
SDValue Select = N->getOperand(0);
7727
if (Select->getOpcode() == ISD::TRUNCATE)
7728
Select = Select->getOperand(0);
7729
if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
7730
return SDValue();
7731
7732
auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
7733
auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
7734
if (!SelectCCValid || !SelectCCMask)
7735
return SDValue();
7736
int SelectCCValidVal = SelectCCValid->getZExtValue();
7737
int SelectCCMaskVal = SelectCCMask->getZExtValue();
7738
7739
auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
7740
auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
7741
if (!TrueVal || !FalseVal)
7742
return SDValue();
7743
if (TrueVal->getZExtValue() == 1 && FalseVal->getZExtValue() == 0)
7744
;
7745
else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() == 1)
7746
SelectCCMaskVal ^= SelectCCValidVal;
7747
else
7748
return SDValue();
7749
7750
if (SelectCCValidVal & ~CCValidVal)
7751
return SDValue();
7752
if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
7753
return SDValue();
7754
7755
return Select->getOperand(4);
7756
}
7757
7758
SDValue SystemZTargetLowering::combineIntDIVREM(
7759
SDNode *N, DAGCombinerInfo &DCI) const {
7760
SelectionDAG &DAG = DCI.DAG;
7761
EVT VT = N->getValueType(0);
7762
// In the case where the divisor is a vector of constants a cheaper
7763
// sequence of instructions can replace the divide. BuildSDIV is called to
7764
// do this during DAG combining, but it only succeeds when it can build a
7765
// multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
7766
// since it is not Legal but Custom it can only happen before
7767
// legalization. Therefore we must scalarize this early before Combine
7768
// 1. For widened vectors, this is already the result of type legalization.
7769
if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
7770
DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
7771
return DAG.UnrollVectorOp(N);
7772
return SDValue();
7773
}
7774
7775
SDValue SystemZTargetLowering::combineINTRINSIC(
7776
SDNode *N, DAGCombinerInfo &DCI) const {
7777
SelectionDAG &DAG = DCI.DAG;
7778
7779
unsigned Id = N->getConstantOperandVal(1);
7780
switch (Id) {
7781
// VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
7782
// or larger is simply a vector load.
7783
case Intrinsic::s390_vll:
7784
case Intrinsic::s390_vlrl:
7785
if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
7786
if (C->getZExtValue() >= 15)
7787
return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
7788
N->getOperand(3), MachinePointerInfo());
7789
break;
7790
// Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
7791
case Intrinsic::s390_vstl:
7792
case Intrinsic::s390_vstrl:
7793
if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
7794
if (C->getZExtValue() >= 15)
7795
return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
7796
N->getOperand(4), MachinePointerInfo());
7797
break;
7798
}
7799
7800
return SDValue();
7801
}
7802
7803
SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
7804
if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
7805
return N->getOperand(0);
7806
return N;
7807
}
7808
7809
SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
7810
DAGCombinerInfo &DCI) const {
7811
switch(N->getOpcode()) {
7812
default: break;
7813
case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI);
7814
case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI);
7815
case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI);
7816
case SystemZISD::MERGE_HIGH:
7817
case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI);
7818
case ISD::LOAD: return combineLOAD(N, DCI);
7819
case ISD::STORE: return combineSTORE(N, DCI);
7820
case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI);
7821
case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
7822
case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
7823
case ISD::STRICT_FP_ROUND:
7824
case ISD::FP_ROUND: return combineFP_ROUND(N, DCI);
7825
case ISD::STRICT_FP_EXTEND:
7826
case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI);
7827
case ISD::SINT_TO_FP:
7828
case ISD::UINT_TO_FP: return combineINT_TO_FP(N, DCI);
7829
case ISD::BSWAP: return combineBSWAP(N, DCI);
7830
case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI);
7831
case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
7832
case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI);
7833
case ISD::SDIV:
7834
case ISD::UDIV:
7835
case ISD::SREM:
7836
case ISD::UREM: return combineIntDIVREM(N, DCI);
7837
case ISD::INTRINSIC_W_CHAIN:
7838
case ISD::INTRINSIC_VOID: return combineINTRINSIC(N, DCI);
7839
}
7840
7841
return SDValue();
7842
}
7843
7844
// Return the demanded elements for the OpNo source operand of Op. DemandedElts
7845
// are for Op.
7846
static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
7847
unsigned OpNo) {
7848
EVT VT = Op.getValueType();
7849
unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
7850
APInt SrcDemE;
7851
unsigned Opcode = Op.getOpcode();
7852
if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7853
unsigned Id = Op.getConstantOperandVal(0);
7854
switch (Id) {
7855
case Intrinsic::s390_vpksh: // PACKS
7856
case Intrinsic::s390_vpksf:
7857
case Intrinsic::s390_vpksg:
7858
case Intrinsic::s390_vpkshs: // PACKS_CC
7859
case Intrinsic::s390_vpksfs:
7860
case Intrinsic::s390_vpksgs:
7861
case Intrinsic::s390_vpklsh: // PACKLS
7862
case Intrinsic::s390_vpklsf:
7863
case Intrinsic::s390_vpklsg:
7864
case Intrinsic::s390_vpklshs: // PACKLS_CC
7865
case Intrinsic::s390_vpklsfs:
7866
case Intrinsic::s390_vpklsgs:
7867
// VECTOR PACK truncates the elements of two source vectors into one.
7868
SrcDemE = DemandedElts;
7869
if (OpNo == 2)
7870
SrcDemE.lshrInPlace(NumElts / 2);
7871
SrcDemE = SrcDemE.trunc(NumElts / 2);
7872
break;
7873
// VECTOR UNPACK extends half the elements of the source vector.
7874
case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH
7875
case Intrinsic::s390_vuphh:
7876
case Intrinsic::s390_vuphf:
7877
case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
7878
case Intrinsic::s390_vuplhh:
7879
case Intrinsic::s390_vuplhf:
7880
SrcDemE = APInt(NumElts * 2, 0);
7881
SrcDemE.insertBits(DemandedElts, 0);
7882
break;
7883
case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW
7884
case Intrinsic::s390_vuplhw:
7885
case Intrinsic::s390_vuplf:
7886
case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
7887
case Intrinsic::s390_vupllh:
7888
case Intrinsic::s390_vupllf:
7889
SrcDemE = APInt(NumElts * 2, 0);
7890
SrcDemE.insertBits(DemandedElts, NumElts);
7891
break;
7892
case Intrinsic::s390_vpdi: {
7893
// VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
7894
SrcDemE = APInt(NumElts, 0);
7895
if (!DemandedElts[OpNo - 1])
7896
break;
7897
unsigned Mask = Op.getConstantOperandVal(3);
7898
unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
7899
// Demand input element 0 or 1, given by the mask bit value.
7900
SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
7901
break;
7902
}
7903
case Intrinsic::s390_vsldb: {
7904
// VECTOR SHIFT LEFT DOUBLE BY BYTE
7905
assert(VT == MVT::v16i8 && "Unexpected type.");
7906
unsigned FirstIdx = Op.getConstantOperandVal(3);
7907
assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
7908
unsigned NumSrc0Els = 16 - FirstIdx;
7909
SrcDemE = APInt(NumElts, 0);
7910
if (OpNo == 1) {
7911
APInt DemEls = DemandedElts.trunc(NumSrc0Els);
7912
SrcDemE.insertBits(DemEls, FirstIdx);
7913
} else {
7914
APInt DemEls = DemandedElts.lshr(NumSrc0Els);
7915
SrcDemE.insertBits(DemEls, 0);
7916
}
7917
break;
7918
}
7919
case Intrinsic::s390_vperm:
7920
SrcDemE = APInt(NumElts, -1);
7921
break;
7922
default:
7923
llvm_unreachable("Unhandled intrinsic.");
7924
break;
7925
}
7926
} else {
7927
switch (Opcode) {
7928
case SystemZISD::JOIN_DWORDS:
7929
// Scalar operand.
7930
SrcDemE = APInt(1, 1);
7931
break;
7932
case SystemZISD::SELECT_CCMASK:
7933
SrcDemE = DemandedElts;
7934
break;
7935
default:
7936
llvm_unreachable("Unhandled opcode.");
7937
break;
7938
}
7939
}
7940
return SrcDemE;
7941
}
7942
7943
static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
7944
const APInt &DemandedElts,
7945
const SelectionDAG &DAG, unsigned Depth,
7946
unsigned OpNo) {
7947
APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
7948
APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
7949
KnownBits LHSKnown =
7950
DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
7951
KnownBits RHSKnown =
7952
DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
7953
Known = LHSKnown.intersectWith(RHSKnown);
7954
}
7955
7956
void
7957
SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
7958
KnownBits &Known,
7959
const APInt &DemandedElts,
7960
const SelectionDAG &DAG,
7961
unsigned Depth) const {
7962
Known.resetAll();
7963
7964
// Intrinsic CC result is returned in the two low bits.
