Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/X86/X86FixupBWInsts.cpp
35268 views
1
//===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
/// \file
9
/// This file defines the pass that looks through the machine instructions
10
/// late in the compilation, and finds byte or word instructions that
11
/// can be profitably replaced with 32 bit instructions that give equivalent
12
/// results for the bits of the results that are used. There are two possible
13
/// reasons to do this.
14
///
15
/// One reason is to avoid false-dependences on the upper portions
16
/// of the registers. Only instructions that have a destination register
17
/// which is not in any of the source registers can be affected by this.
18
/// Any instruction where one of the source registers is also the destination
19
/// register is unaffected, because it has a true dependence on the source
20
/// register already. So, this consideration primarily affects load
21
/// instructions and register-to-register moves. It would
22
/// seem like cmov(s) would also be affected, but because of the way cmov is
23
/// really implemented by most machines as reading both the destination and
24
/// and source registers, and then "merging" the two based on a condition,
25
/// it really already should be considered as having a true dependence on the
26
/// destination register as well.
27
///
28
/// The other reason to do this is for potential code size savings. Word
29
/// operations need an extra override byte compared to their 32 bit
30
/// versions. So this can convert many word operations to their larger
31
/// size, saving a byte in encoding. This could introduce partial register
32
/// dependences where none existed however. As an example take:
33
/// orw ax, $0x1000
34
/// addw ax, $3
35
/// now if this were to get transformed into
36
/// orw ax, $1000
37
/// addl eax, $3
38
/// because the addl encodes shorter than the addw, this would introduce
39
/// a use of a register that was only partially written earlier. On older
40
/// Intel processors this can be quite a performance penalty, so this should
41
/// probably only be done when it can be proven that a new partial dependence
42
/// wouldn't be created, or when your know a newer processor is being
43
/// targeted, or when optimizing for minimum code size.
44
///
45
//===----------------------------------------------------------------------===//
46
47
#include "X86.h"
48
#include "X86InstrInfo.h"
49
#include "X86Subtarget.h"
50
#include "llvm/ADT/Statistic.h"
51
#include "llvm/Analysis/ProfileSummaryInfo.h"
52
#include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
53
#include "llvm/CodeGen/LiveRegUnits.h"
54
#include "llvm/CodeGen/MachineFunctionPass.h"
55
#include "llvm/CodeGen/MachineInstrBuilder.h"
56
#include "llvm/CodeGen/MachineRegisterInfo.h"
57
#include "llvm/CodeGen/MachineSizeOpts.h"
58
#include "llvm/CodeGen/Passes.h"
59
#include "llvm/CodeGen/TargetInstrInfo.h"
60
#include "llvm/Support/Debug.h"
61
#include "llvm/Support/raw_ostream.h"
62
using namespace llvm;
63
64
#define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup"
65
#define FIXUPBW_NAME "x86-fixup-bw-insts"
66
67
#define DEBUG_TYPE FIXUPBW_NAME
68
69
// Option to allow this optimization pass to have fine-grained control.
70
static cl::opt<bool>
71
FixupBWInsts("fixup-byte-word-insts",
72
cl::desc("Change byte and word instructions to larger sizes"),
73
cl::init(true), cl::Hidden);
74
75
namespace {
76
class FixupBWInstPass : public MachineFunctionPass {
77
/// Loop over all of the instructions in the basic block replacing applicable
78
/// byte or word instructions with better alternatives.
79
void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
80
81
/// This returns the 32 bit super reg of the original destination register of
82
/// the MachineInstr passed in, if that super register is dead just prior to
83
/// \p OrigMI. Otherwise it returns Register().
84
Register getSuperRegDestIfDead(MachineInstr *OrigMI) const;
85
86
/// Change the MachineInstr \p MI into the equivalent extending load to 32 bit
87
/// register if it is safe to do so. Return the replacement instruction if
88
/// OK, otherwise return nullptr.
89
MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const;
90
91
/// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is
92
/// safe to do so. Return the replacement instruction if OK, otherwise return
93
/// nullptr.
94
MachineInstr *tryReplaceCopy(MachineInstr *MI) const;
95
96
/// Change the MachineInstr \p MI into the equivalent extend to 32 bit
97
/// register if it is safe to do so. Return the replacement instruction if
98
/// OK, otherwise return nullptr.
99
MachineInstr *tryReplaceExtend(unsigned New32BitOpcode,
100
MachineInstr *MI) const;
101
102
// Change the MachineInstr \p MI into an eqivalent 32 bit instruction if
103
// possible. Return the replacement instruction if OK, return nullptr
104
// otherwise.
