Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/X86/X86FixupVectorConstants.cpp
35269 views
1
//===-- X86FixupVectorConstants.cpp - optimize constant generation -------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file examines all full size vector constant pool loads and attempts to
10
// replace them with smaller constant pool entries, including:
11
// * Converting AVX512 memory-fold instructions to their broadcast-fold form.
12
// * Using vzload scalar loads.
13
// * Broadcasting of full width loads.
14
// * Sign/Zero extension of full width loads.
15
//
16
//===----------------------------------------------------------------------===//
17
18
#include "X86.h"
19
#include "X86InstrFoldTables.h"
20
#include "X86InstrInfo.h"
21
#include "X86Subtarget.h"
22
#include "llvm/ADT/Statistic.h"
23
#include "llvm/CodeGen/MachineConstantPool.h"
24
25
using namespace llvm;
26
27
#define DEBUG_TYPE "x86-fixup-vector-constants"
28
29
STATISTIC(NumInstChanges, "Number of instructions changes");
30
31
namespace {
32
class X86FixupVectorConstantsPass : public MachineFunctionPass {
33
public:
34
static char ID;
35
36
X86FixupVectorConstantsPass() : MachineFunctionPass(ID) {}
37
38
StringRef getPassName() const override {
39
return "X86 Fixup Vector Constants";
40
}
41
42
bool runOnMachineFunction(MachineFunction &MF) override;
43
bool processInstruction(MachineFunction &MF, MachineBasicBlock &MBB,
44
MachineInstr &MI);
45
46
// This pass runs after regalloc and doesn't support VReg operands.
47
MachineFunctionProperties getRequiredProperties() const override {
48
return MachineFunctionProperties().set(
49
MachineFunctionProperties::Property::NoVRegs);
50
}
51
52
private:
53
const X86InstrInfo *TII = nullptr;
54
const X86Subtarget *ST = nullptr;
55
const MCSchedModel *SM = nullptr;
56
};
57
} // end anonymous namespace
58
59
char X86FixupVectorConstantsPass::ID = 0;
60
61
INITIALIZE_PASS(X86FixupVectorConstantsPass, DEBUG_TYPE, DEBUG_TYPE, false, false)
62
63
FunctionPass *llvm::createX86FixupVectorConstants() {
64
return new X86FixupVectorConstantsPass();
65
}
66
67
/// Normally, we only allow poison in vector splats. However, as this is part
68
/// of the backend, and working with the DAG representation, which currently
69
/// only natively represents undef values, we need to accept undefs here.
70
static Constant *getSplatValueAllowUndef(const ConstantVector *C) {
71
Constant *Res = nullptr;
72
for (Value *Op : C->operands()) {
73
Constant *OpC = cast<Constant>(Op);
74
if (isa<UndefValue>(OpC))
75
continue;
76
if (!Res)
77
Res = OpC;
78
else if (Res != OpC)
79
return nullptr;
80
}
81
return Res;
82
}
83
84
// Attempt to extract the full width of bits data from the constant.
85
static std::optional<APInt> extractConstantBits(const Constant *C) {
86
unsigned NumBits = C->getType()->getPrimitiveSizeInBits();
87
88
if (isa<UndefValue>(C))
89
return APInt::getZero(NumBits);
90
91
if (auto *CInt = dyn_cast<ConstantInt>(C))
92
return CInt->getValue();
93
94
if (auto *CFP = dyn_cast<ConstantFP>(C))
95
return CFP->getValue().bitcastToAPInt();
96
97
if (auto *CV = dyn_cast<ConstantVector>(C)) {
98
if (auto *CVSplat = getSplatValueAllowUndef(CV)) {
99
if (std::optional<APInt> Bits = extractConstantBits(CVSplat)) {
100
assert((NumBits % Bits->getBitWidth()) == 0 && "Illegal splat");
101
return APInt::getSplat(NumBits, *Bits);
102
}
103
}
104
105
APInt Bits = APInt::getZero(NumBits);
106
for (unsigned I = 0, E = CV->getNumOperands(); I != E; ++I) {
107
Constant *Elt = CV->getOperand(I);
108
std::optional<APInt> SubBits = extractConstantBits(Elt);
109
if (!SubBits)
110
return std::nullopt;
111
assert(NumBits == (E * SubBits->getBitWidth()) &&
112
"Illegal vector element size");
113
Bits.insertBits(*SubBits, I * SubBits->getBitWidth());
114
}
115
return Bits;
116
}
117
118
if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
119
bool IsInteger = CDS->getElementType()->isIntegerTy();
120
bool IsFloat = CDS->getElementType()->isHalfTy() ||
121
CDS->getElementType()->isBFloatTy() ||
122
CDS->getElementType()->isFloatTy() ||
123
CDS->getElementType()->isDoubleTy();
124
if (IsInteger || IsFloat) {
125
APInt Bits = APInt::getZero(NumBits);
126
unsigned EltBits = CDS->getElementType()->getPrimitiveSizeInBits();
127
for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
128
if (IsInteger)
129
Bits.insertBits(CDS->getElementAsAPInt(I), I * EltBits);
130
else
131
Bits.insertBits(CDS->getElementAsAPFloat(I).bitcastToAPInt(),
132
I * EltBits);
133
}
134
return Bits;
135
}
136
}
137
138
return std::nullopt;
139
}
140
141
static std::optional<APInt> extractConstantBits(const Constant *C,
142
unsigned NumBits) {
143
if (std::optional<APInt> Bits = extractConstantBits(C))
144
return Bits->zextOrTrunc(NumBits);
145
return std::nullopt;
146
}
147
148
// Attempt to compute the splat width of bits data by normalizing the splat to
149
// remove undefs.
