Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/X86/X86CmovConversion.cpp
35267 views
1
//====- X86CmovConversion.cpp - Convert Cmov to Branch --------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
/// \file
10
/// This file implements a pass that converts X86 cmov instructions into
11
/// branches when profitable. This pass is conservative. It transforms if and
12
/// only if it can guarantee a gain with high confidence.
13
///
14
/// Thus, the optimization applies under the following conditions:
15
/// 1. Consider as candidates only CMOVs in innermost loops (assume that
16
/// most hotspots are represented by these loops).
17
/// 2. Given a group of CMOV instructions that are using the same EFLAGS def
18
/// instruction:
19
/// a. Consider them as candidates only if all have the same code condition
20
/// or the opposite one to prevent generating more than one conditional
21
/// jump per EFLAGS def instruction.
22
/// b. Consider them as candidates only if all are profitable to be
23
/// converted (assume that one bad conversion may cause a degradation).
24
/// 3. Apply conversion only for loops that are found profitable and only for
25
/// CMOV candidates that were found profitable.
26
/// a. A loop is considered profitable only if conversion will reduce its
27
/// depth cost by some threshold.
28
/// b. CMOV is considered profitable if the cost of its condition is higher
29
/// than the average cost of its true-value and false-value by 25% of
30
/// branch-misprediction-penalty. This assures no degradation even with
31
/// 25% branch misprediction.
32
///
33
/// Note: This pass is assumed to run on SSA machine code.
34
//
35
//===----------------------------------------------------------------------===//
36
//
37
// External interfaces:
38
// FunctionPass *llvm::createX86CmovConverterPass();
39
// bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF);
40
//
41
//===----------------------------------------------------------------------===//
42
43
#include "X86.h"
44
#include "X86InstrInfo.h"
45
#include "llvm/ADT/ArrayRef.h"
46
#include "llvm/ADT/DenseMap.h"
47
#include "llvm/ADT/STLExtras.h"
48
#include "llvm/ADT/SmallPtrSet.h"
49
#include "llvm/ADT/SmallVector.h"
50
#include "llvm/ADT/Statistic.h"
51
#include "llvm/CodeGen/MachineBasicBlock.h"
52
#include "llvm/CodeGen/MachineFunction.h"
53
#include "llvm/CodeGen/MachineFunctionPass.h"
54
#include "llvm/CodeGen/MachineInstr.h"
55
#include "llvm/CodeGen/MachineInstrBuilder.h"
56
#include "llvm/CodeGen/MachineLoopInfo.h"
57
#include "llvm/CodeGen/MachineOperand.h"
58
#include "llvm/CodeGen/MachineRegisterInfo.h"
59
#include "llvm/CodeGen/TargetInstrInfo.h"
60
#include "llvm/CodeGen/TargetRegisterInfo.h"
61
#include "llvm/CodeGen/TargetSchedule.h"
62
#include "llvm/CodeGen/TargetSubtargetInfo.h"
63
#include "llvm/IR/DebugLoc.h"
64
#include "llvm/InitializePasses.h"
65
#include "llvm/MC/MCSchedule.h"
66
#include "llvm/Pass.h"
67
#include "llvm/Support/CommandLine.h"
68
#include "llvm/Support/Debug.h"
69
#include "llvm/Support/raw_ostream.h"
70
#include "llvm/Target/CGPassBuilderOption.h"
71
#include <algorithm>
72
#include <cassert>
73
#include <iterator>
74
#include <utility>
75
76
using namespace llvm;
77
78
#define DEBUG_TYPE "x86-cmov-conversion"
79
80
STATISTIC(NumOfSkippedCmovGroups, "Number of unsupported CMOV-groups");
81
STATISTIC(NumOfCmovGroupCandidate, "Number of CMOV-group candidates");
82
STATISTIC(NumOfLoopCandidate, "Number of CMOV-conversion profitable loops");
83
STATISTIC(NumOfOptimizedCmovGroups, "Number of optimized CMOV-groups");
84
85
// This internal switch can be used to turn off the cmov/branch optimization.
86
static cl::opt<bool>
87
EnableCmovConverter("x86-cmov-converter",
88
cl::desc("Enable the X86 cmov-to-branch optimization."),
89
cl::init(true), cl::Hidden);
90
91
static cl::opt<unsigned>
92
GainCycleThreshold("x86-cmov-converter-threshold",
93
cl::desc("Minimum gain per loop (in cycles) threshold."),
94
cl::init(4), cl::Hidden);
95
96
static cl::opt<bool> ForceMemOperand(
97
"x86-cmov-converter-force-mem-operand",
98
cl::desc("Convert cmovs to branches whenever they have memory operands."),
99
cl::init(true), cl::Hidden);
100
101
static cl::opt<bool> ForceAll(
102
"x86-cmov-converter-force-all",
103
cl::desc("Convert all cmovs to branches."),
104
cl::init(false), cl::Hidden);
105
106
namespace {
107
108
/// Converts X86 cmov instructions into branches when profitable.
