Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/X86/X86FrameLowering.cpp
35269 views
1
//===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains the X86 implementation of TargetFrameLowering class.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "X86FrameLowering.h"
14
#include "MCTargetDesc/X86MCTargetDesc.h"
15
#include "X86InstrBuilder.h"
16
#include "X86InstrInfo.h"
17
#include "X86MachineFunctionInfo.h"
18
#include "X86Subtarget.h"
19
#include "X86TargetMachine.h"
20
#include "llvm/ADT/Statistic.h"
21
#include "llvm/CodeGen/LivePhysRegs.h"
22
#include "llvm/CodeGen/MachineFrameInfo.h"
23
#include "llvm/CodeGen/MachineFunction.h"
24
#include "llvm/CodeGen/MachineInstrBuilder.h"
25
#include "llvm/CodeGen/MachineModuleInfo.h"
26
#include "llvm/CodeGen/MachineRegisterInfo.h"
27
#include "llvm/CodeGen/WinEHFuncInfo.h"
28
#include "llvm/IR/DataLayout.h"
29
#include "llvm/IR/EHPersonalities.h"
30
#include "llvm/IR/Function.h"
31
#include "llvm/IR/Module.h"
32
#include "llvm/MC/MCAsmInfo.h"
33
#include "llvm/MC/MCObjectFileInfo.h"
34
#include "llvm/MC/MCSymbol.h"
35
#include "llvm/Support/Debug.h"
36
#include "llvm/Support/LEB128.h"
37
#include "llvm/Target/TargetOptions.h"
38
#include <cstdlib>
39
40
#define DEBUG_TYPE "x86-fl"
41
42
STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue");
43
STATISTIC(NumFrameExtraProbe,
44
"Number of extra stack probes generated in prologue");
45
STATISTIC(NumFunctionUsingPush2Pop2, "Number of funtions using push2/pop2");
46
47
using namespace llvm;
48
49
X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
50
MaybeAlign StackAlignOverride)
51
: TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(),
52
STI.is64Bit() ? -8 : -4),
53
STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
54
// Cache a bunch of frame-related predicates for this subtarget.
55
SlotSize = TRI->getSlotSize();
56
Is64Bit = STI.is64Bit();
57
IsLP64 = STI.isTarget64BitLP64();
58
// standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
59
Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
60
StackPtr = TRI->getStackRegister();
61
}
62
63
bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
64
return !MF.getFrameInfo().hasVarSizedObjects() &&
65
!MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() &&
66
!MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall();
67
}
68
69
/// canSimplifyCallFramePseudos - If there is a reserved call frame, the
70
/// call frame pseudos can be simplified. Having a FP, as in the default
71
/// implementation, is not sufficient here since we can't always use it.
72
/// Use a more nuanced condition.
73
bool X86FrameLowering::canSimplifyCallFramePseudos(
74
const MachineFunction &MF) const {
75
return hasReservedCallFrame(MF) ||
76
MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() ||
77
(hasFP(MF) && !TRI->hasStackRealignment(MF)) ||
78
TRI->hasBasePointer(MF);
79
}
80
81
// needsFrameIndexResolution - Do we need to perform FI resolution for
82
// this function. Normally, this is required only when the function
83
// has any stack objects. However, FI resolution actually has another job,
84
// not apparent from the title - it resolves callframesetup/destroy
85
// that were not simplified earlier.
86
// So, this is required for x86 functions that have push sequences even
87
// when there are no stack objects.
88
bool X86FrameLowering::needsFrameIndexResolution(
89
const MachineFunction &MF) const {
90
return MF.getFrameInfo().hasStackObjects() ||
91
MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
92
}
93
94
/// hasFP - Return true if the specified function should have a dedicated frame
95
/// pointer register. This is true if the function has variable sized allocas
96
/// or if frame pointer elimination is disabled.
97
bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
98
const MachineFrameInfo &MFI = MF.getFrameInfo();
99
return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
100
TRI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
101
MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() ||
102
MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
103
MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() ||
104
MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() ||
105
MFI.hasStackMap() || MFI.hasPatchPoint() ||
106
(isWin64Prologue(MF) && MFI.hasCopyImplyingStackAdjustment()));
107
}
108
109
static unsigned getSUBriOpcode(bool IsLP64) {
110
return IsLP64 ? X86::SUB64ri32 : X86::SUB32ri;
111
}
112
113
static unsigned getADDriOpcode(bool IsLP64) {
114
return IsLP64 ? X86::ADD64ri32 : X86::ADD32ri;
115
}
116
117
static unsigned getSUBrrOpcode(bool IsLP64) {
118
return IsLP64 ? X86::SUB64rr : X86::SUB32rr;
119
}
120
121
static unsigned getADDrrOpcode(bool IsLP64) {
122
return IsLP64 ? X86::ADD64rr : X86::ADD32rr;
123
}
124
125
static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
126
return IsLP64 ? X86::AND64ri32 : X86::AND32ri;
127
}
128
129
static unsigned getLEArOpcode(bool IsLP64) {
130
return IsLP64 ? X86::LEA64r : X86::LEA32r;
131
}
132
133
static unsigned getMOVriOpcode(bool Use64BitReg, int64_t Imm) {
134
if (Use64BitReg) {
135
if (isUInt<32>(Imm))
136
return X86::MOV32ri64;
137
if (isInt<32>(Imm))
138
return X86::MOV64ri32;
139
return X86::MOV64ri;
140
}
141
return X86::MOV32ri;
142
}
143
144
// Push-Pop Acceleration (PPX) hint is used to indicate that the POP reads the
145
// value written by the PUSH from the stack. The processor tracks these marked
146
// instructions internally and fast-forwards register data between matching PUSH
147
// and POP instructions, without going through memory or through the training
148
// loop of the Fast Store Forwarding Predictor (FSFP). Instead, a more efficient
149
// memory-renaming optimization can be used.
150
//
151
// The PPX hint is purely a performance hint. Instructions with this hint have
152
// the same functional semantics as those without. PPX hints set by the
153
// compiler that violate the balancing rule may turn off the PPX optimization,
154
// but they will not affect program semantics.
155
//
156
// Hence, PPX is used for balanced spill/reloads (Exceptions and setjmp/longjmp
157
// are not considered).
158
//
159
// PUSH2 and POP2 are instructions for (respectively) pushing/popping 2
160
// GPRs at a time to/from the stack.
161
static unsigned getPUSHOpcode(const X86Subtarget &ST) {
162
return ST.is64Bit() ? (ST.hasPPX() ? X86::PUSHP64r : X86::PUSH64r)
163
: X86::PUSH32r;
164
}
165
static unsigned getPOPOpcode(const X86Subtarget &ST) {
166
return ST.is64Bit() ? (ST.hasPPX() ? X86::POPP64r : X86::POP64r)
167
: X86::POP32r;
168
}
169
static unsigned getPUSH2Opcode(const X86Subtarget &ST) {
170
return ST.hasPPX() ? X86::PUSH2P : X86::PUSH2;
171
}
172
static unsigned getPOP2Opcode(const X86Subtarget &ST) {
173
return ST.hasPPX() ? X86::POP2P : X86::POP2;
174
}
175
176
static bool isEAXLiveIn(MachineBasicBlock &MBB) {
177
for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
178
unsigned Reg = RegMask.PhysReg;
179
180
if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
181
Reg == X86::AH || Reg == X86::AL)
182
return true;
183
}
184
185
return false;
186
}
187
188
/// Check if the flags need to be preserved before the terminators.
189
/// This would be the case, if the eflags is live-in of the region
190
/// composed by the terminators or live-out of that region, without
191
/// being defined by a terminator.
192
static bool
193
flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
194
for (const MachineInstr &MI : MBB.terminators()) {
195
bool BreakNext = false;
196
for (const MachineOperand &MO : MI.operands()) {
197
if (!MO.isReg())
198
continue;
199
Register Reg = MO.getReg();
200
if (Reg != X86::EFLAGS)
201
continue;
202
203
// This terminator needs an eflags that is not defined
204
// by a previous another terminator:
205
// EFLAGS is live-in of the region composed by the terminators.
206
if (!MO.isDef())
207
return true;
208
// This terminator defines the eflags, i.e., we don't need to preserve it.
209
// However, we still need to check this specific terminator does not
210
// read a live-in value.
211
BreakNext = true;
212
}
213
// We found a definition of the eflags, no need to preserve them.
214
if (BreakNext)
215
return false;
216
}
217
218
// None of the terminators use or define the eflags.
219
// Check if they are live-out, that would imply we need to preserve them.
220
for (const MachineBasicBlock *Succ : MBB.successors())
221
if (Succ->isLiveIn(X86::EFLAGS))
222
return true;
223
224
return false;
225
}
226
227
/// emitSPUpdate - Emit a series of instructions to increment / decrement the
228
/// stack pointer by a constant value.
229
void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
230
MachineBasicBlock::iterator &MBBI,
231
const DebugLoc &DL, int64_t NumBytes,
232
bool InEpilogue) const {
233
bool isSub = NumBytes < 0;
234
uint64_t Offset = isSub ? -NumBytes : NumBytes;
235
MachineInstr::MIFlag Flag =
236
isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy;
237
238
uint64_t Chunk = (1LL << 31) - 1;
239
240
MachineFunction &MF = *MBB.getParent();
241
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
242
const X86TargetLowering &TLI = *STI.getTargetLowering();
243
const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF);
244
245
// It's ok to not take into account large chunks when probing, as the
246
// allocation is split in smaller chunks anyway.
247
if (EmitInlineStackProbe && !InEpilogue) {
248
249
// This pseudo-instruction is going to be expanded, potentially using a
250
// loop, by inlineStackProbe().
251
BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset);
252
return;
253
} else if (Offset > Chunk) {
254
// Rather than emit a long series of instructions for large offsets,
255
// load the offset into a register and do one sub/add
256
unsigned Reg = 0;
257
unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
258
259
if (isSub && !isEAXLiveIn(MBB))
260
Reg = Rax;
261
else
262
Reg = TRI->findDeadCallerSavedReg(MBB, MBBI);
263
264
unsigned AddSubRROpc =
265
isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit);
266
if (Reg) {
267
BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Reg)
268
.addImm(Offset)
269
.setMIFlag(Flag);
270
MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr)
271
.addReg(StackPtr)
272
.addReg(Reg);
273
MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
274
return;
275
} else if (Offset > 8 * Chunk) {
276
// If we would need more than 8 add or sub instructions (a >16GB stack
277
// frame), it's worth spilling RAX to materialize this immediate.
278
// pushq %rax
279
// movabsq +-$Offset+-SlotSize, %rax
280
// addq %rsp, %rax
281
// xchg %rax, (%rsp)
282
// movq (%rsp), %rsp
283
assert(Is64Bit && "can't have 32-bit 16GB stack frame");
284
BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
285
.addReg(Rax, RegState::Kill)
286
.setMIFlag(Flag);
287
// Subtract is not commutative, so negate the offset and always use add.
288
// Subtract 8 less and add 8 more to account for the PUSH we just did.
289
if (isSub)
290
Offset = -(Offset - SlotSize);
291
else
292
Offset = Offset + SlotSize;
293
BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Rax)
294
.addImm(Offset)
295
.setMIFlag(Flag);
296
MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax)
297
.addReg(Rax)
298
.addReg(StackPtr);
299
MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
300
// Exchange the new SP in RAX with the top of the stack.
301
addRegOffset(
302
BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax),
303
StackPtr, false, 0);
304
// Load new SP from the top of the stack into RSP.
305
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr),
306
StackPtr, false, 0);
307
return;
308
}
309
}
310
311
while (Offset) {
312
uint64_t ThisVal = std::min(Offset, Chunk);
313
if (ThisVal == SlotSize) {
314
// Use push / pop for slot sized adjustments as a size optimization. We
315
// need to find a dead register when using pop.
316
unsigned Reg = isSub ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
317
: TRI->findDeadCallerSavedReg(MBB, MBBI);
318
if (Reg) {
319
unsigned Opc = isSub ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
320
: (Is64Bit ? X86::POP64r : X86::POP32r);
321
BuildMI(MBB, MBBI, DL, TII.get(Opc))
322
.addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub))
323
.setMIFlag(Flag);
324
Offset -= ThisVal;
325
continue;
326
}
327
}
328
329
BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue)
330
.setMIFlag(Flag);
331
332
Offset -= ThisVal;
333
}
334
}
335
336
MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
337
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
338
const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
339
assert(Offset != 0 && "zero offset stack adjustment requested");
340
341
// On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
342
// is tricky.
343
bool UseLEA;
344
if (!InEpilogue) {
345
// Check if inserting the prologue at the beginning
346
// of MBB would require to use LEA operations.
347
// We need to use LEA operations if EFLAGS is live in, because
348
// it means an instruction will read it before it gets defined.
349
UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
350
} else {
351
// If we can use LEA for SP but we shouldn't, check that none
352
// of the terminators uses the eflags. Otherwise we will insert
353
// a ADD that will redefine the eflags and break the condition.
354
// Alternatively, we could move the ADD, but this may not be possible
355
// and is an optimization anyway.
356
UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
357
if (UseLEA && !STI.useLeaForSP())
358
UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
359
// If that assert breaks, that means we do not do the right thing
360
// in canUseAsEpilogue.
361
assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
362
"We shouldn't have allowed this insertion point");
363
}
364
365
MachineInstrBuilder MI;
366
if (UseLEA) {
367
MI = addRegOffset(BuildMI(MBB, MBBI, DL,
368
TII.get(getLEArOpcode(Uses64BitFramePtr)),
369
StackPtr),
370
StackPtr, false, Offset);
371
} else {
372
bool IsSub = Offset < 0;
373
uint64_t AbsOffset = IsSub ? -Offset : Offset;
374
const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr)
375
: getADDriOpcode(Uses64BitFramePtr);
376
MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
377
.addReg(StackPtr)
378
.addImm(AbsOffset);
379
MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
380
}
381
return MI;
382
}
383
384
int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
385
MachineBasicBlock::iterator &MBBI,
386
bool doMergeWithPrevious) const {
387
if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
388
(!doMergeWithPrevious && MBBI == MBB.end()))
389
return 0;
390
391
MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
392
393
PI = skipDebugInstructionsBackward(PI, MBB.begin());
394
// It is assumed that ADD/SUB/LEA instruction is succeded by one CFI
395
// instruction, and that there are no DBG_VALUE or other instructions between
396
// ADD/SUB/LEA and its corresponding CFI instruction.
397
/* TODO: Add support for the case where there are multiple CFI instructions
398
below the ADD/SUB/LEA, e.g.:
399
...
400
add
401
cfi_def_cfa_offset
402
cfi_offset
403
...
404
*/
405
if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction())
406
PI = std::prev(PI);
407
408
unsigned Opc = PI->getOpcode();
409
int Offset = 0;
410
411
if ((Opc == X86::ADD64ri32 || Opc == X86::ADD32ri) &&
412
PI->getOperand(0).getReg() == StackPtr) {
413
assert(PI->getOperand(1).getReg() == StackPtr);
414
Offset = PI->getOperand(2).getImm();
415
} else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
416
PI->getOperand(0).getReg() == StackPtr &&
417
PI->getOperand(1).getReg() == StackPtr &&
418
PI->getOperand(2).getImm() == 1 &&
419
PI->getOperand(3).getReg() == X86::NoRegister &&
420
PI->getOperand(5).getReg() == X86::NoRegister) {
421
// For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
422
Offset = PI->getOperand(4).getImm();
423
} else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB32ri) &&
424
PI->getOperand(0).getReg() == StackPtr) {
425
assert(PI->getOperand(1).getReg() == StackPtr);
426
Offset = -PI->getOperand(2).getImm();
427
} else
428
return 0;
429
430
PI = MBB.erase(PI);
431
if (PI != MBB.end() && PI->isCFIInstruction()) {
432
auto CIs = MBB.getParent()->getFrameInstructions();
433
MCCFIInstruction CI = CIs[PI->getOperand(0).getCFIIndex()];
434
if (CI.getOperation() == MCCFIInstruction::OpDefCfaOffset ||
435
CI.getOperation() == MCCFIInstruction::OpAdjustCfaOffset)
436
PI = MBB.erase(PI);
437
}
438
if (!doMergeWithPrevious)
439
MBBI = skipDebugInstructionsForward(PI, MBB.end());
440
441
return Offset;
442
}
443
444
void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
445
MachineBasicBlock::iterator MBBI,
446
const DebugLoc &DL,
447
const MCCFIInstruction &CFIInst,
448
MachineInstr::MIFlag Flag) const {
449
MachineFunction &MF = *MBB.getParent();
450
unsigned CFIIndex = MF.addFrameInst(CFIInst);
451
452
if (CFIInst.getOperation() == MCCFIInstruction::OpAdjustCfaOffset)
453
MF.getInfo<X86MachineFunctionInfo>()->setHasCFIAdjustCfa(true);
454
455
BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
456
.addCFIIndex(CFIIndex)
457
.setMIFlag(Flag);
458
}
459
460
/// Emits Dwarf Info specifying offsets of callee saved registers and
461
/// frame pointer. This is called only when basic block sections are enabled.
462
void X86FrameLowering::emitCalleeSavedFrameMovesFullCFA(
463
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
464
MachineFunction &MF = *MBB.getParent();
465
if (!hasFP(MF)) {
466
emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true);
467
return;
468
}
469
const MCRegisterInfo *MRI = MF.getContext().getRegisterInfo();
470
const Register FramePtr = TRI->getFrameRegister(MF);
471
const Register MachineFramePtr =
472
STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64))
473
: FramePtr;
474
unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true);
475
// Offset = space for return address + size of the frame pointer itself.
476
int64_t Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4);
477
BuildCFI(MBB, MBBI, DebugLoc{},
478
MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset));
479
emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true);
480
}
481
482
void X86FrameLowering::emitCalleeSavedFrameMoves(
483
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
484
const DebugLoc &DL, bool IsPrologue) const {
485
MachineFunction &MF = *MBB.getParent();
486
MachineFrameInfo &MFI = MF.getFrameInfo();
487
const MCRegisterInfo *MRI = MF.getContext().getRegisterInfo();
488
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
489
490
// Add callee saved registers to move list.
491
const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
492
493
// Calculate offsets.
494
for (const CalleeSavedInfo &I : CSI) {
495
int64_t Offset = MFI.getObjectOffset(I.getFrameIdx());
496
Register Reg = I.getReg();
497
unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
498
499
if (IsPrologue) {
500
if (X86FI->getStackPtrSaveMI()) {
501
// +2*SlotSize because there is return address and ebp at the bottom
502
// of the stack.
503
// | retaddr |
504
// | ebp |
505
// | |<--ebp
506
Offset += 2 * SlotSize;
507
SmallString<64> CfaExpr;
508
CfaExpr.push_back(dwarf::DW_CFA_expression);
509
uint8_t buffer[16];
510
CfaExpr.append(buffer, buffer + encodeULEB128(DwarfReg, buffer));
511
CfaExpr.push_back(2);
512
Register FramePtr = TRI->getFrameRegister(MF);
513
const Register MachineFramePtr =
514
STI.isTarget64BitILP32()
515
? Register(getX86SubSuperRegister(FramePtr, 64))
516
: FramePtr;
517
unsigned DwarfFramePtr = MRI->getDwarfRegNum(MachineFramePtr, true);
518
CfaExpr.push_back((uint8_t)(dwarf::DW_OP_breg0 + DwarfFramePtr));
519
CfaExpr.append(buffer, buffer + encodeSLEB128(Offset, buffer));
520
BuildCFI(MBB, MBBI, DL,
521
MCCFIInstruction::createEscape(nullptr, CfaExpr.str()),
522
MachineInstr::FrameSetup);
523
} else {
524
BuildCFI(MBB, MBBI, DL,
525
MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
526
}
527
} else {
528
BuildCFI(MBB, MBBI, DL,
529
MCCFIInstruction::createRestore(nullptr, DwarfReg));
530
}
531
}
532
if (auto *MI = X86FI->getStackPtrSaveMI()) {
533
int FI = MI->getOperand(1).getIndex();
534
int64_t Offset = MFI.getObjectOffset(FI) + 2 * SlotSize;
535
SmallString<64> CfaExpr;
536
Register FramePtr = TRI->getFrameRegister(MF);
537
const Register MachineFramePtr =
538
STI.isTarget64BitILP32()
539
? Register(getX86SubSuperRegister(FramePtr, 64))
540
: FramePtr;
541
unsigned DwarfFramePtr = MRI->getDwarfRegNum(MachineFramePtr, true);
542
CfaExpr.push_back((uint8_t)(dwarf::DW_OP_breg0 + DwarfFramePtr));
543
uint8_t buffer[16];
544
CfaExpr.append(buffer, buffer + encodeSLEB128(Offset, buffer));
545
CfaExpr.push_back(dwarf::DW_OP_deref);
546
547
SmallString<64> DefCfaExpr;
548
DefCfaExpr.push_back(dwarf::DW_CFA_def_cfa_expression);
549
DefCfaExpr.append(buffer, buffer + encodeSLEB128(CfaExpr.size(), buffer));
550
DefCfaExpr.append(CfaExpr.str());
551
// DW_CFA_def_cfa_expression: DW_OP_breg5 offset, DW_OP_deref
552
BuildCFI(MBB, MBBI, DL,
553
MCCFIInstruction::createEscape(nullptr, DefCfaExpr.str()),
554
MachineInstr::FrameSetup);
555
}
556
}
557
558
void X86FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero,
559
MachineBasicBlock &MBB) const {
560
const MachineFunction &MF = *MBB.getParent();
561
562
// Insertion point.