150
static std::optional<APInt> getSplatableConstant(const Constant *C,
151
unsigned SplatBitWidth) {
152
const Type *Ty = C->getType();
153
assert((Ty->getPrimitiveSizeInBits() % SplatBitWidth) == 0 &&
154
"Illegal splat width");
155
156
if (std::optional<APInt> Bits = extractConstantBits(C))
157
if (Bits->isSplat(SplatBitWidth))
158
return Bits->trunc(SplatBitWidth);
159
160
// Detect general splats with undefs.
161
// TODO: Do we need to handle NumEltsBits > SplatBitWidth splitting?
162
if (auto *CV = dyn_cast<ConstantVector>(C)) {
163
unsigned NumOps = CV->getNumOperands();
164
unsigned NumEltsBits = Ty->getScalarSizeInBits();
165
unsigned NumScaleOps = SplatBitWidth / NumEltsBits;
166
if ((SplatBitWidth % NumEltsBits) == 0) {
167
// Collect the elements and ensure that within the repeated splat sequence
168
// they either match or are undef.
169
SmallVector<Constant *, 16> Sequence(NumScaleOps, nullptr);
170
for (unsigned Idx = 0; Idx != NumOps; ++Idx) {
171
if (Constant *Elt = CV->getAggregateElement(Idx)) {
172
if (isa<UndefValue>(Elt))
173
continue;
174
unsigned SplatIdx = Idx % NumScaleOps;
175
if (!Sequence[SplatIdx] || Sequence[SplatIdx] == Elt) {
176
Sequence[SplatIdx] = Elt;
177
continue;
178
}
179
}
180
return std::nullopt;
181
}
182
// Extract the constant bits forming the splat and insert into the bits
183
// data, leave undef as zero.
184
APInt SplatBits = APInt::getZero(SplatBitWidth);
185
for (unsigned I = 0; I != NumScaleOps; ++I) {
186
if (!Sequence[I])
187
continue;
188
if (std::optional<APInt> Bits = extractConstantBits(Sequence[I])) {
189
SplatBits.insertBits(*Bits, I * Bits->getBitWidth());
190
continue;
191
}
192
return std::nullopt;
193
}
194
return SplatBits;
195
}
196
}
197
198
return std::nullopt;
199
}
200
201
// Split raw bits into a constant vector of elements of a specific bit width.
202
// NOTE: We don't always bother converting to scalars if the vector length is 1.
203
static Constant *rebuildConstant(LLVMContext &Ctx, Type *SclTy,
204
const APInt &Bits, unsigned NumSclBits) {
205
unsigned BitWidth = Bits.getBitWidth();
206
207
if (NumSclBits == 8) {
208
SmallVector<uint8_t> RawBits;
209
for (unsigned I = 0; I != BitWidth; I += 8)
210
RawBits.push_back(Bits.extractBits(8, I).getZExtValue());
211
return ConstantDataVector::get(Ctx, RawBits);
212
}
213
214
if (NumSclBits == 16) {
215
SmallVector<uint16_t> RawBits;
216
for (unsigned I = 0; I != BitWidth; I += 16)
217
RawBits.push_back(Bits.extractBits(16, I).getZExtValue());
218
if (SclTy->is16bitFPTy())
219
return ConstantDataVector::getFP(SclTy, RawBits);
220
return ConstantDataVector::get(Ctx, RawBits);
221
}
222
223
if (NumSclBits == 32) {
224
SmallVector<uint32_t> RawBits;
225
for (unsigned I = 0; I != BitWidth; I += 32)
226
RawBits.push_back(Bits.extractBits(32, I).getZExtValue());
227
if (SclTy->isFloatTy())
228
return ConstantDataVector::getFP(SclTy, RawBits);
229
return ConstantDataVector::get(Ctx, RawBits);
230
}
231
232
assert(NumSclBits == 64 && "Unhandled vector element width");
233
234
SmallVector<uint64_t> RawBits;
235
for (unsigned I = 0; I != BitWidth; I += 64)
236
RawBits.push_back(Bits.extractBits(64, I).getZExtValue());
237
if (SclTy->isDoubleTy())
238
return ConstantDataVector::getFP(SclTy, RawBits);
239
return ConstantDataVector::get(Ctx, RawBits);
240
}
241
242
// Attempt to rebuild a normalized splat vector constant of the requested splat
243
// width, built up of potentially smaller scalar values.
