Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/VE/VEInstrInfo.cpp
35294 views
1
//===-- VEInstrInfo.cpp - VE Instruction Information ----------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains the VE implementation of the TargetInstrInfo class.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "VEInstrInfo.h"
14
#include "VE.h"
15
#include "VEMachineFunctionInfo.h"
16
#include "VESubtarget.h"
17
#include "llvm/ADT/STLExtras.h"
18
#include "llvm/ADT/SmallVector.h"
19
#include "llvm/CodeGen/MachineFrameInfo.h"
20
#include "llvm/CodeGen/MachineInstrBuilder.h"
21
#include "llvm/CodeGen/MachineMemOperand.h"
22
#include "llvm/CodeGen/MachineRegisterInfo.h"
23
#include "llvm/MC/TargetRegistry.h"
24
#include "llvm/Support/CommandLine.h"
25
#include "llvm/Support/Debug.h"
26
#include "llvm/Support/ErrorHandling.h"
27
28
#define DEBUG_TYPE "ve-instr-info"
29
30
using namespace llvm;
31
32
#define GET_INSTRINFO_CTOR_DTOR
33
#include "VEGenInstrInfo.inc"
34
35
// Pin the vtable to this file.
36
void VEInstrInfo::anchor() {}
37
38
VEInstrInfo::VEInstrInfo(VESubtarget &ST)
39
: VEGenInstrInfo(VE::ADJCALLSTACKDOWN, VE::ADJCALLSTACKUP), RI() {}
40
41
static bool IsIntegerCC(unsigned CC) { return (CC < VECC::CC_AF); }
42
43
static VECC::CondCode GetOppositeBranchCondition(VECC::CondCode CC) {
44
switch (CC) {
45
case VECC::CC_IG:
46
return VECC::CC_ILE;
47
case VECC::CC_IL:
48
return VECC::CC_IGE;
49
case VECC::CC_INE:
50
return VECC::CC_IEQ;
51
case VECC::CC_IEQ:
52
return VECC::CC_INE;
53
case VECC::CC_IGE:
54
return VECC::CC_IL;
55
case VECC::CC_ILE:
56
return VECC::CC_IG;
57
case VECC::CC_AF:
58
return VECC::CC_AT;
59
case VECC::CC_G:
60
return VECC::CC_LENAN;
61
case VECC::CC_L:
62
return VECC::CC_GENAN;
63
case VECC::CC_NE:
64
return VECC::CC_EQNAN;
65
case VECC::CC_EQ:
66
return VECC::CC_NENAN;
67
case VECC::CC_GE:
68
return VECC::CC_LNAN;
69
case VECC::CC_LE:
70
return VECC::CC_GNAN;
71
case VECC::CC_NUM:
72
return VECC::CC_NAN;
73
case VECC::CC_NAN:
74
return VECC::CC_NUM;
75
case VECC::CC_GNAN:
76
return VECC::CC_LE;
77
case VECC::CC_LNAN:
78
return VECC::CC_GE;
79
case VECC::CC_NENAN:
80
return VECC::CC_EQ;
81
case VECC::CC_EQNAN:
82
return VECC::CC_NE;
83
case VECC::CC_GENAN:
84
return VECC::CC_L;
85
case VECC::CC_LENAN:
86
return VECC::CC_G;
87
case VECC::CC_AT:
88
return VECC::CC_AF;
89
case VECC::UNKNOWN:
90
return VECC::UNKNOWN;
91
}
92
llvm_unreachable("Invalid cond code");
93
}
94
95
// Treat a branch relative long always instruction as unconditional branch.
96
// For example, br.l.t and br.l.
97
static bool isUncondBranchOpcode(int Opc) {
98
using namespace llvm::VE;
99
100
#define BRKIND(NAME) (Opc == NAME##a || Opc == NAME##a_nt || Opc == NAME##a_t)
101
// VE has other branch relative always instructions for word/double/float,
102
// but we use only long branches in our lower. So, check it here.
103
assert(!BRKIND(BRCFW) && !BRKIND(BRCFD) && !BRKIND(BRCFS) &&
104
"Branch relative word/double/float always instructions should not be "
105
"used!");
106
return BRKIND(BRCFL);
107
#undef BRKIND
108
}
109
110
// Treat branch relative conditional as conditional branch instructions.
111
// For example, brgt.l.t and brle.s.nt.
112
static bool isCondBranchOpcode(int Opc) {
113
using namespace llvm::VE;
114
115
#define BRKIND(NAME) \
116
(Opc == NAME##rr || Opc == NAME##rr_nt || Opc == NAME##rr_t || \
117
Opc == NAME##ir || Opc == NAME##ir_nt || Opc == NAME##ir_t)
118
return BRKIND(BRCFL) || BRKIND(BRCFW) || BRKIND(BRCFD) || BRKIND(BRCFS);
119
#undef BRKIND
120
}
121
122
// Treat branch long always instructions as indirect branch.
123
// For example, b.l.t and b.l.
124
static bool isIndirectBranchOpcode(int Opc) {
125
using namespace llvm::VE;
126
127
#define BRKIND(NAME) \
128
(Opc == NAME##ari || Opc == NAME##ari_nt || Opc == NAME##ari_t)
129
// VE has other branch always instructions for word/double/float, but
130
// we use only long branches in our lower. So, check it here.
131
assert(!BRKIND(BCFW) && !BRKIND(BCFD) && !BRKIND(BCFS) &&
132
"Branch word/double/float always instructions should not be used!");
133
return BRKIND(BCFL);
134
#undef BRKIND
135
}
136
137
static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target,
138
SmallVectorImpl<MachineOperand> &Cond) {
139
Cond.push_back(MachineOperand::CreateImm(LastInst->getOperand(0).getImm()));
140
Cond.push_back(LastInst->getOperand(1));
141
Cond.push_back(LastInst->getOperand(2));
142
Target = LastInst->getOperand(3).getMBB();
143
}
144
145
bool VEInstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
146
MachineBasicBlock *&FBB,
147
SmallVectorImpl<MachineOperand> &Cond,
148
bool AllowModify) const {
149
MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
150
if (I == MBB.end())
151
return false;
152
153
if (!isUnpredicatedTerminator(*I))
154
return false;
155
156
// Get the last instruction in the block.
