Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp
35294 views
1
//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the X86MCCodeEmitter class.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "MCTargetDesc/X86BaseInfo.h"
14
#include "MCTargetDesc/X86FixupKinds.h"
15
#include "MCTargetDesc/X86MCTargetDesc.h"
16
#include "llvm/ADT/SmallVector.h"
17
#include "llvm/MC/MCCodeEmitter.h"
18
#include "llvm/MC/MCContext.h"
19
#include "llvm/MC/MCExpr.h"
20
#include "llvm/MC/MCFixup.h"
21
#include "llvm/MC/MCInst.h"
22
#include "llvm/MC/MCInstrDesc.h"
23
#include "llvm/MC/MCInstrInfo.h"
24
#include "llvm/MC/MCRegisterInfo.h"
25
#include "llvm/MC/MCSubtargetInfo.h"
26
#include "llvm/MC/MCSymbol.h"
27
#include "llvm/Support/Casting.h"
28
#include "llvm/Support/ErrorHandling.h"
29
#include <cassert>
30
#include <cstdint>
31
#include <cstdlib>
32
33
using namespace llvm;
34
35
#define DEBUG_TYPE "mccodeemitter"
36
37
namespace {
38
39
enum PrefixKind { None, REX, REX2, XOP, VEX2, VEX3, EVEX };
40
41
static void emitByte(uint8_t C, SmallVectorImpl<char> &CB) { CB.push_back(C); }
42
43
class X86OpcodePrefixHelper {
44
// REX (1 byte)
45
// +-----+ +------+
46
// | 40H | | WRXB |
47
// +-----+ +------+
48
49
// REX2 (2 bytes)
50
// +-----+ +-------------------+
51
// | D5H | | M | R'X'B' | WRXB |
52
// +-----+ +-------------------+
53
54
// XOP (3-byte)
55
// +-----+ +--------------+ +-------------------+
56
// | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
57
// +-----+ +--------------+ +-------------------+
58
59
// VEX2 (2 bytes)
60
// +-----+ +-------------------+
61
// | C5h | | R | vvvv | L | pp |
62
// +-----+ +-------------------+
63
64
// VEX3 (3 bytes)
65
// +-----+ +--------------+ +-------------------+
66
// | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
67
// +-----+ +--------------+ +-------------------+
68
69
// VEX_R: opcode externsion equivalent to REX.R in
70
// 1's complement (inverted) form
71
//
72
// 1: Same as REX_R=0 (must be 1 in 32-bit mode)
73
// 0: Same as REX_R=1 (64 bit mode only)
74
75
// VEX_X: equivalent to REX.X, only used when a
76
// register is used for index in SIB Byte.
77
//
78
// 1: Same as REX.X=0 (must be 1 in 32-bit mode)
79
// 0: Same as REX.X=1 (64-bit mode only)
80
81
// VEX_B:
82
// 1: Same as REX_B=0 (ignored in 32-bit mode)
83
// 0: Same as REX_B=1 (64 bit mode only)
84
85
// VEX_W: opcode specific (use like REX.W, or used for
86
// opcode extension, or ignored, depending on the opcode byte)
87
88
// VEX_5M (VEX m-mmmmm field):
89
//
90
// 0b00000: Reserved for future use
91
// 0b00001: implied 0F leading opcode
92
// 0b00010: implied 0F 38 leading opcode bytes
93
// 0b00011: implied 0F 3A leading opcode bytes
94
// 0b00100: Reserved for future use
95
// 0b00101: VEX MAP5
96
// 0b00110: VEX MAP6
97
// 0b00111: VEX MAP7
98
// 0b00111-0b11111: Reserved for future use
99
// 0b01000: XOP map select - 08h instructions with imm byte
100
// 0b01001: XOP map select - 09h instructions with no imm byte
101
// 0b01010: XOP map select - 0Ah instructions with imm dword
102
103
// VEX_4V (VEX vvvv field): a register specifier
104
// (in 1's complement form) or 1111 if unused.
105
106
// VEX_PP: opcode extension providing equivalent
107
// functionality of a SIMD prefix
108
// 0b00: None
109
// 0b01: 66
110
// 0b10: F3
111
// 0b11: F2
112
113
// EVEX (4 bytes)
114
// +-----+ +---------------+ +--------------------+ +------------------------+
115
// | 62h | | RXBR' | B'mmm | | W | vvvv | X' | pp | | z | L'L | b | v' | aaa |
116
// +-----+ +---------------+ +--------------------+ +------------------------+
117
118
// EVEX_L2/VEX_L (Vector Length):
119
// L2 L
120
// 0 0: scalar or 128-bit vector
121
// 0 1: 256-bit vector
122
// 1 0: 512-bit vector
123
124
// 32-Register Support in 64-bit Mode Using EVEX with Embedded REX/REX2 Bits:
125
//
126
// +----------+---------+--------+-----------+---------+--------------+
127
// | | 4 | 3 | [2:0] | Type | Common Usage |
128
// +----------+---------+--------+-----------+---------+--------------+
129
// | REG | EVEX_R' | EVEX_R | modrm.reg | GPR, VR | Dest or Src |
130
// | VVVV | EVEX_v' | EVEX.vvvv | GPR, VR | Dest or Src |
131
// | RM (VR) | EVEX_X | EVEX_B | modrm.r/m | VR | Dest or Src |
132
// | RM (GPR) | EVEX_B' | EVEX_B | modrm.r/m | GPR | Dest or Src |
133
// | BASE | EVEX_B' | EVEX_B | modrm.r/m | GPR | MA |
134
// | INDEX | EVEX_X' | EVEX_X | sib.index | GPR | MA |
135
// | VIDX | EVEX_v' | EVEX_X | sib.index | VR | VSIB MA |
136
// +----------+---------+--------+-----------+---------+--------------+
137
//
138
// * GPR - General-purpose register
139
// * VR - Vector register
140
// * VIDX - Vector index
141
// * VSIB - Vector SIB
142
// * MA - Memory addressing
143
144
private:
145
unsigned W : 1;
146
unsigned R : 1;
147
unsigned X : 1;
148
unsigned B : 1;
149
unsigned M : 1;
150
unsigned R2 : 1;
151
unsigned X2 : 1;
152
unsigned B2 : 1;
153
unsigned VEX_4V : 4;
154
unsigned VEX_L : 1;
155
unsigned VEX_PP : 2;
156
unsigned VEX_5M : 5;
157
unsigned EVEX_z : 1;
158
unsigned EVEX_L2 : 1;
159
unsigned EVEX_b : 1;
160
unsigned EVEX_V2 : 1;
161
unsigned EVEX_aaa : 3;
162
PrefixKind Kind = None;
163
const MCRegisterInfo &MRI;
164
165
unsigned getRegEncoding(const MCInst &MI, unsigned OpNum) const {
166
return MRI.getEncodingValue(MI.getOperand(OpNum).getReg());
167
}
168
169
void setR(unsigned Encoding) { R = Encoding >> 3 & 1; }
170
void setR2(unsigned Encoding) {
171
R2 = Encoding >> 4 & 1;
172
assert((!R2 || (Kind <= REX2 || Kind == EVEX)) && "invalid setting");
173
}
174
void setX(unsigned Encoding) { X = Encoding >> 3 & 1; }
175
void setX2(unsigned Encoding) {
176
assert((Kind <= REX2 || Kind == EVEX) && "invalid setting");
177
X2 = Encoding >> 4 & 1;
178
}
179
void setB(unsigned Encoding) { B = Encoding >> 3 & 1; }
180
void setB2(unsigned Encoding) {
181
assert((Kind <= REX2 || Kind == EVEX) && "invalid setting");
182
B2 = Encoding >> 4 & 1;
183
}
184
void set4V(unsigned Encoding) { VEX_4V = Encoding & 0xf; }
185
void setV2(unsigned Encoding) { EVEX_V2 = Encoding >> 4 & 1; }
186
187
public:
188
void setW(bool V) { W = V; }
189
void setR(const MCInst &MI, unsigned OpNum) {
190
setR(getRegEncoding(MI, OpNum));
191
}
192
void setX(const MCInst &MI, unsigned OpNum, unsigned Shift = 3) {
193
unsigned Reg = MI.getOperand(OpNum).getReg();
194
// X is used to extend vector register only when shift is not 3.
195
if (Shift != 3 && X86II::isApxExtendedReg(Reg))
196
return;
197
unsigned Encoding = MRI.getEncodingValue(Reg);
198
X = Encoding >> Shift & 1;
199
}
200
void setB(const MCInst &MI, unsigned OpNum) {
201
B = getRegEncoding(MI, OpNum) >> 3 & 1;
202
}
203
void set4V(const MCInst &MI, unsigned OpNum, bool IsImm = false) {
204
// OF, SF, ZF and CF reuse VEX_4V bits but are not reversed
205
if (IsImm)
206
set4V(~(MI.getOperand(OpNum).getImm()));
207
else
208
set4V(getRegEncoding(MI, OpNum));
209
}
210
void setL(bool V) { VEX_L = V; }
211
void setPP(unsigned V) { VEX_PP = V; }
212
void set5M(unsigned V) { VEX_5M = V; }
213
void setR2(const MCInst &MI, unsigned OpNum) {
214
setR2(getRegEncoding(MI, OpNum));
215
}
216
void setRR2(const MCInst &MI, unsigned OpNum) {
217
unsigned Encoding = getRegEncoding(MI, OpNum);
218
setR(Encoding);
219
setR2(Encoding);
220
}
221
void setM(bool V) { M = V; }
222
void setXX2(const MCInst &MI, unsigned OpNum) {
223
unsigned Reg = MI.getOperand(OpNum).getReg();
224
unsigned Encoding = MRI.getEncodingValue(Reg);
225
setX(Encoding);
226
// Index can be a vector register while X2 is used to extend GPR only.
227
if (Kind <= REX2 || X86II::isApxExtendedReg(Reg))
228
setX2(Encoding);
229
}
230
void setBB2(const MCInst &MI, unsigned OpNum) {
231
unsigned Reg = MI.getOperand(OpNum).getReg();
232
unsigned Encoding = MRI.getEncodingValue(Reg);
233
setB(Encoding);
234
// Base can be a vector register while B2 is used to extend GPR only
235
if (Kind <= REX2 || X86II::isApxExtendedReg(Reg))
236
setB2(Encoding);
237
}
238
void setZ(bool V) { EVEX_z = V; }
239
void setL2(bool V) { EVEX_L2 = V; }
240
void setEVEX_b(bool V) { EVEX_b = V; }
241
void setV2(const MCInst &MI, unsigned OpNum, bool HasVEX_4V) {
242
// Only needed with VSIB which don't use VVVV.