244
static Constant *rebuildSplatCst(const Constant *C, unsigned /*NumBits*/,
245
unsigned /*NumElts*/, unsigned SplatBitWidth) {
246
// TODO: Truncate to NumBits once ConvertToBroadcastAVX512 support this.
247
std::optional<APInt> Splat = getSplatableConstant(C, SplatBitWidth);
248
if (!Splat)
249
return nullptr;
250
251
// Determine scalar size to use for the constant splat vector, clamping as we
252
// might have found a splat smaller than the original constant data.
253
Type *SclTy = C->getType()->getScalarType();
254
unsigned NumSclBits = SclTy->getPrimitiveSizeInBits();
255
NumSclBits = std::min<unsigned>(NumSclBits, SplatBitWidth);
256
257
// Fallback to i64 / double.
258
NumSclBits = (NumSclBits == 8 || NumSclBits == 16 || NumSclBits == 32)
259
? NumSclBits
260
: 64;
261
262
// Extract per-element bits.
263
return rebuildConstant(C->getContext(), SclTy, *Splat, NumSclBits);
264
}
265
266
static Constant *rebuildZeroUpperCst(const Constant *C, unsigned NumBits,
267
unsigned /*NumElts*/,
268
unsigned ScalarBitWidth) {
269
Type *SclTy = C->getType()->getScalarType();
270
unsigned NumSclBits = SclTy->getPrimitiveSizeInBits();
271
LLVMContext &Ctx = C->getContext();
272
273
if (NumBits > ScalarBitWidth) {
274
// Determine if the upper bits are all zero.
275
if (std::optional<APInt> Bits = extractConstantBits(C, NumBits)) {
276
if (Bits->countLeadingZeros() >= (NumBits - ScalarBitWidth)) {
277
// If the original constant was made of smaller elements, try to retain
278
// those types.
279
if (ScalarBitWidth > NumSclBits && (ScalarBitWidth % NumSclBits) == 0)
280
return rebuildConstant(Ctx, SclTy, *Bits, NumSclBits);
281
282
// Fallback to raw integer bits.
283
APInt RawBits = Bits->zextOrTrunc(ScalarBitWidth);
284
return ConstantInt::get(Ctx, RawBits);
285
}
286
}
287
}
288
289
return nullptr;
290
}
291
292
static Constant *rebuildExtCst(const Constant *C, bool IsSExt,
293
unsigned NumBits, unsigned NumElts,
294
unsigned SrcEltBitWidth) {
295
unsigned DstEltBitWidth = NumBits / NumElts;
296
assert((NumBits % NumElts) == 0 && (NumBits % SrcEltBitWidth) == 0 &&
297
(DstEltBitWidth % SrcEltBitWidth) == 0 &&
298
(DstEltBitWidth > SrcEltBitWidth) && "Illegal extension width");
299
300
if (std::optional<APInt> Bits = extractConstantBits(C, NumBits)) {
301
assert((Bits->getBitWidth() / DstEltBitWidth) == NumElts &&
302
(Bits->getBitWidth() % DstEltBitWidth) == 0 &&
303
"Unexpected constant extension");
304
305
// Ensure every vector element can be represented by the src bitwidth.