563
MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
564
565
// Fake a debug loc.
566
DebugLoc DL;
567
if (MBBI != MBB.end())
568
DL = MBBI->getDebugLoc();
569
570
// Zero out FP stack if referenced. Do this outside of the loop below so that
571
// it's done only once.
572
const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
573
for (MCRegister Reg : RegsToZero.set_bits()) {
574
if (!X86::RFP80RegClass.contains(Reg))
575
continue;
576
577
unsigned NumFPRegs = ST.is64Bit() ? 8 : 7;
578
for (unsigned i = 0; i != NumFPRegs; ++i)
579
BuildMI(MBB, MBBI, DL, TII.get(X86::LD_F0));
580
581
for (unsigned i = 0; i != NumFPRegs; ++i)
582
BuildMI(MBB, MBBI, DL, TII.get(X86::ST_FPrr)).addReg(X86::ST0);
583
break;
584
}
585
586
// For GPRs, we only care to clear out the 32-bit register.
587
BitVector GPRsToZero(TRI->getNumRegs());
588
for (MCRegister Reg : RegsToZero.set_bits())
589
if (TRI->isGeneralPurposeRegister(MF, Reg)) {
590
GPRsToZero.set(getX86SubSuperRegister(Reg, 32));
591
RegsToZero.reset(Reg);
592
}
593
594
// Zero out the GPRs first.
595
for (MCRegister Reg : GPRsToZero.set_bits())
596
TII.buildClearRegister(Reg, MBB, MBBI, DL);
597
598
// Zero out the remaining registers.
599
for (MCRegister Reg : RegsToZero.set_bits())
600
TII.buildClearRegister(Reg, MBB, MBBI, DL);
601
}
602
603
void X86FrameLowering::emitStackProbe(
604
MachineFunction &MF, MachineBasicBlock &MBB,
605
MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog,
606
std::optional<MachineFunction::DebugInstrOperandPair> InstrNum) const {
607
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
608
if (STI.isTargetWindowsCoreCLR()) {
609
if (InProlog) {
610
BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING))
611
.addImm(0 /* no explicit stack size */);
612
} else {
613
emitStackProbeInline(MF, MBB, MBBI, DL, false);
614
}
615
} else {
616
emitStackProbeCall(MF, MBB, MBBI, DL, InProlog, InstrNum);
617
}
618
}
619
620
bool X86FrameLowering::stackProbeFunctionModifiesSP() const {
621
return STI.isOSWindows() && !STI.isTargetWin64();
622
}
623
624
void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
625
MachineBasicBlock &PrologMBB) const {
626
auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) {
627
return MI.getOpcode() == X86::STACKALLOC_W_PROBING;
628
});
629
if (Where != PrologMBB.end()) {
630
DebugLoc DL = PrologMBB.findDebugLoc(Where);
631
emitStackProbeInline(MF, PrologMBB, Where, DL, true);
632
Where->eraseFromParent();
633
}
634
}
635
636
void X86FrameLowering::emitStackProbeInline(MachineFunction &MF,
637
MachineBasicBlock &MBB,
638
MachineBasicBlock::iterator MBBI,
639
const DebugLoc &DL,
640
bool InProlog) const {
641
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
642
if (STI.isTargetWindowsCoreCLR() && STI.is64Bit())
643
emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog);
644
else
645
emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog);
646
}
647
648
void X86FrameLowering::emitStackProbeInlineGeneric(
649
MachineFunction &MF, MachineBasicBlock &MBB,
650
MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
651
MachineInstr &AllocWithProbe = *MBBI;
652
uint64_t Offset = AllocWithProbe.getOperand(0).getImm();
653
654
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
655
const X86TargetLowering &TLI = *STI.getTargetLowering();
656
assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) &&
657
"different expansion expected for CoreCLR 64 bit");
658
659
const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
660
uint64_t ProbeChunk = StackProbeSize * 8;
661
662
uint64_t MaxAlign =
663
TRI->hasStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0;
664
665
// Synthesize a loop or unroll it, depending on the number of iterations.
666
// BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left
667
// between the unaligned rsp and current rsp.
668
if (Offset > ProbeChunk) {
669
emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset,
670
MaxAlign % StackProbeSize);
671
} else {
672
emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset,
673
MaxAlign % StackProbeSize);
674
}
675
}
676
677
void X86FrameLowering::emitStackProbeInlineGenericBlock(
678
MachineFunction &MF, MachineBasicBlock &MBB,
679
MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset,
680
uint64_t AlignOffset) const {
681
682
const bool NeedsDwarfCFI = needsDwarfCFI(MF);
683
const bool HasFP = hasFP(MF);
684
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
685
const X86TargetLowering &TLI = *STI.getTargetLowering();
686
const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
687
const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
688
689
uint64_t CurrentOffset = 0;
690
691
assert(AlignOffset < StackProbeSize);
692
693
// If the offset is so small it fits within a page, there's nothing to do.
694
if (StackProbeSize < Offset + AlignOffset) {
695
696
uint64_t StackAdjustment = StackProbeSize - AlignOffset;
697
BuildStackAdjustment(MBB, MBBI, DL, -StackAdjustment, /*InEpilogue=*/false)
698
.setMIFlag(MachineInstr::FrameSetup);
699
if (!HasFP && NeedsDwarfCFI) {
700
BuildCFI(
701
MBB, MBBI, DL,
702
MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
703
}
704
705
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
706
.setMIFlag(MachineInstr::FrameSetup),
707
StackPtr, false, 0)
708
.addImm(0)
709
.setMIFlag(MachineInstr::FrameSetup);
710
NumFrameExtraProbe++;
711
CurrentOffset = StackProbeSize - AlignOffset;
712
}
713
714
// For the next N - 1 pages, just probe. I tried to take advantage of
715
// natural probes but it implies much more logic and there was very few
716
// interesting natural probes to interleave.
717
while (CurrentOffset + StackProbeSize < Offset) {
718
BuildStackAdjustment(MBB, MBBI, DL, -StackProbeSize, /*InEpilogue=*/false)
719
.setMIFlag(MachineInstr::FrameSetup);
720
721
if (!HasFP && NeedsDwarfCFI) {
722
BuildCFI(
723
MBB, MBBI, DL,
724
MCCFIInstruction::createAdjustCfaOffset(nullptr, StackProbeSize));
725
}
726
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
727
.setMIFlag(MachineInstr::FrameSetup),
728
StackPtr, false, 0)
729
.addImm(0)
730
.setMIFlag(MachineInstr::FrameSetup);
731
NumFrameExtraProbe++;
732
CurrentOffset += StackProbeSize;
733
}
734
735
// No need to probe the tail, it is smaller than a Page.
736
uint64_t ChunkSize = Offset - CurrentOffset;
737
if (ChunkSize == SlotSize) {
738
// Use push for slot sized adjustments as a size optimization,
739
// like emitSPUpdate does when not probing.
740
unsigned Reg = Is64Bit ? X86::RAX : X86::EAX;
741
unsigned Opc = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
742
BuildMI(MBB, MBBI, DL, TII.get(Opc))
743
.addReg(Reg, RegState::Undef)
744
.setMIFlag(MachineInstr::FrameSetup);
745
} else {
746
BuildStackAdjustment(MBB, MBBI, DL, -ChunkSize, /*InEpilogue=*/false)
747
.setMIFlag(MachineInstr::FrameSetup);
748
}
749
// No need to adjust Dwarf CFA offset here, the last position of the stack has
750
// been defined
751
}
752
753
void X86FrameLowering::emitStackProbeInlineGenericLoop(
754
MachineFunction &MF, MachineBasicBlock &MBB,
755
MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset,
756
uint64_t AlignOffset) const {
757
assert(Offset && "null offset");
758
759
assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) !=
760
MachineBasicBlock::LQR_Live &&
761
"Inline stack probe loop will clobber live EFLAGS.");
762
763
const bool NeedsDwarfCFI = needsDwarfCFI(MF);
764
const bool HasFP = hasFP(MF);
765
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
766
const X86TargetLowering &TLI = *STI.getTargetLowering();
767
const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
768
const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
769
770
if (AlignOffset) {
771
if (AlignOffset < StackProbeSize) {
772
// Perform a first smaller allocation followed by a probe.
773
BuildStackAdjustment(MBB, MBBI, DL, -AlignOffset, /*InEpilogue=*/false)
774
.setMIFlag(MachineInstr::FrameSetup);
775
776
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
777
.setMIFlag(MachineInstr::FrameSetup),
778
StackPtr, false, 0)
779
.addImm(0)
780
.setMIFlag(MachineInstr::FrameSetup);
781
NumFrameExtraProbe++;
782
Offset -= AlignOffset;
783
}
784
}
785
786
// Synthesize a loop
787
NumFrameLoopProbe++;
788
const BasicBlock *LLVM_BB = MBB.getBasicBlock();
789
790
MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB);
791
MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB);
792
793
MachineFunction::iterator MBBIter = ++MBB.getIterator();
794
MF.insert(MBBIter, testMBB);
795
MF.insert(MBBIter, tailMBB);
796
797
Register FinalStackProbed = Uses64BitFramePtr ? X86::R11
798
: Is64Bit ? X86::R11D
799
: X86::EAX;
800
801
BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed)
802
.addReg(StackPtr)
803
.setMIFlag(MachineInstr::FrameSetup);
804
805
// save loop bound
806
{
807
const unsigned BoundOffset = alignDown(Offset, StackProbeSize);
808
const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr);
809
BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed)
810
.addReg(FinalStackProbed)
811
.addImm(BoundOffset)
812
.setMIFlag(MachineInstr::FrameSetup);
813
814
// while in the loop, use loop-invariant reg for CFI,
815
// instead of the stack pointer, which changes during the loop
816
if (!HasFP && NeedsDwarfCFI) {
817
// x32 uses the same DWARF register numbers as x86-64,
818
// so there isn't a register number for r11d, we must use r11 instead
819
const Register DwarfFinalStackProbed =
820
STI.isTarget64BitILP32()
821
? Register(getX86SubSuperRegister(FinalStackProbed, 64))
822
: FinalStackProbed;
823
824
BuildCFI(MBB, MBBI, DL,
825
MCCFIInstruction::createDefCfaRegister(
826
nullptr, TRI->getDwarfRegNum(DwarfFinalStackProbed, true)));
827
BuildCFI(MBB, MBBI, DL,
828
MCCFIInstruction::createAdjustCfaOffset(nullptr, BoundOffset));
829
}
830
}
831
832
// allocate a page
833
BuildStackAdjustment(*testMBB, testMBB->end(), DL, -StackProbeSize,
834
/*InEpilogue=*/false)
835
.setMIFlag(MachineInstr::FrameSetup);
836
837
// touch the page
838
addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc))
839
.setMIFlag(MachineInstr::FrameSetup),
840
StackPtr, false, 0)
841
.addImm(0)
842
.setMIFlag(MachineInstr::FrameSetup);
843
844
// cmp with stack pointer bound
845
BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
846
.addReg(StackPtr)
847
.addReg(FinalStackProbed)
848
.setMIFlag(MachineInstr::FrameSetup);
849
850
// jump
851
BuildMI(testMBB, DL, TII.get(X86::JCC_1))
852
.addMBB(testMBB)
853
.addImm(X86::COND_NE)
854
.setMIFlag(MachineInstr::FrameSetup);
855
testMBB->addSuccessor(testMBB);
856
testMBB->addSuccessor(tailMBB);
857
858
// BB management
859
tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end());
860
tailMBB->transferSuccessorsAndUpdatePHIs(&MBB);
861
MBB.addSuccessor(testMBB);
862
863
// handle tail
864
const uint64_t TailOffset = Offset % StackProbeSize;
865
MachineBasicBlock::iterator TailMBBIter = tailMBB->begin();
866
if (TailOffset) {
867
BuildStackAdjustment(*tailMBB, TailMBBIter, DL, -TailOffset,
868
/*InEpilogue=*/false)
869
.setMIFlag(MachineInstr::FrameSetup);
870
}
871
872
// after the loop, switch back to stack pointer for CFI
873
if (!HasFP && NeedsDwarfCFI) {
874
// x32 uses the same DWARF register numbers as x86-64,
875
// so there isn't a register number for esp, we must use rsp instead
876
const Register DwarfStackPtr =
877
STI.isTarget64BitILP32()
878
? Register(getX86SubSuperRegister(StackPtr, 64))
879
: Register(StackPtr);
880
881
BuildCFI(*tailMBB, TailMBBIter, DL,
882
MCCFIInstruction::createDefCfaRegister(
883
nullptr, TRI->getDwarfRegNum(DwarfStackPtr, true)));
884
}
885
886
// Update Live In information
887
fullyRecomputeLiveIns({tailMBB, testMBB});
888
}
889
890
void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64(
891
MachineFunction &MF, MachineBasicBlock &MBB,
892
MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
893
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
894
assert(STI.is64Bit() && "different expansion needed for 32 bit");
895
assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
896
const TargetInstrInfo &TII = *STI.getInstrInfo();
897
const BasicBlock *LLVM_BB = MBB.getBasicBlock();
898
899
assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) !=
900
MachineBasicBlock::LQR_Live &&
901
"Inline stack probe loop will clobber live EFLAGS.");
902
903
// RAX contains the number of bytes of desired stack adjustment.
904
// The handling here assumes this value has already been updated so as to
905
// maintain stack alignment.
906
//
907
// We need to exit with RSP modified by this amount and execute suitable
908
// page touches to notify the OS that we're growing the stack responsibly.
909
// All stack probing must be done without modifying RSP.
910
//
911
// MBB:
912
// SizeReg = RAX;
913
// ZeroReg = 0
914
// CopyReg = RSP
915
// Flags, TestReg = CopyReg - SizeReg
916
// FinalReg = !Flags.Ovf ? TestReg : ZeroReg
917
// LimitReg = gs magic thread env access
918
// if FinalReg >= LimitReg goto ContinueMBB
919
// RoundBB:
920
// RoundReg = page address of FinalReg
921
// LoopMBB:
922
// LoopReg = PHI(LimitReg,ProbeReg)
923
// ProbeReg = LoopReg - PageSize
924
// [ProbeReg] = 0
925
// if (ProbeReg > RoundReg) goto LoopMBB
926
// ContinueMBB:
927
// RSP = RSP - RAX
928
// [rest of original MBB]
929
930
// Set up the new basic blocks
931
MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
932
MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
933
MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
934
935
MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
936
MF.insert(MBBIter, RoundMBB);
937
MF.insert(MBBIter, LoopMBB);
938
MF.insert(MBBIter, ContinueMBB);
939
940
// Split MBB and move the tail portion down to ContinueMBB.
941
MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
942
ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
943
ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
944
945
// Some useful constants
946
const int64_t ThreadEnvironmentStackLimit = 0x10;
947
const int64_t PageSize = 0x1000;
948
const int64_t PageMask = ~(PageSize - 1);
949
950
// Registers we need. For the normal case we use virtual
951
// registers. For the prolog expansion we use RAX, RCX and RDX.
952
MachineRegisterInfo &MRI = MF.getRegInfo();
953
const TargetRegisterClass *RegClass = &X86::GR64RegClass;
954
const Register
955
SizeReg = InProlog ? X86::RAX : MRI.createVirtualRegister(RegClass),
956
ZeroReg = InProlog ? X86::RCX : MRI.createVirtualRegister(RegClass),
957
CopyReg = InProlog ? X86::RDX : MRI.createVirtualRegister(RegClass),
958
TestReg = InProlog ? X86::RDX : MRI.createVirtualRegister(RegClass),
959
FinalReg = InProlog ? X86::RDX : MRI.createVirtualRegister(RegClass),
960
RoundedReg = InProlog ? X86::RDX : MRI.createVirtualRegister(RegClass),
961
LimitReg = InProlog ? X86::RCX : MRI.createVirtualRegister(RegClass),
962
JoinReg = InProlog ? X86::RCX : MRI.createVirtualRegister(RegClass),
963
ProbeReg = InProlog ? X86::RCX : MRI.createVirtualRegister(RegClass);
964
965
// SP-relative offsets where we can save RCX and RDX.
966
int64_t RCXShadowSlot = 0;
967
int64_t RDXShadowSlot = 0;
968
969
// If inlining in the prolog, save RCX and RDX.
970
if (InProlog) {
971
// Compute the offsets. We need to account for things already
972
// pushed onto the stack at this point: return address, frame
973
// pointer (if used), and callee saves.
974
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
975
const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
976
const bool HasFP = hasFP(MF);
977
978
// Check if we need to spill RCX and/or RDX.
979
// Here we assume that no earlier prologue instruction changes RCX and/or
980
// RDX, so checking the block live-ins is enough.
981
const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX);
982
const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX);
983
int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
984
// Assign the initial slot to both registers, then change RDX's slot if both
985
// need to be spilled.
986
if (IsRCXLiveIn)
987
RCXShadowSlot = InitSlot;
988
if (IsRDXLiveIn)
989
RDXShadowSlot = InitSlot;
990
if (IsRDXLiveIn && IsRCXLiveIn)
991
RDXShadowSlot += 8;
992
// Emit the saves if needed.
993
if (IsRCXLiveIn)
994
addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
995
RCXShadowSlot)
996
.addReg(X86::RCX);
997
if (IsRDXLiveIn)
998
addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
999
RDXShadowSlot)
1000
.addReg(X86::RDX);
1001
} else {
1002
// Not in the prolog. Copy RAX to a virtual reg.
1003
BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
1004
}
1005
1006
// Add code to MBB to check for overflow and set the new target stack pointer
1007
// to zero if so.
1008
BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
1009
.addReg(ZeroReg, RegState::Undef)
1010
.addReg(ZeroReg, RegState::Undef);
1011
BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
1012
BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
1013
.addReg(CopyReg)
1014
.addReg(SizeReg);
1015
BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg)
1016
.addReg(TestReg)
1017
.addReg(ZeroReg)
1018
.addImm(X86::COND_B);
1019
1020
// FinalReg now holds final stack pointer value, or zero if
1021
// allocation would overflow. Compare against the current stack
1022
// limit from the thread environment block. Note this limit is the
1023
// lowest touched page on the stack, not the point at which the OS
1024
// will cause an overflow exception, so this is just an optimization
1025
// to avoid unnecessarily touching pages that are below the current
1026
// SP but already committed to the stack by the OS.
1027
BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
1028
.addReg(0)
1029
.addImm(1)
1030
.addReg(0)
1031
.addImm(ThreadEnvironmentStackLimit)
1032
.addReg(X86::GS);
1033
BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
1034
// Jump if the desired stack pointer is at or above the stack limit.
1035
BuildMI(&MBB, DL, TII.get(X86::JCC_1))
1036
.addMBB(ContinueMBB)
1037
.addImm(X86::COND_AE);
1038
1039
// Add code to roundMBB to round the final stack pointer to a page boundary.
1040
RoundMBB->addLiveIn(FinalReg);
1041
BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
1042
.addReg(FinalReg)
1043
.addImm(PageMask);
1044
BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
1045
1046
// LimitReg now holds the current stack limit, RoundedReg page-rounded
1047
// final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
1048
// and probe until we reach RoundedReg.
1049
if (!InProlog) {
1050
BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
1051
.addReg(LimitReg)
1052
.addMBB(RoundMBB)
1053
.addReg(ProbeReg)
1054
.addMBB(LoopMBB);
1055
}
1056
1057
LoopMBB->addLiveIn(JoinReg);
1058
addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
1059
false, -PageSize);
1060
1061
// Probe by storing a byte onto the stack.