157
MachineInstr *LastInst = &*I;
158
unsigned LastOpc = LastInst->getOpcode();
159
160
// If there is only one terminator instruction, process it.
161
if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
162
if (isUncondBranchOpcode(LastOpc)) {
163
TBB = LastInst->getOperand(0).getMBB();
164
return false;
165
}
166
if (isCondBranchOpcode(LastOpc)) {
167
// Block ends with fall-through condbranch.
168
parseCondBranch(LastInst, TBB, Cond);
169
return false;
170
}
171
return true; // Can't handle indirect branch.
172
}
173
174
// Get the instruction before it if it is a terminator.
175
MachineInstr *SecondLastInst = &*I;
176
unsigned SecondLastOpc = SecondLastInst->getOpcode();
177
178
// If AllowModify is true and the block ends with two or more unconditional
179
// branches, delete all but the first unconditional branch.
180
if (AllowModify && isUncondBranchOpcode(LastOpc)) {
181
while (isUncondBranchOpcode(SecondLastOpc)) {
182
LastInst->eraseFromParent();
183
LastInst = SecondLastInst;
184
LastOpc = LastInst->getOpcode();
185
if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
186
// Return now the only terminator is an unconditional branch.
187
TBB = LastInst->getOperand(0).getMBB();
188
return false;
189
}
190
SecondLastInst = &*I;
191
SecondLastOpc = SecondLastInst->getOpcode();
192
}
193
}
194
195
// If there are three terminators, we don't know what sort of block this is.
196
if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(*--I))
197
return true;
198
199
// If the block ends with a B and a Bcc, handle it.
200
if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
201
parseCondBranch(SecondLastInst, TBB, Cond);
202
FBB = LastInst->getOperand(0).getMBB();
203
return false;
204
}
205
206
// If the block ends with two unconditional branches, handle it. The second
207
// one is not executed.
208
if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
209
TBB = SecondLastInst->getOperand(0).getMBB();
210
return false;
211
}
212
213
// ...likewise if it ends with an indirect branch followed by an unconditional
214
// branch.
215
if (isIndirectBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
216
I = LastInst;
217
if (AllowModify)
218
I->eraseFromParent();
219
return true;
220
}
221
222
// Otherwise, can't handle this.
223
return true;
224
}
225
226
unsigned VEInstrInfo::insertBranch(MachineBasicBlock &MBB,
227
MachineBasicBlock *TBB,
228
MachineBasicBlock *FBB,
229
ArrayRef<MachineOperand> Cond,
230
const DebugLoc &DL, int *BytesAdded) const {
231
assert(TBB && "insertBranch must not be told to insert a fallthrough");
232
assert((Cond.size() == 3 || Cond.size() == 0) &&
233
"VE branch conditions should have three component!");
234
assert(!BytesAdded && "code size not handled");
235
if (Cond.empty()) {
236
// Uncondition branch
237
assert(!FBB && "Unconditional branch with multiple successors!");
238
BuildMI(&MBB, DL, get(VE::BRCFLa_t))
239
.addMBB(TBB);
240
return 1;
241
}
242
243
// Conditional branch
244
// (BRCFir CC sy sz addr)
245
assert(Cond[0].isImm() && Cond[2].isReg() && "not implemented");
246
247
unsigned opc[2];
248
const TargetRegisterInfo *TRI = &getRegisterInfo();
249
MachineFunction *MF = MBB.getParent();
250
const MachineRegisterInfo &MRI = MF->getRegInfo();
251
Register Reg = Cond[2].getReg();
252
if (IsIntegerCC(Cond[0].getImm())) {
253
if (TRI->getRegSizeInBits(Reg, MRI) == 32) {
254
opc[0] = VE::BRCFWir;
255
opc[1] = VE::BRCFWrr;
256
} else {
257
opc[0] = VE::BRCFLir;
258
opc[1] = VE::BRCFLrr;
259
}
260
} else {
261
if (TRI->getRegSizeInBits(Reg, MRI) == 32) {
262
opc[0] = VE::BRCFSir;
263
opc[1] = VE::BRCFSrr;
264
} else {
265
opc[0] = VE::BRCFDir;
266
opc[1] = VE::BRCFDrr;
267
}
268
}
269
if (Cond[1].isImm()) {
270
BuildMI(&MBB, DL, get(opc[0]))
271
.add(Cond[0]) // condition code
272
.add(Cond[1]) // lhs
273
.add(Cond[2]) // rhs
274
.addMBB(TBB);
275
} else {
276
BuildMI(&MBB, DL, get(opc[1]))
277
.add(Cond[0])
278
.add(Cond[1])
279
.add(Cond[2])
280
.addMBB(TBB);
281
}
282
283
if (!FBB)
284
return 1;
285
286
BuildMI(&MBB, DL, get(VE::BRCFLa_t))
287
.addMBB(FBB);
288
return 2;
289
}
290
291
unsigned VEInstrInfo::removeBranch(MachineBasicBlock &MBB,
292
int *BytesRemoved) const {
293
assert(!BytesRemoved && "code size not handled");
294
295
MachineBasicBlock::iterator I = MBB.end();
296
unsigned Count = 0;
297
while (I != MBB.begin()) {
298
--I;
299
300
if (I->isDebugValue())
301
continue;
302
303
if (!isUncondBranchOpcode(I->getOpcode()) &&
304
!isCondBranchOpcode(I->getOpcode()))
305
break; // Not a branch
306
307
I->eraseFromParent();
308
I = MBB.end();
309
++Count;
310
}
311
return Count;
312
}
313
314
bool VEInstrInfo::reverseBranchCondition(
315
SmallVectorImpl<MachineOperand> &Cond) const {
316
VECC::CondCode CC = static_cast<VECC::CondCode>(Cond[0].getImm());
317
Cond[0].setImm(GetOppositeBranchCondition(CC));
318
return false;
319
}
320
321
static bool IsAliasOfSX(Register Reg) {
322
return VE::I32RegClass.contains(Reg) || VE::I64RegClass.contains(Reg) ||
323
VE::F32RegClass.contains(Reg);
324
}
325
326
static void copyPhysSubRegs(MachineBasicBlock &MBB,
327
MachineBasicBlock::iterator I, const DebugLoc &DL,
328
MCRegister DestReg, MCRegister SrcReg, bool KillSrc,
329
const MCInstrDesc &MCID, unsigned int NumSubRegs,
330
const unsigned *SubRegIdx,
331
const TargetRegisterInfo *TRI) {
332
MachineInstr *MovMI = nullptr;
333
334
for (unsigned Idx = 0; Idx != NumSubRegs; ++Idx) {
335
Register SubDest = TRI->getSubReg(DestReg, SubRegIdx[Idx]);
336
Register SubSrc = TRI->getSubReg(SrcReg, SubRegIdx[Idx]);
337
assert(SubDest && SubSrc && "Bad sub-register");
338
339
if (MCID.getOpcode() == VE::ORri) {
340
// generate "ORri, dest, src, 0" instruction.
