Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/IPO/CalledValuePropagation.cpp
35269 views
1
//===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements a transformation that attaches !callees metadata to
10
// indirect call sites. For a given call site, the metadata, if present,
11
// indicates the set of functions the call site could possibly target at
12
// run-time. This metadata is added to indirect call sites when the set of
13
// possible targets can be determined by analysis and is known to be small. The
14
// analysis driving the transformation is similar to constant propagation and
15
// makes uses of the generic sparse propagation solver.
16
//
17
//===----------------------------------------------------------------------===//
18
19
#include "llvm/Transforms/IPO/CalledValuePropagation.h"
20
#include "llvm/Analysis/SparsePropagation.h"
21
#include "llvm/Analysis/ValueLatticeUtils.h"
22
#include "llvm/IR/Constants.h"
23
#include "llvm/IR/MDBuilder.h"
24
#include "llvm/IR/Module.h"
25
#include "llvm/Support/CommandLine.h"
26
#include "llvm/Transforms/IPO.h"
27
28
using namespace llvm;
29
30
#define DEBUG_TYPE "called-value-propagation"
31
32
/// The maximum number of functions to track per lattice value. Once the number
33
/// of functions a call site can possibly target exceeds this threshold, it's
34
/// lattice value becomes overdefined. The number of possible lattice values is
35
/// bounded by Ch(F, M), where F is the number of functions in the module and M
36
/// is MaxFunctionsPerValue. As such, this value should be kept very small. We
37
/// likely can't do anything useful for call sites with a large number of
38
/// possible targets, anyway.
39
static cl::opt<unsigned> MaxFunctionsPerValue(
40
"cvp-max-functions-per-value", cl::Hidden, cl::init(4),
41
cl::desc("The maximum number of functions to track per lattice value"));
42
43
namespace {
44
/// To enable interprocedural analysis, we assign LLVM values to the following
45
/// groups. The register group represents SSA registers, the return group
46
/// represents the return values of functions, and the memory group represents
47
/// in-memory values. An LLVM Value can technically be in more than one group.
48
/// It's necessary to distinguish these groups so we can, for example, track a
49
/// global variable separately from the value stored at its location.
50
enum class IPOGrouping { Register, Return, Memory };
51
52
/// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings.
53
using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>;
54
55
/// The lattice value type used by our custom lattice function. It holds the
56
/// lattice state, and a set of functions.
57
class CVPLatticeVal {
58
public:
59
/// The states of the lattice values. Only the FunctionSet state is
60
/// interesting. It indicates the set of functions to which an LLVM value may
61
/// refer.
62
enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked };
63
64
/// Comparator for sorting the functions set. We want to keep the order
65
/// deterministic for testing, etc.
66
struct Compare {
67
bool operator()(const Function *LHS, const Function *RHS) const {
68
return LHS->getName() < RHS->getName();
69
}
70
};
71
72
CVPLatticeVal() = default;
73
CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {}
74
CVPLatticeVal(std::vector<Function *> &&Functions)
75
: LatticeState(FunctionSet), Functions(std::move(Functions)) {
76
assert(llvm::is_sorted(this->Functions, Compare()));
77
}
78
79
/// Get a reference to the functions held by this lattice value. The number
80
/// of functions will be zero for states other than FunctionSet.
81
const std::vector<Function *> &getFunctions() const {
82
return Functions;
83
}
84
85
/// Returns true if the lattice value is in the FunctionSet state.
86
bool isFunctionSet() const { return LatticeState == FunctionSet; }
87
88
bool operator==(const CVPLatticeVal &RHS) const {
89
return LatticeState == RHS.LatticeState && Functions == RHS.Functions;
90
}
91
92
bool operator!=(const CVPLatticeVal &RHS) const {
93
return LatticeState != RHS.LatticeState || Functions != RHS.Functions;
94
}
95
96
private:
97
/// Holds the state this lattice value is in.
98
CVPLatticeStateTy LatticeState = Undefined;
99
100
/// Holds functions indicating the possible targets of call sites. This set
101
/// is empty for lattice values in the undefined, overdefined, and untracked
102
/// states. The maximum size of the set is controlled by
103
/// MaxFunctionsPerValue. Since most LLVM values are expected to be in
104
/// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be
105
/// small and efficiently copyable.
106
// FIXME: This could be a TinyPtrVector and/or merge with LatticeState.
107
std::vector<Function *> Functions;
108
};
109
110
/// The custom lattice function used by the generic sparse propagation solver.
111
/// It handles merging lattice values and computing new lattice values for
112
/// constants, arguments, values returned from trackable functions, and values
113
/// located in trackable global variables. It also computes the lattice values
114
/// that change as a result of executing instructions.
115
class CVPLatticeFunc
116
: public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> {
117
public:
118
CVPLatticeFunc()
119
: AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined),
120
CVPLatticeVal(CVPLatticeVal::Overdefined),
121
CVPLatticeVal(CVPLatticeVal::Untracked)) {}
122
123
/// Compute and return a CVPLatticeVal for the given CVPLatticeKey.
