Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
35294 views
1
//===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains small standalone helper functions and enum definitions for
10
// the X86 target useful for the compiler back-end and the MC libraries.
11
// As such, it deliberately does not include references to LLVM core
12
// code gen types, passes, etc..
13
//
14
//===----------------------------------------------------------------------===//
15
16
#ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
17
#define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
18
19
#include "X86MCTargetDesc.h"
20
#include "llvm/MC/MCInstrDesc.h"
21
#include "llvm/Support/DataTypes.h"
22
#include "llvm/Support/ErrorHandling.h"
23
24
namespace llvm {
25
namespace X86 {
26
// Enums for memory operand decoding. Each memory operand is represented with
27
// a 5 operand sequence in the form: [Base, Scale, Index, Disp, Segment]
28
enum {
29
AddrBaseReg = 0,
30
AddrScaleAmt = 1,
31
AddrIndexReg = 2,
32
AddrDisp = 3,
33
// The operand # of the segment in the memory operand.
34
AddrSegmentReg = 4,
35
// Total number of operands in a memory reference.
36
AddrNumOperands = 5
37
};
38
39
/// AVX512 static rounding constants. These need to match the values in
40
/// avx512fintrin.h.
41
enum STATIC_ROUNDING {
42
TO_NEAREST_INT = 0,
43
TO_NEG_INF = 1,
44
TO_POS_INF = 2,
45
TO_ZERO = 3,
46
CUR_DIRECTION = 4,
47
NO_EXC = 8
48
};
49
50
/// The constants to describe instr prefixes if there are
51
enum IPREFIXES {
52
IP_NO_PREFIX = 0,
53
IP_HAS_OP_SIZE = 1U << 0,
54
IP_HAS_AD_SIZE = 1U << 1,
55
IP_HAS_REPEAT_NE = 1U << 2,
56
IP_HAS_REPEAT = 1U << 3,
57
IP_HAS_LOCK = 1U << 4,
58
IP_HAS_NOTRACK = 1U << 5,
59
IP_USE_REX = 1U << 6,
60
IP_USE_REX2 = 1U << 7,
61
IP_USE_VEX = 1U << 8,
62
IP_USE_VEX2 = 1U << 9,
63
IP_USE_VEX3 = 1U << 10,
64
IP_USE_EVEX = 1U << 11,
65
IP_USE_DISP8 = 1U << 12,
66
IP_USE_DISP32 = 1U << 13,
67
};
68
69
enum OperandType : unsigned {
70
// AVX512 embedded rounding control. This should only have values 0-3.
71
OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET,
72
OPERAND_COND_CODE,
73
};
74
75
// X86 specific condition code. These correspond to X86_*_COND in
76
// X86InstrInfo.td. They must be kept in synch.
77
enum CondCode {
78
COND_O = 0,
79
COND_NO = 1,
80
COND_B = 2,
81
COND_AE = 3,
82
COND_E = 4,
83
COND_NE = 5,
84
COND_BE = 6,
85
COND_A = 7,
86
COND_S = 8,
87
COND_NS = 9,
88
COND_P = 10,
89
COND_NP = 11,
90
COND_L = 12,
91
COND_GE = 13,
92
COND_LE = 14,
93
COND_G = 15,
94
LAST_VALID_COND = COND_G,
95
// Artificial condition codes. These are used by analyzeBranch
96
// to indicate a block terminated with two conditional branches that together
97
// form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
98
// which can't be represented on x86 with a single condition. These
99
// are never used in MachineInstrs and are inverses of one another.
100
COND_NE_OR_P,
101
COND_E_AND_NP,
102
COND_INVALID
103
};
104
105
// The classification for the first instruction in macro fusion.
106
// FIXME: Zen 3 support branch fusion for OR/XOR.
107
enum class FirstMacroFusionInstKind {
108
Test, // TEST
109
Cmp, // CMP
110
And, // AND
111
AddSub, // ADD, SUB
112
IncDec, // INC, DEC
113
Invalid // Not valid as a first macro fusion instruction
114
};
115
116
enum class SecondMacroFusionInstKind {
117
AB, // JA, JB and variants
118
ELG, // JE, JL, JG and variants
119
SPO, // JS, JP, JO and variants
120
Invalid, // Not a fusible jump.
121
};
122
123
/// \returns the type of the first instruction in macro-fusion.
124
// FIXME: Zen 3 support branch fusion for OR/XOR.
125
inline FirstMacroFusionInstKind
126
classifyFirstOpcodeInMacroFusion(unsigned Opcode) {
127
switch (Opcode) {
128
default:
129
return FirstMacroFusionInstKind::Invalid;
130
// TEST
131
case X86::TEST16i16:
132
case X86::TEST16mr:
133
case X86::TEST16ri:
134
case X86::TEST16rr:
135
case X86::TEST32i32:
136
case X86::TEST32mr:
137
case X86::TEST32ri:
138
case X86::TEST32rr:
139
case X86::TEST64i32:
140
case X86::TEST64mr:
141
case X86::TEST64ri32:
142
case X86::TEST64rr:
143
case X86::TEST8i8:
144
case X86::TEST8mr:
145
case X86::TEST8ri:
146
case X86::TEST8rr:
147
return FirstMacroFusionInstKind::Test;
148
case X86::AND16i16:
149
case X86::AND16ri:
150
case X86::AND16ri8:
151
case X86::AND16rm:
152
case X86::AND16rr:
153
case X86::AND32i32:
154
case X86::AND32ri:
155
case X86::AND32ri8:
156
case X86::AND32rm:
157
case X86::AND32rr:
158
case X86::AND64i32:
159
case X86::AND64ri32:
160
case X86::AND64ri8:
161
case X86::AND64rm:
162
case X86::AND64rr:
163
case X86::AND8i8:
164
case X86::AND8ri:
165
case X86::AND8ri8:
166
case X86::AND8rm:
167
case X86::AND8rr:
168
return FirstMacroFusionInstKind::And;
169
// CMP
170
case X86::CMP16i16:
171
case X86::CMP16mr:
172
case X86::CMP16ri:
173
case X86::CMP16ri8:
174
case X86::CMP16rm:
175
case X86::CMP16rr:
176
case X86::CMP32i32:
177
case X86::CMP32mr:
178
case X86::CMP32ri:
179
case X86::CMP32ri8:
180
case X86::CMP32rm:
181
case X86::CMP32rr:
182
case X86::CMP64i32:
183
case X86::CMP64mr:
184
case X86::CMP64ri32:
185
case X86::CMP64ri8:
186
case X86::CMP64rm:
187
case X86::CMP64rr:
188
case X86::CMP8i8:
189
case X86::CMP8mr:
190
case X86::CMP8ri:
191
case X86::CMP8ri8:
192
case X86::CMP8rm:
193
case X86::CMP8rr:
194
return FirstMacroFusionInstKind::Cmp;
195
// ADD
196
case X86::ADD16i16:
197
case X86::ADD16ri:
198
case X86::ADD16ri8:
199
case X86::ADD16rm:
200
case X86::ADD16rr:
201
case X86::ADD32i32:
202
case X86::ADD32ri:
203
case X86::ADD32ri8:
204
case X86::ADD32rm:
205
case X86::ADD32rr:
206
case X86::ADD64i32:
207
case X86::ADD64ri32:
208
case X86::ADD64ri8:
209
case X86::ADD64rm:
210
case X86::ADD64rr:
211
case X86::ADD8i8:
212
case X86::ADD8ri:
213
case X86::ADD8ri8:
214
case X86::ADD8rm:
215
case X86::ADD8rr:
216
// SUB
217
case X86::SUB16i16:
218
case X86::SUB16ri:
219
case X86::SUB16ri8:
220
case X86::SUB16rm:
221
case X86::SUB16rr:
222
case X86::SUB32i32:
223
case X86::SUB32ri:
224
case X86::SUB32ri8:
225
case X86::SUB32rm:
226
case X86::SUB32rr:
227
case X86::SUB64i32:
228
case X86::SUB64ri32:
229
case X86::SUB64ri8:
230
case X86::SUB64rm:
231
case X86::SUB64rr:
232
case X86::SUB8i8:
233
case X86::SUB8ri:
234
case X86::SUB8ri8:
235
case X86::SUB8rm:
236
case X86::SUB8rr:
237
return FirstMacroFusionInstKind::AddSub;
238
// INC
239
case X86::INC16r:
240
case X86::INC16r_alt:
241
case X86::INC32r:
242
case X86::INC32r_alt:
243
case X86::INC64r:
244
case X86::INC8r:
245
// DEC
246
case X86::DEC16r:
247
case X86::DEC16r_alt:
248
case X86::DEC32r:
249
case X86::DEC32r_alt:
250
case X86::DEC64r:
251
case X86::DEC8r:
252
return FirstMacroFusionInstKind::IncDec;
253
}
254
}
255
256
/// \returns the type of the second instruction in macro-fusion.