341
MachineInstrBuilder MIB =
342
BuildMI(MBB, I, DL, MCID, SubDest).addReg(SubSrc).addImm(0);
343
MovMI = MIB.getInstr();
344
} else if (MCID.getOpcode() == VE::ANDMmm) {
345
// generate "ANDM, dest, vm0, src" instruction.
346
MachineInstrBuilder MIB =
347
BuildMI(MBB, I, DL, MCID, SubDest).addReg(VE::VM0).addReg(SubSrc);
348
MovMI = MIB.getInstr();
349
} else {
350
llvm_unreachable("Unexpected reg-to-reg copy instruction");
351
}
352
}
353
// Add implicit super-register defs and kills to the last MovMI.
354
MovMI->addRegisterDefined(DestReg, TRI);
355
if (KillSrc)
356
MovMI->addRegisterKilled(SrcReg, TRI, true);
357
}
358
359
void VEInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
360
MachineBasicBlock::iterator I, const DebugLoc &DL,
361
MCRegister DestReg, MCRegister SrcReg,
362
bool KillSrc) const {
363
364
if (IsAliasOfSX(SrcReg) && IsAliasOfSX(DestReg)) {
365
BuildMI(MBB, I, DL, get(VE::ORri), DestReg)
366
.addReg(SrcReg, getKillRegState(KillSrc))
367
.addImm(0);
368
} else if (VE::V64RegClass.contains(DestReg, SrcReg)) {
369
// Generate following instructions
370
// %sw16 = LEA32zii 256
371
// VORmvl %dest, (0)1, %src, %sw16
372
// TODO: reuse a register if vl is already assigned to a register
373
// FIXME: it would be better to scavenge a register here instead of
374
// reserving SX16 all of the time.
375
const TargetRegisterInfo *TRI = &getRegisterInfo();
376
Register TmpReg = VE::SX16;
377
Register SubTmp = TRI->getSubReg(TmpReg, VE::sub_i32);
378
BuildMI(MBB, I, DL, get(VE::LEAzii), TmpReg)
379
.addImm(0)
380
.addImm(0)
381
.addImm(256);
382
MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(VE::VORmvl), DestReg)
383
.addImm(M1(0)) // Represent (0)1.
384
.addReg(SrcReg, getKillRegState(KillSrc))
385
.addReg(SubTmp, getKillRegState(true));
386
MIB.getInstr()->addRegisterKilled(TmpReg, TRI, true);
387
} else if (VE::VMRegClass.contains(DestReg, SrcReg)) {
388
BuildMI(MBB, I, DL, get(VE::ANDMmm), DestReg)
389
.addReg(VE::VM0)
390
.addReg(SrcReg, getKillRegState(KillSrc));
391
} else if (VE::VM512RegClass.contains(DestReg, SrcReg)) {
392
// Use two instructions.
393
const unsigned SubRegIdx[] = {VE::sub_vm_even, VE::sub_vm_odd};
394
unsigned int NumSubRegs = 2;
395
copyPhysSubRegs(MBB, I, DL, DestReg, SrcReg, KillSrc, get(VE::ANDMmm),
396
NumSubRegs, SubRegIdx, &getRegisterInfo());
397
} else if (VE::F128RegClass.contains(DestReg, SrcReg)) {
398
// Use two instructions.
399
const unsigned SubRegIdx[] = {VE::sub_even, VE::sub_odd};
400
unsigned int NumSubRegs = 2;
401
copyPhysSubRegs(MBB, I, DL, DestReg, SrcReg, KillSrc, get(VE::ORri),
402
NumSubRegs, SubRegIdx, &getRegisterInfo());
403
} else {
404
const TargetRegisterInfo *TRI = &getRegisterInfo();
405
dbgs() << "Impossible reg-to-reg copy from " << printReg(SrcReg, TRI)
406
<< " to " << printReg(DestReg, TRI) << "\n";
407
llvm_unreachable("Impossible reg-to-reg copy");
408
}
409
}
410
411
/// isLoadFromStackSlot - If the specified machine instruction is a direct
412
/// load from a stack slot, return the virtual or physical register number of
413
/// the destination along with the FrameIndex of the loaded stack slot. If
414
/// not, return 0. This predicate must return 0 if the instruction has
415
/// any side effects other than loading from the stack slot.