109
class X86CmovConverterPass : public MachineFunctionPass {
110
public:
111
X86CmovConverterPass() : MachineFunctionPass(ID) { }
112
113
StringRef getPassName() const override { return "X86 cmov Conversion"; }
114
bool runOnMachineFunction(MachineFunction &MF) override;
115
void getAnalysisUsage(AnalysisUsage &AU) const override;
116
117
/// Pass identification, replacement for typeid.
118
static char ID;
119
120
private:
121
MachineRegisterInfo *MRI = nullptr;
122
const TargetInstrInfo *TII = nullptr;
123
const TargetRegisterInfo *TRI = nullptr;
124
MachineLoopInfo *MLI = nullptr;
125
TargetSchedModel TSchedModel;
126
127
/// List of consecutive CMOV instructions.
128
using CmovGroup = SmallVector<MachineInstr *, 2>;
129
using CmovGroups = SmallVector<CmovGroup, 2>;
130
131
/// Collect all CMOV-group-candidates in \p CurrLoop and update \p
132
/// CmovInstGroups accordingly.
133
///
134
/// \param Blocks List of blocks to process.
135
/// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
136
/// \returns true iff it found any CMOV-group-candidate.
137
bool collectCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks,
138
CmovGroups &CmovInstGroups,
139
bool IncludeLoads = false);
140
141
/// Check if it is profitable to transform each CMOV-group-candidates into
142
/// branch. Remove all groups that are not profitable from \p CmovInstGroups.
143
///
144
/// \param Blocks List of blocks to process.
145
/// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
146
/// \returns true iff any CMOV-group-candidate remain.
147
bool checkForProfitableCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks,
148
CmovGroups &CmovInstGroups);
149
150
/// Convert the given list of consecutive CMOV instructions into a branch.
151
///
152
/// \param Group Consecutive CMOV instructions to be converted into branch.
153
void convertCmovInstsToBranches(SmallVectorImpl<MachineInstr *> &Group) const;
154
};
155
156
} // end anonymous namespace
157
158
char X86CmovConverterPass::ID = 0;
159
160
void X86CmovConverterPass::getAnalysisUsage(AnalysisUsage &AU) const {
161
MachineFunctionPass::getAnalysisUsage(AU);
162
AU.addRequired<MachineLoopInfoWrapperPass>();
163
}
164
165
bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF) {
166
if (skipFunction(MF.getFunction()))
167
return false;
168
if (!EnableCmovConverter)
169
return false;
170
171
// If the SelectOptimize pass is enabled, cmovs have already been optimized.
172
if (!getCGPassBuilderOption().DisableSelectOptimize)
173
return false;
174
175
LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
176
<< "**********\n");
177
178
bool Changed = false;
179
MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
180
const TargetSubtargetInfo &STI = MF.getSubtarget();
181
MRI = &MF.getRegInfo();
182
TII = STI.getInstrInfo();
183
TRI = STI.getRegisterInfo();
184
TSchedModel.init(&STI);
185
186
// Before we handle the more subtle cases of register-register CMOVs inside
187
// of potentially hot loops, we want to quickly remove all CMOVs (ForceAll) or
188
// the ones with a memory operand (ForceMemOperand option). The latter CMOV
189
// will risk a stall waiting for the load to complete that speculative
190
// execution behind a branch is better suited to handle on modern x86 chips.
191
if (ForceMemOperand || ForceAll) {
192
CmovGroups AllCmovGroups;
193
SmallVector<MachineBasicBlock *, 4> Blocks;
194
for (auto &MBB : MF)
195
Blocks.push_back(&MBB);
196
if (collectCmovCandidates(Blocks, AllCmovGroups, /*IncludeLoads*/ true)) {
197
for (auto &Group : AllCmovGroups) {
198
// Skip any group that doesn't do at least one memory operand cmov.
199
if (ForceMemOperand && !ForceAll &&
200
llvm::none_of(Group, [&](MachineInstr *I) { return I->mayLoad(); }))
201
continue;
202
203
// For CMOV groups which we can rewrite and which contain a memory load,
204
// always rewrite them. On x86, a CMOV will dramatically amplify any
205
// memory latency by blocking speculative execution.
206
Changed = true;
207
convertCmovInstsToBranches(Group);
208
}
209
}
210
// Early return as ForceAll converts all CmovGroups.
211
if (ForceAll)
212
return Changed;
213
}
214
215
//===--------------------------------------------------------------------===//
216
// Register-operand Conversion Algorithm
217
// ---------
218
// For each innermost loop
219
// collectCmovCandidates() {
220
// Find all CMOV-group-candidates.
221
// }
222
//
223
// checkForProfitableCmovCandidates() {
224
// * Calculate both loop-depth and optimized-loop-depth.
225
// * Use these depth to check for loop transformation profitability.
226
// * Check for CMOV-group-candidate transformation profitability.
227
// }
228
//
229
// For each profitable CMOV-group-candidate
230
// convertCmovInstsToBranches() {
231
// * Create FalseBB, SinkBB, Conditional branch to SinkBB.