7965
unsigned tmp0, tmp1; // not used
7966
if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
7967
Known.Zero.setBitsFrom(2);
7968
return;
7969
}
7970
EVT VT = Op.getValueType();
7971
if (Op.getResNo() != 0 || VT == MVT::Untyped)
7972
return;
7973
assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
7974
"KnownBits does not match VT in bitwidth");
7975
assert ((!VT.isVector() ||
7976
(DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
7977
"DemandedElts does not match VT number of elements");
7978
unsigned BitWidth = Known.getBitWidth();
7979
unsigned Opcode = Op.getOpcode();
7980
if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7981
bool IsLogical = false;
7982
unsigned Id = Op.getConstantOperandVal(0);
7983
switch (Id) {
7984
case Intrinsic::s390_vpksh: // PACKS
7985
case Intrinsic::s390_vpksf:
7986
case Intrinsic::s390_vpksg:
7987
case Intrinsic::s390_vpkshs: // PACKS_CC
7988
case Intrinsic::s390_vpksfs:
7989
case Intrinsic::s390_vpksgs:
7990
case Intrinsic::s390_vpklsh: // PACKLS
7991
case Intrinsic::s390_vpklsf:
7992
case Intrinsic::s390_vpklsg:
7993
case Intrinsic::s390_vpklshs: // PACKLS_CC
7994
case Intrinsic::s390_vpklsfs:
7995
case Intrinsic::s390_vpklsgs:
7996
case Intrinsic::s390_vpdi:
7997
case Intrinsic::s390_vsldb:
7998
case Intrinsic::s390_vperm:
7999
computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
8000
break;
8001
case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
8002
case Intrinsic::s390_vuplhh:
8003
case Intrinsic::s390_vuplhf:
8004
case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
8005
case Intrinsic::s390_vupllh:
8006
case Intrinsic::s390_vupllf:
8007
IsLogical = true;
8008
[[fallthrough]];
8009
case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH
8010
case Intrinsic::s390_vuphh:
8011
case Intrinsic::s390_vuphf:
8012
case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW
8013
case Intrinsic::s390_vuplhw:
8014
case Intrinsic::s390_vuplf: {
8015
SDValue SrcOp = Op.getOperand(1);
8016
APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
8017
Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
8018
if (IsLogical) {
8019
Known = Known.zext(BitWidth);
8020
} else
8021
Known = Known.sext(BitWidth);
8022
break;
8023
}
8024
default:
8025
break;
8026
}
8027
} else {
8028
switch (Opcode) {
8029
case SystemZISD::JOIN_DWORDS:
8030
case SystemZISD::SELECT_CCMASK:
8031
computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
8032
break;
8033
case SystemZISD::REPLICATE: {
8034
SDValue SrcOp = Op.getOperand(0);
8035
Known = DAG.computeKnownBits(SrcOp, Depth + 1);
8036
if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
8037
Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
8038
break;
8039
}
8040
default:
8041
break;
8042
}
8043
}
8044
8045
// Known has the width of the source operand(s). Adjust if needed to match
8046
// the passed bitwidth.
8047
if (Known.getBitWidth() != BitWidth)
8048
Known = Known.anyextOrTrunc(BitWidth);
8049
}
8050
8051
static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
8052
const SelectionDAG &DAG, unsigned Depth,
8053
unsigned OpNo) {
8054
APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
8055
unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
8056
if (LHS == 1) return 1; // Early out.
8057
APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
8058
unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
8059
if (RHS == 1) return 1; // Early out.
8060
unsigned Common = std::min(LHS, RHS);
8061
unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
8062
EVT VT = Op.getValueType();
8063
unsigned VTBits = VT.getScalarSizeInBits();
8064
if (SrcBitWidth > VTBits) { // PACK
8065
unsigned SrcExtraBits = SrcBitWidth - VTBits;
8066
if (Common > SrcExtraBits)
8067
return (Common - SrcExtraBits);
8068
return 1;
8069
}
8070
assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
8071
return Common;
8072
}
8073
8074
unsigned
8075
SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
8076
SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
8077
unsigned Depth) const {
8078
if (Op.getResNo() != 0)
8079
return 1;
8080
unsigned Opcode = Op.getOpcode();
8081
if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
8082
unsigned Id = Op.getConstantOperandVal(0);
8083
switch (Id) {
8084
case Intrinsic::s390_vpksh: // PACKS
8085
case Intrinsic::s390_vpksf:
8086
case Intrinsic::s390_vpksg:
8087
case Intrinsic::s390_vpkshs: // PACKS_CC
8088
case Intrinsic::s390_vpksfs:
8089
case Intrinsic::s390_vpksgs:
8090
case Intrinsic::s390_vpklsh: // PACKLS
8091
case Intrinsic::s390_vpklsf:
8092
case Intrinsic::s390_vpklsg:
8093
case Intrinsic::s390_vpklshs: // PACKLS_CC
8094
case Intrinsic::s390_vpklsfs:
8095
case Intrinsic::s390_vpklsgs:
8096
case Intrinsic::s390_vpdi:
8097
case Intrinsic::s390_vsldb:
8098
case Intrinsic::s390_vperm:
8099
return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
8100
case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH
8101
case Intrinsic::s390_vuphh:
8102
case Intrinsic::s390_vuphf:
8103
case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW
8104
case Intrinsic::s390_vuplhw:
8105
case Intrinsic::s390_vuplf: {
8106
SDValue PackedOp = Op.getOperand(1);
8107
APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
8108
unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
8109
EVT VT = Op.getValueType();
8110
unsigned VTBits = VT.getScalarSizeInBits();
8111
Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
8112
return Tmp;
8113
}
8114
default:
8115
break;
8116
}
8117
} else {
8118
switch (Opcode) {
8119
case SystemZISD::SELECT_CCMASK:
8120
return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
8121
default:
8122
break;
8123
}
8124
}
8125
8126
return 1;
8127
}
8128
8129
bool SystemZTargetLowering::
8130
isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op,
8131
const APInt &DemandedElts, const SelectionDAG &DAG,
8132
bool PoisonOnly, unsigned Depth) const {
8133
switch (Op->getOpcode()) {
8134
case SystemZISD::PCREL_WRAPPER:
8135
case SystemZISD::PCREL_OFFSET:
8136
return true;
8137
}
8138
return false;
8139
}
8140
8141
unsigned
8142
SystemZTargetLowering::getStackProbeSize(const MachineFunction &MF) const {
8143
const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
8144
unsigned StackAlign = TFI->getStackAlignment();
8145
assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
8146
"Unexpected stack alignment");
8147
// The default stack probe size is 4096 if the function has no
8148
// stack-probe-size attribute.
8149
unsigned StackProbeSize =
8150
MF.getFunction().getFnAttributeAsParsedInteger("stack-probe-size", 4096);
8151
// Round down to the stack alignment.
8152
StackProbeSize &= ~(StackAlign - 1);
8153
return StackProbeSize ? StackProbeSize : StackAlign;
8154
}
8155
8156
//===----------------------------------------------------------------------===//
8157
// Custom insertion
8158
//===----------------------------------------------------------------------===//
8159
8160
// Force base value Base into a register before MI. Return the register.
8161
static Register forceReg(MachineInstr &MI, MachineOperand &Base,
8162
const SystemZInstrInfo *TII) {
8163
MachineBasicBlock *MBB = MI.getParent();
8164
MachineFunction &MF = *MBB->getParent();
8165
MachineRegisterInfo &MRI = MF.getRegInfo();
8166
8167
if (Base.isReg()) {
8168
// Copy Base into a new virtual register to help register coalescing in
8169
// cases with multiple uses.
8170
Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8171
BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg)
8172
.add(Base);
8173
return Reg;
8174
}
8175
8176
Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8177
BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
8178
.add(Base)
8179
.addImm(0)
8180
.addReg(0);
8181
return Reg;
8182
}
8183
8184
// The CC operand of MI might be missing a kill marker because there
8185
// were multiple uses of CC, and ISel didn't know which to mark.
8186
// Figure out whether MI should have had a kill marker.
8187
static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
8188
// Scan forward through BB for a use/def of CC.
8189
MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
8190
for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
8191
const MachineInstr& mi = *miI;
8192
if (mi.readsRegister(SystemZ::CC, /*TRI=*/nullptr))
8193
return false;
8194
if (mi.definesRegister(SystemZ::CC, /*TRI=*/nullptr))
8195
break; // Should have kill-flag - update below.
8196
}
8197
8198
// If we hit the end of the block, check whether CC is live into a
8199
// successor.
8200
if (miI == MBB->end()) {
8201
for (const MachineBasicBlock *Succ : MBB->successors())
8202
if (Succ->isLiveIn(SystemZ::CC))
8203
return false;
8204
}
8205
8206
return true;
8207
}
8208
8209
// Return true if it is OK for this Select pseudo-opcode to be cascaded
8210
// together with other Select pseudo-opcodes into a single basic-block with
8211
// a conditional jump around it.
8212
static bool isSelectPseudo(MachineInstr &MI) {
8213
switch (MI.getOpcode()) {
8214
case SystemZ::Select32:
8215
case SystemZ::Select64:
8216
case SystemZ::Select128:
8217
case SystemZ::SelectF32:
8218
case SystemZ::SelectF64:
8219
case SystemZ::SelectF128:
8220
case SystemZ::SelectVR32:
8221
case SystemZ::SelectVR64:
8222
case SystemZ::SelectVR128:
8223
return true;
8224
8225
default:
8226
return false;
8227
}
8228
}
8229
8230
// Helper function, which inserts PHI functions into SinkMBB:
8231
// %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
8232
// where %FalseValue(i) and %TrueValue(i) are taken from Selects.
8233
static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
8234
MachineBasicBlock *TrueMBB,
8235
MachineBasicBlock *FalseMBB,
8236
MachineBasicBlock *SinkMBB) {
8237
MachineFunction *MF = TrueMBB->getParent();
8238
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
8239
8240
MachineInstr *FirstMI = Selects.front();
8241
unsigned CCValid = FirstMI->getOperand(3).getImm();
8242
unsigned CCMask = FirstMI->getOperand(4).getImm();
8243
8244
MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
8245
8246
// As we are creating the PHIs, we have to be careful if there is more than
8247
// one. Later Selects may reference the results of earlier Selects, but later
8248
// PHIs have to reference the individual true/false inputs from earlier PHIs.