243
if (HasVEX_4V)
244
return;
245
unsigned Reg = MI.getOperand(OpNum).getReg();
246
if (X86II::isApxExtendedReg(Reg))
247
return;
248
setV2(MRI.getEncodingValue(Reg));
249
}
250
void set4VV2(const MCInst &MI, unsigned OpNum) {
251
unsigned Encoding = getRegEncoding(MI, OpNum);
252
set4V(Encoding);
253
setV2(Encoding);
254
}
255
void setAAA(const MCInst &MI, unsigned OpNum) {
256
EVEX_aaa = getRegEncoding(MI, OpNum);
257
}
258
void setNF(bool V) { EVEX_aaa |= V << 2; }
259
void setSC(const MCInst &MI, unsigned OpNum) {
260
unsigned Encoding = MI.getOperand(OpNum).getImm();
261
EVEX_V2 = ~(Encoding >> 3) & 0x1;
262
EVEX_aaa = Encoding & 0x7;
263
}
264
265
X86OpcodePrefixHelper(const MCRegisterInfo &MRI)
266
: W(0), R(0), X(0), B(0), M(0), R2(0), X2(0), B2(0), VEX_4V(0), VEX_L(0),
267
VEX_PP(0), VEX_5M(0), EVEX_z(0), EVEX_L2(0), EVEX_b(0), EVEX_V2(0),
268
EVEX_aaa(0), MRI(MRI) {}
269
270
void setLowerBound(PrefixKind K) { Kind = K; }
271
272
PrefixKind determineOptimalKind() {
273
switch (Kind) {
274
case None:
275
// Not M bit here by intention b/c
276
// 1. No guarantee that REX2 is supported by arch w/o explict EGPR
277
// 2. REX2 is longer than 0FH
278
Kind = (R2 | X2 | B2) ? REX2 : (W | R | X | B) ? REX : None;
279
break;
280
case REX:
281
Kind = (R2 | X2 | B2) ? REX2 : REX;
282
break;
283
case REX2:
284
case XOP:
285
case VEX3:
286
case EVEX:
287
break;
288
case VEX2:
289
Kind = (W | X | B | (VEX_5M != 1)) ? VEX3 : VEX2;
290
break;
291
}
292
return Kind;
293
}
294
295
void emit(SmallVectorImpl<char> &CB) const {
296
uint8_t FirstPayload =
297
((~R) & 0x1) << 7 | ((~X) & 0x1) << 6 | ((~B) & 0x1) << 5;
298
uint8_t LastPayload = ((~VEX_4V) & 0xf) << 3 | VEX_L << 2 | VEX_PP;
299
switch (Kind) {
300
case None:
301
return;
302
case REX:
303
emitByte(0x40 | W << 3 | R << 2 | X << 1 | B, CB);
304
return;
305
case REX2:
306
emitByte(0xD5, CB);
307
emitByte(M << 7 | R2 << 6 | X2 << 5 | B2 << 4 | W << 3 | R << 2 | X << 1 |
308
B,
309
CB);
310
return;
311
case VEX2:
312
emitByte(0xC5, CB);
313
emitByte(((~R) & 1) << 7 | LastPayload, CB);
314
return;
315
case VEX3:
316
case XOP:
317
emitByte(Kind == VEX3 ? 0xC4 : 0x8F, CB);
318
emitByte(FirstPayload | VEX_5M, CB);
319
emitByte(W << 7 | LastPayload, CB);
320
return;
321
case EVEX:
322
assert(VEX_5M && !(VEX_5M & 0x8) && "invalid mmm fields for EVEX!");
323
emitByte(0x62, CB);
324
emitByte(FirstPayload | ((~R2) & 0x1) << 4 | B2 << 3 | VEX_5M, CB);
325
emitByte(W << 7 | ((~VEX_4V) & 0xf) << 3 | ((~X2) & 0x1) << 2 | VEX_PP,
326
CB);
327
emitByte(EVEX_z << 7 | EVEX_L2 << 6 | VEX_L << 5 | EVEX_b << 4 |
328
((~EVEX_V2) & 0x1) << 3 | EVEX_aaa,
329
CB);
330
return;
331
}
332
}
333
};
334
335
class X86MCCodeEmitter : public MCCodeEmitter {
336
const MCInstrInfo &MCII;
337
MCContext &Ctx;
338
339
public:
340
X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
341
: MCII(mcii), Ctx(ctx) {}
342
X86MCCodeEmitter(const X86MCCodeEmitter &) = delete;
343
X86MCCodeEmitter &operator=(const X86MCCodeEmitter &) = delete;
344
~X86MCCodeEmitter() override = default;
345
346
void emitPrefix(const MCInst &MI, SmallVectorImpl<char> &CB,
347
const MCSubtargetInfo &STI) const;
348
349
void encodeInstruction(const MCInst &MI, SmallVectorImpl<char> &CB,
350
SmallVectorImpl<MCFixup> &Fixups,
351
const MCSubtargetInfo &STI) const override;
352
353
private:
354
unsigned getX86RegNum(const MCOperand &MO) const;
355
356
unsigned getX86RegEncoding(const MCInst &MI, unsigned OpNum) const;
357
358
void emitImmediate(const MCOperand &Disp, SMLoc Loc, unsigned ImmSize,
359
MCFixupKind FixupKind, uint64_t StartByte,
360
SmallVectorImpl<char> &CB,
361
SmallVectorImpl<MCFixup> &Fixups, int ImmOffset = 0) const;
362
363
void emitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
364
SmallVectorImpl<char> &CB) const;
365
366
void emitSIBByte(unsigned SS, unsigned Index, unsigned Base,
367
SmallVectorImpl<char> &CB) const;
368
369
void emitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField,
370
uint64_t TSFlags, PrefixKind Kind, uint64_t StartByte,
371
SmallVectorImpl<char> &CB,
372
SmallVectorImpl<MCFixup> &Fixups,
373
const MCSubtargetInfo &STI,
374
bool ForceSIB = false) const;
375
376
PrefixKind emitPrefixImpl(unsigned &CurOp, const MCInst &MI,
377
const MCSubtargetInfo &STI,
378
SmallVectorImpl<char> &CB) const;
379
380
PrefixKind emitVEXOpcodePrefix(int MemOperand, const MCInst &MI,
381
const MCSubtargetInfo &STI,
382
SmallVectorImpl<char> &CB) const;
383
384
void emitSegmentOverridePrefix(unsigned SegOperand, const MCInst &MI,
385
SmallVectorImpl<char> &CB) const;
386
387
PrefixKind emitOpcodePrefix(int MemOperand, const MCInst &MI,
388
const MCSubtargetInfo &STI,
389
SmallVectorImpl<char> &CB) const;
390
391
PrefixKind emitREXPrefix(int MemOperand, const MCInst &MI,
392
const MCSubtargetInfo &STI,
393
SmallVectorImpl<char> &CB) const;
394
};
395
396
} // end anonymous namespace
397
398
static uint8_t modRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) {
399
assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
400
return RM | (RegOpcode << 3) | (Mod << 6);
401
}
402
403
static void emitConstant(uint64_t Val, unsigned Size,
404
SmallVectorImpl<char> &CB) {
405
// Output the constant in little endian byte order.
406
for (unsigned i = 0; i != Size; ++i) {
407
emitByte(Val & 255, CB);
408
Val >>= 8;
409
}
410
}
411
412
/// Determine if this immediate can fit in a disp8 or a compressed disp8 for
413
/// EVEX instructions. \p will be set to the value to pass to the ImmOffset
414
/// parameter of emitImmediate.
415
static bool isDispOrCDisp8(uint64_t TSFlags, int Value, int &ImmOffset) {
416
bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX;
417
418
unsigned CD8_Scale =
419
(TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift;
420
CD8_Scale = CD8_Scale ? 1U << (CD8_Scale - 1) : 0U;
421
if (!HasEVEX || !CD8_Scale)
422
return isInt<8>(Value);
423
424
assert(isPowerOf2_32(CD8_Scale) && "Unexpected CD8 scale!");
425
if (Value & (CD8_Scale - 1)) // Unaligned offset
426
return false;
427
428
int CDisp8 = Value / static_cast<int>(CD8_Scale);
429
if (!isInt<8>(CDisp8))
430
return false;
431
432
// ImmOffset will be added to Value in emitImmediate leaving just CDisp8.
433
ImmOffset = CDisp8 - Value;
434
return true;
435
}
436
437
/// \returns the appropriate fixup kind to use for an immediate in an
438
/// instruction with the specified TSFlags.
439
static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
440
unsigned Size = X86II::getSizeOfImm(TSFlags);
441
bool isPCRel = X86II::isImmPCRel(TSFlags);
442
443
if (X86II::isImmSigned(TSFlags)) {
444
switch (Size) {
445
default:
446
llvm_unreachable("Unsupported signed fixup size!");
447
case 4:
448
return MCFixupKind(X86::reloc_signed_4byte);
449
}
450
}
451
return MCFixup::getKindForSize(Size, isPCRel);
452
}
453
454
enum GlobalOffsetTableExprKind { GOT_None, GOT_Normal, GOT_SymDiff };
455
456
/// Check if this expression starts with _GLOBAL_OFFSET_TABLE_ and if it is
457
/// of the form _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on
458
/// ELF i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
459
/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start of a
460
/// binary expression.
461
static GlobalOffsetTableExprKind
462
startsWithGlobalOffsetTable(const MCExpr *Expr) {
463
const MCExpr *RHS = nullptr;
464
if (Expr->getKind() == MCExpr::Binary) {
465
const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
466
Expr = BE->getLHS();
467
RHS = BE->getRHS();
468
}
469
470
if (Expr->getKind() != MCExpr::SymbolRef)
471
return GOT_None;
472
473
const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
474
const MCSymbol &S = Ref->getSymbol();
475
if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
476
return GOT_None;
477
if (RHS && RHS->getKind() == MCExpr::SymbolRef)
478
return GOT_SymDiff;
479
return GOT_Normal;
480
}
481
482
static bool hasSecRelSymbolRef(const MCExpr *Expr) {
483
if (Expr->getKind() == MCExpr::SymbolRef) {
484
const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
485
return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
486
}
487
return false;
488
}
489
490
static bool isPCRel32Branch(const MCInst &MI, const MCInstrInfo &MCII) {
491
unsigned Opcode = MI.getOpcode();
492
const MCInstrDesc &Desc = MCII.get(Opcode);
493
if ((Opcode != X86::CALL64pcrel32 && Opcode != X86::JMP_4 &&
494
Opcode != X86::JCC_4) ||
495
getImmFixupKind(Desc.TSFlags) != FK_PCRel_4)
496
return false;
497
498
unsigned CurOp = X86II::getOperandBias(Desc);
499
const MCOperand &Op = MI.getOperand(CurOp);
500
if (!Op.isExpr())
501
return false;
502
503
const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Op.getExpr());
504
return Ref && Ref->getKind() == MCSymbolRefExpr::VK_None;
505
}
506
507
unsigned X86MCCodeEmitter::getX86RegNum(const MCOperand &MO) const {
508
return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
509
}
510
511
unsigned X86MCCodeEmitter::getX86RegEncoding(const MCInst &MI,
512
unsigned OpNum) const {
513
return Ctx.getRegisterInfo()->getEncodingValue(MI.getOperand(OpNum).getReg());
514
}
515
516
void X86MCCodeEmitter::emitImmediate(const MCOperand &DispOp, SMLoc Loc,
517
unsigned Size, MCFixupKind FixupKind,
518
uint64_t StartByte,
519
SmallVectorImpl<char> &CB,
520
SmallVectorImpl<MCFixup> &Fixups,
521
int ImmOffset) const {
522
const MCExpr *Expr = nullptr;
523
if (DispOp.isImm()) {
524
// If this is a simple integer displacement that doesn't require a
525
// relocation, emit it now.