232
// * Replace each CMOV instruction with a PHI instruction in SinkBB.
233
// }
234
//
235
// Note: For more details, see each function description.
236
//===--------------------------------------------------------------------===//
237
238
// Build up the loops in pre-order.
239
SmallVector<MachineLoop *, 4> Loops(MLI->begin(), MLI->end());
240
// Note that we need to check size on each iteration as we accumulate child
241
// loops.
242
for (int i = 0; i < (int)Loops.size(); ++i)
243
for (MachineLoop *Child : Loops[i]->getSubLoops())
244
Loops.push_back(Child);
245
246
for (MachineLoop *CurrLoop : Loops) {
247
// Optimize only innermost loops.
248
if (!CurrLoop->getSubLoops().empty())
249
continue;
250
251
// List of consecutive CMOV instructions to be processed.
252
CmovGroups CmovInstGroups;
253
254
if (!collectCmovCandidates(CurrLoop->getBlocks(), CmovInstGroups))
255
continue;
256
257
if (!checkForProfitableCmovCandidates(CurrLoop->getBlocks(),
258
CmovInstGroups))
259
continue;
260
261
Changed = true;
262
for (auto &Group : CmovInstGroups)
263
convertCmovInstsToBranches(Group);
264
}
265
266
return Changed;
267
}
268
269
bool X86CmovConverterPass::collectCmovCandidates(
270
ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups,
271
bool IncludeLoads) {
272
//===--------------------------------------------------------------------===//
273
// Collect all CMOV-group-candidates and add them into CmovInstGroups.
274
//
275
// CMOV-group:
276
// CMOV instructions, in same MBB, that uses same EFLAGS def instruction.
277
//
278
// CMOV-group-candidate:
279
// CMOV-group where all the CMOV instructions are
280
// 1. consecutive.
281
// 2. have same condition code or opposite one.
282
// 3. have only operand registers (X86::CMOVrr).
283
//===--------------------------------------------------------------------===//
284
// List of possible improvement (TODO's):
285
// --------------------------------------
286
// TODO: Add support for X86::CMOVrm instructions.
287
// TODO: Add support for X86::SETcc instructions.
288
// TODO: Add support for CMOV-groups with non consecutive CMOV instructions.
289
//===--------------------------------------------------------------------===//
290
291
// Current processed CMOV-Group.
292
CmovGroup Group;
293
for (auto *MBB : Blocks) {
294
Group.clear();
295
// Condition code of first CMOV instruction current processed range and its
296
// opposite condition code.
297
X86::CondCode FirstCC = X86::COND_INVALID, FirstOppCC = X86::COND_INVALID,
298
MemOpCC = X86::COND_INVALID;
299
// Indicator of a non CMOVrr instruction in the current processed range.
300
bool FoundNonCMOVInst = false;
301
// Indicator for current processed CMOV-group if it should be skipped.
302
bool SkipGroup = false;
303
304
for (auto &I : *MBB) {
305
// Skip debug instructions.
306
if (I.isDebugInstr())
307
continue;
308
309
X86::CondCode CC = X86::getCondFromCMov(I);
310
// Check if we found a X86::CMOVrr instruction. If it is marked as
311
// unpredictable, skip it and do not convert it to branch.
312
if (CC != X86::COND_INVALID &&
313
!I.getFlag(MachineInstr::MIFlag::Unpredictable) &&
314
(IncludeLoads || !I.mayLoad())) {
315
if (Group.empty()) {
316
// We found first CMOV in the range, reset flags.
317
FirstCC = CC;
318
FirstOppCC = X86::GetOppositeBranchCondition(CC);
319
// Clear out the prior group's memory operand CC.
320
MemOpCC = X86::COND_INVALID;
321
FoundNonCMOVInst = false;
322
SkipGroup = false;
323
}
324
Group.push_back(&I);
325
// Check if it is a non-consecutive CMOV instruction or it has different
326
// condition code than FirstCC or FirstOppCC.
327
if (FoundNonCMOVInst || (CC != FirstCC && CC != FirstOppCC))
328
// Mark the SKipGroup indicator to skip current processed CMOV-Group.
329
SkipGroup = true;
330
if (I.mayLoad()) {
331
if (MemOpCC == X86::COND_INVALID)
332
// The first memory operand CMOV.
333
MemOpCC = CC;
334
else if (CC != MemOpCC)
335
// Can't handle mixed conditions with memory operands.
336
SkipGroup = true;
337
}
338
// Check if we were relying on zero-extending behavior of the CMOV.
339
if (!SkipGroup &&
340
llvm::any_of(
341
MRI->use_nodbg_instructions(I.defs().begin()->getReg()),
342
[&](MachineInstr &UseI) {
343
return UseI.getOpcode() == X86::SUBREG_TO_REG;
344
}))
345
// FIXME: We should model the cost of using an explicit MOV to handle
346
// the zero-extension rather than just refusing to handle this.
