Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/X86/X86FloatingPoint.cpp
35269 views
1
//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines the pass which converts floating point instructions from
10
// pseudo registers into register stack instructions. This pass uses live
11
// variable information to indicate where the FPn registers are used and their
12
// lifetimes.
13
//
14
// The x87 hardware tracks liveness of the stack registers, so it is necessary
15
// to implement exact liveness tracking between basic blocks. The CFG edges are
16
// partitioned into bundles where the same FP registers must be live in
17
// identical stack positions. Instructions are inserted at the end of each basic
18
// block to rearrange the live registers to match the outgoing bundle.
19
//
20
// This approach avoids splitting critical edges at the potential cost of more
21
// live register shuffling instructions when critical edges are present.
22
//
23
//===----------------------------------------------------------------------===//
24
25
#include "X86.h"
26
#include "X86InstrInfo.h"
27
#include "llvm/ADT/DepthFirstIterator.h"
28
#include "llvm/ADT/STLExtras.h"
29
#include "llvm/ADT/SmallSet.h"
30
#include "llvm/ADT/SmallVector.h"
31
#include "llvm/ADT/Statistic.h"
32
#include "llvm/CodeGen/EdgeBundles.h"
33
#include "llvm/CodeGen/LiveRegUnits.h"
34
#include "llvm/CodeGen/MachineFunctionPass.h"
35
#include "llvm/CodeGen/MachineInstrBuilder.h"
36
#include "llvm/CodeGen/MachineRegisterInfo.h"
37
#include "llvm/CodeGen/Passes.h"
38
#include "llvm/CodeGen/TargetInstrInfo.h"
39
#include "llvm/CodeGen/TargetSubtargetInfo.h"
40
#include "llvm/Config/llvm-config.h"
41
#include "llvm/IR/InlineAsm.h"
42
#include "llvm/InitializePasses.h"
43
#include "llvm/Support/Debug.h"
44
#include "llvm/Support/ErrorHandling.h"
45
#include "llvm/Support/raw_ostream.h"
46
#include "llvm/Target/TargetMachine.h"
47
#include <algorithm>
48
#include <bitset>
49
using namespace llvm;
50
51
#define DEBUG_TYPE "x86-codegen"
52
53
STATISTIC(NumFXCH, "Number of fxch instructions inserted");
54
STATISTIC(NumFP , "Number of floating point instructions");
55
56
namespace {
57
const unsigned ScratchFPReg = 7;
58
59
struct FPS : public MachineFunctionPass {
60
static char ID;
61
FPS() : MachineFunctionPass(ID) {
62
// This is really only to keep valgrind quiet.
63
// The logic in isLive() is too much for it.
64
memset(Stack, 0, sizeof(Stack));
65
memset(RegMap, 0, sizeof(RegMap));
66
}
67
68
void getAnalysisUsage(AnalysisUsage &AU) const override {
69
AU.setPreservesCFG();
70
AU.addRequired<EdgeBundles>();
71
AU.addPreservedID(MachineLoopInfoID);
72
AU.addPreservedID(MachineDominatorsID);
73
MachineFunctionPass::getAnalysisUsage(AU);
74
}
75
76
bool runOnMachineFunction(MachineFunction &MF) override;
77
78
MachineFunctionProperties getRequiredProperties() const override {
79
return MachineFunctionProperties().set(
80
MachineFunctionProperties::Property::NoVRegs);
81
}
82
83
StringRef getPassName() const override { return "X86 FP Stackifier"; }
84
85
private:
86
const TargetInstrInfo *TII = nullptr; // Machine instruction info.
87
88
// Two CFG edges are related if they leave the same block, or enter the same
89
// block. The transitive closure of an edge under this relation is a
90
// LiveBundle. It represents a set of CFG edges where the live FP stack
91
// registers must be allocated identically in the x87 stack.
92
//
93
// A LiveBundle is usually all the edges leaving a block, or all the edges
94
// entering a block, but it can contain more edges if critical edges are
95
// present.
96
//
97
// The set of live FP registers in a LiveBundle is calculated by bundleCFG,
98
// but the exact mapping of FP registers to stack slots is fixed later.
99
struct LiveBundle {
100
// Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
101
unsigned Mask = 0;
102
103
// Number of pre-assigned live registers in FixStack. This is 0 when the
104
// stack order has not yet been fixed.
105
unsigned FixCount = 0;
106
107
// Assigned stack order for live-in registers.
108
// FixStack[i] == getStackEntry(i) for all i < FixCount.
109
unsigned char FixStack[8];
110
111
LiveBundle() = default;
112
113
// Have the live registers been assigned a stack order yet?
114
bool isFixed() const { return !Mask || FixCount; }
115
};
116
117
// Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
118
// with no live FP registers.
119
SmallVector<LiveBundle, 8> LiveBundles;
120
121
// The edge bundle analysis provides indices into the LiveBundles vector.
122
EdgeBundles *Bundles = nullptr;
123
124
// Return a bitmask of FP registers in block's live-in list.
125
static unsigned calcLiveInMask(MachineBasicBlock *MBB, bool RemoveFPs) {
126
unsigned Mask = 0;
127
for (MachineBasicBlock::livein_iterator I = MBB->livein_begin();
128
I != MBB->livein_end(); ) {
129
MCPhysReg Reg = I->PhysReg;
130
static_assert(X86::FP6 - X86::FP0 == 6, "sequential regnums");
131
if (Reg >= X86::FP0 && Reg <= X86::FP6) {
132
Mask |= 1 << (Reg - X86::FP0);
133
if (RemoveFPs) {
134
I = MBB->removeLiveIn(I);
135
continue;
136
}
137
}
138
++I;
139
}
140
return Mask;
141
}
142
143
// Partition all the CFG edges into LiveBundles.
144
void bundleCFGRecomputeKillFlags(MachineFunction &MF);
145
146
MachineBasicBlock *MBB = nullptr; // Current basic block
147
148
// The hardware keeps track of how many FP registers are live, so we have
149
// to model that exactly. Usually, each live register corresponds to an
150
// FP<n> register, but when dealing with calls, returns, and inline
151
// assembly, it is sometimes necessary to have live scratch registers.
152
unsigned Stack[8]; // FP<n> Registers in each stack slot...
153
unsigned StackTop = 0; // The current top of the FP stack.
154
155
enum {
156
NumFPRegs = 8 // Including scratch pseudo-registers.
157
};
158
159
// For each live FP<n> register, point to its Stack[] entry.
160
// The first entries correspond to FP0-FP6, the rest are scratch registers
161
// used when we need slightly different live registers than what the
162
// register allocator thinks.
163
unsigned RegMap[NumFPRegs];
164
165
// Set up our stack model to match the incoming registers to MBB.
166
void setupBlockStack();
167
168
// Shuffle live registers to match the expectations of successor blocks.
169
void finishBlockStack();
170
171
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
172
void dumpStack() const {
173
dbgs() << "Stack contents:";
174
for (unsigned i = 0; i != StackTop; ++i) {
175
dbgs() << " FP" << Stack[i];
176
assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
177
}
178
}
179
#endif
180
181
/// getSlot - Return the stack slot number a particular register number is
182
/// in.
183
unsigned getSlot(unsigned RegNo) const {
184
assert(RegNo < NumFPRegs && "Regno out of range!");
185
return RegMap[RegNo];
186
}
187
188
/// isLive - Is RegNo currently live in the stack?
189
bool isLive(unsigned RegNo) const {
190
unsigned Slot = getSlot(RegNo);
191
return Slot < StackTop && Stack[Slot] == RegNo;
192
}
193
194
/// getStackEntry - Return the X86::FP<n> register in register ST(i).
195
unsigned getStackEntry(unsigned STi) const {
196
if (STi >= StackTop)
197
report_fatal_error("Access past stack top!");
198
return Stack[StackTop-1-STi];
199
}
200
201
/// getSTReg - Return the X86::ST(i) register which contains the specified
202
/// FP<RegNo> register.
203
unsigned getSTReg(unsigned RegNo) const {
204
return StackTop - 1 - getSlot(RegNo) + X86::ST0;
205
}
206
207
// pushReg - Push the specified FP<n> register onto the stack.
208
void pushReg(unsigned Reg) {
209
assert(Reg < NumFPRegs && "Register number out of range!");
210
if (StackTop >= 8)
211
report_fatal_error("Stack overflow!");
212
Stack[StackTop] = Reg;
213
RegMap[Reg] = StackTop++;
214
}
215
216
// popReg - Pop a register from the stack.
217
void popReg() {
218
if (StackTop == 0)
219
report_fatal_error("Cannot pop empty stack!");
220
RegMap[Stack[--StackTop]] = ~0; // Update state
221
}
222
223
bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
224
void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
225
DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
226
if (isAtTop(RegNo)) return;
227
228
unsigned STReg = getSTReg(RegNo);
229
unsigned RegOnTop = getStackEntry(0);
230
231
// Swap the slots the regs are in.
232
std::swap(RegMap[RegNo], RegMap[RegOnTop]);
233
234
// Swap stack slot contents.
235
if (RegMap[RegOnTop] >= StackTop)
236
report_fatal_error("Access past stack top!");
237
std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
238
239
// Emit an fxch to update the runtime processors version of the state.