306
APInt TruncBits = APInt::getZero(NumElts * SrcEltBitWidth);
307
for (unsigned I = 0; I != NumElts; ++I) {
308
APInt Elt = Bits->extractBits(DstEltBitWidth, I * DstEltBitWidth);
309
if ((IsSExt && Elt.getSignificantBits() > SrcEltBitWidth) ||
310
(!IsSExt && Elt.getActiveBits() > SrcEltBitWidth))
311
return nullptr;
312
TruncBits.insertBits(Elt.trunc(SrcEltBitWidth), I * SrcEltBitWidth);
313
}
314
315
Type *Ty = C->getType();
316
return rebuildConstant(Ty->getContext(), Ty->getScalarType(), TruncBits,
317
SrcEltBitWidth);
318
}
319
320
return nullptr;
321
}
322
static Constant *rebuildSExtCst(const Constant *C, unsigned NumBits,
323
unsigned NumElts, unsigned SrcEltBitWidth) {
324
return rebuildExtCst(C, true, NumBits, NumElts, SrcEltBitWidth);
325
}
326
static Constant *rebuildZExtCst(const Constant *C, unsigned NumBits,
327
unsigned NumElts, unsigned SrcEltBitWidth) {
328
return rebuildExtCst(C, false, NumBits, NumElts, SrcEltBitWidth);
329
}
330
331
bool X86FixupVectorConstantsPass::processInstruction(MachineFunction &MF,
332
MachineBasicBlock &MBB,
333
MachineInstr &MI) {
334
unsigned Opc = MI.getOpcode();
335
MachineConstantPool *CP = MI.getParent()->getParent()->getConstantPool();
336
bool HasSSE41 = ST->hasSSE41();
337
bool HasAVX2 = ST->hasAVX2();
338
bool HasDQI = ST->hasDQI();
339
bool HasBWI = ST->hasBWI();
340
bool HasVLX = ST->hasVLX();
341
342
struct FixupEntry {
343
int Op;
344
int NumCstElts;
345
int MemBitWidth;
346
std::function<Constant *(const Constant *, unsigned, unsigned, unsigned)>
347
RebuildConstant;
348
};
349
auto FixupConstant = [&](ArrayRef<FixupEntry> Fixups, unsigned RegBitWidth,
350
unsigned OperandNo) {
351
#ifdef EXPENSIVE_CHECKS
352
assert(llvm::is_sorted(Fixups,
353
[](const FixupEntry &A, const FixupEntry &B) {
354
return (A.NumCstElts * A.MemBitWidth) <
355
(B.NumCstElts * B.MemBitWidth);
356
}) &&
357
"Constant fixup table not sorted in ascending constant size");
358
#endif
359
assert(MI.getNumOperands() >= (OperandNo + X86::AddrNumOperands) &&
360
"Unexpected number of operands!");
361
if (auto *C = X86::getConstantFromPool(MI, OperandNo)) {
362
RegBitWidth =
363
RegBitWidth ? RegBitWidth : C->getType()->getPrimitiveSizeInBits();
364
for (const FixupEntry &Fixup : Fixups) {
365
if (Fixup.Op) {
366
// Construct a suitable constant and adjust the MI to use the new
367
// constant pool entry.
368
if (Constant *NewCst = Fixup.RebuildConstant(
369
C, RegBitWidth, Fixup.NumCstElts, Fixup.MemBitWidth)) {
370
unsigned NewCPI =
371
CP->getConstantPoolIndex(NewCst, Align(Fixup.MemBitWidth / 8));
372
MI.setDesc(TII->get(Fixup.Op));
373
MI.getOperand(OperandNo + X86::AddrDisp).setIndex(NewCPI);
374
return true;
375
}
376
}
377
}
378
}
379
return false;
380
};
381
382
// Attempt to detect a suitable vzload/broadcast/vextload from increasing
383
// constant bitwidths. Prefer vzload/broadcast/vextload for same bitwidth:
384
// - vzload shouldn't ever need a shuffle port to zero the upper elements and
385
// the fp/int domain versions are equally available so we don't introduce a
386
// domain crossing penalty.
387
// - broadcast sometimes need a shuffle port (especially for 8/16-bit
388
// variants), AVX1 only has fp domain broadcasts but AVX2+ have good fp/int
389
// domain equivalents.
390