1062
BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
1063
.addReg(ProbeReg)
1064
.addImm(1)
1065
.addReg(0)
1066
.addImm(0)
1067
.addReg(0)
1068
.addImm(0);
1069
1070
LoopMBB->addLiveIn(RoundedReg);
1071
BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
1072
.addReg(RoundedReg)
1073
.addReg(ProbeReg);
1074
BuildMI(LoopMBB, DL, TII.get(X86::JCC_1))
1075
.addMBB(LoopMBB)
1076
.addImm(X86::COND_NE);
1077
1078
MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
1079
1080
// If in prolog, restore RDX and RCX.
1081
if (InProlog) {
1082
if (RCXShadowSlot) // It means we spilled RCX in the prologue.
1083
addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
1084
TII.get(X86::MOV64rm), X86::RCX),
1085
X86::RSP, false, RCXShadowSlot);
1086
if (RDXShadowSlot) // It means we spilled RDX in the prologue.
1087
addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
1088
TII.get(X86::MOV64rm), X86::RDX),
1089
X86::RSP, false, RDXShadowSlot);
1090
}
1091
1092
// Now that the probing is done, add code to continueMBB to update
1093
// the stack pointer for real.
1094
ContinueMBB->addLiveIn(SizeReg);
1095
BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
1096
.addReg(X86::RSP)
1097
.addReg(SizeReg);
1098
1099
// Add the control flow edges we need.
1100
MBB.addSuccessor(ContinueMBB);
1101
MBB.addSuccessor(RoundMBB);
1102
RoundMBB->addSuccessor(LoopMBB);
1103
LoopMBB->addSuccessor(ContinueMBB);
1104
LoopMBB->addSuccessor(LoopMBB);
1105
1106
// Mark all the instructions added to the prolog as frame setup.
1107
if (InProlog) {
1108
for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
1109
BeforeMBBI->setFlag(MachineInstr::FrameSetup);
1110
}
1111
for (MachineInstr &MI : *RoundMBB) {
1112
MI.setFlag(MachineInstr::FrameSetup);
1113
}
1114
for (MachineInstr &MI : *LoopMBB) {
1115
MI.setFlag(MachineInstr::FrameSetup);
1116
}
1117
for (MachineInstr &MI :
1118
llvm::make_range(ContinueMBB->begin(), ContinueMBBI)) {
1119
MI.setFlag(MachineInstr::FrameSetup);
1120
}
1121
}
1122
}
1123
1124
void X86FrameLowering::emitStackProbeCall(
1125
MachineFunction &MF, MachineBasicBlock &MBB,
1126
MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog,
1127
std::optional<MachineFunction::DebugInstrOperandPair> InstrNum) const {
1128
bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
1129
1130
// FIXME: Add indirect thunk support and remove this.
1131
if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls())
1132
report_fatal_error("Emitting stack probe calls on 64-bit with the large "
1133
"code model and indirect thunks not yet implemented.");
1134
1135
assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) !=
1136
MachineBasicBlock::LQR_Live &&
1137
"Stack probe calls will clobber live EFLAGS.");
1138
1139
unsigned CallOp;
1140
if (Is64Bit)
1141
CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
1142
else
1143
CallOp = X86::CALLpcrel32;
1144
1145
StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF);
1146
1147
MachineInstrBuilder CI;
1148
MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
1149
1150
// All current stack probes take AX and SP as input, clobber flags, and
1151
// preserve all registers. x86_64 probes leave RSP unmodified.
1152
if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
1153
// For the large code model, we have to call through a register. Use R11,
1154
// as it is scratch in all supported calling conventions.
1155
BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
1156
.addExternalSymbol(MF.createExternalSymbolName(Symbol));
1157
CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
1158
} else {
1159
CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp))
1160
.addExternalSymbol(MF.createExternalSymbolName(Symbol));
1161
}
1162
1163
unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX;
1164
unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP;
1165
CI.addReg(AX, RegState::Implicit)
1166
.addReg(SP, RegState::Implicit)
1167
.addReg(AX, RegState::Define | RegState::Implicit)
1168
.addReg(SP, RegState::Define | RegState::Implicit)
1169
.addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
1170
1171
MachineInstr *ModInst = CI;
1172
if (STI.isTargetWin64() || !STI.isOSWindows()) {
1173
// MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves.
1174
// MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
1175
// themselves. They also does not clobber %rax so we can reuse it when
1176
// adjusting %rsp.
1177
// All other platforms do not specify a particular ABI for the stack probe
1178
// function, so we arbitrarily define it to not adjust %esp/%rsp itself.
1179
ModInst =
1180
BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP)
1181
.addReg(SP)
1182
.addReg(AX);
1183
}
1184
1185
// DebugInfo variable locations -- if there's an instruction number for the
1186
// allocation (i.e., DYN_ALLOC_*), substitute it for the instruction that
1187
// modifies SP.
1188
if (InstrNum) {
1189
if (STI.isTargetWin64() || !STI.isOSWindows()) {
1190
// Label destination operand of the subtract.
1191
MF.makeDebugValueSubstitution(*InstrNum,
1192
{ModInst->getDebugInstrNum(), 0});
1193
} else {
1194
// Label the call. The operand number is the penultimate operand, zero
1195
// based.
1196
unsigned SPDefOperand = ModInst->getNumOperands() - 2;
1197
MF.makeDebugValueSubstitution(
1198
*InstrNum, {ModInst->getDebugInstrNum(), SPDefOperand});
1199
}
1200
}
1201
1202
if (InProlog) {
1203
// Apply the frame setup flag to all inserted instrs.
1204
for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
1205
ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
1206
}
1207
}
1208
1209
static unsigned calculateSetFPREG(uint64_t SPAdjust) {
1210
// Win64 ABI has a less restrictive limitation of 240; 128 works equally well
1211
// and might require smaller successive adjustments.
1212
const uint64_t Win64MaxSEHOffset = 128;
1213
uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
1214
// Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
1215
return SEHFrameOffset & -16;
1216
}
1217
1218
// If we're forcing a stack realignment we can't rely on just the frame
1219
// info, we need to know the ABI stack alignment as well in case we
1220
// have a call out. Otherwise just make sure we have some alignment - we'll
1221
// go with the minimum SlotSize.
1222
uint64_t
1223
X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
1224
const MachineFrameInfo &MFI = MF.getFrameInfo();
1225
Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment.
1226
Align StackAlign = getStackAlign();
1227
bool HasRealign = MF.getFunction().hasFnAttribute("stackrealign");
1228
if (HasRealign) {
1229
if (MFI.hasCalls())
1230
MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
1231
else if (MaxAlign < SlotSize)
1232
MaxAlign = Align(SlotSize);
1233
}
1234
1235
if (!Is64Bit && MF.getFunction().getCallingConv() == CallingConv::X86_INTR) {
1236
if (HasRealign)
1237
MaxAlign = (MaxAlign > 16) ? MaxAlign : Align(16);
1238
else
1239
MaxAlign = Align(16);
1240
}
1241
return MaxAlign.value();
1242
}
1243
1244
void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
1245
MachineBasicBlock::iterator MBBI,
1246
const DebugLoc &DL, unsigned Reg,
1247
uint64_t MaxAlign) const {
1248
uint64_t Val = -MaxAlign;
1249
unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
1250
1251
MachineFunction &MF = *MBB.getParent();
1252
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
1253
const X86TargetLowering &TLI = *STI.getTargetLowering();
1254
const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
1255
const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF);
1256
1257
// We want to make sure that (in worst case) less than StackProbeSize bytes
1258
// are not probed after the AND. This assumption is used in
1259
// emitStackProbeInlineGeneric.
1260
if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) {
1261
{
1262
NumFrameLoopProbe++;
1263
MachineBasicBlock *entryMBB =
1264
MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1265
MachineBasicBlock *headMBB =
1266
MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1267
MachineBasicBlock *bodyMBB =
1268
MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1269
MachineBasicBlock *footMBB =
1270
MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1271
1272
MachineFunction::iterator MBBIter = MBB.getIterator();
1273
MF.insert(MBBIter, entryMBB);
1274
MF.insert(MBBIter, headMBB);
1275
MF.insert(MBBIter, bodyMBB);
1276
MF.insert(MBBIter, footMBB);
1277
const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
1278
Register FinalStackProbed = Uses64BitFramePtr ? X86::R11
1279
: Is64Bit ? X86::R11D
1280
: X86::EAX;
1281
1282
// Setup entry block
1283
{
1284
1285
entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI);
1286
BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed)
1287
.addReg(StackPtr)
1288
.setMIFlag(MachineInstr::FrameSetup);
1289
MachineInstr *MI =
1290
BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed)
1291
.addReg(FinalStackProbed)
1292
.addImm(Val)
1293
.setMIFlag(MachineInstr::FrameSetup);
1294
1295
// The EFLAGS implicit def is dead.
1296
MI->getOperand(3).setIsDead();
1297
1298
BuildMI(entryMBB, DL,
1299
TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1300
.addReg(FinalStackProbed)
1301
.addReg(StackPtr)
1302
.setMIFlag(MachineInstr::FrameSetup);
1303
BuildMI(entryMBB, DL, TII.get(X86::JCC_1))
1304
.addMBB(&MBB)
1305
.addImm(X86::COND_E)
1306
.setMIFlag(MachineInstr::FrameSetup);
1307
entryMBB->addSuccessor(headMBB);
1308
entryMBB->addSuccessor(&MBB);
1309
}
1310
1311
// Loop entry block
1312
1313
{
1314
const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr);
1315
BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr)
1316
.addReg(StackPtr)
1317
.addImm(StackProbeSize)
1318
.setMIFlag(MachineInstr::FrameSetup);
1319
1320
BuildMI(headMBB, DL,
1321
TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1322
.addReg(StackPtr)
1323
.addReg(FinalStackProbed)
1324
.setMIFlag(MachineInstr::FrameSetup);
1325
1326
// jump to the footer if StackPtr < FinalStackProbed
1327
BuildMI(headMBB, DL, TII.get(X86::JCC_1))
1328
.addMBB(footMBB)
1329
.addImm(X86::COND_B)
1330
.setMIFlag(MachineInstr::FrameSetup);
1331
1332
headMBB->addSuccessor(bodyMBB);
1333
headMBB->addSuccessor(footMBB);
1334
}
1335
1336
// setup loop body
1337
{
1338
addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc))
1339
.setMIFlag(MachineInstr::FrameSetup),
1340
StackPtr, false, 0)
1341
.addImm(0)
1342
.setMIFlag(MachineInstr::FrameSetup);
1343
1344
const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr);
1345
BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr)
1346
.addReg(StackPtr)
1347
.addImm(StackProbeSize)
1348
.setMIFlag(MachineInstr::FrameSetup);
1349
1350
// cmp with stack pointer bound
1351
BuildMI(bodyMBB, DL,
1352
TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1353
.addReg(FinalStackProbed)
1354
.addReg(StackPtr)
1355
.setMIFlag(MachineInstr::FrameSetup);
1356
1357
// jump back while FinalStackProbed < StackPtr
1358
BuildMI(bodyMBB, DL, TII.get(X86::JCC_1))
1359
.addMBB(bodyMBB)
1360
.addImm(X86::COND_B)
1361
.setMIFlag(MachineInstr::FrameSetup);
1362
bodyMBB->addSuccessor(bodyMBB);
1363
bodyMBB->addSuccessor(footMBB);
1364
}
1365
1366
// setup loop footer
1367
{
1368
BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr)
1369
.addReg(FinalStackProbed)
1370
.setMIFlag(MachineInstr::FrameSetup);
1371
addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc))
1372
.setMIFlag(MachineInstr::FrameSetup),
1373
StackPtr, false, 0)
1374
.addImm(0)
1375
.setMIFlag(MachineInstr::FrameSetup);
1376
footMBB->addSuccessor(&MBB);
1377
}
1378
1379
fullyRecomputeLiveIns({footMBB, bodyMBB, headMBB, &MBB});
1380
}
1381
} else {
1382
MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
1383
.addReg(Reg)
1384
.addImm(Val)
1385
.setMIFlag(MachineInstr::FrameSetup);
1386
1387
// The EFLAGS implicit def is dead.
1388
MI->getOperand(3).setIsDead();
1389
}
1390
}
1391
1392
bool X86FrameLowering::has128ByteRedZone(const MachineFunction &MF) const {
1393
// x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be
1394
// clobbered by any interrupt handler.
1395
assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
1396
"MF used frame lowering for wrong subtarget");
1397
const Function &Fn = MF.getFunction();
1398
const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv());
1399
return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone);
1400
}
1401
1402
/// Return true if we need to use the restricted Windows x64 prologue and
1403
/// epilogue code patterns that can be described with WinCFI (.seh_*
1404
/// directives).
1405
bool X86FrameLowering::isWin64Prologue(const MachineFunction &MF) const {
1406
return MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1407
}
1408
1409
bool X86FrameLowering::needsDwarfCFI(const MachineFunction &MF) const {
1410
return !isWin64Prologue(MF) && MF.needsFrameMoves();
1411
}
1412
1413
/// Return true if an opcode is part of the REP group of instructions
1414
static bool isOpcodeRep(unsigned Opcode) {
1415
switch (Opcode) {
1416
case X86::REPNE_PREFIX:
1417
case X86::REP_MOVSB_32:
1418
case X86::REP_MOVSB_64:
1419
case X86::REP_MOVSD_32:
1420
case X86::REP_MOVSD_64:
1421
case X86::REP_MOVSQ_32:
1422
case X86::REP_MOVSQ_64:
1423
case X86::REP_MOVSW_32:
1424
case X86::REP_MOVSW_64:
1425
case X86::REP_PREFIX:
1426
case X86::REP_STOSB_32:
1427
case X86::REP_STOSB_64:
1428
case X86::REP_STOSD_32:
1429
case X86::REP_STOSD_64:
1430
case X86::REP_STOSQ_32:
1431
case X86::REP_STOSQ_64:
1432
case X86::REP_STOSW_32:
1433
case X86::REP_STOSW_64:
1434
return true;
1435
default:
1436
break;
1437
}
1438
return false;
1439
}
1440
1441
/// emitPrologue - Push callee-saved registers onto the stack, which
1442
/// automatically adjust the stack pointer. Adjust the stack pointer to allocate
1443
/// space for local variables. Also emit labels used by the exception handler to
1444
/// generate the exception handling frames.
1445
1446
/*
1447
Here's a gist of what gets emitted:
1448
1449
; Establish frame pointer, if needed
1450
[if needs FP]
1451
push %rbp
1452
.cfi_def_cfa_offset 16
1453
.cfi_offset %rbp, -16
1454
.seh_pushreg %rpb
1455
mov %rsp, %rbp
1456
.cfi_def_cfa_register %rbp
1457
1458
; Spill general-purpose registers
1459
[for all callee-saved GPRs]
1460
pushq %<reg>
1461
[if not needs FP]
1462
.cfi_def_cfa_offset (offset from RETADDR)
1463
.seh_pushreg %<reg>
1464
1465
; If the required stack alignment > default stack alignment
1466
; rsp needs to be re-aligned. This creates a "re-alignment gap"
1467
; of unknown size in the stack frame.
1468
[if stack needs re-alignment]
1469
and $MASK, %rsp
1470
1471
; Allocate space for locals
1472
[if target is Windows and allocated space > 4096 bytes]
1473
; Windows needs special care for allocations larger
1474
; than one page.
1475
mov $NNN, %rax
1476
call ___chkstk_ms/___chkstk
1477
sub %rax, %rsp
1478
[else]
1479
sub $NNN, %rsp
1480
1481
[if needs FP]
1482
.seh_stackalloc (size of XMM spill slots)
1483
.seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
1484
[else]
1485
.seh_stackalloc NNN
1486
1487
; Spill XMMs
1488
; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
1489
; they may get spilled on any platform, if the current function
1490
; calls @llvm.eh.unwind.init
1491
[if needs FP]
1492
[for all callee-saved XMM registers]
1493
movaps %<xmm reg>, -MMM(%rbp)
1494
[for all callee-saved XMM registers]
1495
.seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
1496
; i.e. the offset relative to (%rbp - SEHFrameOffset)
1497
[else]
1498
[for all callee-saved XMM registers]
1499
movaps %<xmm reg>, KKK(%rsp)
1500
[for all callee-saved XMM registers]
1501
.seh_savexmm %<xmm reg>, KKK
1502
1503
.seh_endprologue
1504
1505
[if needs base pointer]
1506
mov %rsp, %rbx
1507
[if needs to restore base pointer]
1508
mov %rsp, -MMM(%rbp)
1509
1510
; Emit CFI info
1511
[if needs FP]
1512
[for all callee-saved registers]
1513
.cfi_offset %<reg>, (offset from %rbp)
1514
[else]
1515
.cfi_def_cfa_offset (offset from RETADDR)
1516
[for all callee-saved registers]
1517
.cfi_offset %<reg>, (offset from %rsp)
1518
1519
Notes:
1520
- .seh directives are emitted only for Windows 64 ABI
1521
- .cv_fpo directives are emitted on win32 when emitting CodeView
1522
- .cfi directives are emitted for all other ABIs
1523
- for 32-bit code, substitute %e?? registers for %r??
1524
*/
1525
1526
void X86FrameLowering::emitPrologue(MachineFunction &MF,
1527
MachineBasicBlock &MBB) const {
1528
assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
1529
"MF used frame lowering for wrong subtarget");
1530
MachineBasicBlock::iterator MBBI = MBB.begin();
1531
MachineFrameInfo &MFI = MF.getFrameInfo();
1532
const Function &Fn = MF.getFunction();
1533
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1534
uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
1535
uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate.
1536
bool IsFunclet = MBB.isEHFuncletEntry();
1537
EHPersonality Personality = EHPersonality::Unknown;
1538
if (Fn.hasPersonalityFn())
1539
Personality = classifyEHPersonality(Fn.getPersonalityFn());
1540
bool FnHasClrFunclet =
1541
MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
1542
bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
1543
bool HasFP = hasFP(MF);
1544
bool IsWin64Prologue = isWin64Prologue(MF);
1545
bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry();
1546
// FIXME: Emit FPO data for EH funclets.
1547
bool NeedsWinFPO = !IsFunclet && STI.isTargetWin32() &&
1548
MF.getFunction().getParent()->getCodeViewFlag();
1549
bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO;
1550
bool NeedsDwarfCFI = needsDwarfCFI(MF);
1551
Register FramePtr = TRI->getFrameRegister(MF);
1552
const Register MachineFramePtr =
1553
STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64))
1554
: FramePtr;
1555
Register BasePtr = TRI->getBaseRegister();
1556
bool HasWinCFI = false;
1557
1558
// Debug location must be unknown since the first debug location is used
1559
// to determine the end of the prologue.
1560
DebugLoc DL;
1561
Register ArgBaseReg;
1562
1563
// Emit extra prolog for argument stack slot reference.
1564
if (auto *MI = X86FI->getStackPtrSaveMI()) {
1565
// MI is lea instruction that created in X86ArgumentStackSlotPass.
1566
// Creat extra prolog for stack realignment.
1567
ArgBaseReg = MI->getOperand(0).getReg();
1568
// leal 4(%esp), %basereg
1569
// .cfi_def_cfa %basereg, 0
1570
// andl $-128, %esp
1571
// pushl -4(%basereg)
1572
BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::LEA64r : X86::LEA32r),
1573
ArgBaseReg)
1574
.addUse(StackPtr)
1575
.addImm(1)
1576
.addUse(X86::NoRegister)
1577
.addImm(SlotSize)
1578
.addUse(X86::NoRegister)
1579
.setMIFlag(MachineInstr::FrameSetup);
1580
if (NeedsDwarfCFI) {
1581
// .cfi_def_cfa %basereg, 0
1582
unsigned DwarfStackPtr = TRI->getDwarfRegNum(ArgBaseReg, true);
1583
BuildCFI(MBB, MBBI, DL,
1584
MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, 0),
1585
MachineInstr::FrameSetup);
1586
}
1587
BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
1588
int64_t Offset = -(int64_t)SlotSize;
1589
BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm))
1590
.addReg(ArgBaseReg)
1591
.addImm(1)
1592
.addReg(X86::NoRegister)
1593
.addImm(Offset)
1594
.addReg(X86::NoRegister)
1595
.setMIFlag(MachineInstr::FrameSetup);
1596
}
1597
1598
// Space reserved for stack-based arguments when making a (ABI-guaranteed)
1599
// tail call.
1600
unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta();
1601
if (TailCallArgReserveSize && IsWin64Prologue)
1602
report_fatal_error("Can't handle guaranteed tail call under win64 yet");
1603
1604
const bool EmitStackProbeCall =
1605
STI.getTargetLowering()->hasStackProbeSymbol(MF);
1606
unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF);
1607
1608
if (HasFP && X86FI->hasSwiftAsyncContext()) {
1609
switch (MF.getTarget().Options.SwiftAsyncFramePointer) {
1610
case SwiftAsyncFramePointerMode::DeploymentBased:
1611
if (STI.swiftAsyncContextIsDynamicallySet()) {
1612
// The special symbol below is absolute and has a *value* suitable to be
1613
// combined with the frame pointer directly.