240
BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
241
++NumFXCH;
242
}
243
244
void duplicateToTop(unsigned RegNo, unsigned AsReg,
245
MachineBasicBlock::iterator I) {
246
DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
247
unsigned STReg = getSTReg(RegNo);
248
pushReg(AsReg); // New register on top of stack
249
250
BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
251
}
252
253
/// popStackAfter - Pop the current value off of the top of the FP stack
254
/// after the specified instruction.
255
void popStackAfter(MachineBasicBlock::iterator &I);
256
257
/// freeStackSlotAfter - Free the specified register from the register
258
/// stack, so that it is no longer in a register. If the register is
259
/// currently at the top of the stack, we just pop the current instruction,
260
/// otherwise we store the current top-of-stack into the specified slot,
261
/// then pop the top of stack.
262
void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
263
264
/// freeStackSlotBefore - Just the pop, no folding. Return the inserted
265
/// instruction.
266
MachineBasicBlock::iterator
267
freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
268
269
/// Adjust the live registers to be the set in Mask.
270
void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
271
272
/// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
273
/// st(0), FP reg FixStack[1] is st(1) etc.
274
void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
275
MachineBasicBlock::iterator I);
276
277
bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
278
279
void handleCall(MachineBasicBlock::iterator &I);
280
void handleReturn(MachineBasicBlock::iterator &I);
281
void handleZeroArgFP(MachineBasicBlock::iterator &I);
282
void handleOneArgFP(MachineBasicBlock::iterator &I);
283
void handleOneArgFPRW(MachineBasicBlock::iterator &I);
284
void handleTwoArgFP(MachineBasicBlock::iterator &I);
285
void handleCompareFP(MachineBasicBlock::iterator &I);
286
void handleCondMovFP(MachineBasicBlock::iterator &I);
287
void handleSpecialFP(MachineBasicBlock::iterator &I);
288
289
// Check if a COPY instruction is using FP registers.
290
static bool isFPCopy(MachineInstr &MI) {
291
Register DstReg = MI.getOperand(0).getReg();
292
Register SrcReg = MI.getOperand(1).getReg();
293
294
return X86::RFP80RegClass.contains(DstReg) ||
295
X86::RFP80RegClass.contains(SrcReg);
296
}
297
298
void setKillFlags(MachineBasicBlock &MBB) const;
299
};
300
}
301
302
char FPS::ID = 0;
303
304
INITIALIZE_PASS_BEGIN(FPS, DEBUG_TYPE, "X86 FP Stackifier",
305
false, false)
306
INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
307
INITIALIZE_PASS_END(FPS, DEBUG_TYPE, "X86 FP Stackifier",
308
false, false)
309
310
FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
311
312
/// getFPReg - Return the X86::FPx register number for the specified operand.
313
/// For example, this returns 3 for X86::FP3.
314
static unsigned getFPReg(const MachineOperand &MO) {
315
assert(MO.isReg() && "Expected an FP register!");
316
Register Reg = MO.getReg();
317
assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
318
return Reg - X86::FP0;
319
}
320
321
/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
322
/// register references into FP stack references.
323
///
324
bool FPS::runOnMachineFunction(MachineFunction &MF) {
325
// We only need to run this pass if there are any FP registers used in this
326
// function. If it is all integer, there is nothing for us to do!
327
bool FPIsUsed = false;
328
329
static_assert(X86::FP6 == X86::FP0+6, "Register enums aren't sorted right!");
330
const MachineRegisterInfo &MRI = MF.getRegInfo();
331
for (unsigned i = 0; i <= 6; ++i)
332
if (!MRI.reg_nodbg_empty(X86::FP0 + i)) {
333
FPIsUsed = true;
334
break;
335
}
336
337
// Early exit.
338
if (!FPIsUsed) return false;
339
340
Bundles = &getAnalysis<EdgeBundles>();
341
TII = MF.getSubtarget().getInstrInfo();
342
343
// Prepare cross-MBB liveness.
344
bundleCFGRecomputeKillFlags(MF);
345
346
StackTop = 0;
347
348
// Process the function in depth first order so that we process at least one
349
// of the predecessors for every reachable block in the function.
350
df_iterator_default_set<MachineBasicBlock*> Processed;
351
MachineBasicBlock *Entry = &MF.front();
352
353
LiveBundle &Bundle =
354
LiveBundles[Bundles->getBundle(Entry->getNumber(), false)];
355
356
// In regcall convention, some FP registers may not be passed through
357
// the stack, so they will need to be assigned to the stack first
358
if ((Entry->getParent()->getFunction().getCallingConv() ==
359
CallingConv::X86_RegCall) && (Bundle.Mask && !Bundle.FixCount)) {
360
// In the register calling convention, up to one FP argument could be
361
// saved in the first FP register.
362
// If bundle.mask is non-zero and Bundle.FixCount is zero, it means
363
// that the FP registers contain arguments.
364
// The actual value is passed in FP0.
365
// Here we fix the stack and mark FP0 as pre-assigned register.
366
assert((Bundle.Mask & 0xFE) == 0 &&
367
"Only FP0 could be passed as an argument");
368
Bundle.FixCount = 1;
369
Bundle.FixStack[0] = 0;
370
}
371
372
bool Changed = false;
373
for (MachineBasicBlock *BB : depth_first_ext(Entry, Processed))
374
Changed |= processBasicBlock(MF, *BB);
375
376
// Process any unreachable blocks in arbitrary order now.
377
if (MF.size() != Processed.size())
378
for (MachineBasicBlock &BB : MF)
379
if (Processed.insert(&BB).second)
380
Changed |= processBasicBlock(MF, BB);
381
382
LiveBundles.clear();
383
384
return Changed;
385
}
386
387
/// bundleCFG - Scan all the basic blocks to determine consistent live-in and
388
/// live-out sets for the FP registers. Consistent means that the set of
389
/// registers live-out from a block is identical to the live-in set of all
390
/// successors. This is not enforced by the normal live-in lists since
391
/// registers may be implicitly defined, or not used by all successors.
392
void FPS::bundleCFGRecomputeKillFlags(MachineFunction &MF) {
393
assert(LiveBundles.empty() && "Stale data in LiveBundles");
394
LiveBundles.resize(Bundles->getNumBundles());
395
396
// Gather the actual live-in masks for all MBBs.
397
for (MachineBasicBlock &MBB : MF) {
398
setKillFlags(MBB);
399
400
const unsigned Mask = calcLiveInMask(&MBB, false);
401
if (!Mask)
402
continue;
403
// Update MBB ingoing bundle mask.
404
LiveBundles[Bundles->getBundle(MBB.getNumber(), false)].Mask |= Mask;
405
}
406
}
407
408
/// processBasicBlock - Loop over all of the instructions in the basic block,
409
/// transforming FP instructions into their stack form.
410
///
411
bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
412
bool Changed = false;
413
MBB = &BB;
414
415
setupBlockStack();
416
417
for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
418
MachineInstr &MI = *I;
419
uint64_t Flags = MI.getDesc().TSFlags;
420
421
unsigned FPInstClass = Flags & X86II::FPTypeMask;
422
if (MI.isInlineAsm())
423
FPInstClass = X86II::SpecialFP;
424
425
if (MI.isCopy() && isFPCopy(MI))
426
FPInstClass = X86II::SpecialFP;
427
428
if (MI.isImplicitDef() &&
429
X86::RFP80RegClass.contains(MI.getOperand(0).getReg()))
430
FPInstClass = X86II::SpecialFP;
431
432
if (MI.isCall())
433
FPInstClass = X86II::SpecialFP;
434
435
if (FPInstClass == X86II::NotFP)
436
continue; // Efficiently ignore non-fp insts!
437
438
MachineInstr *PrevMI = nullptr;
439
if (I != BB.begin())
440
PrevMI = &*std::prev(I);
441
442
++NumFP; // Keep track of # of pseudo instrs
443
LLVM_DEBUG(dbgs() << "\nFPInst:\t" << MI);
444
445
// Get dead variables list now because the MI pointer may be deleted as part
446
// of processing!
447
SmallVector<unsigned, 8> DeadRegs;
448
for (const MachineOperand &MO : MI.operands())
449
if (MO.isReg() && MO.isDead())
450
DeadRegs.push_back(MO.getReg());
451
452
switch (FPInstClass) {
453
case X86II::ZeroArgFP: handleZeroArgFP(I); break;
454
case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
455
case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
456
case X86II::TwoArgFP: handleTwoArgFP(I); break;
457
case X86II::CompareFP: handleCompareFP(I); break;
458
case X86II::CondMovFP: handleCondMovFP(I); break;
459
case X86II::SpecialFP: handleSpecialFP(I); break;
460
default: llvm_unreachable("Unknown FP Type!");
461
}
462
463
// Check to see if any of the values defined by this instruction are dead
464
// after definition. If so, pop them.
465
for (unsigned Reg : DeadRegs) {
466
// Check if Reg is live on the stack. An inline-asm register operand that
467
// is in the clobber list and marked dead might not be live on the stack.
468
static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers");
469
if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) {
470
LLVM_DEBUG(dbgs() << "Register FP#" << Reg - X86::FP0 << " is dead!\n");
471
freeStackSlotAfter(I, Reg-X86::FP0);
472
}
473
}
474
475
// Print out all of the instructions expanded to if -debug
476
LLVM_DEBUG({
477
MachineBasicBlock::iterator PrevI = PrevMI;
478
if (I == PrevI) {
479
dbgs() << "Just deleted pseudo instruction\n";
480
} else {
481
MachineBasicBlock::iterator Start = I;
482
// Rewind to first instruction newly inserted.