416
Register VEInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
417
int &FrameIndex) const {
418
if (MI.getOpcode() == VE::LDrii || // I64
419
MI.getOpcode() == VE::LDLSXrii || // I32
420
MI.getOpcode() == VE::LDUrii || // F32
421
MI.getOpcode() == VE::LDQrii || // F128 (pseudo)
422
MI.getOpcode() == VE::LDVMrii || // VM (pseudo)
423
MI.getOpcode() == VE::LDVM512rii // VM512 (pseudo)
424
) {
425
if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
426
MI.getOperand(2).getImm() == 0 && MI.getOperand(3).isImm() &&
427
MI.getOperand(3).getImm() == 0) {
428
FrameIndex = MI.getOperand(1).getIndex();
429
return MI.getOperand(0).getReg();
430
}
431
}
432
return 0;
433
}
434
435
/// isStoreToStackSlot - If the specified machine instruction is a direct
436
/// store to a stack slot, return the virtual or physical register number of
437
/// the source reg along with the FrameIndex of the loaded stack slot. If
438
/// not, return 0. This predicate must return 0 if the instruction has
439
/// any side effects other than storing to the stack slot.
440
Register VEInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
441
int &FrameIndex) const {
442
if (MI.getOpcode() == VE::STrii || // I64
443
MI.getOpcode() == VE::STLrii || // I32
444
MI.getOpcode() == VE::STUrii || // F32
445
MI.getOpcode() == VE::STQrii || // F128 (pseudo)
446
MI.getOpcode() == VE::STVMrii || // VM (pseudo)
447
MI.getOpcode() == VE::STVM512rii // VM512 (pseudo)
448
) {
449
if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() &&
450
MI.getOperand(1).getImm() == 0 && MI.getOperand(2).isImm() &&
451
MI.getOperand(2).getImm() == 0) {
452
FrameIndex = MI.getOperand(0).getIndex();
453
return MI.getOperand(3).getReg();
454
}
455
}
456
return 0;
457
}
458
459
void VEInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
460
MachineBasicBlock::iterator I,
461
Register SrcReg, bool isKill, int FI,
462
const TargetRegisterClass *RC,
463
const TargetRegisterInfo *TRI,
464
Register VReg) const {
465
DebugLoc DL;
466
if (I != MBB.end())
467
DL = I->getDebugLoc();
468
469
MachineFunction *MF = MBB.getParent();
470
const MachineFrameInfo &MFI = MF->getFrameInfo();
471
MachineMemOperand *MMO = MF->getMachineMemOperand(
472
MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
473
MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
474
475
// On the order of operands here: think "[FrameIdx + 0] = SrcReg".
476
if (RC == &VE::I64RegClass) {
477
BuildMI(MBB, I, DL, get(VE::STrii))
478
.addFrameIndex(FI)
479
.addImm(0)
480
.addImm(0)
481
.addReg(SrcReg, getKillRegState(isKill))
482
.addMemOperand(MMO);
483
} else if (RC == &VE::I32RegClass) {
484
BuildMI(MBB, I, DL, get(VE::STLrii))
485
.addFrameIndex(FI)
486
.addImm(0)
487
.addImm(0)
488
.addReg(SrcReg, getKillRegState(isKill))
489
.addMemOperand(MMO);
490
} else if (RC == &VE::F32RegClass) {
491
BuildMI(MBB, I, DL, get(VE::STUrii))
492
.addFrameIndex(FI)
493
.addImm(0)
494
.addImm(0)
495
.addReg(SrcReg, getKillRegState(isKill))
496
.addMemOperand(MMO);
497
} else if (VE::F128RegClass.hasSubClassEq(RC)) {
498
BuildMI(MBB, I, DL, get(VE::STQrii))
499
.addFrameIndex(FI)
500
.addImm(0)
501
.addImm(0)
502
.addReg(SrcReg, getKillRegState(isKill))
503
.addMemOperand(MMO);
504
} else if (RC == &VE::VMRegClass) {
505
BuildMI(MBB, I, DL, get(VE::STVMrii))
506
.addFrameIndex(FI)
507
.addImm(0)
508
.addImm(0)
509
.addReg(SrcReg, getKillRegState(isKill))
510
.addMemOperand(MMO);
511
} else if (VE::VM512RegClass.hasSubClassEq(RC)) {
512
BuildMI(MBB, I, DL, get(VE::STVM512rii))
513
.addFrameIndex(FI)
514
.addImm(0)
515
.addImm(0)
516
.addReg(SrcReg, getKillRegState(isKill))
517
.addMemOperand(MMO);
518
} else
519
report_fatal_error("Can't store this register to stack slot");
520
}
521
522
void VEInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
523
MachineBasicBlock::iterator I,
524
Register DestReg, int FI,
525
const TargetRegisterClass *RC,
526
const TargetRegisterInfo *TRI,
527
Register VReg) const {
528
DebugLoc DL;
529
if (I != MBB.end())
530
DL = I->getDebugLoc();
531
532
MachineFunction *MF = MBB.getParent();
533
const MachineFrameInfo &MFI = MF->getFrameInfo();
534
MachineMemOperand *MMO = MF->getMachineMemOperand(
535
MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
536
MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
537
538
if (RC == &VE::I64RegClass) {
539
BuildMI(MBB, I, DL, get(VE::LDrii), DestReg)
540
.addFrameIndex(FI)
541
.addImm(0)
542
.addImm(0)
543
.addMemOperand(MMO);
544
} else if (RC == &VE::I32RegClass) {
545
BuildMI(MBB, I, DL, get(VE::LDLSXrii), DestReg)
546
.addFrameIndex(FI)
547
.addImm(0)
548
.addImm(0)
549
.addMemOperand(MMO);
550
} else if (RC == &VE::F32RegClass) {
551
BuildMI(MBB, I, DL, get(VE::LDUrii), DestReg)
552
.addFrameIndex(FI)
553
.addImm(0)
554
.addImm(0)
555
.addMemOperand(MMO);
556
} else if (VE::F128RegClass.hasSubClassEq(RC)) {
557
BuildMI(MBB, I, DL, get(VE::LDQrii), DestReg)
558
.addFrameIndex(FI)
559
.addImm(0)
560
.addImm(0)
561
.addMemOperand(MMO);
562
} else if (RC == &VE::VMRegClass) {
563
BuildMI(MBB, I, DL, get(VE::LDVMrii), DestReg)
564
.addFrameIndex(FI)
565
.addImm(0)
566
.addImm(0)
567
.addMemOperand(MMO);
568
} else if (VE::VM512RegClass.hasSubClassEq(RC)) {
569
BuildMI(MBB, I, DL, get(VE::LDVM512rii), DestReg)
570
.addFrameIndex(FI)
571
.addImm(0)
572
.addImm(0)
573
.addMemOperand(MMO);
574
} else
575
report_fatal_error("Can't load this register from stack slot");
576
}
577
578
bool VEInstrInfo::foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
579
Register Reg, MachineRegisterInfo *MRI) const {
580
LLVM_DEBUG(dbgs() << "foldImmediate\n");
581
582
LLVM_DEBUG(dbgs() << "checking DefMI\n");
583
int64_t ImmVal;
584
switch (DefMI.getOpcode()) {
585
default:
586
return false;
587
case VE::ORim:
588
// General move small immediate instruction on VE.
