Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/X86/X86CallFrameOptimization.cpp
35266 views
1
//===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines a pass that optimizes call sequences on x86.
10
// Currently, it converts movs of function parameters onto the stack into
11
// pushes. This is beneficial for two main reasons:
12
// 1) The push instruction encoding is much smaller than a stack-ptr-based mov.
13
// 2) It is possible to push memory arguments directly. So, if the
14
// the transformation is performed pre-reg-alloc, it can help relieve
15
// register pressure.
16
//
17
//===----------------------------------------------------------------------===//
18
19
#include "MCTargetDesc/X86BaseInfo.h"
20
#include "X86.h"
21
#include "X86FrameLowering.h"
22
#include "X86InstrInfo.h"
23
#include "X86MachineFunctionInfo.h"
24
#include "X86RegisterInfo.h"
25
#include "X86Subtarget.h"
26
#include "llvm/ADT/DenseSet.h"
27
#include "llvm/ADT/SmallVector.h"
28
#include "llvm/ADT/StringRef.h"
29
#include "llvm/CodeGen/MachineBasicBlock.h"
30
#include "llvm/CodeGen/MachineFrameInfo.h"
31
#include "llvm/CodeGen/MachineFunction.h"
32
#include "llvm/CodeGen/MachineFunctionPass.h"
33
#include "llvm/CodeGen/MachineInstr.h"
34
#include "llvm/CodeGen/MachineInstrBuilder.h"
35
#include "llvm/CodeGen/MachineOperand.h"
36
#include "llvm/CodeGen/MachineRegisterInfo.h"
37
#include "llvm/CodeGen/TargetInstrInfo.h"
38
#include "llvm/CodeGen/TargetRegisterInfo.h"
39
#include "llvm/IR/DebugLoc.h"
40
#include "llvm/IR/Function.h"
41
#include "llvm/MC/MCDwarf.h"
42
#include "llvm/Support/CommandLine.h"
43
#include "llvm/Support/ErrorHandling.h"
44
#include "llvm/Support/MathExtras.h"
45
#include <cassert>
46
#include <cstddef>
47
#include <cstdint>
48
#include <iterator>
49
50
using namespace llvm;
51
52
#define DEBUG_TYPE "x86-cf-opt"
53
54
static cl::opt<bool>
55
NoX86CFOpt("no-x86-call-frame-opt",
56
cl::desc("Avoid optimizing x86 call frames for size"),
57
cl::init(false), cl::Hidden);
58
59
namespace {
60
61
class X86CallFrameOptimization : public MachineFunctionPass {
62
public:
63
X86CallFrameOptimization() : MachineFunctionPass(ID) { }
64
65
bool runOnMachineFunction(MachineFunction &MF) override;
66
67
static char ID;
68
69
private:
70
// Information we know about a particular call site
71
struct CallContext {
72
CallContext() : FrameSetup(nullptr), ArgStoreVector(4, nullptr) {}
73
74
// Iterator referring to the frame setup instruction
75
MachineBasicBlock::iterator FrameSetup;
76
77
// Actual call instruction
78
MachineInstr *Call = nullptr;
79
80
// A copy of the stack pointer
81
MachineInstr *SPCopy = nullptr;
82
83
// The total displacement of all passed parameters
84
int64_t ExpectedDist = 0;
85
86
// The sequence of storing instructions used to pass the parameters
87
SmallVector<MachineInstr *, 4> ArgStoreVector;
88
89
// True if this call site has no stack parameters
90
bool NoStackParams = false;
91
92
// True if this call site can use push instructions
93
bool UsePush = false;
94
};
95
96
typedef SmallVector<CallContext, 8> ContextVector;
97
98
bool isLegal(MachineFunction &MF);
99
100
bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap);
101
102
void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB,
103
MachineBasicBlock::iterator I, CallContext &Context);
104
105
void adjustCallSequence(MachineFunction &MF, const CallContext &Context);
106
107
MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
108
Register Reg);
109
110
enum InstClassification { Convert, Skip, Exit };
111
112
InstClassification classifyInstruction(MachineBasicBlock &MBB,
113
MachineBasicBlock::iterator MI,
114
const X86RegisterInfo &RegInfo,
115
DenseSet<unsigned int> &UsedRegs);
116
117
StringRef getPassName() const override { return "X86 Optimize Call Frame"; }
118
119
const X86InstrInfo *TII = nullptr;
120
const X86FrameLowering *TFL = nullptr;
121
const X86Subtarget *STI = nullptr;
122
MachineRegisterInfo *MRI = nullptr;
123
unsigned SlotSize = 0;
124
unsigned Log2SlotSize = 0;
125
};
126
127
} // end anonymous namespace
128
char X86CallFrameOptimization::ID = 0;
129
INITIALIZE_PASS(X86CallFrameOptimization, DEBUG_TYPE,
130
"X86 Call Frame Optimization", false, false)
131
132
// This checks whether the transformation is legal.