483
while (Start != BB.begin() && std::prev(Start) != PrevI)
484
--Start;
485
dbgs() << "Inserted instructions:\n\t";
486
Start->print(dbgs());
487
while (++Start != std::next(I)) {
488
}
489
}
490
dumpStack();
491
});
492
(void)PrevMI;
493
494
Changed = true;
495
}
496
497
finishBlockStack();
498
499
return Changed;
500
}
501
502
/// setupBlockStack - Use the live bundles to set up our model of the stack
503
/// to match predecessors' live out stack.
504
void FPS::setupBlockStack() {
505
LLVM_DEBUG(dbgs() << "\nSetting up live-ins for " << printMBBReference(*MBB)
506
<< " derived from " << MBB->getName() << ".\n");
507
StackTop = 0;
508
// Get the live-in bundle for MBB.
509
const LiveBundle &Bundle =
510
LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
511
512
if (!Bundle.Mask) {
513
LLVM_DEBUG(dbgs() << "Block has no FP live-ins.\n");
514
return;
515
}
516
517
// Depth-first iteration should ensure that we always have an assigned stack.
518
assert(Bundle.isFixed() && "Reached block before any predecessors");
519
520
// Push the fixed live-in registers.
521
for (unsigned i = Bundle.FixCount; i > 0; --i) {
522
LLVM_DEBUG(dbgs() << "Live-in st(" << (i - 1) << "): %fp"
523
<< unsigned(Bundle.FixStack[i - 1]) << '\n');
524
pushReg(Bundle.FixStack[i-1]);
525
}
526
527
// Kill off unwanted live-ins. This can happen with a critical edge.
528
// FIXME: We could keep these live registers around as zombies. They may need
529
// to be revived at the end of a short block. It might save a few instrs.
530
unsigned Mask = calcLiveInMask(MBB, /*RemoveFPs=*/true);
531
adjustLiveRegs(Mask, MBB->begin());
532
LLVM_DEBUG(MBB->dump());
533
}
534
535
/// finishBlockStack - Revive live-outs that are implicitly defined out of
536
/// MBB. Shuffle live registers to match the expected fixed stack of any
537
/// predecessors, and ensure that all predecessors are expecting the same
538
/// stack.
539
void FPS::finishBlockStack() {
540
// The RET handling below takes care of return blocks for us.
541
if (MBB->succ_empty())
542
return;
543
544
LLVM_DEBUG(dbgs() << "Setting up live-outs for " << printMBBReference(*MBB)
545
<< " derived from " << MBB->getName() << ".\n");
546
547
// Get MBB's live-out bundle.
548
unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
549
LiveBundle &Bundle = LiveBundles[BundleIdx];
550
551
// We may need to kill and define some registers to match successors.
552
// FIXME: This can probably be combined with the shuffle below.
553
MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
554
adjustLiveRegs(Bundle.Mask, Term);
555
556
if (!Bundle.Mask) {
557
LLVM_DEBUG(dbgs() << "No live-outs.\n");
558
return;
559
}
560
561
// Has the stack order been fixed yet?
562
LLVM_DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
563
if (Bundle.isFixed()) {
564
LLVM_DEBUG(dbgs() << "Shuffling stack to match.\n");
565
shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
566
} else {
567
// Not fixed yet, we get to choose.
568
LLVM_DEBUG(dbgs() << "Fixing stack order now.\n");
569
Bundle.FixCount = StackTop;
570
for (unsigned i = 0; i < StackTop; ++i)
571
Bundle.FixStack[i] = getStackEntry(i);
572
}
573
}
574
575
576
//===----------------------------------------------------------------------===//
577
// Efficient Lookup Table Support
578
//===----------------------------------------------------------------------===//
579
580
namespace {
581
struct TableEntry {
582
uint16_t from;
583
uint16_t to;
584
bool operator<(const TableEntry &TE) const { return from < TE.from; }
585
friend bool operator<(const TableEntry &TE, unsigned V) {
586
return TE.from < V;
587
}
588
friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
589
const TableEntry &TE) {
590
return V < TE.from;
591
}
592
};
593
}
594
595
static int Lookup(ArrayRef<TableEntry> Table, unsigned Opcode) {
596
const TableEntry *I = llvm::lower_bound(Table, Opcode);
597
if (I != Table.end() && I->from == Opcode)
598
return I->to;
599
return -1;
600
}
601
602
#ifdef NDEBUG
603
#define ASSERT_SORTED(TABLE)
604
#else
605
#define ASSERT_SORTED(TABLE) \
606
{ \
607
static std::atomic<bool> TABLE##Checked(false); \
608
if (!TABLE##Checked.load(std::memory_order_relaxed)) { \
609
assert(is_sorted(TABLE) && \
610
"All lookup tables must be sorted for efficient access!"); \
611
TABLE##Checked.store(true, std::memory_order_relaxed); \
612
} \
613
}
614
#endif
615
616
//===----------------------------------------------------------------------===//
617
// Register File -> Register Stack Mapping Methods
618
//===----------------------------------------------------------------------===//
619
620
// OpcodeTable - Sorted map of register instructions to their stack version.
621
// The first element is an register file pseudo instruction, the second is the
622
// concrete X86 instruction which uses the register stack.
623
//
624
static const TableEntry OpcodeTable[] = {
625
{ X86::ABS_Fp32 , X86::ABS_F },
626
{ X86::ABS_Fp64 , X86::ABS_F },
627
{ X86::ABS_Fp80 , X86::ABS_F },
628
{ X86::ADD_Fp32m , X86::ADD_F32m },
629
{ X86::ADD_Fp64m , X86::ADD_F64m },
630
{ X86::ADD_Fp64m32 , X86::ADD_F32m },
631
{ X86::ADD_Fp80m32 , X86::ADD_F32m },
632
{ X86::ADD_Fp80m64 , X86::ADD_F64m },
633
{ X86::ADD_FpI16m32 , X86::ADD_FI16m },
634
{ X86::ADD_FpI16m64 , X86::ADD_FI16m },
635
{ X86::ADD_FpI16m80 , X86::ADD_FI16m },
636
{ X86::ADD_FpI32m32 , X86::ADD_FI32m },
637
{ X86::ADD_FpI32m64 , X86::ADD_FI32m },
638
{ X86::ADD_FpI32m80 , X86::ADD_FI32m },
639
{ X86::CHS_Fp32 , X86::CHS_F },
640
{ X86::CHS_Fp64 , X86::CHS_F },
641
{ X86::CHS_Fp80 , X86::CHS_F },
642
{ X86::CMOVBE_Fp32 , X86::CMOVBE_F },
643
{ X86::CMOVBE_Fp64 , X86::CMOVBE_F },
644
{ X86::CMOVBE_Fp80 , X86::CMOVBE_F },
645
{ X86::CMOVB_Fp32 , X86::CMOVB_F },
646
{ X86::CMOVB_Fp64 , X86::CMOVB_F },
647
{ X86::CMOVB_Fp80 , X86::CMOVB_F },
648
{ X86::CMOVE_Fp32 , X86::CMOVE_F },
649
{ X86::CMOVE_Fp64 , X86::CMOVE_F },
650
{ X86::CMOVE_Fp80 , X86::CMOVE_F },
651
{ X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
652
{ X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
653
{ X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
654
{ X86::CMOVNB_Fp32 , X86::CMOVNB_F },
655
{ X86::CMOVNB_Fp64 , X86::CMOVNB_F },
656
{ X86::CMOVNB_Fp80 , X86::CMOVNB_F },
657
{ X86::CMOVNE_Fp32 , X86::CMOVNE_F },
658
{ X86::CMOVNE_Fp64 , X86::CMOVNE_F },
659
{ X86::CMOVNE_Fp80 , X86::CMOVNE_F },
660
{ X86::CMOVNP_Fp32 , X86::CMOVNP_F },
661
{ X86::CMOVNP_Fp64 , X86::CMOVNP_F },
662
{ X86::CMOVNP_Fp80 , X86::CMOVNP_F },
663
{ X86::CMOVP_Fp32 , X86::CMOVP_F },
664
{ X86::CMOVP_Fp64 , X86::CMOVP_F },
665
{ X86::CMOVP_Fp80 , X86::CMOVP_F },
666
{ X86::COM_FpIr32 , X86::COM_FIr },
667
{ X86::COM_FpIr64 , X86::COM_FIr },
668
{ X86::COM_FpIr80 , X86::COM_FIr },
669
{ X86::COM_Fpr32 , X86::COM_FST0r },
670
{ X86::COM_Fpr64 , X86::COM_FST0r },
671
{ X86::COM_Fpr80 , X86::COM_FST0r },
672
{ X86::DIVR_Fp32m , X86::DIVR_F32m },
673
{ X86::DIVR_Fp64m , X86::DIVR_F64m },
674
{ X86::DIVR_Fp64m32 , X86::DIVR_F32m },
675
{ X86::DIVR_Fp80m32 , X86::DIVR_F32m },