105
MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB) const;
106
107
public:
108
static char ID;
109
110
StringRef getPassName() const override { return FIXUPBW_DESC; }
111
112
FixupBWInstPass() : MachineFunctionPass(ID) { }
113
114
void getAnalysisUsage(AnalysisUsage &AU) const override {
115
AU.addRequired<ProfileSummaryInfoWrapperPass>();
116
AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
117
MachineFunctionPass::getAnalysisUsage(AU);
118
}
119
120
/// Loop over all of the basic blocks, replacing byte and word instructions by
121
/// equivalent 32 bit instructions where performance or code size can be
122
/// improved.
123
bool runOnMachineFunction(MachineFunction &MF) override;
124
125
MachineFunctionProperties getRequiredProperties() const override {
126
return MachineFunctionProperties().set(
127
MachineFunctionProperties::Property::NoVRegs);
128
}
129
130
private:
131
MachineFunction *MF = nullptr;
132
133
/// Machine instruction info used throughout the class.
134
const X86InstrInfo *TII = nullptr;
135
136
const TargetRegisterInfo *TRI = nullptr;
137
138
/// Local member for function's OptForSize attribute.
139
bool OptForSize = false;
140
141
/// Register Liveness information after the current instruction.
142
LiveRegUnits LiveUnits;
143
144
ProfileSummaryInfo *PSI = nullptr;
145
MachineBlockFrequencyInfo *MBFI = nullptr;
146
};
147
char FixupBWInstPass::ID = 0;
148
}
149
150
INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false)
151
152
FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); }
153
154
bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) {
155
if (!FixupBWInsts || skipFunction(MF.getFunction()))
156
return false;
157
158
this->MF = &MF;
159
TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
160
TRI = MF.getRegInfo().getTargetRegisterInfo();
161
PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
162
MBFI = (PSI && PSI->hasProfileSummary()) ?
163
&getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() :
164
nullptr;
165
LiveUnits.init(TII->getRegisterInfo());
166
167
LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n";);
168
169
// Process all basic blocks.
170
for (auto &MBB : MF)
171
processBasicBlock(MF, MBB);
172
173
LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n";);
174
175
return true;
176
}
177
178
/// Check if after \p OrigMI the only portion of super register
179
/// of the destination register of \p OrigMI that is alive is that
180
/// destination register.
181
///
182
/// If so, return that super register in \p SuperDestReg.
183
Register FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI) const {
184
const X86RegisterInfo *TRI = &TII->getRegisterInfo();
185
Register OrigDestReg = OrigMI->getOperand(0).getReg();
186
Register SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32);
187
assert(SuperDestReg.isValid() && "Invalid Operand");
188
189
const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg);
190
191
// Make sure that the sub-register that this instruction has as its
192
// destination is the lowest order sub-register of the super-register.
193
// If it isn't, then the register isn't really dead even if the
194
// super-register is considered dead.
195
if (SubRegIdx == X86::sub_8bit_hi)
196
return Register();
197
198
// Test all regunits of the super register that are not part of the
199
// sub register. If none of them are live then the super register is safe to
200
// use.
201
bool SuperIsLive = false;
202
auto Range = TRI->regunits(OrigDestReg);
203
MCRegUnitIterator I = Range.begin(), E = Range.end();
204
for (MCRegUnit S : TRI->regunits(SuperDestReg)) {
205
I = std::lower_bound(I, E, S);
206
if ((I == E || *I > S) && LiveUnits.getBitVector().test(S)) {
207
SuperIsLive = true;
208
break;
209
}
210
}
211
if (!SuperIsLive)
212
return SuperDestReg;
213
214
// If we get here, the super-register destination (or some part of it) is
215
// marked as live after the original instruction.
216
//
217
// The X86 backend does not have subregister liveness tracking enabled,
218
// so liveness information might be overly conservative. Specifically, the
219
// super register might be marked as live because it is implicitly defined
220
// by the instruction we are examining.
221
//
222
// However, for some specific instructions (this pass only cares about MOVs)
223
// we can produce more precise results by analysing that MOV's operands.
224
//
225
// Indeed, if super-register is not live before the mov it means that it
226
// was originally <read-undef> and so we are free to modify these
227
// undef upper bits. That may happen in case where the use is in another MBB
228
// and the vreg/physreg corresponding to the move has higher width than
229
// necessary (e.g. due to register coalescing with a "truncate" copy).
230
// So, we would like to handle patterns like this:
231
//
232
// %bb.2: derived from LLVM BB %if.then
233
// Live Ins: %rdi
234
// Predecessors according to CFG: %bb.0
235
// %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax
236
// ; No implicit %eax
237
// Successors according to CFG: %bb.3(?%)
238
//
239
// %bb.3: derived from LLVM BB %if.end
240
// Live Ins: %eax Only %ax is actually live
241
// Predecessors according to CFG: %bb.2 %bb.1
242
// %ax = KILL %ax, implicit killed %eax
243
// RET 0, %ax
244
unsigned Opc = OrigMI->getOpcode();
245
// These are the opcodes currently known to work with the code below, if
246
// something // else will be added we need to ensure that new opcode has the
247
// same properties.