589
LLVM_DEBUG(dbgs() << "checking ORim\n");
590
LLVM_DEBUG(DefMI.dump());
591
// FIXME: We may need to support FPImm too.
592
assert(DefMI.getOperand(1).isImm());
593
assert(DefMI.getOperand(2).isImm());
594
ImmVal =
595
DefMI.getOperand(1).getImm() + mimm2Val(DefMI.getOperand(2).getImm());
596
LLVM_DEBUG(dbgs() << "ImmVal is " << ImmVal << "\n");
597
break;
598
case VE::LEAzii:
599
// General move immediate instruction on VE.
600
LLVM_DEBUG(dbgs() << "checking LEAzii\n");
601
LLVM_DEBUG(DefMI.dump());
602
// FIXME: We may need to support FPImm too.
603
assert(DefMI.getOperand(2).isImm());
604
if (!DefMI.getOperand(3).isImm())
605
// LEAzii may refer label
606
return false;
607
ImmVal = DefMI.getOperand(2).getImm() + DefMI.getOperand(3).getImm();
608
LLVM_DEBUG(dbgs() << "ImmVal is " << ImmVal << "\n");
609
break;
610
}
611
612
// Try to fold like below:
613
// %1:i64 = ORim 0, 0(1)
614
// %2:i64 = CMPSLrr %0, %1
615
// To
616
// %2:i64 = CMPSLrm %0, 0(1)
617
//
618
// Another example:
619
// %1:i64 = ORim 6, 0(1)
620
// %2:i64 = CMPSLrr %1, %0
621
// To
622
// %2:i64 = CMPSLir 6, %0
623
//
624
// Support commutable instructions like below:
625
// %1:i64 = ORim 6, 0(1)
626
// %2:i64 = ADDSLrr %1, %0
627
// To
628
// %2:i64 = ADDSLri %0, 6
629
//
630
// FIXME: Need to support i32. Current implementtation requires
631
// EXTRACT_SUBREG, so input has following COPY and it avoids folding:
632
// %1:i64 = ORim 6, 0(1)
633
// %2:i32 = COPY %1.sub_i32
634
// %3:i32 = ADDSWSXrr %0, %2
635
// FIXME: Need to support shift, cmov, and more instructions.
636
// FIXME: Need to support lvl too, but LVLGen runs after peephole-opt.
637
638
LLVM_DEBUG(dbgs() << "checking UseMI\n");
639
LLVM_DEBUG(UseMI.dump());
640
unsigned NewUseOpcSImm7;
641
unsigned NewUseOpcMImm;
642
enum InstType {
643
rr2ri_rm, // rr -> ri or rm, commutable
644
rr2ir_rm, // rr -> ir or rm
645
} InstType;
646
647
using namespace llvm::VE;
648
#define INSTRKIND(NAME) \
649
case NAME##rr: \
650
NewUseOpcSImm7 = NAME##ri; \
651
NewUseOpcMImm = NAME##rm; \
652
InstType = rr2ri_rm; \
653
break
654
#define NCINSTRKIND(NAME) \
655
case NAME##rr: \
656
NewUseOpcSImm7 = NAME##ir; \
657
NewUseOpcMImm = NAME##rm; \
658
InstType = rr2ir_rm; \
659
break
660
661
switch (UseMI.getOpcode()) {
662
default:
663
return false;
664
665
INSTRKIND(ADDUL);
666
INSTRKIND(ADDSWSX);
667
INSTRKIND(ADDSWZX);
668
INSTRKIND(ADDSL);
669
NCINSTRKIND(SUBUL);
670
NCINSTRKIND(SUBSWSX);
671
NCINSTRKIND(SUBSWZX);
672
NCINSTRKIND(SUBSL);
673
INSTRKIND(MULUL);
674
INSTRKIND(MULSWSX);
675
INSTRKIND(MULSWZX);
676
INSTRKIND(MULSL);
677
NCINSTRKIND(DIVUL);
678
NCINSTRKIND(DIVSWSX);
679
NCINSTRKIND(DIVSWZX);
680
NCINSTRKIND(DIVSL);
681
NCINSTRKIND(CMPUL);
682
NCINSTRKIND(CMPSWSX);
683
NCINSTRKIND(CMPSWZX);
684
NCINSTRKIND(CMPSL);
685
INSTRKIND(MAXSWSX);
686
INSTRKIND(MAXSWZX);
687
INSTRKIND(MAXSL);
688
INSTRKIND(MINSWSX);
689
INSTRKIND(MINSWZX);
690
INSTRKIND(MINSL);
691
INSTRKIND(AND);
692
INSTRKIND(OR);
693
INSTRKIND(XOR);
694
INSTRKIND(EQV);
695
NCINSTRKIND(NND);
696
NCINSTRKIND(MRG);
697
}
698
699
#undef INSTRKIND
700
701
unsigned NewUseOpc;
702
unsigned UseIdx;
703
bool Commute = false;
704
LLVM_DEBUG(dbgs() << "checking UseMI operands\n");
705
switch (InstType) {
706
case rr2ri_rm:
707
UseIdx = 2;
708
if (UseMI.getOperand(1).getReg() == Reg) {
709
Commute = true;
710
} else {
711
assert(UseMI.getOperand(2).getReg() == Reg);
712
}
713
if (isInt<7>(ImmVal)) {
714
// This ImmVal matches to SImm7 slot, so change UseOpc to an instruction
715
// holds a simm7 slot.