526
if (FixupKind != FK_PCRel_1 && FixupKind != FK_PCRel_2 &&
527
FixupKind != FK_PCRel_4) {
528
emitConstant(DispOp.getImm() + ImmOffset, Size, CB);
529
return;
530
}
531
Expr = MCConstantExpr::create(DispOp.getImm(), Ctx);
532
} else {
533
Expr = DispOp.getExpr();
534
}
535
536
// If we have an immoffset, add it to the expression.
537
if ((FixupKind == FK_Data_4 || FixupKind == FK_Data_8 ||
538
FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
539
GlobalOffsetTableExprKind Kind = startsWithGlobalOffsetTable(Expr);
540
if (Kind != GOT_None) {
541
assert(ImmOffset == 0);
542
543
if (Size == 8) {
544
FixupKind = MCFixupKind(X86::reloc_global_offset_table8);
545
} else {
546
assert(Size == 4);
547
FixupKind = MCFixupKind(X86::reloc_global_offset_table);
548
}
549
550
if (Kind == GOT_Normal)
551
ImmOffset = static_cast<int>(CB.size() - StartByte);
552
} else if (Expr->getKind() == MCExpr::SymbolRef) {
553
if (hasSecRelSymbolRef(Expr)) {
554
FixupKind = MCFixupKind(FK_SecRel_4);
555
}
556
} else if (Expr->getKind() == MCExpr::Binary) {
557
const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr *>(Expr);
558
if (hasSecRelSymbolRef(Bin->getLHS()) ||
559
hasSecRelSymbolRef(Bin->getRHS())) {
560
FixupKind = MCFixupKind(FK_SecRel_4);
561
}
562
}
563
}
564
565
// If the fixup is pc-relative, we need to bias the value to be relative to
566
// the start of the field, not the end of the field.
567
if (FixupKind == FK_PCRel_4 ||
568
FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
569
FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load) ||
570
FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax) ||
571
FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax_rex) ||
572
FixupKind == MCFixupKind(X86::reloc_branch_4byte_pcrel)) {
573
ImmOffset -= 4;
574
// If this is a pc-relative load off _GLOBAL_OFFSET_TABLE_:
575
// leaq _GLOBAL_OFFSET_TABLE_(%rip), %r15
576
// this needs to be a GOTPC32 relocation.
577
if (startsWithGlobalOffsetTable(Expr) != GOT_None)
578
FixupKind = MCFixupKind(X86::reloc_global_offset_table);
579
}
580
if (FixupKind == FK_PCRel_2)
581
ImmOffset -= 2;
582
if (FixupKind == FK_PCRel_1)
583
ImmOffset -= 1;
584
585
if (ImmOffset)
586
Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(ImmOffset, Ctx),
587
Ctx);
588
589
// Emit a symbolic constant as a fixup and 4 zeros.
590
Fixups.push_back(MCFixup::create(static_cast<uint32_t>(CB.size() - StartByte),
591
Expr, FixupKind, Loc));
592
emitConstant(0, Size, CB);
593
}
594
595
void X86MCCodeEmitter::emitRegModRMByte(const MCOperand &ModRMReg,
596
unsigned RegOpcodeFld,
597
SmallVectorImpl<char> &CB) const {
598
emitByte(modRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)), CB);
599
}
600
601
void X86MCCodeEmitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base,
602
SmallVectorImpl<char> &CB) const {
603
// SIB byte is in the same format as the modRMByte.
604
emitByte(modRMByte(SS, Index, Base), CB);
605
}
606
607
void X86MCCodeEmitter::emitMemModRMByte(
608
const MCInst &MI, unsigned Op, unsigned RegOpcodeField, uint64_t TSFlags,
609
PrefixKind Kind, uint64_t StartByte, SmallVectorImpl<char> &CB,
610
SmallVectorImpl<MCFixup> &Fixups, const MCSubtargetInfo &STI,
611
bool ForceSIB) const {
612
const MCOperand &Disp = MI.getOperand(Op + X86::AddrDisp);
613
const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
614
const MCOperand &Scale = MI.getOperand(Op + X86::AddrScaleAmt);
615
const MCOperand &IndexReg = MI.getOperand(Op + X86::AddrIndexReg);
616
unsigned BaseReg = Base.getReg();
617
618
// Handle %rip relative addressing.
619
if (BaseReg == X86::RIP ||
620
BaseReg == X86::EIP) { // [disp32+rIP] in X86-64 mode
621
assert(STI.hasFeature(X86::Is64Bit) &&
622
"Rip-relative addressing requires 64-bit mode");
623
assert(IndexReg.getReg() == 0 && !ForceSIB &&
624
"Invalid rip-relative address");
625
emitByte(modRMByte(0, RegOpcodeField, 5), CB);
626
627
unsigned Opcode = MI.getOpcode();
628
unsigned FixupKind = [&]() {
629
// Enable relaxed relocation only for a MCSymbolRefExpr. We cannot use a
630
// relaxed relocation if an offset is present (e.g. x@GOTPCREL+4).
631
if (!(Disp.isExpr() && isa<MCSymbolRefExpr>(Disp.getExpr())))
632
return X86::reloc_riprel_4byte;
633
634
// Certain loads for GOT references can be relocated against the symbol
635
// directly if the symbol ends up in the same linkage unit.
636
switch (Opcode) {
637
default:
638
return X86::reloc_riprel_4byte;
639
case X86::MOV64rm:
640
// movq loads is a subset of reloc_riprel_4byte_relax_rex. It is a
641
// special case because COFF and Mach-O don't support ELF's more
642
// flexible R_X86_64_REX_GOTPCRELX relaxation.
643
// TODO: Support new relocation for REX2.
644
assert(Kind == REX || Kind == REX2);
645
return X86::reloc_riprel_4byte_movq_load;
646
case X86::ADC32rm:
647
case X86::ADD32rm:
648
case X86::AND32rm:
649
case X86::CMP32rm:
650
case X86::MOV32rm:
651
case X86::OR32rm:
652
case X86::SBB32rm:
653
case X86::SUB32rm:
654
case X86::TEST32mr:
655
case X86::XOR32rm:
656
case X86::CALL64m:
657
case X86::JMP64m:
658
case X86::TAILJMPm64:
659
case X86::TEST64mr:
660
case X86::ADC64rm:
661
case X86::ADD64rm:
662
case X86::AND64rm:
663
case X86::CMP64rm:
664
case X86::OR64rm:
665
case X86::SBB64rm:
666
case X86::SUB64rm:
667
case X86::XOR64rm:
668
// We haven't support relocation for REX2 prefix, so temporarily use REX
669
// relocation.
670
// TODO: Support new relocation for REX2.
671
return (Kind == REX || Kind == REX2) ? X86::reloc_riprel_4byte_relax_rex
672
: X86::reloc_riprel_4byte_relax;
673
}
674
}();
675
676
// rip-relative addressing is actually relative to the *next* instruction.
677
// Since an immediate can follow the mod/rm byte for an instruction, this
678
// means that we need to bias the displacement field of the instruction with
679
// the size of the immediate field. If we have this case, add it into the
680
// expression to emit.
681
// Note: rip-relative addressing using immediate displacement values should
682
// not be adjusted, assuming it was the user's intent.
683
int ImmSize = !Disp.isImm() && X86II::hasImm(TSFlags)
684
? X86II::getSizeOfImm(TSFlags)
685
: 0;
686
687
emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), StartByte, CB,
688
Fixups, -ImmSize);
689
return;
690
}
691
692
unsigned BaseRegNo = BaseReg ? getX86RegNum(Base) : -1U;
693
694
bool IsAdSize16 = STI.hasFeature(X86::Is32Bit) &&
695
(TSFlags & X86II::AdSizeMask) == X86II::AdSize16;
696
697
// 16-bit addressing forms of the ModR/M byte have a different encoding for
698
// the R/M field and are far more limited in which registers can be used.
699
if (IsAdSize16 || X86_MC::is16BitMemOperand(MI, Op, STI)) {
700
if (BaseReg) {
701
// For 32-bit addressing, the row and column values in Table 2-2 are
702
// basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with
703
// some special cases. And getX86RegNum reflects that numbering.
704
// For 16-bit addressing it's more fun, as shown in the SDM Vol 2A,
705
// Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only
706
// use SI/DI/BP/BX, which have "row" values 4-7 in no particular order,
707
// while values 0-3 indicate the allowed combinations (base+index) of
708
// those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI.
709
//
710
// R16Table[] is a lookup from the normal RegNo, to the row values from
711
// Table 2-1 for 16-bit addressing modes. Where zero means disallowed.
712
static const unsigned R16Table[] = {0, 0, 0, 7, 0, 6, 4, 5};
713
unsigned RMfield = R16Table[BaseRegNo];
714
715
assert(RMfield && "invalid 16-bit base register");
716
717
if (IndexReg.getReg()) {
718
unsigned IndexReg16 = R16Table[getX86RegNum(IndexReg)];
719
720
assert(IndexReg16 && "invalid 16-bit index register");
721
// We must have one of SI/DI (4,5), and one of BP/BX (6,7).
722
assert(((IndexReg16 ^ RMfield) & 2) &&
723
"invalid 16-bit base/index register combination");
724
assert(Scale.getImm() == 1 &&
725
"invalid scale for 16-bit memory reference");
726
727
// Allow base/index to appear in either order (although GAS doesn't).
728
if (IndexReg16 & 2)
729
RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1);
730
else
731
RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1);
732
}
733
734
if (Disp.isImm() && isInt<8>(Disp.getImm())) {
735
if (Disp.getImm() == 0 && RMfield != 6) {
736
// There is no displacement; just the register.
737
emitByte(modRMByte(0, RegOpcodeField, RMfield), CB);
738
return;
739
}
740
// Use the [REG]+disp8 form, including for [BP] which cannot be encoded.
