Path: blob/main/contrib/llvm-project/llvm/lib/Target/X86/X86FixupVectorConstants.cpp
35269 views
//===-- X86FixupVectorConstants.cpp - optimize constant generation -------===//1//2// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.3// See https://llvm.org/LICENSE.txt for license information.4// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception5//6//===----------------------------------------------------------------------===//7//8// This file examines all full size vector constant pool loads and attempts to9// replace them with smaller constant pool entries, including:10// * Converting AVX512 memory-fold instructions to their broadcast-fold form.11// * Using vzload scalar loads.12// * Broadcasting of full width loads.13// * Sign/Zero extension of full width loads.14//15//===----------------------------------------------------------------------===//1617#include "X86.h"18#include "X86InstrFoldTables.h"19#include "X86InstrInfo.h"20#include "X86Subtarget.h"21#include "llvm/ADT/Statistic.h"22#include "llvm/CodeGen/MachineConstantPool.h"2324using namespace llvm;2526#define DEBUG_TYPE "x86-fixup-vector-constants"2728STATISTIC(NumInstChanges, "Number of instructions changes");2930namespace {31class X86FixupVectorConstantsPass : public MachineFunctionPass {32public:33static char ID;3435X86FixupVectorConstantsPass() : MachineFunctionPass(ID) {}3637StringRef getPassName() const override {38return "X86 Fixup Vector Constants";39}4041bool runOnMachineFunction(MachineFunction &MF) override;42bool processInstruction(MachineFunction &MF, MachineBasicBlock &MBB,43MachineInstr &MI);4445// This pass runs after regalloc and doesn't support VReg operands.46MachineFunctionProperties getRequiredProperties() const override {47return MachineFunctionProperties().set(48MachineFunctionProperties::Property::NoVRegs);49}5051private:52const X86InstrInfo *TII = nullptr;53const X86Subtarget *ST = nullptr;54const MCSchedModel *SM = nullptr;55};56} // end anonymous namespace5758char X86FixupVectorConstantsPass::ID = 0;5960INITIALIZE_PASS(X86FixupVectorConstantsPass, DEBUG_TYPE, DEBUG_TYPE, false, false)6162FunctionPass *llvm::createX86FixupVectorConstants() {63return new X86FixupVectorConstantsPass();64}6566/// Normally, we only allow poison in vector splats. However, as this is part67/// of the backend, and working with the DAG representation, which currently68/// only natively represents undef values, we need to accept undefs here.69static Constant *getSplatValueAllowUndef(const ConstantVector *C) {70Constant *Res = nullptr;71for (Value *Op : C->operands()) {72Constant *OpC = cast<Constant>(Op);73if (isa<UndefValue>(OpC))74continue;75if (!Res)76Res = OpC;77else if (Res != OpC)78return nullptr;79}80return Res;81}8283// Attempt to extract the full width of bits data from the constant.84static std::optional<APInt> extractConstantBits(const Constant *C) {85unsigned NumBits = C->getType()->getPrimitiveSizeInBits();8687if (isa<UndefValue>(C))88return APInt::getZero(NumBits);8990if (auto *CInt = dyn_cast<ConstantInt>(C))91return CInt->getValue();9293if (auto *CFP = dyn_cast<ConstantFP>(C))94return CFP->getValue().bitcastToAPInt();9596if (auto *CV = dyn_cast<ConstantVector>(C)) {97if (auto *CVSplat = getSplatValueAllowUndef(CV)) {98if (std::optional<APInt> Bits = extractConstantBits(CVSplat)) {99assert((NumBits % Bits->getBitWidth()) == 0 && "Illegal splat");100return APInt::getSplat(NumBits, *Bits);101}102}103104APInt Bits = APInt::getZero(NumBits);105for (unsigned I = 0, E = CV->getNumOperands(); I != E; ++I) {106Constant *Elt = CV->getOperand(I);107std::optional<APInt> SubBits = extractConstantBits(Elt);108if (!SubBits)109return std::nullopt;110assert(NumBits == (E * SubBits->getBitWidth()) &&111"Illegal vector element size");112Bits.insertBits(*SubBits, I * SubBits->getBitWidth());113}114return Bits;115}116117if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {118bool IsInteger = CDS->getElementType()->isIntegerTy();119bool IsFloat = CDS->getElementType()->isHalfTy() ||120CDS->getElementType()->isBFloatTy() ||121CDS->getElementType()->isFloatTy() ||122CDS->getElementType()->isDoubleTy();123if (IsInteger || IsFloat) {124APInt Bits = APInt::getZero(NumBits);125unsigned EltBits = CDS->getElementType()->getPrimitiveSizeInBits();126for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {127if (IsInteger)128Bits.insertBits(CDS->getElementAsAPInt(I), I * EltBits);129else130Bits.insertBits(CDS->getElementAsAPFloat(I).bitcastToAPInt(),131I * EltBits);132}133return Bits;134}135}136137return std::nullopt;138}139140static std::optional<APInt> extractConstantBits(const Constant *C,141unsigned NumBits) {142if (std::optional<APInt> Bits = extractConstantBits(C))143return Bits->zextOrTrunc(NumBits);144return std::nullopt;145}146147// Attempt to compute the splat width of bits data by normalizing the splat to148// remove undefs.149static std::optional<APInt> getSplatableConstant(const Constant *C,150unsigned SplatBitWidth) {151const Type *Ty = C->getType();152assert((Ty->getPrimitiveSizeInBits() % SplatBitWidth) == 0 &&153"Illegal splat width");154155if (std::optional<APInt> Bits = extractConstantBits(C))156if (Bits->isSplat(SplatBitWidth))157return Bits->trunc(SplatBitWidth);158159// Detect general splats with undefs.160// TODO: Do we need to handle NumEltsBits > SplatBitWidth splitting?161if (auto *CV = dyn_cast<ConstantVector>(C)) {162unsigned NumOps = CV->getNumOperands();163unsigned NumEltsBits = Ty->getScalarSizeInBits();164unsigned NumScaleOps = SplatBitWidth / NumEltsBits;165if ((SplatBitWidth % NumEltsBits) == 0) {166// Collect the elements and ensure that within the repeated splat sequence167// they either match or are undef.168SmallVector<Constant *, 16> Sequence(NumScaleOps, nullptr);169for (unsigned Idx = 0; Idx != NumOps; ++Idx) {170if (Constant *Elt = CV->getAggregateElement(Idx)) {171if (isa<UndefValue>(Elt))172continue;173unsigned SplatIdx = Idx % NumScaleOps;174if (!Sequence[SplatIdx] || Sequence[SplatIdx] == Elt) {175Sequence[SplatIdx] = Elt;176continue;177}178}179return std::nullopt;180}181// Extract the constant bits forming the splat and insert into the bits182// data, leave undef as zero.183APInt SplatBits = APInt::getZero(SplatBitWidth);184for (unsigned I = 0; I != NumScaleOps; ++I) {185if (!Sequence[I])186continue;187if (std::optional<APInt> Bits = extractConstantBits(Sequence[I])) {188SplatBits.insertBits(*Bits, I * Bits->getBitWidth());189continue;190}191return std::nullopt;192}193return SplatBits;194}195}196197return std::nullopt;198}199200// Split raw bits into a constant vector of elements of a specific bit width.201// NOTE: We don't always bother converting to scalars if the vector length is 1.202static Constant *rebuildConstant(LLVMContext &Ctx, Type *SclTy,203const APInt &Bits, unsigned NumSclBits) {204unsigned BitWidth = Bits.getBitWidth();205206if (NumSclBits == 8) {207SmallVector<uint8_t> RawBits;208for (unsigned I = 0; I != BitWidth; I += 8)209RawBits.push_back(Bits.extractBits(8, I).getZExtValue());210return ConstantDataVector::get(Ctx, RawBits);211}212213if (NumSclBits == 16) {214SmallVector<uint16_t> RawBits;215for (unsigned I = 0; I != BitWidth; I += 16)216RawBits.push_back(Bits.extractBits(16, I).getZExtValue());217if (SclTy->is16bitFPTy())218return ConstantDataVector::getFP(SclTy, RawBits);219return ConstantDataVector::get(Ctx, RawBits);220}221222if (NumSclBits == 32) {223SmallVector<uint32_t> RawBits;224for (unsigned I = 0; I != BitWidth; I += 32)225RawBits.push_back(Bits.extractBits(32, I).getZExtValue());226if (SclTy->isFloatTy())227return ConstantDataVector::getFP(SclTy, RawBits);228return ConstantDataVector::get(Ctx, RawBits);229}230231assert(NumSclBits == 64 && "Unhandled vector element width");232233SmallVector<uint64_t> RawBits;234for (unsigned I = 0; I != BitWidth; I += 64)235RawBits.push_back(Bits.extractBits(64, I).getZExtValue());236if (SclTy->isDoubleTy())237return ConstantDataVector::getFP(SclTy, RawBits);238return ConstantDataVector::get(Ctx, RawBits);239}240241// Attempt to rebuild a normalized splat vector constant of the requested splat242// width, built up of potentially smaller scalar values.243static Constant *rebuildSplatCst(const Constant *C, unsigned /*NumBits*/,244unsigned /*NumElts*/, unsigned SplatBitWidth) {245// TODO: Truncate to NumBits once ConvertToBroadcastAVX512 support this.246std::optional<APInt> Splat = getSplatableConstant(C, SplatBitWidth);247if (!Splat)248return nullptr;249250// Determine scalar size to use for the constant splat vector, clamping as we251// might have found a splat smaller than the original constant data.252Type *SclTy = C->getType()->getScalarType();253unsigned NumSclBits = SclTy->getPrimitiveSizeInBits();254NumSclBits = std::min<unsigned>(NumSclBits, SplatBitWidth);255256// Fallback to i64 / double.257NumSclBits = (NumSclBits == 8 || NumSclBits == 16 || NumSclBits == 32)258? NumSclBits259: 64;260261// Extract per-element bits.262return rebuildConstant(C->getContext(), SclTy, *Splat, NumSclBits);263}264265static Constant *rebuildZeroUpperCst(const Constant *C, unsigned NumBits,266unsigned /*NumElts*/,267unsigned ScalarBitWidth) {268Type *SclTy = C->getType()->getScalarType();269unsigned NumSclBits = SclTy->getPrimitiveSizeInBits();270LLVMContext &Ctx = C->getContext();271272if (NumBits > ScalarBitWidth) {273// Determine if the upper bits are all zero.274if (std::optional<APInt> Bits = extractConstantBits(C, NumBits)) {275if (Bits->countLeadingZeros() >= (NumBits - ScalarBitWidth)) {276// If the