133
// Also returns false in cases where it's potentially legal, but
134
// we don't even want to try.
135
bool X86CallFrameOptimization::isLegal(MachineFunction &MF) {
136
if (NoX86CFOpt.getValue())
137
return false;
138
139
// We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset
140
// in the compact unwind encoding that Darwin uses. So, bail if there
141
// is a danger of that being generated.
142
if (STI->isTargetDarwin() &&
143
(!MF.getLandingPads().empty() ||
144
(MF.getFunction().needsUnwindTableEntry() && !TFL->hasFP(MF))))
145
return false;
146
147
// It is not valid to change the stack pointer outside the prolog/epilog
148
// on 64-bit Windows.
149
if (STI->isTargetWin64())
150
return false;
151
152
// You would expect straight-line code between call-frame setup and
153
// call-frame destroy. You would be wrong. There are circumstances (e.g.
154
// CMOV_GR8 expansion of a select that feeds a function call!) where we can
155
// end up with the setup and the destroy in different basic blocks.
156
// This is bad, and breaks SP adjustment.
157
// So, check that all of the frames in the function are closed inside
158
// the same block, and, for good measure, that there are no nested frames.
159
//
160
// If any call allocates more argument stack memory than the stack
161
// probe size, don't do this optimization. Otherwise, this pass
162
// would need to synthesize additional stack probe calls to allocate
163
// memory for arguments.
164
unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
165
unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
166
bool EmitStackProbeCall = STI->getTargetLowering()->hasStackProbeSymbol(MF);
167
unsigned StackProbeSize = STI->getTargetLowering()->getStackProbeSize(MF);
168
for (MachineBasicBlock &BB : MF) {
169
bool InsideFrameSequence = false;
170
for (MachineInstr &MI : BB) {
171
if (MI.getOpcode() == FrameSetupOpcode) {
172
if (TII->getFrameSize(MI) >= StackProbeSize && EmitStackProbeCall)
173
return false;
174
if (InsideFrameSequence)
175
return false;
176
InsideFrameSequence = true;
177
} else if (MI.getOpcode() == FrameDestroyOpcode) {
178
if (!InsideFrameSequence)
179
return false;
180
InsideFrameSequence = false;
181
}
182
}
183
184
if (InsideFrameSequence)
185
return false;
186
}
187
188
return true;
189
}
190
191
// Check whether this transformation is profitable for a particular
192
// function - in terms of code size.
193
bool X86CallFrameOptimization::isProfitable(MachineFunction &MF,
194
ContextVector &CallSeqVector) {
195
// This transformation is always a win when we do not expect to have
196
// a reserved call frame. Under other circumstances, it may be either
197
// a win or a loss, and requires a heuristic.
198
bool CannotReserveFrame = MF.getFrameInfo().hasVarSizedObjects();
199
if (CannotReserveFrame)
200
return true;
201
202
Align StackAlign = TFL->getStackAlign();
203
204
int64_t Advantage = 0;
205
for (const auto &CC : CallSeqVector) {
206
// Call sites where no parameters are passed on the stack
207
// do not affect the cost, since there needs to be no
208
// stack adjustment.