248
if (Opc != X86::MOV8rm && Opc != X86::MOV16rm && Opc != X86::MOV8rr &&
249
Opc != X86::MOV16rr)
250
return Register();
251
252
bool IsDefined = false;
253
for (auto &MO: OrigMI->implicit_operands()) {
254
if (!MO.isReg())
255
continue;
256
257
if (MO.isDef() && TRI->isSuperRegisterEq(OrigDestReg, MO.getReg()))
258
IsDefined = true;
259
260
// If MO is a use of any part of the destination register but is not equal
261
// to OrigDestReg or one of its subregisters, we cannot use SuperDestReg.
262
// For example, if OrigDestReg is %al then an implicit use of %ah, %ax,
263
// %eax, or %rax will prevent us from using the %eax register.
264
if (MO.isUse() && !TRI->isSubRegisterEq(OrigDestReg, MO.getReg()) &&
265
TRI->regsOverlap(SuperDestReg, MO.getReg()))
266
return Register();
267
}
268
// Reg is not Imp-def'ed -> it's live both before/after the instruction.
269
if (!IsDefined)
270
return Register();
271
272
// Otherwise, the Reg is not live before the MI and the MOV can't
273
// make it really live, so it's in fact dead even after the MI.
274
return SuperDestReg;
275
}
276
277
MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode,
278
MachineInstr *MI) const {
279
// We are going to try to rewrite this load to a larger zero-extending
280
// load. This is safe if all portions of the 32 bit super-register
281
// of the original destination register, except for the original destination
282
// register are dead. getSuperRegDestIfDead checks that.
283
Register NewDestReg = getSuperRegDestIfDead(MI);
284
if (!NewDestReg)
285
return nullptr;
286
287
// Safe to change the instruction.
288
MachineInstrBuilder MIB =
289
BuildMI(*MF, MIMetadata(*MI), TII->get(New32BitOpcode), NewDestReg);
290
291
unsigned NumArgs = MI->getNumOperands();
292
for (unsigned i = 1; i < NumArgs; ++i)
293
MIB.add(MI->getOperand(i));
294
295
MIB.setMemRefs(MI->memoperands());
296
297
// If it was debug tracked, record a substitution.
298
if (unsigned OldInstrNum = MI->peekDebugInstrNum()) {
299
unsigned Subreg = TRI->getSubRegIndex(MIB->getOperand(0).getReg(),
300
MI->getOperand(0).getReg());
301
unsigned NewInstrNum = MIB->getDebugInstrNum(*MF);
302
MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, Subreg);
303
}
304
305
return MIB;
306
}
307
308
MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const {
309
assert(MI->getNumExplicitOperands() == 2);
310
auto &OldDest = MI->getOperand(0);
311
auto &OldSrc = MI->getOperand(1);
312
313
Register NewDestReg = getSuperRegDestIfDead(MI);
314
if (!NewDestReg)
315
return nullptr;
316
317
Register NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32);
318
assert(NewSrcReg.isValid() && "Invalid Operand");
319
320
// This is only correct if we access the same subregister index: otherwise,
321
// we could try to replace "movb %ah, %al" with "movl %eax, %eax".
322
const X86RegisterInfo *TRI = &TII->getRegisterInfo();
323
if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) !=
324
TRI->getSubRegIndex(NewDestReg, OldDest.getReg()))
325
return nullptr;
326
327
// Safe to change the instruction.
328
// Don't set src flags, as we don't know if we're also killing the superreg.
329
// However, the superregister might not be defined; make it explicit that
330
// we don't care about the higher bits by reading it as Undef, and adding
331
// an imp-use on the original subregister.
332
MachineInstrBuilder MIB =
333
BuildMI(*MF, MIMetadata(*MI), TII->get(X86::MOV32rr), NewDestReg)
334
.addReg(NewSrcReg, RegState::Undef)
335
.addReg(OldSrc.getReg(), RegState::Implicit);
336
337
// Drop imp-defs/uses that would be redundant with the new def/use.
338
for (auto &Op : MI->implicit_operands())
339
if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg))
340
MIB.add(Op);
341
342
return MIB;
343
}
344
345
MachineInstr *FixupBWInstPass::tryReplaceExtend(unsigned New32BitOpcode,
346
MachineInstr *MI) const {
347
Register NewDestReg = getSuperRegDestIfDead(MI);
348
if (!NewDestReg)
349
return nullptr;
350
351
// Don't interfere with formation of CBW instructions which should be a
352
// shorter encoding than even the MOVSX32rr8. It's also immune to partial
353
// merge issues on Intel CPUs.