676
{ X86::DIVR_Fp80m64 , X86::DIVR_F64m },
677
{ X86::DIVR_FpI16m32, X86::DIVR_FI16m},
678
{ X86::DIVR_FpI16m64, X86::DIVR_FI16m},
679
{ X86::DIVR_FpI16m80, X86::DIVR_FI16m},
680
{ X86::DIVR_FpI32m32, X86::DIVR_FI32m},
681
{ X86::DIVR_FpI32m64, X86::DIVR_FI32m},
682
{ X86::DIVR_FpI32m80, X86::DIVR_FI32m},
683
{ X86::DIV_Fp32m , X86::DIV_F32m },
684
{ X86::DIV_Fp64m , X86::DIV_F64m },
685
{ X86::DIV_Fp64m32 , X86::DIV_F32m },
686
{ X86::DIV_Fp80m32 , X86::DIV_F32m },
687
{ X86::DIV_Fp80m64 , X86::DIV_F64m },
688
{ X86::DIV_FpI16m32 , X86::DIV_FI16m },
689
{ X86::DIV_FpI16m64 , X86::DIV_FI16m },
690
{ X86::DIV_FpI16m80 , X86::DIV_FI16m },
691
{ X86::DIV_FpI32m32 , X86::DIV_FI32m },
692
{ X86::DIV_FpI32m64 , X86::DIV_FI32m },
693
{ X86::DIV_FpI32m80 , X86::DIV_FI32m },
694
{ X86::ILD_Fp16m32 , X86::ILD_F16m },
695
{ X86::ILD_Fp16m64 , X86::ILD_F16m },
696
{ X86::ILD_Fp16m80 , X86::ILD_F16m },
697
{ X86::ILD_Fp32m32 , X86::ILD_F32m },
698
{ X86::ILD_Fp32m64 , X86::ILD_F32m },
699
{ X86::ILD_Fp32m80 , X86::ILD_F32m },
700
{ X86::ILD_Fp64m32 , X86::ILD_F64m },
701
{ X86::ILD_Fp64m64 , X86::ILD_F64m },
702
{ X86::ILD_Fp64m80 , X86::ILD_F64m },
703
{ X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
704
{ X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
705
{ X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
706
{ X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
707
{ X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
708
{ X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
709
{ X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
710
{ X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
711
{ X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
712
{ X86::IST_Fp16m32 , X86::IST_F16m },
713
{ X86::IST_Fp16m64 , X86::IST_F16m },
714
{ X86::IST_Fp16m80 , X86::IST_F16m },
715
{ X86::IST_Fp32m32 , X86::IST_F32m },
716
{ X86::IST_Fp32m64 , X86::IST_F32m },
717
{ X86::IST_Fp32m80 , X86::IST_F32m },
718
{ X86::IST_Fp64m32 , X86::IST_FP64m },
719
{ X86::IST_Fp64m64 , X86::IST_FP64m },
720
{ X86::IST_Fp64m80 , X86::IST_FP64m },
721
{ X86::LD_Fp032 , X86::LD_F0 },
722
{ X86::LD_Fp064 , X86::LD_F0 },
723
{ X86::LD_Fp080 , X86::LD_F0 },
724
{ X86::LD_Fp132 , X86::LD_F1 },
725
{ X86::LD_Fp164 , X86::LD_F1 },
726
{ X86::LD_Fp180 , X86::LD_F1 },
727
{ X86::LD_Fp32m , X86::LD_F32m },
728
{ X86::LD_Fp32m64 , X86::LD_F32m },
729
{ X86::LD_Fp32m80 , X86::LD_F32m },
730
{ X86::LD_Fp64m , X86::LD_F64m },
731
{ X86::LD_Fp64m80 , X86::LD_F64m },
732
{ X86::LD_Fp80m , X86::LD_F80m },
733
{ X86::MUL_Fp32m , X86::MUL_F32m },
734
{ X86::MUL_Fp64m , X86::MUL_F64m },
735
{ X86::MUL_Fp64m32 , X86::MUL_F32m },
736
{ X86::MUL_Fp80m32 , X86::MUL_F32m },
737
{ X86::MUL_Fp80m64 , X86::MUL_F64m },
738
{ X86::MUL_FpI16m32 , X86::MUL_FI16m },
739
{ X86::MUL_FpI16m64 , X86::MUL_FI16m },
740
{ X86::MUL_FpI16m80 , X86::MUL_FI16m },
741
{ X86::MUL_FpI32m32 , X86::MUL_FI32m },
742
{ X86::MUL_FpI32m64 , X86::MUL_FI32m },
743
{ X86::MUL_FpI32m80 , X86::MUL_FI32m },
744
{ X86::SQRT_Fp32 , X86::SQRT_F },
745
{ X86::SQRT_Fp64 , X86::SQRT_F },
746
{ X86::SQRT_Fp80 , X86::SQRT_F },
747
{ X86::ST_Fp32m , X86::ST_F32m },
748
{ X86::ST_Fp64m , X86::ST_F64m },
749
{ X86::ST_Fp64m32 , X86::ST_F32m },
750
{ X86::ST_Fp80m32 , X86::ST_F32m },
751
{ X86::ST_Fp80m64 , X86::ST_F64m },
752
{ X86::ST_FpP80m , X86::ST_FP80m },
753
{ X86::SUBR_Fp32m , X86::SUBR_F32m },
754
{ X86::SUBR_Fp64m , X86::SUBR_F64m },
755
{ X86::SUBR_Fp64m32 , X86::SUBR_F32m },
756
{ X86::SUBR_Fp80m32 , X86::SUBR_F32m },
757
{ X86::SUBR_Fp80m64 , X86::SUBR_F64m },
758
{ X86::SUBR_FpI16m32, X86::SUBR_FI16m},
759
{ X86::SUBR_FpI16m64, X86::SUBR_FI16m},
760
{ X86::SUBR_FpI16m80, X86::SUBR_FI16m},
761
{ X86::SUBR_FpI32m32, X86::SUBR_FI32m},
762
{ X86::SUBR_FpI32m64, X86::SUBR_FI32m},
763
{ X86::SUBR_FpI32m80, X86::SUBR_FI32m},
764
{ X86::SUB_Fp32m , X86::SUB_F32m },
765
{ X86::SUB_Fp64m , X86::SUB_F64m },
766
{ X86::SUB_Fp64m32 , X86::SUB_F32m },
767
{ X86::SUB_Fp80m32 , X86::SUB_F32m },
768
{ X86::SUB_Fp80m64 , X86::SUB_F64m },
769
{ X86::SUB_FpI16m32 , X86::SUB_FI16m },
770
{ X86::SUB_FpI16m64 , X86::SUB_FI16m },
771
{ X86::SUB_FpI16m80 , X86::SUB_FI16m },
772
{ X86::SUB_FpI32m32 , X86::SUB_FI32m },
773
{ X86::SUB_FpI32m64 , X86::SUB_FI32m },
774
{ X86::SUB_FpI32m80 , X86::SUB_FI32m },
775
{ X86::TST_Fp32 , X86::TST_F },
776
{ X86::TST_Fp64 , X86::TST_F },
777
{ X86::TST_Fp80 , X86::TST_F },
778
{ X86::UCOM_FpIr32 , X86::UCOM_FIr },
779
{ X86::UCOM_FpIr64 , X86::UCOM_FIr },
780
{ X86::UCOM_FpIr80 , X86::UCOM_FIr },
781
{ X86::UCOM_Fpr32 , X86::UCOM_Fr },
782
{ X86::UCOM_Fpr64 , X86::UCOM_Fr },
783
{ X86::UCOM_Fpr80 , X86::UCOM_Fr },
784
{ X86::XAM_Fp32 , X86::XAM_F },
785
{ X86::XAM_Fp64 , X86::XAM_F },
786
{ X86::XAM_Fp80 , X86::XAM_F },
787
};
788
789
static unsigned getConcreteOpcode(unsigned Opcode) {
790
ASSERT_SORTED(OpcodeTable);
791
int Opc = Lookup(OpcodeTable, Opcode);
792
assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
793
return Opc;
794
}
795
796
//===----------------------------------------------------------------------===//
797
// Helper Methods
798
//===----------------------------------------------------------------------===//
799
800
// PopTable - Sorted map of instructions to their popping version. The first
801
// element is an instruction, the second is the version which pops.
802
//
803
static const TableEntry PopTable[] = {
804
{ X86::ADD_FrST0 , X86::ADD_FPrST0 },
805
806
{ X86::COMP_FST0r, X86::FCOMPP },
807
{ X86::COM_FIr , X86::COM_FIPr },
808
{ X86::COM_FST0r , X86::COMP_FST0r },
809
810
{ X86::DIVR_FrST0, X86::DIVR_FPrST0 },
811
{ X86::DIV_FrST0 , X86::DIV_FPrST0 },
812
813
{ X86::IST_F16m , X86::IST_FP16m },
814
{ X86::IST_F32m , X86::IST_FP32m },
815
816
{ X86::MUL_FrST0 , X86::MUL_FPrST0 },
817
818
{ X86::ST_F32m , X86::ST_FP32m },
819
{ X86::ST_F64m , X86::ST_FP64m },
820
{ X86::ST_Frr , X86::ST_FPrr },
821
822
{ X86::SUBR_FrST0, X86::SUBR_FPrST0 },
823
{ X86::SUB_FrST0 , X86::SUB_FPrST0 },
824
825
{ X86::UCOM_FIr , X86::UCOM_FIPr },
826
827
{ X86::UCOM_FPr , X86::UCOM_FPPr },
828
{ X86::UCOM_Fr , X86::UCOM_FPr },
829
};
830
831
static bool doesInstructionSetFPSW(MachineInstr &MI) {
832
if (const MachineOperand *MO =
833
MI.findRegisterDefOperand(X86::FPSW, /*TRI=*/nullptr))
834
if (!MO->isDead())
835
return true;
836
return false;
837
}
838
839
static MachineBasicBlock::iterator
840
getNextFPInstruction(MachineBasicBlock::iterator I) {
841
MachineBasicBlock &MBB = *I->getParent();
842
while (++I != MBB.end()) {
843
MachineInstr &MI = *I;
844
if (X86::isX87Instruction(MI))
845
return I;
846
}
847
return MBB.end();
848
}
849
850
/// popStackAfter - Pop the current value off of the top of the FP stack after
851
/// the specified instruction. This attempts to be sneaky and combine the pop
852
/// into the instruction itself if possible. The iterator is left pointing to
853
/// the last instruction, be it a new pop instruction inserted, or the old
854
/// instruction if it was modified in place.