8249
// That also means that PHI construction must work forward from earlier to
8250
// later, and that the code must maintain a mapping from earlier PHI's
8251
// destination registers, and the registers that went into the PHI.
8252
DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
8253
8254
for (auto *MI : Selects) {
8255
Register DestReg = MI->getOperand(0).getReg();
8256
Register TrueReg = MI->getOperand(1).getReg();
8257
Register FalseReg = MI->getOperand(2).getReg();
8258
8259
// If this Select we are generating is the opposite condition from
8260
// the jump we generated, then we have to swap the operands for the
8261
// PHI that is going to be generated.
8262
if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
8263
std::swap(TrueReg, FalseReg);
8264
8265
if (RegRewriteTable.contains(TrueReg))
8266
TrueReg = RegRewriteTable[TrueReg].first;
8267
8268
if (RegRewriteTable.contains(FalseReg))
8269
FalseReg = RegRewriteTable[FalseReg].second;
8270
8271
DebugLoc DL = MI->getDebugLoc();
8272
BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
8273
.addReg(TrueReg).addMBB(TrueMBB)
8274
.addReg(FalseReg).addMBB(FalseMBB);
8275
8276
// Add this PHI to the rewrite table.
8277
RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
8278
}
8279
8280
MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
8281
}
8282
8283
MachineBasicBlock *
8284
SystemZTargetLowering::emitAdjCallStack(MachineInstr &MI,
8285
MachineBasicBlock *BB) const {
8286
MachineFunction &MF = *BB->getParent();
8287
MachineFrameInfo &MFI = MF.getFrameInfo();
8288
auto *TFL = Subtarget.getFrameLowering<SystemZFrameLowering>();
8289
assert(TFL->hasReservedCallFrame(MF) &&
8290
"ADJSTACKDOWN and ADJSTACKUP should be no-ops");
8291
(void)TFL;
8292
// Get the MaxCallFrameSize value and erase MI since it serves no further
8293
// purpose as the call frame is statically reserved in the prolog. Set
8294
// AdjustsStack as MI is *not* mapped as a frame instruction.
8295
uint32_t NumBytes = MI.getOperand(0).getImm();
8296
if (NumBytes > MFI.getMaxCallFrameSize())
8297
MFI.setMaxCallFrameSize(NumBytes);
8298
MFI.setAdjustsStack(true);
8299
8300
MI.eraseFromParent();
8301
return BB;
8302
}
8303
8304
// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
8305
MachineBasicBlock *
8306
SystemZTargetLowering::emitSelect(MachineInstr &MI,
8307
MachineBasicBlock *MBB) const {
8308
assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
8309
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8310
8311
unsigned CCValid = MI.getOperand(3).getImm();
8312
unsigned CCMask = MI.getOperand(4).getImm();
8313
8314
// If we have a sequence of Select* pseudo instructions using the
8315
// same condition code value, we want to expand all of them into
8316
// a single pair of basic blocks using the same condition.
8317
SmallVector<MachineInstr*, 8> Selects;
8318
SmallVector<MachineInstr*, 8> DbgValues;
8319
Selects.push_back(&MI);
8320
unsigned Count = 0;
8321
for (MachineInstr &NextMI : llvm::make_range(
8322
std::next(MachineBasicBlock::iterator(MI)), MBB->end())) {
8323
if (isSelectPseudo(NextMI)) {
8324
assert(NextMI.getOperand(3).getImm() == CCValid &&
8325
"Bad CCValid operands since CC was not redefined.");
8326
if (NextMI.getOperand(4).getImm() == CCMask ||
8327
NextMI.getOperand(4).getImm() == (CCValid ^ CCMask)) {
8328
Selects.push_back(&NextMI);
8329
continue;
8330
}
8331
break;
8332
}
8333
if (NextMI.definesRegister(SystemZ::CC, /*TRI=*/nullptr) ||
8334
NextMI.usesCustomInsertionHook())
8335
break;
8336
bool User = false;
8337
for (auto *SelMI : Selects)
8338
if (NextMI.readsVirtualRegister(SelMI->getOperand(0).getReg())) {
8339
User = true;
8340
break;
8341
}
8342
if (NextMI.isDebugInstr()) {
8343
if (User) {
8344
assert(NextMI.isDebugValue() && "Unhandled debug opcode.");
8345
DbgValues.push_back(&NextMI);
8346
}
8347
} else if (User || ++Count > 20)
8348
break;
8349
}
8350
8351
MachineInstr *LastMI = Selects.back();
8352
bool CCKilled = (LastMI->killsRegister(SystemZ::CC, /*TRI=*/nullptr) ||
8353
checkCCKill(*LastMI, MBB));
8354
MachineBasicBlock *StartMBB = MBB;
8355
MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(LastMI, MBB);
8356
MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
8357
8358
// Unless CC was killed in the last Select instruction, mark it as
8359
// live-in to both FalseMBB and JoinMBB.
8360
if (!CCKilled) {
8361
FalseMBB->addLiveIn(SystemZ::CC);
8362
JoinMBB->addLiveIn(SystemZ::CC);
8363
}
8364
8365
// StartMBB:
8366
// BRC CCMask, JoinMBB
8367
// # fallthrough to FalseMBB
8368
MBB = StartMBB;
8369
BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
8370
.addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
8371
MBB->addSuccessor(JoinMBB);
8372
MBB->addSuccessor(FalseMBB);
8373
8374
// FalseMBB:
8375
// # fallthrough to JoinMBB
8376
MBB = FalseMBB;
8377
MBB->addSuccessor(JoinMBB);
8378
8379
// JoinMBB:
8380
// %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
8381
// ...
8382
MBB = JoinMBB;
8383
createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
8384
for (auto *SelMI : Selects)
8385
SelMI->eraseFromParent();
8386
8387
MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
8388
for (auto *DbgMI : DbgValues)
8389
MBB->splice(InsertPos, StartMBB, DbgMI);
8390
8391
return JoinMBB;
8392
}
8393
8394
// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
8395
// StoreOpcode is the store to use and Invert says whether the store should
8396
// happen when the condition is false rather than true. If a STORE ON
8397
// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
8398
MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
8399
MachineBasicBlock *MBB,
8400
unsigned StoreOpcode,
8401
unsigned STOCOpcode,
8402
bool Invert) const {
8403
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8404
8405
Register SrcReg = MI.getOperand(0).getReg();
8406
MachineOperand Base = MI.getOperand(1);
8407
int64_t Disp = MI.getOperand(2).getImm();
8408
Register IndexReg = MI.getOperand(3).getReg();
8409
unsigned CCValid = MI.getOperand(4).getImm();
8410
unsigned CCMask = MI.getOperand(5).getImm();
8411
DebugLoc DL = MI.getDebugLoc();
8412
8413
StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
8414
8415
// ISel pattern matching also adds a load memory operand of the same
8416
// address, so take special care to find the storing memory operand.
8417
MachineMemOperand *MMO = nullptr;
8418
for (auto *I : MI.memoperands())
8419
if (I->isStore()) {
8420
MMO = I;
8421
break;
8422
}
8423
8424
// Use STOCOpcode if possible. We could use different store patterns in
8425
// order to avoid matching the index register, but the performance trade-offs
8426
// might be more complicated in that case.
8427
if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
8428
if (Invert)
8429
CCMask ^= CCValid;
8430
8431
BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
8432
.addReg(SrcReg)
8433
.add(Base)
8434
.addImm(Disp)
8435
.addImm(CCValid)
8436
.addImm(CCMask)
8437
.addMemOperand(MMO);
8438
8439
MI.eraseFromParent();
8440
return MBB;
8441
}
8442
8443
// Get the condition needed to branch around the store.
8444
if (!Invert)
8445
CCMask ^= CCValid;
8446
8447
MachineBasicBlock *StartMBB = MBB;
8448
MachineBasicBlock *JoinMBB = SystemZ::splitBlockBefore(MI, MBB);
8449
MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
8450
8451
// Unless CC was killed in the CondStore instruction, mark it as
8452
// live-in to both FalseMBB and JoinMBB.
8453
if (!MI.killsRegister(SystemZ::CC, /*TRI=*/nullptr) &&
8454
!checkCCKill(MI, JoinMBB)) {
8455
FalseMBB->addLiveIn(SystemZ::CC);
8456
JoinMBB->addLiveIn(SystemZ::CC);
8457
}
8458
8459
// StartMBB:
8460
// BRC CCMask, JoinMBB
8461
// # fallthrough to FalseMBB
8462
MBB = StartMBB;
8463
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8464
.addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
8465
MBB->addSuccessor(JoinMBB);
8466
MBB->addSuccessor(FalseMBB);
8467
8468
// FalseMBB:
8469
// store %SrcReg, %Disp(%Index,%Base)
8470
// # fallthrough to JoinMBB
8471
MBB = FalseMBB;
8472
BuildMI(MBB, DL, TII->get(StoreOpcode))
8473
.addReg(SrcReg)
8474
.add(Base)
8475
.addImm(Disp)
8476
.addReg(IndexReg)
8477
.addMemOperand(MMO);
8478
MBB->addSuccessor(JoinMBB);
8479
8480
MI.eraseFromParent();
8481
return JoinMBB;
8482
}
8483
8484
// Implement EmitInstrWithCustomInserter for pseudo [SU]Cmp128Hi instruction MI.
8485
MachineBasicBlock *
8486
SystemZTargetLowering::emitICmp128Hi(MachineInstr &MI,
8487
MachineBasicBlock *MBB,
8488
bool Unsigned) const {
8489
MachineFunction &MF = *MBB->getParent();
8490
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8491
MachineRegisterInfo &MRI = MF.getRegInfo();
8492
8493
// Synthetic instruction to compare 128-bit values.