124
CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override {
125
switch (Key.getInt()) {
126
case IPOGrouping::Register:
127
if (isa<Instruction>(Key.getPointer())) {
128
return getUndefVal();
129
} else if (auto *A = dyn_cast<Argument>(Key.getPointer())) {
130
if (canTrackArgumentsInterprocedurally(A->getParent()))
131
return getUndefVal();
132
} else if (auto *C = dyn_cast<Constant>(Key.getPointer())) {
133
return computeConstant(C);
134
}
135
return getOverdefinedVal();
136
case IPOGrouping::Memory:
137
case IPOGrouping::Return:
138
if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) {
139
if (canTrackGlobalVariableInterprocedurally(GV))
140
return computeConstant(GV->getInitializer());
141
} else if (auto *F = cast<Function>(Key.getPointer()))
142
if (canTrackReturnsInterprocedurally(F))
143
return getUndefVal();
144
}
145
return getOverdefinedVal();
146
}
147
148
/// Merge the two given lattice values. The interesting cases are merging two
149
/// FunctionSet values and a FunctionSet value with an Undefined value. For
150
/// these cases, we simply union the function sets. If the size of the union
151
/// is greater than the maximum functions we track, the merged value is
152
/// overdefined.
153
CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override {
154
if (X == getOverdefinedVal() || Y == getOverdefinedVal())
155
return getOverdefinedVal();
156
if (X == getUndefVal() && Y == getUndefVal())
157
return getUndefVal();
158
std::vector<Function *> Union;
159
std::set_union(X.getFunctions().begin(), X.getFunctions().end(),
160
Y.getFunctions().begin(), Y.getFunctions().end(),
161
std::back_inserter(Union), CVPLatticeVal::Compare{});
162
if (Union.size() > MaxFunctionsPerValue)
163
return getOverdefinedVal();
164
return CVPLatticeVal(std::move(Union));
165
}
166
167
/// Compute the lattice values that change as a result of executing the given
168
/// instruction. The changed values are stored in \p ChangedValues. We handle
169
/// just a few kinds of instructions since we're only propagating values that
170
/// can be called.
171
void ComputeInstructionState(
172
Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
173
SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override {
174
switch (I.getOpcode()) {
175
case Instruction::Call:
176
case Instruction::Invoke:
177
return visitCallBase(cast<CallBase>(I), ChangedValues, SS);
178
case Instruction::Load:
179
return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS);
180
case Instruction::Ret:
181
return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS);
182
case Instruction::Select:
183
return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS);
184
case Instruction::Store:
185
return visitStore(*cast<StoreInst>(&I), ChangedValues, SS);
186
default:
187
return visitInst(I, ChangedValues, SS);
188
}
189
}
190
191
/// Print the given CVPLatticeVal to the specified stream.
192
void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override {
193
if (LV == getUndefVal())
194
OS << "Undefined ";
195
else if (LV == getOverdefinedVal())
196
OS << "Overdefined";
197
else if (LV == getUntrackedVal())
198
OS << "Untracked ";
199
else
200
OS << "FunctionSet";
201
}
202
203
/// Print the given CVPLatticeKey to the specified stream.
204
void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override {
205
if (Key.getInt() == IPOGrouping::Register)
206
OS << "<reg> ";
207
else if (Key.getInt() == IPOGrouping::Memory)
208
OS << "<mem> ";
209
else if (Key.getInt() == IPOGrouping::Return)
210
OS << "<ret> ";
211
if (isa<Function>(Key.getPointer()))
212
OS << Key.getPointer()->getName();
213
else
214
OS << *Key.getPointer();
215
}
216
217
/// We collect a set of indirect calls when visiting call sites. This method
218
/// returns a reference to that set.
219
SmallPtrSetImpl<CallBase *> &getIndirectCalls() { return IndirectCalls; }
220
221
private:
222
/// Holds the indirect calls we encounter during the analysis. We will attach
223
/// metadata to these calls after the analysis indicating the functions the
224
/// calls can possibly target.
225
SmallPtrSet<CallBase *, 32> IndirectCalls;
226
227
/// Compute a new lattice value for the given constant. The constant, after
228
/// stripping any pointer casts, should be a Function. We ignore null
229
/// pointers as an optimization, since calling these values is undefined
230
/// behavior.
231
CVPLatticeVal computeConstant(Constant *C) {
232
if (isa<ConstantPointerNull>(C))
233
return CVPLatticeVal(CVPLatticeVal::FunctionSet);
234
if (auto *F = dyn_cast<Function>(C->stripPointerCasts()))
235
return CVPLatticeVal({F});
236
return getOverdefinedVal();
237
}
238
239
/// Handle return instructions. The function's return state is the merge of
240
/// the returned value state and the function's return state.
241
void visitReturn(ReturnInst &I,
242
DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
243
SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
244
Function *F = I.getParent()->getParent();
245
if (F->getReturnType()->isVoidTy())
246
return;
247
auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register);
248
auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
249
ChangedValues[RetF] =
250
MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
251
}
252
253
/// Handle call sites. The state of a called function's formal arguments is
254
/// the merge of the argument state with the call sites corresponding actual
255
/// argument state. The call site state is the merge of the call site state
256
/// with the returned value state of the called function.
