Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZISelLowering.h
35269 views
1
//===-- SystemZISelLowering.h - SystemZ DAG lowering interface --*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines the interfaces that SystemZ uses to lower LLVM code into a
10
// selection DAG.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
15
#define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
16
17
#include "SystemZ.h"
18
#include "SystemZInstrInfo.h"
19
#include "llvm/CodeGen/MachineBasicBlock.h"
20
#include "llvm/CodeGen/SelectionDAG.h"
21
#include "llvm/CodeGen/TargetLowering.h"
22
#include <optional>
23
24
namespace llvm {
25
namespace SystemZISD {
26
enum NodeType : unsigned {
27
FIRST_NUMBER = ISD::BUILTIN_OP_END,
28
29
// Return with a glue operand. Operand 0 is the chain operand.
30
RET_GLUE,
31
32
// Calls a function. Operand 0 is the chain operand and operand 1
33
// is the target address. The arguments start at operand 2.
34
// There is an optional glue operand at the end.
35
CALL,
36
SIBCALL,
37
38
// TLS calls. Like regular calls, except operand 1 is the TLS symbol.
39
// (The call target is implicitly __tls_get_offset.)
40
TLS_GDCALL,
41
TLS_LDCALL,
42
43
// Wraps a TargetGlobalAddress that should be loaded using PC-relative
44
// accesses (LARL). Operand 0 is the address.
45
PCREL_WRAPPER,
46
47
// Used in cases where an offset is applied to a TargetGlobalAddress.
48
// Operand 0 is the full TargetGlobalAddress and operand 1 is a
49
// PCREL_WRAPPER for an anchor point. This is used so that we can
50
// cheaply refer to either the full address or the anchor point
51
// as a register base.
52
PCREL_OFFSET,
53
54
// Integer comparisons. There are three operands: the two values
55
// to compare, and an integer of type SystemZICMP.
56
ICMP,
57
58
// Floating-point comparisons. The two operands are the values to compare.
59
FCMP,
60
61
// Test under mask. The first operand is ANDed with the second operand
62
// and the condition codes are set on the result. The third operand is
63
// a boolean that is true if the condition codes need to distinguish
64
// between CCMASK_TM_MIXED_MSB_0 and CCMASK_TM_MIXED_MSB_1 (which the
65
// register forms do but the memory forms don't).
66
TM,
67
68
// Branches if a condition is true. Operand 0 is the chain operand;
69
// operand 1 is the 4-bit condition-code mask, with bit N in
70
// big-endian order meaning "branch if CC=N"; operand 2 is the
71
// target block and operand 3 is the flag operand.
72
BR_CCMASK,
73
74
// Selects between operand 0 and operand 1. Operand 2 is the
75
// mask of condition-code values for which operand 0 should be
76
// chosen over operand 1; it has the same form as BR_CCMASK.
77
// Operand 3 is the flag operand.
78
SELECT_CCMASK,
79
80
// Evaluates to the gap between the stack pointer and the
81
// base of the dynamically-allocatable area.
82
ADJDYNALLOC,
83
84
// For allocating stack space when using stack clash protector.
85
// Allocation is performed by block, and each block is probed.
86
PROBED_ALLOCA,
87
88
// Count number of bits set in operand 0 per byte.
89
POPCNT,
90
91
// Wrappers around the ISD opcodes of the same name. The output is GR128.
92
// Input operands may be GR64 or GR32, depending on the instruction.
93
SMUL_LOHI,
94
UMUL_LOHI,
95
SDIVREM,
96
UDIVREM,
97
98
// Add/subtract with overflow/carry. These have the same operands as
99
// the corresponding standard operations, except with the carry flag
100
// replaced by a condition code value.
101
SADDO, SSUBO, UADDO, USUBO, ADDCARRY, SUBCARRY,
102
103
// Set the condition code from a boolean value in operand 0.
104
// Operand 1 is a mask of all condition-code values that may result of this
105
// operation, operand 2 is a mask of condition-code values that may result
106
// if the boolean is true.
107
// Note that this operation is always optimized away, we will never
108
// generate any code for it.
109
GET_CCMASK,
110
111
// Use a series of MVCs to copy bytes from one memory location to another.
112
// The operands are:
113
// - the target address
114
// - the source address
115
// - the constant length
116
//
117
// This isn't a memory opcode because we'd need to attach two
118
// MachineMemOperands rather than one.