257
inline SecondMacroFusionInstKind
258
classifySecondCondCodeInMacroFusion(X86::CondCode CC) {
259
if (CC == X86::COND_INVALID)
260
return SecondMacroFusionInstKind::Invalid;
261
switch (CC) {
262
default:
263
return SecondMacroFusionInstKind::Invalid;
264
case X86::COND_E: // JE,JZ
265
case X86::COND_NE: // JNE,JNZ
266
case X86::COND_L: // JL,JNGE
267
case X86::COND_LE: // JLE,JNG
268
case X86::COND_G: // JG,JNLE
269
case X86::COND_GE: // JGE,JNL
270
return SecondMacroFusionInstKind::ELG;
271
case X86::COND_B: // JB,JC
272
case X86::COND_BE: // JNA,JBE
273
case X86::COND_A: // JA,JNBE
274
case X86::COND_AE: // JAE,JNC,JNB
275
return SecondMacroFusionInstKind::AB;
276
case X86::COND_S: // JS
277
case X86::COND_NS: // JNS
278
case X86::COND_P: // JP,JPE
279
case X86::COND_NP: // JNP,JPO
280
case X86::COND_O: // JO
281
case X86::COND_NO: // JNO
282
return SecondMacroFusionInstKind::SPO;
283
}
284
}
285
286
/// \param FirstKind kind of the first instruction in macro fusion.
287
/// \param SecondKind kind of the second instruction in macro fusion.
288
///
289
/// \returns true if the two instruction can be macro fused.
290
inline bool isMacroFused(FirstMacroFusionInstKind FirstKind,
291
SecondMacroFusionInstKind SecondKind) {
292
switch (FirstKind) {
293
case X86::FirstMacroFusionInstKind::Test:
294
case X86::FirstMacroFusionInstKind::And:
295
return true;
296
case X86::FirstMacroFusionInstKind::Cmp:
297
case X86::FirstMacroFusionInstKind::AddSub:
298
return SecondKind == X86::SecondMacroFusionInstKind::AB ||
299
SecondKind == X86::SecondMacroFusionInstKind::ELG;
300
case X86::FirstMacroFusionInstKind::IncDec:
301
return SecondKind == X86::SecondMacroFusionInstKind::ELG;
302
case X86::FirstMacroFusionInstKind::Invalid:
303
return false;
304
}
305
llvm_unreachable("unknown fusion type");
306
}
307
308
/// Defines the possible values of the branch boundary alignment mask.
309
enum AlignBranchBoundaryKind : uint8_t {
310
AlignBranchNone = 0,
311
AlignBranchFused = 1U << 0,
312
AlignBranchJcc = 1U << 1,
313
AlignBranchJmp = 1U << 2,
314
AlignBranchCall = 1U << 3,
315
AlignBranchRet = 1U << 4,
316
AlignBranchIndirect = 1U << 5
317
};
318
319
/// Defines the encoding values for segment override prefix.
320
enum EncodingOfSegmentOverridePrefix : uint8_t {
321
CS_Encoding = 0x2E,
322
DS_Encoding = 0x3E,
323
ES_Encoding = 0x26,
324
FS_Encoding = 0x64,
325
GS_Encoding = 0x65,
326
SS_Encoding = 0x36
327
};
328
329
/// Given a segment register, return the encoding of the segment override
330
/// prefix for it.
331
inline EncodingOfSegmentOverridePrefix
332
getSegmentOverridePrefixForReg(unsigned Reg) {
333
switch (Reg) {
334
default:
335
llvm_unreachable("Unknown segment register!");
336
case X86::CS:
337
return CS_Encoding;
338
case X86::DS:
339
return DS_Encoding;
340
case X86::ES:
341
return ES_Encoding;
342
case X86::FS:
343
return FS_Encoding;
344
case X86::GS:
345
return GS_Encoding;
346
case X86::SS:
347
return SS_Encoding;
348
}
349
}
350
351
} // namespace X86
352
353
/// X86II - This namespace holds all of the target specific flags that
354
/// instruction info tracks.
355
///
356
namespace X86II {
357
/// Target Operand Flag enum.
358
enum TOF {
359
//===------------------------------------------------------------------===//
360
// X86 Specific MachineOperand flags.
361
//
362
/// MO_NO_FLAG - No flag for the operand
363
MO_NO_FLAG,
364
/// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
365
/// relocation of:
366
/// SYMBOL_LABEL + [. - PICBASELABEL]
367
MO_GOT_ABSOLUTE_ADDRESS,
368
/// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
369
/// immediate should get the value of the symbol minus the PIC base label:
370
/// SYMBOL_LABEL - PICBASELABEL
371
MO_PIC_BASE_OFFSET,
372
/// MO_GOT - On a symbol operand this indicates that the immediate is the
373
/// offset to the GOT entry for the symbol name from the base of the GOT.
374
/// See the X86-64 ELF ABI supplement for more details.
375
/// SYMBOL_LABEL @GOT
376
MO_GOT,
377
/// MO_GOTOFF - On a symbol operand this indicates that the immediate is
378
/// the offset to the location of the symbol name from the base of the GOT.
379
/// See the X86-64 ELF ABI supplement for more details.
380
/// SYMBOL_LABEL @GOTOFF
381
MO_GOTOFF,
382
/// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
383
/// offset to the GOT entry for the symbol name from the current code
384
/// location.