original constant was made of smaller elements, try to retain277// those types.278if (ScalarBitWidth > NumSclBits && (ScalarBitWidth % NumSclBits) == 0)279return rebuildConstant(Ctx, SclTy, *Bits, NumSclBits);280281// Fallback to raw integer bits.282APInt RawBits = Bits->zextOrTrunc(ScalarBitWidth);283return ConstantInt::get(Ctx, RawBits);284}285}286}287288return nullptr;289}290291static Constant *rebuildExtCst(const Constant *C, bool IsSExt,292unsigned NumBits, unsigned NumElts,293unsigned SrcEltBitWidth) {294unsigned DstEltBitWidth = NumBits / NumElts;295assert((NumBits % NumElts) == 0 && (NumBits % SrcEltBitWidth) == 0 &&296(DstEltBitWidth % SrcEltBitWidth) == 0 &&297(DstEltBitWidth > SrcEltBitWidth) && "Illegal extension width");298299if (std::optional<APInt> Bits = extractConstantBits(C, NumBits)) {300assert((Bits->getBitWidth() / DstEltBitWidth) == NumElts &&301(Bits->getBitWidth() % DstEltBitWidth) == 0 &&302"Unexpected constant extension");303304// Ensure every vector element can be represented by the src bitwidth.305APInt TruncBits = APInt::getZero(NumElts * SrcEltBitWidth);306for (unsigned I = 0; I != NumElts; ++I) {307APInt Elt = Bits->extractBits(DstEltBitWidth, I * DstEltBitWidth);308if ((IsSExt && Elt.getSignificantBits() > SrcEltBitWidth) ||309(!IsSExt && Elt.getActiveBits() > SrcEltBitWidth))310return nullptr;311TruncBits.insertBits(Elt.trunc(SrcEltBitWidth), I * SrcEltBitWidth);312}313314Type *Ty = C->getType();315return rebuildConstant(Ty->getContext(), Ty->getScalarType(), TruncBits,316SrcEltBitWidth);317}318319return nullptr;320}321static Constant *rebuildSExtCst(const Constant *C, unsigned NumBits,322unsigned NumElts, unsigned SrcEltBitWidth) {323return rebuildExtCst(C, true, NumBits, NumElts, SrcEltBitWidth);324}325static Constant *rebuildZExtCst(const Constant *C, unsigned NumBits,326unsigned NumElts, unsigned SrcEltBitWidth) {327return rebuildExtCst(C, false, NumBits, NumElts, SrcEltBitWidth);328}329330bool X86FixupVectorConstantsPass::processInstruction(MachineFunction &MF,331MachineBasicBlock &MBB,332MachineInstr &MI) {333unsigned Opc = MI.getOpcode();334MachineConstantPool *CP = MI.getParent()->getParent()->getConstantPool();335bool HasSSE41 = ST->hasSSE41();336bool HasAVX2 = ST->hasAVX2();337bool HasDQI = ST->hasDQI();338bool HasBWI = ST->hasBWI();339bool HasVLX = ST->hasVLX();340341struct FixupEntry {342int Op;343int NumCstElts;344int MemBitWidth;345std::function<Constant *(const Constant *, unsigned, unsigned, unsigned)>346RebuildConstant;347};348auto FixupConstant = [&](ArrayRef<FixupEntry> Fixups, unsigned RegBitWidth,349unsigned OperandNo) {350#ifdef EXPENSIVE_CHECKS351assert(llvm::is_sorted(Fixups,352[](const FixupEntry &A, const FixupEntry &B) {353return (A.NumCstElts * A.MemBitWidth) <354(B.NumCstElts * B.MemBitWidth);355}) &&356"Constant fixup table not sorted in ascending constant size");357#endif358assert(MI.getNumOperands() >= (OperandNo + X86::AddrNumOperands) &&359"Unexpected number of operands!");360if (auto *C = X86::getConstantFromPool(MI, OperandNo)) {361RegBitWidth =362RegBitWidth ? RegBitWidth : C->getType()->getPrimitiveSizeInBits();363for (const FixupEntry &Fixup : Fixups) {364if (Fixup.Op) {365// Construct a suitable constant and adjust the MI to use the new366// constant pool entry.367if (Constant *NewCst = Fixup.RebuildConstant(368C, RegBitWidth, Fixup.NumCstElts, Fixup.MemBitWidth)) {369unsigned NewCPI =370CP->getConstantPoolIndex(NewCst, Align(Fixup.MemBitWidth / 8));371MI.setDesc(TII->get(Fixup.Op));372MI.getOperand(OperandNo + X86::AddrDisp).setIndex(NewCPI);373return true;374}375}376}377}378return false;379};380381// Attempt to detect a suitable vzload/broadcast/vextload from increasing382// constant bitwidths. Prefer vzload/broadcast/vextload for same bitwidth:383// - vzload shouldn't ever need a shuffle port to zero the upper elements and384// the fp/int domain versions are equally available so we don't introduce a385// domain crossing penalty.386// - broadcast sometimes need a shuffle port (especially for 8/16-bit387// variants), AVX1 only has fp domain broadcasts but AVX2+ have good fp/int388// domain equivalents.389// - vextload always needs a shuffle port and is only ever int domain.390switch (Opc) {391/* FP Loads */392case X86::MOVAPDrm:393case X86::MOVAPSrm:394case X86::MOVUPDrm:395case X86::MOVUPSrm:396// TODO: SSE3 MOVDDUP Handling397return FixupConstant({{X86::MOVSSrm, 1, 32, rebuildZeroUpperCst},398{X86::MOVSDrm, 1, 64, rebuildZeroUpperCst}},399128, 1);400case X86::VMOVAPDrm:401case X86::VMOVAPSrm:402case X86::VMOVUPDrm:403case X86::VMOVUPSrm:404return FixupConstant({{X86::VMOVSSrm, 1, 32, rebuildZeroUpperCst},405{X86::VBROADCASTSSrm, 1, 32, rebuildSplatCst},406{X86::VMOVSDrm, 1, 64, rebuildZeroUpperCst},407{X86::VMOVDDUPrm, 1, 64, rebuildSplatCst}},408128, 1);409case X86::VMOVAPDYrm:410case X86::VMOVAPSYrm:411case X86::VMOVUPDYrm:412case X86::VMOVUPSYrm:413return FixupConstant({{X86::VBROADCASTSSYrm, 1, 32, rebuildSplatCst},414{X86::VBROADCASTSDYrm, 1, 64, rebuildSplatCst},415{X86::VBROADCASTF128rm, 1, 128, rebuildSplatCst}},416256, 1);417case X86::VMOVAPDZ128rm:418case X86::VMOVAPSZ128rm:419case X86::VMOVUPDZ128rm:420case X86::VMOVUPSZ128rm:421return FixupConstant({{X86::VMOVSSZrm, 1, 32, rebuildZeroUpperCst},422{X86::VBROADCASTSSZ128rm, 1, 32, rebuildSplatCst},423{X86::VMOVSDZrm, 1, 64, rebuildZeroUpperCst},424{X86::VMOVDDUPZ128rm, 1, 64, rebuildSplatCst}},425128, 1);426case X86::VMOVAPDZ256rm:427case X86::VMOVAPSZ256rm:428case X86::VMOVUPDZ256rm:429case X86::VMOVUPSZ256rm:430return FixupConstant(431{{X86::VBROADCASTSSZ256rm, 1, 32, rebuildSplatCst},432{X86::VBROADCASTSDZ256rm, 1, 64, rebuildSplatCst},433{X86::VBROADCASTF32X4Z256rm, 1, 128, rebuildSplatCst}},434256, 1);435case X86::VMOVAPDZrm:436case X86::VMOVAPSZrm:437case X86::VMOVUPDZrm:438case X86::VMOVUPSZrm:439return FixupConstant({{X86::VBROADCASTSSZrm, 1, 32, rebuildSplatCst},440{X86::VBROADCASTSDZrm, 1, 64, rebuildSplatCst},441{X86::VBROADCASTF32X4rm, 1, 128, rebuildSplatCst},442{X86::VBROADCASTF64X4rm, 1, 256, rebuildSplatCst}},443512, 1);444/* Integer Loads */445case X86::MOVDQArm:446case X86::MOVDQUrm: {447FixupEntry Fixups[] = {448{HasSSE41 ? X86::PMOVSXBQrm : 0, 2, 8, rebuildSExtCst},449{HasSSE41 ? X86::PMOVZXBQrm : 0, 2, 8, rebuildZExtCst},450{X86::MOVDI2PDIrm, 1, 32, rebuildZeroUpperCst},451{HasSSE41 ? X86::PMOVSXBDrm : 0, 4, 8, rebuildSExtCst},452{HasSSE41 ? X86::PMOVZXBDrm : 0, 4, 8, rebuildZExtCst},453{HasSSE41 ? X86::PMOVSXWQrm : 0, 2, 16, rebuildSExtCst},454{HasSSE41 ? X86::PMOVZXWQrm : 0, 2, 16, rebuildZExtCst},455{X86::MOVQI2PQIrm, 1, 64, rebuildZeroUpperCst},456{HasSSE41 ? X86::PMOVSXBWrm : 0, 8, 8, rebuildSExtCst},457{HasSSE41 ? X86::PMOVZXBWrm : 0, 8, 8, rebuildZExtCst},458{HasSSE41 ? X86::PMOVSXWDrm : 0, 4, 16, rebuildSExtCst},459{HasSSE41 ? X86::PMOVZXWDrm : 0, 4, 16, rebuildZExtCst},460{HasSSE41 ? X86::PMOVSXDQrm : 0, 2, 32, rebuildSExtCst},461{HasSSE41 ? X86::PMOVZXDQrm : 0, 2, 32, rebuildZExtCst}};462return FixupConstant(Fixups, 128, 1);463}464case X86::VMOVDQArm:465case X86::VMOVDQUrm: {466FixupEntry Fixups[] = {467{HasAVX2 ? X86::VPBROADCASTBrm : 0, 1, 8, rebuildSplatCst},468{HasAVX2 ? X86::VPBROADCASTWrm : 0, 1, 16, rebuildSplatCst},469{X86::VPMOVSXBQrm, 2, 8, rebuildSExtCst},470{X86::VPMOVZXBQrm, 2, 8, rebuildZExtCst},471{X86::VMOVDI2PDIrm, 1, 32, rebuildZeroUpperCst},472{HasAVX2 ? X86::VPBROADCASTDrm : X86::VBROADCASTSSrm, 1, 32,473rebuildSplatCst},474{X86::VPMOVSXBDrm, 4, 8, rebuildSExtCst},475{X86::VPMOVZXBDrm, 4, 8, rebuildZExtCst},476{X86::VPMOVSXWQrm, 2, 16, rebuildSExtCst},477{X86::VPMOVZXWQrm, 2, 16, rebuildZExtCst},478{X86::VMOVQI2PQIrm, 1, 64, rebuildZeroUpperCst},479{HasAVX2 ? X86::VPBROADCASTQrm : X86::VMOVDDUPrm, 1, 64,480rebuildSplatCst},481{X86::VPMOVSXBWrm, 8, 8, rebuildSExtCst},482{X86::VPMOVZXBWrm, 8, 8, rebuildZExtCst},483{X86::VPMOVSXWDrm, 4, 16, rebuildSExtCst},484{X86::VPMOVZXWDrm, 4, 16, rebuildZExtCst},485{X86::VPMOVSXDQrm, 2, 32, rebuildSExtCst},486{X86::VPMOVZXDQrm, 2, 32, rebuildZExtCst}};487return FixupConstant(Fixups, 128, 1);488}489case X86::VMOVDQAYrm:490case X86::VMOVDQUYrm: {491FixupEntry Fixups[] = {492{HasAVX2 ? X86::VPBROADCASTBYrm : 0, 1, 8, rebuildSplatCst},493{HasAVX2 ? X86::VPBROADCASTWYrm : 0, 1, 16, rebuildSplatCst},494{HasAVX2 ? X86::VPBROADCASTDYrm : X86::VBROADCASTSSYrm, 1, 32,495rebuildSplatCst},496{HasAVX2 ? X86::VPMOVSXBQYrm : 0, 4, 8, rebuildSExtCst},497{HasAVX2 ? X86::VPMOVZXBQYrm : 0, 4, 8, rebuildZExtCst},498{HasAVX2 ? X86::VPBROADCASTQYrm : X86::VBROADCASTSDYrm, 1, 64,499rebuildSplatCst},500{HasAVX2 ? X86::VPMOVSXBDYrm : 0, 8, 8, rebuildSExtCst},501{HasAVX2 ? X86::VPMOVZXBDYrm : 0, 8, 8, rebuildZExtCst},502{HasAVX2 ? X86::VPMOVSXWQYrm : 0, 4, 16, rebuildSExtCst},503{HasAVX2 ? X86::VPMOVZXWQYrm : 0, 4, 16, rebuildZExtCst},504{HasAVX2 ? X86::VBROADCASTI128rm : X86::VBROADCASTF128rm, 1, 128,505rebuildSplatCst},506{HasAVX2 ? X86::VPMOVSXBWYrm : 0, 16, 8, rebuildSExtCst},507{HasAVX2 ? X86::VPMOVZXBWYrm : 0, 16, 8, rebuildZExtCst},508{HasAVX2 ? X86::VPMOVSXWDYrm : 0, 8, 16, rebuildSExtCst},509{HasAVX2 ? X86::VPMOVZXWDYrm : 0, 8, 16, rebuildZExtCst},510{HasAVX2 ? X86::VPMOVSXDQYrm : 0, 4, 32, rebuildSExtCst},511{HasAVX2 ? X86::VPMOVZXDQYrm : 0, 4, 32, rebuildZExtCst}};512return FixupConstant(Fixups, 256, 1);513}514case X86::VMOVDQA32Z128rm:515case X86::VMOVDQA64Z128rm:516case X86::VMOVDQU32Z128rm:517case X86::VMOVDQU64Z128rm: {518FixupEntry Fixups[] = {519{HasBWI ? X86::VPBROADCASTBZ128rm : 0, 1, 8, rebuildSplatCst},520{HasBWI ? X86::VPBROADCASTWZ128rm : 0, 1, 