855
///
856
void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
857
MachineInstr &MI = *I;
858
const DebugLoc &dl = MI.getDebugLoc();
859
ASSERT_SORTED(PopTable);
860
861
popReg();
862
863
// Check to see if there is a popping version of this instruction...
864
int Opcode = Lookup(PopTable, I->getOpcode());
865
if (Opcode != -1) {
866
I->setDesc(TII->get(Opcode));
867
if (Opcode == X86::FCOMPP || Opcode == X86::UCOM_FPPr)
868
I->removeOperand(0);
869
MI.dropDebugNumber();
870
} else { // Insert an explicit pop
871
// If this instruction sets FPSW, which is read in following instruction,
872
// insert pop after that reader.
873
if (doesInstructionSetFPSW(MI)) {
874
MachineBasicBlock &MBB = *MI.getParent();
875
MachineBasicBlock::iterator Next = getNextFPInstruction(I);
876
if (Next != MBB.end() && Next->readsRegister(X86::FPSW, /*TRI=*/nullptr))
877
I = Next;
878
}
879
I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
880
}
881
}
882
883
/// freeStackSlotAfter - Free the specified register from the register stack, so
884
/// that it is no longer in a register. If the register is currently at the top
885
/// of the stack, we just pop the current instruction, otherwise we store the
886
/// current top-of-stack into the specified slot, then pop the top of stack.
887
void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
888
if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
889
popStackAfter(I);
890
return;
891
}
892
893
// Otherwise, store the top of stack into the dead slot, killing the operand
894
// without having to add in an explicit xchg then pop.
895
//
896
I = freeStackSlotBefore(++I, FPRegNo);
897
}
898
899
/// freeStackSlotBefore - Free the specified register without trying any
900
/// folding.
901
MachineBasicBlock::iterator
902
FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
903
unsigned STReg = getSTReg(FPRegNo);
904
unsigned OldSlot = getSlot(FPRegNo);
905
unsigned TopReg = Stack[StackTop-1];
906
Stack[OldSlot] = TopReg;
907
RegMap[TopReg] = OldSlot;
908
RegMap[FPRegNo] = ~0;
909
Stack[--StackTop] = ~0;
910
return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr))
911
.addReg(STReg)
912
.getInstr();
913
}
914
915
/// adjustLiveRegs - Kill and revive registers such that exactly the FP
916
/// registers with a bit in Mask are live.
917
void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
918
unsigned Defs = Mask;
919
unsigned Kills = 0;
920
for (unsigned i = 0; i < StackTop; ++i) {
921
unsigned RegNo = Stack[i];
922
if (!(Defs & (1 << RegNo)))
923
// This register is live, but we don't want it.
924
Kills |= (1 << RegNo);
925
else
926
// We don't need to imp-def this live register.
927
Defs &= ~(1 << RegNo);
928
}
929
assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
930
931
// Produce implicit-defs for free by using killed registers.
932
while (Kills && Defs) {
933
unsigned KReg = llvm::countr_zero(Kills);
934
unsigned DReg = llvm::countr_zero(Defs);
935
LLVM_DEBUG(dbgs() << "Renaming %fp" << KReg << " as imp %fp" << DReg
936
<< "\n");
937
std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
938
std::swap(RegMap[KReg], RegMap[DReg]);
939
Kills &= ~(1 << KReg);
940
Defs &= ~(1 << DReg);
941
}
942
943
// Kill registers by popping.
944
if (Kills && I != MBB->begin()) {
945
MachineBasicBlock::iterator I2 = std::prev(I);
946
while (StackTop) {
947
unsigned KReg = getStackEntry(0);
948
if (!(Kills & (1 << KReg)))
949
break;
950
LLVM_DEBUG(dbgs() << "Popping %fp" << KReg << "\n");
951
popStackAfter(I2);
952
Kills &= ~(1 << KReg);
953
}
954
}
955
956
// Manually kill the rest.
957
while (Kills) {
958
unsigned KReg = llvm::countr_zero(Kills);
959
LLVM_DEBUG(dbgs() << "Killing %fp" << KReg << "\n");
960
freeStackSlotBefore(I, KReg);
961
Kills &= ~(1 << KReg);
962
}
963
964
// Load zeros for all the imp-defs.
965
while(Defs) {
966
unsigned DReg = llvm::countr_zero(Defs);
967
LLVM_DEBUG(dbgs() << "Defining %fp" << DReg << " as 0\n");
968
BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
969
pushReg(DReg);
970
Defs &= ~(1 << DReg);
971
}
972
973
// Now we should have the correct registers live.
974
LLVM_DEBUG(dumpStack());
975
assert(StackTop == (unsigned)llvm::popcount(Mask) && "Live count mismatch");
976
}
977
978
/// shuffleStackTop - emit fxch instructions before I to shuffle the top
979
/// FixCount entries into the order given by FixStack.
980
/// FIXME: Is there a better algorithm than insertion sort?
981
void FPS::shuffleStackTop(const unsigned char *FixStack,
982
unsigned FixCount,
983
MachineBasicBlock::iterator I) {
984
// Move items into place, starting from the desired stack bottom.
985
while (FixCount--) {
986
// Old register at position FixCount.
987
unsigned OldReg = getStackEntry(FixCount);
988
// Desired register at position FixCount.
989
unsigned Reg = FixStack[FixCount];
990
if (Reg == OldReg)
991
continue;
992
// (Reg st0) (OldReg st0) = (Reg OldReg st0)
993
moveToTop(Reg, I);
994
if (FixCount > 0)
995
moveToTop(OldReg, I);
996
}
997
LLVM_DEBUG(dumpStack());
998
}
999
1000
1001
//===----------------------------------------------------------------------===//
1002
// Instruction transformation implementation
1003
//===----------------------------------------------------------------------===//
1004
1005
void FPS::handleCall(MachineBasicBlock::iterator &I) {
1006
MachineInstr &MI = *I;
1007
unsigned STReturns = 0;
1008
1009
bool ClobbersFPStack = false;
1010
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1011
MachineOperand &Op = MI.getOperand(i);
1012
// Check if this call clobbers the FP stack.
1013
// is sufficient.
1014
if (Op.isRegMask()) {
1015
bool ClobbersFP0 = Op.clobbersPhysReg(X86::FP0);
1016
#ifndef NDEBUG
1017
static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers");
1018
for (unsigned i = 1; i != 8; ++i)
1019
assert(Op.clobbersPhysReg(X86::FP0 + i) == ClobbersFP0 &&
1020
"Inconsistent FP register clobber");
1021
#endif
1022
1023
if (ClobbersFP0)
1024
ClobbersFPStack = true;
1025
}
1026
1027
if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1028
continue;
1029
1030
assert(Op.isImplicit() && "Expected implicit def/use");
1031
1032
if (Op.isDef())
1033
STReturns |= 1 << getFPReg(Op);
1034
1035
// Remove the operand so that later passes don't see it.
1036
MI.removeOperand(i);
1037
--i;
1038
--e;
1039
}
1040
1041
// Most calls should have a regmask that clobbers the FP registers. If it
1042
// isn't present then the register allocator didn't spill the FP registers
1043
// so they are still on the stack.
1044
assert((ClobbersFPStack || STReturns == 0) &&
1045
"ST returns without FP stack clobber");
1046
if (!ClobbersFPStack)
1047
return;
1048
1049
unsigned N = llvm::countr_one(STReturns);
1050
1051
// FP registers used for function return must be consecutive starting at
1052
// FP0
1053
assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2));
1054
1055
// Reset the FP Stack - It is required because of possible leftovers from
1056
// passed arguments. The caller should assume that the FP stack is
1057
// returned empty (unless the callee returns values on FP stack).
1058
while (StackTop > 0)
1059
popReg();
1060
1061
for (unsigned I = 0; I < N; ++I)
1062
pushReg(N - I - 1);
1063
1064
// If this call has been modified, drop all variable values defined by it.
1065
// We can't track them once they've been stackified.
1066
if (STReturns)
1067
I->dropDebugNumber();
1068
}
1069
1070
/// If RET has an FP register use operand, pass the first one in ST(0) and
1071
/// the second one in ST(1).
1072
void FPS::handleReturn(MachineBasicBlock::iterator &I) {
1073
MachineInstr &MI = *I;
1074
1075
// Find the register operands.
1076
unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1077
unsigned LiveMask = 0;
1078
1079
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1080
MachineOperand &Op = MI.getOperand(i);
1081
if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1082
continue;
1083
// FP Register uses must be kills unless there are two uses of the same
1084
// register, in which case only one will be a kill.
1085
assert(Op.isUse() &&
1086
(Op.isKill() || // Marked kill.
1087
getFPReg(Op) == FirstFPRegOp || // Second instance.