741
emitByte(modRMByte(1, RegOpcodeField, RMfield), CB);
742
emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, CB, Fixups);
743
return;
744
}
745
// This is the [REG]+disp16 case.
746
emitByte(modRMByte(2, RegOpcodeField, RMfield), CB);
747
} else {
748
assert(IndexReg.getReg() == 0 && "Unexpected index register!");
749
// There is no BaseReg; this is the plain [disp16] case.
750
emitByte(modRMByte(0, RegOpcodeField, 6), CB);
751
}
752
753
// Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases.
754
emitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, StartByte, CB, Fixups);
755
return;
756
}
757
758
// Check for presence of {disp8} or {disp32} pseudo prefixes.
759
bool UseDisp8 = MI.getFlags() & X86::IP_USE_DISP8;
760
bool UseDisp32 = MI.getFlags() & X86::IP_USE_DISP32;
761
762
// We only allow no displacement if no pseudo prefix is present.
763
bool AllowNoDisp = !UseDisp8 && !UseDisp32;
764
// Disp8 is allowed unless the {disp32} prefix is present.
765
bool AllowDisp8 = !UseDisp32;
766
767
// Determine whether a SIB byte is needed.
768
if (!ForceSIB && !X86II::needSIB(BaseReg, IndexReg.getReg(),
769
STI.hasFeature(X86::Is64Bit))) {
770
if (BaseReg == 0) { // [disp32] in X86-32 mode
771
emitByte(modRMByte(0, RegOpcodeField, 5), CB);
772
emitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, StartByte, CB, Fixups);
773
return;
774
}
775
776
// If the base is not EBP/ESP/R12/R13/R20/R21/R28/R29 and there is no
777
// displacement, use simple indirect register encoding, this handles
778
// addresses like [EAX]. The encoding for [EBP], [R13], [R20], [R21], [R28]
779
// or [R29] with no displacement means [disp32] so we handle it by emitting
780
// a displacement of 0 later.
781
if (BaseRegNo != N86::EBP) {
782
if (Disp.isImm() && Disp.getImm() == 0 && AllowNoDisp) {
783
emitByte(modRMByte(0, RegOpcodeField, BaseRegNo), CB);
784
return;
785
}
786
787
// If the displacement is @tlscall, treat it as a zero.
788
if (Disp.isExpr()) {
789
auto *Sym = dyn_cast<MCSymbolRefExpr>(Disp.getExpr());
790
if (Sym && Sym->getKind() == MCSymbolRefExpr::VK_TLSCALL) {
791
// This is exclusively used by call *a@tlscall(base). The relocation
792
// (R_386_TLSCALL or R_X86_64_TLSCALL) applies to the beginning.
793
Fixups.push_back(MCFixup::create(0, Sym, FK_NONE, MI.getLoc()));
794
emitByte(modRMByte(0, RegOpcodeField, BaseRegNo), CB);
795
return;
796
}
797
}
798
}
799
800
// Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
801
// Including a compressed disp8 for EVEX instructions that support it.
802
// This also handles the 0 displacement for [EBP], [R13], [R21] or [R29]. We
803
// can't use disp8 if the {disp32} pseudo prefix is present.
804
if (Disp.isImm() && AllowDisp8) {
805
int ImmOffset = 0;
806
if (isDispOrCDisp8(TSFlags, Disp.getImm(), ImmOffset)) {
807
emitByte(modRMByte(1, RegOpcodeField, BaseRegNo), CB);
808
emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, CB, Fixups,
809
ImmOffset);
810
return;
811
}
812
}
813
814
// Otherwise, emit the most general non-SIB encoding: [REG+disp32].
815
// Displacement may be 0 for [EBP], [R13], [R21], [R29] case if {disp32}
816
// pseudo prefix prevented using disp8 above.
817
emitByte(modRMByte(2, RegOpcodeField, BaseRegNo), CB);
818
unsigned Opcode = MI.getOpcode();
819
unsigned FixupKind = Opcode == X86::MOV32rm ? X86::reloc_signed_4byte_relax
820
: X86::reloc_signed_4byte;
821
emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), StartByte, CB,
822
Fixups);
823
return;
824
}
825
826
// We need a SIB byte, so start by outputting the ModR/M byte first
827
assert(IndexReg.getReg() != X86::ESP && IndexReg.getReg() != X86::RSP &&
828
"Cannot use ESP as index reg!");
829
830
bool ForceDisp32 = false;
831
bool ForceDisp8 = false;
832
int ImmOffset = 0;
833
if (BaseReg == 0) {
834
// If there is no base register, we emit the special case SIB byte with
835
// MOD=0, BASE=5, to JUST get the index, scale, and displacement.
836
BaseRegNo = 5;
837
emitByte(modRMByte(0, RegOpcodeField, 4), CB);
838
ForceDisp32 = true;
839
} else if (Disp.isImm() && Disp.getImm() == 0 && AllowNoDisp &&
840
// Base reg can't be EBP/RBP/R13/R21/R29 as that would end up with
841
// '5' as the base field, but that is the magic [*] nomenclature
842
// that indicates no base when mod=0. For these cases we'll emit a
843
// 0 displacement instead.
844
BaseRegNo != N86::EBP) {
845
// Emit no displacement ModR/M byte
846
emitByte(modRMByte(0, RegOpcodeField, 4), CB);
847
} else if (Disp.isImm() && AllowDisp8 &&
848
isDispOrCDisp8(TSFlags, Disp.getImm(), ImmOffset)) {
849
// Displacement fits in a byte or matches an EVEX compressed disp8, use
850
// disp8 encoding. This also handles EBP/R13/R21/R29 base with 0
851
// displacement unless {disp32} pseudo prefix was used.
852
emitByte(modRMByte(1, RegOpcodeField, 4), CB);
853
ForceDisp8 = true;
854
} else {
855
// Otherwise, emit the normal disp32 encoding.
856
emitByte(modRMByte(2, RegOpcodeField, 4), CB);
857
ForceDisp32 = true;
858
}
859
860
// Calculate what the SS field value should be...
861
static const unsigned SSTable[] = {~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3};
862
unsigned SS = SSTable[Scale.getImm()];
863
864
unsigned IndexRegNo = IndexReg.getReg() ? getX86RegNum(IndexReg) : 4;
865
866
emitSIBByte(SS, IndexRegNo, BaseRegNo, CB);
867
868
// Do we need to output a displacement?
869
if (ForceDisp8)
870
emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, CB, Fixups,
871
ImmOffset);
872
else if (ForceDisp32)
873
emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
874
StartByte, CB, Fixups);
875
}
876
877
/// Emit all instruction prefixes.
878
///
879
/// \returns one of the REX, XOP, VEX2, VEX3, EVEX if any of them is used,
880
/// otherwise returns None.
881
PrefixKind X86MCCodeEmitter::emitPrefixImpl(unsigned &CurOp, const MCInst &MI,
882
const MCSubtargetInfo &STI,
883
SmallVectorImpl<char> &CB) const {
884
uint64_t TSFlags = MCII.get(MI.getOpcode()).TSFlags;
885
// Determine where the memory operand starts, if present.
886
int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
887
// Emit segment override opcode prefix as needed.
888
if (MemoryOperand != -1) {
889
MemoryOperand += CurOp;
890
emitSegmentOverridePrefix(MemoryOperand + X86::AddrSegmentReg, MI, CB);
891
}
892
893
// Emit the repeat opcode prefix as needed.
894
unsigned Flags = MI.getFlags();
895
if (TSFlags & X86II::REP || Flags & X86::IP_HAS_REPEAT)
896
emitByte(0xF3, CB);
897
if (Flags & X86::IP_HAS_REPEAT_NE)
898
emitByte(0xF2, CB);
899
900
// Emit the address size opcode prefix as needed.
901
if (X86_MC::needsAddressSizeOverride(MI, STI, MemoryOperand, TSFlags) ||
902
Flags & X86::IP_HAS_AD_SIZE)
903
emitByte(0x67, CB);
904
905
uint64_t Form = TSFlags & X86II::FormMask;
906
switch (Form) {
907
default:
908
break;
909
case X86II::RawFrmDstSrc: {
910
// Emit segment override opcode prefix as needed (not for %ds).
911
if (MI.getOperand(2).getReg() != X86::DS)
912
emitSegmentOverridePrefix(2, MI, CB);
913
CurOp += 3; // Consume operands.
914
break;
915
}
916
case X86II::RawFrmSrc: {
917
// Emit segment override opcode prefix as needed (not for %ds).
918
if (MI.getOperand(1).getReg() != X86::DS)
919
emitSegmentOverridePrefix(1, MI, CB);
920
CurOp += 2; // Consume operands.
921
break;
922
}
923
case X86II::RawFrmDst: {
924
++CurOp; // Consume operand.
925
break;
926
}
927
case X86II::RawFrmMemOffs: {
928
// Emit segment override opcode prefix as needed.
929
emitSegmentOverridePrefix(1, MI, CB);
930
break;
931
}
932
}
933
934
// REX prefix is optional, but if used must be immediately before the opcode
935
// Encoding type for this instruction.
936
return (TSFlags & X86II::EncodingMask)
937
? emitVEXOpcodePrefix(MemoryOperand, MI, STI, CB)
938
: emitOpcodePrefix(MemoryOperand, MI, STI, CB);
939
}
940
941
// AVX instructions are encoded using an encoding scheme that combines
942
// prefix bytes, opcode extension field, operand encoding fields, and vector
943
// length encoding capability into a new prefix, referred to as VEX.
944
945
// The majority of the AVX-512 family of instructions (operating on
946
// 512/256/128-bit vector register operands) are encoded using a new prefix
947
// (called EVEX).
948
949
// XOP is a revised subset of what was originally intended as SSE5. It was
950
// changed to be similar but not overlapping with AVX.
951
952
/// Emit XOP, VEX2, VEX3 or EVEX prefix.
953
/// \returns the used prefix.