// - vextload always needs a shuffle port and is only ever int domain.
391
switch (Opc) {
392
/* FP Loads */
393
case X86::MOVAPDrm:
394
case X86::MOVAPSrm:
395
case X86::MOVUPDrm:
396
case X86::MOVUPSrm:
397
// TODO: SSE3 MOVDDUP Handling
398
return FixupConstant({{X86::MOVSSrm, 1, 32, rebuildZeroUpperCst},
399
{X86::MOVSDrm, 1, 64, rebuildZeroUpperCst}},
400
128, 1);
401
case X86::VMOVAPDrm:
402
case X86::VMOVAPSrm:
403
case X86::VMOVUPDrm:
404
case X86::VMOVUPSrm:
405
return FixupConstant({{X86::VMOVSSrm, 1, 32, rebuildZeroUpperCst},
406
{X86::VBROADCASTSSrm, 1, 32, rebuildSplatCst},
407
{X86::VMOVSDrm, 1, 64, rebuildZeroUpperCst},
408
{X86::VMOVDDUPrm, 1, 64, rebuildSplatCst}},
409
128, 1);
410
case X86::VMOVAPDYrm:
411
case X86::VMOVAPSYrm:
412
case X86::VMOVUPDYrm:
413
case X86::VMOVUPSYrm:
414
return FixupConstant({{X86::VBROADCASTSSYrm, 1, 32, rebuildSplatCst},
415
{X86::VBROADCASTSDYrm, 1, 64, rebuildSplatCst},
416
{X86::VBROADCASTF128rm, 1, 128, rebuildSplatCst}},
417
256, 1);
418
case X86::VMOVAPDZ128rm:
419
case X86::VMOVAPSZ128rm:
420
case X86::VMOVUPDZ128rm:
421
case X86::VMOVUPSZ128rm:
422
return FixupConstant({{X86::VMOVSSZrm, 1, 32, rebuildZeroUpperCst},
423
{X86::VBROADCASTSSZ128rm, 1, 32, rebuildSplatCst},
424
{X86::VMOVSDZrm, 1, 64, rebuildZeroUpperCst},
425
{X86::VMOVDDUPZ128rm, 1, 64, rebuildSplatCst}},
426
128, 1);
427
case X86::VMOVAPDZ256rm:
428
case X86::VMOVAPSZ256rm:
429
case X86::VMOVUPDZ256rm:
430
case X86::VMOVUPSZ256rm:
431
return FixupConstant(
432
{{X86::VBROADCASTSSZ256rm, 1, 32, rebuildSplatCst},
433
{X86::VBROADCASTSDZ256rm, 1, 64, rebuildSplatCst},
434
{X86::VBROADCASTF32X4Z256rm, 1, 128, rebuildSplatCst}},
435
256, 1);
436
case X86::VMOVAPDZrm:
437
case X86::VMOVAPSZrm:
438
case X86::VMOVUPDZrm:
439
case X86::VMOVUPSZrm:
440
return FixupConstant({{X86::VBROADCASTSSZrm, 1, 32, rebuildSplatCst},
441
{X86::VBROADCASTSDZrm, 1, 64, rebuildSplatCst},
442
{X86::VBROADCASTF32X4rm, 1, 128, rebuildSplatCst},
443
{X86::VBROADCASTF64X4rm, 1, 256, rebuildSplatCst}},
444
512, 1);
445
/* Integer Loads */
446
case X86::MOVDQArm:
447
case X86::MOVDQUrm: {
448
FixupEntry Fixups[] = {
449
{HasSSE41 ? X86::PMOVSXBQrm : 0, 2, 8, rebuildSExtCst},
450
{HasSSE41 ? X86::PMOVZXBQrm : 0, 2, 8, rebuildZExtCst},
451
{X86::MOVDI2PDIrm, 1, 32, rebuildZeroUpperCst},
452
{HasSSE41 ? X86::PMOVSXBDrm : 0, 4, 8, rebuildSExtCst},
453
{HasSSE41 ? X86::PMOVZXBDrm : 0, 4, 8, rebuildZExtCst},
454
{HasSSE41 ? X86::PMOVSXWQrm : 0, 2, 16, rebuildSExtCst},
455
{HasSSE41 ? X86::PMOVZXWQrm : 0, 2, 16, rebuildZExtCst},
456
{X86::MOVQI2PQIrm, 1, 64, rebuildZeroUpperCst},
457
{HasSSE41 ? X86::PMOVSXBWrm : 0, 8, 8, rebuildSExtCst},
458
{HasSSE41 ? X86::PMOVZXBWrm : 0, 8, 8, rebuildZExtCst},
459
{HasSSE41 ? X86::PMOVSXWDrm : 0, 4, 16, rebuildSExtCst},
460
{HasSSE41 ? X86::PMOVZXWDrm : 0, 4, 16, rebuildZExtCst},
461
{HasSSE41 ? X86::PMOVSXDQrm : 0, 2, 32, rebuildSExtCst},
462
{HasSSE41 ? X86::PMOVZXDQrm : 0, 2, 32, rebuildZExtCst}};
463
return FixupConstant(Fixups, 128, 1);
464
}
465
case X86::VMOVDQArm:
466
case X86::VMOVDQUrm: {
467
FixupEntry Fixups[] = {
468
{HasAVX2 ? X86::VPBROADCASTBrm : 0, 1, 8, rebuildSplatCst},
469
{HasAVX2 ? X86::VPBROADCASTWrm : 0, 1, 16, rebuildSplatCst},
470
{X86::VPMOVSXBQrm, 2, 8, rebuildSExtCst},
471
{X86::VPMOVZXBQrm, 2, 8, rebuildZExtCst},