716
NewUseOpc = NewUseOpcSImm7;
717
} else if (isMImmVal(ImmVal)) {
718
// Similarly, change UseOpc to an instruction holds a mimm slot.
719
NewUseOpc = NewUseOpcMImm;
720
ImmVal = val2MImm(ImmVal);
721
} else
722
return false;
723
break;
724
case rr2ir_rm:
725
if (UseMI.getOperand(1).getReg() == Reg) {
726
// Check immediate value whether it matchs to the UseMI instruction.
727
if (!isInt<7>(ImmVal))
728
return false;
729
NewUseOpc = NewUseOpcSImm7;
730
UseIdx = 1;
731
} else {
732
assert(UseMI.getOperand(2).getReg() == Reg);
733
// Check immediate value whether it matchs to the UseMI instruction.
734
if (!isMImmVal(ImmVal))
735
return false;
736
NewUseOpc = NewUseOpcMImm;
737
ImmVal = val2MImm(ImmVal);
738
UseIdx = 2;
739
}
740
break;
741
}
742
743
LLVM_DEBUG(dbgs() << "modifying UseMI\n");
744
bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
745
UseMI.setDesc(get(NewUseOpc));
746
if (Commute) {
747
UseMI.getOperand(1).setReg(UseMI.getOperand(UseIdx).getReg());
748
}
749
UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal);
750
if (DeleteDef)
751
DefMI.eraseFromParent();
752
753
return true;
754
}
755
756
Register VEInstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
757
VEMachineFunctionInfo *VEFI = MF->getInfo<VEMachineFunctionInfo>();
758
Register GlobalBaseReg = VEFI->getGlobalBaseReg();
759
if (GlobalBaseReg != 0)
760
return GlobalBaseReg;
761
762
// We use %s15 (%got) as a global base register
763
GlobalBaseReg = VE::SX15;
764
765
// Insert a pseudo instruction to set the GlobalBaseReg into the first
766
// MBB of the function
767
MachineBasicBlock &FirstMBB = MF->front();
768
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
769
DebugLoc dl;
770
BuildMI(FirstMBB, MBBI, dl, get(VE::GETGOT), GlobalBaseReg);
771
VEFI->setGlobalBaseReg(GlobalBaseReg);
772
return GlobalBaseReg;
773
}
774
775
static Register getVM512Upper(Register reg) {
776
return (reg - VE::VMP0) * 2 + VE::VM0;
777
}
778
779
static Register getVM512Lower(Register reg) { return getVM512Upper(reg) + 1; }
780
781
// Expand pseudo logical vector instructions for VM512 registers.
782
static void expandPseudoLogM(MachineInstr &MI, const MCInstrDesc &MCID) {
783
MachineBasicBlock *MBB = MI.getParent();
784
DebugLoc DL = MI.getDebugLoc();
785
786
Register VMXu = getVM512Upper(MI.getOperand(0).getReg());
787
Register VMXl = getVM512Lower(MI.getOperand(0).getReg());
788
Register VMYu = getVM512Upper(MI.getOperand(1).getReg());
789
Register VMYl = getVM512Lower(MI.getOperand(1).getReg());
790
791
switch (MI.getOpcode()) {
792
default: {
793
Register VMZu = getVM512Upper(MI.getOperand(2).getReg());
794
Register VMZl = getVM512Lower(MI.getOperand(2).getReg());
795
BuildMI(*MBB, MI, DL, MCID).addDef(VMXu).addUse(VMYu).addUse(VMZu);
796
BuildMI(*MBB, MI, DL, MCID).addDef(VMXl).addUse(VMYl).addUse(VMZl);
797
break;
798
}
799
case VE::NEGMy:
800
BuildMI(*MBB, MI, DL, MCID).addDef(VMXu).addUse(VMYu);
801
BuildMI(*MBB, MI, DL, MCID).addDef(VMXl).addUse(VMYl);
802
break;
803
}
804
MI.eraseFromParent();
805
}
806
807
static void addOperandsForVFMK(MachineInstrBuilder &MIB, MachineInstr &MI,
808
bool Upper) {
809
// VM512
810
MIB.addReg(Upper ? getVM512Upper(MI.getOperand(0).getReg())
811
: getVM512Lower(MI.getOperand(0).getReg()));
812
813
switch (MI.getNumExplicitOperands()) {
814
default:
815
report_fatal_error("unexpected number of operands for pvfmk");
816
case 2: // _Ml: VM512, VL
817
// VL
818
MIB.addReg(MI.getOperand(1).getReg());
819
break;
820
case 4: // _Mvl: VM512, CC, VR, VL
821
// CC
822
MIB.addImm(MI.getOperand(1).getImm());
823
// VR
824
MIB.addReg(MI.getOperand(2).getReg());
825
// VL
826
MIB.addReg(MI.getOperand(3).getReg());
827
break;
828
case 5: // _MvMl: VM512, CC, VR, VM512, VL
829
// CC
830
MIB.addImm(MI.getOperand(1).getImm());
831
// VR
832
MIB.addReg(MI.getOperand(2).getReg());
833
// VM512
834
MIB.addReg(Upper ? getVM512Upper(MI.getOperand(3).getReg())
835
: getVM512Lower(MI.getOperand(3).getReg()));
836
// VL
837
MIB.addReg(MI.getOperand(4).getReg());
838
break;
839
}
840
}
841
842
static void expandPseudoVFMK(const TargetInstrInfo &TI, MachineInstr &MI) {
843
// replace to pvfmk.w.up and pvfmk.w.lo
844
// replace to pvfmk.s.up and pvfmk.s.lo
845
846
static const std::pair<unsigned, std::pair<unsigned, unsigned>> VFMKMap[] = {
847
{VE::VFMKyal, {VE::VFMKLal, VE::VFMKLal}},
848
{VE::VFMKynal, {VE::VFMKLnal, VE::VFMKLnal}},
849
{VE::VFMKWyvl, {VE::PVFMKWUPvl, VE::PVFMKWLOvl}},
850
{VE::VFMKWyvyl, {VE::PVFMKWUPvml, VE::PVFMKWLOvml}},
851
{VE::VFMKSyvl, {VE::PVFMKSUPvl, VE::PVFMKSLOvl}},
852
{VE::VFMKSyvyl, {VE::PVFMKSUPvml, VE::PVFMKSLOvml}},
853
};
854
855
unsigned Opcode = MI.getOpcode();
856
857
const auto *Found =
858
llvm::find_if(VFMKMap, [&](auto P) { return P.first == Opcode; });
859
if (Found == std::end(VFMKMap))
860
report_fatal_error("unexpected opcode for pseudo vfmk");
861
862
unsigned OpcodeUpper = (*Found).second.first;
863
unsigned OpcodeLower = (*Found).second.second;
864
865
MachineBasicBlock *MBB = MI.getParent();
866
DebugLoc DL = MI.getDebugLoc();
867
868
MachineInstrBuilder Bu = BuildMI(*MBB, MI, DL, TI.get(OpcodeUpper));
869
addOperandsForVFMK(Bu, MI, /* Upper */ true);
870
MachineInstrBuilder Bl = BuildMI(*MBB, MI, DL, TI.get(OpcodeLower));
871
addOperandsForVFMK(Bl, MI, /* Upper */ false);
872
873
MI.eraseFromParent();
874
}
875
876
bool VEInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
877
switch (MI.getOpcode()) {
878
case VE::EXTEND_STACK: {
879
return expandExtendStackPseudo(MI);
880
}
881
case VE::EXTEND_STACK_GUARD: {
882
MI.eraseFromParent(); // The pseudo instruction is gone now.