8494
// Sets CC 1 if Op0 > Op1, sets a different CC otherwise.
8495
Register Op0 = MI.getOperand(0).getReg();
8496
Register Op1 = MI.getOperand(1).getReg();
8497
8498
MachineBasicBlock *StartMBB = MBB;
8499
MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(MI, MBB);
8500
MachineBasicBlock *HiEqMBB = SystemZ::emitBlockAfter(StartMBB);
8501
8502
// StartMBB:
8503
//
8504
// Use VECTOR ELEMENT COMPARE [LOGICAL] to compare the high parts.
8505
// Swap the inputs to get:
8506
// CC 1 if high(Op0) > high(Op1)
8507
// CC 2 if high(Op0) < high(Op1)
8508
// CC 0 if high(Op0) == high(Op1)
8509
//
8510
// If CC != 0, we'd done, so jump over the next instruction.
8511
//
8512
// VEC[L]G Op1, Op0
8513
// JNE JoinMBB
8514
// # fallthrough to HiEqMBB
8515
MBB = StartMBB;
8516
int HiOpcode = Unsigned? SystemZ::VECLG : SystemZ::VECG;
8517
BuildMI(MBB, MI.getDebugLoc(), TII->get(HiOpcode))
8518
.addReg(Op1).addReg(Op0);
8519
BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
8520
.addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE).addMBB(JoinMBB);
8521
MBB->addSuccessor(JoinMBB);
8522
MBB->addSuccessor(HiEqMBB);
8523
8524
// HiEqMBB:
8525
//
8526
// Otherwise, use VECTOR COMPARE HIGH LOGICAL.
8527
// Since we already know the high parts are equal, the CC
8528
// result will only depend on the low parts:
8529
// CC 1 if low(Op0) > low(Op1)
8530
// CC 3 if low(Op0) <= low(Op1)
8531
//
8532
// VCHLGS Tmp, Op0, Op1
8533
// # fallthrough to JoinMBB
8534
MBB = HiEqMBB;
8535
Register Temp = MRI.createVirtualRegister(&SystemZ::VR128BitRegClass);
8536
BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::VCHLGS), Temp)
8537
.addReg(Op0).addReg(Op1);
8538
MBB->addSuccessor(JoinMBB);
8539
8540
// Mark CC as live-in to JoinMBB.
8541
JoinMBB->addLiveIn(SystemZ::CC);
8542
8543
MI.eraseFromParent();
8544
return JoinMBB;
8545
}
8546
8547
// Implement EmitInstrWithCustomInserter for subword pseudo ATOMIC_LOADW_* or
8548
// ATOMIC_SWAPW instruction MI. BinOpcode is the instruction that performs
8549
// the binary operation elided by "*", or 0 for ATOMIC_SWAPW. Invert says
8550
// whether the field should be inverted after performing BinOpcode (e.g. for
8551
// NAND).
8552
MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
8553
MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
8554
bool Invert) const {
8555
MachineFunction &MF = *MBB->getParent();
8556
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8557
MachineRegisterInfo &MRI = MF.getRegInfo();
8558
8559
// Extract the operands. Base can be a register or a frame index.
8560
// Src2 can be a register or immediate.
8561
Register Dest = MI.getOperand(0).getReg();
8562
MachineOperand Base = earlyUseOperand(MI.getOperand(1));
8563
int64_t Disp = MI.getOperand(2).getImm();
8564
MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
8565
Register BitShift = MI.getOperand(4).getReg();
8566
Register NegBitShift = MI.getOperand(5).getReg();
8567
unsigned BitSize = MI.getOperand(6).getImm();
8568
DebugLoc DL = MI.getDebugLoc();
8569
8570
// Get the right opcodes for the displacement.
8571
unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp);
8572
unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
8573
assert(LOpcode && CSOpcode && "Displacement out of range");
8574
8575
// Create virtual registers for temporary results.
8576
Register OrigVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8577
Register OldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8578
Register NewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8579
Register RotatedOldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8580
Register RotatedNewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8581
8582
// Insert a basic block for the main loop.
8583
MachineBasicBlock *StartMBB = MBB;
8584
MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8585
MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8586
8587
// StartMBB:
8588
// ...
8589
// %OrigVal = L Disp(%Base)
8590
// # fall through to LoopMBB
8591
MBB = StartMBB;
8592
BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
8593
MBB->addSuccessor(LoopMBB);
8594
8595
// LoopMBB:
8596
// %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
8597
// %RotatedOldVal = RLL %OldVal, 0(%BitShift)
8598
// %RotatedNewVal = OP %RotatedOldVal, %Src2
8599
// %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
8600
// %Dest = CS %OldVal, %NewVal, Disp(%Base)
8601
// JNE LoopMBB
8602
// # fall through to DoneMBB
8603
MBB = LoopMBB;
8604
BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
8605
.addReg(OrigVal).addMBB(StartMBB)
8606
.addReg(Dest).addMBB(LoopMBB);
8607
BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
8608
.addReg(OldVal).addReg(BitShift).addImm(0);
8609
if (Invert) {
8610
// Perform the operation normally and then invert every bit of the field.
8611
Register Tmp = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8612
BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
8613
// XILF with the upper BitSize bits set.
8614
BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
8615
.addReg(Tmp).addImm(-1U << (32 - BitSize));
8616
} else if (BinOpcode)
8617
// A simply binary operation.
8618
BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
8619
.addReg(RotatedOldVal)
8620
.add(Src2);
8621
else
8622
// Use RISBG to rotate Src2 into position and use it to replace the
8623
// field in RotatedOldVal.
8624
BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
8625
.addReg(RotatedOldVal).addReg(Src2.getReg())
8626
.addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
8627
BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
8628
.addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
8629
BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
8630
.addReg(OldVal)
8631
.addReg(NewVal)
8632
.add(Base)
8633
.addImm(Disp);
8634
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8635
.addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
8636
MBB->addSuccessor(LoopMBB);
8637
MBB->addSuccessor(DoneMBB);
8638
8639
MI.eraseFromParent();
8640
return DoneMBB;
8641
}
8642
8643
// Implement EmitInstrWithCustomInserter for subword pseudo
8644
// ATOMIC_LOADW_{,U}{MIN,MAX} instruction MI. CompareOpcode is the
8645
// instruction that should be used to compare the current field with the
8646
// minimum or maximum value. KeepOldMask is the BRC condition-code mask
8647
// for when the current field should be kept.
8648
MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
8649
MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
8650
unsigned KeepOldMask) const {
8651
MachineFunction &MF = *MBB->getParent();
8652
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8653
MachineRegisterInfo &MRI = MF.getRegInfo();
8654
8655
// Extract the operands. Base can be a register or a frame index.
8656
Register Dest = MI.getOperand(0).getReg();
8657
MachineOperand Base = earlyUseOperand(MI.getOperand(1));
8658
int64_t Disp = MI.getOperand(2).getImm();
8659
Register Src2 = MI.getOperand(3).getReg();
8660
Register BitShift = MI.getOperand(4).getReg();
8661
Register NegBitShift = MI.getOperand(5).getReg();
8662
unsigned BitSize = MI.getOperand(6).getImm();
8663
DebugLoc DL = MI.getDebugLoc();
8664
8665
// Get the right opcodes for the displacement.
8666
unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp);
8667
unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
8668
assert(LOpcode && CSOpcode && "Displacement out of range");
8669
8670
// Create virtual registers for temporary results.
8671
Register OrigVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8672
Register OldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8673
Register NewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8674
Register RotatedOldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8675
Register RotatedAltVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8676
Register RotatedNewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8677
8678
// Insert 3 basic blocks for the loop.
8679
MachineBasicBlock *StartMBB = MBB;
8680
MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8681
MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8682
MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
8683
MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
8684
8685
// StartMBB:
8686
// ...
8687
// %OrigVal = L Disp(%Base)
8688
// # fall through to LoopMBB
8689
MBB = StartMBB;
8690
BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
8691
MBB->addSuccessor(LoopMBB);
8692
8693
// LoopMBB:
8694
// %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
8695
// %RotatedOldVal = RLL %OldVal, 0(%BitShift)
8696
// CompareOpcode %RotatedOldVal, %Src2
8697
// BRC KeepOldMask, UpdateMBB
8698
MBB = LoopMBB;
8699
BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
8700
.addReg(OrigVal).addMBB(StartMBB)
8701
.addReg(Dest).addMBB(UpdateMBB);
8702
BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
8703
.addReg(OldVal).addReg(BitShift).addImm(0);
8704
BuildMI(MBB, DL, TII->get(CompareOpcode))
8705
.addReg(RotatedOldVal).addReg(Src2);
8706
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8707
.addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
8708
MBB->addSuccessor(UpdateMBB);
8709
MBB->addSuccessor(UseAltMBB);
8710
8711
// UseAltMBB:
8712
// %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
8713
// # fall through to UpdateMBB
8714
MBB = UseAltMBB;
8715
BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
8716
.addReg(RotatedOldVal).addReg(Src2)
8717
.addImm(32).addImm(31 + BitSize).addImm(0);
8718
MBB->addSuccessor(UpdateMBB);
8719
8720
// UpdateMBB:
8721
// %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
8722
// [ %RotatedAltVal, UseAltMBB ]
8723
// %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
8724
// %Dest = CS %OldVal, %NewVal, Disp(%Base)
8725
// JNE LoopMBB
8726
// # fall through to DoneMBB
8727
MBB = UpdateMBB;
8728
BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
8729
.addReg(RotatedOldVal).addMBB(LoopMBB)
8730
.addReg(RotatedAltVal).addMBB(UseAltMBB);
8731
BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
8732
.addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
8733
BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
8734
.addReg(OldVal)
8735
.addReg(NewVal)
8736
.add(Base)
8737
.addImm(Disp);
8738
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8739
.addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
8740
MBB->addSuccessor(LoopMBB);
8741
MBB->addSuccessor(DoneMBB);
8742
8743
MI.eraseFromParent();
8744
return DoneMBB;
8745
}
8746
8747
// Implement EmitInstrWithCustomInserter for subword pseudo ATOMIC_CMP_SWAPW
8748
// instruction MI.