954
PrefixKind
955
X86MCCodeEmitter::emitVEXOpcodePrefix(int MemOperand, const MCInst &MI,
956
const MCSubtargetInfo &STI,
957
SmallVectorImpl<char> &CB) const {
958
const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
959
uint64_t TSFlags = Desc.TSFlags;
960
961
assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX.");
962
963
#ifndef NDEBUG
964
unsigned NumOps = MI.getNumOperands();
965
for (unsigned I = NumOps ? X86II::getOperandBias(Desc) : 0; I != NumOps;
966
++I) {
967
const MCOperand &MO = MI.getOperand(I);
968
if (!MO.isReg())
969
continue;
970
unsigned Reg = MO.getReg();
971
if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH)
972
report_fatal_error(
973
"Cannot encode high byte register in VEX/EVEX-prefixed instruction");
974
}
975
#endif
976
977
X86OpcodePrefixHelper Prefix(*Ctx.getRegisterInfo());
978
switch (TSFlags & X86II::EncodingMask) {
979
default:
980
break;
981
case X86II::XOP:
982
Prefix.setLowerBound(XOP);
983
break;
984
case X86II::VEX:
985
// VEX can be 2 byte or 3 byte, not determined yet if not explicit
986
Prefix.setLowerBound((MI.getFlags() & X86::IP_USE_VEX3) ? VEX3 : VEX2);
987
break;
988
case X86II::EVEX:
989
Prefix.setLowerBound(EVEX);
990
break;
991
}
992
993
Prefix.setW(TSFlags & X86II::REX_W);
994
Prefix.setNF(TSFlags & X86II::EVEX_NF);
995
996
bool HasEVEX_K = TSFlags & X86II::EVEX_K;
997
bool HasVEX_4V = TSFlags & X86II::VEX_4V;
998
bool IsND = X86II::hasNewDataDest(TSFlags); // IsND implies HasVEX_4V
999
bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
1000
1001
switch (TSFlags & X86II::OpMapMask) {
1002
default:
1003
llvm_unreachable("Invalid prefix!");
1004
case X86II::TB:
1005
Prefix.set5M(0x1); // 0F
1006
break;
1007
case X86II::T8:
1008
Prefix.set5M(0x2); // 0F 38
1009
break;
1010
case X86II::TA:
1011
Prefix.set5M(0x3); // 0F 3A
1012
break;
1013
case X86II::XOP8:
1014
Prefix.set5M(0x8);
1015
break;
1016
case X86II::XOP9:
1017
Prefix.set5M(0x9);
1018
break;
1019
case X86II::XOPA:
1020
Prefix.set5M(0xA);
1021
break;
1022
case X86II::T_MAP4:
1023
Prefix.set5M(0x4);
1024
break;
1025
case X86II::T_MAP5:
1026
Prefix.set5M(0x5);
1027
break;
1028
case X86II::T_MAP6:
1029
Prefix.set5M(0x6);
1030
break;
1031
case X86II::T_MAP7:
1032
Prefix.set5M(0x7);
1033
break;
1034
}
1035
1036
Prefix.setL(TSFlags & X86II::VEX_L);
1037
Prefix.setL2(TSFlags & X86II::EVEX_L2);
1038
if ((TSFlags & X86II::EVEX_L2) && STI.hasFeature(X86::FeatureAVX512) &&
1039
!STI.hasFeature(X86::FeatureEVEX512))
1040
report_fatal_error("ZMM registers are not supported without EVEX512");
1041
switch (TSFlags & X86II::OpPrefixMask) {
1042
case X86II::PD:
1043
Prefix.setPP(0x1); // 66
1044
break;
1045
case X86II::XS:
1046
Prefix.setPP(0x2); // F3
1047
break;
1048
case X86II::XD:
1049
Prefix.setPP(0x3); // F2
1050
break;
1051
}
1052
1053
Prefix.setZ(HasEVEX_K && (TSFlags & X86II::EVEX_Z));
1054
Prefix.setEVEX_b(TSFlags & X86II::EVEX_B);
1055
1056
bool EncodeRC = false;
1057
uint8_t EVEX_rc = 0;
1058
1059
unsigned CurOp = X86II::getOperandBias(Desc);
1060
bool HasTwoConditionalOps = TSFlags & X86II::TwoConditionalOps;
1061
1062
switch (TSFlags & X86II::FormMask) {
1063
default:
1064
llvm_unreachable("Unexpected form in emitVEXOpcodePrefix!");
1065
case X86II::MRMDestMem4VOp3CC: {
1066
// src1(ModR/M), MemAddr, src2(VEX_4V)
1067
Prefix.setRR2(MI, CurOp++);
1068
Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg);
1069
Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg);
1070
CurOp += X86::AddrNumOperands;
1071
Prefix.set4VV2(MI, CurOp++);
1072
break;
1073
}
1074
case X86II::MRM_C0:
1075
case X86II::RawFrm:
1076
break;
1077
case X86II::MRMDestMemCC:
1078
case X86II::MRMDestMemFSIB:
1079
case X86II::MRMDestMem: {
1080
// MRMDestMem instructions forms:
1081
// MemAddr, src1(ModR/M)
1082
// MemAddr, src1(VEX_4V), src2(ModR/M)
1083
// MemAddr, src1(ModR/M), imm8
1084
//
1085
// NDD:
1086
// dst(VEX_4V), MemAddr, src1(ModR/M)
1087
Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg);
1088
Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg);
1089
Prefix.setV2(MI, MemOperand + X86::AddrIndexReg, HasVEX_4V);
1090
1091
if (IsND)
1092
Prefix.set4VV2(MI, CurOp++);
1093
1094
CurOp += X86::AddrNumOperands;
1095
1096
if (HasEVEX_K)
1097
Prefix.setAAA(MI, CurOp++);
1098
1099
if (!IsND && HasVEX_4V)
1100
Prefix.set4VV2(MI, CurOp++);
1101
1102
Prefix.setRR2(MI, CurOp++);
1103
if (HasTwoConditionalOps) {
1104
Prefix.set4V(MI, CurOp++, /*IsImm=*/true);
1105
Prefix.setSC(MI, CurOp++);
1106
}
1107
break;
1108
}
1109
case X86II::MRMSrcMemCC:
1110
case X86II::MRMSrcMemFSIB:
1111
case X86II::MRMSrcMem: {
1112
// MRMSrcMem instructions forms:
1113
// src1(ModR/M), MemAddr
1114
// src1(ModR/M), src2(VEX_4V), MemAddr
1115
// src1(ModR/M), MemAddr, imm8
1116
// src1(ModR/M), MemAddr, src2(Imm[7:4])
1117
//
1118
// FMA4:
1119
// dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
1120
//
1121
// NDD:
1122
// dst(VEX_4V), src1(ModR/M), MemAddr
1123
if (IsND)
1124
Prefix.set4VV2(MI, CurOp++);
1125
1126
Prefix.setRR2(MI, CurOp++);
1127
1128
if (HasEVEX_K)
1129
Prefix.setAAA(MI, CurOp++);
1130
1131
if (!IsND && HasVEX_4V)
1132
Prefix.set4VV2(MI, CurOp++);
1133
1134
Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg);
1135
Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg);
1136
Prefix.setV2(MI, MemOperand + X86::AddrIndexReg, HasVEX_4V);
1137
CurOp += X86::AddrNumOperands;
1138
if (HasTwoConditionalOps) {
1139
Prefix.set4V(MI, CurOp++, /*IsImm=*/true);
1140
Prefix.setSC(MI, CurOp++);
1141
}
1142
break;
1143
}
1144
case X86II::MRMSrcMem4VOp3: {
1145
// Instruction format for 4VOp3:
1146
// src1(ModR/M), MemAddr, src3(VEX_4V)
1147
Prefix.setRR2(MI, CurOp++);
1148
Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg);
1149
Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg);
1150
Prefix.set4VV2(MI, CurOp + X86::AddrNumOperands);
1151
break;
1152
}
1153
case X86II::MRMSrcMemOp4: {
1154
// dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
1155
Prefix.setR(MI, CurOp++);
1156
Prefix.set4V(MI, CurOp++);
1157
Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg);
1158
Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg);
1159
break;
1160
}
1161
case X86II::MRMXmCC:
1162
case X86II::MRM0m:
1163
case X86II::MRM1m:
1164
case X86II::MRM2m:
1165
case X86II::MRM3m:
1166
case X86II::MRM4m:
1167
case X86II::MRM5m:
1168
case X86II::MRM6m:
1169
case X86II::MRM7m: {
1170
// MRM[0-9]m instructions forms:
1171
// MemAddr
1172
// src1(VEX_4V), MemAddr
1173
if (HasVEX_4V)
1174
Prefix.set4VV2(MI, CurOp++);
1175
1176
if (HasEVEX_K)
1177
Prefix.setAAA(MI, CurOp++);
1178
1179
Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg);
1180
Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg);
1181
Prefix.setV2(MI, MemOperand + X86::AddrIndexReg, HasVEX_4V);
1182
CurOp += X86::AddrNumOperands + 1; // Skip first imm.