347
SkipGroup = true;
348
continue;
349
}
350
// If Group is empty, keep looking for first CMOV in the range.
351
if (Group.empty())
352
continue;
353
354
// We found a non X86::CMOVrr instruction.
355
FoundNonCMOVInst = true;
356
// Check if this instruction define EFLAGS, to determine end of processed
357
// range, as there would be no more instructions using current EFLAGS def.
358
if (I.definesRegister(X86::EFLAGS, /*TRI=*/nullptr)) {
359
// Check if current processed CMOV-group should not be skipped and add
360
// it as a CMOV-group-candidate.
361
if (!SkipGroup)
362
CmovInstGroups.push_back(Group);
363
else
364
++NumOfSkippedCmovGroups;
365
Group.clear();
366
}
367
}
368
// End of basic block is considered end of range, check if current processed
369
// CMOV-group should not be skipped and add it as a CMOV-group-candidate.
370
if (Group.empty())
371
continue;
372
if (!SkipGroup)
373
CmovInstGroups.push_back(Group);
374
else
375
++NumOfSkippedCmovGroups;
376
}
377
378
NumOfCmovGroupCandidate += CmovInstGroups.size();
379
return !CmovInstGroups.empty();
380
}
381
382
/// \returns Depth of CMOV instruction as if it was converted into branch.
383
/// \param TrueOpDepth depth cost of CMOV true value operand.
384
/// \param FalseOpDepth depth cost of CMOV false value operand.
385
static unsigned getDepthOfOptCmov(unsigned TrueOpDepth, unsigned FalseOpDepth) {
386
// The depth of the result after branch conversion is
387
// TrueOpDepth * TrueOpProbability + FalseOpDepth * FalseOpProbability.
388
// As we have no info about branch weight, we assume 75% for one and 25% for
389
// the other, and pick the result with the largest resulting depth.
390
return std::max(
391
divideCeil(TrueOpDepth * 3 + FalseOpDepth, 4),
392
divideCeil(FalseOpDepth * 3 + TrueOpDepth, 4));
393
}
394
395
bool X86CmovConverterPass::checkForProfitableCmovCandidates(
396
ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups) {
397
struct DepthInfo {
398
/// Depth of original loop.
399
unsigned Depth;
400
/// Depth of optimized loop.
401
unsigned OptDepth;
402
};
403
/// Number of loop iterations to calculate depth for ?!
404
static const unsigned LoopIterations = 2;
405
DenseMap<MachineInstr *, DepthInfo> DepthMap;
406
DepthInfo LoopDepth[LoopIterations] = {{0, 0}, {0, 0}};
407
enum { PhyRegType = 0, VirRegType = 1, RegTypeNum = 2 };
408
/// For each register type maps the register to its last def instruction.
409
DenseMap<unsigned, MachineInstr *> RegDefMaps[RegTypeNum];
410
/// Maps register operand to its def instruction, which can be nullptr if it
411
/// is unknown (e.g., operand is defined outside the loop).
412
DenseMap<MachineOperand *, MachineInstr *> OperandToDefMap;
413
414
// Set depth of unknown instruction (i.e., nullptr) to zero.
415
DepthMap[nullptr] = {0, 0};
416
417
SmallPtrSet<MachineInstr *, 4> CmovInstructions;
418
for (auto &Group : CmovInstGroups)
419
CmovInstructions.insert(Group.begin(), Group.end());
420
421
//===--------------------------------------------------------------------===//
422
// Step 1: Calculate instruction depth and loop depth.
423
// Optimized-Loop:
424
// loop with CMOV-group-candidates converted into branches.
425
//
426
// Instruction-Depth:
427
// instruction latency + max operand depth.
428
// * For CMOV instruction in optimized loop the depth is calculated as:
429
// CMOV latency + getDepthOfOptCmov(True-Op-Depth, False-Op-depth)
430
// TODO: Find a better way to estimate the latency of the branch instruction
431
// rather than using the CMOV latency.
432
//
433
// Loop-Depth:
434
// max instruction depth of all instructions in the loop.
435
// Note: instruction with max depth represents the critical-path in the loop.
436
//
437
// Loop-Depth[i]:
438
// Loop-Depth calculated for first `i` iterations.
439
// Note: it is enough to calculate depth for up to two iterations.
440
//
441
// Depth-Diff[i]:
442
// Number of cycles saved in first 'i` iterations by optimizing the loop.
443
//===--------------------------------------------------------------------===//
444
for (DepthInfo &MaxDepth : LoopDepth) {
445
for (auto *MBB : Blocks) {
446
// Clear physical registers Def map.
447
RegDefMaps[PhyRegType].clear();
448
for (MachineInstr &MI : *MBB) {
449
// Skip debug instructions.
450
if (MI.isDebugInstr())
451
continue;
452
unsigned MIDepth = 0;
453
unsigned MIDepthOpt = 0;
454
bool IsCMOV = CmovInstructions.count(&MI);
455
for (auto &MO : MI.uses()) {
456
// Checks for "isUse()" as "uses()" returns also implicit definitions.