209
if (CC.NoStackParams)
210
continue;
211
212
if (!CC.UsePush) {
213
// If we don't use pushes for a particular call site,
214
// we pay for not having a reserved call frame with an
215
// additional sub/add esp pair. The cost is ~3 bytes per instruction,
216
// depending on the size of the constant.
217
// TODO: Callee-pop functions should have a smaller penalty, because
218
// an add is needed even with a reserved call frame.
219
Advantage -= 6;
220
} else {
221
// We can use pushes. First, account for the fixed costs.
222
// We'll need a add after the call.
223
Advantage -= 3;
224
// If we have to realign the stack, we'll also need a sub before
225
if (!isAligned(StackAlign, CC.ExpectedDist))
226
Advantage -= 3;
227
// Now, for each push, we save ~3 bytes. For small constants, we actually,
228
// save more (up to 5 bytes), but 3 should be a good approximation.
229
Advantage += (CC.ExpectedDist >> Log2SlotSize) * 3;
230
}
231
}
232
233
return Advantage >= 0;
234
}
235
236
bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
237
STI = &MF.getSubtarget<X86Subtarget>();
238
TII = STI->getInstrInfo();
239
TFL = STI->getFrameLowering();
240
MRI = &MF.getRegInfo();
241
242
const X86RegisterInfo &RegInfo =
243
*static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
244
SlotSize = RegInfo.getSlotSize();
245
assert(isPowerOf2_32(SlotSize) && "Expect power of 2 stack slot size");
246
Log2SlotSize = Log2_32(SlotSize);
247
248
if (skipFunction(MF.getFunction()) || !isLegal(MF))
249
return false;
250
251
unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
252
253
bool Changed = false;
254
255
ContextVector CallSeqVector;
256
257
for (auto &MBB : MF)
258
for (auto &MI : MBB)
259
if (MI.getOpcode() == FrameSetupOpcode) {
260
CallContext Context;
261
collectCallInfo(MF, MBB, MI, Context);
262
CallSeqVector.push_back(Context);
263
}
264
265
if (!isProfitable(MF, CallSeqVector))
266
return false;
267
268
for (const auto &CC : CallSeqVector) {
269
if (CC.UsePush) {
270
adjustCallSequence(MF, CC);
271
Changed = true;
272
}
273
}
274
275
return Changed;
276
}
277
278
X86CallFrameOptimization::InstClassification
279
X86CallFrameOptimization::classifyInstruction(
280
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
281
const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) {
282
if (MI == MBB.end())
283
return Exit;
284
285
// The instructions we actually care about are movs onto the stack or special
286
// cases of constant-stores to stack
287
switch (MI->getOpcode()) {
288
case X86::AND16mi:
289
case X86::AND32mi:
290
case X86::AND64mi32: {
291
const MachineOperand &ImmOp = MI->getOperand(X86::AddrNumOperands);
292
return ImmOp.getImm() == 0 ? Convert : Exit;
293
}
294
case X86::OR16mi:
295
case X86::OR32mi:
296
case X86::OR64mi32: {
297
const MachineOperand &ImmOp = MI->getOperand(X86::AddrNumOperands);
298
return ImmOp.getImm() == -1 ? Convert : Exit;
299
}
300
case X86::MOV32mi:
301
case X86::MOV32mr:
302
case X86::MOV64mi32:
303
case X86::MOV64mr:
304
return Convert;
305
}
306
307
// Not all calling conventions have only stack MOVs between the stack
308
// adjust and the call.
309
310
// We want to tolerate other instructions, to cover more cases.
311
// In particular:
312
// a) PCrel calls, where we expect an additional COPY of the basereg.
313
// b) Passing frame-index addresses.
314
// c) Calling conventions that have inreg parameters. These generate
315
// both copies and movs into registers.
316
// To avoid creating lots of special cases, allow any instruction
317
// that does not write into memory, does not def or use the stack
318
// pointer, and does not def any register that was used by a preceding
319
// push.
320
// (Reading from memory is allowed, even if referenced through a
321
// frame index, since these will get adjusted properly in PEI)
322
323
// The reason for the last condition is that the pushes can't replace
324
// the movs in place, because the order must be reversed.