385
/// See the X86-64 ELF ABI supplement for more details.
386
/// SYMBOL_LABEL @GOTPCREL
387
MO_GOTPCREL,
388
/// MO_GOTPCREL_NORELAX - Same as MO_GOTPCREL except that R_X86_64_GOTPCREL
389
/// relocations are guaranteed to be emitted by the integrated assembler
390
/// instead of the relaxable R_X86_64[_REX]_GOTPCRELX relocations.
391
MO_GOTPCREL_NORELAX,
392
/// MO_PLT - On a symbol operand this indicates that the immediate is
393
/// offset to the PLT entry of symbol name from the current code location.
394
/// See the X86-64 ELF ABI supplement for more details.
395
/// SYMBOL_LABEL @PLT
396
MO_PLT,
397
/// MO_TLSGD - On a symbol operand this indicates that the immediate is
398
/// the offset of the GOT entry with the TLS index structure that contains
399
/// the module number and variable offset for the symbol. Used in the
400
/// general dynamic TLS access model.
401
/// See 'ELF Handling for Thread-Local Storage' for more details.
402
/// SYMBOL_LABEL @TLSGD
403
MO_TLSGD,
404
/// MO_TLSLD - On a symbol operand this indicates that the immediate is
405
/// the offset of the GOT entry with the TLS index for the module that
406
/// contains the symbol. When this index is passed to a call to
407
/// __tls_get_addr, the function will return the base address of the TLS
408
/// block for the symbol. Used in the x86-64 local dynamic TLS access model.
409
/// See 'ELF Handling for Thread-Local Storage' for more details.
410
/// SYMBOL_LABEL @TLSLD
411
MO_TLSLD,
412
/// MO_TLSLDM - On a symbol operand this indicates that the immediate is
413
/// the offset of the GOT entry with the TLS index for the module that
414
/// contains the symbol. When this index is passed to a call to
415
/// ___tls_get_addr, the function will return the base address of the TLS
416
/// block for the symbol. Used in the IA32 local dynamic TLS access model.
417
/// See 'ELF Handling for Thread-Local Storage' for more details.
418
/// SYMBOL_LABEL @TLSLDM
419
MO_TLSLDM,
420
/// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
421
/// the offset of the GOT entry with the thread-pointer offset for the
422
/// symbol. Used in the x86-64 initial exec TLS access model.
423
/// See 'ELF Handling for Thread-Local Storage' for more details.
424
/// SYMBOL_LABEL @GOTTPOFF
425
MO_GOTTPOFF,
426
/// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
427
/// the absolute address of the GOT entry with the negative thread-pointer
428
/// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
429
/// model.
430
/// See 'ELF Handling for Thread-Local Storage' for more details.
431
/// SYMBOL_LABEL @INDNTPOFF
432
MO_INDNTPOFF,
433
/// MO_TPOFF - On a symbol operand this indicates that the immediate is
434
/// the thread-pointer offset for the symbol. Used in the x86-64 local
435
/// exec TLS access model.
436
/// See 'ELF Handling for Thread-Local Storage' for more details.
437
/// SYMBOL_LABEL @TPOFF
438
MO_TPOFF,
439
/// MO_DTPOFF - On a symbol operand this indicates that the immediate is
440
/// the offset of the GOT entry with the TLS offset of the symbol. Used
441
/// in the local dynamic TLS access model.
442
/// See 'ELF Handling for Thread-Local Storage' for more details.
443
/// SYMBOL_LABEL @DTPOFF
444
MO_DTPOFF,
445
/// MO_NTPOFF - On a symbol operand this indicates that the immediate is
446
/// the negative thread-pointer offset for the symbol. Used in the IA32
447
/// local exec TLS access model.
448
/// See 'ELF Handling for Thread-Local Storage' for more details.
449
/// SYMBOL_LABEL @NTPOFF
450
MO_NTPOFF,
451
/// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
452
/// the offset of the GOT entry with the negative thread-pointer offset for
453
/// the symbol. Used in the PIC IA32 initial exec TLS access model.
454
/// See 'ELF Handling for Thread-Local Storage' for more details.
455
/// SYMBOL_LABEL @GOTNTPOFF
456
MO_GOTNTPOFF,
457
/// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
458
/// reference is actually to the "__imp_FOO" symbol. This is used for
459
/// dllimport linkage on windows.
460
MO_DLLIMPORT,
461
/// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
462
/// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
463
/// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
464
MO_DARWIN_NONLAZY,
465
/// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
466
/// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
467
/// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
468
MO_DARWIN_NONLAZY_PIC_BASE,
469
/// MO_TLVP - On a symbol operand this indicates that the immediate is
470
/// some TLS offset.
471
/// This is the TLS offset for the Darwin TLS mechanism.
472
MO_TLVP,
473
/// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
474
/// is some TLS offset from the picbase.
475
/// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
476
MO_TLVP_PIC_BASE,
477
/// MO_SECREL - On a symbol operand this indicates that the immediate is
478
/// the offset from beginning of section.
479
/// This is the TLS offset for the COFF/Windows TLS mechanism.
480
MO_SECREL,
481
/// MO_ABS8 - On a symbol operand this indicates that the symbol is known
482
/// to be an absolute symbol in range [0,128), so we can use the @ABS8
483
/// symbol modifier.
484
MO_ABS8,
485
/// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
486
/// reference is actually to the ".refptr.FOO" symbol. This is used for
487
/// stub symbols on windows.
488
MO_COFFSTUB,
489
};
490
491
enum : uint64_t {
492
//===------------------------------------------------------------------===//
493
// Instruction encodings. These are the standard/most common forms for X86
494
// instructions.
495
//
496
/// PseudoFrm - This represents an instruction that is a pseudo instruction
497
/// or one that has not been implemented yet. It is illegal to code generate
498
/// it, but tolerated for intermediate implementation stages.
499
Pseudo = 0,
500
/// Raw - This form is for instructions that don't have any operands, so
501
/// they are just a fixed opcode value, like 'leave'.
502
RawFrm = 1,
503
/// AddRegFrm - This form is used for instructions like 'push r32' that have
504
/// their one register operand added to their opcode.
505
AddRegFrm = 2,
506
/// RawFrmMemOffs - This form is for instructions that store an absolute
507
/// memory offset as an immediate with a possible segment override.
508
RawFrmMemOffs = 3,
509
/// RawFrmSrc - This form is for instructions that use the source index
510
/// register SI/ESI/RSI with a possible segment override.
511
RawFrmSrc = 4,
512
/// RawFrmDst - This form is for instructions that use the destination index
513
/// register DI/EDI/RDI.
514
RawFrmDst = 5,
515
/// RawFrmDstSrc - This form is for instructions that use the source index
516
/// register SI/ESI/RSI with a possible segment override, and also the
517
/// destination index register DI/EDI/RDI.
518
RawFrmDstSrc = 6,
519
/// RawFrmImm8 - This is used for the ENTER instruction, which has two
520
/// immediates, the first of which is a 16-bit immediate (specified by
521
/// the imm encoding) and the second is a 8-bit fixed value.