119
MVC,
120
121
// Similar to MVC, but for logic operations (AND, OR, XOR).
122
NC,
123
OC,
124
XC,
125
126
// Use CLC to compare two blocks of memory, with the same comments
127
// as for MVC.
128
CLC,
129
130
// Use MVC to set a block of memory after storing the first byte.
131
MEMSET_MVC,
132
133
// Use an MVST-based sequence to implement stpcpy().
134
STPCPY,
135
136
// Use a CLST-based sequence to implement strcmp(). The two input operands
137
// are the addresses of the strings to compare.
138
STRCMP,
139
140
// Use an SRST-based sequence to search a block of memory. The first
141
// operand is the end address, the second is the start, and the third
142
// is the character to search for. CC is set to 1 on success and 2
143
// on failure.
144
SEARCH_STRING,
145
146
// Store the CC value in bits 29 and 28 of an integer.
147
IPM,
148
149
// Transaction begin. The first operand is the chain, the second
150
// the TDB pointer, and the third the immediate control field.
151
// Returns CC value and chain.
152
TBEGIN,
153
TBEGIN_NOFLOAT,
154
155
// Transaction end. Just the chain operand. Returns CC value and chain.
156
TEND,
157
158
// Create a vector constant by filling byte N of the result with bit
159
// 15-N of the single operand.
160
BYTE_MASK,
161
162
// Create a vector constant by replicating an element-sized RISBG-style mask.
163
// The first operand specifies the starting set bit and the second operand
164
// specifies the ending set bit. Both operands count from the MSB of the
165
// element.
166
ROTATE_MASK,
167
168
// Replicate a GPR scalar value into all elements of a vector.
169
REPLICATE,
170
171
// Create a vector from two i64 GPRs.
172
JOIN_DWORDS,
173
174
// Replicate one element of a vector into all elements. The first operand
175
// is the vector and the second is the index of the element to replicate.
176
SPLAT,
177
178
// Interleave elements from the high half of operand 0 and the high half
179
// of operand 1.
180
MERGE_HIGH,
181
182
// Likewise for the low halves.
183
MERGE_LOW,
184
185
// Concatenate the vectors in the first two operands, shift them left
186
// by the third operand, and take the first half of the result.
187
SHL_DOUBLE,
188
189
// Take one element of the first v2i64 operand and the one element of
190
// the second v2i64 operand and concatenate them to form a v2i64 result.
191
// The third operand is a 4-bit value of the form 0A0B, where A and B
192
// are the element selectors for the first operand and second operands
193
// respectively.
194
PERMUTE_DWORDS,
195
196
// Perform a general vector permute on vector operands 0 and 1.
197
// Each byte of operand 2 controls the corresponding byte of the result,
198
// in the same way as a byte-level VECTOR_SHUFFLE mask.
199
PERMUTE,
200
201
// Pack vector operands 0 and 1 into a single vector with half-sized elements.
202
PACK,
203
204
// Likewise, but saturate the result and set CC. PACKS_CC does signed
205
// saturation and PACKLS_CC does unsigned saturation.
206
PACKS_CC,
207
PACKLS_CC,
208
209
// Unpack the first half of vector operand 0 into double-sized elements.
210
// UNPACK_HIGH sign-extends and UNPACKL_HIGH zero-extends.
211
UNPACK_HIGH,
212
UNPACKL_HIGH,
213
214
// Likewise for the second half.
215
UNPACK_LOW,
216
UNPACKL_LOW,
217
218
// Shift/rotate each element of vector operand 0 by the number of bits
219
// specified by scalar operand 1.
220
VSHL_BY_SCALAR,
221
VSRL_BY_SCALAR,
222
VSRA_BY_SCALAR,
223
VROTL_BY_SCALAR,
224
225
// For each element of the output type, sum across all sub-elements of
226
// operand 0 belonging to the corresponding element, and add in the
227
// rightmost sub-element of the corresponding element of operand 1.
228
VSUM,
229
230
// Compute carry/borrow indication for add/subtract.
231
VACC, VSCBI,
232
// Add/subtract with carry/borrow.
233
VAC, VSBI,
234
// Compute carry/borrow indication for add/subtract with carry/borrow.