1183
if (HasTwoConditionalOps) {
1184
Prefix.set4V(MI, CurOp++, /*IsImm=*/true);
1185
Prefix.setSC(MI, CurOp++);
1186
}
1187
break;
1188
}
1189
case X86II::MRMSrcRegCC:
1190
case X86II::MRMSrcReg: {
1191
// MRMSrcReg instructions forms:
1192
// dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
1193
// dst(ModR/M), src1(ModR/M)
1194
// dst(ModR/M), src1(ModR/M), imm8
1195
//
1196
// FMA4:
1197
// dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
1198
//
1199
// NDD:
1200
// dst(VEX_4V), src1(ModR/M.reg), src2(ModR/M)
1201
if (IsND)
1202
Prefix.set4VV2(MI, CurOp++);
1203
Prefix.setRR2(MI, CurOp++);
1204
1205
if (HasEVEX_K)
1206
Prefix.setAAA(MI, CurOp++);
1207
1208
if (!IsND && HasVEX_4V)
1209
Prefix.set4VV2(MI, CurOp++);
1210
1211
Prefix.setBB2(MI, CurOp);
1212
Prefix.setX(MI, CurOp, 4);
1213
++CurOp;
1214
1215
if (HasTwoConditionalOps) {
1216
Prefix.set4V(MI, CurOp++, /*IsImm=*/true);
1217
Prefix.setSC(MI, CurOp++);
1218
}
1219
1220
if (TSFlags & X86II::EVEX_B) {
1221
if (HasEVEX_RC) {
1222
unsigned NumOps = Desc.getNumOperands();
1223
unsigned RcOperand = NumOps - 1;
1224
assert(RcOperand >= CurOp);
1225
EVEX_rc = MI.getOperand(RcOperand).getImm();
1226
assert(EVEX_rc <= 3 && "Invalid rounding control!");
1227
}
1228
EncodeRC = true;
1229
}
1230
break;
1231
}
1232
case X86II::MRMSrcReg4VOp3: {
1233
// Instruction format for 4VOp3:
1234
// src1(ModR/M), src2(ModR/M), src3(VEX_4V)
1235
Prefix.setRR2(MI, CurOp++);
1236
Prefix.setBB2(MI, CurOp++);
1237
Prefix.set4VV2(MI, CurOp++);
1238
break;
1239
}
1240
case X86II::MRMSrcRegOp4: {
1241
// dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
1242
Prefix.setR(MI, CurOp++);
1243
Prefix.set4V(MI, CurOp++);
1244
// Skip second register source (encoded in Imm[7:4])
1245
++CurOp;
1246
1247
Prefix.setB(MI, CurOp);
1248
Prefix.setX(MI, CurOp, 4);
1249
++CurOp;
1250
break;
1251
}
1252
case X86II::MRMDestRegCC:
1253
case X86II::MRMDestReg: {
1254
// MRMDestReg instructions forms:
1255
// dst(ModR/M), src(ModR/M)
1256
// dst(ModR/M), src(ModR/M), imm8
1257
// dst(ModR/M), src1(VEX_4V), src2(ModR/M)
1258
//
1259
// NDD:
1260
// dst(VEX_4V), src1(ModR/M), src2(ModR/M)
1261
if (IsND)
1262
Prefix.set4VV2(MI, CurOp++);
1263
Prefix.setBB2(MI, CurOp);
1264
Prefix.setX(MI, CurOp, 4);
1265
++CurOp;
1266
1267
if (HasEVEX_K)
1268
Prefix.setAAA(MI, CurOp++);
1269
1270
if (!IsND && HasVEX_4V)
1271
Prefix.set4VV2(MI, CurOp++);
1272
1273
Prefix.setRR2(MI, CurOp++);
1274
if (HasTwoConditionalOps) {
1275
Prefix.set4V(MI, CurOp++, /*IsImm=*/true);
1276
Prefix.setSC(MI, CurOp++);
1277
}
1278
if (TSFlags & X86II::EVEX_B)
1279
EncodeRC = true;
1280
break;
1281
}
1282
case X86II::MRMr0: {
1283
// MRMr0 instructions forms:
1284
// 11:rrr:000
1285
// dst(ModR/M)
1286
Prefix.setRR2(MI, CurOp++);
1287
break;
1288
}
1289
case X86II::MRMXrCC:
1290
case X86II::MRM0r:
1291
case X86II::MRM1r:
1292
case X86II::MRM2r:
1293
case X86II::MRM3r:
1294
case X86II::MRM4r:
1295
case X86II::MRM5r:
1296
case X86II::MRM6r:
1297
case X86II::MRM7r: {
1298
// MRM0r-MRM7r instructions forms:
1299
// dst(VEX_4V), src(ModR/M), imm8
1300
if (HasVEX_4V)
1301
Prefix.set4VV2(MI, CurOp++);
1302
1303
if (HasEVEX_K)
1304
Prefix.setAAA(MI, CurOp++);
1305
1306
Prefix.setBB2(MI, CurOp);
1307
Prefix.setX(MI, CurOp, 4);
1308
++CurOp;
1309
if (HasTwoConditionalOps) {
1310
Prefix.set4V(MI, ++CurOp, /*IsImm=*/true);
1311
Prefix.setSC(MI, ++CurOp);
1312
}
1313
break;
1314
}
1315
}
1316
if (EncodeRC) {
1317
Prefix.setL(EVEX_rc & 0x1);
1318
Prefix.setL2(EVEX_rc & 0x2);
1319
}
1320
PrefixKind Kind = Prefix.determineOptimalKind();
1321
Prefix.emit(CB);
1322
return Kind;
1323
}
1324
1325
/// Emit REX prefix which specifies
1326
/// 1) 64-bit instructions,
1327
/// 2) non-default operand size, and
1328
/// 3) use of X86-64 extended registers.
1329
///
1330
/// \returns the used prefix (REX or None).
1331
PrefixKind X86MCCodeEmitter::emitREXPrefix(int MemOperand, const MCInst &MI,
1332
const MCSubtargetInfo &STI,
1333
SmallVectorImpl<char> &CB) const {
1334
if (!STI.hasFeature(X86::Is64Bit))
1335
return None;
1336
X86OpcodePrefixHelper Prefix(*Ctx.getRegisterInfo());
1337
const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
1338
uint64_t TSFlags = Desc.TSFlags;
1339
Prefix.setW(TSFlags & X86II::REX_W);
1340
unsigned NumOps = MI.getNumOperands();
1341
bool UsesHighByteReg = false;
1342
#ifndef NDEBUG
1343
bool HasRegOp = false;
1344
#endif
1345
unsigned CurOp = NumOps ? X86II::getOperandBias(Desc) : 0;
1346
for (unsigned i = CurOp; i != NumOps; ++i) {
1347
const MCOperand &MO = MI.getOperand(i);
1348
if (MO.isReg()) {
1349
#ifndef NDEBUG
1350
HasRegOp = true;
1351
#endif
1352
unsigned Reg = MO.getReg();
1353
if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH)
1354
UsesHighByteReg = true;
1355
// If it accesses SPL, BPL, SIL, or DIL, then it requires a REX prefix.
1356
if (X86II::isX86_64NonExtLowByteReg(Reg))
1357
Prefix.setLowerBound(REX);
1358
} else if (MO.isExpr() && STI.getTargetTriple().isX32()) {
1359
// GOTTPOFF and TLSDESC relocations require a REX prefix to allow
1360
// linker optimizations: even if the instructions we see may not require
1361
// any prefix, they may be replaced by instructions that do. This is
1362
// handled as a special case here so that it also works for hand-written
1363
// assembly without the user needing to write REX, as with GNU as.
1364
const auto *Ref = dyn_cast<MCSymbolRefExpr>(MO.getExpr());
1365
if (Ref && (Ref->getKind() == MCSymbolRefExpr::VK_GOTTPOFF ||
1366
Ref->getKind() == MCSymbolRefExpr::VK_TLSDESC)) {
1367
Prefix.setLowerBound(REX);
1368
}
1369
}
1370
}
1371
if (MI.getFlags() & X86::IP_USE_REX)
1372
Prefix.setLowerBound(REX);
1373
if ((TSFlags & X86II::ExplicitOpPrefixMask) == X86II::ExplicitREX2Prefix ||
1374
MI.getFlags() & X86::IP_USE_REX2)
1375
Prefix.setLowerBound(REX2);
1376
switch (TSFlags & X86II::FormMask) {
1377
default:
1378
assert(!HasRegOp && "Unexpected form in emitREXPrefix!");
1379
break;
1380
case X86II::RawFrm:
1381
case X86II::RawFrmMemOffs:
1382
case X86II::RawFrmSrc:
1383
case X86II::RawFrmDst:
1384
case X86II::RawFrmDstSrc:
1385
break;
1386
case X86II::AddRegFrm:
1387
Prefix.setBB2(MI, CurOp++);
1388
break;
1389
case X86II::MRMSrcReg:
1390
case X86II::MRMSrcRegCC:
1391
Prefix.setRR2(MI, CurOp++);
1392
Prefix.setBB2(MI, CurOp++);
1393
break;
1394
case X86II::MRMSrcMem:
1395
case X86II::MRMSrcMemCC:
1396
Prefix.setRR2(MI, CurOp++);
1397
Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg);
1398
Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg);
1399
CurOp += X86::AddrNumOperands;
1400
break;
1401
case X86II::MRMDestReg:
1402
Prefix.setBB2(MI, CurOp++);
1403
Prefix.setRR2(MI, CurOp++);
1404
break;
1405
case X86II::MRMDestMem:
1406
Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg);
1407
Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg);
1408
CurOp += X86::AddrNumOperands;
1409
Prefix.setRR2(MI, CurOp++);
1410
break;
1411
case X86II::MRMXmCC:
1412
case X86II::MRMXm:
1413
case X86II::MRM0m:
1414
case X86II::MRM1m:
1415
case X86II::MRM2m:
1416
case X86II::MRM3m:
1417
case X86II::MRM4m:
1418
case X86II::MRM5m:
1419
case X86II::MRM6m:
1420
case X86II::MRM7m:
1421
Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg);
1422
Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg);
1423
break;
1424
case X86II::MRMXrCC:
1425
case X86II::MRMXr:
1426
case X86II::MRM0r:
1427
case X86II::MRM1r:
1428
case X86II::MRM2r:
1429
case X86II::MRM3r:
1430
case X86II::MRM4r:
1431
case X86II::MRM5r:
1432
case X86II::MRM6r:
1433
case X86II::MRM7r:
1434
Prefix.setBB2(MI, CurOp++);
1435
break;
1436
}
1437
Prefix.setM((TSFlags & X86II::OpMapMask) == X86II::TB);
1438
PrefixKind Kind = Prefix.determineOptimalKind();
1439
if (Kind && UsesHighByteReg)
1440
report_fatal_error(
1441
"Cannot encode high byte register in REX-prefixed instruction");
1442
Prefix.emit(CB);
1443
return Kind;
1444
}
1445
1446
/// Emit segment override opcode prefix as needed.
1447
void X86MCCodeEmitter::emitSegmentOverridePrefix(
1448
unsigned SegOperand, const MCInst &MI, SmallVectorImpl<char> &CB) const {
1449
// Check for explicit segment override on memory operand.
1450
if (unsigned Reg = MI.getOperand(SegOperand).getReg())
1451
emitByte(X86::getSegmentOverridePrefixForReg(Reg), CB);
1452
}
1453
1454
/// Emit all instruction prefixes prior to the opcode.
1455
///
1456
/// \param MemOperand the operand # of the start of a memory operand if present.
1457
/// If not present, it is -1.
1458
///
1459
/// \returns the used prefix (REX or None).
1460
PrefixKind X86MCCodeEmitter::emitOpcodePrefix(int MemOperand, const MCInst &MI,
1461
const MCSubtargetInfo &STI,
1462
SmallVectorImpl<char> &CB) const {
1463
const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
1464
uint64_t TSFlags = Desc.TSFlags;
1465
1466
// Emit the operand size opcode prefix as needed.
1467
if ((TSFlags & X86II::OpSizeMask) ==
1468
(STI.hasFeature(X86::Is16Bit) ? X86II::OpSize32 : X86II::OpSize16))
1469
emitByte(0x66, CB);
1470
1471
// Emit the LOCK opcode prefix.
1472
if (TSFlags & X86II::LOCK || MI.getFlags() & X86::IP_HAS_LOCK)
1473
emitByte(0xF0, CB);
1474
1475
// Emit the NOTRACK opcode prefix.
1476
if (TSFlags & X86II::NOTRACK || MI.getFlags() & X86::IP_HAS_NOTRACK)
1477
emitByte(0x3E, CB);
1478
1479
switch (TSFlags & X86II::OpPrefixMask) {
1480
case X86II::PD: // 66
1481
emitByte(0x66, CB);
1482
break;
1483
case X86II::XS: // F3
1484
emitByte(0xF3, CB);
1485
break;
1486
case X86II::XD: // F2
1487
emitByte(0xF2, CB);
1488
break;
1489
}
1490
1491
// Handle REX prefix.