1614
BuildMI(MBB, MBBI, DL, TII.get(X86::OR64rm), MachineFramePtr)
1615
.addUse(MachineFramePtr)
1616
.addUse(X86::RIP)
1617
.addImm(1)
1618
.addUse(X86::NoRegister)
1619
.addExternalSymbol("swift_async_extendedFramePointerFlags",
1620
X86II::MO_GOTPCREL)
1621
.addUse(X86::NoRegister);
1622
break;
1623
}
1624
[[fallthrough]];
1625
1626
case SwiftAsyncFramePointerMode::Always:
1627
assert(
1628
!IsWin64Prologue &&
1629
"win64 prologue does not set the bit 60 in the saved frame pointer");
1630
BuildMI(MBB, MBBI, DL, TII.get(X86::BTS64ri8), MachineFramePtr)
1631
.addUse(MachineFramePtr)
1632
.addImm(60)
1633
.setMIFlag(MachineInstr::FrameSetup);
1634
break;
1635
1636
case SwiftAsyncFramePointerMode::Never:
1637
break;
1638
}
1639
}
1640
1641
// Re-align the stack on 64-bit if the x86-interrupt calling convention is
1642
// used and an error code was pushed, since the x86-64 ABI requires a 16-byte
1643
// stack alignment.
1644
if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit &&
1645
Fn.arg_size() == 2) {
1646
StackSize += 8;
1647
MFI.setStackSize(StackSize);
1648
1649
// Update the stack pointer by pushing a register. This is the instruction
1650
// emitted that would be end up being emitted by a call to `emitSPUpdate`.
1651
// Hard-coding the update to a push avoids emitting a second
1652
// `STACKALLOC_W_PROBING` instruction in the save block: We know that stack
1653
// probing isn't needed anyways for an 8-byte update.
1654
// Pushing a register leaves us in a similar situation to a regular
1655
// function call where we know that the address at (rsp-8) is writeable.
1656
// That way we avoid any off-by-ones with stack probing for additional
1657
// stack pointer updates later on.
1658
BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1659
.addReg(X86::RAX, RegState::Undef)
1660
.setMIFlag(MachineInstr::FrameSetup);
1661
}
1662
1663
// If this is x86-64 and the Red Zone is not disabled, if we are a leaf
1664
// function, and use up to 128 bytes of stack space, don't have a frame
1665
// pointer, calls, or dynamic alloca then we do not need to adjust the
1666
// stack pointer (we fit in the Red Zone). We also check that we don't
1667
// push and pop from the stack.
1668
if (has128ByteRedZone(MF) && !TRI->hasStackRealignment(MF) &&
1669
!MFI.hasVarSizedObjects() && // No dynamic alloca.
1670
!MFI.adjustsStack() && // No calls.
1671
!EmitStackProbeCall && // No stack probes.
1672
!MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop.
1673
!MF.shouldSplitStack()) { // Regular stack
1674
uint64_t MinSize =
1675
X86FI->getCalleeSavedFrameSize() - X86FI->getTCReturnAddrDelta();
1676
if (HasFP)
1677
MinSize += SlotSize;
1678
X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
1679
StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
1680
MFI.setStackSize(StackSize);
1681
}
1682
1683
// Insert stack pointer adjustment for later moving of return addr. Only
1684
// applies to tail call optimized functions where the callee argument stack
1685
// size is bigger than the callers.
1686
if (TailCallArgReserveSize != 0) {
1687
BuildStackAdjustment(MBB, MBBI, DL, -(int)TailCallArgReserveSize,
1688
/*InEpilogue=*/false)
1689
.setMIFlag(MachineInstr::FrameSetup);
1690
}
1691
1692
// Mapping for machine moves:
1693
//
1694
// DST: VirtualFP AND
1695
// SRC: VirtualFP => DW_CFA_def_cfa_offset
1696
// ELSE => DW_CFA_def_cfa
1697
//
1698
// SRC: VirtualFP AND
1699
// DST: Register => DW_CFA_def_cfa_register
1700
//
1701
// ELSE
1702
// OFFSET < 0 => DW_CFA_offset_extended_sf
1703
// REG < 64 => DW_CFA_offset + Reg
1704
// ELSE => DW_CFA_offset_extended
1705
1706
uint64_t NumBytes = 0;
1707
int stackGrowth = -SlotSize;
1708
1709
// Find the funclet establisher parameter
1710
Register Establisher = X86::NoRegister;
1711
if (IsClrFunclet)
1712
Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
1713
else if (IsFunclet)
1714
Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
1715
1716
if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
1717
// Immediately spill establisher into the home slot.
1718
// The runtime cares about this.
1719
// MOV64mr %rdx, 16(%rsp)
1720
unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1721
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
1722
.addReg(Establisher)
1723
.setMIFlag(MachineInstr::FrameSetup);
1724
MBB.addLiveIn(Establisher);
1725
}
1726
1727
if (HasFP) {
1728
assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved");
1729
1730
// Calculate required stack adjustment.
1731
uint64_t FrameSize = StackSize - SlotSize;
1732
NumBytes =
1733
FrameSize - (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize);
1734
1735
// Callee-saved registers are pushed on stack before the stack is realigned.
1736
if (TRI->hasStackRealignment(MF) && !IsWin64Prologue)
1737
NumBytes = alignTo(NumBytes, MaxAlign);
1738
1739
// Save EBP/RBP into the appropriate stack slot.
1740
BuildMI(MBB, MBBI, DL,
1741
TII.get(getPUSHOpcode(MF.getSubtarget<X86Subtarget>())))
1742
.addReg(MachineFramePtr, RegState::Kill)
1743
.setMIFlag(MachineInstr::FrameSetup);
1744
1745
if (NeedsDwarfCFI && !ArgBaseReg.isValid()) {
1746
// Mark the place where EBP/RBP was saved.
1747
// Define the current CFA rule to use the provided offset.
1748
assert(StackSize);
1749
BuildCFI(MBB, MBBI, DL,
1750
MCCFIInstruction::cfiDefCfaOffset(
1751
nullptr, -2 * stackGrowth + (int)TailCallArgReserveSize),
1752
MachineInstr::FrameSetup);
1753
1754
// Change the rule for the FramePtr to be an "offset" rule.
1755
unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1756
BuildCFI(MBB, MBBI, DL,
1757
MCCFIInstruction::createOffset(nullptr, DwarfFramePtr,
1758
2 * stackGrowth -
1759
(int)TailCallArgReserveSize),
1760
MachineInstr::FrameSetup);
1761
}
1762
1763
if (NeedsWinCFI) {
1764
HasWinCFI = true;
1765
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1766
.addImm(FramePtr)
1767
.setMIFlag(MachineInstr::FrameSetup);
1768
}
1769
1770
if (!IsFunclet) {
1771
if (X86FI->hasSwiftAsyncContext()) {
1772
assert(!IsWin64Prologue &&
1773
"win64 prologue does not store async context right below rbp");
1774
const auto &Attrs = MF.getFunction().getAttributes();
1775
1776
// Before we update the live frame pointer we have to ensure there's a
1777
// valid (or null) asynchronous context in its slot just before FP in
1778
// the frame record, so store it now.
1779
if (Attrs.hasAttrSomewhere(Attribute::SwiftAsync)) {
1780
// We have an initial context in r14, store it just before the frame
1781
// pointer.
1782
MBB.addLiveIn(X86::R14);
1783
BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1784
.addReg(X86::R14)
1785
.setMIFlag(MachineInstr::FrameSetup);
1786
} else {
1787
// No initial context, store null so that there's no pointer that
1788
// could be misused.
1789
BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64i32))
1790
.addImm(0)
1791
.setMIFlag(MachineInstr::FrameSetup);
1792
}
1793
1794
if (NeedsWinCFI) {
1795
HasWinCFI = true;
1796
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1797
.addImm(X86::R14)
1798
.setMIFlag(MachineInstr::FrameSetup);
1799
}
1800
1801
BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr)
1802
.addUse(X86::RSP)
1803
.addImm(1)
1804
.addUse(X86::NoRegister)
1805
.addImm(8)
1806
.addUse(X86::NoRegister)
1807
.setMIFlag(MachineInstr::FrameSetup);
1808
BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64ri32), X86::RSP)
1809
.addUse(X86::RSP)
1810
.addImm(8)
1811
.setMIFlag(MachineInstr::FrameSetup);
1812
}
1813
1814
if (!IsWin64Prologue && !IsFunclet) {
1815
// Update EBP with the new base value.
1816
if (!X86FI->hasSwiftAsyncContext())
1817
BuildMI(MBB, MBBI, DL,
1818
TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
1819
FramePtr)
1820
.addReg(StackPtr)
1821
.setMIFlag(MachineInstr::FrameSetup);
1822
1823
if (NeedsDwarfCFI) {
1824
if (ArgBaseReg.isValid()) {
1825
SmallString<64> CfaExpr;
1826
CfaExpr.push_back(dwarf::DW_CFA_expression);
1827
uint8_t buffer[16];
1828
unsigned DwarfReg = TRI->getDwarfRegNum(MachineFramePtr, true);
1829
CfaExpr.append(buffer, buffer + encodeULEB128(DwarfReg, buffer));
1830
CfaExpr.push_back(2);
1831
CfaExpr.push_back((uint8_t)(dwarf::DW_OP_breg0 + DwarfReg));
1832
CfaExpr.push_back(0);
1833
// DW_CFA_expression: reg5 DW_OP_breg5 +0
1834
BuildCFI(MBB, MBBI, DL,
1835
MCCFIInstruction::createEscape(nullptr, CfaExpr.str()),
1836
MachineInstr::FrameSetup);
1837
} else {
1838
// Mark effective beginning of when frame pointer becomes valid.
1839
// Define the current CFA to use the EBP/RBP register.
1840
unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1841
BuildCFI(
1842
MBB, MBBI, DL,
1843
MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr),
1844
MachineInstr::FrameSetup);
1845
}
1846
}
1847
1848
if (NeedsWinFPO) {
1849
// .cv_fpo_setframe $FramePtr
1850
HasWinCFI = true;
1851
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1852
.addImm(FramePtr)
1853
.addImm(0)
1854
.setMIFlag(MachineInstr::FrameSetup);
1855
}
1856
}
1857
}
1858
} else {
1859
assert(!IsFunclet && "funclets without FPs not yet implemented");
1860
NumBytes =
1861
StackSize - (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize);
1862
}
1863
1864
// Update the offset adjustment, which is mainly used by codeview to translate
1865
// from ESP to VFRAME relative local variable offsets.
1866
if (!IsFunclet) {
1867
if (HasFP && TRI->hasStackRealignment(MF))
1868
MFI.setOffsetAdjustment(-NumBytes);
1869
else
1870
MFI.setOffsetAdjustment(-StackSize);
1871
}
1872
1873
// For EH funclets, only allocate enough space for outgoing calls. Save the
1874
// NumBytes value that we would've used for the parent frame.
1875
unsigned ParentFrameNumBytes = NumBytes;
1876
if (IsFunclet)
1877
NumBytes = getWinEHFuncletFrameSize(MF);
1878
1879
// Skip the callee-saved push instructions.
1880
bool PushedRegs = false;
1881
int StackOffset = 2 * stackGrowth;
1882
MachineBasicBlock::const_iterator LastCSPush = MBBI;
1883
auto IsCSPush = [&](const MachineBasicBlock::iterator &MBBI) {
1884
if (MBBI == MBB.end() || !MBBI->getFlag(MachineInstr::FrameSetup))
1885
return false;
1886
unsigned Opc = MBBI->getOpcode();
1887
return Opc == X86::PUSH32r || Opc == X86::PUSH64r || Opc == X86::PUSHP64r ||
1888
Opc == X86::PUSH2 || Opc == X86::PUSH2P;
1889
};
1890
1891
while (IsCSPush(MBBI)) {
1892
PushedRegs = true;
1893
Register Reg = MBBI->getOperand(0).getReg();
1894
LastCSPush = MBBI;
1895
++MBBI;
1896
unsigned Opc = LastCSPush->getOpcode();
1897
1898
if (!HasFP && NeedsDwarfCFI) {
1899
// Mark callee-saved push instruction.
1900
// Define the current CFA rule to use the provided offset.
1901
assert(StackSize);
1902
// Compared to push, push2 introduces more stack offset (one more
1903
// register).
1904
if (Opc == X86::PUSH2 || Opc == X86::PUSH2P)
1905
StackOffset += stackGrowth;
1906
BuildCFI(MBB, MBBI, DL,
1907
MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset),
1908
MachineInstr::FrameSetup);
1909
StackOffset += stackGrowth;
1910
}
1911
1912
if (NeedsWinCFI) {
1913
HasWinCFI = true;
1914
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1915
.addImm(Reg)
1916
.setMIFlag(MachineInstr::FrameSetup);
1917
if (Opc == X86::PUSH2 || Opc == X86::PUSH2P)
1918
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1919
.addImm(LastCSPush->getOperand(1).getReg())
1920
.setMIFlag(MachineInstr::FrameSetup);
1921
}
1922
}
1923
1924
// Realign stack after we pushed callee-saved registers (so that we'll be
1925
// able to calculate their offsets from the frame pointer).
1926
// Don't do this for Win64, it needs to realign the stack after the prologue.
1927
if (!IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF) &&
1928
!ArgBaseReg.isValid()) {
1929
assert(HasFP && "There should be a frame pointer if stack is realigned.");
1930
BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
1931
1932
if (NeedsWinCFI) {
1933
HasWinCFI = true;
1934
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign))
1935
.addImm(MaxAlign)
1936
.setMIFlag(MachineInstr::FrameSetup);
1937
}
1938
}
1939
1940
// If there is an SUB32ri of ESP immediately before this instruction, merge
1941
// the two. This can be the case when tail call elimination is enabled and
1942
// the callee has more arguments then the caller.
1943
NumBytes -= mergeSPUpdates(MBB, MBBI, true);
1944
1945
// Adjust stack pointer: ESP -= numbytes.
1946
1947
// Windows and cygwin/mingw require a prologue helper routine when allocating
1948
// more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw
1949
// uses __alloca. __alloca and the 32-bit version of __chkstk will probe the
1950
// stack and adjust the stack pointer in one go. The 64-bit version of
1951
// __chkstk is only responsible for probing the stack. The 64-bit prologue is
1952
// responsible for adjusting the stack pointer. Touching the stack at 4K
1953
// increments is necessary to ensure that the guard pages used by the OS
1954
// virtual memory manager are allocated in correct sequence.
1955
uint64_t AlignedNumBytes = NumBytes;
1956
if (IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF))
1957
AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
1958
if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) {
1959
assert(!X86FI->getUsesRedZone() &&
1960
"The Red Zone is not accounted for in stack probes");
1961
1962
// Check whether EAX is livein for this block.
1963
bool isEAXAlive = isEAXLiveIn(MBB);
1964
1965
if (isEAXAlive) {
1966
if (Is64Bit) {
1967
// Save RAX
1968
BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1969
.addReg(X86::RAX, RegState::Kill)
1970
.setMIFlag(MachineInstr::FrameSetup);
1971
} else {
1972
// Save EAX
1973
BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1974
.addReg(X86::EAX, RegState::Kill)
1975
.setMIFlag(MachineInstr::FrameSetup);
1976
}
1977
}
1978
1979
if (Is64Bit) {
1980
// Handle the 64-bit Windows ABI case where we need to call __chkstk.
1981
// Function prologue is responsible for adjusting the stack pointer.
1982
int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes;
1983
BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Alloc)), X86::RAX)
1984
.addImm(Alloc)
1985
.setMIFlag(MachineInstr::FrameSetup);
1986
} else {
1987
// Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1988
// We'll also use 4 already allocated bytes for EAX.
1989
BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1990
.addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
1991
.setMIFlag(MachineInstr::FrameSetup);
1992
}
1993
1994
// Call __chkstk, __chkstk_ms, or __alloca.
1995
emitStackProbe(MF, MBB, MBBI, DL, true);
1996
1997
if (isEAXAlive) {
1998
// Restore RAX/EAX
1999
MachineInstr *MI;
2000
if (Is64Bit)
2001
MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX),
2002
StackPtr, false, NumBytes - 8);
2003
else
2004
MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
2005
StackPtr, false, NumBytes - 4);
2006
MI->setFlag(MachineInstr::FrameSetup);
2007
MBB.insert(MBBI, MI);
2008
}
2009
} else if (NumBytes) {
2010
emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false);
2011
}
2012
2013
if (NeedsWinCFI && NumBytes) {
2014
HasWinCFI = true;
2015
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
2016
.addImm(NumBytes)
2017
.setMIFlag(MachineInstr::FrameSetup);
2018
}
2019
2020
int SEHFrameOffset = 0;
2021
unsigned SPOrEstablisher;
2022
if (IsFunclet) {
2023
if (IsClrFunclet) {
2024
// The establisher parameter passed to a CLR funclet is actually a pointer
2025
// to the (mostly empty) frame of its nearest enclosing funclet; we have
2026
// to find the root function establisher frame by loading the PSPSym from
2027
// the intermediate frame.
2028
unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
2029
MachinePointerInfo NoInfo;
2030
MBB.addLiveIn(Establisher);
2031
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
2032
Establisher, false, PSPSlotOffset)
2033
.addMemOperand(MF.getMachineMemOperand(
2034
NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize)));
2035
;
2036
// Save the root establisher back into the current funclet's (mostly
2037
// empty) frame, in case a sub-funclet or the GC needs it.
2038
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
2039
false, PSPSlotOffset)
2040
.addReg(Establisher)
2041
.addMemOperand(MF.getMachineMemOperand(
2042
NoInfo,
2043
MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
2044
SlotSize, Align(SlotSize)));
2045
}
2046
SPOrEstablisher = Establisher;
2047
} else {
2048
SPOrEstablisher = StackPtr;
2049
}
2050
2051
if (IsWin64Prologue && HasFP) {
2052
// Set RBP to a small fixed offset from RSP. In the funclet case, we base
2053
// this calculation on the incoming establisher, which holds the value of
2054
// RSP from the parent frame at the end of the prologue.
2055
SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
2056
if (SEHFrameOffset)
2057
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
2058
SPOrEstablisher, false, SEHFrameOffset);
2059
else
2060
BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
2061
.addReg(SPOrEstablisher);
2062
2063
// If this is not a funclet, emit the CFI describing our frame pointer.
2064
if (NeedsWinCFI && !IsFunclet) {
2065
assert(!NeedsWinFPO && "this setframe incompatible with FPO data");
2066
HasWinCFI = true;
2067
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
2068
.addImm(FramePtr)
2069
.addImm(SEHFrameOffset)
2070
.setMIFlag(MachineInstr::FrameSetup);
2071
if (isAsynchronousEHPersonality(Personality))
2072
MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
2073
}
2074
} else if (IsFunclet && STI.is32Bit()) {
2075
// Reset EBP / ESI to something good for funclets.
2076
MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
2077
// If we're a catch funclet, we can be returned to via catchret. Save ESP
2078
// into the registration node so that the runtime will restore it for us.
2079
if (!MBB.isCleanupFuncletEntry()) {
2080
assert(Personality == EHPersonality::MSVC_CXX);
2081
Register FrameReg;
2082
int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
2083
int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed();
2084
// ESP is the first field, so no extra displacement is needed.
2085
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
2086
false, EHRegOffset)
2087
.addReg(X86::ESP);
2088
}
2089
}
2090
2091
while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
2092
const MachineInstr &FrameInstr = *MBBI;
2093
++MBBI;
2094
2095
if (NeedsWinCFI) {
2096
int FI;
2097
if (Register Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
2098
if (X86::FR64RegClass.contains(Reg)) {
2099
int Offset;
2100
Register IgnoredFrameReg;
2101
if (IsWin64Prologue && IsFunclet)
2102
Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg);
2103
else
2104
Offset =
2105
getFrameIndexReference(MF, FI, IgnoredFrameReg).getFixed() +
2106
SEHFrameOffset;
2107
2108
HasWinCFI = true;
2109
assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data");
2110
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
2111
.addImm(Reg)
2112
.addImm(Offset)
2113
.setMIFlag(MachineInstr::FrameSetup);
2114
}
2115
}
2116
}
2117
}
2118
2119
if (NeedsWinCFI && HasWinCFI)
2120
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
2121
.setMIFlag(MachineInstr::FrameSetup);
2122
2123
if (FnHasClrFunclet && !IsFunclet) {
2124
// Save the so-called Initial-SP (i.e. the value of the stack pointer
2125
// immediately after the prolog) into the PSPSlot so that funclets
2126
// and the GC can recover it.