235
VACCC, VSBCBI,
236
237
// Compare integer vector operands 0 and 1 to produce the usual 0/-1
238
// vector result. VICMPE is for equality, VICMPH for "signed greater than"
239
// and VICMPHL for "unsigned greater than".
240
VICMPE,
241
VICMPH,
242
VICMPHL,
243
244
// Likewise, but also set the condition codes on the result.
245
VICMPES,
246
VICMPHS,
247
VICMPHLS,
248
249
// Compare floating-point vector operands 0 and 1 to produce the usual 0/-1
250
// vector result. VFCMPE is for "ordered and equal", VFCMPH for "ordered and
251
// greater than" and VFCMPHE for "ordered and greater than or equal to".
252
VFCMPE,
253
VFCMPH,
254
VFCMPHE,
255
256
// Likewise, but also set the condition codes on the result.
257
VFCMPES,
258
VFCMPHS,
259
VFCMPHES,
260
261
// Test floating-point data class for vectors.
262
VFTCI,
263
264
// Extend the even f32 elements of vector operand 0 to produce a vector
265
// of f64 elements.
266
VEXTEND,
267
268
// Round the f64 elements of vector operand 0 to f32s and store them in the
269
// even elements of the result.
270
VROUND,
271
272
// AND the two vector operands together and set CC based on the result.
273
VTM,
274
275
// i128 high integer comparisons.
276
SCMP128HI,
277
UCMP128HI,
278
279
// String operations that set CC as a side-effect.
280
VFAE_CC,
281
VFAEZ_CC,
282
VFEE_CC,
283
VFEEZ_CC,
284
VFENE_CC,
285
VFENEZ_CC,
286
VISTR_CC,
287
VSTRC_CC,
288
VSTRCZ_CC,
289
VSTRS_CC,
290
VSTRSZ_CC,
291
292
// Test Data Class.
293
//
294
// Operand 0: the value to test
295
// Operand 1: the bit mask
296
TDC,
297
298
// z/OS XPLINK ADA Entry
299
// Wraps a TargetGlobalAddress that should be loaded from a function's
300
// AssociatedData Area (ADA). Tha ADA is passed to the function by the
301
// caller in the XPLink ABI defined register R5.
302
// Operand 0: the GlobalValue/External Symbol
303
// Operand 1: the ADA register
304
// Operand 2: the offset (0 for the first and 8 for the second element in the
305
// function descriptor)
306
ADA_ENTRY,
307
308
// Strict variants of scalar floating-point comparisons.
309
// Quiet and signaling versions.
310
STRICT_FCMP = ISD::FIRST_TARGET_STRICTFP_OPCODE,
311
STRICT_FCMPS,
312
313
// Strict variants of vector floating-point comparisons.
314
// Quiet and signaling versions.
315
STRICT_VFCMPE,
316
STRICT_VFCMPH,
317
STRICT_VFCMPHE,
318
STRICT_VFCMPES,
319
STRICT_VFCMPHS,
320
STRICT_VFCMPHES,
321
322
// Strict variants of VEXTEND and VROUND.
323
STRICT_VEXTEND,
324
STRICT_VROUND,
325
326
// Wrappers around the inner loop of an 8- or 16-bit ATOMIC_SWAP or
327
// ATOMIC_LOAD_<op>.
328
//
329
// Operand 0: the address of the containing 32-bit-aligned field
330
// Operand 1: the second operand of <op>, in the high bits of an i32
331
// for everything except ATOMIC_SWAPW
332
// Operand 2: how many bits to rotate the i32 left to bring the first
333
// operand into the high bits
334
// Operand 3: the negative of operand 2, for rotating the other way
335
// Operand 4: the width of the field in bits (8 or 16)
336
ATOMIC_SWAPW = ISD::FIRST_TARGET_MEMORY_OPCODE,
337
ATOMIC_LOADW_ADD,
338
ATOMIC_LOADW_SUB,
339
ATOMIC_LOADW_AND,
340
ATOMIC_LOADW_OR,
341
ATOMIC_LOADW_XOR,
342
ATOMIC_LOADW_NAND,
343
ATOMIC_LOADW_MIN,
344
ATOMIC_LOADW_MAX,
345
ATOMIC_LOADW_UMIN,
346
ATOMIC_LOADW_UMAX,
347
348
// A wrapper around the inner loop of an ATOMIC_CMP_SWAP.