472
{X86::VMOVDI2PDIrm, 1, 32, rebuildZeroUpperCst},
473
{HasAVX2 ? X86::VPBROADCASTDrm : X86::VBROADCASTSSrm, 1, 32,
474
rebuildSplatCst},
475
{X86::VPMOVSXBDrm, 4, 8, rebuildSExtCst},
476
{X86::VPMOVZXBDrm, 4, 8, rebuildZExtCst},
477
{X86::VPMOVSXWQrm, 2, 16, rebuildSExtCst},
478
{X86::VPMOVZXWQrm, 2, 16, rebuildZExtCst},
479
{X86::VMOVQI2PQIrm, 1, 64, rebuildZeroUpperCst},
480
{HasAVX2 ? X86::VPBROADCASTQrm : X86::VMOVDDUPrm, 1, 64,
481
rebuildSplatCst},
482
{X86::VPMOVSXBWrm, 8, 8, rebuildSExtCst},
483
{X86::VPMOVZXBWrm, 8, 8, rebuildZExtCst},
484
{X86::VPMOVSXWDrm, 4, 16, rebuildSExtCst},
485
{X86::VPMOVZXWDrm, 4, 16, rebuildZExtCst},
486
{X86::VPMOVSXDQrm, 2, 32, rebuildSExtCst},
487
{X86::VPMOVZXDQrm, 2, 32, rebuildZExtCst}};
488
return FixupConstant(Fixups, 128, 1);
489
}
490
case X86::VMOVDQAYrm:
491
case X86::VMOVDQUYrm: {
492
FixupEntry Fixups[] = {
493
{HasAVX2 ? X86::VPBROADCASTBYrm : 0, 1, 8, rebuildSplatCst},
494
{HasAVX2 ? X86::VPBROADCASTWYrm : 0, 1, 16, rebuildSplatCst},
495
{HasAVX2 ? X86::VPBROADCASTDYrm : X86::VBROADCASTSSYrm, 1, 32,
496
rebuildSplatCst},
497
{HasAVX2 ? X86::VPMOVSXBQYrm : 0, 4, 8, rebuildSExtCst},
498
{HasAVX2 ? X86::VPMOVZXBQYrm : 0, 4, 8, rebuildZExtCst},
499
{HasAVX2 ? X86::VPBROADCASTQYrm : X86::VBROADCASTSDYrm, 1, 64,
500
rebuildSplatCst},
501
{HasAVX2 ? X86::VPMOVSXBDYrm : 0, 8, 8, rebuildSExtCst},
502
{HasAVX2 ? X86::VPMOVZXBDYrm : 0, 8, 8, rebuildZExtCst},
503
{HasAVX2 ? X86::VPMOVSXWQYrm : 0, 4, 16, rebuildSExtCst},
504
{HasAVX2 ? X86::VPMOVZXWQYrm : 0, 4, 16, rebuildZExtCst},
505
{HasAVX2 ? X86::VBROADCASTI128rm : X86::VBROADCASTF128rm, 1, 128,
506
rebuildSplatCst},
507
{HasAVX2 ? X86::VPMOVSXBWYrm : 0, 16, 8, rebuildSExtCst},
508
{HasAVX2 ? X86::VPMOVZXBWYrm : 0, 16, 8, rebuildZExtCst},
509
{HasAVX2 ? X86::VPMOVSXWDYrm : 0, 8, 16, rebuildSExtCst},
510
{HasAVX2 ? X86::VPMOVZXWDYrm : 0, 8, 16, rebuildZExtCst},
511
{HasAVX2 ? X86::VPMOVSXDQYrm : 0, 4, 32, rebuildSExtCst},
512
{HasAVX2 ? X86::VPMOVZXDQYrm : 0, 4, 32, rebuildZExtCst}};
513
return FixupConstant(Fixups, 256, 1);
514
}
515
case X86::VMOVDQA32Z128rm:
516
case X86::VMOVDQA64Z128rm:
517
case X86::VMOVDQU32Z128rm:
518
case X86::VMOVDQU64Z128rm: {
519
FixupEntry Fixups[] = {
520
{HasBWI ? X86::VPBROADCASTBZ128rm : 0, 1, 8, rebuildSplatCst},
521
{HasBWI ? X86::VPBROADCASTWZ128rm : 0, 1, 16, rebuildSplatCst},
522
{X86::VPMOVSXBQZ128rm, 2, 8, rebuildSExtCst},
523
{X86::VPMOVZXBQZ128rm, 2, 8, rebuildZExtCst},
524
{X86::VMOVDI2PDIZrm, 1, 32, rebuildZeroUpperCst},
525
{X86::VPBROADCASTDZ128rm, 1, 32, rebuildSplatCst},
526
{X86::VPMOVSXBDZ128rm, 4, 8, rebuildSExtCst},
527
{X86::VPMOVZXBDZ128rm, 4, 8, rebuildZExtCst},
528
{X86::VPMOVSXWQZ128rm, 2, 16, rebuildSExtCst},
529
{X86::VPMOVZXWQZ128rm, 2, 16, rebuildZExtCst},
530
{X86::VMOVQI2PQIZrm, 1, 64, rebuildZeroUpperCst},
531
{X86::VPBROADCASTQZ128rm, 1, 64, rebuildSplatCst},
532
{HasBWI ? X86::VPMOVSXBWZ128rm : 0, 8, 8, rebuildSExtCst},
533
{HasBWI ? X86::VPMOVZXBWZ128rm : 0, 8, 8, rebuildZExtCst},
534
{X86::VPMOVSXWDZ128rm, 4, 16, rebuildSExtCst},
535
{X86::VPMOVZXWDZ128rm, 4, 16, rebuildZExtCst},
536
{X86::VPMOVSXDQZ128rm, 2, 32, rebuildSExtCst},
537
{X86::VPMOVZXDQZ128rm, 2, 32, rebuildZExtCst}};
538
return FixupConstant(Fixups, 128, 1);
539
}
540
case X86::VMOVDQA32Z256rm:
541