522
RawFrmImm8 = 7,
523
/// RawFrmImm16 - This is used for CALL FAR instructions, which have two
524
/// immediates, the first of which is a 16 or 32-bit immediate (specified by
525
/// the imm encoding) and the second is a 16-bit fixed value. In the AMD
526
/// manual, this operand is described as pntr16:32 and pntr16:16
527
RawFrmImm16 = 8,
528
/// AddCCFrm - This form is used for Jcc that encode the condition code
529
/// in the lower 4 bits of the opcode.
530
AddCCFrm = 9,
531
/// PrefixByte - This form is used for instructions that represent a prefix
532
/// byte like data16 or rep.
533
PrefixByte = 10,
534
/// MRMDestRegCC - This form is used for the cfcmov instructions, which use
535
/// the Mod/RM byte to specify the operands reg(r/m) and reg(reg) and also
536
/// encodes a condition code.
537
MRMDestRegCC = 18,
538
/// MRMDestMemCC - This form is used for the cfcmov instructions, which use
539
/// the Mod/RM byte to specify the operands mem(r/m) and reg(reg) and also
540
/// encodes a condition code.
541
MRMDestMemCC = 19,
542
/// MRMDestMem4VOp3CC - This form is used for instructions that use the Mod/RM
543
/// byte to specify a destination which in this case is memory and operand 3
544
/// with VEX.VVVV, and also encodes a condition code.
545
MRMDestMem4VOp3CC = 20,
546
/// Instructions operate on a register Reg/Opcode operand not the r/m field.
547
MRMr0 = 21,
548
/// MRMSrcMem - But force to use the SIB field.
549
MRMSrcMemFSIB = 22,
550
/// MRMDestMem - But force to use the SIB field.
551
MRMDestMemFSIB = 23,
552
/// MRMDestMem - This form is used for instructions that use the Mod/RM byte
553
/// to specify a destination, which in this case is memory.
554
MRMDestMem = 24,
555
/// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
556
/// to specify a source, which in this case is memory.
557
MRMSrcMem = 25,
558
/// MRMSrcMem4VOp3 - This form is used for instructions that encode
559
/// operand 3 with VEX.VVVV and load from memory.
560
MRMSrcMem4VOp3 = 26,
561
/// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
562
/// byte to specify the fourth source, which in this case is memory.
563
MRMSrcMemOp4 = 27,
564
/// MRMSrcMemCC - This form is used for instructions that use the Mod/RM
565
/// byte to specify the operands and also encodes a condition code.
566
MRMSrcMemCC = 28,
567
/// MRMXm - This form is used for instructions that use the Mod/RM byte
568
/// to specify a memory source, but doesn't use the middle field. And has
569
/// a condition code.
570
MRMXmCC = 30,
571
/// MRMXm - This form is used for instructions that use the Mod/RM byte
572
/// to specify a memory source, but doesn't use the middle field.
573
MRMXm = 31,
574
/// MRM0m-MRM7m - Instructions that operate on a memory r/m operand and use
575
/// reg field to hold extended opcode, which is represented as /0, /1, ...
576
MRM0m = 32, // Format /0
577
MRM1m = 33, // Format /1
578
MRM2m = 34, // Format /2
579
MRM3m = 35, // Format /3
580
MRM4m = 36, // Format /4
581
MRM5m = 37, // Format /5
582
MRM6m = 38, // Format /6
583
MRM7m = 39, // Format /7
584
/// MRMDestReg - This form is used for instructions that use the Mod/RM byte
585
/// to specify a destination, which in this case is a register.
586
MRMDestReg = 40,
587
/// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
588
/// to specify a source, which in this case is a register.
589
MRMSrcReg = 41,
590
/// MRMSrcReg4VOp3 - This form is used for instructions that encode
591
/// operand 3 with VEX.VVVV and do not load from memory.
592
MRMSrcReg4VOp3 = 42,
593
/// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
594
/// byte to specify the fourth source, which in this case is a register.
595
MRMSrcRegOp4 = 43,
596
/// MRMSrcRegCC - This form is used for instructions that use the Mod/RM
597
/// byte to specify the operands and also encodes a condition code
598
MRMSrcRegCC = 44,
599
/// MRMXCCr - This form is used for instructions that use the Mod/RM byte
600
/// to specify a register source, but doesn't use the middle field. And has
601
/// a condition code.
602
MRMXrCC = 46,
603
/// MRMXr - This form is used for instructions that use the Mod/RM byte
604
/// to specify a register source, but doesn't use the middle field.
605
MRMXr = 47,
606
/// MRM0r-MRM7r - Instructions that operate on a register r/m operand and use
607
/// reg field to hold extended opcode, which is represented as /0, /1, ...
608
MRM0r = 48, // Format /0
609
MRM1r = 49, // Format /1
610
MRM2r = 50, // Format /2
611
MRM3r = 51, // Format /3
612
MRM4r = 52, // Format /4
613
MRM5r = 53, // Format /5
614
MRM6r = 54, // Format /6
615
MRM7r = 55, // Format /7
616
/// MRM0X-MRM7X - Instructions that operate that have mod=11 and an opcode but
617
/// ignore r/m.
618
MRM0X = 56, // Format /0
619
MRM1X = 57, // Format /1
620
MRM2X = 58, // Format /2
621
MRM3X = 59, // Format /3
622
MRM4X = 60, // Format /4
623
MRM5X = 61, // Format /5
624
MRM6X = 62, // Format /6
625
MRM7X = 63, // Format /7
626
/// MRM_XX (XX: C0-FF)- A mod/rm byte of exactly 0xXX.
627
MRM_C0 = 64,
628
MRM_C1 = 65,
629
MRM_C2 = 66,
630
MRM_C3 = 67,
631
MRM_C4 = 68,
632
MRM_C5 = 69,
633
MRM_C6 = 70,
634
MRM_C7 = 71,
635
MRM_C8 = 72,
636
MRM_C9 = 73,
637
MRM_CA = 74,
638
MRM_CB = 75,
639
MRM_CC = 76,
640
MRM_CD = 77,
641
MRM_CE = 78,
642
MRM_CF = 79,
643
MRM_D0 = 80,
644
MRM_D1 = 81,
645
MRM_D2 = 82,
646
MRM_D3 = 83,
647
MRM_D4 = 84,
648
MRM_D5 = 85,
649
MRM_D6 = 86,
650
MRM_D7 = 87,
651
MRM_D8 = 88,
652
MRM_D9 = 89,
653
MRM_DA = 90,
654
MRM_DB = 91,
655
MRM_DC = 92,
656
MRM_DD = 93,
657
MRM_DE = 94,
658
MRM_DF = 95,
659
MRM_E0 = 96,
660
MRM_E1 = 97,
661
MRM_E2 = 98,
662
MRM_E3 = 99,
663
MRM_E4 = 100,
664
MRM_E5 = 101,
665
MRM_E6 = 102,
666
MRM_E7 = 103,
667
MRM_E8 = 104,
668
MRM_E9 = 105,
669
MRM_EA = 106,
670
MRM_EB = 107,
671
MRM_EC = 108,
672
MRM_ED = 109,
673
MRM_EE = 110,
674
MRM_EF = 111,
675
MRM_F0 = 112,
676
MRM_F1 = 113,
677
MRM_F2 = 114,
678
MRM_F3 = 115,
679
MRM_F4 = 116,
680
MRM_F5 = 117,
681
MRM_F6 = 118,
682
MRM_F7 = 119,
683
MRM_F8 = 120,
684
MRM_F9 = 121,
685
MRM_FA = 122,
686
MRM_FB = 123,
687
MRM_FC = 124,
688
MRM_FD = 125,
689
MRM_FE = 126,
690
MRM_FF = 127,
691
FormMask = 127,
692
//===------------------------------------------------------------------===//
693
// Actual flags...