349
//
350
// Operand 0: the address of the containing 32-bit-aligned field
351
// Operand 1: the compare value, in the low bits of an i32
352
// Operand 2: the swap value, in the low bits of an i32
353
// Operand 3: how many bits to rotate the i32 left to bring the first
354
// operand into the high bits
355
// Operand 4: the negative of operand 2, for rotating the other way
356
// Operand 5: the width of the field in bits (8 or 16)
357
ATOMIC_CMP_SWAPW,
358
359
// Atomic compare-and-swap returning CC value.
360
// Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
361
ATOMIC_CMP_SWAP,
362
363
// 128-bit atomic load.
364
// Val, OUTCHAIN = ATOMIC_LOAD_128(INCHAIN, ptr)
365
ATOMIC_LOAD_128,
366
367
// 128-bit atomic store.
368
// OUTCHAIN = ATOMIC_STORE_128(INCHAIN, val, ptr)
369
ATOMIC_STORE_128,
370
371
// 128-bit atomic compare-and-swap.
372
// Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
373
ATOMIC_CMP_SWAP_128,
374
375
// Byte swapping load/store. Same operands as regular load/store.
376
LRV, STRV,
377
378
// Element swapping load/store. Same operands as regular load/store.
379
VLER, VSTER,
380
381
// Use STORE CLOCK FAST to store current TOD clock value.
382
STCKF,
383
384
// Prefetch from the second operand using the 4-bit control code in
385
// the first operand. The code is 1 for a load prefetch and 2 for
386
// a store prefetch.
387
PREFETCH
388
};
389
390
// Return true if OPCODE is some kind of PC-relative address.
391
inline bool isPCREL(unsigned Opcode) {
392
return Opcode == PCREL_WRAPPER || Opcode == PCREL_OFFSET;
393
}
394
} // end namespace SystemZISD
395
396
namespace SystemZICMP {
397
// Describes whether an integer comparison needs to be signed or unsigned,
398
// or whether either type is OK.
399
enum {
400
Any,
401
UnsignedOnly,
402
SignedOnly
403
};
404
} // end namespace SystemZICMP
405
406
class SystemZSubtarget;
407
408
class SystemZTargetLowering : public TargetLowering {
409
public:
410
explicit SystemZTargetLowering(const TargetMachine &TM,
411
const SystemZSubtarget &STI);
412
413
bool useSoftFloat() const override;
414
415
// Override TargetLowering.
416
MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
417
return MVT::i32;
418
}
419
MVT getVectorIdxTy(const DataLayout &DL) const override {
420
// Only the lower 12 bits of an element index are used, so we don't
421
// want to clobber the upper 32 bits of a GPR unnecessarily.
422
return MVT::i32;
423
}
424
TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT)
425
const override {
426
// Widen subvectors to the full width rather than promoting integer
427
// elements. This is better because:
428
//
429
// (a) it means that we can handle the ABI for passing and returning
430
// sub-128 vectors without having to handle them as legal types.
431
//
432
// (b) we don't have instructions to extend on load and truncate on store,
433
// so promoting the integers is less efficient.
434
//
435
// (c) there are no multiplication instructions for the widest integer
436
// type (v2i64).
437
if (VT.getScalarSizeInBits() % 8 == 0)
438
return TypeWidenVector;
439
return TargetLoweringBase::getPreferredVectorAction(VT);
440
}
441
unsigned
442
getNumRegisters(LLVMContext &Context, EVT VT,
443
std::optional<MVT> RegisterVT) const override {
444
// i128 inline assembly operand.
445
if (VT == MVT::i128 && RegisterVT && *RegisterVT == MVT::Untyped)
446
return 1;
447
return TargetLowering::getNumRegisters(Context, VT);
448
}
449
MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC,
450
EVT VT) const override {
451
// 128-bit single-element vector types are passed like other vectors,
452
// not like their element type.