8749
MachineBasicBlock *
8750
SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
8751
MachineBasicBlock *MBB) const {
8752
MachineFunction &MF = *MBB->getParent();
8753
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8754
MachineRegisterInfo &MRI = MF.getRegInfo();
8755
8756
// Extract the operands. Base can be a register or a frame index.
8757
Register Dest = MI.getOperand(0).getReg();
8758
MachineOperand Base = earlyUseOperand(MI.getOperand(1));
8759
int64_t Disp = MI.getOperand(2).getImm();
8760
Register CmpVal = MI.getOperand(3).getReg();
8761
Register OrigSwapVal = MI.getOperand(4).getReg();
8762
Register BitShift = MI.getOperand(5).getReg();
8763
Register NegBitShift = MI.getOperand(6).getReg();
8764
int64_t BitSize = MI.getOperand(7).getImm();
8765
DebugLoc DL = MI.getDebugLoc();
8766
8767
const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
8768
8769
// Get the right opcodes for the displacement and zero-extension.
8770
unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp);
8771
unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
8772
unsigned ZExtOpcode = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR;
8773
assert(LOpcode && CSOpcode && "Displacement out of range");
8774
8775
// Create virtual registers for temporary results.
8776
Register OrigOldVal = MRI.createVirtualRegister(RC);
8777
Register OldVal = MRI.createVirtualRegister(RC);
8778
Register SwapVal = MRI.createVirtualRegister(RC);
8779
Register StoreVal = MRI.createVirtualRegister(RC);
8780
Register OldValRot = MRI.createVirtualRegister(RC);
8781
Register RetryOldVal = MRI.createVirtualRegister(RC);
8782
Register RetrySwapVal = MRI.createVirtualRegister(RC);
8783
8784
// Insert 2 basic blocks for the loop.
8785
MachineBasicBlock *StartMBB = MBB;
8786
MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8787
MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8788
MachineBasicBlock *SetMBB = SystemZ::emitBlockAfter(LoopMBB);
8789
8790
// StartMBB:
8791
// ...
8792
// %OrigOldVal = L Disp(%Base)
8793
// # fall through to LoopMBB
8794
MBB = StartMBB;
8795
BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
8796
.add(Base)
8797
.addImm(Disp)
8798
.addReg(0);
8799
MBB->addSuccessor(LoopMBB);
8800
8801
// LoopMBB:
8802
// %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
8803
// %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
8804
// %OldValRot = RLL %OldVal, BitSize(%BitShift)
8805
// ^^ The low BitSize bits contain the field
8806
// of interest.
8807
// %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0
8808
// ^^ Replace the upper 32-BitSize bits of the
8809
// swap value with those that we loaded and rotated.
8810
// %Dest = LL[CH] %OldValRot
8811
// CR %Dest, %CmpVal
8812
// JNE DoneMBB
8813
// # Fall through to SetMBB
8814
MBB = LoopMBB;
8815
BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
8816
.addReg(OrigOldVal).addMBB(StartMBB)
8817
.addReg(RetryOldVal).addMBB(SetMBB);
8818
BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
8819
.addReg(OrigSwapVal).addMBB(StartMBB)
8820
.addReg(RetrySwapVal).addMBB(SetMBB);
8821
BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot)
8822
.addReg(OldVal).addReg(BitShift).addImm(BitSize);
8823
BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
8824
.addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0);
8825
BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest)
8826
.addReg(OldValRot);
8827
BuildMI(MBB, DL, TII->get(SystemZ::CR))
8828
.addReg(Dest).addReg(CmpVal);
8829
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8830
.addImm(SystemZ::CCMASK_ICMP)
8831
.addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
8832
MBB->addSuccessor(DoneMBB);
8833
MBB->addSuccessor(SetMBB);
8834
8835
// SetMBB:
8836
// %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift)
8837
// ^^ Rotate the new field to its proper position.
8838
// %RetryOldVal = CS %OldVal, %StoreVal, Disp(%Base)
8839
// JNE LoopMBB
8840
// # fall through to ExitMBB
8841
MBB = SetMBB;
8842
BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
8843
.addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
8844
BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
8845
.addReg(OldVal)
8846
.addReg(StoreVal)
8847
.add(Base)
8848
.addImm(Disp);
8849
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8850
.addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
8851
MBB->addSuccessor(LoopMBB);
8852
MBB->addSuccessor(DoneMBB);
8853
8854
// If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
8855
// to the block after the loop. At this point, CC may have been defined
8856
// either by the CR in LoopMBB or by the CS in SetMBB.
8857
if (!MI.registerDefIsDead(SystemZ::CC, /*TRI=*/nullptr))
8858
DoneMBB->addLiveIn(SystemZ::CC);
8859
8860
MI.eraseFromParent();
8861
return DoneMBB;
8862
}
8863
8864
// Emit a move from two GR64s to a GR128.
8865
MachineBasicBlock *
8866
SystemZTargetLowering::emitPair128(MachineInstr &MI,
8867
MachineBasicBlock *MBB) const {
8868
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8869
const DebugLoc &DL = MI.getDebugLoc();
8870
8871
Register Dest = MI.getOperand(0).getReg();
8872
BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest)
8873
.add(MI.getOperand(1))
8874
.addImm(SystemZ::subreg_h64)
8875
.add(MI.getOperand(2))
8876
.addImm(SystemZ::subreg_l64);
8877
MI.eraseFromParent();
8878
return MBB;
8879
}
8880
8881
// Emit an extension from a GR64 to a GR128. ClearEven is true
8882
// if the high register of the GR128 value must be cleared or false if
8883
// it's "don't care".
8884
MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
8885
MachineBasicBlock *MBB,
8886
bool ClearEven) const {
8887
MachineFunction &MF = *MBB->getParent();
8888
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8889
MachineRegisterInfo &MRI = MF.getRegInfo();
8890
DebugLoc DL = MI.getDebugLoc();
8891
8892
Register Dest = MI.getOperand(0).getReg();
8893
Register Src = MI.getOperand(1).getReg();
8894
Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8895
8896
BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
8897
if (ClearEven) {
8898
Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8899
Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
8900
8901
BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
8902
.addImm(0);
8903
BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
8904
.addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
8905
In128 = NewIn128;
8906
}
8907
BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
8908
.addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
8909
8910
MI.eraseFromParent();
8911
return MBB;
8912
}
8913
8914
MachineBasicBlock *
8915
SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI,
8916
MachineBasicBlock *MBB,
8917
unsigned Opcode, bool IsMemset) const {
8918
MachineFunction &MF = *MBB->getParent();
8919
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8920
MachineRegisterInfo &MRI = MF.getRegInfo();
8921
DebugLoc DL = MI.getDebugLoc();
8922
8923
MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
8924
uint64_t DestDisp = MI.getOperand(1).getImm();
8925
MachineOperand SrcBase = MachineOperand::CreateReg(0U, false);
8926
uint64_t SrcDisp;
8927
8928
// Fold the displacement Disp if it is out of range.
8929
auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void {
8930
if (!isUInt<12>(Disp)) {
8931
Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8932
unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp);
8933
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg)
8934
.add(Base).addImm(Disp).addReg(0);
8935
Base = MachineOperand::CreateReg(Reg, false);
8936
Disp = 0;
8937
}
8938
};
8939
8940
if (!IsMemset) {
8941
SrcBase = earlyUseOperand(MI.getOperand(2));
8942
SrcDisp = MI.getOperand(3).getImm();
8943
} else {
8944
SrcBase = DestBase;
8945
SrcDisp = DestDisp++;
8946
foldDisplIfNeeded(DestBase, DestDisp);
8947
}
8948
8949
MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4);
8950
bool IsImmForm = LengthMO.isImm();
8951
bool IsRegForm = !IsImmForm;
8952
8953
// Build and insert one Opcode of Length, with special treatment for memset.
8954
auto insertMemMemOp = [&](MachineBasicBlock *InsMBB,
8955
MachineBasicBlock::iterator InsPos,
8956
MachineOperand DBase, uint64_t DDisp,
8957
MachineOperand SBase, uint64_t SDisp,
8958
unsigned Length) -> void {
8959
assert(Length > 0 && Length <= 256 && "Building memory op with bad length.");
8960
if (IsMemset) {
8961
MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3));
8962
if (ByteMO.isImm())
8963
BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI))
8964
.add(SBase).addImm(SDisp).add(ByteMO);
8965
else
8966
BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC))
8967
.add(ByteMO).add(SBase).addImm(SDisp).addReg(0);
8968
if (--Length == 0)
8969
return;
8970
}
8971
BuildMI(*MBB, InsPos, DL, TII->get(Opcode))
8972
.add(DBase).addImm(DDisp).addImm(Length)
8973
.add(SBase).addImm(SDisp)
8974
.setMemRefs(MI.memoperands());
8975
};
8976
8977
bool NeedsLoop = false;
8978
uint64_t ImmLength = 0;
8979
Register LenAdjReg = SystemZ::NoRegister;
8980
if (IsImmForm) {
8981
ImmLength = LengthMO.getImm();
8982
ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment.