case X86::VMOVDQA64Z256rm:
542
case X86::VMOVDQU32Z256rm:
543
case X86::VMOVDQU64Z256rm: {
544
FixupEntry Fixups[] = {
545
{HasBWI ? X86::VPBROADCASTBZ256rm : 0, 1, 8, rebuildSplatCst},
546
{HasBWI ? X86::VPBROADCASTWZ256rm : 0, 1, 16, rebuildSplatCst},
547
{X86::VPBROADCASTDZ256rm, 1, 32, rebuildSplatCst},
548
{X86::VPMOVSXBQZ256rm, 4, 8, rebuildSExtCst},
549
{X86::VPMOVZXBQZ256rm, 4, 8, rebuildZExtCst},
550
{X86::VPBROADCASTQZ256rm, 1, 64, rebuildSplatCst},
551
{X86::VPMOVSXBDZ256rm, 8, 8, rebuildSExtCst},
552
{X86::VPMOVZXBDZ256rm, 8, 8, rebuildZExtCst},
553
{X86::VPMOVSXWQZ256rm, 4, 16, rebuildSExtCst},
554
{X86::VPMOVZXWQZ256rm, 4, 16, rebuildZExtCst},
555
{X86::VBROADCASTI32X4Z256rm, 1, 128, rebuildSplatCst},
556
{HasBWI ? X86::VPMOVSXBWZ256rm : 0, 16, 8, rebuildSExtCst},
557
{HasBWI ? X86::VPMOVZXBWZ256rm : 0, 16, 8, rebuildZExtCst},
558
{X86::VPMOVSXWDZ256rm, 8, 16, rebuildSExtCst},
559
{X86::VPMOVZXWDZ256rm, 8, 16, rebuildZExtCst},
560
{X86::VPMOVSXDQZ256rm, 4, 32, rebuildSExtCst},
561
{X86::VPMOVZXDQZ256rm, 4, 32, rebuildZExtCst}};
562
return FixupConstant(Fixups, 256, 1);
563
}
564
case X86::VMOVDQA32Zrm:
565
case X86::VMOVDQA64Zrm:
566
case X86::VMOVDQU32Zrm:
567
case X86::VMOVDQU64Zrm: {
568
FixupEntry Fixups[] = {
569
{HasBWI ? X86::VPBROADCASTBZrm : 0, 1, 8, rebuildSplatCst},
570
{HasBWI ? X86::VPBROADCASTWZrm : 0, 1, 16, rebuildSplatCst},
571
{X86::VPBROADCASTDZrm, 1, 32, rebuildSplatCst},
572
{X86::VPBROADCASTQZrm, 1, 64, rebuildSplatCst},
573
{X86::VPMOVSXBQZrm, 8, 8, rebuildSExtCst},
574
{X86::VPMOVZXBQZrm, 8, 8, rebuildZExtCst},
575
{X86::VBROADCASTI32X4rm, 1, 128, rebuildSplatCst},
576
{X86::VPMOVSXBDZrm, 16, 8, rebuildSExtCst},
577
{X86::VPMOVZXBDZrm, 16, 8, rebuildZExtCst},
578
{X86::VPMOVSXWQZrm, 8, 16, rebuildSExtCst},
579
{X86::VPMOVZXWQZrm, 8, 16, rebuildZExtCst},
580
{X86::VBROADCASTI64X4rm, 1, 256, rebuildSplatCst},
581
{HasBWI ? X86::VPMOVSXBWZrm : 0, 32, 8, rebuildSExtCst},
582
{HasBWI ? X86::VPMOVZXBWZrm : 0, 32, 8, rebuildZExtCst},
583
{X86::VPMOVSXWDZrm, 16, 16, rebuildSExtCst},
584
{X86::VPMOVZXWDZrm, 16, 16, rebuildZExtCst},
585
{X86::VPMOVSXDQZrm, 8, 32, rebuildSExtCst},
586
{X86::VPMOVZXDQZrm, 8, 32, rebuildZExtCst}};
587
return FixupConstant(Fixups, 512, 1);
588
}
589
}
590
591
auto ConvertToBroadcastAVX512 = [&](unsigned OpSrc32, unsigned OpSrc64) {
592
unsigned OpBcst32 = 0, OpBcst64 = 0;
593
unsigned OpNoBcst32 = 0, OpNoBcst64 = 0;
594
if (OpSrc32) {
595
if (const X86FoldTableEntry *Mem2Bcst =
596
llvm::lookupBroadcastFoldTableBySize(OpSrc32, 32)) {
597
OpBcst32 = Mem2Bcst->DstOp;
598
OpNoBcst32 = Mem2Bcst->Flags & TB_INDEX_MASK;
599
}
600
}
601
if (OpSrc64) {
602
if (const X86FoldTableEntry *Mem2Bcst =
603
llvm::lookupBroadcastFoldTableBySize(OpSrc64, 64)) {
604
OpBcst64 = Mem2Bcst->DstOp;
605
OpNoBcst64 = Mem2Bcst->Flags & TB_INDEX_MASK;
606
}
607
}
608
assert(((OpBcst32 == 0) || (OpBcst64 == 0) || (OpNoBcst32 == OpNoBcst64)) &&
609
"OperandNo mismatch");
610
611
if (OpBcst32 || OpBcst64) {
612
unsigned OpNo = OpBcst32 == 0 ? OpNoBcst64 : OpNoBcst32;
613
FixupEntry Fixups[] = {{(int)OpBcst32, 32, 32, rebuildSplatCst},
614
{(int)OpBcst64, 64, 64, rebuildSplatCst}};
615
// TODO: Add support for RegBitWidth, but currently rebuildSplatCst
616
// doesn't require it (defaults to Constant::getPrimitiveSizeInBits).