16, rebuildSplatCst},521{X86::VPMOVSXBQZ128rm, 2, 8, rebuildSExtCst},522{X86::VPMOVZXBQZ128rm, 2, 8, rebuildZExtCst},523{X86::VMOVDI2PDIZrm, 1, 32, rebuildZeroUpperCst},524{X86::VPBROADCASTDZ128rm, 1, 32, rebuildSplatCst},525{X86::VPMOVSXBDZ128rm, 4, 8, rebuildSExtCst},526{X86::VPMOVZXBDZ128rm, 4, 8, rebuildZExtCst},527{X86::VPMOVSXWQZ128rm, 2, 16, rebuildSExtCst},528{X86::VPMOVZXWQZ128rm, 2, 16, rebuildZExtCst},529{X86::VMOVQI2PQIZrm, 1, 64, rebuildZeroUpperCst},530{X86::VPBROADCASTQZ128rm, 1, 64, rebuildSplatCst},531{HasBWI ? X86::VPMOVSXBWZ128rm : 0, 8, 8, rebuildSExtCst},532{HasBWI ? X86::VPMOVZXBWZ128rm : 0, 8, 8, rebuildZExtCst},533{X86::VPMOVSXWDZ128rm, 4, 16, rebuildSExtCst},534{X86::VPMOVZXWDZ128rm, 4, 16, rebuildZExtCst},535{X86::VPMOVSXDQZ128rm, 2, 32, rebuildSExtCst},536{X86::VPMOVZXDQZ128rm, 2, 32, rebuildZExtCst}};537return FixupConstant(Fixups, 128, 1);538}539case X86::VMOVDQA32Z256rm:540case X86::VMOVDQA64Z256rm:541case X86::VMOVDQU32Z256rm:542case X86::VMOVDQU64Z256rm: {543FixupEntry Fixups[] = {544{HasBWI ? X86::VPBROADCASTBZ256rm : 0, 1, 8, rebuildSplatCst},545{HasBWI ? X86::VPBROADCASTWZ256rm : 0, 1, 16, rebuildSplatCst},546{X86::VPBROADCASTDZ256rm, 1, 32, rebuildSplatCst},547{X86::VPMOVSXBQZ256rm, 4, 8, rebuildSExtCst},548{X86::VPMOVZXBQZ256rm, 4, 8, rebuildZExtCst},549{X86::VPBROADCASTQZ256rm, 1, 64, rebuildSplatCst},550{X86::VPMOVSXBDZ256rm, 8, 8, rebuildSExtCst},551{X86::VPMOVZXBDZ256rm, 8, 8, rebuildZExtCst},552{X86::VPMOVSXWQZ256rm, 4, 16, rebuildSExtCst},553{X86::VPMOVZXWQZ256rm, 4, 16, rebuildZExtCst},554{X86::VBROADCASTI32X4Z256rm, 1, 128, rebuildSplatCst},555{HasBWI ? X86::VPMOVSXBWZ256rm : 0, 16, 8, rebuildSExtCst},556{HasBWI ? X86::VPMOVZXBWZ256rm : 0, 16, 8, rebuildZExtCst},557{X86::VPMOVSXWDZ256rm, 8, 16, rebuildSExtCst},558{X86::VPMOVZXWDZ256rm, 8, 16, rebuildZExtCst},559{X86::VPMOVSXDQZ256rm, 4, 32, rebuildSExtCst},560{X86::VPMOVZXDQZ256rm, 4, 32, rebuildZExtCst}};561return FixupConstant(Fixups, 256, 1);562}563case X86::VMOVDQA32Zrm:564case X86::VMOVDQA64Zrm:565case X86::VMOVDQU32Zrm:566case X86::VMOVDQU64Zrm: {567FixupEntry Fixups[] = {568{HasBWI ? X86::VPBROADCASTBZrm : 0, 1, 8, rebuildSplatCst},569{HasBWI ? X86::VPBROADCASTWZrm : 0, 1, 16, rebuildSplatCst},570{X86::VPBROADCASTDZrm, 1, 32, rebuildSplatCst},571{X86::VPBROADCASTQZrm, 1, 64, rebuildSplatCst},572{X86::VPMOVSXBQZrm, 8, 8, rebuildSExtCst},573{X86::VPMOVZXBQZrm, 8, 8, rebuildZExtCst},574{X86::VBROADCASTI32X4rm, 1, 128, rebuildSplatCst},575{X86::VPMOVSXBDZrm, 16, 8, rebuildSExtCst},576{X86::VPMOVZXBDZrm, 16, 8, rebuildZExtCst},577{X86::VPMOVSXWQZrm, 8, 16, rebuildSExtCst},578{X86::VPMOVZXWQZrm, 8, 16, rebuildZExtCst},579{X86::VBROADCASTI64X4rm, 1, 256, rebuildSplatCst},580{HasBWI ? X86::VPMOVSXBWZrm : 0, 32, 8, rebuildSExtCst},581{HasBWI ? X86::VPMOVZXBWZrm : 0, 32, 8, rebuildZExtCst},582{X86::VPMOVSXWDZrm, 16, 16, rebuildSExtCst},583{X86::VPMOVZXWDZrm, 16, 16, rebuildZExtCst},584{X86::VPMOVSXDQZrm, 8, 32, rebuildSExtCst},585{X86::VPMOVZXDQZrm, 8, 32, rebuildZExtCst}};586return FixupConstant(Fixups, 512, 1);587}588}589590auto ConvertToBroadcastAVX512 = [&](unsigned OpSrc32, unsigned OpSrc64) {591unsigned OpBcst32 = 0, OpBcst64 = 