2127
unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
2128
auto PSPInfo = MachinePointerInfo::getFixedStack(
2129
MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
2130
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
2131
PSPSlotOffset)
2132
.addReg(StackPtr)
2133
.addMemOperand(MF.getMachineMemOperand(
2134
PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
2135
SlotSize, Align(SlotSize)));
2136
}
2137
2138
// Realign stack after we spilled callee-saved registers (so that we'll be
2139
// able to calculate their offsets from the frame pointer).
2140
// Win64 requires aligning the stack after the prologue.
2141
if (IsWin64Prologue && TRI->hasStackRealignment(MF)) {
2142
assert(HasFP && "There should be a frame pointer if stack is realigned.");
2143
BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
2144
}
2145
2146
// We already dealt with stack realignment and funclets above.
2147
if (IsFunclet && STI.is32Bit())
2148
return;
2149
2150
// If we need a base pointer, set it up here. It's whatever the value
2151
// of the stack pointer is at this point. Any variable size objects
2152
// will be allocated after this, so we can still use the base pointer
2153
// to reference locals.
2154
if (TRI->hasBasePointer(MF)) {
2155
// Update the base pointer with the current stack pointer.
2156
unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
2157
BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
2158
.addReg(SPOrEstablisher)
2159
.setMIFlag(MachineInstr::FrameSetup);
2160
if (X86FI->getRestoreBasePointer()) {
2161
// Stash value of base pointer. Saving RSP instead of EBP shortens
2162
// dependence chain. Used by SjLj EH.
2163
unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
2164
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), FramePtr, true,
2165
X86FI->getRestoreBasePointerOffset())
2166
.addReg(SPOrEstablisher)
2167
.setMIFlag(MachineInstr::FrameSetup);
2168
}
2169
2170
if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
2171
// Stash the value of the frame pointer relative to the base pointer for
2172
// Win32 EH. This supports Win32 EH, which does the inverse of the above:
2173
// it recovers the frame pointer from the base pointer rather than the
2174
// other way around.
2175
unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
2176
Register UsedReg;
2177
int Offset =
2178
getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg)
2179
.getFixed();
2180
assert(UsedReg == BasePtr);
2181
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
2182
.addReg(FramePtr)
2183
.setMIFlag(MachineInstr::FrameSetup);
2184
}
2185
}
2186
if (ArgBaseReg.isValid()) {
2187
// Save argument base pointer.
2188
auto *MI = X86FI->getStackPtrSaveMI();
2189
int FI = MI->getOperand(1).getIndex();
2190
unsigned MOVmr = Is64Bit ? X86::MOV64mr : X86::MOV32mr;
2191
// movl %basereg, offset(%ebp)
2192
addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), FI)
2193
.addReg(ArgBaseReg)
2194
.setMIFlag(MachineInstr::FrameSetup);
2195
}
2196
2197
if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
2198
// Mark end of stack pointer adjustment.
2199
if (!HasFP && NumBytes) {
2200
// Define the current CFA rule to use the provided offset.
2201
assert(StackSize);
2202
BuildCFI(
2203
MBB, MBBI, DL,
2204
MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth),
2205
MachineInstr::FrameSetup);
2206
}
2207
2208
// Emit DWARF info specifying the offsets of the callee-saved registers.
2209
emitCalleeSavedFrameMoves(MBB, MBBI, DL, true);
2210
}
2211
2212
// X86 Interrupt handling function cannot assume anything about the direction
2213
// flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
2214
// in each prologue of interrupt handler function.
2215
//
2216
// Create "cld" instruction only in these cases:
2217
// 1. The interrupt handling function uses any of the "rep" instructions.
2218
// 2. Interrupt handling function calls another function.
2219
// 3. If there are any inline asm blocks, as we do not know what they do
2220
//
2221
// TODO: We should also emit cld if we detect the use of std, but as of now,
2222
// the compiler does not even emit that instruction or even define it, so in
2223
// practice, this would only happen with inline asm, which we cover anyway.
2224
if (Fn.getCallingConv() == CallingConv::X86_INTR) {
2225
bool NeedsCLD = false;
2226
2227
for (const MachineBasicBlock &B : MF) {
2228
for (const MachineInstr &MI : B) {
2229
if (MI.isCall()) {
2230
NeedsCLD = true;
2231
break;
2232
}
2233
2234
if (isOpcodeRep(MI.getOpcode())) {
2235
NeedsCLD = true;
2236
break;
2237
}
2238
2239
if (MI.isInlineAsm()) {
2240
// TODO: Parse asm for rep instructions or call sites?
2241
// For now, let's play it safe and emit a cld instruction
2242
// just in case.
2243
NeedsCLD = true;
2244
break;
2245
}
2246
}
2247
}
2248
2249
if (NeedsCLD) {
2250
BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
2251
.setMIFlag(MachineInstr::FrameSetup);
2252
}
2253
}
2254
2255
// At this point we know if the function has WinCFI or not.
2256
MF.setHasWinCFI(HasWinCFI);
2257
}
2258
2259
bool X86FrameLowering::canUseLEAForSPInEpilogue(
2260
const MachineFunction &MF) const {
2261
// We can't use LEA instructions for adjusting the stack pointer if we don't
2262
// have a frame pointer in the Win64 ABI. Only ADD instructions may be used
2263
// to deallocate the stack.
2264
// This means that we can use LEA for SP in two situations:
2265
// 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
2266
// 2. We *have* a frame pointer which means we are permitted to use LEA.
2267
return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
2268
}
2269
2270
static bool isFuncletReturnInstr(MachineInstr &MI) {
2271
switch (MI.getOpcode()) {
2272
case X86::CATCHRET:
2273
case X86::CLEANUPRET:
2274
return true;
2275
default:
2276
return false;
2277
}
2278
llvm_unreachable("impossible");
2279
}
2280
2281
// CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
2282
// stack. It holds a pointer to the bottom of the root function frame. The
2283
// establisher frame pointer passed to a nested funclet may point to the
2284
// (mostly empty) frame of its parent funclet, but it will need to find
2285
// the frame of the root function to access locals. To facilitate this,
2286
// every funclet copies the pointer to the bottom of the root function
2287
// frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
2288
// same offset for the PSPSym in the root function frame that's used in the
2289
// funclets' frames allows each funclet to dynamically accept any ancestor
2290
// frame as its establisher argument (the runtime doesn't guarantee the
2291
// immediate parent for some reason lost to history), and also allows the GC,
2292
// which uses the PSPSym for some bookkeeping, to find it in any funclet's
2293
// frame with only a single offset reported for the entire method.
2294
unsigned
2295
X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
2296
const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
2297
Register SPReg;
2298
int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
2299
/*IgnoreSPUpdates*/ true)
2300
.getFixed();
2301
assert(Offset >= 0 && SPReg == TRI->getStackRegister());
2302
return static_cast<unsigned>(Offset);
2303
}
2304
2305
unsigned
2306
X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
2307
const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2308
// This is the size of the pushed CSRs.
2309
unsigned CSSize = X86FI->getCalleeSavedFrameSize();
2310
// This is the size of callee saved XMMs.
2311
const auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2312
unsigned XMMSize =
2313
WinEHXMMSlotInfo.size() * TRI->getSpillSize(X86::VR128RegClass);
2314
// This is the amount of stack a funclet needs to allocate.
2315
unsigned UsedSize;
2316
EHPersonality Personality =
2317
classifyEHPersonality(MF.getFunction().getPersonalityFn());
2318
if (Personality == EHPersonality::CoreCLR) {
2319
// CLR funclets need to hold enough space to include the PSPSym, at the
2320
// same offset from the stack pointer (immediately after the prolog) as it
2321
// resides at in the main function.
2322
UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
2323
} else {
2324
// Other funclets just need enough stack for outgoing call arguments.
2325
UsedSize = MF.getFrameInfo().getMaxCallFrameSize();
2326
}
2327
// RBP is not included in the callee saved register block. After pushing RBP,
2328
// everything is 16 byte aligned. Everything we allocate before an outgoing
2329
// call must also be 16 byte aligned.
2330
unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign());
2331
// Subtract out the size of the callee saved registers. This is how much stack
2332
// each funclet will allocate.
2333
return FrameSizeMinusRBP + XMMSize - CSSize;
2334
}
2335
2336
static bool isTailCallOpcode(unsigned Opc) {
2337
return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
2338
Opc == X86::TCRETURNmi || Opc == X86::TCRETURNri64 ||
2339
Opc == X86::TCRETURNdi64 || Opc == X86::TCRETURNmi64;
2340
}
2341
2342
void X86FrameLowering::emitEpilogue(MachineFunction &MF,
2343
MachineBasicBlock &MBB) const {
2344
const MachineFrameInfo &MFI = MF.getFrameInfo();
2345
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2346
MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator();
2347
MachineBasicBlock::iterator MBBI = Terminator;
2348
DebugLoc DL;
2349
if (MBBI != MBB.end())
2350
DL = MBBI->getDebugLoc();
2351
// standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
2352
const bool Is64BitILP32 = STI.isTarget64BitILP32();
2353
Register FramePtr = TRI->getFrameRegister(MF);
2354
Register MachineFramePtr =
2355
Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
2356
2357
bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2358
bool NeedsWin64CFI =
2359
IsWin64Prologue && MF.getFunction().needsUnwindTableEntry();
2360
bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI);
2361
2362
// Get the number of bytes to allocate from the FrameInfo.
2363
uint64_t StackSize = MFI.getStackSize();
2364
uint64_t MaxAlign = calculateMaxStackAlign(MF);
2365
unsigned CSSize = X86FI->getCalleeSavedFrameSize();
2366
unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta();
2367
bool HasFP = hasFP(MF);
2368
uint64_t NumBytes = 0;
2369
2370
bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() &&
2371
!MF.getTarget().getTargetTriple().isOSWindows()) &&
2372
MF.needsFrameMoves();
2373
2374
Register ArgBaseReg;
2375
if (auto *MI = X86FI->getStackPtrSaveMI()) {
2376
unsigned Opc = X86::LEA32r;
2377
Register StackReg = X86::ESP;
2378
ArgBaseReg = MI->getOperand(0).getReg();
2379
if (STI.is64Bit()) {
2380
Opc = X86::LEA64r;
2381
StackReg = X86::RSP;
2382
}
2383
// leal -4(%basereg), %esp
2384
// .cfi_def_cfa %esp, 4
2385
BuildMI(MBB, MBBI, DL, TII.get(Opc), StackReg)
2386
.addUse(ArgBaseReg)
2387
.addImm(1)
2388
.addUse(X86::NoRegister)
2389
.addImm(-(int64_t)SlotSize)
2390
.addUse(X86::NoRegister)
2391
.setMIFlag(MachineInstr::FrameDestroy);
2392
if (NeedsDwarfCFI) {
2393
unsigned DwarfStackPtr = TRI->getDwarfRegNum(StackReg, true);
2394
BuildCFI(MBB, MBBI, DL,
2395
MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize),
2396
MachineInstr::FrameDestroy);
2397
--MBBI;
2398
}
2399
--MBBI;
2400
}
2401
2402
if (IsFunclet) {
2403
assert(HasFP && "EH funclets without FP not yet implemented");
2404
NumBytes = getWinEHFuncletFrameSize(MF);
2405
} else if (HasFP) {
2406
// Calculate required stack adjustment.
2407
uint64_t FrameSize = StackSize - SlotSize;
2408
NumBytes = FrameSize - CSSize - TailCallArgReserveSize;
2409
2410
// Callee-saved registers were pushed on stack before the stack was
2411
// realigned.
2412
if (TRI->hasStackRealignment(MF) && !IsWin64Prologue)
2413
NumBytes = alignTo(FrameSize, MaxAlign);
2414
} else {
2415
NumBytes = StackSize - CSSize - TailCallArgReserveSize;
2416
}
2417
uint64_t SEHStackAllocAmt = NumBytes;
2418
2419
// AfterPop is the position to insert .cfi_restore.
2420
MachineBasicBlock::iterator AfterPop = MBBI;
2421
if (HasFP) {
2422
if (X86FI->hasSwiftAsyncContext()) {
2423
// Discard the context.
2424
int Offset = 16 + mergeSPUpdates(MBB, MBBI, true);
2425
emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue*/ true);
2426
}
2427
// Pop EBP.
2428
BuildMI(MBB, MBBI, DL,
2429
TII.get(getPOPOpcode(MF.getSubtarget<X86Subtarget>())),
2430
MachineFramePtr)
2431
.setMIFlag(MachineInstr::FrameDestroy);
2432
2433
// We need to reset FP to its untagged state on return. Bit 60 is currently
2434
// used to show the presence of an extended frame.
2435
if (X86FI->hasSwiftAsyncContext()) {
2436
BuildMI(MBB, MBBI, DL, TII.get(X86::BTR64ri8), MachineFramePtr)
2437
.addUse(MachineFramePtr)
2438
.addImm(60)
2439
.setMIFlag(MachineInstr::FrameDestroy);
2440
}
2441
2442
if (NeedsDwarfCFI) {
2443
if (!ArgBaseReg.isValid()) {
2444
unsigned DwarfStackPtr =
2445
TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true);
2446
BuildCFI(MBB, MBBI, DL,
2447
MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize),
2448
MachineInstr::FrameDestroy);
2449
}
2450
if (!MBB.succ_empty() && !MBB.isReturnBlock()) {
2451
unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
2452
BuildCFI(MBB, AfterPop, DL,
2453
MCCFIInstruction::createRestore(nullptr, DwarfFramePtr),
2454
MachineInstr::FrameDestroy);
2455
--MBBI;
2456
--AfterPop;
2457
}
2458
--MBBI;
2459
}
2460
}
2461
2462
MachineBasicBlock::iterator FirstCSPop = MBBI;
2463
// Skip the callee-saved pop instructions.
2464
while (MBBI != MBB.begin()) {
2465
MachineBasicBlock::iterator PI = std::prev(MBBI);
2466
unsigned Opc = PI->getOpcode();
2467
2468
if (Opc != X86::DBG_VALUE && !PI->isTerminator()) {
2469
if (!PI->getFlag(MachineInstr::FrameDestroy) ||
2470
(Opc != X86::POP32r && Opc != X86::POP64r && Opc != X86::BTR64ri8 &&
2471
Opc != X86::ADD64ri32 && Opc != X86::POPP64r && Opc != X86::POP2 &&
2472
Opc != X86::POP2P && Opc != X86::LEA64r))
2473
break;
2474
FirstCSPop = PI;
2475
}
2476
2477
--MBBI;
2478
}
2479
if (ArgBaseReg.isValid()) {
2480
// Restore argument base pointer.
2481
auto *MI = X86FI->getStackPtrSaveMI();
2482
int FI = MI->getOperand(1).getIndex();
2483
unsigned MOVrm = Is64Bit ? X86::MOV64rm : X86::MOV32rm;
2484
// movl offset(%ebp), %basereg
2485
addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(MOVrm), ArgBaseReg), FI)
2486
.setMIFlag(MachineInstr::FrameDestroy);
2487
}
2488
MBBI = FirstCSPop;
2489
2490
if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET)
2491
emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator);
2492
2493
if (MBBI != MBB.end())
2494
DL = MBBI->getDebugLoc();
2495
// If there is an ADD32ri or SUB32ri of ESP immediately before this
2496
// instruction, merge the two instructions.
2497
if (NumBytes || MFI.hasVarSizedObjects())
2498
NumBytes += mergeSPUpdates(MBB, MBBI, true);
2499
2500
// If dynamic alloca is used, then reset esp to point to the last callee-saved
2501
// slot before popping them off! Same applies for the case, when stack was
2502
// realigned. Don't do this if this was a funclet epilogue, since the funclets
2503
// will not do realignment or dynamic stack allocation.
2504
if (((TRI->hasStackRealignment(MF)) || MFI.hasVarSizedObjects()) &&
2505
!IsFunclet) {
2506
if (TRI->hasStackRealignment(MF))
2507
MBBI = FirstCSPop;
2508
unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
2509
uint64_t LEAAmount =
2510
IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
2511
2512
if (X86FI->hasSwiftAsyncContext())
2513
LEAAmount -= 16;
2514
2515
// There are only two legal forms of epilogue:
2516
// - add SEHAllocationSize, %rsp
2517
// - lea SEHAllocationSize(%FramePtr), %rsp
2518
//
2519
// 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
2520
// However, we may use this sequence if we have a frame pointer because the
2521
// effects of the prologue can safely be undone.
2522
if (LEAAmount != 0) {
2523
unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
2524
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), FramePtr,
2525
false, LEAAmount);
2526
--MBBI;
2527
} else {
2528
unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
2529
BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr).addReg(FramePtr);
2530
--MBBI;
2531
}
2532
} else if (NumBytes) {
2533
// Adjust stack pointer back: ESP += numbytes.
2534
emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true);
2535
if (!HasFP && NeedsDwarfCFI) {
2536
// Define the current CFA rule to use the provided offset.
2537
BuildCFI(MBB, MBBI, DL,
2538
MCCFIInstruction::cfiDefCfaOffset(
2539
nullptr, CSSize + TailCallArgReserveSize + SlotSize),
2540
MachineInstr::FrameDestroy);
2541
}
2542
--MBBI;
2543
}
2544
2545
// Windows unwinder will not invoke function's exception handler if IP is
2546
// either in prologue or in epilogue. This behavior causes a problem when a
2547
// call immediately precedes an epilogue, because the return address points
2548
// into the epilogue. To cope with that, we insert an epilogue marker here,
2549
// then replace it with a 'nop' if it ends up immediately after a CALL in the
2550
// final emitted code.
2551
if (NeedsWin64CFI && MF.hasWinCFI())
2552
BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
2553
2554
if (!HasFP && NeedsDwarfCFI) {
2555
MBBI = FirstCSPop;
2556
int64_t Offset = -(int64_t)CSSize - SlotSize;
2557
// Mark callee-saved pop instruction.
2558
// Define the current CFA rule to use the provided offset.
2559
while (MBBI != MBB.end()) {
2560
MachineBasicBlock::iterator PI = MBBI;
2561
unsigned Opc = PI->getOpcode();
2562
++MBBI;
2563
if (Opc == X86::POP32r || Opc == X86::POP64r || Opc == X86::POPP64r ||
2564
Opc == X86::POP2 || Opc == X86::POP2P) {
2565
Offset += SlotSize;
2566
// Compared to pop, pop2 introduces more stack offset (one more
2567
// register).
2568
if (Opc == X86::POP2 || Opc == X86::POP2P)
2569
Offset += SlotSize;
2570
BuildCFI(MBB, MBBI, DL,
2571
MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset),
2572
MachineInstr::FrameDestroy);
2573
}
2574
}
2575
}
2576
2577
// Emit DWARF info specifying the restores of the callee-saved registers.
2578
// For epilogue with return inside or being other block without successor,
2579
// no need to generate .cfi_restore for callee-saved registers.
2580
if (NeedsDwarfCFI && !MBB.succ_empty())
2581
emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false);
2582
2583
if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) {
2584
// Add the return addr area delta back since we are not tail calling.
2585
int Offset = -1 * X86FI->getTCReturnAddrDelta();
2586
assert(Offset >= 0 && "TCDelta should never be positive");
2587
if (Offset) {
2588
// Check for possible merge with preceding ADD instruction.
2589
Offset += mergeSPUpdates(MBB, Terminator, true);
2590
emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true);
2591
}
2592
}
2593
2594
// Emit tilerelease for AMX kernel.
2595
if (X86FI->getAMXProgModel() == AMXProgModelEnum::ManagedRA)
2596
BuildMI(MBB, Terminator, DL, TII.get(X86::TILERELEASE));
2597
}
2598
2599
StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF,
2600
int FI,
2601
Register &FrameReg) const {
2602
const MachineFrameInfo &MFI = MF.getFrameInfo();
2603
2604
bool IsFixed = MFI.isFixedObjectIndex(FI);
2605
// We can't calculate offset from frame pointer if the stack is realigned,
2606
// so enforce usage of stack/base pointer. The base pointer is used when we
2607
// have dynamic allocas in addition to dynamic realignment.
2608
if (TRI->hasBasePointer(MF))
2609
FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister();
2610
else if (TRI->hasStackRealignment(MF))
2611
FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister();
2612
else
2613
FrameReg = TRI->getFrameRegister(MF);
2614
2615
// Offset will hold the offset from the stack pointer at function entry to the
2616
// object.
2617
// We need to factor in additional offsets applied during the prologue to the
2618
// frame, base, and stack pointer depending on which is used.