325
// So if we have a MOV32mr that uses EDX, then an instruction that defs
326
// EDX, and then the call, after the transformation the push will use
327
// the modified version of EDX, and not the original one.
328
// Since we are still in SSA form at this point, we only need to
329
// make sure we don't clobber any *physical* registers that were
330
// used by an earlier mov that will become a push.
331
332
if (MI->isCall() || MI->mayStore())
333
return Exit;
334
335
for (const MachineOperand &MO : MI->operands()) {
336
if (!MO.isReg())
337
continue;
338
Register Reg = MO.getReg();
339
if (!Reg.isPhysical())
340
continue;
341
if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister()))
342
return Exit;
343
if (MO.isDef()) {
344
for (unsigned int U : UsedRegs)
345
if (RegInfo.regsOverlap(Reg, U))
346
return Exit;
347
}
348
}
349
350
return Skip;
351
}
352
353
void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF,
354
MachineBasicBlock &MBB,
355
MachineBasicBlock::iterator I,
356
CallContext &Context) {
357
// Check that this particular call sequence is amenable to the
358
// transformation.
359
const X86RegisterInfo &RegInfo =
360
*static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
361
362
// We expect to enter this at the beginning of a call sequence
363
assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
364
MachineBasicBlock::iterator FrameSetup = I++;
365
Context.FrameSetup = FrameSetup;
366
367
// How much do we adjust the stack? This puts an upper bound on
368
// the number of parameters actually passed on it.
369
unsigned int MaxAdjust = TII->getFrameSize(*FrameSetup) >> Log2SlotSize;
370
371
// A zero adjustment means no stack parameters
372
if (!MaxAdjust) {
373
Context.NoStackParams = true;
374
return;
375
}
376
377
// Skip over DEBUG_VALUE.
378
// For globals in PIC mode, we can have some LEAs here. Skip them as well.
379
// TODO: Extend this to something that covers more cases.
380
while (I->getOpcode() == X86::LEA32r || I->isDebugInstr())
381
++I;
382
383
Register StackPtr = RegInfo.getStackRegister();
384
auto StackPtrCopyInst = MBB.end();
385
// SelectionDAG (but not FastISel) inserts a copy of ESP into a virtual
386
// register. If it's there, use that virtual register as stack pointer
387
// instead. Also, we need to locate this instruction so that we can later
388
// safely ignore it while doing the conservative processing of the call chain.
389
// The COPY can be located anywhere between the call-frame setup
390
// instruction and its first use. We use the call instruction as a boundary
391
// because it is usually cheaper to check if an instruction is a call than
392
// checking if an instruction uses a register.
393
for (auto J = I; !J->isCall(); ++J)
394
if (J->isCopy() && J->getOperand(0).isReg() && J->getOperand(1).isReg() &&
395
J->getOperand(1).getReg() == StackPtr) {
396
StackPtrCopyInst = J;
397
Context.SPCopy = &*J++;
398
StackPtr = Context.SPCopy->getOperand(0).getReg();
399
break;
400
}
401
402
// Scan the call setup sequence for the pattern we're looking for.
403
// We only handle a simple case - a sequence of store instructions that
404
// push a sequence of stack-slot-aligned values onto the stack, with
405
// no gaps between them.
406
if (MaxAdjust > 4)
407
Context.ArgStoreVector.resize(MaxAdjust, nullptr);
408
409
DenseSet<unsigned int> UsedRegs;
410
411
for (InstClassification Classification = Skip; Classification != Exit; ++I) {
412
// If this is the COPY of the stack pointer, it's ok to ignore.
413
if (I == StackPtrCopyInst)
414
continue;
415
Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs);
416
if (Classification != Convert)
417
continue;
418
// We know the instruction has a supported store opcode.
419
// We only want movs of the form:
420
// mov imm/reg, k(%StackPtr)
421
// If we run into something else, bail.
422
// Note that AddrBaseReg may, counter to its name, not be a register,
423
// but rather a frame index.