453
if (VT.isVector() && VT.getSizeInBits() == 128 &&
454
VT.getVectorNumElements() == 1)
455
return MVT::v16i8;
456
return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
457
}
458
bool isCheapToSpeculateCtlz(Type *) const override { return true; }
459
bool isCheapToSpeculateCttz(Type *) const override { return true; }
460
bool preferZeroCompareBranch() const override { return true; }
461
bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override {
462
ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
463
return Mask && Mask->getValue().isIntN(16);
464
}
465
bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
466
return VT.isScalarInteger();
467
}
468
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &,
469
EVT) const override;
470
bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
471
EVT VT) const override;
472
bool isFPImmLegal(const APFloat &Imm, EVT VT,
473
bool ForCodeSize) const override;
474
bool ShouldShrinkFPConstant(EVT VT) const override {
475
// Do not shrink 64-bit FP constpool entries since LDEB is slower than
476
// LD, and having the full constant in memory enables reg/mem opcodes.
477
return VT != MVT::f64;
478
}
479
bool hasInlineStackProbe(const MachineFunction &MF) const override;
480
AtomicExpansionKind shouldCastAtomicLoadInIR(LoadInst *LI) const override;
481
AtomicExpansionKind shouldCastAtomicStoreInIR(StoreInst *SI) const override;
482
AtomicExpansionKind
483
shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const override;
484
bool isLegalICmpImmediate(int64_t Imm) const override;
485
bool isLegalAddImmediate(int64_t Imm) const override;
486
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty,
487
unsigned AS,
488
Instruction *I = nullptr) const override;
489
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, Align Alignment,
490
MachineMemOperand::Flags Flags,
491
unsigned *Fast) const override;
492
bool
493
findOptimalMemOpLowering(std::vector<EVT> &MemOps, unsigned Limit,
494
const MemOp &Op, unsigned DstAS, unsigned SrcAS,
495
const AttributeList &FuncAttributes) const override;
496
EVT getOptimalMemOpType(const MemOp &Op,
497
const AttributeList &FuncAttributes) const override;
498
bool isTruncateFree(Type *, Type *) const override;
499
bool isTruncateFree(EVT, EVT) const override;
500
501
bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
502
bool MathUsed) const override {
503
// Form add and sub with overflow intrinsics regardless of any extra
504
// users of the math result.
505
return VT == MVT::i32 || VT == MVT::i64;
506
}
507
508
bool shouldConsiderGEPOffsetSplit() const override { return true; }
509
510
bool shouldExpandCmpUsingSelects() const override { return true; }
511
512
const char *getTargetNodeName(unsigned Opcode) const override;
513
std::pair<unsigned, const TargetRegisterClass *>
514
getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
515
StringRef Constraint, MVT VT) const override;
516
TargetLowering::ConstraintType
517
getConstraintType(StringRef Constraint) const override;
518
TargetLowering::ConstraintWeight
519
getSingleConstraintMatchWeight(AsmOperandInfo &info,
520
const char *constraint) const override;
521
void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint,
522
std::vector<SDValue> &Ops,
523
SelectionDAG &DAG) const override;
524
525
InlineAsm::ConstraintCode
526
getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
527
if (ConstraintCode.size() == 1) {
528
switch(ConstraintCode[0]) {
529
default:
530
break;
531
case 'o':
532
return InlineAsm::ConstraintCode::o;
533
case 'Q':
534
return InlineAsm::ConstraintCode::Q;
535
case 'R':
536
return InlineAsm::ConstraintCode::R;
537
case 'S':
538
return InlineAsm::ConstraintCode::S;
539
case 'T':
540
return InlineAsm::ConstraintCode::T;
541
}
542
} else if (ConstraintCode.size() == 2 && ConstraintCode[0] == 'Z') {
543
switch (ConstraintCode[1]) {
544
default:
545
break;
546
case 'Q':
547
return InlineAsm::ConstraintCode::ZQ;
548
case 'R':
549
return InlineAsm::ConstraintCode::ZR;
550
case 'S':
551
return InlineAsm::ConstraintCode::ZS;
552
case 'T':
553
return InlineAsm::ConstraintCode::ZT;
554
}
555
}
556
return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
557
}
558
559
Register getRegisterByName(const char *RegName, LLT VT,
560
const MachineFunction &MF) const override;
561
562
/// If a physical register, this returns the register that receives the
563
/// exception address on entry to an EH pad.
564
Register
565
getExceptionPointerRegister(const Constant *PersonalityFn) const override;
566
567
/// If a physical register, this returns the register that receives the
568
/// exception typeid on entry to a landing pad.
569
Register
570
getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
571
572
/// Override to support customized stack guard loading.