617
return FixupConstant(Fixups, 0, OpNo);
618
}
619
return false;
620
};
621
622
// Attempt to find a AVX512 mapping from a full width memory-fold instruction
623
// to a broadcast-fold instruction variant.
624
if ((MI.getDesc().TSFlags & X86II::EncodingMask) == X86II::EVEX)
625
return ConvertToBroadcastAVX512(Opc, Opc);
626
627
// Reverse the X86InstrInfo::setExecutionDomainCustom EVEX->VEX logic
628
// conversion to see if we can convert to a broadcasted (integer) logic op.
629
if (HasVLX && !HasDQI) {
630
unsigned OpSrc32 = 0, OpSrc64 = 0;
631
switch (Opc) {
632
case X86::VANDPDrm:
633
case X86::VANDPSrm:
634
case X86::VPANDrm:
635
OpSrc32 = X86 ::VPANDDZ128rm;
636
OpSrc64 = X86 ::VPANDQZ128rm;
637
break;
638
case X86::VANDPDYrm:
639
case X86::VANDPSYrm:
640
case X86::VPANDYrm:
641
OpSrc32 = X86 ::VPANDDZ256rm;
642
OpSrc64 = X86 ::VPANDQZ256rm;
643
break;
644
case X86::VANDNPDrm:
645
case X86::VANDNPSrm:
646
case X86::VPANDNrm:
647
OpSrc32 = X86 ::VPANDNDZ128rm;
648
OpSrc64 = X86 ::VPANDNQZ128rm;
649
break;
650
case X86::VANDNPDYrm:
651
case X86::VANDNPSYrm:
652
case X86::VPANDNYrm:
653
OpSrc32 = X86 ::VPANDNDZ256rm;
654
OpSrc64 = X86 ::VPANDNQZ256rm;
655
break;
656
case X86::VORPDrm:
657
case X86::VORPSrm:
658
case X86::VPORrm:
659
OpSrc32 = X86 ::VPORDZ128rm;
660
OpSrc64 = X86 ::VPORQZ128rm;
661
break;
662
case X86::VORPDYrm:
663
case X86::VORPSYrm:
664
case X86::VPORYrm:
665
OpSrc32 = X86 ::VPORDZ256rm;
666
OpSrc64 = X86 ::VPORQZ256rm;
667
break;
668
case X86::VXORPDrm:
669
case X86::VXORPSrm:
670
case X86::VPXORrm:
671
OpSrc32 = X86 ::VPXORDZ128rm;
672
OpSrc64 = X86 ::VPXORQZ128rm;
673
break;
674
case X86::VXORPDYrm:
675
case X86::VXORPSYrm:
676
case X86::VPXORYrm:
677
OpSrc32 = X86 ::VPXORDZ256rm;
678
OpSrc64 = X86 ::VPXORQZ256rm;
679
break;
680
}
681
if (OpSrc32 || OpSrc64)
682
return ConvertToBroadcastAVX512(OpSrc32, OpSrc64);
683
}
684
685
return false;
686
}
687
688
bool X86FixupVectorConstantsPass::runOnMachineFunction(MachineFunction &MF) {
689
LLVM_DEBUG(dbgs() << "Start X86FixupVectorConstants\n";);
690
bool Changed = false;
691
ST = &MF.getSubtarget<X86Subtarget>();
692
TII = ST->getInstrInfo();
693
SM = &ST->getSchedModel();
694
695
for (MachineBasicBlock &MBB : MF) {
696
for (MachineInstr &MI : MBB) {
697
if (processInstruction(MF, MBB, MI)) {
698
++NumInstChanges;
699
Changed = true;
700
}
701
}
702
}
703
LLVM_DEBUG(dbgs() << "End X86FixupVectorConstants\n";);
704
return Changed;
705
}
706
707