1492
assert((STI.hasFeature(X86::Is64Bit) || !(TSFlags & X86II::REX_W)) &&
1493
"REX.W requires 64bit mode.");
1494
PrefixKind Kind = emitREXPrefix(MemOperand, MI, STI, CB);
1495
1496
// 0x0F escape code must be emitted just before the opcode.
1497
switch (TSFlags & X86II::OpMapMask) {
1498
case X86II::TB: // Two-byte opcode map
1499
// Encoded by M bit in REX2
1500
if (Kind == REX2)
1501
break;
1502
[[fallthrough]];
1503
case X86II::T8: // 0F 38
1504
case X86II::TA: // 0F 3A
1505
case X86II::ThreeDNow: // 0F 0F, second 0F emitted by caller.
1506
emitByte(0x0F, CB);
1507
break;
1508
}
1509
1510
switch (TSFlags & X86II::OpMapMask) {
1511
case X86II::T8: // 0F 38
1512
emitByte(0x38, CB);
1513
break;
1514
case X86II::TA: // 0F 3A
1515
emitByte(0x3A, CB);
1516
break;
1517
}
1518
1519
return Kind;
1520
}
1521
1522
void X86MCCodeEmitter::emitPrefix(const MCInst &MI, SmallVectorImpl<char> &CB,
1523
const MCSubtargetInfo &STI) const {
1524
unsigned Opcode = MI.getOpcode();
1525
const MCInstrDesc &Desc = MCII.get(Opcode);
1526
uint64_t TSFlags = Desc.TSFlags;
1527
1528
// Pseudo instructions don't get encoded.
1529
if (X86II::isPseudo(TSFlags))
1530
return;
1531
1532
unsigned CurOp = X86II::getOperandBias(Desc);
1533
1534
emitPrefixImpl(CurOp, MI, STI, CB);
1535
}
1536
1537
void X86_MC::emitPrefix(MCCodeEmitter &MCE, const MCInst &MI,
1538
SmallVectorImpl<char> &CB, const MCSubtargetInfo &STI) {
1539
static_cast<X86MCCodeEmitter &>(MCE).emitPrefix(MI, CB, STI);
1540
}
1541
1542
void X86MCCodeEmitter::encodeInstruction(const MCInst &MI,
1543
SmallVectorImpl<char> &CB,
1544
SmallVectorImpl<MCFixup> &Fixups,
1545
const MCSubtargetInfo &STI) const {
1546
unsigned Opcode = MI.getOpcode();
1547
const MCInstrDesc &Desc = MCII.get(Opcode);
1548
uint64_t TSFlags = Desc.TSFlags;
1549
1550
// Pseudo instructions don't get encoded.
1551
if (X86II::isPseudo(TSFlags))
1552
return;
1553
1554
unsigned NumOps = Desc.getNumOperands();
1555
unsigned CurOp = X86II::getOperandBias(Desc);
1556
1557
uint64_t StartByte = CB.size();
1558
1559
PrefixKind Kind = emitPrefixImpl(CurOp, MI, STI, CB);
1560
1561
// It uses the VEX.VVVV field?
1562
bool HasVEX_4V = TSFlags & X86II::VEX_4V;
1563
bool HasVEX_I8Reg = (TSFlags & X86II::ImmMask) == X86II::Imm8Reg;
1564
1565
// It uses the EVEX.aaa field?
1566
bool HasEVEX_K = TSFlags & X86II::EVEX_K;
1567
bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
1568
1569
// Used if a register is encoded in 7:4 of immediate.
1570
unsigned I8RegNum = 0;
1571
1572
uint8_t BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
1573
1574
if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow)
1575
BaseOpcode = 0x0F; // Weird 3DNow! encoding.
1576
1577
unsigned OpcodeOffset = 0;
1578
1579
bool IsND = X86II::hasNewDataDest(TSFlags);
1580
bool HasTwoConditionalOps = TSFlags & X86II::TwoConditionalOps;
1581
1582
uint64_t Form = TSFlags & X86II::FormMask;
1583
switch (Form) {
1584
default:
1585
errs() << "FORM: " << Form << "\n";
1586
llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
1587
case X86II::Pseudo:
1588
llvm_unreachable("Pseudo instruction shouldn't be emitted");
1589
case X86II::RawFrmDstSrc:
1590
case X86II::RawFrmSrc:
1591
case X86II::RawFrmDst:
1592
case X86II::PrefixByte:
1593
emitByte(BaseOpcode, CB);
1594
break;
1595
case X86II::AddCCFrm: {
1596
// This will be added to the opcode in the fallthrough.
1597
OpcodeOffset = MI.getOperand(NumOps - 1).getImm();
1598
assert(OpcodeOffset < 16 && "Unexpected opcode offset!");
1599
--NumOps; // Drop the operand from the end.
1600
[[fallthrough]];
1601
case X86II::RawFrm:
1602
emitByte(BaseOpcode + OpcodeOffset, CB);
1603
1604
if (!STI.hasFeature(X86::Is64Bit) || !isPCRel32Branch(MI, MCII))
1605
break;
1606
1607
const MCOperand &Op = MI.getOperand(CurOp++);
1608
emitImmediate(Op, MI.getLoc(), X86II::getSizeOfImm(TSFlags),
1609
MCFixupKind(X86::reloc_branch_4byte_pcrel), StartByte, CB,
1610
Fixups);
1611
break;
1612
}
1613
case X86II::RawFrmMemOffs:
1614
emitByte(BaseOpcode, CB);
1615
emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1616
X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1617
StartByte, CB, Fixups);
1618
++CurOp; // skip segment operand
1619
break;
1620
case X86II::RawFrmImm8:
1621
emitByte(BaseOpcode, CB);
1622
emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1623
X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1624
StartByte, CB, Fixups);
1625
emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, StartByte,
1626
CB, Fixups);
1627
break;
1628
case X86II::RawFrmImm16:
1629
emitByte(BaseOpcode, CB);
1630
emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1631
X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1632
StartByte, CB, Fixups);
1633
emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, StartByte,
1634
CB, Fixups);
1635
break;
1636
1637
case X86II::AddRegFrm:
1638
emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++)), CB);
1639
break;
1640
1641
case X86II::MRMDestReg: {
1642
emitByte(BaseOpcode, CB);
1643
unsigned SrcRegNum = CurOp + 1;
1644
1645
if (HasEVEX_K) // Skip writemask
1646
++SrcRegNum;
1647
1648
if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1649
++SrcRegNum;
1650
if (IsND) // Skip the NDD operand encoded in EVEX_VVVV
1651
++CurOp;
1652
1653
emitRegModRMByte(MI.getOperand(CurOp),
1654
getX86RegNum(MI.getOperand(SrcRegNum)), CB);
1655
CurOp = SrcRegNum + 1;
1656
break;
1657
}
1658
case X86II::MRMDestRegCC: {
1659
unsigned FirstOp = CurOp++;
1660
unsigned SecondOp = CurOp++;
1661
unsigned CC = MI.getOperand(CurOp++).getImm();
1662
emitByte(BaseOpcode + CC, CB);
1663
emitRegModRMByte(MI.getOperand(FirstOp),
1664
getX86RegNum(MI.getOperand(SecondOp)), CB);
1665
break;
1666
}
1667
case X86II::MRMDestMem4VOp3CC: {
1668
unsigned CC = MI.getOperand(8).getImm();
1669
emitByte(BaseOpcode + CC, CB);
1670
unsigned SrcRegNum = CurOp + X86::AddrNumOperands;
1671
emitMemModRMByte(MI, CurOp + 1, getX86RegNum(MI.getOperand(0)), TSFlags,
1672
Kind, StartByte, CB, Fixups, STI, false);
1673
CurOp = SrcRegNum + 3; // skip reg, VEX_V4 and CC
1674
break;
1675
}
1676
case X86II::MRMDestMemFSIB:
1677
case X86II::MRMDestMem: {
1678
emitByte(BaseOpcode, CB);
1679
unsigned SrcRegNum = CurOp + X86::AddrNumOperands;
1680
1681
if (HasEVEX_K) // Skip writemask
1682
++SrcRegNum;
1683
1684
if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1685
++SrcRegNum;
1686
1687
if (IsND) // Skip new data destination
1688
++CurOp;
1689
1690
bool ForceSIB = (Form == X86II::MRMDestMemFSIB);
1691
emitMemModRMByte(MI, CurOp, getX86RegNum(MI.getOperand(SrcRegNum)), TSFlags,
1692
Kind, StartByte, CB, Fixups, STI, ForceSIB);
1693
CurOp = SrcRegNum + 1;
1694
break;
1695
}
1696
case X86II::MRMDestMemCC: {
1697
unsigned MemOp = CurOp;
1698
CurOp = MemOp + X86::AddrNumOperands;
1699
unsigned RegOp = CurOp++;
1700
unsigned CC = MI.getOperand(CurOp++).getImm();
1701
emitByte(BaseOpcode + CC, CB);
1702
emitMemModRMByte(MI, MemOp, getX86RegNum(MI.getOperand(RegOp)), TSFlags,
1703
Kind, StartByte, CB, Fixups, STI);
1704
break;
1705
}
1706
case X86II::MRMSrcReg: {
1707
emitByte(BaseOpcode, CB);
1708
unsigned SrcRegNum = CurOp + 1;
1709
1710
if (HasEVEX_K) // Skip writemask
1711
++SrcRegNum;
1712
1713
if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1714
++SrcRegNum;
1715
1716
if (IsND) // Skip new data destination
1717
++CurOp;
1718
1719
emitRegModRMByte(MI.getOperand(SrcRegNum),
1720
getX86RegNum(MI.getOperand(CurOp)), CB);
1721
CurOp = SrcRegNum + 1;
1722
if (HasVEX_I8Reg)
1723
I8RegNum = getX86RegEncoding(MI, CurOp++);
1724
// do not count the rounding control operand
1725
if (HasEVEX_RC)
1726
--NumOps;
1727
break;
1728
}
1729
case X86II::MRMSrcReg4VOp3: {
1730
emitByte(BaseOpcode, CB);
1731
unsigned SrcRegNum = CurOp + 1;
1732
1733
emitRegModRMByte(MI.getOperand(SrcRegNum),
1734
getX86RegNum(MI.getOperand(CurOp)), CB);
1735
CurOp = SrcRegNum + 1;
1736
++CurOp; // Encoded in VEX.VVVV
1737
break;
1738
}
1739
case X86II::MRMSrcRegOp4: {
1740
emitByte(BaseOpcode, CB);
1741
unsigned SrcRegNum = CurOp + 1;
1742
1743
// Skip 1st src (which is encoded in VEX_VVVV)
1744
++SrcRegNum;
1745
1746
// Capture 2nd src (which is encoded in Imm[7:4])
1747
assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
1748
I8RegNum = getX86RegEncoding(MI, SrcRegNum++);
1749
1750
emitRegModRMByte(MI.getOperand(SrcRegNum),
1751
getX86RegNum(MI.getOperand(CurOp)), CB);
1752
CurOp = SrcRegNum + 1;
1753
break;
1754
}
1755
case X86II::MRMSrcRegCC: {
1756
if (IsND) // Skip new data destination
1757
++CurOp;
1758
unsigned FirstOp = CurOp++;
1759
unsigned SecondOp = CurOp++;
1760
1761
unsigned CC = MI.getOperand(CurOp++).getImm();
1762
emitByte(BaseOpcode + CC, CB);
1763
1764
emitRegModRMByte(MI.getOperand(SecondOp),
1765
getX86RegNum(MI.getOperand(FirstOp)), CB);
1766
break;
1767
}
1768
case X86II::MRMSrcMemFSIB:
1769
case X86II::MRMSrcMem: {
1770
unsigned FirstMemOp = CurOp + 1;
1771
1772
if (IsND) // Skip new data destination
1773
CurOp++;
1774
1775
if (HasEVEX_K) // Skip writemask
1776
++FirstMemOp;
1777
1778
if (HasVEX_4V)
1779
++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
1780
1781
emitByte(BaseOpcode, CB);
1782
1783
bool ForceSIB = (Form == X86II::MRMSrcMemFSIB);
1784
emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
1785
TSFlags, Kind, StartByte, CB, Fixups, STI, ForceSIB);
1786
CurOp = FirstMemOp + X86::AddrNumOperands;
1787
if (HasVEX_I8Reg)
1788
I8RegNum = getX86RegEncoding(MI, CurOp++);
1789
break;
1790
}
1791
case X86II::MRMSrcMem4VOp3: {
1792
unsigned FirstMemOp = CurOp + 1;
1793
1794
emitByte(BaseOpcode, CB);
1795
1796
emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
1797
TSFlags, Kind, StartByte, CB, Fixups, STI);
1798
CurOp = FirstMemOp + X86::AddrNumOperands;
1799
++CurOp; // Encoded in VEX.VVVV.