457
if (!MO.isReg() || !MO.isUse())
458
continue;
459
Register Reg = MO.getReg();
460
auto &RDM = RegDefMaps[Reg.isVirtual()];
461
if (MachineInstr *DefMI = RDM.lookup(Reg)) {
462
OperandToDefMap[&MO] = DefMI;
463
DepthInfo Info = DepthMap.lookup(DefMI);
464
MIDepth = std::max(MIDepth, Info.Depth);
465
if (!IsCMOV)
466
MIDepthOpt = std::max(MIDepthOpt, Info.OptDepth);
467
}
468
}
469
470
if (IsCMOV)
471
MIDepthOpt = getDepthOfOptCmov(
472
DepthMap[OperandToDefMap.lookup(&MI.getOperand(1))].OptDepth,
473
DepthMap[OperandToDefMap.lookup(&MI.getOperand(2))].OptDepth);
474
475
// Iterates over all operands to handle implicit definitions as well.
476
for (auto &MO : MI.operands()) {
477
if (!MO.isReg() || !MO.isDef())
478
continue;
479
Register Reg = MO.getReg();
480
RegDefMaps[Reg.isVirtual()][Reg] = &MI;
481
}
482
483
unsigned Latency = TSchedModel.computeInstrLatency(&MI);
484
DepthMap[&MI] = {MIDepth += Latency, MIDepthOpt += Latency};
485
MaxDepth.Depth = std::max(MaxDepth.Depth, MIDepth);
486
MaxDepth.OptDepth = std::max(MaxDepth.OptDepth, MIDepthOpt);
487
}
488
}
489
}
490
491
unsigned Diff[LoopIterations] = {LoopDepth[0].Depth - LoopDepth[0].OptDepth,
492
LoopDepth[1].Depth - LoopDepth[1].OptDepth};
493
494
//===--------------------------------------------------------------------===//
495
// Step 2: Check if Loop worth to be optimized.
496
// Worth-Optimize-Loop:
497
// case 1: Diff[1] == Diff[0]
498
// Critical-path is iteration independent - there is no dependency
499
// of critical-path instructions on critical-path instructions of
500
// previous iteration.
501
// Thus, it is enough to check gain percent of 1st iteration -
502
// To be conservative, the optimized loop need to have a depth of
503
// 12.5% cycles less than original loop, per iteration.
504
//
505
// case 2: Diff[1] > Diff[0]
506
// Critical-path is iteration dependent - there is dependency of
507
// critical-path instructions on critical-path instructions of
508
// previous iteration.
509
// Thus, check the gain percent of the 2nd iteration (similar to the
510
// previous case), but it is also required to check the gradient of
511
// the gain - the change in Depth-Diff compared to the change in
512
// Loop-Depth between 1st and 2nd iterations.
513
// To be conservative, the gradient need to be at least 50%.
514
//
515
// In addition, In order not to optimize loops with very small gain, the
516
// gain (in cycles) after 2nd iteration should not be less than a given
517
// threshold. Thus, the check (Diff[1] >= GainCycleThreshold) must apply.
518
//
519
// If loop is not worth optimizing, remove all CMOV-group-candidates.
520
//===--------------------------------------------------------------------===//
521
if (Diff[1] < GainCycleThreshold)
522
return false;
523
524
bool WorthOptLoop = false;
525
if (Diff[1] == Diff[0])
526
WorthOptLoop = Diff[0] * 8 >= LoopDepth[0].Depth;
527
else if (Diff[1] > Diff[0])
528
WorthOptLoop =
529
(Diff[1] - Diff[0]) * 2 >= (LoopDepth[1].Depth - LoopDepth[0].Depth) &&
530
(Diff[1] * 8 >= LoopDepth[1].Depth);
531
532
if (!WorthOptLoop)
533
return false;
534
535
++NumOfLoopCandidate;
536
537
//===--------------------------------------------------------------------===//
538
// Step 3: Check for each CMOV-group-candidate if it worth to be optimized.
539
// Worth-Optimize-Group:
540
// Iff it is worth to optimize all CMOV instructions in the group.
541
//
542
// Worth-Optimize-CMOV:
543
// Predicted branch is faster than CMOV by the difference between depth of
544
// condition operand and depth of taken (predicted) value operand.
545
// To be conservative, the gain of such CMOV transformation should cover at
546
// at least 25% of branch-misprediction-penalty.
547
//===--------------------------------------------------------------------===//
548
unsigned MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty;
549
CmovGroups TempGroups;
550
std::swap(TempGroups, CmovInstGroups);
551
for (auto &Group : TempGroups) {
552
bool WorthOpGroup = true;
553
for (auto *MI : Group) {
554
// Avoid CMOV instruction which value is used as a pointer to load from.
555
// This is another conservative check to avoid converting CMOV instruction
556
// used with tree-search like algorithm, where the branch is unpredicted.