1088
MI.killsRegister(Op.getReg(),
1089
/*TRI=*/nullptr)) && // Later use is marked kill.
1090
"Ret only defs operands, and values aren't live beyond it");
1091
1092
if (FirstFPRegOp == ~0U)
1093
FirstFPRegOp = getFPReg(Op);
1094
else {
1095
assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1096
SecondFPRegOp = getFPReg(Op);
1097
}
1098
LiveMask |= (1 << getFPReg(Op));
1099
1100
// Remove the operand so that later passes don't see it.
1101
MI.removeOperand(i);
1102
--i;
1103
--e;
1104
}
1105
1106
// We may have been carrying spurious live-ins, so make sure only the
1107
// returned registers are left live.
1108
adjustLiveRegs(LiveMask, MI);
1109
if (!LiveMask) return; // Quick check to see if any are possible.
1110
1111
// There are only four possibilities here:
1112
// 1) we are returning a single FP value. In this case, it has to be in
1113
// ST(0) already, so just declare success by removing the value from the
1114
// FP Stack.
1115
if (SecondFPRegOp == ~0U) {
1116
// Assert that the top of stack contains the right FP register.
1117
assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1118
"Top of stack not the right register for RET!");
1119
1120
// Ok, everything is good, mark the value as not being on the stack
1121
// anymore so that our assertion about the stack being empty at end of
1122
// block doesn't fire.
1123
StackTop = 0;
1124
return;
1125
}
1126
1127
// Otherwise, we are returning two values:
1128
// 2) If returning the same value for both, we only have one thing in the FP
1129
// stack. Consider: RET FP1, FP1
1130
if (StackTop == 1) {
1131
assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1132
"Stack misconfiguration for RET!");
1133
1134
// Duplicate the TOS so that we return it twice. Just pick some other FPx
1135
// register to hold it.
1136
unsigned NewReg = ScratchFPReg;
1137
duplicateToTop(FirstFPRegOp, NewReg, MI);
1138
FirstFPRegOp = NewReg;
1139
}
1140
1141
/// Okay we know we have two different FPx operands now:
1142
assert(StackTop == 2 && "Must have two values live!");
1143
1144
/// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1145
/// in ST(1). In this case, emit an fxch.
1146
if (getStackEntry(0) == SecondFPRegOp) {
1147
assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1148
moveToTop(FirstFPRegOp, MI);
1149
}
1150
1151
/// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1152
/// ST(1). Just remove both from our understanding of the stack and return.
1153
assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1154
assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1155
StackTop = 0;
1156
}
1157
1158
/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
1159
///
1160
void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
1161
MachineInstr &MI = *I;
1162
unsigned DestReg = getFPReg(MI.getOperand(0));
1163
1164
// Change from the pseudo instruction to the concrete instruction.
1165
MI.removeOperand(0); // Remove the explicit ST(0) operand
1166
MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1167
MI.addOperand(
1168
MachineOperand::CreateReg(X86::ST0, /*isDef*/ true, /*isImp*/ true));
1169
1170
// Result gets pushed on the stack.
1171
pushReg(DestReg);
1172
1173
MI.dropDebugNumber();
1174
}
1175
1176
/// handleOneArgFP - fst <mem>, ST(0)
1177
///
1178
void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
1179
MachineInstr &MI = *I;
1180
unsigned NumOps = MI.getDesc().getNumOperands();
1181
assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
1182
"Can only handle fst* & ftst instructions!");
1183
1184
// Is this the last use of the source register?
1185
unsigned Reg = getFPReg(MI.getOperand(NumOps - 1));
1186
bool KillsSrc = MI.killsRegister(X86::FP0 + Reg, /*TRI=*/nullptr);
1187
1188
// FISTP64m is strange because there isn't a non-popping versions.
1189
// If we have one _and_ we don't want to pop the operand, duplicate the value
1190
// on the stack instead of moving it. This ensure that popping the value is
1191
// always ok.
1192
// Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
1193
//
1194
if (!KillsSrc && (MI.getOpcode() == X86::IST_Fp64m32 ||
1195
MI.getOpcode() == X86::ISTT_Fp16m32 ||
1196
MI.getOpcode() == X86::ISTT_Fp32m32 ||
1197
MI.getOpcode() == X86::ISTT_Fp64m32 ||
1198
MI.getOpcode() == X86::IST_Fp64m64 ||
1199
MI.getOpcode() == X86::ISTT_Fp16m64 ||
1200
MI.getOpcode() == X86::ISTT_Fp32m64 ||
1201
MI.getOpcode() == X86::ISTT_Fp64m64 ||
1202
MI.getOpcode() == X86::IST_Fp64m80 ||
1203
MI.getOpcode() == X86::ISTT_Fp16m80 ||
1204
MI.getOpcode() == X86::ISTT_Fp32m80 ||
1205
MI.getOpcode() == X86::ISTT_Fp64m80 ||
1206
MI.getOpcode() == X86::ST_FpP80m)) {
1207
duplicateToTop(Reg, ScratchFPReg, I);
1208
} else {
1209
moveToTop(Reg, I); // Move to the top of the stack...
1210
}
1211
1212
// Convert from the pseudo instruction to the concrete instruction.
1213
MI.removeOperand(NumOps - 1); // Remove explicit ST(0) operand
1214
MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1215
MI.addOperand(
1216
MachineOperand::CreateReg(X86::ST0, /*isDef*/ false, /*isImp*/ true));
1217
1218
if (MI.getOpcode() == X86::IST_FP64m || MI.getOpcode() == X86::ISTT_FP16m ||
1219
MI.getOpcode() == X86::ISTT_FP32m || MI.getOpcode() == X86::ISTT_FP64m ||
1220
MI.getOpcode() == X86::ST_FP80m) {
1221
if (StackTop == 0)
1222
report_fatal_error("Stack empty??");
1223
--StackTop;
1224
} else if (KillsSrc) { // Last use of operand?
1225
popStackAfter(I);
1226
}
1227
1228
MI.dropDebugNumber();
1229
}
1230
1231
1232
/// handleOneArgFPRW: Handle instructions that read from the top of stack and
1233
/// replace the value with a newly computed value. These instructions may have
1234
/// non-fp operands after their FP operands.
1235
///
1236
/// Examples:
1237
/// R1 = fchs R2
1238
/// R1 = fadd R2, [mem]
1239
///
1240
void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
1241
MachineInstr &MI = *I;
1242
#ifndef NDEBUG
1243
unsigned NumOps = MI.getDesc().getNumOperands();
1244
assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
1245
#endif
1246
1247
// Is this the last use of the source register?
1248
unsigned Reg = getFPReg(MI.getOperand(1));
1249
bool KillsSrc = MI.killsRegister(X86::FP0 + Reg, /*TRI=*/nullptr);
1250
1251
if (KillsSrc) {
1252
// If this is the last use of the source register, just make sure it's on
1253
// the top of the stack.
1254
moveToTop(Reg, I);
1255
if (StackTop == 0)
1256
report_fatal_error("Stack cannot be empty!");
1257
--StackTop;
1258
pushReg(getFPReg(MI.getOperand(0)));
1259
} else {
1260
// If this is not the last use of the source register, _copy_ it to the top
1261
// of the stack.
1262
duplicateToTop(Reg, getFPReg(MI.getOperand(0)), I);
1263
}
1264
1265
// Change from the pseudo instruction to the concrete instruction.
1266
MI.removeOperand(1); // Drop the source operand.
1267
MI.removeOperand(0); // Drop the destination operand.
1268
MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1269
MI.dropDebugNumber();
1270
}
1271
1272
1273
//===----------------------------------------------------------------------===//
1274
// Define tables of various ways to map pseudo instructions
1275
//
1276
1277
// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
1278
static const TableEntry ForwardST0Table[] = {
1279
{ X86::ADD_Fp32 , X86::ADD_FST0r },
1280
{ X86::ADD_Fp64 , X86::ADD_FST0r },
1281
{ X86::ADD_Fp80 , X86::ADD_FST0r },
1282
{ X86::DIV_Fp32 , X86::DIV_FST0r },
1283
{ X86::DIV_Fp64 , X86::DIV_FST0r },
1284
{ X86::DIV_Fp80 , X86::DIV_FST0r },
1285
{ X86::MUL_Fp32 , X86::MUL_FST0r },
1286
{ X86::MUL_Fp64 , X86::MUL_FST0r },
1287
{ X86::MUL_Fp80 , X86::MUL_FST0r },
1288
{ X86::SUB_Fp32 , X86::SUB_FST0r },
1289
{ X86::SUB_Fp64 , X86::SUB_FST0r },
1290
{ X86::SUB_Fp80 , X86::SUB_FST0r },
1291
};
1292
1293
// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
1294
static const TableEntry ReverseST0Table[] = {
1295
{ X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
1296
{ X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
1297
{ X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
1298
{ X86::DIV_Fp32 , X86::DIVR_FST0r },
1299
{ X86::DIV_Fp64 , X86::DIVR_FST0r },
1300
{ X86::DIV_Fp80 , X86::DIVR_FST0r },
1301
{ X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
1302
{ X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
1303
{ X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
1304
{ X86::SUB_Fp32 , X86::SUBR_FST0r },
1305
{ X86::SUB_Fp64 , X86::SUBR_FST0r },
1306
{ X86::SUB_Fp80 , X86::SUBR_FST0r },
1307
};
1308
1309
// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
1310
static const TableEntry ForwardSTiTable[] = {
1311
{ X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
1312
{ X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
1313
{ X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
1314
{ X86::DIV_Fp32 , X86::DIVR_FrST0 },
1315
{ X86::DIV_Fp64 , X86::DIVR_FrST0 },
1316
{ X86::DIV_Fp80 , X86::DIVR_FrST0 },
1317
{ X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
1318
{ X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
1319
{ X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
1320
{ X86::SUB_Fp32 , X86::SUBR_FrST0 },
1321
{ X86::SUB_Fp64 , X86::SUBR_FrST0 },
1322
{ X86::SUB_Fp80 , X86::SUBR_FrST0 },
1323
};
1324
1325
// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
1326
static const TableEntry ReverseSTiTable[] = {
1327
{ X86::ADD_Fp32 , X86::ADD_FrST0 },
1328
{ X86::ADD_Fp64 , X86::ADD_FrST0 },
1329
{ X86::ADD_Fp80 , X86::ADD_FrST0 },
1330
{ X86::DIV_Fp32 , X86::DIV_FrST0 },
1331
{ X86::DIV_Fp64 , X86::DIV_FrST0 },
1332
{ X86::DIV_Fp80 , X86::DIV_FrST0 },
1333
{ X86::MUL_Fp32 , X86::MUL_FrST0 },
1334
{ X86::MUL_Fp64 , X86::MUL_FrST0 },
1335
{ X86::MUL_Fp80 , X86::MUL_FrST0 },
1336
{ X86::SUB_Fp32 , X86::SUB_FrST0 },
1337
{ X86::SUB_Fp64 , X86::SUB_FrST0 },
1338
{ X86::SUB_Fp80 , X86::SUB_FrST0 },
1339
};
1340
1341
1342
/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1343
/// instructions which need to be simplified and possibly transformed.