8983
if (ImmLength == 0) {
8984
MI.eraseFromParent();
8985
return MBB;
8986
}
8987
if (Opcode == SystemZ::CLC) {
8988
if (ImmLength > 3 * 256)
8989
// A two-CLC sequence is a clear win over a loop, not least because
8990
// it needs only one branch. A three-CLC sequence needs the same
8991
// number of branches as a loop (i.e. 2), but is shorter. That
8992
// brings us to lengths greater than 768 bytes. It seems relatively
8993
// likely that a difference will be found within the first 768 bytes,
8994
// so we just optimize for the smallest number of branch
8995
// instructions, in order to avoid polluting the prediction buffer
8996
// too much.
8997
NeedsLoop = true;
8998
} else if (ImmLength > 6 * 256)
8999
// The heuristic we use is to prefer loops for anything that would
9000
// require 7 or more MVCs. With these kinds of sizes there isn't much
9001
// to choose between straight-line code and looping code, since the
9002
// time will be dominated by the MVCs themselves.
9003
NeedsLoop = true;
9004
} else {
9005
NeedsLoop = true;
9006
LenAdjReg = LengthMO.getReg();
9007
}
9008
9009
// When generating more than one CLC, all but the last will need to
9010
// branch to the end when a difference is found.
9011
MachineBasicBlock *EndMBB =
9012
(Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop)
9013
? SystemZ::splitBlockAfter(MI, MBB)
9014
: nullptr);
9015
9016
if (NeedsLoop) {
9017
Register StartCountReg =
9018
MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
9019
if (IsImmForm) {
9020
TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256);
9021
ImmLength &= 255;
9022
} else {
9023
BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg)
9024
.addReg(LenAdjReg)
9025
.addReg(0)
9026
.addImm(8);
9027
}
9028
9029
bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
9030
auto loadZeroAddress = [&]() -> MachineOperand {
9031
Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9032
BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0);
9033
return MachineOperand::CreateReg(Reg, false);
9034
};
9035
if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister)
9036
DestBase = loadZeroAddress();
9037
if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister)
9038
SrcBase = HaveSingleBase ? DestBase : loadZeroAddress();
9039
9040
MachineBasicBlock *StartMBB = nullptr;
9041
MachineBasicBlock *LoopMBB = nullptr;
9042
MachineBasicBlock *NextMBB = nullptr;
9043
MachineBasicBlock *DoneMBB = nullptr;
9044
MachineBasicBlock *AllDoneMBB = nullptr;
9045
9046
Register StartSrcReg = forceReg(MI, SrcBase, TII);
9047
Register StartDestReg =
9048
(HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII));
9049
9050
const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
9051
Register ThisSrcReg = MRI.createVirtualRegister(RC);
9052
Register ThisDestReg =
9053
(HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC));
9054
Register NextSrcReg = MRI.createVirtualRegister(RC);
9055
Register NextDestReg =
9056
(HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC));
9057
RC = &SystemZ::GR64BitRegClass;
9058
Register ThisCountReg = MRI.createVirtualRegister(RC);
9059
Register NextCountReg = MRI.createVirtualRegister(RC);
9060
9061
if (IsRegForm) {
9062
AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB);
9063
StartMBB = SystemZ::emitBlockAfter(MBB);
9064
LoopMBB = SystemZ::emitBlockAfter(StartMBB);
9065
NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
9066
DoneMBB = SystemZ::emitBlockAfter(NextMBB);
9067
9068
// MBB:
9069
// # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB.
9070
BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
9071
.addReg(LenAdjReg).addImm(IsMemset ? -2 : -1);
9072
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9073
.addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
9074
.addMBB(AllDoneMBB);
9075
MBB->addSuccessor(AllDoneMBB);
9076
if (!IsMemset)
9077
MBB->addSuccessor(StartMBB);
9078
else {
9079
// MemsetOneCheckMBB:
9080
// # Jump to MemsetOneMBB for a memset of length 1, or
9081
// # fall thru to StartMBB.
9082
MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB);
9083
MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin());
9084
MBB->addSuccessor(MemsetOneCheckMBB);
9085
MBB = MemsetOneCheckMBB;
9086
BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
9087
.addReg(LenAdjReg).addImm(-1);
9088
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9089
.addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
9090
.addMBB(MemsetOneMBB);
9091
MBB->addSuccessor(MemsetOneMBB, {10, 100});
9092
MBB->addSuccessor(StartMBB, {90, 100});
9093
9094
// MemsetOneMBB:
9095
// # Jump back to AllDoneMBB after a single MVI or STC.
9096
MBB = MemsetOneMBB;
9097
insertMemMemOp(MBB, MBB->end(),
9098
MachineOperand::CreateReg(StartDestReg, false), DestDisp,
9099
MachineOperand::CreateReg(StartSrcReg, false), SrcDisp,
9100
1);
9101
BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB);
9102
MBB->addSuccessor(AllDoneMBB);
9103
}
9104
9105
// StartMBB:
9106
// # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB.
9107
MBB = StartMBB;
9108
BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
9109
.addReg(StartCountReg).addImm(0);
9110
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9111
.addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
9112
.addMBB(DoneMBB);
9113
MBB->addSuccessor(DoneMBB);
9114
MBB->addSuccessor(LoopMBB);
9115
}
9116
else {
9117
StartMBB = MBB;
9118
DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
9119
LoopMBB = SystemZ::emitBlockAfter(StartMBB);
9120
NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
9121
9122
// StartMBB:
9123
// # fall through to LoopMBB
9124
MBB->addSuccessor(LoopMBB);
9125
9126
DestBase = MachineOperand::CreateReg(NextDestReg, false);
9127
SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
9128
if (EndMBB && !ImmLength)
9129
// If the loop handled the whole CLC range, DoneMBB will be empty with
9130
// CC live-through into EndMBB, so add it as live-in.
9131
DoneMBB->addLiveIn(SystemZ::CC);
9132
}
9133
9134
// LoopMBB:
9135
// %ThisDestReg = phi [ %StartDestReg, StartMBB ],
9136
// [ %NextDestReg, NextMBB ]
9137
// %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
9138
// [ %NextSrcReg, NextMBB ]
9139
// %ThisCountReg = phi [ %StartCountReg, StartMBB ],
9140
// [ %NextCountReg, NextMBB ]
9141
// ( PFD 2, 768+DestDisp(%ThisDestReg) )
9142
// Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
9143
// ( JLH EndMBB )
9144
//
9145
// The prefetch is used only for MVC. The JLH is used only for CLC.
9146
MBB = LoopMBB;
9147
BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
9148
.addReg(StartDestReg).addMBB(StartMBB)
9149
.addReg(NextDestReg).addMBB(NextMBB);
9150
if (!HaveSingleBase)
9151
BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
9152
.addReg(StartSrcReg).addMBB(StartMBB)
9153
.addReg(NextSrcReg).addMBB(NextMBB);
9154
BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
9155
.addReg(StartCountReg).addMBB(StartMBB)
9156
.addReg(NextCountReg).addMBB(NextMBB);
9157
if (Opcode == SystemZ::MVC)
9158
BuildMI(MBB, DL, TII->get(SystemZ::PFD))
9159
.addImm(SystemZ::PFD_WRITE)
9160
.addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0);
9161
insertMemMemOp(MBB, MBB->end(),
9162
MachineOperand::CreateReg(ThisDestReg, false), DestDisp,
9163
MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256);
9164
if (EndMBB) {
9165
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9166
.addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
9167
.addMBB(EndMBB);
9168
MBB->addSuccessor(EndMBB);
9169
MBB->addSuccessor(NextMBB);
9170
}
9171
9172
// NextMBB:
9173
// %NextDestReg = LA 256(%ThisDestReg)
9174
// %NextSrcReg = LA 256(%ThisSrcReg)
9175
// %NextCountReg = AGHI %ThisCountReg, -1
9176
// CGHI %NextCountReg, 0
9177
// JLH LoopMBB
9178
// # fall through to DoneMBB
9179
//
9180
// The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
9181
MBB = NextMBB;
9182
BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
9183
.addReg(ThisDestReg).addImm(256).addReg(0);
9184
if (!HaveSingleBase)
9185
BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
9186
.addReg(ThisSrcReg).addImm(256).addReg(0);
9187
BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
9188
.addReg(ThisCountReg).addImm(-1);
9189
BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
9190
.addReg(NextCountReg).addImm(0);
9191
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9192
.addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
9193
.addMBB(LoopMBB);
9194
MBB->addSuccessor(LoopMBB);
9195
MBB->addSuccessor(DoneMBB);
9196
9197
MBB = DoneMBB;
9198
if (IsRegForm) {
9199
// DoneMBB:
9200
// # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run.
9201
// # Use EXecute Relative Long for the remainder of the bytes. The target
9202
// instruction of the EXRL will have a length field of 1 since 0 is an
9203
// illegal value. The number of bytes processed becomes (%LenAdjReg &
9204
// 0xff) + 1.
9205
// # Fall through to AllDoneMBB.
9206
Register RemSrcReg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9207
Register RemDestReg = HaveSingleBase ? RemSrcReg
9208
: MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9209
BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg)
9210
.addReg(StartDestReg).addMBB(StartMBB)
9211
.addReg(NextDestReg).addMBB(NextMBB);
9212
if (!HaveSingleBase)
9213
BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg)
9214
.addReg(StartSrcReg).addMBB(StartMBB)
9215
.addReg(NextSrcReg).addMBB(NextMBB);
9216
if (IsMemset)
9217
insertMemMemOp(MBB, MBB->end(),
9218
MachineOperand::CreateReg(RemDestReg, false), DestDisp,
9219
MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1);
9220
MachineInstrBuilder EXRL_MIB =
9221
BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo))
9222
.addImm(Opcode)
9223
.addReg(LenAdjReg)
9224
.addReg(RemDestReg).addImm(DestDisp)
9225
.addReg(RemSrcReg).addImm(SrcDisp);
9226
MBB->addSuccessor(AllDoneMBB);
9227
MBB = AllDoneMBB;
9228
if (Opcode != SystemZ::MVC) {
9229
EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine);
9230
if (EndMBB)
9231
MBB->addLiveIn(SystemZ::CC);
9232
}
9233
}
9234
MF.getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9235
}
9236
9237
// Handle any remaining bytes with straight-line code.