2619
int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea();
2620
const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2621
unsigned CSSize = X86FI->getCalleeSavedFrameSize();
2622
uint64_t StackSize = MFI.getStackSize();
2623
bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2624
int64_t FPDelta = 0;
2625
2626
// In an x86 interrupt, remove the offset we added to account for the return
2627
// address from any stack object allocated in the caller's frame. Interrupts
2628
// do not have a standard return address. Fixed objects in the current frame,
2629
// such as SSE register spills, should not get this treatment.
2630
if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR &&
2631
Offset >= 0) {
2632
Offset += getOffsetOfLocalArea();
2633
}
2634
2635
if (IsWin64Prologue) {
2636
assert(!MFI.hasCalls() || (StackSize % 16) == 8);
2637
2638
// Calculate required stack adjustment.
2639
uint64_t FrameSize = StackSize - SlotSize;
2640
// If required, include space for extra hidden slot for stashing base
2641
// pointer.
2642
if (X86FI->getRestoreBasePointer())
2643
FrameSize += SlotSize;
2644
uint64_t NumBytes = FrameSize - CSSize;
2645
2646
uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
2647
if (FI && FI == X86FI->getFAIndex())
2648
return StackOffset::getFixed(-SEHFrameOffset);
2649
2650
// FPDelta is the offset from the "traditional" FP location of the old base
2651
// pointer followed by return address and the location required by the
2652
// restricted Win64 prologue.
2653
// Add FPDelta to all offsets below that go through the frame pointer.
2654
FPDelta = FrameSize - SEHFrameOffset;
2655
assert((!MFI.hasCalls() || (FPDelta % 16) == 0) &&
2656
"FPDelta isn't aligned per the Win64 ABI!");
2657
}
2658
2659
if (FrameReg == TRI->getFramePtr()) {
2660
// Skip saved EBP/RBP
2661
Offset += SlotSize;
2662
2663
// Account for restricted Windows prologue.
2664
Offset += FPDelta;
2665
2666
// Skip the RETADDR move area
2667
int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
2668
if (TailCallReturnAddrDelta < 0)
2669
Offset -= TailCallReturnAddrDelta;
2670
2671
return StackOffset::getFixed(Offset);
2672
}
2673
2674
// FrameReg is either the stack pointer or a base pointer. But the base is
2675
// located at the end of the statically known StackSize so the distinction
2676
// doesn't really matter.
2677
if (TRI->hasStackRealignment(MF) || TRI->hasBasePointer(MF))
2678
assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize)));
2679
return StackOffset::getFixed(Offset + StackSize);
2680
}
2681
2682
int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI,
2683
Register &FrameReg) const {
2684
const MachineFrameInfo &MFI = MF.getFrameInfo();
2685
const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2686
const auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2687
const auto it = WinEHXMMSlotInfo.find(FI);
2688
2689
if (it == WinEHXMMSlotInfo.end())
2690
return getFrameIndexReference(MF, FI, FrameReg).getFixed();
2691
2692
FrameReg = TRI->getStackRegister();
2693
return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) +
2694
it->second;
2695
}
2696
2697
StackOffset
2698
X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI,
2699
Register &FrameReg,
2700
int Adjustment) const {
2701
const MachineFrameInfo &MFI = MF.getFrameInfo();
2702
FrameReg = TRI->getStackRegister();
2703
return StackOffset::getFixed(MFI.getObjectOffset(FI) -
2704
getOffsetOfLocalArea() + Adjustment);
2705
}
2706
2707
StackOffset
2708
X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF,
2709
int FI, Register &FrameReg,
2710
bool IgnoreSPUpdates) const {
2711
2712
const MachineFrameInfo &MFI = MF.getFrameInfo();
2713
// Does not include any dynamic realign.
2714
const uint64_t StackSize = MFI.getStackSize();
2715
// LLVM arranges the stack as follows:
2716
// ...
2717
// ARG2
2718
// ARG1
2719
// RETADDR
2720
// PUSH RBP <-- RBP points here
2721
// PUSH CSRs
2722
// ~~~~~~~ <-- possible stack realignment (non-win64)
2723
// ...
2724
// STACK OBJECTS
2725
// ... <-- RSP after prologue points here
2726
// ~~~~~~~ <-- possible stack realignment (win64)
2727
//
2728
// if (hasVarSizedObjects()):
2729
// ... <-- "base pointer" (ESI/RBX) points here
2730
// DYNAMIC ALLOCAS
2731
// ... <-- RSP points here
2732
//
2733
// Case 1: In the simple case of no stack realignment and no dynamic
2734
// allocas, both "fixed" stack objects (arguments and CSRs) are addressable
2735
// with fixed offsets from RSP.
2736
//
2737
// Case 2: In the case of stack realignment with no dynamic allocas, fixed
2738
// stack objects are addressed with RBP and regular stack objects with RSP.
2739
//
2740
// Case 3: In the case of dynamic allocas and stack realignment, RSP is used
2741
// to address stack arguments for outgoing calls and nothing else. The "base
2742
// pointer" points to local variables, and RBP points to fixed objects.
2743
//
2744
// In cases 2 and 3, we can only answer for non-fixed stack objects, and the
2745
// answer we give is relative to the SP after the prologue, and not the
2746
// SP in the middle of the function.
2747
2748
if (MFI.isFixedObjectIndex(FI) && TRI->hasStackRealignment(MF) &&
2749
!STI.isTargetWin64())
2750
return getFrameIndexReference(MF, FI, FrameReg);
2751
2752
// If !hasReservedCallFrame the function might have SP adjustement in the
2753
// body. So, even though the offset is statically known, it depends on where
2754
// we are in the function.
2755
if (!IgnoreSPUpdates && !hasReservedCallFrame(MF))
2756
return getFrameIndexReference(MF, FI, FrameReg);
2757
2758
// We don't handle tail calls, and shouldn't be seeing them either.
2759
assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
2760
"we don't handle this case!");
2761
2762
// This is how the math works out:
2763
//
2764
// %rsp grows (i.e. gets lower) left to right. Each box below is
2765
// one word (eight bytes). Obj0 is the stack slot we're trying to
2766
// get to.
2767
//
2768
// ----------------------------------
2769
// | BP | Obj0 | Obj1 | ... | ObjN |
2770
// ----------------------------------
2771
// ^ ^ ^ ^
2772
// A B C E
2773
//
2774
// A is the incoming stack pointer.
2775
// (B - A) is the local area offset (-8 for x86-64) [1]
2776
// (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
2777
//
2778
// |(E - B)| is the StackSize (absolute value, positive). For a
2779
// stack that grown down, this works out to be (B - E). [3]
2780
//
2781
// E is also the value of %rsp after stack has been set up, and we
2782
// want (C - E) -- the value we can add to %rsp to get to Obj0. Now
2783
// (C - E) == (C - A) - (B - A) + (B - E)
2784
// { Using [1], [2] and [3] above }
2785
// == getObjectOffset - LocalAreaOffset + StackSize
2786
2787
return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize);
2788
}
2789
2790
bool X86FrameLowering::assignCalleeSavedSpillSlots(
2791
MachineFunction &MF, const TargetRegisterInfo *TRI,
2792
std::vector<CalleeSavedInfo> &CSI) const {
2793
MachineFrameInfo &MFI = MF.getFrameInfo();
2794
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2795
2796
unsigned CalleeSavedFrameSize = 0;
2797
unsigned XMMCalleeSavedFrameSize = 0;
2798
auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2799
int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
2800
2801
int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
2802
2803
if (TailCallReturnAddrDelta < 0) {
2804
// create RETURNADDR area
2805
// arg
2806
// arg
2807
// RETADDR
2808
// { ...
2809
// RETADDR area
2810
// ...
2811
// }
2812
// [EBP]
2813
MFI.CreateFixedObject(-TailCallReturnAddrDelta,
2814
TailCallReturnAddrDelta - SlotSize, true);
2815
}
2816
2817
// Spill the BasePtr if it's used.
2818
if (this->TRI->hasBasePointer(MF)) {
2819
// Allocate a spill slot for EBP if we have a base pointer and EH funclets.
2820
if (MF.hasEHFunclets()) {
2821
int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize));
2822
X86FI->setHasSEHFramePtrSave(true);
2823
X86FI->setSEHFramePtrSaveIndex(FI);
2824
}
2825
}
2826
2827
if (hasFP(MF)) {
2828
// emitPrologue always spills frame register the first thing.
2829
SpillSlotOffset -= SlotSize;
2830
MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2831
2832
// The async context lives directly before the frame pointer, and we
2833
// allocate a second slot to preserve stack alignment.
2834
if (X86FI->hasSwiftAsyncContext()) {
2835
SpillSlotOffset -= SlotSize;
2836
MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2837
SpillSlotOffset -= SlotSize;
2838
}
2839
2840
// Since emitPrologue and emitEpilogue will handle spilling and restoring of
2841
// the frame register, we can delete it from CSI list and not have to worry
2842
// about avoiding it later.
2843
Register FPReg = TRI->getFrameRegister(MF);
2844
for (unsigned i = 0; i < CSI.size(); ++i) {
2845
if (TRI->regsOverlap(CSI[i].getReg(), FPReg)) {
2846
CSI.erase(CSI.begin() + i);
2847
break;
2848
}
2849
}
2850
}
2851
2852
// Strategy:
2853
// 1. Use push2 when
2854
// a) number of CSR > 1 if no need padding
2855
// b) number of CSR > 2 if need padding
2856
// 2. When the number of CSR push is odd
2857
// a. Start to use push2 from the 1st push if stack is 16B aligned.
2858
// b. Start to use push2 from the 2nd push if stack is not 16B aligned.
2859
// 3. When the number of CSR push is even, start to use push2 from the 1st
2860
// push and make the stack 16B aligned before the push
2861
unsigned NumRegsForPush2 = 0;
2862
if (STI.hasPush2Pop2()) {
2863
unsigned NumCSGPR = llvm::count_if(CSI, [](const CalleeSavedInfo &I) {
2864
return X86::GR64RegClass.contains(I.getReg());
2865
});
2866
bool NeedPadding = (SpillSlotOffset % 16 != 0) && (NumCSGPR % 2 == 0);
2867
bool UsePush2Pop2 = NeedPadding ? NumCSGPR > 2 : NumCSGPR > 1;
2868
X86FI->setPadForPush2Pop2(NeedPadding && UsePush2Pop2);
2869
NumRegsForPush2 = UsePush2Pop2 ? alignDown(NumCSGPR, 2) : 0;
2870
if (X86FI->padForPush2Pop2()) {
2871
SpillSlotOffset -= SlotSize;
2872
MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2873
}
2874
}
2875
2876
// Assign slots for GPRs. It increases frame size.
2877
for (CalleeSavedInfo &I : llvm::reverse(CSI)) {
2878
Register Reg = I.getReg();
2879
2880
if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2881
continue;
2882
2883
// A CSR is a candidate for push2/pop2 when it's slot offset is 16B aligned
2884
// or only an odd number of registers in the candidates.
2885
if (X86FI->getNumCandidatesForPush2Pop2() < NumRegsForPush2 &&
2886
(SpillSlotOffset % 16 == 0 ||
2887
X86FI->getNumCandidatesForPush2Pop2() % 2))
2888
X86FI->addCandidateForPush2Pop2(Reg);
2889
2890
SpillSlotOffset -= SlotSize;
2891
CalleeSavedFrameSize += SlotSize;
2892
2893
int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2894
I.setFrameIdx(SlotIndex);
2895
}
2896
2897
// Adjust the offset of spill slot as we know the accurate callee saved frame
2898
// size.
2899
if (X86FI->getRestoreBasePointer()) {
2900
SpillSlotOffset -= SlotSize;
2901
CalleeSavedFrameSize += SlotSize;
2902
2903
MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2904
// TODO: saving the slot index is better?
2905
X86FI->setRestoreBasePointer(CalleeSavedFrameSize);
2906
}
2907
assert(X86FI->getNumCandidatesForPush2Pop2() % 2 == 0 &&
2908
"Expect even candidates for push2/pop2");
2909
if (X86FI->getNumCandidatesForPush2Pop2())
2910
++NumFunctionUsingPush2Pop2;
2911
X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
2912
MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize);
2913
2914
// Assign slots for XMMs.
2915
for (CalleeSavedInfo &I : llvm::reverse(CSI)) {
2916
Register Reg = I.getReg();
2917
if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2918
continue;
2919
2920
// If this is k-register make sure we lookup via the largest legal type.
2921
MVT VT = MVT::Other;
2922
if (X86::VK16RegClass.contains(Reg))
2923
VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2924
2925
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2926
unsigned Size = TRI->getSpillSize(*RC);
2927
Align Alignment = TRI->getSpillAlign(*RC);
2928
// ensure alignment
2929
assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86");
2930
SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment);
2931
2932
// spill into slot
2933
SpillSlotOffset -= Size;
2934
int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset);
2935
I.setFrameIdx(SlotIndex);
2936
MFI.ensureMaxAlignment(Alignment);
2937
2938
// Save the start offset and size of XMM in stack frame for funclets.
2939
if (X86::VR128RegClass.contains(Reg)) {
2940
WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize;
2941
XMMCalleeSavedFrameSize += Size;
2942
}
2943
}
2944
2945
return true;
2946
}
2947
2948
bool X86FrameLowering::spillCalleeSavedRegisters(
2949
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2950
ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2951
DebugLoc DL = MBB.findDebugLoc(MI);
2952
2953
// Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
2954
// for us, and there are no XMM CSRs on Win32.
2955
if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
2956
return true;
2957
2958
// Push GPRs. It increases frame size.
2959
const MachineFunction &MF = *MBB.getParent();
2960
const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2961
if (X86FI->padForPush2Pop2())
2962
emitSPUpdate(MBB, MI, DL, -(int64_t)SlotSize, /*InEpilogue=*/false);
2963
2964
// Update LiveIn of the basic block and decide whether we can add a kill flag
2965
// to the use.
2966
auto UpdateLiveInCheckCanKill = [&](Register Reg) {
2967
const MachineRegisterInfo &MRI = MF.getRegInfo();
2968
// Do not set a kill flag on values that are also marked as live-in. This
2969
// happens with the @llvm-returnaddress intrinsic and with arguments
2970
// passed in callee saved registers.
2971
// Omitting the kill flags is conservatively correct even if the live-in
2972
// is not used after all.
2973
if (MRI.isLiveIn(Reg))
2974
return false;
2975
MBB.addLiveIn(Reg);
2976
// Check if any subregister is live-in
2977
for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg)
2978
if (MRI.isLiveIn(*AReg))
2979
return false;
2980
return true;
2981
};
2982
auto UpdateLiveInGetKillRegState = [&](Register Reg) {
2983
return getKillRegState(UpdateLiveInCheckCanKill(Reg));
2984
};
2985
2986
for (auto RI = CSI.rbegin(), RE = CSI.rend(); RI != RE; ++RI) {
2987
Register Reg = RI->getReg();
2988
if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2989
continue;
2990
2991
if (X86FI->isCandidateForPush2Pop2(Reg)) {
2992
Register Reg2 = (++RI)->getReg();
2993
BuildMI(MBB, MI, DL, TII.get(getPUSH2Opcode(STI)))
2994
.addReg(Reg, UpdateLiveInGetKillRegState(Reg))
2995
.addReg(Reg2, UpdateLiveInGetKillRegState(Reg2))
2996
.setMIFlag(MachineInstr::FrameSetup);
2997
} else {
2998
BuildMI(MBB, MI, DL, TII.get(getPUSHOpcode(STI)))
2999
.addReg(Reg, UpdateLiveInGetKillRegState(Reg))
3000
.setMIFlag(MachineInstr::FrameSetup);
3001
}
3002
}
3003
3004
if (X86FI->getRestoreBasePointer()) {
3005
unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
3006
Register BaseReg = this->TRI->getBaseRegister();
3007
BuildMI(MBB, MI, DL, TII.get(Opc))
3008
.addReg(BaseReg, getKillRegState(true))
3009
.setMIFlag(MachineInstr::FrameSetup);
3010
}
3011
3012
// Make XMM regs spilled. X86 does not have ability of push/pop XMM.
3013
// It can be done by spilling XMMs to stack frame.
3014
for (const CalleeSavedInfo &I : llvm::reverse(CSI)) {
3015
Register Reg = I.getReg();
3016
if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
3017
continue;
3018
3019
// If this is k-register make sure we lookup via the largest legal type.
3020
MVT VT = MVT::Other;
3021
if (X86::VK16RegClass.contains(Reg))
3022
VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
3023
3024
// Add the callee-saved register as live-in. It's killed at the spill.
3025
MBB.addLiveIn(Reg);
3026
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
3027
3028
TII.storeRegToStackSlot(MBB, MI, Reg, true, I.getFrameIdx(), RC, TRI,
3029
Register());
3030
--MI;
3031
MI->setFlag(MachineInstr::FrameSetup);
3032
++MI;
3033
}
3034
3035
return true;
3036
}
3037
3038
void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB,
3039
MachineBasicBlock::iterator MBBI,
3040
MachineInstr *CatchRet) const {
3041
// SEH shouldn't use catchret.
3042
assert(!isAsynchronousEHPersonality(classifyEHPersonality(
3043
MBB.getParent()->getFunction().getPersonalityFn())) &&
3044
"SEH should not use CATCHRET");
3045
const DebugLoc &DL = CatchRet->getDebugLoc();
3046
MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB();
3047
3048
// Fill EAX/RAX with the address of the target block.
3049
if (STI.is64Bit()) {
3050
// LEA64r CatchRetTarget(%rip), %rax
3051
BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX)
3052
.addReg(X86::RIP)
3053
.addImm(0)
3054
.addReg(0)
3055
.addMBB(CatchRetTarget)
3056
.addReg(0);
3057
} else {
3058
// MOV32ri $CatchRetTarget, %eax
3059
BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
3060
.addMBB(CatchRetTarget);
3061
}
3062
3063
// Record that we've taken the address of CatchRetTarget and no longer just
3064
// reference it in a terminator.
3065
CatchRetTarget->setMachineBlockAddressTaken();
3066
}
3067
3068
bool X86FrameLowering::restoreCalleeSavedRegisters(
3069
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
3070
MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
3071
if (CSI.empty())
3072
return false;
3073
3074
if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
3075
// Don't restore CSRs in 32-bit EH funclets. Matches
3076
// spillCalleeSavedRegisters.
3077
if (STI.is32Bit())
3078
return true;
3079
// Don't restore CSRs before an SEH catchret. SEH except blocks do not form
3080
// funclets. emitEpilogue transforms these to normal jumps.
3081
if (MI->getOpcode() == X86::CATCHRET) {
3082
const Function &F = MBB.getParent()->getFunction();
3083
bool IsSEH = isAsynchronousEHPersonality(
3084
classifyEHPersonality(F.getPersonalityFn()));
3085
if (IsSEH)
3086
return true;
3087
}
3088
}
3089
3090
DebugLoc DL = MBB.findDebugLoc(MI);
3091
3092
// Reload XMMs from stack frame.
3093
for (const CalleeSavedInfo &I : CSI) {
3094
Register Reg = I.getReg();
3095
if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
3096
continue;
3097
3098
// If this is k-register make sure we lookup via the largest legal type.
3099
MVT VT = MVT::Other;
3100
if (X86::VK16RegClass.contains(Reg))
3101
VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
3102
3103
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
3104
TII.loadRegFromStackSlot(MBB, MI, Reg, I.getFrameIdx(), RC, TRI,
3105
Register());
3106
}
3107
3108
// Clear the stack slot for spill base pointer register.
3109
MachineFunction &MF = *MBB.getParent();
3110
const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3111
if (X86FI->getRestoreBasePointer()) {
3112
unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
3113
Register BaseReg = this->TRI->getBaseRegister();
3114
BuildMI(MBB, MI, DL, TII.get(Opc), BaseReg)
3115
.setMIFlag(MachineInstr::FrameDestroy);
3116
}
3117
3118
// POP GPRs.
3119
for (auto I = CSI.begin(), E = CSI.end(); I != E; ++I) {
3120
Register Reg = I->getReg();
3121
if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
3122
continue;
3123
3124
if (X86FI->isCandidateForPush2Pop2(Reg))
3125
BuildMI(MBB, MI, DL, TII.get(getPOP2Opcode(STI)), Reg)
3126
.addReg((++I)->getReg(), RegState::Define)
3127
.setMIFlag(MachineInstr::FrameDestroy);
3128
else
3129
BuildMI(MBB, MI, DL, TII.get(getPOPOpcode(STI)), Reg)
3130
.setMIFlag(MachineInstr::FrameDestroy);
3131
}
3132
if (X86FI->padForPush2Pop2())
3133
emitSPUpdate(MBB, MI, DL, SlotSize, /*InEpilogue=*/true);
3134
3135
return true;
3136
}
3137
3138
void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
3139
BitVector &SavedRegs,
3140
RegScavenger *RS) const {
3141
TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
3142
3143
// Spill the BasePtr if it's used.