1344
///
1345
/// Result: ST(0) = fsub ST(0), ST(i)
1346
/// ST(i) = fsub ST(0), ST(i)
1347
/// ST(0) = fsubr ST(0), ST(i)
1348
/// ST(i) = fsubr ST(0), ST(i)
1349
///
1350
void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1351
ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1352
ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1353
MachineInstr &MI = *I;
1354
1355
unsigned NumOperands = MI.getDesc().getNumOperands();
1356
assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
1357
unsigned Dest = getFPReg(MI.getOperand(0));
1358
unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
1359
unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
1360
bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0, /*TRI=*/nullptr);
1361
bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1, /*TRI=*/nullptr);
1362
const DebugLoc &dl = MI.getDebugLoc();
1363
1364
unsigned TOS = getStackEntry(0);
1365
1366
// One of our operands must be on the top of the stack. If neither is yet, we
1367
// need to move one.
1368
if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
1369
// We can choose to move either operand to the top of the stack. If one of
1370
// the operands is killed by this instruction, we want that one so that we
1371
// can update right on top of the old version.
1372
if (KillsOp0) {
1373
moveToTop(Op0, I); // Move dead operand to TOS.
1374
TOS = Op0;
1375
} else if (KillsOp1) {
1376
moveToTop(Op1, I);
1377
TOS = Op1;
1378
} else {
1379
// All of the operands are live after this instruction executes, so we
1380
// cannot update on top of any operand. Because of this, we must
1381
// duplicate one of the stack elements to the top. It doesn't matter
1382
// which one we pick.
1383
//
1384
duplicateToTop(Op0, Dest, I);
1385
Op0 = TOS = Dest;
1386
KillsOp0 = true;
1387
}
1388
} else if (!KillsOp0 && !KillsOp1) {
1389
// If we DO have one of our operands at the top of the stack, but we don't
1390
// have a dead operand, we must duplicate one of the operands to a new slot
1391
// on the stack.
1392
duplicateToTop(Op0, Dest, I);
1393
Op0 = TOS = Dest;
1394
KillsOp0 = true;
1395
}
1396
1397
// Now we know that one of our operands is on the top of the stack, and at
1398
// least one of our operands is killed by this instruction.
1399
assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1400
"Stack conditions not set up right!");
1401
1402
// We decide which form to use based on what is on the top of the stack, and
1403
// which operand is killed by this instruction.
1404
ArrayRef<TableEntry> InstTable;
1405
bool isForward = TOS == Op0;
1406
bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1407
if (updateST0) {
1408
if (isForward)
1409
InstTable = ForwardST0Table;
1410
else
1411
InstTable = ReverseST0Table;
1412
} else {
1413
if (isForward)
1414
InstTable = ForwardSTiTable;
1415
else
1416
InstTable = ReverseSTiTable;
1417
}
1418
1419
int Opcode = Lookup(InstTable, MI.getOpcode());
1420
assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1421
1422
// NotTOS - The register which is not on the top of stack...
1423
unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1424
1425
// Replace the old instruction with a new instruction
1426
MBB->remove(&*I++);
1427
I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
1428
1429
if (!MI.mayRaiseFPException())
1430
I->setFlag(MachineInstr::MIFlag::NoFPExcept);
1431
1432
// If both operands are killed, pop one off of the stack in addition to
1433
// overwriting the other one.
1434
if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1435
assert(!updateST0 && "Should have updated other operand!");
1436
popStackAfter(I); // Pop the top of stack
1437
}
1438
1439
// Update stack information so that we know the destination register is now on
1440
// the stack.
1441
unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1442
assert(UpdatedSlot < StackTop && Dest < 7);
1443
Stack[UpdatedSlot] = Dest;
1444
RegMap[Dest] = UpdatedSlot;
1445
MBB->getParent()->deleteMachineInstr(&MI); // Remove the old instruction
1446
}
1447
1448
/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1449
/// register arguments and no explicit destinations.
1450
///
1451
void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1452
MachineInstr &MI = *I;
1453
1454
unsigned NumOperands = MI.getDesc().getNumOperands();
1455
assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
1456
unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
1457
unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
1458
bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0, /*TRI=*/nullptr);
1459
bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1, /*TRI=*/nullptr);
1460
1461
// Make sure the first operand is on the top of stack, the other one can be
1462
// anywhere.
1463
moveToTop(Op0, I);
1464
1465
// Change from the pseudo instruction to the concrete instruction.
1466
MI.getOperand(0).setReg(getSTReg(Op1));
1467
MI.removeOperand(1);
1468
MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1469
MI.dropDebugNumber();
1470
1471
// If any of the operands are killed by this instruction, free them.
1472
if (KillsOp0) freeStackSlotAfter(I, Op0);
1473
if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
1474
}
1475
1476
/// handleCondMovFP - Handle two address conditional move instructions. These
1477
/// instructions move a st(i) register to st(0) iff a condition is true. These
1478
/// instructions require that the first operand is at the top of the stack, but
1479
/// otherwise don't modify the stack at all.
1480
void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1481
MachineInstr &MI = *I;
1482
1483
unsigned Op0 = getFPReg(MI.getOperand(0));
1484
unsigned Op1 = getFPReg(MI.getOperand(2));
1485
bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1, /*TRI=*/nullptr);
1486
1487
// The first operand *must* be on the top of the stack.
1488
moveToTop(Op0, I);
1489
1490
// Change the second operand to the stack register that the operand is in.
1491
// Change from the pseudo instruction to the concrete instruction.
1492
MI.removeOperand(0);
1493
MI.removeOperand(1);
1494
MI.getOperand(0).setReg(getSTReg(Op1));
1495
MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1496
MI.dropDebugNumber();
1497
1498
// If we kill the second operand, make sure to pop it from the stack.
1499
if (Op0 != Op1 && KillsOp1) {
1500
// Get this value off of the register stack.
1501
freeStackSlotAfter(I, Op1);
1502
}
1503
}
1504
1505
1506
/// handleSpecialFP - Handle special instructions which behave unlike other
1507
/// floating point instructions. This is primarily intended for use by pseudo
1508
/// instructions.
1509
///
1510
void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) {
1511
MachineInstr &MI = *Inst;
1512
1513
if (MI.isCall()) {
1514
handleCall(Inst);
1515
return;
1516
}
1517
1518
if (MI.isReturn()) {
1519
handleReturn(Inst);
1520
return;
1521
}
1522
1523
switch (MI.getOpcode()) {
1524
default: llvm_unreachable("Unknown SpecialFP instruction!");
1525
case TargetOpcode::COPY: {
1526
// We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
1527
const MachineOperand &MO1 = MI.getOperand(1);
1528
const MachineOperand &MO0 = MI.getOperand(0);
1529
bool KillsSrc = MI.killsRegister(MO1.getReg(), /*TRI=*/nullptr);
1530
1531
// FP <- FP copy.
1532
unsigned DstFP = getFPReg(MO0);
1533
unsigned SrcFP = getFPReg(MO1);
1534
assert(isLive(SrcFP) && "Cannot copy dead register");
1535
if (KillsSrc) {
1536
// If the input operand is killed, we can just change the owner of the
1537
// incoming stack slot into the result.
1538
unsigned Slot = getSlot(SrcFP);
1539
Stack[Slot] = DstFP;
1540
RegMap[DstFP] = Slot;
1541
} else {
1542
// For COPY we just duplicate the specified value to a new stack slot.
1543
// This could be made better, but would require substantial changes.
1544
duplicateToTop(SrcFP, DstFP, Inst);
1545
}
1546
break;
1547
}
1548
1549
case TargetOpcode::IMPLICIT_DEF: {
1550
// All FP registers must be explicitly defined, so load a 0 instead.