694
/// OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
695
/// OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
696
/// 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
697
/// prefix in 16-bit mode.
698
OpSizeShift = 7,
699
OpSizeMask = 0x3 << OpSizeShift,
700
OpSizeFixed = 0 << OpSizeShift,
701
OpSize16 = 1 << OpSizeShift,
702
OpSize32 = 2 << OpSizeShift,
703
/// AsSize - AdSizeX implies this instruction determines its need of 0x67
704
/// prefix from a normal ModRM memory operand. The other types indicate that
705
/// an operand is encoded with a specific width and a prefix is needed if
706
/// it differs from the current mode.
707
AdSizeShift = OpSizeShift + 2,
708
AdSizeMask = 0x3 << AdSizeShift,
709
AdSizeX = 0 << AdSizeShift,
710
AdSize16 = 1 << AdSizeShift,
711
AdSize32 = 2 << AdSizeShift,
712
AdSize64 = 3 << AdSizeShift,
713
//===------------------------------------------------------------------===//
714
/// OpPrefix - There are several prefix bytes that are used as opcode
715
/// extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
716
/// no prefix.
717
OpPrefixShift = AdSizeShift + 2,
718
OpPrefixMask = 0x3 << OpPrefixShift,
719
/// PD - Prefix code for packed double precision vector floating point
720
/// operations performed in the SSE registers.
721
PD = 1 << OpPrefixShift,
722
/// XS, XD - These prefix codes are for single and double precision scalar
723
/// floating point operations performed in the SSE registers.
724
XS = 2 << OpPrefixShift,
725
XD = 3 << OpPrefixShift,
726
//===------------------------------------------------------------------===//
727
/// OpMap - This field determines which opcode map this instruction
728
/// belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
729
OpMapShift = OpPrefixShift + 2,
730
OpMapMask = 0xF << OpMapShift,
731
/// OB - OneByte - Set if this instruction has a one byte opcode.
732
OB = 0 << OpMapShift,
733
/// TB - TwoByte - Set if this instruction has a two byte opcode, which
734
/// starts with a 0x0F byte before the real opcode.
735
TB = 1 << OpMapShift,
736
/// T8, TA - Prefix after the 0x0F prefix.
737
T8 = 2 << OpMapShift,
738
TA = 3 << OpMapShift,
739
/// XOP8 - Prefix to include use of imm byte.
740
XOP8 = 4 << OpMapShift,
741
/// XOP9 - Prefix to exclude use of imm byte.
742
XOP9 = 5 << OpMapShift,
743
/// XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
744
XOPA = 6 << OpMapShift,
745
/// ThreeDNow - This indicates that the instruction uses the
746
/// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents
747
/// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
748
/// storing a classifier in the imm8 field. To simplify our implementation,
749
/// we handle this by storeing the classifier in the opcode field and using
750
/// this flag to indicate that the encoder should do the wacky 3DNow! thing.
751
ThreeDNow = 7 << OpMapShift,
752
/// MAP4, MAP5, MAP6, MAP7 - Prefix after the 0x0F prefix.
753
T_MAP4 = 8 << OpMapShift,
754
T_MAP5 = 9 << OpMapShift,
755
T_MAP6 = 10 << OpMapShift,
756
T_MAP7 = 11 << OpMapShift,
757
//===------------------------------------------------------------------===//
758
/// REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
759
/// They are used to specify GPRs and SSE registers, 64-bit operand size,
760
/// etc. We only cares about REX.W and REX.R bits and only the former is
761
/// statically determined.
762
REXShift = OpMapShift + 4,
763
REX_W = 1 << REXShift,
764
//===------------------------------------------------------------------===//
765
// This 4-bit field describes the size of an immediate operand. Zero is
766
// unused so that we can tell if we forgot to set a value.
767
ImmShift = REXShift + 1,
768
Imm8 = 1 << ImmShift,
769
Imm8PCRel = 2 << ImmShift,
770
Imm8Reg = 3 << ImmShift,
771
Imm16 = 4 << ImmShift,
772
Imm16PCRel = 5 << ImmShift,
773
Imm32 = 6 << ImmShift,
774
Imm32PCRel = 7 << ImmShift,
775
Imm32S = 8 << ImmShift,
776
Imm64 = 9 << ImmShift,
777
ImmMask = 15 << ImmShift,
778
//===------------------------------------------------------------------===//
779
/// FP Instruction Classification... Zero is non-fp instruction.
780
/// FPTypeMask - Mask for all of the FP types...
781
FPTypeShift = ImmShift + 4,
782
FPTypeMask = 7 << FPTypeShift,
783
/// NotFP - The default, set for instructions that do not use FP registers.
784
NotFP = 0 << FPTypeShift,
785
/// ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
786
ZeroArgFP = 1 << FPTypeShift,
787
/// OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
788
OneArgFP = 2 << FPTypeShift,
789
/// OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
790
/// result back to ST(0). For example, fcos, fsqrt, etc.
791
OneArgFPRW = 3 << FPTypeShift,
792
/// TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
793
/// explicit argument, storing the result to either ST(0) or the implicit
794
/// argument. For example: fadd, fsub, fmul, etc...
795
TwoArgFP = 4 << FPTypeShift,
796
/// CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
797
/// explicit argument, but have no destination. Example: fucom, fucomi, ...
798
CompareFP = 5 << FPTypeShift,
799
/// CondMovFP - "2 operand" floating point conditional move instructions.
800
CondMovFP = 6 << FPTypeShift,
801
/// SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
802
SpecialFP = 7 << FPTypeShift,
803
/// Lock prefix
804
LOCKShift = FPTypeShift + 3,
805
LOCK = 1 << LOCKShift,
806
/// REP prefix
807
REPShift = LOCKShift + 1,
808
REP = 1 << REPShift,
809
/// Execution domain for SSE instructions.
810
/// 0 means normal, non-SSE instruction.
811
SSEDomainShift = REPShift + 1,
812
/// Encoding
813
EncodingShift = SSEDomainShift + 2,
814
EncodingMask = 0x3 << EncodingShift,
815
/// LEGACY - encoding using REX/REX2 or w/o opcode prefix.
816
LEGACY = 0 << EncodingShift,
817
/// VEX - encoding using 0xC4/0xC5
818
VEX = 1 << EncodingShift,
819
/// XOP - Opcode prefix used by XOP instructions.
820
XOP = 2 << EncodingShift,
821
/// EVEX - Specifies that this instruction use EVEX form which provides
822
/// syntax support up to 32 512-bit register operands and up to 7 16-bit
823
/// mask operands as well as source operand data swizzling/memory operand
824
/// conversion, eviction hint, and rounding mode.