424
// TODO: Support the fi case. This should probably work now that we
425
// have the infrastructure to track the stack pointer within a call
426
// sequence.
427
if (!I->getOperand(X86::AddrBaseReg).isReg() ||
428
(I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
429
!I->getOperand(X86::AddrScaleAmt).isImm() ||
430
(I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
431
(I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
432
(I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
433
!I->getOperand(X86::AddrDisp).isImm())
434
return;
435
436
int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
437
assert(StackDisp >= 0 &&
438
"Negative stack displacement when passing parameters");
439
440
// We really don't want to consider the unaligned case.
441
if (StackDisp & (SlotSize - 1))
442
return;
443
StackDisp >>= Log2SlotSize;
444
445
assert((size_t)StackDisp < Context.ArgStoreVector.size() &&
446
"Function call has more parameters than the stack is adjusted for.");
447
448
// If the same stack slot is being filled twice, something's fishy.
449
if (Context.ArgStoreVector[StackDisp] != nullptr)
450
return;
451
Context.ArgStoreVector[StackDisp] = &*I;
452
453
for (const MachineOperand &MO : I->uses()) {
454
if (!MO.isReg())
455
continue;
456
Register Reg = MO.getReg();
457
if (Reg.isPhysical())
458
UsedRegs.insert(Reg);
459
}
460
}
461
462
--I;
463
464
// We now expect the end of the sequence. If we stopped early,
465
// or reached the end of the block without finding a call, bail.
466
if (I == MBB.end() || !I->isCall())
467
return;
468
469
Context.Call = &*I;
470
if ((++I)->getOpcode() != TII->getCallFrameDestroyOpcode())
471
return;
472
473
// Now, go through the vector, and see that we don't have any gaps,
474
// but only a series of storing instructions.
475
auto MMI = Context.ArgStoreVector.begin(), MME = Context.ArgStoreVector.end();
476
for (; MMI != MME; ++MMI, Context.ExpectedDist += SlotSize)
477
if (*MMI == nullptr)
478
break;
479
480
// If the call had no parameters, do nothing
481
if (MMI == Context.ArgStoreVector.begin())
482
return;
483
484
// We are either at the last parameter, or a gap.
485
// Make sure it's not a gap
486
for (; MMI != MME; ++MMI)
487
if (*MMI != nullptr)
488
return;
489
490
Context.UsePush = true;
491
}
492
493
void X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
494
const CallContext &Context) {
495
// Ok, we can in fact do the transformation for this call.
496
// Do not remove the FrameSetup instruction, but adjust the parameters.
497
// PEI will end up finalizing the handling of this.
498
MachineBasicBlock::iterator FrameSetup = Context.FrameSetup;
499
MachineBasicBlock &MBB = *(FrameSetup->getParent());
500
TII->setFrameAdjustment(*FrameSetup, Context.ExpectedDist);
501
502
const DebugLoc &DL = FrameSetup->getDebugLoc();
503
bool Is64Bit = STI->is64Bit();
504
// Now, iterate through the vector in reverse order, and replace the store to
505
// stack with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
506
// replace uses.
507
for (int Idx = (Context.ExpectedDist >> Log2SlotSize) - 1; Idx >= 0; --Idx) {
508
MachineBasicBlock::iterator Store = *Context.ArgStoreVector[Idx];
509
const MachineOperand &PushOp = Store->getOperand(X86::AddrNumOperands);
510
MachineBasicBlock::iterator Push = nullptr;
511
unsigned PushOpcode;
512
switch (Store->getOpcode()) {
513
default:
514
llvm_unreachable("Unexpected Opcode!");
515
case X86::AND16mi:
516
case X86::AND32mi:
517
case X86::AND64mi32:
518
case X86::OR16mi:
519
case X86::OR32mi:
520
case X86::OR64mi32:
521
case X86::MOV32mi:
522
case X86::MOV64mi32:
523
PushOpcode = Is64Bit ? X86::PUSH64i32 : X86::PUSH32i;
524
Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)).add(PushOp);
525
Push->cloneMemRefs(MF, *Store);
526
break;
527
case X86::MOV32mr:
528
case X86::MOV64mr: {
529
Register Reg = PushOp.getReg();
530
531
// If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg
532
// in preparation for the PUSH64. The upper 32 bits can be undef.