354
if (MI->getOpcode() == X86::MOVSX16rr8 &&
355
MI->getOperand(0).getReg() == X86::AX &&
356
MI->getOperand(1).getReg() == X86::AL)
357
return nullptr;
358
359
// Safe to change the instruction.
360
MachineInstrBuilder MIB =
361
BuildMI(*MF, MIMetadata(*MI), TII->get(New32BitOpcode), NewDestReg);
362
363
unsigned NumArgs = MI->getNumOperands();
364
for (unsigned i = 1; i < NumArgs; ++i)
365
MIB.add(MI->getOperand(i));
366
367
MIB.setMemRefs(MI->memoperands());
368
369
if (unsigned OldInstrNum = MI->peekDebugInstrNum()) {
370
unsigned Subreg = TRI->getSubRegIndex(MIB->getOperand(0).getReg(),
371
MI->getOperand(0).getReg());
372
unsigned NewInstrNum = MIB->getDebugInstrNum(*MF);
373
MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, Subreg);
374
}
375
376
return MIB;
377
}
378
379
MachineInstr *FixupBWInstPass::tryReplaceInstr(MachineInstr *MI,
380
MachineBasicBlock &MBB) const {
381
// See if this is an instruction of the type we are currently looking for.
382
switch (MI->getOpcode()) {
383
384
case X86::MOV8rm:
385
// Replace 8-bit loads with the zero-extending version if not optimizing
386
// for size. The extending op is cheaper across a wide range of uarch and
387
// it avoids a potentially expensive partial register stall. It takes an
388
// extra byte to encode, however, so don't do this when optimizing for size.
389
if (!OptForSize)
390
return tryReplaceLoad(X86::MOVZX32rm8, MI);
391
break;
392
393
case X86::MOV16rm:
394
// Always try to replace 16 bit load with 32 bit zero extending.
395
// Code size is the same, and there is sometimes a perf advantage
396
// from eliminating a false dependence on the upper portion of
397
// the register.
398
return tryReplaceLoad(X86::MOVZX32rm16, MI);
399
400
case X86::MOV8rr:
401
case X86::MOV16rr:
402
// Always try to replace 8/16 bit copies with a 32 bit copy.
403
// Code size is either less (16) or equal (8), and there is sometimes a
404
// perf advantage from eliminating a false dependence on the upper portion
405
// of the register.
406
return tryReplaceCopy(MI);
407
408
case X86::MOVSX16rr8:
409
return tryReplaceExtend(X86::MOVSX32rr8, MI);
410
case X86::MOVSX16rm8:
411
return tryReplaceExtend(X86::MOVSX32rm8, MI);
412
case X86::MOVZX16rr8:
413
return tryReplaceExtend(X86::MOVZX32rr8, MI);
414
case X86::MOVZX16rm8:
415
return tryReplaceExtend(X86::MOVZX32rm8, MI);
416
417
default:
418
// nothing to do here.
419
break;
420
}
421
422
return nullptr;
423
}
424
425
void FixupBWInstPass::processBasicBlock(MachineFunction &MF,
426
MachineBasicBlock &MBB) {
427
428
// This algorithm doesn't delete the instructions it is replacing
429
// right away. By leaving the existing instructions in place, the
430
// register liveness information doesn't change, and this makes the
431
// analysis that goes on be better than if the replaced instructions
432
// were immediately removed.
433
//
434
// This algorithm always creates a replacement instruction
435
// and notes that and the original in a data structure, until the
436
// whole BB has been analyzed. This keeps the replacement instructions
437
// from making it seem as if the larger register might be live.
438
SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements;
439
440
// Start computing liveness for this block. We iterate from the end to be able
441
// to update this for each instruction.
442
LiveUnits.clear();
443
// We run after PEI, so we need to AddPristinesAndCSRs.
444
LiveUnits.addLiveOuts(MBB);
445
446
OptForSize = MF.getFunction().hasOptSize() ||
447
llvm::shouldOptimizeForSize(&MBB, PSI, MBFI);
448
449
for (MachineInstr &MI : llvm::reverse(MBB)) {
450
if (MachineInstr *NewMI = tryReplaceInstr(&MI, MBB))
451
MIReplacements.push_back(std::make_pair(&MI, NewMI));
452
453
// We're done with this instruction, update liveness for the next one.
454
LiveUnits.stepBackward(MI);
455
}
456
457
while (!MIReplacements.empty()) {
458
MachineInstr *MI = MIReplacements.back().first;
459
MachineInstr *NewMI = MIReplacements.back().second;
460
MIReplacements.pop_back();
461
MBB.insert(MI, NewMI);
462
MBB.erase(MI);
463
}
464
}
465
466