825
EVEX = 3 << EncodingShift,
826
/// Opcode
827
OpcodeShift = EncodingShift + 2,
828
/// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
829
/// address instructions in SSE are represented as 3 address ones in AVX
830
/// and the additional register is encoded in VEX_VVVV prefix.
831
VEX_4VShift = OpcodeShift + 8,
832
VEX_4V = 1ULL << VEX_4VShift,
833
/// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
834
/// instruction uses 256-bit wide registers. This is usually auto detected
835
/// if a VR256 register is used, but some AVX instructions also have this
836
/// field marked when using a f256 memory references.
837
VEX_LShift = VEX_4VShift + 1,
838
VEX_L = 1ULL << VEX_LShift,
839
/// EVEX_K - Set if this instruction requires masking
840
EVEX_KShift = VEX_LShift + 1,
841
EVEX_K = 1ULL << EVEX_KShift,
842
/// EVEX_Z - Set if this instruction has EVEX.Z field set.
843
EVEX_ZShift = EVEX_KShift + 1,
844
EVEX_Z = 1ULL << EVEX_ZShift,
845
/// EVEX_L2 - Set if this instruction has EVEX.L' field set.
846
EVEX_L2Shift = EVEX_ZShift + 1,
847
EVEX_L2 = 1ULL << EVEX_L2Shift,
848
/// EVEX_B - Set if this instruction has EVEX.B field set.
849
EVEX_BShift = EVEX_L2Shift + 1,
850
EVEX_B = 1ULL << EVEX_BShift,
851
/// The scaling factor for the AVX512's 8-bit compressed displacement.
852
CD8_Scale_Shift = EVEX_BShift + 1,
853
CD8_Scale_Mask = 7ULL << CD8_Scale_Shift,
854
/// Explicitly specified rounding control
855
EVEX_RCShift = CD8_Scale_Shift + 3,
856
EVEX_RC = 1ULL << EVEX_RCShift,
857
/// NOTRACK prefix
858
NoTrackShift = EVEX_RCShift + 1,
859
NOTRACK = 1ULL << NoTrackShift,
860
/// Force REX2/VEX/EVEX encoding
861
ExplicitOpPrefixShift = NoTrackShift + 1,
862
/// For instructions that require REX2 prefix even if EGPR is not used.
863
ExplicitREX2Prefix = 1ULL << ExplicitOpPrefixShift,
864
/// For instructions that use VEX encoding only when {vex}, {vex2} or {vex3}
865
/// is present.
866
ExplicitVEXPrefix = 2ULL << ExplicitOpPrefixShift,
867
/// For instructions that are promoted to EVEX space for EGPR.
868
ExplicitEVEXPrefix = 3ULL << ExplicitOpPrefixShift,
869
ExplicitOpPrefixMask = 3ULL << ExplicitOpPrefixShift,
870
/// EVEX_NF - Set if this instruction has EVEX.NF field set.
871
EVEX_NFShift = ExplicitOpPrefixShift + 2,
872
EVEX_NF = 1ULL << EVEX_NFShift,
873
// TwoConditionalOps - Set if this instruction has two conditional operands
874
TwoConditionalOps_Shift = EVEX_NFShift + 1,
875
TwoConditionalOps = 1ULL << TwoConditionalOps_Shift
876
};
877
878
/// \returns true if the instruction with given opcode is a prefix.
879
inline bool isPrefix(uint64_t TSFlags) {
880
return (TSFlags & X86II::FormMask) == PrefixByte;
881
}
882
883
/// \returns true if the instruction with given opcode is a pseudo.
884
inline bool isPseudo(uint64_t TSFlags) {
885
return (TSFlags & X86II::FormMask) == Pseudo;
886
}
887
888
/// \returns the "base" X86 opcode for the specified machine
889
/// instruction.
890
inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) {
891
return TSFlags >> X86II::OpcodeShift;
892
}
893
894
inline bool hasImm(uint64_t TSFlags) { return (TSFlags & X86II::ImmMask) != 0; }
895
896
/// Decode the "size of immediate" field from the TSFlags field of the
897
/// specified instruction.
898
inline unsigned getSizeOfImm(uint64_t TSFlags) {
899
switch (TSFlags & X86II::ImmMask) {
900
default:
901
llvm_unreachable("Unknown immediate size");
902
case X86II::Imm8:
903
case X86II::Imm8PCRel:
904
case X86II::Imm8Reg:
905
return 1;
906
case X86II::Imm16:
907
case X86II::Imm16PCRel:
908
return 2;
909
case X86II::Imm32:
910
case X86II::Imm32S:
911
case X86II::Imm32PCRel:
912
return 4;
913
case X86II::Imm64:
914
return 8;
915
}
916
}
917
918
/// \returns true if the immediate of the specified instruction's TSFlags
919
/// indicates that it is pc relative.
920
inline bool isImmPCRel(uint64_t TSFlags) {
921
switch (TSFlags & X86II::ImmMask) {
922
default:
923
llvm_unreachable("Unknown immediate size");
924
case X86II::Imm8PCRel:
925
case X86II::Imm16PCRel:
926
case X86II::Imm32PCRel:
927
return true;
928
case X86II::Imm8:
929
case X86II::Imm8Reg:
930
case X86II::Imm16:
931
case X86II::Imm32:
932
case X86II::Imm32S:
933
case X86II::Imm64:
934
return false;
935
}
936
}
937
938
/// \returns true if the immediate of the specified instruction's
939
/// TSFlags indicates that it is signed.
940
inline bool isImmSigned(uint64_t TSFlags) {
941
switch (TSFlags & X86II::ImmMask) {
942
default:
943
llvm_unreachable("Unknown immediate signedness");
944
case X86II::Imm32S:
945
return true;
946
case X86II::Imm8:
947
case X86II::Imm8PCRel:
948
case X86II::Imm8Reg:
949
case X86II::Imm16:
950
case X86II::Imm16PCRel:
951
case X86II::Imm32:
952
case X86II::Imm32PCRel:
953
case X86II::Imm64:
954
return false;
955
}
956
}
957
958
/// Compute whether all of the def operands are repeated in the uses and
959
/// therefore should be skipped.
960
/// This determines the start of the unique operand list. We need to determine
961
/// if all of the defs have a corresponding tied operand in the uses.
962
/// Unfortunately, the tied operand information is encoded in the uses not
963
/// the defs so we have to use some heuristics to find which operands to
964
/// query.
965
inline unsigned getOperandBias(const MCInstrDesc &Desc) {
966
unsigned NumDefs = Desc.getNumDefs();
967
unsigned NumOps = Desc.getNumOperands();
968
switch (NumDefs) {
969
default:
970
llvm_unreachable("Unexpected number of defs");
971
case 0:
972
return 0;
973
case 1:
974
// Common two addr case.
975
if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
976
return 1;
977
// Check for AVX-512 scatter which has a TIED_TO in the second to last
978
// operand.