1551
unsigned Reg = MI.getOperand(0).getReg() - X86::FP0;
1552
LLVM_DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
1553
BuildMI(*MBB, Inst, MI.getDebugLoc(), TII->get(X86::LD_F0));
1554
pushReg(Reg);
1555
break;
1556
}
1557
1558
case TargetOpcode::INLINEASM:
1559
case TargetOpcode::INLINEASM_BR: {
1560
// The inline asm MachineInstr currently only *uses* FP registers for the
1561
// 'f' constraint. These should be turned into the current ST(x) register
1562
// in the machine instr.
1563
//
1564
// There are special rules for x87 inline assembly. The compiler must know
1565
// exactly how many registers are popped and pushed implicitly by the asm.
1566
// Otherwise it is not possible to restore the stack state after the inline
1567
// asm.
1568
//
1569
// There are 3 kinds of input operands:
1570
//
1571
// 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1572
// popped input operand must be in a fixed stack slot, and it is either
1573
// tied to an output operand, or in the clobber list. The MI has ST use
1574
// and def operands for these inputs.
1575
//
1576
// 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1577
// preserved by the inline asm. The fixed stack slots must be STn-STm
1578
// following the popped inputs. A fixed input operand cannot be tied to
1579
// an output or appear in the clobber list. The MI has ST use operands
1580
// and no defs for these inputs.
1581
//
1582
// 3. Preserved inputs. These inputs use the "f" constraint which is
1583
// represented as an FP register. The inline asm won't change these
1584
// stack slots.
1585
//
1586
// Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1587
// registers do not count as output operands. The inline asm changes the
1588
// stack as if it popped all the popped inputs and then pushed all the
1589
// output operands.
1590
1591
// Scan the assembly for ST registers used, defined and clobbered. We can
1592
// only tell clobbers from defs by looking at the asm descriptor.
1593
unsigned STUses = 0, STDefs = 0, STClobbers = 0;
1594
unsigned NumOps = 0;
1595
SmallSet<unsigned, 1> FRegIdx;
1596
unsigned RCID;
1597
1598
for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI.getNumOperands();
1599
i != e && MI.getOperand(i).isImm(); i += 1 + NumOps) {
1600
unsigned Flags = MI.getOperand(i).getImm();
1601
const InlineAsm::Flag F(Flags);
1602
1603
NumOps = F.getNumOperandRegisters();
1604
if (NumOps != 1)
1605
continue;
1606
const MachineOperand &MO = MI.getOperand(i + 1);
1607
if (!MO.isReg())
1608
continue;
1609
unsigned STReg = MO.getReg() - X86::FP0;
1610
if (STReg >= 8)
1611
continue;
1612
1613
// If the flag has a register class constraint, this must be an operand
1614
// with constraint "f". Record its index and continue.
1615
if (F.hasRegClassConstraint(RCID)) {
1616
FRegIdx.insert(i + 1);
1617
continue;
1618
}
1619
1620
switch (F.getKind()) {
1621
case InlineAsm::Kind::RegUse:
1622
STUses |= (1u << STReg);
1623
break;
1624
case InlineAsm::Kind::RegDef:
1625
case InlineAsm::Kind::RegDefEarlyClobber:
1626
STDefs |= (1u << STReg);
1627
break;
1628
case InlineAsm::Kind::Clobber:
1629
STClobbers |= (1u << STReg);
1630
break;
1631
default:
1632
break;
1633
}
1634
}
1635
1636
if (STUses && !isMask_32(STUses))
1637
MI.emitError("fixed input regs must be last on the x87 stack");
1638
unsigned NumSTUses = llvm::countr_one(STUses);
1639
1640
// Defs must be contiguous from the stack top. ST0-STn.
1641
if (STDefs && !isMask_32(STDefs)) {
1642
MI.emitError("output regs must be last on the x87 stack");
1643
STDefs = NextPowerOf2(STDefs) - 1;
1644
}
1645
unsigned NumSTDefs = llvm::countr_one(STDefs);
1646
1647
// So must the clobbered stack slots. ST0-STm, m >= n.
1648
if (STClobbers && !isMask_32(STDefs | STClobbers))
1649
MI.emitError("clobbers must be last on the x87 stack");
1650
1651
// Popped inputs are the ones that are also clobbered or defined.
1652
unsigned STPopped = STUses & (STDefs | STClobbers);
1653
if (STPopped && !isMask_32(STPopped))
1654
MI.emitError("implicitly popped regs must be last on the x87 stack");
1655
unsigned NumSTPopped = llvm::countr_one(STPopped);
1656
1657
LLVM_DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
1658
<< NumSTPopped << ", and defines " << NumSTDefs
1659
<< " regs.\n");
1660
1661
#ifndef NDEBUG
1662
// If any input operand uses constraint "f", all output register
1663
// constraints must be early-clobber defs.
1664
for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I)
1665
if (FRegIdx.count(I)) {
1666
assert((1 << getFPReg(MI.getOperand(I)) & STDefs) == 0 &&
1667
"Operands with constraint \"f\" cannot overlap with defs");
1668
}
1669
#endif
1670
1671
// Collect all FP registers (register operands with constraints "t", "u",
1672
// and "f") to kill afer the instruction.
1673
unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
1674
for (const MachineOperand &Op : MI.operands()) {
1675
if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1676
continue;
1677
unsigned FPReg = getFPReg(Op);
1678
1679
// If we kill this operand, make sure to pop it from the stack after the
1680
// asm. We just remember it for now, and pop them all off at the end in
1681
// a batch.
1682
if (Op.isUse() && Op.isKill())
1683
FPKills |= 1U << FPReg;
1684
}
1685
1686
// Do not include registers that are implicitly popped by defs/clobbers.
1687
FPKills &= ~(STDefs | STClobbers);
1688
1689
// Now we can rearrange the live registers to match what was requested.
1690
unsigned char STUsesArray[8];
1691
1692
for (unsigned I = 0; I < NumSTUses; ++I)
1693
STUsesArray[I] = I;
1694
1695
shuffleStackTop(STUsesArray, NumSTUses, Inst);
1696
LLVM_DEBUG({
1697
dbgs() << "Before asm: ";
1698
dumpStack();
1699
});
1700
1701
// With the stack layout fixed, rewrite the FP registers.
1702
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1703
MachineOperand &Op = MI.getOperand(i);
1704
if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1705
continue;
1706
1707
unsigned FPReg = getFPReg(Op);
1708
1709
if (FRegIdx.count(i))
1710
// Operand with constraint "f".
1711
Op.setReg(getSTReg(FPReg));
1712
else
1713
// Operand with a single register class constraint ("t" or "u").
1714
Op.setReg(X86::ST0 + FPReg);
1715
}
1716
1717
// Simulate the inline asm popping its inputs and pushing its outputs.
1718
StackTop -= NumSTPopped;
1719
1720
for (unsigned i = 0; i < NumSTDefs; ++i)
1721
pushReg(NumSTDefs - i - 1);
1722
1723
// If this asm kills any FP registers (is the last use of them) we must
1724
// explicitly emit pop instructions for them. Do this now after the asm has
1725
// executed so that the ST(x) numbers are not off (which would happen if we
1726
// did this inline with operand rewriting).
1727
//
1728
// Note: this might be a non-optimal pop sequence. We might be able to do
1729
// better by trying to pop in stack order or something.
1730
while (FPKills) {
1731
unsigned FPReg = llvm::countr_zero(FPKills);
1732
if (isLive(FPReg))
1733
freeStackSlotAfter(Inst, FPReg);
1734
FPKills &= ~(1U << FPReg);
1735
}
1736
1737
// Don't delete the inline asm!
1738
return;
1739
}
1740
}
1741
1742
Inst = MBB->erase(Inst); // Remove the pseudo instruction
1743
1744
// We want to leave I pointing to the previous instruction, but what if we
1745
// just erased the first instruction?
1746
if (Inst == MBB->begin()) {
1747
LLVM_DEBUG(dbgs() << "Inserting dummy KILL\n");
1748
Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL));
1749
} else
1750
--Inst;
1751
}
1752
1753
void FPS::setKillFlags(MachineBasicBlock &MBB) const {
1754
const TargetRegisterInfo &TRI =
1755
*MBB.getParent()->getSubtarget().getRegisterInfo();
1756
LiveRegUnits LPR(TRI);
1757
1758
LPR.addLiveOuts(MBB);
1759
1760
for (MachineInstr &MI : llvm::reverse(MBB)) {
1761
if (MI.isDebugInstr())
1762
continue;
1763
1764
std::bitset<8> Defs;
1765
SmallVector<MachineOperand *, 2> Uses;
1766
1767
for (auto &MO : MI.operands()) {
1768
if (!MO.isReg())
1769
continue;
1770
1771
unsigned Reg = MO.getReg() - X86::FP0;
1772
1773
if (Reg >= 8)
1774
continue;
1775
1776
if (MO.isDef()) {
1777
Defs.set(Reg);
1778
if (LPR.available(MO.getReg()))
1779
MO.setIsDead();
1780
} else
1781
Uses.push_back(&MO);
1782
}
1783
1784
for (auto *MO : Uses)
1785
if (Defs.test(getFPReg(*MO)) || LPR.available(MO->getReg()))
1786
MO->setIsKill();
1787
1788
LPR.stepBackward(MI);
1789
}
1790
}
1791
1792