9238
while (ImmLength > 0) {
9239
uint64_t ThisLength = std::min(ImmLength, uint64_t(256));
9240
// The previous iteration might have created out-of-range displacements.
9241
// Apply them using LA/LAY if so.
9242
foldDisplIfNeeded(DestBase, DestDisp);
9243
foldDisplIfNeeded(SrcBase, SrcDisp);
9244
insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength);
9245
DestDisp += ThisLength;
9246
SrcDisp += ThisLength;
9247
ImmLength -= ThisLength;
9248
// If there's another CLC to go, branch to the end if a difference
9249
// was found.
9250
if (EndMBB && ImmLength > 0) {
9251
MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
9252
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9253
.addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
9254
.addMBB(EndMBB);
9255
MBB->addSuccessor(EndMBB);
9256
MBB->addSuccessor(NextMBB);
9257
MBB = NextMBB;
9258
}
9259
}
9260
if (EndMBB) {
9261
MBB->addSuccessor(EndMBB);
9262
MBB = EndMBB;
9263
MBB->addLiveIn(SystemZ::CC);
9264
}
9265
9266
MI.eraseFromParent();
9267
return MBB;
9268
}
9269
9270
// Decompose string pseudo-instruction MI into a loop that continually performs
9271
// Opcode until CC != 3.
9272
MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
9273
MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
9274
MachineFunction &MF = *MBB->getParent();
9275
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9276
MachineRegisterInfo &MRI = MF.getRegInfo();
9277
DebugLoc DL = MI.getDebugLoc();
9278
9279
uint64_t End1Reg = MI.getOperand(0).getReg();
9280
uint64_t Start1Reg = MI.getOperand(1).getReg();
9281
uint64_t Start2Reg = MI.getOperand(2).getReg();
9282
uint64_t CharReg = MI.getOperand(3).getReg();
9283
9284
const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
9285
uint64_t This1Reg = MRI.createVirtualRegister(RC);
9286
uint64_t This2Reg = MRI.createVirtualRegister(RC);
9287
uint64_t End2Reg = MRI.createVirtualRegister(RC);
9288
9289
MachineBasicBlock *StartMBB = MBB;
9290
MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
9291
MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
9292
9293
// StartMBB:
9294
// # fall through to LoopMBB
9295
MBB->addSuccessor(LoopMBB);
9296
9297
// LoopMBB:
9298
// %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
9299
// %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
9300
// R0L = %CharReg
9301
// %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
9302
// JO LoopMBB
9303
// # fall through to DoneMBB
9304
//
9305
// The load of R0L can be hoisted by post-RA LICM.
9306
MBB = LoopMBB;
9307
9308
BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
9309
.addReg(Start1Reg).addMBB(StartMBB)
9310
.addReg(End1Reg).addMBB(LoopMBB);
9311
BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
9312
.addReg(Start2Reg).addMBB(StartMBB)
9313
.addReg(End2Reg).addMBB(LoopMBB);
9314
BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
9315
BuildMI(MBB, DL, TII->get(Opcode))
9316
.addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
9317
.addReg(This1Reg).addReg(This2Reg);
9318
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9319
.addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
9320
MBB->addSuccessor(LoopMBB);
9321
MBB->addSuccessor(DoneMBB);
9322
9323
DoneMBB->addLiveIn(SystemZ::CC);
9324
9325
MI.eraseFromParent();
9326
return DoneMBB;
9327
}
9328
9329
// Update TBEGIN instruction with final opcode and register clobbers.
9330
MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
9331
MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
9332
bool NoFloat) const {
9333
MachineFunction &MF = *MBB->getParent();
9334
const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
9335
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9336
9337
// Update opcode.
9338
MI.setDesc(TII->get(Opcode));
9339
9340
// We cannot handle a TBEGIN that clobbers the stack or frame pointer.
9341
// Make sure to add the corresponding GRSM bits if they are missing.
9342
uint64_t Control = MI.getOperand(2).getImm();
9343
static const unsigned GPRControlBit[16] = {
9344
0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
9345
0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
9346
};
9347
Control |= GPRControlBit[15];
9348
if (TFI->hasFP(MF))
9349
Control |= GPRControlBit[11];
9350
MI.getOperand(2).setImm(Control);
9351
9352
// Add GPR clobbers.
9353
for (int I = 0; I < 16; I++) {
9354
if ((Control & GPRControlBit[I]) == 0) {
9355
unsigned Reg = SystemZMC::GR64Regs[I];
9356
MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
9357
}
9358
}
9359
9360
// Add FPR/VR clobbers.
9361
if (!NoFloat && (Control & 4) != 0) {
9362
if (Subtarget.hasVector()) {
9363
for (unsigned Reg : SystemZMC::VR128Regs) {
9364
MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
9365
}
9366
} else {
9367
for (unsigned Reg : SystemZMC::FP64Regs) {
9368
MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
9369
}
9370
}
9371
}
9372
9373
return MBB;
9374
}
9375
9376
MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
9377
MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
9378
MachineFunction &MF = *MBB->getParent();
9379
MachineRegisterInfo *MRI = &MF.getRegInfo();
9380
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9381
DebugLoc DL = MI.getDebugLoc();
9382
9383
Register SrcReg = MI.getOperand(0).getReg();
9384
9385
// Create new virtual register of the same class as source.
9386
const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
9387
Register DstReg = MRI->createVirtualRegister(RC);
9388
9389
// Replace pseudo with a normal load-and-test that models the def as
9390
// well.
9391
BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
9392
.addReg(SrcReg)
9393
.setMIFlags(MI.getFlags());
9394
MI.eraseFromParent();
9395
9396
return MBB;
9397
}
9398
9399
MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
9400
MachineInstr &MI, MachineBasicBlock *MBB) const {
9401
MachineFunction &MF = *MBB->getParent();
9402
MachineRegisterInfo *MRI = &MF.getRegInfo();
9403
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9404
DebugLoc DL = MI.getDebugLoc();
9405
const unsigned ProbeSize = getStackProbeSize(MF);
9406
Register DstReg = MI.getOperand(0).getReg();
9407
Register SizeReg = MI.getOperand(2).getReg();
9408
9409
MachineBasicBlock *StartMBB = MBB;
9410
MachineBasicBlock *DoneMBB = SystemZ::splitBlockAfter(MI, MBB);
9411
MachineBasicBlock *LoopTestMBB = SystemZ::emitBlockAfter(StartMBB);
9412
MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
9413
MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
9414
MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
9415
9416
MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
9417
MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
9418
9419
Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9420
Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9421
9422
// LoopTestMBB
9423
// BRC TailTestMBB
9424
// # fallthrough to LoopBodyMBB
9425
StartMBB->addSuccessor(LoopTestMBB);
9426
MBB = LoopTestMBB;
9427
BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
9428
.addReg(SizeReg)
9429
.addMBB(StartMBB)
9430
.addReg(IncReg)
9431
.addMBB(LoopBodyMBB);
9432
BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
9433
.addReg(PHIReg)
9434
.addImm(ProbeSize);
9435
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9436
.addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
9437
.addMBB(TailTestMBB);
9438
MBB->addSuccessor(LoopBodyMBB);
9439
MBB->addSuccessor(TailTestMBB);
9440
9441
// LoopBodyMBB: Allocate and probe by means of a volatile compare.