979
if (NumOps == 8 && Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0)
980
return 1;
981
return 0;
982
case 2:
983
// XCHG/XADD have two destinations and two sources.
984
if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
985
Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
986
return 2;
987
// Check for gather. AVX-512 has the second tied operand early. AVX2
988
// has it as the last op.
989
if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
990
(Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 ||
991
Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1))
992
return 2;
993
return 0;
994
}
995
}
996
997
/// \returns true if the instruction has a NDD (new data destination).
998
inline bool hasNewDataDest(uint64_t TSFlags) {
999
return (TSFlags & X86II::OpMapMask) == X86II::T_MAP4 &&
1000
(TSFlags & X86II::EVEX_B) && (TSFlags & X86II::VEX_4V);
1001
}
1002
1003
/// \returns operand # for the first field of the memory operand or -1 if no
1004
/// memory operands.
1005
/// NOTE: This ignores tied operands. If there is a tied register which is
1006
/// duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only counted
1007
/// as one operand.
1008
inline int getMemoryOperandNo(uint64_t TSFlags) {
1009
bool HasVEX_4V = TSFlags & X86II::VEX_4V;
1010
bool HasEVEX_K = TSFlags & X86II::EVEX_K;
1011
1012
switch (TSFlags & X86II::FormMask) {
1013
default:
1014
llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
1015
case X86II::Pseudo:
1016
case X86II::RawFrm:
1017
case X86II::AddRegFrm:
1018
case X86II::RawFrmImm8:
1019
case X86II::RawFrmImm16:
1020
case X86II::RawFrmMemOffs:
1021
case X86II::RawFrmSrc:
1022
case X86II::RawFrmDst:
1023
case X86II::RawFrmDstSrc:
1024
case X86II::AddCCFrm:
1025
case X86II::PrefixByte:
1026
return -1;
1027
case X86II::MRMDestMem:
1028
case X86II::MRMDestMemFSIB:
1029
case X86II::MRMDestMemCC:
1030
return hasNewDataDest(TSFlags);
1031
case X86II::MRMSrcMem:
1032
case X86II::MRMSrcMemFSIB:
1033
// Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
1034
// mask register.
1035
return 1 + HasVEX_4V + HasEVEX_K;
1036
case X86II::MRMSrcMem4VOp3:
1037
// Skip registers encoded in reg.
1038
return 1 + HasEVEX_K;
1039
case X86II::MRMSrcMemOp4:
1040
// Skip registers encoded in reg, VEX_VVVV, and I8IMM.
1041
return 3;
1042
case X86II::MRMSrcMemCC:
1043
return 1 + hasNewDataDest(TSFlags);
1044
case X86II::MRMDestMem4VOp3CC:
1045
// Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
1046
// mask register.
1047
return 1;
1048
case X86II::MRMDestReg:
1049
case X86II::MRMDestRegCC:
1050
case X86II::MRMSrcReg:
1051
case X86II::MRMSrcReg4VOp3:
1052
case X86II::MRMSrcRegOp4:
1053
case X86II::MRMSrcRegCC:
1054
case X86II::MRMXrCC:
1055
case X86II::MRMr0:
1056
case X86II::MRMXr:
1057
case X86II::MRM0r:
1058
case X86II::MRM1r:
1059
case X86II::MRM2r:
1060
case X86II::MRM3r:
1061
case X86II::MRM4r:
1062
case X86II::MRM5r:
1063
case X86II::MRM6r:
1064
case X86II::MRM7r:
1065
return -1;
1066
case X86II::MRM0X:
1067
case X86II::MRM1X:
1068
case X86II::MRM2X:
1069
case X86II::MRM3X:
1070
case X86II::MRM4X:
1071
case X86II::MRM5X:
1072
case X86II::MRM6X:
1073
case X86II::MRM7X:
1074
return -1;
1075
case X86II::MRMXmCC:
1076
case X86II::MRMXm:
1077
case X86II::MRM0m:
1078
case X86II::MRM1m:
1079
case X86II::MRM2m:
1080
case X86II::MRM3m:
1081
case X86II::MRM4m:
1082
case X86II::MRM5m:
1083
case X86II::MRM6m:
1084
case X86II::MRM7m:
1085
// Start from 0, skip registers encoded in VEX_VVVV or a mask register.
1086
return 0 + HasVEX_4V + HasEVEX_K;
1087
case X86II::MRM_C0:
1088
case X86II::MRM_C1:
1089
case X86II::MRM_C2:
1090
case X86II::MRM_C3:
1091
case X86II::MRM_C4:
1092
case X86II::MRM_C5:
1093
case X86II::MRM_C6:
1094
case X86II::MRM_C7:
1095
case X86II::MRM_C8:
1096
case X86II::MRM_C9:
1097
case X86II::MRM_CA:
1098
case X86II::MRM_CB:
1099
case X86II::MRM_CC:
1100
case X86II::MRM_CD:
1101
case X86II::MRM_CE:
1102
case X86II::MRM_CF:
1103
case X86II::MRM_D0:
1104
case X86II::MRM_D1:
1105
case X86II::MRM_D2:
1106
case X86II::MRM_D3:
1107
case X86II::MRM_D4:
1108
case X86II::MRM_D5:
1109
case X86II::MRM_D6:
1110
case X86II::MRM_D7:
1111
case X86II::MRM_D8:
1112
case X86II::MRM_D9:
1113
case X86II::MRM_DA:
1114
case X86II::MRM_DB:
1115
case X86II::MRM_DC:
1116
case X86II::MRM_DD:
1117
case X86II::MRM_DE:
1118
case X86II::MRM_DF:
1119
case X86II::MRM_E0:
1120
case X86II::MRM_E1:
1121
case X86II::MRM_E2:
1122
case X86II::MRM_E3:
1123
case X86II::MRM_E4:
1124
case X86II::MRM_E5:
1125
case X86II::MRM_E6:
1126
case X86II::MRM_E7:
1127
case X86II::MRM_E8:
1128
case X86II::MRM_E9:
1129
case X86II::MRM_EA:
1130
case X86II::MRM_EB:
1131
case X86II::MRM_EC:
1132
case X86II::MRM_ED:
1133
case X86II::MRM_EE:
1134
case X86II::MRM_EF:
1135
case X86II::MRM_F0:
1136
case X86II::MRM_F1:
1137
case X86II::MRM_F2:
1138
case X86II::MRM_F3:
1139
case X86II::MRM_F4:
1140
case X86II::MRM_F5:
1141
case X86II::MRM_F6:
1142
case X86II::MRM_F7:
1143
case X86II::MRM_F8:
1144
case X86II::MRM_F9:
1145
case X86II::MRM_FA:
1146
case X86II::MRM_FB:
1147
case X86II::MRM_FC:
1148
case X86II::MRM_FD:
1149
case X86II::MRM_FE:
1150
case X86II::MRM_FF:
1151
return -1;
1152
}
1153
}
1154
1155
/// \returns true if the register is a XMM.