573
bool useLoadStackGuardNode() const override {
574
return true;
575
}
576
void insertSSPDeclarations(Module &M) const override {
577
}
578
579
MachineBasicBlock *
580
EmitInstrWithCustomInserter(MachineInstr &MI,
581
MachineBasicBlock *BB) const override;
582
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
583
void LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results,
584
SelectionDAG &DAG) const override;
585
void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
586
SelectionDAG &DAG) const override;
587
const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
588
bool allowTruncateForTailCall(Type *, Type *) const override;
589
bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
590
bool splitValueIntoRegisterParts(
591
SelectionDAG & DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
592
unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC)
593
const override;
594
SDValue joinRegisterPartsIntoValue(
595
SelectionDAG & DAG, const SDLoc &DL, const SDValue *Parts,
596
unsigned NumParts, MVT PartVT, EVT ValueVT,
597
std::optional<CallingConv::ID> CC) const override;
598
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv,
599
bool isVarArg,
600
const SmallVectorImpl<ISD::InputArg> &Ins,
601
const SDLoc &DL, SelectionDAG &DAG,
602
SmallVectorImpl<SDValue> &InVals) const override;
603
SDValue LowerCall(CallLoweringInfo &CLI,
604
SmallVectorImpl<SDValue> &InVals) const override;
605
606
std::pair<SDValue, SDValue>
607
makeExternalCall(SDValue Chain, SelectionDAG &DAG, const char *CalleeName,
608
EVT RetVT, ArrayRef<SDValue> Ops, CallingConv::ID CallConv,
609
bool IsSigned, SDLoc DL, bool DoesNotReturn,
610
bool IsReturnValueUsed) const;
611
612
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
613
bool isVarArg,
614
const SmallVectorImpl<ISD::OutputArg> &Outs,
615
LLVMContext &Context) const override;
616
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
617
const SmallVectorImpl<ISD::OutputArg> &Outs,
618
const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
619
SelectionDAG &DAG) const override;
620
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
621
622
/// Determine which of the bits specified in Mask are known to be either
623
/// zero or one and return them in the KnownZero/KnownOne bitsets.
624
void computeKnownBitsForTargetNode(const SDValue Op,
625
KnownBits &Known,
626
const APInt &DemandedElts,
627
const SelectionDAG &DAG,
628
unsigned Depth = 0) const override;
629
630
/// Determine the number of bits in the operation that are sign bits.
631
unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
632
const APInt &DemandedElts,
633
const SelectionDAG &DAG,
634
unsigned Depth) const override;
635
636
bool isGuaranteedNotToBeUndefOrPoisonForTargetNode(
637
SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
638
bool PoisonOnly, unsigned Depth) const override;
639
640
ISD::NodeType getExtendForAtomicOps() const override {
641
return ISD::ANY_EXTEND;
642
}
643
ISD::NodeType getExtendForAtomicCmpSwapArg() const override {
644
return ISD::ZERO_EXTEND;
645
}
646
647
bool supportSwiftError() const override {
648
return true;
649
}
650
651
unsigned getStackProbeSize(const MachineFunction &MF) const;
652
653
private:
654
const SystemZSubtarget &Subtarget;
655
656
// Implement LowerOperation for individual opcodes.