9442
// J LoopTestMBB
9443
MBB = LoopBodyMBB;
9444
BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
9445
.addReg(PHIReg)
9446
.addImm(ProbeSize);
9447
BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
9448
.addReg(SystemZ::R15D)
9449
.addImm(ProbeSize);
9450
BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
9451
.addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
9452
.setMemRefs(VolLdMMO);
9453
BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
9454
MBB->addSuccessor(LoopTestMBB);
9455
9456
// TailTestMBB
9457
// BRC DoneMBB
9458
// # fallthrough to TailMBB
9459
MBB = TailTestMBB;
9460
BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
9461
.addReg(PHIReg)
9462
.addImm(0);
9463
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9464
.addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
9465
.addMBB(DoneMBB);
9466
MBB->addSuccessor(TailMBB);
9467
MBB->addSuccessor(DoneMBB);
9468
9469
// TailMBB
9470
// # fallthrough to DoneMBB
9471
MBB = TailMBB;
9472
BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
9473
.addReg(SystemZ::R15D)
9474
.addReg(PHIReg);
9475
BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
9476
.addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
9477
.setMemRefs(VolLdMMO);
9478
MBB->addSuccessor(DoneMBB);
9479
9480
// DoneMBB
9481
MBB = DoneMBB;
9482
BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
9483
.addReg(SystemZ::R15D);
9484
9485
MI.eraseFromParent();
9486
return DoneMBB;
9487
}
9488
9489
SDValue SystemZTargetLowering::
9490
getBackchainAddress(SDValue SP, SelectionDAG &DAG) const {
9491
MachineFunction &MF = DAG.getMachineFunction();
9492
auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
9493
SDLoc DL(SP);
9494
return DAG.getNode(ISD::ADD, DL, MVT::i64, SP,
9495
DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL));
9496
}
9497
9498
MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
9499
MachineInstr &MI, MachineBasicBlock *MBB) const {
9500
switch (MI.getOpcode()) {
9501
case SystemZ::ADJCALLSTACKDOWN:
9502
case SystemZ::ADJCALLSTACKUP:
9503
return emitAdjCallStack(MI, MBB);
9504
9505
case SystemZ::Select32:
9506
case SystemZ::Select64:
9507
case SystemZ::Select128:
9508
case SystemZ::SelectF32:
9509
case SystemZ::SelectF64:
9510
case SystemZ::SelectF128:
9511
case SystemZ::SelectVR32:
9512
case SystemZ::SelectVR64:
9513
case SystemZ::SelectVR128:
9514
return emitSelect(MI, MBB);
9515
9516
case SystemZ::CondStore8Mux:
9517
return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
9518
case SystemZ::CondStore8MuxInv:
9519
return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
9520
case SystemZ::CondStore16Mux:
9521
return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
9522
case SystemZ::CondStore16MuxInv:
9523
return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
9524
case SystemZ::CondStore32Mux:
9525
return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
9526
case SystemZ::CondStore32MuxInv:
9527
return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
9528
case SystemZ::CondStore8:
9529
return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
9530
case SystemZ::CondStore8Inv:
9531
return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
9532
case SystemZ::CondStore16:
9533
return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
9534
case SystemZ::CondStore16Inv:
9535
return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
9536
case SystemZ::CondStore32:
9537
return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
9538
case SystemZ::CondStore32Inv:
9539
return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
9540
case SystemZ::CondStore64:
9541
return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
9542
case SystemZ::CondStore64Inv:
9543
return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
9544
case SystemZ::CondStoreF32:
9545
return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
9546
case SystemZ::CondStoreF32Inv:
9547
return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
9548
case SystemZ::CondStoreF64:
9549
return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
9550
case SystemZ::CondStoreF64Inv:
9551
return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
9552
9553
case SystemZ::SCmp128Hi:
9554
return emitICmp128Hi(MI, MBB, false);
9555
case SystemZ::UCmp128Hi:
9556
return emitICmp128Hi(MI, MBB, true);
9557
9558
case SystemZ::PAIR128:
9559
return emitPair128(MI, MBB);
9560
case SystemZ::AEXT128:
9561
return emitExt128(MI, MBB, false);
9562
case SystemZ::ZEXT128:
9563
return emitExt128(MI, MBB, true);
9564
9565
case SystemZ::ATOMIC_SWAPW:
9566
return emitAtomicLoadBinary(MI, MBB, 0);
9567
9568
case SystemZ::ATOMIC_LOADW_AR:
9569
return emitAtomicLoadBinary(MI, MBB, SystemZ::AR);
9570
case SystemZ::ATOMIC_LOADW_AFI:
9571
return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI);
9572
9573
case SystemZ::ATOMIC_LOADW_SR:
9574
return emitAtomicLoadBinary(MI, MBB, SystemZ::SR);
9575
9576
case SystemZ::ATOMIC_LOADW_NR:
9577
return emitAtomicLoadBinary(MI, MBB, SystemZ::NR);
9578
case SystemZ::ATOMIC_LOADW_NILH:
9579
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH);
9580
9581
case SystemZ::ATOMIC_LOADW_OR:
9582
return emitAtomicLoadBinary(MI, MBB, SystemZ::OR);
9583
case SystemZ::ATOMIC_LOADW_OILH:
9584
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH);
9585
9586
case SystemZ::ATOMIC_LOADW_XR:
9587
return emitAtomicLoadBinary(MI, MBB, SystemZ::XR);
9588
case SystemZ::ATOMIC_LOADW_XILF:
9589
return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF);
9590
9591
case SystemZ::ATOMIC_LOADW_NRi:
9592
return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, true);
9593
case SystemZ::ATOMIC_LOADW_NILHi:
9594
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, true);
9595
9596
case SystemZ::ATOMIC_LOADW_MIN:
9597
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_LE);
9598
case SystemZ::ATOMIC_LOADW_MAX:
9599
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_GE);
9600
case SystemZ::ATOMIC_LOADW_UMIN:
9601
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_LE);
9602
case SystemZ::ATOMIC_LOADW_UMAX:
9603
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_GE);
9604
9605
case SystemZ::ATOMIC_CMP_SWAPW:
9606
return emitAtomicCmpSwapW(MI, MBB);
9607
case SystemZ::MVCImm:
9608
case SystemZ::MVCReg:
9609
return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
9610
case SystemZ::NCImm:
9611
return emitMemMemWrapper(MI, MBB, SystemZ::NC);
9612
case SystemZ::OCImm:
9613
return emitMemMemWrapper(MI, MBB, SystemZ::OC);
9614
case SystemZ::XCImm:
9615
case SystemZ::XCReg:
9616
return emitMemMemWrapper(MI, MBB, SystemZ::XC);
9617
case SystemZ::CLCImm:
9618
case SystemZ::CLCReg:
9619
return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
9620
case SystemZ::MemsetImmImm:
9621
case SystemZ::MemsetImmReg:
9622
case SystemZ::MemsetRegImm:
9623
case SystemZ::MemsetRegReg:
9624
return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/);
9625
case SystemZ::CLSTLoop:
9626
return emitStringWrapper(MI, MBB, SystemZ::CLST);
9627
case SystemZ::MVSTLoop:
9628
return emitStringWrapper(MI, MBB, SystemZ::MVST);
9629
case SystemZ::SRSTLoop:
9630
return emitStringWrapper(MI, MBB, SystemZ::SRST);
9631
case SystemZ::TBEGIN:
9632
return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
9633
case SystemZ::TBEGIN_nofloat:
9634
return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
9635
case SystemZ::TBEGINC:
9636
return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
9637
case SystemZ::LTEBRCompare_Pseudo:
9638
return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
9639
case SystemZ::LTDBRCompare_Pseudo:
9640
return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
9641
case SystemZ::LTXBRCompare_Pseudo:
9642
return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
9643
9644
case SystemZ::PROBED_ALLOCA:
9645
return emitProbedAlloca(MI, MBB);
9646
9647
case TargetOpcode::STACKMAP:
9648
case TargetOpcode::PATCHPOINT:
9649
return emitPatchPoint(MI, MBB);
9650
9651
default:
9652
llvm_unreachable("Unexpected instr type to insert");
9653
}
9654
}
9655
9656
// This is only used by the isel schedulers, and is needed only to prevent
9657
// compiler from crashing when list-ilp is used.
9658
const TargetRegisterClass *
9659
SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
9660
if (VT == MVT::Untyped)
9661
return &SystemZ::ADDR128BitRegClass;
9662
return TargetLowering::getRepRegClassFor(VT);
9663
}
9664
9665
SDValue SystemZTargetLowering::lowerGET_ROUNDING(SDValue Op,
9666
SelectionDAG &DAG) const {
9667
SDLoc dl(Op);
9668
/*
9669
The rounding method is in FPC Byte 3 bits 6-7, and has the following
9670
settings:
9671
00 Round to nearest
9672
01 Round to 0
9673
10 Round to +inf
9674
11 Round to -inf
9675
9676
FLT_ROUNDS, on the other hand, expects the following:
9677
-1 Undefined
9678
0 Round to 0
9679
1 Round to nearest
9680
2 Round to +inf
9681
3 Round to -inf
9682
*/
9683
9684
// Save FPC to register.
9685
SDValue Chain = Op.getOperand(0);
9686
SDValue EFPC(
9687
DAG.getMachineNode(SystemZ::EFPC, dl, {MVT::i32, MVT::Other}, Chain), 0);
9688
Chain = EFPC.getValue(1);
9689
9690
// Transform as necessary
9691
SDValue CWD1 = DAG.getNode(ISD::AND, dl, MVT::i32, EFPC,
9692
DAG.getConstant(3, dl, MVT::i32));
9693
// RetVal = (CWD1 ^ (CWD1 >> 1)) ^ 1
9694
SDValue CWD2 = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1,
9695
DAG.getNode(ISD::SRL, dl, MVT::i32, CWD1,
9696
DAG.getConstant(1, dl, MVT::i32)));
9697
9698
SDValue RetVal = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD2,
9699
DAG.getConstant(1, dl, MVT::i32));
9700
RetVal = DAG.getZExtOrTrunc(RetVal, dl, Op.getValueType());
9701
9702
return DAG.getMergeValues({RetVal, Chain}, dl);
9703
}
9704
9705
SDValue SystemZTargetLowering::lowerVECREDUCE_ADD(SDValue Op,
9706
SelectionDAG &DAG) const {
9707
EVT VT = Op.getValueType();
9708
Op = Op.getOperand(0);
9709
EVT OpVT = Op.getValueType();
9710
9711
assert(OpVT.isVector() && "Operand type for VECREDUCE_ADD is not a vector.");
9712
9713
SDLoc DL(Op);
9714
9715
// load a 0 vector for the third operand of VSUM.
9716
SDValue Zero = DAG.getSplatBuildVector(OpVT, DL, DAG.getConstant(0, DL, VT));
9717
9718
// execute VSUM.
9719
switch (OpVT.getScalarSizeInBits()) {
9720
case 8:
9721
case 16:
9722
Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Zero);
9723
[[fallthrough]];
9724
case 32:
9725
case 64:
9726
Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::i128, Op,
9727
DAG.getBitcast(Op.getValueType(), Zero));
9728
break;
9729
case 128:
9730
break; // VSUM over v1i128 should not happen and would be a noop
9731
default:
9732
llvm_unreachable("Unexpected scalar size.");
9733
}
9734
// Cast to original vector type, retrieve last element.
9735
return DAG.getNode(
9736
ISD::EXTRACT_VECTOR_ELT, DL, VT, DAG.getBitcast(OpVT, Op),
9737
DAG.getConstant(OpVT.getVectorNumElements() - 1, DL, MVT::i32));
9738
}
9739
9740