1156
inline bool isXMMReg(unsigned RegNo) {
1157
static_assert(X86::XMM15 - X86::XMM0 == 15,
1158
"XMM0-15 registers are not continuous");
1159
static_assert(X86::XMM31 - X86::XMM16 == 15,
1160
"XMM16-31 registers are not continuous");
1161
return (RegNo >= X86::XMM0 && RegNo <= X86::XMM15) ||
1162
(RegNo >= X86::XMM16 && RegNo <= X86::XMM31);
1163
}
1164
1165
/// \returns true if the register is a YMM.
1166
inline bool isYMMReg(unsigned RegNo) {
1167
static_assert(X86::YMM15 - X86::YMM0 == 15,
1168
"YMM0-15 registers are not continuous");
1169
static_assert(X86::YMM31 - X86::YMM16 == 15,
1170
"YMM16-31 registers are not continuous");
1171
return (RegNo >= X86::YMM0 && RegNo <= X86::YMM15) ||
1172
(RegNo >= X86::YMM16 && RegNo <= X86::YMM31);
1173
}
1174
1175
/// \returns true if the register is a ZMM.
1176
inline bool isZMMReg(unsigned RegNo) {
1177
static_assert(X86::ZMM31 - X86::ZMM0 == 31,
1178
"ZMM registers are not continuous");
1179
return RegNo >= X86::ZMM0 && RegNo <= X86::ZMM31;
1180
}
1181
1182
/// \returns true if \p RegNo is an apx extended register.
1183
inline bool isApxExtendedReg(unsigned RegNo) {
1184
static_assert(X86::R31WH - X86::R16 == 95, "EGPRs are not continuous");
1185
return RegNo >= X86::R16 && RegNo <= X86::R31WH;
1186
}
1187
1188
/// \returns true if the MachineOperand is a x86-64 extended (r8 or
1189
/// higher) register, e.g. r8, xmm8, xmm13, etc.
1190
inline bool isX86_64ExtendedReg(unsigned RegNo) {
1191
if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM15) ||
1192
(RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
1193
(RegNo >= X86::YMM8 && RegNo <= X86::YMM15) ||
1194
(RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
1195
(RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
1196
return true;
1197
1198
if (isApxExtendedReg(RegNo))
1199
return true;
1200
1201
switch (RegNo) {
1202
default:
1203
break;
1204
case X86::R8:
1205
case X86::R9:
1206
case X86::R10:
1207
case X86::R11:
1208
case X86::R12:
1209
case X86::R13:
1210
case X86::R14:
1211
case X86::R15:
1212
case X86::R8D:
1213
case X86::R9D:
1214
case X86::R10D:
1215
case X86::R11D:
1216
case X86::R12D:
1217
case X86::R13D:
1218
case X86::R14D:
1219
case X86::R15D:
1220
case X86::R8W:
1221
case X86::R9W:
1222
case X86::R10W:
1223
case X86::R11W:
1224
case X86::R12W:
1225
case X86::R13W:
1226
case X86::R14W:
1227
case X86::R15W:
1228
case X86::R8B:
1229
case X86::R9B:
1230
case X86::R10B:
1231
case X86::R11B:
1232
case X86::R12B:
1233
case X86::R13B:
1234
case X86::R14B:
1235
case X86::R15B:
1236
case X86::CR8:
1237
case X86::CR9:
1238
case X86::CR10:
1239
case X86::CR11:
1240
case X86::CR12:
1241
case X86::CR13:
1242
case X86::CR14:
1243
case X86::CR15:
1244
case X86::DR8:
1245
case X86::DR9:
1246
case X86::DR10:
1247
case X86::DR11:
1248
case X86::DR12:
1249
case X86::DR13:
1250
case X86::DR14:
1251
case X86::DR15:
1252
return true;
1253
}
1254
return false;
1255
}
1256
1257
inline bool canUseApxExtendedReg(const MCInstrDesc &Desc) {
1258
uint64_t TSFlags = Desc.TSFlags;
1259
uint64_t Encoding = TSFlags & EncodingMask;
1260
// EVEX can always use egpr.
1261
if (Encoding == X86II::EVEX)
1262
return true;
1263
1264
unsigned Opcode = Desc.Opcode;
1265
// MOV32r0 is always expanded to XOR32rr
1266
if (Opcode == X86::MOV32r0)
1267
return true;
1268
// To be conservative, egpr is not used for all pseudo instructions
1269
// because we are not sure what instruction it will become.
1270
// FIXME: Could we improve it in X86ExpandPseudo?
1271
if (isPseudo(TSFlags))
1272
return false;
1273
1274
// MAP OB/TB in legacy encoding space can always use egpr except
1275
// XSAVE*/XRSTOR*.
1276
switch (Opcode) {
1277
default:
1278
break;
1279
case X86::XSAVE:
1280
case X86::XSAVE64:
1281
case X86::XSAVEOPT:
1282
case X86::XSAVEOPT64:
1283
case X86::XSAVEC:
1284
case X86::XSAVEC64:
1285
case X86::XSAVES:
1286
case X86::XSAVES64:
1287
case X86::XRSTOR:
1288
case X86::XRSTOR64:
1289
case X86::XRSTORS:
1290
case X86::XRSTORS64:
1291
return false;
1292
}
1293
uint64_t OpMap = TSFlags & X86II::OpMapMask;
1294
return !Encoding && (OpMap == X86II::OB || OpMap == X86II::TB);
1295
}
1296
1297
/// \returns true if the MemoryOperand is a 32 extended (zmm16 or higher)
1298
/// registers, e.g. zmm21, etc.
1299
static inline bool is32ExtendedReg(unsigned RegNo) {
1300
return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
1301
(RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
1302
(RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
1303
}
1304
1305
inline bool isX86_64NonExtLowByteReg(unsigned reg) {
1306
return (reg == X86::SPL || reg == X86::BPL || reg == X86::SIL ||
1307
reg == X86::DIL);
1308
}
1309
1310
/// \returns true if this is a masked instruction.
1311
inline bool isKMasked(uint64_t TSFlags) {
1312
return (TSFlags & X86II::EVEX_K) != 0;
1313
}
1314
1315
/// \returns true if this is a merge masked instruction.
1316
inline bool isKMergeMasked(uint64_t TSFlags) {
1317
return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
1318
}
1319
1320
/// \returns true if the intruction needs a SIB.
1321
inline bool needSIB(unsigned BaseReg, unsigned IndexReg, bool In64BitMode) {
1322
// The SIB byte must be used if there is an index register.
1323
if (IndexReg)
1324
return true;
1325
1326
// The SIB byte must be used if the base is ESP/RSP/R12/R20/R28, all of
1327
// which encode to an R/M value of 4, which indicates that a SIB byte is
1328
// present.
1329
switch (BaseReg) {
1330
default:
1331
// If there is no base register and we're in 64-bit mode, we need a SIB
1332
// byte to emit an addr that is just 'disp32' (the non-RIP relative form).
1333
return In64BitMode && !BaseReg;
1334
case X86::ESP:
1335
case X86::RSP:
1336
case X86::R12:
1337
case X86::R12D:
1338
case X86::R20:
1339
case X86::R20D:
1340
case X86::R28:
1341
case X86::R28D:
1342
return true;
1343
}
1344
}
1345
1346
} // namespace X86II
1347
} // namespace llvm
1348
#endif
1349
1350