1800
break;
1801
}
1802
case X86II::MRMSrcMemOp4: {
1803
unsigned FirstMemOp = CurOp + 1;
1804
1805
++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
1806
1807
// Capture second register source (encoded in Imm[7:4])
1808
assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
1809
I8RegNum = getX86RegEncoding(MI, FirstMemOp++);
1810
1811
emitByte(BaseOpcode, CB);
1812
1813
emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
1814
TSFlags, Kind, StartByte, CB, Fixups, STI);
1815
CurOp = FirstMemOp + X86::AddrNumOperands;
1816
break;
1817
}
1818
case X86II::MRMSrcMemCC: {
1819
if (IsND) // Skip new data destination
1820
++CurOp;
1821
unsigned RegOp = CurOp++;
1822
unsigned FirstMemOp = CurOp;
1823
CurOp = FirstMemOp + X86::AddrNumOperands;
1824
1825
unsigned CC = MI.getOperand(CurOp++).getImm();
1826
emitByte(BaseOpcode + CC, CB);
1827
1828
emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(RegOp)),
1829
TSFlags, Kind, StartByte, CB, Fixups, STI);
1830
break;
1831
}
1832
1833
case X86II::MRMXrCC: {
1834
unsigned RegOp = CurOp++;
1835
1836
unsigned CC = MI.getOperand(CurOp++).getImm();
1837
emitByte(BaseOpcode + CC, CB);
1838
emitRegModRMByte(MI.getOperand(RegOp), 0, CB);
1839
break;
1840
}
1841
1842
case X86II::MRMXr:
1843
case X86II::MRM0r:
1844
case X86II::MRM1r:
1845
case X86II::MRM2r:
1846
case X86II::MRM3r:
1847
case X86II::MRM4r:
1848
case X86II::MRM5r:
1849
case X86II::MRM6r:
1850
case X86II::MRM7r:
1851
if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1852
++CurOp;
1853
if (HasEVEX_K) // Skip writemask
1854
++CurOp;
1855
emitByte(BaseOpcode, CB);
1856
emitRegModRMByte(MI.getOperand(CurOp++),
1857
(Form == X86II::MRMXr) ? 0 : Form - X86II::MRM0r, CB);
1858
break;
1859
case X86II::MRMr0:
1860
emitByte(BaseOpcode, CB);
1861
emitByte(modRMByte(3, getX86RegNum(MI.getOperand(CurOp++)), 0), CB);
1862
break;
1863
1864
case X86II::MRMXmCC: {
1865
unsigned FirstMemOp = CurOp;
1866
CurOp = FirstMemOp + X86::AddrNumOperands;
1867
1868
unsigned CC = MI.getOperand(CurOp++).getImm();
1869
emitByte(BaseOpcode + CC, CB);
1870
1871
emitMemModRMByte(MI, FirstMemOp, 0, TSFlags, Kind, StartByte, CB, Fixups,
1872
STI);
1873
break;
1874
}
1875
1876
case X86II::MRMXm:
1877
case X86II::MRM0m:
1878
case X86II::MRM1m:
1879
case X86II::MRM2m:
1880
case X86II::MRM3m:
1881
case X86II::MRM4m:
1882
case X86II::MRM5m:
1883
case X86II::MRM6m:
1884
case X86II::MRM7m:
1885
if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1886
++CurOp;
1887
if (HasEVEX_K) // Skip writemask
1888
++CurOp;
1889
emitByte(BaseOpcode, CB);
1890
emitMemModRMByte(MI, CurOp,
1891
(Form == X86II::MRMXm) ? 0 : Form - X86II::MRM0m, TSFlags,
1892
Kind, StartByte, CB, Fixups, STI);
1893
CurOp += X86::AddrNumOperands;
1894
break;
1895
1896
case X86II::MRM0X:
1897
case X86II::MRM1X:
1898
case X86II::MRM2X:
1899
case X86II::MRM3X:
1900
case X86II::MRM4X:
1901
case X86II::MRM5X:
1902
case X86II::MRM6X:
1903
case X86II::MRM7X:
1904
emitByte(BaseOpcode, CB);
1905
emitByte(0xC0 + ((Form - X86II::MRM0X) << 3), CB);
1906
break;
1907
1908
case X86II::MRM_C0:
1909
case X86II::MRM_C1:
1910
case X86II::MRM_C2:
1911
case X86II::MRM_C3:
1912
case X86II::MRM_C4:
1913
case X86II::MRM_C5:
1914
case X86II::MRM_C6:
1915
case X86II::MRM_C7:
1916
case X86II::MRM_C8:
1917
case X86II::MRM_C9:
1918
case X86II::MRM_CA:
1919
case X86II::MRM_CB:
1920
case X86II::MRM_CC:
1921
case X86II::MRM_CD:
1922
case X86II::MRM_CE:
1923
case X86II::MRM_CF:
1924
case X86II::MRM_D0:
1925
case X86II::MRM_D1:
1926
case X86II::MRM_D2:
1927
case X86II::MRM_D3:
1928
case X86II::MRM_D4:
1929
case X86II::MRM_D5:
1930
case X86II::MRM_D6:
1931
case X86II::MRM_D7:
1932
case X86II::MRM_D8:
1933
case X86II::MRM_D9:
1934
case X86II::MRM_DA:
1935
case X86II::MRM_DB:
1936
case X86II::MRM_DC:
1937
case X86II::MRM_DD:
1938
case X86II::MRM_DE:
1939
case X86II::MRM_DF:
1940
case X86II::MRM_E0:
1941
case X86II::MRM_E1:
1942
case X86II::MRM_E2:
1943
case X86II::MRM_E3:
1944
case X86II::MRM_E4:
1945
case X86II::MRM_E5:
1946
case X86II::MRM_E6:
1947
case X86II::MRM_E7:
1948
case X86II::MRM_E8:
1949
case X86II::MRM_E9:
1950
case X86II::MRM_EA:
1951
case X86II::MRM_EB:
1952
case X86II::MRM_EC:
1953
case X86II::MRM_ED:
1954
case X86II::MRM_EE:
1955
case X86II::MRM_EF:
1956
case X86II::MRM_F0:
1957
case X86II::MRM_F1:
1958
case X86II::MRM_F2:
1959
case X86II::MRM_F3:
1960
case X86II::MRM_F4:
1961
case X86II::MRM_F5:
1962
case X86II::MRM_F6:
1963
case X86II::MRM_F7:
1964
case X86II::MRM_F8:
1965
case X86II::MRM_F9:
1966
case X86II::MRM_FA:
1967
case X86II::MRM_FB:
1968
case X86II::MRM_FC:
1969
case X86II::MRM_FD:
1970
case X86II::MRM_FE:
1971
case X86II::MRM_FF:
1972
emitByte(BaseOpcode, CB);
1973
emitByte(0xC0 + Form - X86II::MRM_C0, CB);
1974
break;
1975
}
1976
1977
if (HasVEX_I8Reg) {
1978
// The last source register of a 4 operand instruction in AVX is encoded
1979
// in bits[7:4] of a immediate byte.
1980
assert(I8RegNum < 16 && "Register encoding out of range");
1981
I8RegNum <<= 4;
1982
if (CurOp != NumOps) {
1983
unsigned Val = MI.getOperand(CurOp++).getImm();
1984
assert(Val < 16 && "Immediate operand value out of range");
1985
I8RegNum |= Val;
1986
}
1987
emitImmediate(MCOperand::createImm(I8RegNum), MI.getLoc(), 1, FK_Data_1,
1988
StartByte, CB, Fixups);
1989
} else {
1990
// If there is a remaining operand, it must be a trailing immediate. Emit it
1991
// according to the right size for the instruction. Some instructions
1992
// (SSE4a extrq and insertq) have two trailing immediates.
1993
1994
// Skip two trainling conditional operands encoded in EVEX prefix
1995
unsigned RemaningOps = NumOps - CurOp - 2 * HasTwoConditionalOps;
1996
while (RemaningOps) {
1997
emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1998
X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1999
StartByte, CB, Fixups);
2000
--RemaningOps;
2001
}
2002
CurOp += 2 * HasTwoConditionalOps;
2003
}
2004
2005
if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow)
2006
emitByte(X86II::getBaseOpcodeFor(TSFlags), CB);
2007
2008
if (CB.size() - StartByte > 15)
2009
Ctx.reportError(MI.getLoc(), "instruction length exceeds the limit of 15");
2010
#ifndef NDEBUG
2011
// FIXME: Verify.
2012
if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
2013
errs() << "Cannot encode all operands of: ";
2014
MI.dump();
2015
errs() << '\n';
2016
abort();
2017
}
2018
#endif
2019
}
2020
2021
MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
2022
MCContext &Ctx) {
2023
return new X86MCCodeEmitter(MCII, Ctx);
2024
}
2025
2026