557
auto UIs = MRI->use_instructions(MI->defs().begin()->getReg());
558
if (!UIs.empty() && ++UIs.begin() == UIs.end()) {
559
unsigned Op = UIs.begin()->getOpcode();
560
if (Op == X86::MOV64rm || Op == X86::MOV32rm) {
561
WorthOpGroup = false;
562
break;
563
}
564
}
565
566
unsigned CondCost =
567
DepthMap[OperandToDefMap.lookup(&MI->getOperand(4))].Depth;
568
unsigned ValCost = getDepthOfOptCmov(
569
DepthMap[OperandToDefMap.lookup(&MI->getOperand(1))].Depth,
570
DepthMap[OperandToDefMap.lookup(&MI->getOperand(2))].Depth);
571
if (ValCost > CondCost || (CondCost - ValCost) * 4 < MispredictPenalty) {
572
WorthOpGroup = false;
573
break;
574
}
575
}
576
577
if (WorthOpGroup)
578
CmovInstGroups.push_back(Group);
579
}
580
581
return !CmovInstGroups.empty();
582
}
583
584
static bool checkEFLAGSLive(MachineInstr *MI) {
585
if (MI->killsRegister(X86::EFLAGS, /*TRI=*/nullptr))
586
return false;
587
588
// The EFLAGS operand of MI might be missing a kill marker.
589
// Figure out whether EFLAGS operand should LIVE after MI instruction.
590
MachineBasicBlock *BB = MI->getParent();
591
MachineBasicBlock::iterator ItrMI = MI;
592
593
// Scan forward through BB for a use/def of EFLAGS.
594
for (auto I = std::next(ItrMI), E = BB->end(); I != E; ++I) {
595
if (I->readsRegister(X86::EFLAGS, /*TRI=*/nullptr))
596
return true;
597
if (I->definesRegister(X86::EFLAGS, /*TRI=*/nullptr))
598
return false;
599
}
600
601
// We hit the end of the block, check whether EFLAGS is live into a successor.
602
for (MachineBasicBlock *Succ : BB->successors())
603
if (Succ->isLiveIn(X86::EFLAGS))
604
return true;
605
606
return false;
607
}
608
609
/// Given /p First CMOV instruction and /p Last CMOV instruction representing a
610
/// group of CMOV instructions, which may contain debug instructions in between,
611
/// move all debug instructions to after the last CMOV instruction, making the
612
/// CMOV group consecutive.
613
static void packCmovGroup(MachineInstr *First, MachineInstr *Last) {
614
assert(X86::getCondFromCMov(*Last) != X86::COND_INVALID &&
615
"Last instruction in a CMOV group must be a CMOV instruction");
616
617
SmallVector<MachineInstr *, 2> DBGInstructions;
618
for (auto I = First->getIterator(), E = Last->getIterator(); I != E; I++) {
619
if (I->isDebugInstr())
620
DBGInstructions.push_back(&*I);
621
}
622
623
// Splice the debug instruction after the cmov group.
624
MachineBasicBlock *MBB = First->getParent();
625
for (auto *MI : DBGInstructions)
626
MBB->insertAfter(Last, MI->removeFromParent());
627
}
628
629
void X86CmovConverterPass::convertCmovInstsToBranches(
630
SmallVectorImpl<MachineInstr *> &Group) const {
631
assert(!Group.empty() && "No CMOV instructions to convert");
632
++NumOfOptimizedCmovGroups;
633
634
// If the CMOV group is not packed, e.g., there are debug instructions between
635
// first CMOV and last CMOV, then pack the group and make the CMOV instruction
636
// consecutive by moving the debug instructions to after the last CMOV.
637
packCmovGroup(Group.front(), Group.back());
638
639
// To convert a CMOVcc instruction, we actually have to insert the diamond
640
// control-flow pattern. The incoming instruction knows the destination vreg
641
// to set, the condition code register to branch on, the true/false values to
642
// select between, and a branch opcode to use.
643
644
// Before
645
// -----
646
// MBB:
647
// cond = cmp ...
648
// v1 = CMOVge t1, f1, cond
649
// v2 = CMOVlt t2, f2, cond
650
// v3 = CMOVge v1, f3, cond
651
//
652
// After
653
// -----
654
// MBB:
655
// cond = cmp ...
656
// jge %SinkMBB
657
//
658
// FalseMBB:
659
// jmp %SinkMBB
660
//
661
// SinkMBB:
662
// %v1 = phi[%f1, %FalseMBB], [%t1, %MBB]
663
// %v2 = phi[%t2, %FalseMBB], [%f2, %MBB] ; For CMOV with OppCC switch
664
// ; true-value with false-value
665
// %v3 = phi[%f3, %FalseMBB], [%t1, %MBB] ; Phi instruction cannot use
666
// ; previous Phi instruction result
667
668
MachineInstr &MI = *Group.front();
669
MachineInstr *LastCMOV = Group.back();
670
DebugLoc DL = MI.getDebugLoc();
671
672
X86::CondCode CC = X86::CondCode(X86::getCondFromCMov(MI));
673
X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC);
674
// Potentially swap the condition codes so that any memory operand to a CMOV
675
// is in the *false* position instead of the *true* position. We can invert
676
// any non-memory operand CMOV instructions to cope with this and we ensure
677
// memory operand CMOVs are only included with a single condition code.