657
SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
658
const SDLoc &DL, EVT VT,
659
SDValue CmpOp0, SDValue CmpOp1, SDValue Chain) const;
660
SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL,
661
EVT VT, ISD::CondCode CC,
662
SDValue CmpOp0, SDValue CmpOp1,
663
SDValue Chain = SDValue(),
664
bool IsSignaling = false) const;
665
SDValue lowerSETCC(SDValue Op, SelectionDAG &DAG) const;
666
SDValue lowerSTRICT_FSETCC(SDValue Op, SelectionDAG &DAG,
667
bool IsSignaling) const;
668
SDValue lowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
669
SDValue lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
670
SDValue lowerGlobalAddress(GlobalAddressSDNode *Node,
671
SelectionDAG &DAG) const;
672
SDValue lowerTLSGetOffset(GlobalAddressSDNode *Node,
673
SelectionDAG &DAG, unsigned Opcode,
674
SDValue GOTOffset) const;
675
SDValue lowerThreadPointer(const SDLoc &DL, SelectionDAG &DAG) const;
676
SDValue lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
677
SelectionDAG &DAG) const;
678
SDValue lowerBlockAddress(BlockAddressSDNode *Node,
679
SelectionDAG &DAG) const;
680
SDValue lowerJumpTable(JumpTableSDNode *JT, SelectionDAG &DAG) const;
681
SDValue lowerConstantPool(ConstantPoolSDNode *CP, SelectionDAG &DAG) const;
682
SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
683
SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
684
SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const;
685
SDValue lowerVASTART_ELF(SDValue Op, SelectionDAG &DAG) const;
686
SDValue lowerVASTART_XPLINK(SDValue Op, SelectionDAG &DAG) const;
687
SDValue lowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
688
SDValue lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
689
SDValue lowerDYNAMIC_STACKALLOC_ELF(SDValue Op, SelectionDAG &DAG) const;
690
SDValue lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op, SelectionDAG &DAG) const;
691
SDValue lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
692
SDValue lowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
693
SDValue lowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
694
SDValue lowerSDIVREM(SDValue Op, SelectionDAG &DAG) const;
695
SDValue lowerUDIVREM(SDValue Op, SelectionDAG &DAG) const;
696
SDValue lowerXALUO(SDValue Op, SelectionDAG &DAG) const;
697
SDValue lowerUADDSUBO_CARRY(SDValue Op, SelectionDAG &DAG) const;
698
SDValue lowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
699
SDValue lowerOR(SDValue Op, SelectionDAG &DAG) const;
700
SDValue lowerCTPOP(SDValue Op, SelectionDAG &DAG) const;
701
SDValue lowerVECREDUCE_ADD(SDValue Op, SelectionDAG &DAG) const;
702
SDValue lowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const;
703
SDValue lowerATOMIC_LDST_I128(SDValue Op, SelectionDAG &DAG) const;
704
SDValue lowerATOMIC_LOAD_OP(SDValue Op, SelectionDAG &DAG,
705
unsigned Opcode) const;
706
SDValue lowerATOMIC_LOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
707
SDValue lowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
708
SDValue lowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const;
709
SDValue lowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
710
SDValue lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const;
711
SDValue lowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const;
712
SDValue lowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
713
bool isVectorElementLoad(SDValue Op) const;
714
SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
715
SmallVectorImpl<SDValue> &Elems) const;
716
SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
717
SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
718
SDValue lowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
719
SDValue lowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
720
SDValue lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
721
SDValue lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const;
722
SDValue lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const;
723
SDValue lowerShift(SDValue Op, SelectionDAG &DAG, unsigned ByScalar) const;
724
SDValue lowerIS_FPCLASS(SDValue Op, SelectionDAG &DAG) const;
725
SDValue lowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const;
726
SDValue lowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG) const;
727
728
bool canTreatAsByteVector(EVT VT) const;
729
SDValue combineExtract(const SDLoc &DL, EVT ElemVT, EVT VecVT, SDValue OrigOp,
730
unsigned Index, DAGCombinerInfo &DCI,
731
bool Force) const;
732
SDValue combineTruncateExtract(const SDLoc &DL, EVT TruncVT, SDValue Op,
733
DAGCombinerInfo &DCI) const;
734
SDValue combineZERO_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
735
SDValue combineSIGN_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
736
SDValue combineSIGN_EXTEND_INREG(SDNode *N, DAGCombinerInfo &DCI) const;
737
SDValue combineMERGE(SDNode *N, DAGCombinerInfo &DCI) const;
738
bool canLoadStoreByteSwapped(EVT VT) const;
739
SDValue combineLOAD(SDNode *N, DAGCombinerInfo &DCI) const;
740
SDValue combineSTORE(SDNode *N, DAGCombinerInfo &DCI) const;
741
SDValue combineVECTOR_SHUFFLE(SDNode *N, DAGCombinerInfo &DCI) const;
742
SDValue combineEXTRACT_VECTOR_ELT(SDNode *N, DAGCombinerInfo &DCI) const;
743
SDValue combineJOIN_DWORDS(SDNode *N, DAGCombinerInfo &DCI) const;
744
SDValue combineFP_ROUND(SDNode *N, DAGCombinerInfo &DCI) const;
745
SDValue combineFP_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
746
SDValue combineINT_TO_FP(SDNode *N, DAGCombinerInfo &DCI) const;
747
SDValue combineBSWAP(SDNode *N, DAGCombinerInfo &DCI) const;
748
SDValue combineBR_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
749
SDValue combineSELECT_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
750
SDValue combineGET_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
751
SDValue combineIntDIVREM(SDNode *N, DAGCombinerInfo &DCI) const;
752
SDValue combineINTRINSIC(SDNode *N, DAGCombinerInfo &DCI) const;
753
754
SDValue unwrapAddress(SDValue N) const override;
755
756
// If the last instruction before MBBI in MBB was some form of COMPARE,
757
// try to replace it with a COMPARE AND BRANCH just before MBBI.