883
return true;
884
}
885
case VE::GETSTACKTOP: {
886
return expandGetStackTopPseudo(MI);
887
}
888
889
case VE::ANDMyy:
890
expandPseudoLogM(MI, get(VE::ANDMmm));
891
return true;
892
case VE::ORMyy:
893
expandPseudoLogM(MI, get(VE::ORMmm));
894
return true;
895
case VE::XORMyy:
896
expandPseudoLogM(MI, get(VE::XORMmm));
897
return true;
898
case VE::EQVMyy:
899
expandPseudoLogM(MI, get(VE::EQVMmm));
900
return true;
901
case VE::NNDMyy:
902
expandPseudoLogM(MI, get(VE::NNDMmm));
903
return true;
904
case VE::NEGMy:
905
expandPseudoLogM(MI, get(VE::NEGMm));
906
return true;
907
908
case VE::LVMyir:
909
case VE::LVMyim:
910
case VE::LVMyir_y:
911
case VE::LVMyim_y: {
912
Register VMXu = getVM512Upper(MI.getOperand(0).getReg());
913
Register VMXl = getVM512Lower(MI.getOperand(0).getReg());
914
int64_t Imm = MI.getOperand(1).getImm();
915
bool IsSrcReg =
916
MI.getOpcode() == VE::LVMyir || MI.getOpcode() == VE::LVMyir_y;
917
Register Src = IsSrcReg ? MI.getOperand(2).getReg() : VE::NoRegister;
918
int64_t MImm = IsSrcReg ? 0 : MI.getOperand(2).getImm();
919
bool KillSrc = IsSrcReg ? MI.getOperand(2).isKill() : false;
920
Register VMX = VMXl;
921
if (Imm >= 4) {
922
VMX = VMXu;
923
Imm -= 4;
924
}
925
MachineBasicBlock *MBB = MI.getParent();
926
DebugLoc DL = MI.getDebugLoc();
927
switch (MI.getOpcode()) {
928
case VE::LVMyir:
929
BuildMI(*MBB, MI, DL, get(VE::LVMir))
930
.addDef(VMX)
931
.addImm(Imm)
932
.addReg(Src, getKillRegState(KillSrc));
933
break;
934
case VE::LVMyim:
935
BuildMI(*MBB, MI, DL, get(VE::LVMim))
936
.addDef(VMX)
937
.addImm(Imm)
938
.addImm(MImm);
939
break;
940
case VE::LVMyir_y:
941
assert(MI.getOperand(0).getReg() == MI.getOperand(3).getReg() &&
942
"LVMyir_y has different register in 3rd operand");
943
BuildMI(*MBB, MI, DL, get(VE::LVMir_m))
944
.addDef(VMX)
945
.addImm(Imm)
946
.addReg(Src, getKillRegState(KillSrc))
947
.addReg(VMX);
948
break;
949
case VE::LVMyim_y:
950
assert(MI.getOperand(0).getReg() == MI.getOperand(3).getReg() &&
951
"LVMyim_y has different register in 3rd operand");
952
BuildMI(*MBB, MI, DL, get(VE::LVMim_m))
953
.addDef(VMX)
954
.addImm(Imm)
955
.addImm(MImm)
956
.addReg(VMX);
957
break;
958
}
959
MI.eraseFromParent();
960
return true;
961
}
962
case VE::SVMyi: {
963
Register Dest = MI.getOperand(0).getReg();
964
Register VMZu = getVM512Upper(MI.getOperand(1).getReg());
965
Register VMZl = getVM512Lower(MI.getOperand(1).getReg());
966
bool KillSrc = MI.getOperand(1).isKill();
967
int64_t Imm = MI.getOperand(2).getImm();
968
Register VMZ = VMZl;
969
if (Imm >= 4) {
970
VMZ = VMZu;
971
Imm -= 4;
972
}
973
MachineBasicBlock *MBB = MI.getParent();
974
DebugLoc DL = MI.getDebugLoc();
975
MachineInstrBuilder MIB =
976
BuildMI(*MBB, MI, DL, get(VE::SVMmi), Dest).addReg(VMZ).addImm(Imm);
977
MachineInstr *Inst = MIB.getInstr();
978
if (KillSrc) {
979
const TargetRegisterInfo *TRI = &getRegisterInfo();
980
Inst->addRegisterKilled(MI.getOperand(1).getReg(), TRI, true);
981
}
982
MI.eraseFromParent();
983
return true;
984
}
985
case VE::VFMKyal:
986
case VE::VFMKynal:
987
case VE::VFMKWyvl:
988
case VE::VFMKWyvyl:
989
case VE::VFMKSyvl:
990
case VE::VFMKSyvyl:
991
expandPseudoVFMK(*this, MI);
992
return true;
993
}
994
return false;
995
}
996
997
bool VEInstrInfo::expandExtendStackPseudo(MachineInstr &MI) const {
998
MachineBasicBlock &MBB = *MI.getParent();
999
MachineFunction &MF = *MBB.getParent();
1000
const VESubtarget &STI = MF.getSubtarget<VESubtarget>();
1001
const VEInstrInfo &TII = *STI.getInstrInfo();
1002
DebugLoc dl = MBB.findDebugLoc(MI);
1003
1004
// Create following instructions and multiple basic blocks.