678
if (llvm::any_of(Group, [&](MachineInstr *I) {
679
return I->mayLoad() && X86::getCondFromCMov(*I) == CC;
680
}))
681
std::swap(CC, OppCC);
682
683
MachineBasicBlock *MBB = MI.getParent();
684
MachineFunction::iterator It = ++MBB->getIterator();
685
MachineFunction *F = MBB->getParent();
686
const BasicBlock *BB = MBB->getBasicBlock();
687
688
MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(BB);
689
MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(BB);
690
F->insert(It, FalseMBB);
691
F->insert(It, SinkMBB);
692
693
// If the EFLAGS register isn't dead in the terminator, then claim that it's
694
// live into the sink and copy blocks.
695
if (checkEFLAGSLive(LastCMOV)) {
696
FalseMBB->addLiveIn(X86::EFLAGS);
697
SinkMBB->addLiveIn(X86::EFLAGS);
698
}
699
700
// Transfer the remainder of BB and its successor edges to SinkMBB.
701
SinkMBB->splice(SinkMBB->begin(), MBB,
702
std::next(MachineBasicBlock::iterator(LastCMOV)), MBB->end());
703
SinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
704
705
// Add the false and sink blocks as its successors.
706
MBB->addSuccessor(FalseMBB);
707
MBB->addSuccessor(SinkMBB);
708
709
// Create the conditional branch instruction.
710
BuildMI(MBB, DL, TII->get(X86::JCC_1)).addMBB(SinkMBB).addImm(CC);
711
712
// Add the sink block to the false block successors.
713
FalseMBB->addSuccessor(SinkMBB);
714
715
MachineInstrBuilder MIB;
716
MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
717
MachineBasicBlock::iterator MIItEnd =
718
std::next(MachineBasicBlock::iterator(LastCMOV));
719
MachineBasicBlock::iterator FalseInsertionPoint = FalseMBB->begin();
720
MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
721
722
// First we need to insert an explicit load on the false path for any memory
723
// operand. We also need to potentially do register rewriting here, but it is
724
// simpler as the memory operands are always on the false path so we can
725
// simply take that input, whatever it is.
726
DenseMap<unsigned, unsigned> FalseBBRegRewriteTable;
727
for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd;) {
728
auto &MI = *MIIt++;
729
// Skip any CMOVs in this group which don't load from memory.
730
if (!MI.mayLoad()) {
731
// Remember the false-side register input.
732
Register FalseReg =
733
MI.getOperand(X86::getCondFromCMov(MI) == CC ? 1 : 2).getReg();
734
// Walk back through any intermediate cmovs referenced.
735
while (true) {
736
auto FRIt = FalseBBRegRewriteTable.find(FalseReg);
737
if (FRIt == FalseBBRegRewriteTable.end())
738
break;
739
FalseReg = FRIt->second;
740
}
741
FalseBBRegRewriteTable[MI.getOperand(0).getReg()] = FalseReg;
742
continue;
743
}
744
745
// The condition must be the *opposite* of the one we've decided to branch
746
// on as the branch will go *around* the load and the load should happen
747
// when the CMOV condition is false.
748
assert(X86::getCondFromCMov(MI) == OppCC &&
749
"Can only handle memory-operand cmov instructions with a condition "
750
"opposite to the selected branch direction.");
751
752
// The goal is to rewrite the cmov from:
753
//
754
// MBB:
755
// %A = CMOVcc %B (tied), (mem)
756
//
757
// to
758
//
759
// MBB:
760
// %A = CMOVcc %B (tied), %C
761
// FalseMBB:
762
// %C = MOV (mem)
763
//
764
// Which will allow the next loop to rewrite the CMOV in terms of a PHI:
765
//
766
// MBB:
767
// JMP!cc SinkMBB
768
// FalseMBB:
769
// %C = MOV (mem)
770
// SinkMBB:
771
// %A = PHI [ %C, FalseMBB ], [ %B, MBB]
772
773
// Get a fresh register to use as the destination of the MOV.
774
const TargetRegisterClass *RC = MRI->getRegClass(MI.getOperand(0).getReg());
775
Register TmpReg = MRI->createVirtualRegister(RC);
776
777
// Retain debug instr number when unfolded.
778
unsigned OldDebugInstrNum = MI.peekDebugInstrNum();
779
SmallVector<MachineInstr *, 4> NewMIs;
780
bool Unfolded = TII->unfoldMemoryOperand(*MBB->getParent(), MI, TmpReg,
781
/*UnfoldLoad*/ true,
782
/*UnfoldStore*/ false, NewMIs);
783
(void)Unfolded;
784
assert(Unfolded && "Should never fail to unfold a loading cmov!");
785
786
// Move the new CMOV to just before the old one and reset any impacted
787
// iterator.