3144
if (TRI->hasBasePointer(MF)) {
3145
Register BasePtr = TRI->getBaseRegister();
3146
if (STI.isTarget64BitILP32())
3147
BasePtr = getX86SubSuperRegister(BasePtr, 64);
3148
SavedRegs.set(BasePtr);
3149
}
3150
}
3151
3152
static bool HasNestArgument(const MachineFunction *MF) {
3153
const Function &F = MF->getFunction();
3154
for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3155
I++) {
3156
if (I->hasNestAttr() && !I->use_empty())
3157
return true;
3158
}
3159
return false;
3160
}
3161
3162
/// GetScratchRegister - Get a temp register for performing work in the
3163
/// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
3164
/// and the properties of the function either one or two registers will be
3165
/// needed. Set primary to true for the first register, false for the second.
3166
static unsigned GetScratchRegister(bool Is64Bit, bool IsLP64,
3167
const MachineFunction &MF, bool Primary) {
3168
CallingConv::ID CallingConvention = MF.getFunction().getCallingConv();
3169
3170
// Erlang stuff.
3171
if (CallingConvention == CallingConv::HiPE) {
3172
if (Is64Bit)
3173
return Primary ? X86::R14 : X86::R13;
3174
else
3175
return Primary ? X86::EBX : X86::EDI;
3176
}
3177
3178
if (Is64Bit) {
3179
if (IsLP64)
3180
return Primary ? X86::R11 : X86::R12;
3181
else
3182
return Primary ? X86::R11D : X86::R12D;
3183
}
3184
3185
bool IsNested = HasNestArgument(&MF);
3186
3187
if (CallingConvention == CallingConv::X86_FastCall ||
3188
CallingConvention == CallingConv::Fast ||
3189
CallingConvention == CallingConv::Tail) {
3190
if (IsNested)
3191
report_fatal_error("Segmented stacks does not support fastcall with "
3192
"nested function.");
3193
return Primary ? X86::EAX : X86::ECX;
3194
}
3195
if (IsNested)
3196
return Primary ? X86::EDX : X86::EAX;
3197
return Primary ? X86::ECX : X86::EAX;
3198
}
3199
3200
// The stack limit in the TCB is set to this many bytes above the actual stack
3201
// limit.
3202
static const uint64_t kSplitStackAvailable = 256;
3203
3204
void X86FrameLowering::adjustForSegmentedStacks(
3205
MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
3206
MachineFrameInfo &MFI = MF.getFrameInfo();
3207
uint64_t StackSize;
3208
unsigned TlsReg, TlsOffset;
3209
DebugLoc DL;
3210
3211
// To support shrink-wrapping we would need to insert the new blocks
3212
// at the right place and update the branches to PrologueMBB.
3213
assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
3214
3215
unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
3216
assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
3217
"Scratch register is live-in");
3218
3219
if (MF.getFunction().isVarArg())
3220
report_fatal_error("Segmented stacks do not support vararg functions.");
3221
if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
3222
!STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
3223
!STI.isTargetDragonFly())
3224
report_fatal_error("Segmented stacks not supported on this platform.");
3225
3226
// Eventually StackSize will be calculated by a link-time pass; which will
3227
// also decide whether checking code needs to be injected into this particular
3228
// prologue.
3229
StackSize = MFI.getStackSize();
3230
3231
if (!MFI.needsSplitStackProlog())
3232
return;
3233
3234
MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
3235
MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
3236
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3237
bool IsNested = false;
3238
3239
// We need to know if the function has a nest argument only in 64 bit mode.
3240
if (Is64Bit)
3241
IsNested = HasNestArgument(&MF);
3242
3243
// The MOV R10, RAX needs to be in a different block, since the RET we emit in
3244
// allocMBB needs to be last (terminating) instruction.
3245
3246
for (const auto &LI : PrologueMBB.liveins()) {
3247
allocMBB->addLiveIn(LI);
3248
checkMBB->addLiveIn(LI);
3249
}
3250
3251
if (IsNested)
3252
allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
3253
3254
MF.push_front(allocMBB);
3255
MF.push_front(checkMBB);
3256
3257
// When the frame size is less than 256 we just compare the stack
3258
// boundary directly to the value of the stack pointer, per gcc.
3259
bool CompareStackPointer = StackSize < kSplitStackAvailable;
3260
3261
// Read the limit off the current stacklet off the stack_guard location.
3262
if (Is64Bit) {
3263
if (STI.isTargetLinux()) {
3264
TlsReg = X86::FS;
3265
TlsOffset = IsLP64 ? 0x70 : 0x40;
3266
} else if (STI.isTargetDarwin()) {
3267
TlsReg = X86::GS;
3268
TlsOffset = 0x60 + 90 * 8; // See pthread_machdep.h. Steal TLS slot 90.
3269
} else if (STI.isTargetWin64()) {
3270
TlsReg = X86::GS;
3271
TlsOffset = 0x28; // pvArbitrary, reserved for application use
3272
} else if (STI.isTargetFreeBSD()) {
3273
TlsReg = X86::FS;
3274
TlsOffset = 0x18;
3275
} else if (STI.isTargetDragonFly()) {
3276
TlsReg = X86::FS;
3277
TlsOffset = 0x20; // use tls_tcb.tcb_segstack
3278
} else {
3279
report_fatal_error("Segmented stacks not supported on this platform.");
3280
}
3281
3282
if (CompareStackPointer)
3283
ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
3284
else
3285
BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r),
3286
ScratchReg)
3287
.addReg(X86::RSP)
3288
.addImm(1)
3289
.addReg(0)
3290
.addImm(-StackSize)
3291
.addReg(0);
3292
3293
BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm))
3294
.addReg(ScratchReg)
3295
.addReg(0)
3296
.addImm(1)
3297
.addReg(0)
3298
.addImm(TlsOffset)
3299
.addReg(TlsReg);
3300
} else {
3301
if (STI.isTargetLinux()) {
3302
TlsReg = X86::GS;
3303
TlsOffset = 0x30;
3304
} else if (STI.isTargetDarwin()) {
3305
TlsReg = X86::GS;
3306
TlsOffset = 0x48 + 90 * 4;
3307
} else if (STI.isTargetWin32()) {
3308
TlsReg = X86::FS;
3309
TlsOffset = 0x14; // pvArbitrary, reserved for application use
3310
} else if (STI.isTargetDragonFly()) {
3311
TlsReg = X86::FS;
3312
TlsOffset = 0x10; // use tls_tcb.tcb_segstack
3313
} else if (STI.isTargetFreeBSD()) {
3314
report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
3315
} else {
3316
report_fatal_error("Segmented stacks not supported on this platform.");
3317
}
3318
3319
if (CompareStackPointer)
3320
ScratchReg = X86::ESP;
3321
else
3322
BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg)
3323
.addReg(X86::ESP)
3324
.addImm(1)
3325
.addReg(0)
3326
.addImm(-StackSize)
3327
.addReg(0);
3328
3329
if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
3330
STI.isTargetDragonFly()) {
3331
BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
3332
.addReg(ScratchReg)
3333
.addReg(0)
3334
.addImm(0)
3335
.addReg(0)
3336
.addImm(TlsOffset)
3337
.addReg(TlsReg);
3338
} else if (STI.isTargetDarwin()) {
3339
3340
// TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
3341
unsigned ScratchReg2;
3342
bool SaveScratch2;
3343
if (CompareStackPointer) {
3344
// The primary scratch register is available for holding the TLS offset.
3345
ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
3346
SaveScratch2 = false;
3347
} else {
3348
// Need to use a second register to hold the TLS offset
3349
ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
3350
3351
// Unfortunately, with fastcc the second scratch register may hold an
3352
// argument.
3353
SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
3354
}
3355
3356
// If Scratch2 is live-in then it needs to be saved.
3357
assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
3358
"Scratch register is live-in and not saved");
3359
3360
if (SaveScratch2)
3361
BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
3362
.addReg(ScratchReg2, RegState::Kill);
3363
3364
BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
3365
.addImm(TlsOffset);
3366
BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
3367
.addReg(ScratchReg)
3368
.addReg(ScratchReg2)
3369
.addImm(1)
3370
.addReg(0)
3371
.addImm(0)
3372
.addReg(TlsReg);
3373
3374
if (SaveScratch2)
3375
BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
3376
}
3377
}
3378
3379
// This jump is taken if SP >= (Stacklet Limit + Stack Space required).
3380
// It jumps to normal execution of the function body.
3381
BuildMI(checkMBB, DL, TII.get(X86::JCC_1))
3382
.addMBB(&PrologueMBB)
3383
.addImm(X86::COND_A);
3384
3385
// On 32 bit we first push the arguments size and then the frame size. On 64
3386
// bit, we pass the stack frame size in r10 and the argument size in r11.
3387
if (Is64Bit) {
3388
// Functions with nested arguments use R10, so it needs to be saved across
3389
// the call to _morestack
3390
3391
const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
3392
const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
3393
const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
3394
const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
3395
3396
if (IsNested)
3397
BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
3398
3399
BuildMI(allocMBB, DL, TII.get(getMOVriOpcode(IsLP64, StackSize)), Reg10)
3400
.addImm(StackSize);
3401
BuildMI(allocMBB, DL,
3402
TII.get(getMOVriOpcode(IsLP64, X86FI->getArgumentStackSize())),
3403
Reg11)
3404
.addImm(X86FI->getArgumentStackSize());
3405
} else {
3406
BuildMI(allocMBB, DL, TII.get(X86::PUSH32i))
3407
.addImm(X86FI->getArgumentStackSize());
3408
BuildMI(allocMBB, DL, TII.get(X86::PUSH32i)).addImm(StackSize);
3409
}
3410
3411
// __morestack is in libgcc
3412
if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
3413
// Under the large code model, we cannot assume that __morestack lives
3414
// within 2^31 bytes of the call site, so we cannot use pc-relative
3415
// addressing. We cannot perform the call via a temporary register,
3416
// as the rax register may be used to store the static chain, and all
3417
// other suitable registers may be either callee-save or used for
3418
// parameter passing. We cannot use the stack at this point either
3419
// because __morestack manipulates the stack directly.
3420
//
3421
// To avoid these issues, perform an indirect call via a read-only memory
3422
// location containing the address.
3423
//
3424
// This solution is not perfect, as it assumes that the .rodata section
3425
// is laid out within 2^31 bytes of each function body, but this seems
3426
// to be sufficient for JIT.
3427
// FIXME: Add retpoline support and remove the error here..
3428
if (STI.useIndirectThunkCalls())
3429
report_fatal_error("Emitting morestack calls on 64-bit with the large "
3430
"code model and thunks not yet implemented.");
3431
BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
3432
.addReg(X86::RIP)
3433
.addImm(0)
3434
.addReg(0)
3435
.addExternalSymbol("__morestack_addr")
3436
.addReg(0);
3437
} else {
3438
if (Is64Bit)
3439
BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
3440
.addExternalSymbol("__morestack");
3441
else
3442
BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
3443
.addExternalSymbol("__morestack");
3444
}
3445
3446
if (IsNested)
3447
BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
3448
else
3449
BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
3450
3451
allocMBB->addSuccessor(&PrologueMBB);
3452
3453
checkMBB->addSuccessor(allocMBB, BranchProbability::getZero());
3454
checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne());
3455
3456
#ifdef EXPENSIVE_CHECKS
3457
MF.verify();
3458
#endif
3459
}
3460
3461
/// Lookup an ERTS parameter in the !hipe.literals named metadata node.
3462
/// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
3463
/// to fields it needs, through a named metadata node "hipe.literals" containing
3464
/// name-value pairs.
3465
static unsigned getHiPELiteral(NamedMDNode *HiPELiteralsMD,
3466
const StringRef LiteralName) {
3467
for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
3468
MDNode *Node = HiPELiteralsMD->getOperand(i);
3469
if (Node->getNumOperands() != 2)
3470
continue;
3471
MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
3472
ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
3473
if (!NodeName || !NodeVal)
3474
continue;
3475
ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
3476
if (ValConst && NodeName->getString() == LiteralName) {
3477
return ValConst->getZExtValue();
3478
}
3479
}
3480
3481
report_fatal_error("HiPE literal " + LiteralName +
3482
" required but not provided");
3483
}
3484
3485
// Return true if there are no non-ehpad successors to MBB and there are no
3486
// non-meta instructions between MBBI and MBB.end().
3487
static bool blockEndIsUnreachable(const MachineBasicBlock &MBB,
3488
MachineBasicBlock::const_iterator MBBI) {
3489
return llvm::all_of(
3490
MBB.successors(),
3491
[](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) &&
3492
std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) {
3493
return MI.isMetaInstruction();
3494
});
3495
}
3496
3497
/// Erlang programs may need a special prologue to handle the stack size they
3498
/// might need at runtime. That is because Erlang/OTP does not implement a C
3499
/// stack but uses a custom implementation of hybrid stack/heap architecture.
3500
/// (for more information see Eric Stenman's Ph.D. thesis:
3501
/// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
3502
///
3503
/// CheckStack:
3504
/// temp0 = sp - MaxStack
3505
/// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
3506
/// OldStart:
3507
/// ...
3508
/// IncStack:
3509
/// call inc_stack # doubles the stack space
3510
/// temp0 = sp - MaxStack
3511
/// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
3512
void X86FrameLowering::adjustForHiPEPrologue(
3513
MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
3514
MachineFrameInfo &MFI = MF.getFrameInfo();
3515
DebugLoc DL;
3516
3517
// To support shrink-wrapping we would need to insert the new blocks
3518
// at the right place and update the branches to PrologueMBB.
3519
assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
3520
3521
// HiPE-specific values
3522
NamedMDNode *HiPELiteralsMD =
3523
MF.getFunction().getParent()->getNamedMetadata("hipe.literals");
3524
if (!HiPELiteralsMD)
3525
report_fatal_error(
3526
"Can't generate HiPE prologue without runtime parameters");
3527
const unsigned HipeLeafWords = getHiPELiteral(
3528
HiPELiteralsMD, Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
3529
const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
3530
const unsigned Guaranteed = HipeLeafWords * SlotSize;
3531
unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs
3532
? MF.getFunction().arg_size() - CCRegisteredArgs
3533
: 0;
3534
unsigned MaxStack = MFI.getStackSize() + CallerStkArity * SlotSize + SlotSize;
3535
3536
assert(STI.isTargetLinux() &&
3537
"HiPE prologue is only supported on Linux operating systems.");
3538
3539
// Compute the largest caller's frame that is needed to fit the callees'
3540
// frames. This 'MaxStack' is computed from:
3541
//
3542
// a) the fixed frame size, which is the space needed for all spilled temps,
3543
// b) outgoing on-stack parameter areas, and
3544
// c) the minimum stack space this function needs to make available for the
3545
// functions it calls (a tunable ABI property).
3546
if (MFI.hasCalls()) {
3547
unsigned MoreStackForCalls = 0;
3548
3549
for (auto &MBB : MF) {
3550
for (auto &MI : MBB) {
3551
if (!MI.isCall())
3552
continue;
3553
3554
// Get callee operand.
3555
const MachineOperand &MO = MI.getOperand(0);
3556
3557
// Only take account of global function calls (no closures etc.).
3558
if (!MO.isGlobal())
3559
continue;
3560
3561
const Function *F = dyn_cast<Function>(MO.getGlobal());
3562
if (!F)
3563
continue;
3564
3565
// Do not update 'MaxStack' for primitive and built-in functions
3566
// (encoded with names either starting with "erlang."/"bif_" or not
3567
// having a ".", such as a simple <Module>.<Function>.<Arity>, or an
3568
// "_", such as the BIF "suspend_0") as they are executed on another
3569
// stack.
3570
if (F->getName().contains("erlang.") || F->getName().contains("bif_") ||
3571
F->getName().find_first_of("._") == StringRef::npos)
3572
continue;
3573
3574
unsigned CalleeStkArity = F->arg_size() > CCRegisteredArgs
3575
? F->arg_size() - CCRegisteredArgs
3576
: 0;
3577
if (HipeLeafWords - 1 > CalleeStkArity)
3578
MoreStackForCalls =
3579
std::max(MoreStackForCalls,
3580
(HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
3581
}
3582
}
3583
MaxStack += MoreStackForCalls;
3584
}
3585
3586
// If the stack frame needed is larger than the guaranteed then runtime checks
3587
// and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
3588
if (MaxStack > Guaranteed) {
3589
MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
3590
MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
3591
3592
for (const auto &LI : PrologueMBB.liveins()) {
3593
stackCheckMBB->addLiveIn(LI);
3594
incStackMBB->addLiveIn(LI);
3595
}
3596
3597
MF.push_front(incStackMBB);
3598
MF.push_front(stackCheckMBB);
3599
3600
unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
3601
unsigned LEAop, CMPop, CALLop;
3602
SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
3603
if (Is64Bit) {
3604
SPReg = X86::RSP;
3605
PReg = X86::RBP;
3606
LEAop = X86::LEA64r;
3607
CMPop = X86::CMP64rm;
3608
CALLop = X86::CALL64pcrel32;
3609
} else {
3610
SPReg = X86::ESP;
3611
PReg = X86::EBP;
3612
LEAop = X86::LEA32r;
3613
CMPop = X86::CMP32rm;
3614
CALLop = X86::CALLpcrel32;
3615
}
3616
3617
ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
3618
assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
3619
"HiPE prologue scratch register is live-in");
3620
3621
// Create new MBB for StackCheck:
3622
addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), SPReg,
3623
false, -MaxStack);
3624
// SPLimitOffset is in a fixed heap location (pointed by BP).
3625
addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)).addReg(ScratchReg),
3626
PReg, false, SPLimitOffset);
3627
BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1))
3628
.addMBB(&PrologueMBB)
3629
.addImm(X86::COND_AE);
3630
3631
// Create new MBB for IncStack:
3632
BuildMI(incStackMBB, DL, TII.get(CALLop)).addExternalSymbol("inc_stack_0");
3633
addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), SPReg,
3634
false, -MaxStack);
3635
addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)).addReg(ScratchReg),
3636
PReg, false, SPLimitOffset);
3637
BuildMI(incStackMBB, DL, TII.get(X86::JCC_1))
3638
.addMBB(incStackMBB)
3639
.addImm(X86::COND_LE);
3640
3641
stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
3642
stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
3643
incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
3644
incStackMBB->addSuccessor(incStackMBB, {1, 100});
3645
}
3646
#ifdef EXPENSIVE_CHECKS
3647
MF.verify();
3648
#endif
3649
}
3650
3651
bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
3652
MachineBasicBlock::iterator MBBI,
3653
const DebugLoc &DL,
3654
int Offset) const {
3655
if (Offset <= 0)
3656
return false;
3657
3658
if (Offset % SlotSize)
3659
return false;
3660
3661
int NumPops = Offset / SlotSize;
3662
// This is only worth it if we have at most 2 pops.
3663
if (NumPops != 1 && NumPops != 2)
3664
return false;
3665
3666
// Handle only the trivial case where the adjustment directly follows
3667
// a call. This is the most common one, anyway.
3668
if (MBBI == MBB.begin())
3669
return false;
3670
MachineBasicBlock::iterator Prev = std::prev(MBBI);
3671
if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
3672
return false;
3673
3674
unsigned Regs[2];
3675
unsigned FoundRegs = 0;
3676
3677
const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3678
const MachineOperand &RegMask = Prev->getOperand(1);
3679
3680
auto &RegClass =
3681
Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
3682
// Try to find up to NumPops free registers.
3683
for (auto Candidate : RegClass) {
3684
// Poor man's liveness:
3685
// Since we're immediately after a call, any register that is clobbered
3686
// by the call and not defined by it can be considered dead.
3687
if (!RegMask.clobbersPhysReg(Candidate))
3688
continue;
3689
3690
// Don't clobber reserved registers
3691
if (MRI.isReserved(Candidate))
3692
continue;
3693
3694
bool IsDef = false;
3695
for (const MachineOperand &MO : Prev->implicit_operands()) {
3696
if (MO.isReg() && MO.isDef() &&
3697
TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
3698
IsDef = true;
3699
break;
3700
}
3701
}
3702
3703
if (IsDef)
3704
continue;
3705
3706
Regs[FoundRegs++] = Candidate;
3707
if (FoundRegs == (unsigned)NumPops)
3708
break;
3709
}
3710
3711
if (FoundRegs == 0)
3712
return false;
3713
3714
// If we found only one free register, but need two, reuse the same one twice.