1005
//
1006
// thisBB:
1007
// brge.l.t %sp, %sl, sinkBB
1008
// syscallBB:
1009
// ld %s61, 0x18(, %tp) // load param area
1010
// or %s62, 0, %s0 // spill the value of %s0
1011
// lea %s63, 0x13b // syscall # of grow
1012
// shm.l %s63, 0x0(%s61) // store syscall # at addr:0
1013
// shm.l %sl, 0x8(%s61) // store old limit at addr:8
1014
// shm.l %sp, 0x10(%s61) // store new limit at addr:16
1015
// monc // call monitor
1016
// or %s0, 0, %s62 // restore the value of %s0
1017
// sinkBB:
1018
1019
// Create new MBB
1020
MachineBasicBlock *BB = &MBB;
1021
const BasicBlock *LLVM_BB = BB->getBasicBlock();
1022
MachineBasicBlock *syscallMBB = MF.CreateMachineBasicBlock(LLVM_BB);
1023
MachineBasicBlock *sinkMBB = MF.CreateMachineBasicBlock(LLVM_BB);
1024
MachineFunction::iterator It = ++(BB->getIterator());
1025
MF.insert(It, syscallMBB);
1026
MF.insert(It, sinkMBB);
1027
1028
// Transfer the remainder of BB and its successor edges to sinkMBB.
1029
sinkMBB->splice(sinkMBB->begin(), BB,
1030
std::next(std::next(MachineBasicBlock::iterator(MI))),
1031
BB->end());
1032
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1033
1034
// Next, add the true and fallthrough blocks as its successors.
1035
BB->addSuccessor(syscallMBB);
1036
BB->addSuccessor(sinkMBB);
1037
BuildMI(BB, dl, TII.get(VE::BRCFLrr_t))
1038
.addImm(VECC::CC_IGE)
1039
.addReg(VE::SX11) // %sp
1040
.addReg(VE::SX8) // %sl
1041
.addMBB(sinkMBB);
1042
1043
BB = syscallMBB;
1044
1045
// Update machine-CFG edges
1046
BB->addSuccessor(sinkMBB);
1047
1048
BuildMI(BB, dl, TII.get(VE::LDrii), VE::SX61)
1049
.addReg(VE::SX14)
1050
.addImm(0)
1051
.addImm(0x18);
1052
BuildMI(BB, dl, TII.get(VE::ORri), VE::SX62)
1053
.addReg(VE::SX0)
1054
.addImm(0);
1055
BuildMI(BB, dl, TII.get(VE::LEAzii), VE::SX63)
1056
.addImm(0)
1057
.addImm(0)
1058
.addImm(0x13b);
1059
BuildMI(BB, dl, TII.get(VE::SHMLri))
1060
.addReg(VE::SX61)
1061
.addImm(0)
1062
.addReg(VE::SX63);
1063
BuildMI(BB, dl, TII.get(VE::SHMLri))
1064
.addReg(VE::SX61)
1065
.addImm(8)
1066
.addReg(VE::SX8);
1067
BuildMI(BB, dl, TII.get(VE::SHMLri))
1068
.addReg(VE::SX61)
1069
.addImm(16)
1070
.addReg(VE::SX11);
1071
BuildMI(BB, dl, TII.get(VE::MONC));
1072
1073
BuildMI(BB, dl, TII.get(VE::ORri), VE::SX0)
1074
.addReg(VE::SX62)
1075
.addImm(0);
1076
1077
MI.eraseFromParent(); // The pseudo instruction is gone now.
1078
return true;
1079
}
1080
1081
bool VEInstrInfo::expandGetStackTopPseudo(MachineInstr &MI) const {
1082
MachineBasicBlock *MBB = MI.getParent();
1083
MachineFunction &MF = *MBB->getParent();
1084
const VESubtarget &STI = MF.getSubtarget<VESubtarget>();
1085
const VEInstrInfo &TII = *STI.getInstrInfo();
1086
DebugLoc DL = MBB->findDebugLoc(MI);
1087
1088
// Create following instruction
1089
//
1090
// dst = %sp + target specific frame + the size of parameter area
1091
1092
const MachineFrameInfo &MFI = MF.getFrameInfo();
1093
const VEFrameLowering &TFL = *STI.getFrameLowering();
1094
1095
// The VE ABI requires a reserved area at the top of stack as described
1096
// in VEFrameLowering.cpp. So, we adjust it here.
1097
unsigned NumBytes = STI.getAdjustedFrameSize(0);
1098
1099
// Also adds the size of parameter area.
1100
if (MFI.adjustsStack() && TFL.hasReservedCallFrame(MF))
1101
NumBytes += MFI.getMaxCallFrameSize();
1102
1103
BuildMI(*MBB, MI, DL, TII.get(VE::LEArii))
1104
.addDef(MI.getOperand(0).getReg())
1105
.addReg(VE::SX11)
1106
.addImm(0)
1107
.addImm(NumBytes);
1108
1109
MI.eraseFromParent(); // The pseudo instruction is gone now.
1110
return true;
1111
}
1112
1113