788
auto *NewCMOV = NewMIs.pop_back_val();
789
assert(X86::getCondFromCMov(*NewCMOV) == OppCC &&
790
"Last new instruction isn't the expected CMOV!");
791
LLVM_DEBUG(dbgs() << "\tRewritten cmov: "; NewCMOV->dump());
792
MBB->insert(MachineBasicBlock::iterator(MI), NewCMOV);
793
if (&*MIItBegin == &MI)
794
MIItBegin = MachineBasicBlock::iterator(NewCMOV);
795
796
if (OldDebugInstrNum)
797
NewCMOV->setDebugInstrNum(OldDebugInstrNum);
798
799
// Sink whatever instructions were needed to produce the unfolded operand
800
// into the false block.
801
for (auto *NewMI : NewMIs) {
802
LLVM_DEBUG(dbgs() << "\tRewritten load instr: "; NewMI->dump());
803
FalseMBB->insert(FalseInsertionPoint, NewMI);
804
// Re-map any operands that are from other cmovs to the inputs for this block.
805
for (auto &MOp : NewMI->uses()) {
806
if (!MOp.isReg())
807
continue;
808
auto It = FalseBBRegRewriteTable.find(MOp.getReg());
809
if (It == FalseBBRegRewriteTable.end())
810
continue;
811
812
MOp.setReg(It->second);
813
// This might have been a kill when it referenced the cmov result, but
814
// it won't necessarily be once rewritten.
815
// FIXME: We could potentially improve this by tracking whether the
816
// operand to the cmov was also a kill, and then skipping the PHI node
817
// construction below.
818
MOp.setIsKill(false);
819
}
820
}
821
MBB->erase(&MI);
822
823
// Add this PHI to the rewrite table.
824
FalseBBRegRewriteTable[NewCMOV->getOperand(0).getReg()] = TmpReg;
825
}
826
827
// As we are creating the PHIs, we have to be careful if there is more than
828
// one. Later CMOVs may reference the results of earlier CMOVs, but later
829
// PHIs have to reference the individual true/false inputs from earlier PHIs.
830
// That also means that PHI construction must work forward from earlier to
831
// later, and that the code must maintain a mapping from earlier PHI's
832
// destination registers, and the registers that went into the PHI.
833
DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
834
835
for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
836
Register DestReg = MIIt->getOperand(0).getReg();
837
Register Op1Reg = MIIt->getOperand(1).getReg();
838
Register Op2Reg = MIIt->getOperand(2).getReg();
839
840
// If this CMOV we are processing is the opposite condition from the jump we
841
// generated, then we have to swap the operands for the PHI that is going to
842
// be generated.
843
if (X86::getCondFromCMov(*MIIt) == OppCC)
844
std::swap(Op1Reg, Op2Reg);
845
846
auto Op1Itr = RegRewriteTable.find(Op1Reg);
847
if (Op1Itr != RegRewriteTable.end())
848
Op1Reg = Op1Itr->second.first;
849
850
auto Op2Itr = RegRewriteTable.find(Op2Reg);
851
if (Op2Itr != RegRewriteTable.end())
852
Op2Reg = Op2Itr->second.second;
853
854
// SinkMBB:
855
// %Result = phi [ %FalseValue, FalseMBB ], [ %TrueValue, MBB ]
856
// ...
857
MIB = BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(X86::PHI), DestReg)
858
.addReg(Op1Reg)
859
.addMBB(FalseMBB)
860
.addReg(Op2Reg)
861
.addMBB(MBB);
862
(void)MIB;
863
LLVM_DEBUG(dbgs() << "\tFrom: "; MIIt->dump());
864
LLVM_DEBUG(dbgs() << "\tTo: "; MIB->dump());
865
866
// debug-info: we can just copy the instr-ref number from one instruction
867
// to the other, seeing how it's a one-for-one substitution.
868
if (unsigned InstrNum = MIIt->peekDebugInstrNum())
869
MIB->setDebugInstrNum(InstrNum);
870
871
// Add this PHI to the rewrite table.
872
RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg);
873
}
874
875
// Reset the NoPHIs property if a PHI was inserted to prevent a conflict with
876
// the MachineVerifier during testing.
877
if (MIItBegin != MIItEnd)
878
F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
879
880
// Now remove the CMOV(s).
881
MBB->erase(MIItBegin, MIItEnd);
882
883
// Add new basic blocks to MachineLoopInfo.
884
if (MachineLoop *L = MLI->getLoopFor(MBB)) {
885
L->addBasicBlockToLoop(FalseMBB, *MLI);
886
L->addBasicBlockToLoop(SinkMBB, *MLI);
887
}
888
}
889
890
INITIALIZE_PASS_BEGIN(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion",
891
false, false)
892
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
893
INITIALIZE_PASS_END(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion",
894
false, false)
895
896
FunctionPass *llvm::createX86CmovConverterPass() {
897
return new X86CmovConverterPass();
898
}
899
900