3715
while (FoundRegs < (unsigned)NumPops)
3716
Regs[FoundRegs++] = Regs[0];
3717
3718
for (int i = 0; i < NumPops; ++i)
3719
BuildMI(MBB, MBBI, DL, TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r),
3720
Regs[i]);
3721
3722
return true;
3723
}
3724
3725
MachineBasicBlock::iterator X86FrameLowering::eliminateCallFramePseudoInstr(
3726
MachineFunction &MF, MachineBasicBlock &MBB,
3727
MachineBasicBlock::iterator I) const {
3728
bool reserveCallFrame = hasReservedCallFrame(MF);
3729
unsigned Opcode = I->getOpcode();
3730
bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
3731
DebugLoc DL = I->getDebugLoc(); // copy DebugLoc as I will be erased.
3732
uint64_t Amount = TII.getFrameSize(*I);
3733
uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0;
3734
I = MBB.erase(I);
3735
auto InsertPos = skipDebugInstructionsForward(I, MBB.end());
3736
3737
// Try to avoid emitting dead SP adjustments if the block end is unreachable,
3738
// typically because the function is marked noreturn (abort, throw,
3739
// assert_fail, etc).
3740
if (isDestroy && blockEndIsUnreachable(MBB, I))
3741
return I;
3742
3743
if (!reserveCallFrame) {
3744
// If the stack pointer can be changed after prologue, turn the
3745
// adjcallstackup instruction into a 'sub ESP, <amt>' and the
3746
// adjcallstackdown instruction into 'add ESP, <amt>'
3747
3748
// We need to keep the stack aligned properly. To do this, we round the
3749
// amount of space needed for the outgoing arguments up to the next
3750
// alignment boundary.
3751
Amount = alignTo(Amount, getStackAlign());
3752
3753
const Function &F = MF.getFunction();
3754
bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
3755
bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves();
3756
3757
// If we have any exception handlers in this function, and we adjust
3758
// the SP before calls, we may need to indicate this to the unwinder
3759
// using GNU_ARGS_SIZE. Note that this may be necessary even when
3760
// Amount == 0, because the preceding function may have set a non-0
3761
// GNU_ARGS_SIZE.
3762
// TODO: We don't need to reset this between subsequent functions,
3763
// if it didn't change.
3764
bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty();
3765
3766
if (HasDwarfEHHandlers && !isDestroy &&
3767
MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
3768
BuildCFI(MBB, InsertPos, DL,
3769
MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
3770
3771
if (Amount == 0)
3772
return I;
3773
3774
// Factor out the amount that gets handled inside the sequence
3775
// (Pushes of argument for frame setup, callee pops for frame destroy)
3776
Amount -= InternalAmt;
3777
3778
// TODO: This is needed only if we require precise CFA.
3779
// If this is a callee-pop calling convention, emit a CFA adjust for
3780
// the amount the callee popped.
3781
if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
3782
BuildCFI(MBB, InsertPos, DL,
3783
MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
3784
3785
// Add Amount to SP to destroy a frame, or subtract to setup.
3786
int64_t StackAdjustment = isDestroy ? Amount : -Amount;
3787
3788
if (StackAdjustment) {
3789
// Merge with any previous or following adjustment instruction. Note: the
3790
// instructions merged with here do not have CFI, so their stack
3791
// adjustments do not feed into CfaAdjustment.
3792
StackAdjustment += mergeSPUpdates(MBB, InsertPos, true);
3793
StackAdjustment += mergeSPUpdates(MBB, InsertPos, false);
3794
3795
if (StackAdjustment) {
3796
if (!(F.hasMinSize() &&
3797
adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment)))
3798
BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment,
3799
/*InEpilogue=*/false);
3800
}
3801
}
3802
3803
if (DwarfCFI && !hasFP(MF)) {
3804
// If we don't have FP, but need to generate unwind information,
3805
// we need to set the correct CFA offset after the stack adjustment.
3806
// How much we adjust the CFA offset depends on whether we're emitting
3807
// CFI only for EH purposes or for debugging. EH only requires the CFA
3808
// offset to be correct at each call site, while for debugging we want
3809
// it to be more precise.
3810
3811
int64_t CfaAdjustment = -StackAdjustment;
3812
// TODO: When not using precise CFA, we also need to adjust for the
3813
// InternalAmt here.
3814
if (CfaAdjustment) {
3815
BuildCFI(
3816
MBB, InsertPos, DL,
3817
MCCFIInstruction::createAdjustCfaOffset(nullptr, CfaAdjustment));
3818
}
3819
}
3820
3821
return I;
3822
}
3823
3824
if (InternalAmt) {
3825
MachineBasicBlock::iterator CI = I;
3826
MachineBasicBlock::iterator B = MBB.begin();
3827
while (CI != B && !std::prev(CI)->isCall())
3828
--CI;
3829
BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
3830
}
3831
3832
return I;
3833
}
3834
3835
bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
3836
assert(MBB.getParent() && "Block is not attached to a function!");
3837
const MachineFunction &MF = *MBB.getParent();
3838
if (!MBB.isLiveIn(X86::EFLAGS))
3839
return true;
3840
3841
// If stack probes have to loop inline or call, that will clobber EFLAGS.
3842
// FIXME: we could allow cases that will use emitStackProbeInlineGenericBlock.
3843
const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
3844
const X86TargetLowering &TLI = *STI.getTargetLowering();
3845
if (TLI.hasInlineStackProbe(MF) || TLI.hasStackProbeSymbol(MF))
3846
return false;
3847
3848
const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3849
return !TRI->hasStackRealignment(MF) && !X86FI->hasSwiftAsyncContext();
3850
}
3851
3852
bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
3853
assert(MBB.getParent() && "Block is not attached to a function!");
3854
3855
// Win64 has strict requirements in terms of epilogue and we are
3856
// not taking a chance at messing with them.
3857
// I.e., unless this block is already an exit block, we can't use
3858
// it as an epilogue.
3859
if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
3860
return false;
3861
3862
// Swift async context epilogue has a BTR instruction that clobbers parts of
3863
// EFLAGS.
3864
const MachineFunction &MF = *MBB.getParent();
3865
if (MF.getInfo<X86MachineFunctionInfo>()->hasSwiftAsyncContext())
3866
return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
3867
3868
if (canUseLEAForSPInEpilogue(*MBB.getParent()))
3869
return true;
3870
3871
// If we cannot use LEA to adjust SP, we may need to use ADD, which
3872
// clobbers the EFLAGS. Check that we do not need to preserve it,
3873
// otherwise, conservatively assume this is not
3874
// safe to insert the epilogue here.
3875
return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
3876
}
3877
3878
bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
3879
// If we may need to emit frameless compact unwind information, give
3880
// up as this is currently broken: PR25614.
3881
bool CompactUnwind =
3882
MF.getContext().getObjectFileInfo()->getCompactUnwindSection() != nullptr;
3883
return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF) ||
3884
!CompactUnwind) &&
3885
// The lowering of segmented stack and HiPE only support entry
3886
// blocks as prologue blocks: PR26107. This limitation may be
3887
// lifted if we fix:
3888
// - adjustForSegmentedStacks
3889
// - adjustForHiPEPrologue
3890
MF.getFunction().getCallingConv() != CallingConv::HiPE &&
3891
!MF.shouldSplitStack();
3892
}
3893
3894
MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
3895
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
3896
const DebugLoc &DL, bool RestoreSP) const {
3897
assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
3898
assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
3899
assert(STI.is32Bit() && !Uses64BitFramePtr &&
3900
"restoring EBP/ESI on non-32-bit target");
3901
3902
MachineFunction &MF = *MBB.getParent();
3903
Register FramePtr = TRI->getFrameRegister(MF);
3904
Register BasePtr = TRI->getBaseRegister();
3905
WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
3906
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3907
MachineFrameInfo &MFI = MF.getFrameInfo();
3908
3909
// FIXME: Don't set FrameSetup flag in catchret case.
3910
3911
int FI = FuncInfo.EHRegNodeFrameIndex;
3912
int EHRegSize = MFI.getObjectSize(FI);
3913
3914
if (RestoreSP) {
3915
// MOV32rm -EHRegSize(%ebp), %esp
3916
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
3917
X86::EBP, true, -EHRegSize)
3918
.setMIFlag(MachineInstr::FrameSetup);
3919
}
3920
3921
Register UsedReg;
3922
int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg).getFixed();
3923
int EndOffset = -EHRegOffset - EHRegSize;
3924
FuncInfo.EHRegNodeEndOffset = EndOffset;
3925
3926
if (UsedReg == FramePtr) {
3927
// ADD $offset, %ebp
3928
unsigned ADDri = getADDriOpcode(false);
3929
BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
3930
.addReg(FramePtr)
3931
.addImm(EndOffset)
3932
.setMIFlag(MachineInstr::FrameSetup)
3933
->getOperand(3)
3934
.setIsDead();
3935
assert(EndOffset >= 0 &&
3936
"end of registration object above normal EBP position!");
3937
} else if (UsedReg == BasePtr) {
3938
// LEA offset(%ebp), %esi
3939
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
3940
FramePtr, false, EndOffset)
3941
.setMIFlag(MachineInstr::FrameSetup);
3942
// MOV32rm SavedEBPOffset(%esi), %ebp
3943
assert(X86FI->getHasSEHFramePtrSave());
3944
int Offset =
3945
getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg)
3946
.getFixed();
3947
assert(UsedReg == BasePtr);
3948
addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
3949
UsedReg, true, Offset)
3950
.setMIFlag(MachineInstr::FrameSetup);
3951
} else {
3952
llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
3953
}
3954
return MBBI;
3955
}
3956
3957
int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const {
3958
return TRI->getSlotSize();
3959
}
3960
3961
Register
3962
X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const {
3963
return StackPtr;
3964
}
3965
3966
TargetFrameLowering::DwarfFrameBase
3967
X86FrameLowering::getDwarfFrameBase(const MachineFunction &MF) const {
3968
const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
3969
Register FrameRegister = RI->getFrameRegister(MF);
3970
if (getInitialCFARegister(MF) == FrameRegister &&
3971
MF.getInfo<X86MachineFunctionInfo>()->hasCFIAdjustCfa()) {
3972
DwarfFrameBase FrameBase;
3973
FrameBase.Kind = DwarfFrameBase::CFA;
3974
FrameBase.Location.Offset =
3975
-MF.getFrameInfo().getStackSize() - getInitialCFAOffset(MF);
3976
return FrameBase;
3977
}
3978
3979
return DwarfFrameBase{DwarfFrameBase::Register, {FrameRegister}};
3980
}
3981
3982
namespace {
3983
// Struct used by orderFrameObjects to help sort the stack objects.
3984
struct X86FrameSortingObject {
3985
bool IsValid = false; // true if we care about this Object.
3986
unsigned ObjectIndex = 0; // Index of Object into MFI list.
3987
unsigned ObjectSize = 0; // Size of Object in bytes.
3988
Align ObjectAlignment = Align(1); // Alignment of Object in bytes.
3989
unsigned ObjectNumUses = 0; // Object static number of uses.
3990
};
3991
3992
// The comparison function we use for std::sort to order our local
3993
// stack symbols. The current algorithm is to use an estimated
3994
// "density". This takes into consideration the size and number of
3995
// uses each object has in order to roughly minimize code size.
3996
// So, for example, an object of size 16B that is referenced 5 times
3997
// will get higher priority than 4 4B objects referenced 1 time each.
3998
// It's not perfect and we may be able to squeeze a few more bytes out of
3999
// it (for example : 0(esp) requires fewer bytes, symbols allocated at the
4000
// fringe end can have special consideration, given their size is less
4001
// important, etc.), but the algorithmic complexity grows too much to be
4002
// worth the extra gains we get. This gets us pretty close.
4003
// The final order leaves us with objects with highest priority going
4004
// at the end of our list.
4005
struct X86FrameSortingComparator {
4006
inline bool operator()(const X86FrameSortingObject &A,
4007
const X86FrameSortingObject &B) const {
4008
uint64_t DensityAScaled, DensityBScaled;
4009
4010
// For consistency in our comparison, all invalid objects are placed
4011
// at the end. This also allows us to stop walking when we hit the
4012
// first invalid item after it's all sorted.
4013
if (!A.IsValid)
4014
return false;
4015
if (!B.IsValid)
4016
return true;
4017
4018
// The density is calculated by doing :
4019
// (double)DensityA = A.ObjectNumUses / A.ObjectSize
4020
// (double)DensityB = B.ObjectNumUses / B.ObjectSize
4021
// Since this approach may cause inconsistencies in
4022
// the floating point <, >, == comparisons, depending on the floating
4023
// point model with which the compiler was built, we're going
4024
// to scale both sides by multiplying with
4025
// A.ObjectSize * B.ObjectSize. This ends up factoring away
4026
// the division and, with it, the need for any floating point
4027
// arithmetic.
4028
DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
4029
static_cast<uint64_t>(B.ObjectSize);
4030
DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
4031
static_cast<uint64_t>(A.ObjectSize);
4032
4033
// If the two densities are equal, prioritize highest alignment
4034
// objects. This allows for similar alignment objects
4035
// to be packed together (given the same density).
4036
// There's room for improvement here, also, since we can pack
4037
// similar alignment (different density) objects next to each
4038
// other to save padding. This will also require further
4039
// complexity/iterations, and the overall gain isn't worth it,
4040
// in general. Something to keep in mind, though.
4041
if (DensityAScaled == DensityBScaled)
4042
return A.ObjectAlignment < B.ObjectAlignment;
4043
4044
return DensityAScaled < DensityBScaled;
4045
}
4046
};
4047
} // namespace
4048
4049
// Order the symbols in the local stack.
4050
// We want to place the local stack objects in some sort of sensible order.
4051
// The heuristic we use is to try and pack them according to static number
4052
// of uses and size of object in order to minimize code size.
4053
void X86FrameLowering::orderFrameObjects(
4054
const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
4055
const MachineFrameInfo &MFI = MF.getFrameInfo();
4056
4057
// Don't waste time if there's nothing to do.
4058
if (ObjectsToAllocate.empty())
4059
return;
4060
4061
// Create an array of all MFI objects. We won't need all of these
4062
// objects, but we're going to create a full array of them to make
4063
// it easier to index into when we're counting "uses" down below.
4064
// We want to be able to easily/cheaply access an object by simply
4065
// indexing into it, instead of having to search for it every time.
4066
std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd());
4067
4068
// Walk the objects we care about and mark them as such in our working
4069
// struct.
4070
for (auto &Obj : ObjectsToAllocate) {
4071
SortingObjects[Obj].IsValid = true;
4072
SortingObjects[Obj].ObjectIndex = Obj;
4073
SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj);
4074
// Set the size.
4075
int ObjectSize = MFI.getObjectSize(Obj);
4076
if (ObjectSize == 0)
4077
// Variable size. Just use 4.
4078
SortingObjects[Obj].ObjectSize = 4;
4079
else
4080
SortingObjects[Obj].ObjectSize = ObjectSize;
4081
}
4082
4083
// Count the number of uses for each object.
4084
for (auto &MBB : MF) {
4085
for (auto &MI : MBB) {
4086
if (MI.isDebugInstr())
4087
continue;
4088
for (const MachineOperand &MO : MI.operands()) {
4089
// Check to see if it's a local stack symbol.
4090
if (!MO.isFI())
4091
continue;
4092
int Index = MO.getIndex();
4093
// Check to see if it falls within our range, and is tagged
4094
// to require ordering.
4095
if (Index >= 0 && Index < MFI.getObjectIndexEnd() &&
4096
SortingObjects[Index].IsValid)
4097
SortingObjects[Index].ObjectNumUses++;
4098
}
4099
}
4100
}
4101
4102
// Sort the objects using X86FrameSortingAlgorithm (see its comment for
4103
// info).
4104
llvm::stable_sort(SortingObjects, X86FrameSortingComparator());
4105
4106
// Now modify the original list to represent the final order that
4107
// we want. The order will depend on whether we're going to access them
4108
// from the stack pointer or the frame pointer. For SP, the list should
4109
// end up with the END containing objects that we want with smaller offsets.
4110
// For FP, it should be flipped.
4111
int i = 0;
4112
for (auto &Obj : SortingObjects) {
4113
// All invalid items are sorted at the end, so it's safe to stop.
4114
if (!Obj.IsValid)
4115
break;
4116
ObjectsToAllocate[i++] = Obj.ObjectIndex;
4117
}
4118
4119
// Flip it if we're accessing off of the FP.
4120
if (!TRI->hasStackRealignment(MF) && hasFP(MF))
4121
std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
4122
}
4123
4124
unsigned
4125
X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
4126
// RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
4127
unsigned Offset = 16;
4128
// RBP is immediately pushed.
4129
Offset += SlotSize;
4130
// All callee-saved registers are then pushed.
4131
Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
4132
// Every funclet allocates enough stack space for the largest outgoing call.
4133
Offset += getWinEHFuncletFrameSize(MF);
4134
return Offset;
4135
}
4136
4137
void X86FrameLowering::processFunctionBeforeFrameFinalized(
4138
MachineFunction &MF, RegScavenger *RS) const {
4139
// Mark the function as not having WinCFI. We will set it back to true in
4140
// emitPrologue if it gets called and emits CFI.
4141
MF.setHasWinCFI(false);
4142
4143
// If we are using Windows x64 CFI, ensure that the stack is always 8 byte
4144
// aligned. The format doesn't support misaligned stack adjustments.
4145
if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI())
4146
MF.getFrameInfo().ensureMaxAlignment(Align(SlotSize));
4147
4148
// If this function isn't doing Win64-style C++ EH, we don't need to do
4149
// anything.
4150
if (STI.is64Bit() && MF.hasEHFunclets() &&
4151
classifyEHPersonality(MF.getFunction().getPersonalityFn()) ==
4152
EHPersonality::MSVC_CXX) {
4153
adjustFrameForMsvcCxxEh(MF);
4154
}
4155
}
4156
4157
void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const {
4158
// Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
4159
// relative to RSP after the prologue. Find the offset of the last fixed
4160
// object, so that we can allocate a slot immediately following it. If there
4161
// were no fixed objects, use offset -SlotSize, which is immediately after the
4162
// return address. Fixed objects have negative frame indices.
4163
MachineFrameInfo &MFI = MF.getFrameInfo();
4164
WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
4165
int64_t MinFixedObjOffset = -SlotSize;
4166
for (int I = MFI.getObjectIndexBegin(); I < 0; ++I)
4167
MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I));
4168
4169
for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
4170
for (WinEHHandlerType &H : TBME.HandlerArray) {
4171
int FrameIndex = H.CatchObj.FrameIndex;
4172
if (FrameIndex != INT_MAX) {
4173
// Ensure alignment.
4174
unsigned Align = MFI.getObjectAlign(FrameIndex).value();
4175
MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
4176
MinFixedObjOffset -= MFI.getObjectSize(FrameIndex);
4177
MFI.setObjectOffset(FrameIndex, MinFixedObjOffset);
4178
}
4179
}
4180
}
4181
4182
// Ensure alignment.
4183
MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
4184
int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
4185
int UnwindHelpFI =
4186
MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false);
4187
EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
4188
4189
// Store -2 into UnwindHelp on function entry. We have to scan forwards past
4190
// other frame setup instructions.
4191
MachineBasicBlock &MBB = MF.front();
4192
auto MBBI = MBB.begin();
4193
while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
4194
++MBBI;
4195
4196
DebugLoc DL = MBB.findDebugLoc(MBBI);
4197
addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
4198
UnwindHelpFI)
4199
.addImm(-2);
4200
}
4201
4202
void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced(
4203
MachineFunction &MF, RegScavenger *RS) const {
4204
auto *X86FI = MF.getInfo<X86MachineFunctionInfo>();
4205
4206
if (STI.is32Bit() && MF.hasEHFunclets())
4207
restoreWinEHStackPointersInParent(MF);
4208
// We have emitted prolog and epilog. Don't need stack pointer saving
4209
// instruction any more.
4210
if (MachineInstr *MI = X86FI->getStackPtrSaveMI()) {
4211
MI->eraseFromParent();
4212
X86FI->setStackPtrSaveMI(nullptr);
4213
}
4214
}
4215
4216
void X86FrameLowering::restoreWinEHStackPointersInParent(
4217
MachineFunction &MF) const {
4218
// 32-bit functions have to restore stack pointers when control is transferred
4219
// back to the parent function. These blocks are identified as eh pads that
4220
// are not funclet entries.
4221
bool IsSEH = isAsynchronousEHPersonality(
4222
classifyEHPersonality(MF.getFunction().getPersonalityFn()));
4223
for (MachineBasicBlock &MBB : MF) {
4224
bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry();
4225
if (NeedsRestore)
4226
restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(),
4227
/*RestoreSP=*/IsSEH);
4228
}
4229
}
4230
4231