533
if (Is64Bit && Store->getOpcode() == X86::MOV32mr) {
534
Register UndefReg = MRI->createVirtualRegister(&X86::GR64RegClass);
535
Reg = MRI->createVirtualRegister(&X86::GR64RegClass);
536
BuildMI(MBB, Context.Call, DL, TII->get(X86::IMPLICIT_DEF), UndefReg);
537
BuildMI(MBB, Context.Call, DL, TII->get(X86::INSERT_SUBREG), Reg)
538
.addReg(UndefReg)
539
.add(PushOp)
540
.addImm(X86::sub_32bit);
541
}
542
543
// If PUSHrmm is not slow on this target, try to fold the source of the
544
// push into the instruction.
545
bool SlowPUSHrmm = STI->slowTwoMemOps();
546
547
// Check that this is legal to fold. Right now, we're extremely
548
// conservative about that.
549
MachineInstr *DefMov = nullptr;
550
if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
551
PushOpcode = Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm;
552
Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode));
553
554
unsigned NumOps = DefMov->getDesc().getNumOperands();
555
for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
556
Push->addOperand(DefMov->getOperand(i));
557
Push->cloneMergedMemRefs(MF, {DefMov, &*Store});
558
DefMov->eraseFromParent();
559
} else {
560
PushOpcode = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
561
Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode))
562
.addReg(Reg)
563
.getInstr();
564
Push->cloneMemRefs(MF, *Store);
565
}
566
break;
567
}
568
}
569
570
// For debugging, when using SP-based CFA, we need to adjust the CFA
571
// offset after each push.
572
// TODO: This is needed only if we require precise CFA.
573
if (!TFL->hasFP(MF))
574
TFL->BuildCFI(
575
MBB, std::next(Push), DL,
576
MCCFIInstruction::createAdjustCfaOffset(nullptr, SlotSize));
577
578
MBB.erase(Store);
579
}
580
581
// The stack-pointer copy is no longer used in the call sequences.
582
// There should not be any other users, but we can't commit to that, so:
583
if (Context.SPCopy && MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
584
Context.SPCopy->eraseFromParent();
585
586
// Once we've done this, we need to make sure PEI doesn't assume a reserved
587
// frame.
588
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
589
FuncInfo->setHasPushSequences(true);
590
}
591
592
MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
593
MachineBasicBlock::iterator FrameSetup, Register Reg) {
594
// Do an extremely restricted form of load folding.
595
// ISel will often create patterns like:
596
// movl 4(%edi), %eax
597
// movl 8(%edi), %ecx
598
// movl 12(%edi), %edx
599
// movl %edx, 8(%esp)
600
// movl %ecx, 4(%esp)
601
// movl %eax, (%esp)
602
// call
603
// Get rid of those with prejudice.
604
if (!Reg.isVirtual())
605
return nullptr;
606
607
// Make sure this is the only use of Reg.
608
if (!MRI->hasOneNonDBGUse(Reg))
609
return nullptr;
610
611
MachineInstr &DefMI = *MRI->getVRegDef(Reg);
612
613
// Make sure the def is a MOV from memory.
614
// If the def is in another block, give up.
615
if ((DefMI.getOpcode() != X86::MOV32rm &&
616
DefMI.getOpcode() != X86::MOV64rm) ||
617
DefMI.getParent() != FrameSetup->getParent())
618
return nullptr;
619
620
// Make sure we don't have any instructions between DefMI and the
621
// push that make folding the load illegal.
622
for (MachineBasicBlock::iterator I = DefMI; I != FrameSetup; ++I)
623
if (I->isLoadFoldBarrier())
624
return nullptr;
625
626
return &DefMI;
627
}
628
629
FunctionPass *llvm::createX86CallFrameOptimization() {
630
return new X86CallFrameOptimization();
631
}
632
633