257
void visitCallBase(CallBase &CB,
258
DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
259
SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
260
Function *F = CB.getCalledFunction();
261
auto RegI = CVPLatticeKey(&CB, IPOGrouping::Register);
262
263
// If this is an indirect call, save it so we can quickly revisit it when
264
// attaching metadata.
265
if (!F)
266
IndirectCalls.insert(&CB);
267
268
// If we can't track the function's return values, there's nothing to do.
269
if (!F || !canTrackReturnsInterprocedurally(F)) {
270
// Void return, No need to create and update CVPLattice state as no one
271
// can use it.
272
if (CB.getType()->isVoidTy())
273
return;
274
ChangedValues[RegI] = getOverdefinedVal();
275
return;
276
}
277
278
// Inform the solver that the called function is executable, and perform
279
// the merges for the arguments and return value.
280
SS.MarkBlockExecutable(&F->front());
281
auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
282
for (Argument &A : F->args()) {
283
auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register);
284
auto RegActual =
285
CVPLatticeKey(CB.getArgOperand(A.getArgNo()), IPOGrouping::Register);
286
ChangedValues[RegFormal] =
287
MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual));
288
}
289
290
// Void return, No need to create and update CVPLattice state as no one can
291
// use it.
292
if (CB.getType()->isVoidTy())
293
return;
294
295
ChangedValues[RegI] =
296
MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
297
}
298
299
/// Handle select instructions. The select instruction state is the merge the
300
/// true and false value states.
301
void visitSelect(SelectInst &I,
302
DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
303
SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
304
auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
305
auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register);
306
auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register);
307
ChangedValues[RegI] =
308
MergeValues(SS.getValueState(RegT), SS.getValueState(RegF));
309
}
310
311
/// Handle load instructions. If the pointer operand of the load is a global
312
/// variable, we attempt to track the value. The loaded value state is the
313
/// merge of the loaded value state with the global variable state.
314
void visitLoad(LoadInst &I,
315
DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
316
SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
317
auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
318
if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) {
319
auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
320
ChangedValues[RegI] =
321
MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
322
} else {
323
ChangedValues[RegI] = getOverdefinedVal();
324
}
325
}
326
327
/// Handle store instructions. If the pointer operand of the store is a
328
/// global variable, we attempt to track the value. The global variable state
329
/// is the merge of the stored value state with the global variable state.
330
void visitStore(StoreInst &I,
331
DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
332
SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
333
auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand());
334
if (!GV)
335
return;
336
auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register);
337
auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
338
ChangedValues[MemGV] =
339
MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
340
}
341
342
/// Handle all other instructions. All other instructions are marked
343
/// overdefined.
344
void visitInst(Instruction &I,
345
DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
346
SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
347
// Simply bail if this instruction has no user.
348
if (I.use_empty())
349
return;
350
auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
351
ChangedValues[RegI] = getOverdefinedVal();
352
}
353
};
354
} // namespace
355
356
namespace llvm {
357
/// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver
358
/// must translate between LatticeKeys and LLVM Values when adding Values to
359
/// its work list and inspecting the state of control-flow related values.
360
template <> struct LatticeKeyInfo<CVPLatticeKey> {
361
static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) {
362
return Key.getPointer();
363
}
364
static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) {
365
return CVPLatticeKey(V, IPOGrouping::Register);
366
}
367
};
368
} // namespace llvm
369
370
static bool runCVP(Module &M) {
371
// Our custom lattice function and generic sparse propagation solver.
372
CVPLatticeFunc Lattice;
373
SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice);
374
375
// For each function in the module, if we can't track its arguments, let the
376
// generic solver assume it is executable.
377
for (Function &F : M)
378
if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F))
379
Solver.MarkBlockExecutable(&F.front());
380
381
// Solver our custom lattice. In doing so, we will also build a set of
382
// indirect call sites.
383
Solver.Solve();
384
385
// Attach metadata to the indirect call sites that were collected indicating
386
// the set of functions they can possibly target.
387
bool Changed = false;
388
MDBuilder MDB(M.getContext());
389
for (CallBase *C : Lattice.getIndirectCalls()) {
390
auto RegI = CVPLatticeKey(C->getCalledOperand(), IPOGrouping::Register);
391
CVPLatticeVal LV = Solver.getExistingValueState(RegI);
392
if (!LV.isFunctionSet() || LV.getFunctions().empty())
393
continue;
394
MDNode *Callees = MDB.createCallees(LV.getFunctions());
395
C->setMetadata(LLVMContext::MD_callees, Callees);
396
Changed = true;
397
}
398
399
return Changed;
400
}
401
402
PreservedAnalyses CalledValuePropagationPass::run(Module &M,
403
ModuleAnalysisManager &) {
404
runCVP(M);
405
return PreservedAnalyses::all();
406
}
407
408