758
// CCMask and Target are the BRC-like operands for the branch.
759
// Return true if the change was made.
760
bool convertPrevCompareToBranch(MachineBasicBlock *MBB,
761
MachineBasicBlock::iterator MBBI,
762
unsigned CCMask,
763
MachineBasicBlock *Target) const;
764
765
// Implement EmitInstrWithCustomInserter for individual operation types.
766
MachineBasicBlock *emitAdjCallStack(MachineInstr &MI,
767
MachineBasicBlock *BB) const;
768
MachineBasicBlock *emitSelect(MachineInstr &MI, MachineBasicBlock *BB) const;
769
MachineBasicBlock *emitCondStore(MachineInstr &MI, MachineBasicBlock *BB,
770
unsigned StoreOpcode, unsigned STOCOpcode,
771
bool Invert) const;
772
MachineBasicBlock *emitICmp128Hi(MachineInstr &MI, MachineBasicBlock *BB,
773
bool Unsigned) const;
774
MachineBasicBlock *emitPair128(MachineInstr &MI,
775
MachineBasicBlock *MBB) const;
776
MachineBasicBlock *emitExt128(MachineInstr &MI, MachineBasicBlock *MBB,
777
bool ClearEven) const;
778
MachineBasicBlock *emitAtomicLoadBinary(MachineInstr &MI,
779
MachineBasicBlock *BB,
780
unsigned BinOpcode,
781
bool Invert = false) const;
782
MachineBasicBlock *emitAtomicLoadMinMax(MachineInstr &MI,
783
MachineBasicBlock *MBB,
784
unsigned CompareOpcode,
785
unsigned KeepOldMask) const;
786
MachineBasicBlock *emitAtomicCmpSwapW(MachineInstr &MI,
787
MachineBasicBlock *BB) const;
788
MachineBasicBlock *emitMemMemWrapper(MachineInstr &MI, MachineBasicBlock *BB,
789
unsigned Opcode,
790
bool IsMemset = false) const;
791
MachineBasicBlock *emitStringWrapper(MachineInstr &MI, MachineBasicBlock *BB,
792
unsigned Opcode) const;
793
MachineBasicBlock *emitTransactionBegin(MachineInstr &MI,
794
MachineBasicBlock *MBB,
795
unsigned Opcode, bool NoFloat) const;
796
MachineBasicBlock *emitLoadAndTestCmp0(MachineInstr &MI,
797
MachineBasicBlock *MBB,
798
unsigned Opcode) const;
799
MachineBasicBlock *emitProbedAlloca(MachineInstr &MI,
800
MachineBasicBlock *MBB) const;
801
802
SDValue getBackchainAddress(SDValue SP, SelectionDAG &DAG) const;
803
804
MachineMemOperand::Flags
805
getTargetMMOFlags(const Instruction &I) const override;
806
const TargetRegisterClass *getRepRegClassFor(MVT VT) const override;
807
};
808
809
struct SystemZVectorConstantInfo {
810
private:
811
APInt IntBits; // The 128 bits as an integer.
812
APInt SplatBits; // Smallest splat value.
813
APInt SplatUndef; // Bits correspoding to undef operands of the BVN.
814
unsigned SplatBitSize = 0;
815
bool isFP128 = false;
816
public:
817
unsigned Opcode = 0;
818
SmallVector<unsigned, 2> OpVals;
819
MVT VecVT;
820
SystemZVectorConstantInfo(APInt IntImm);
821
SystemZVectorConstantInfo(APFloat FPImm)
822
: SystemZVectorConstantInfo(FPImm.bitcastToAPInt()) {
823
isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
824
}
825
SystemZVectorConstantInfo(BuildVectorSDNode *BVN);
826
bool isVectorConstantLegal(const SystemZSubtarget &Subtarget);
827
};
828
829
} // end namespace llvm
830
831
#endif
832
833