0;592unsigned OpNoBcst32 = 0, OpNoBcst64 = 0;593if (OpSrc32) {594if (const X86FoldTableEntry *Mem2Bcst =595llvm::lookupBroadcastFoldTableBySize(OpSrc32, 32)) {596OpBcst32 = Mem2Bcst->DstOp;597OpNoBcst32 = Mem2Bcst->Flags & TB_INDEX_MASK;598}599}600if (OpSrc64) {601if (const X86FoldTableEntry *Mem2Bcst =602llvm::lookupBroadcastFoldTableBySize(OpSrc64, 64)) {603OpBcst64 = Mem2Bcst->DstOp;604OpNoBcst64 = Mem2Bcst->Flags & TB_INDEX_MASK;605}606}607assert(((OpBcst32 == 0) || (OpBcst64 == 0) || (OpNoBcst32 == OpNoBcst64)) &&608"OperandNo mismatch");609610if (OpBcst32 || OpBcst64) {611unsigned OpNo = OpBcst32 == 0 ? OpNoBcst64 : OpNoBcst32;612FixupEntry Fixups[] = {{(int)OpBcst32, 32, 32, rebuildSplatCst},613{(int)OpBcst64, 64, 64, rebuildSplatCst}};614// TODO: Add support for RegBitWidth, but currently rebuildSplatCst615// doesn't require it (defaults to Constant::getPrimitiveSizeInBits).616return FixupConstant(Fixups, 0, OpNo);617}618return false;619};620621// Attempt to find a AVX512 mapping from a full width memory-fold instruction622// to a broadcast-fold instruction variant.623if ((MI.getDesc().TSFlags & X86II::EncodingMask) == X86II::EVEX)624return ConvertToBroadcastAVX512(Opc, Opc);625626// Reverse the X86InstrInfo::setExecutionDomainCustom EVEX->VEX logic627// conversion to see if we can convert to a broadcasted (integer) logic op.628if (HasVLX && !HasDQI) {629unsigned OpSrc32 = 0, OpSrc64 = 0;630switch (Opc) {631case X86::VANDPDrm:632case X86::VANDPSrm:633case X86::VPANDrm:634OpSrc32 = X86 ::VPANDDZ128rm;635OpSrc64 = X86 ::VPANDQZ128rm;636break;637case X86::VANDPDYrm:638case X86::VANDPSYrm:639case X86::VPANDYrm:640OpSrc32 = X86 ::VPANDDZ256rm;641OpSrc64 = X86 ::VPANDQZ256rm;642break;643case X86::VANDNPDrm:644case X86::VANDNPSrm:645case X86::VPANDNrm:646OpSrc32 = X86 ::VPANDNDZ128rm;647OpSrc64 = X86 ::VPANDNQZ128rm;648break;649case X86::VANDNPDYrm:650case X86::VANDNPSYrm:651case X86::VPANDNYrm:652OpSrc32 = X86 ::VPANDNDZ256rm;653OpSrc64 = X86 ::VPANDNQZ256rm;654break;655case X86::VORPDrm:656case X86::VORPSrm:657case X86::VPORrm:658OpSrc32 = X86 ::VPORDZ128rm;659OpSrc64 = X86 ::VPORQZ128rm;660break;661case X86::VORPDYrm:662case X86::VORPSYrm:663case X86::VPORYrm:664OpSrc32 = X86 ::VPORDZ256rm;665OpSrc64 = X86 ::VPORQZ256rm;666break;667case X86::VXORPDrm:668case X86::VXORPSrm:669case X86::VPXORrm:670OpSrc32 = X86 ::VPXORDZ128rm;671OpSrc64 = X86 ::VPXORQZ128rm;672break;673case X86::VXORPDYrm:674case X86::VXORPSYrm:675case X86::VPXORYrm:676OpSrc32 = X86 ::VPXORDZ256rm;677OpSrc64 = X86 ::VPXORQZ256rm;678break;679}680if (OpSrc32 || OpSrc64)681return ConvertToBroadcastAVX512(OpSrc32, OpSrc64);682}683684return false;685}686687bool X86FixupVectorConstantsPass::runOnMachineFunction(MachineFunction &MF) {688LLVM_DEBUG(dbgs() << "Start X86FixupVectorConstants\n";);689bool Changed = false;690ST = &MF.getSubtarget<X86Subtarget>();691TII = ST->getInstrInfo();692SM = &ST->getSchedModel();693694for (MachineBasicBlock &MBB : MF) {695for (MachineInstr &MI : MBB) {696if (processInstruction(MF, MBB, MI)) {697++NumInstChanges;698Changed = true;699}700}701}702LLVM_DEBUG(dbgs() << "End X86FixupVectorConstants\n";);703return Changed;704}705706707