Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp
35266 views
1
//===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This pass deletes dead arguments from internal functions. Dead argument
10
// elimination removes arguments which are directly dead, as well as arguments
11
// only passed into function calls as dead arguments of other functions. This
12
// pass also deletes dead return values in a similar way.
13
//
14
// This pass is often useful as a cleanup pass to run after aggressive
15
// interprocedural passes, which add possibly-dead arguments or return values.
16
//
17
//===----------------------------------------------------------------------===//
18
19
#include "llvm/Transforms/IPO/DeadArgumentElimination.h"
20
#include "llvm/ADT/SmallVector.h"
21
#include "llvm/ADT/Statistic.h"
22
#include "llvm/IR/Argument.h"
23
#include "llvm/IR/AttributeMask.h"
24
#include "llvm/IR/Attributes.h"
25
#include "llvm/IR/BasicBlock.h"
26
#include "llvm/IR/Constants.h"
27
#include "llvm/IR/DIBuilder.h"
28
#include "llvm/IR/DerivedTypes.h"
29
#include "llvm/IR/Function.h"
30
#include "llvm/IR/IRBuilder.h"
31
#include "llvm/IR/InstrTypes.h"
32
#include "llvm/IR/Instructions.h"
33
#include "llvm/IR/IntrinsicInst.h"
34
#include "llvm/IR/Intrinsics.h"
35
#include "llvm/IR/Module.h"
36
#include "llvm/IR/NoFolder.h"
37
#include "llvm/IR/PassManager.h"
38
#include "llvm/IR/Type.h"
39
#include "llvm/IR/Use.h"
40
#include "llvm/IR/User.h"
41
#include "llvm/IR/Value.h"
42
#include "llvm/InitializePasses.h"
43
#include "llvm/Pass.h"
44
#include "llvm/Support/Casting.h"
45
#include "llvm/Support/Debug.h"
46
#include "llvm/Support/raw_ostream.h"
47
#include "llvm/Transforms/IPO.h"
48
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
49
#include <cassert>
50
#include <utility>
51
#include <vector>
52
53
using namespace llvm;
54
55
#define DEBUG_TYPE "deadargelim"
56
57
STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
58
STATISTIC(NumRetValsEliminated, "Number of unused return values removed");
59
STATISTIC(NumArgumentsReplacedWithPoison,
60
"Number of unread args replaced with poison");
61
62
namespace {
63
64
/// The dead argument elimination pass.
65
class DAE : public ModulePass {
66
protected:
67
// DAH uses this to specify a different ID.
68
explicit DAE(char &ID) : ModulePass(ID) {}
69
70
public:
71
static char ID; // Pass identification, replacement for typeid
72
73
DAE() : ModulePass(ID) {
74
initializeDAEPass(*PassRegistry::getPassRegistry());
75
}
76
77
bool runOnModule(Module &M) override {
78
if (skipModule(M))
79
return false;
80
DeadArgumentEliminationPass DAEP(shouldHackArguments());
81
ModuleAnalysisManager DummyMAM;
82
PreservedAnalyses PA = DAEP.run(M, DummyMAM);
83
return !PA.areAllPreserved();
84
}
85
86
virtual bool shouldHackArguments() const { return false; }
87
};
88
89
bool isMustTailCalleeAnalyzable(const CallBase &CB) {
90
assert(CB.isMustTailCall());
91
return CB.getCalledFunction() && !CB.getCalledFunction()->isDeclaration();
92
}
93
94
} // end anonymous namespace
95
96
char DAE::ID = 0;
97
98
INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
99
100
namespace {
101
102
/// The DeadArgumentHacking pass, same as dead argument elimination, but deletes
103
/// arguments to functions which are external. This is only for use by bugpoint.
104
struct DAH : public DAE {
105
static char ID;
106
107
DAH() : DAE(ID) {}
108
109
bool shouldHackArguments() const override { return true; }
110
};
111
112
} // end anonymous namespace
113
114
char DAH::ID = 0;
115
116
INITIALIZE_PASS(DAH, "deadarghaX0r",
117
"Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)", false,
118
false)
119
120
/// This pass removes arguments from functions which are not used by the body of
121
/// the function.
122
ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
123
124
ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
125
126
/// If this is an function that takes a ... list, and if llvm.vastart is never
127
/// called, the varargs list is dead for the function.
128
bool DeadArgumentEliminationPass::deleteDeadVarargs(Function &F) {
129
assert(F.getFunctionType()->isVarArg() && "Function isn't varargs!");
130
if (F.isDeclaration() || !F.hasLocalLinkage())
131
return false;
132
133
// Ensure that the function is only directly called.
134
if (F.hasAddressTaken())
135
return false;
136
137
// Don't touch naked functions. The assembly might be using an argument, or
138
// otherwise rely on the frame layout in a way that this analysis will not
139
// see.
140
if (F.hasFnAttribute(Attribute::Naked)) {
141
return false;
142
}
143
144
// Okay, we know we can transform this function if safe. Scan its body
145
// looking for calls marked musttail or calls to llvm.vastart.
146
for (BasicBlock &BB : F) {
147
for (Instruction &I : BB) {
148
CallInst *CI = dyn_cast<CallInst>(&I);
149
if (!CI)
150
continue;
151
if (CI->isMustTailCall())
152
return false;
153
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
154
if (II->getIntrinsicID() == Intrinsic::vastart)
155
return false;
156
}
157
}
158
}
159
160
// If we get here, there are no calls to llvm.vastart in the function body,
161
// remove the "..." and adjust all the calls.
162
163
// Start by computing a new prototype for the function, which is the same as
164
// the old function, but doesn't have isVarArg set.
165
FunctionType *FTy = F.getFunctionType();
166
167
std::vector<Type *> Params(FTy->param_begin(), FTy->param_end());
168
FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false);
169
unsigned NumArgs = Params.size();
170
171
// Create the new function body and insert it into the module...
172
Function *NF = Function::Create(NFTy, F.getLinkage(), F.getAddressSpace());
173
NF->copyAttributesFrom(&F);
174
NF->setComdat(F.getComdat());
175
F.getParent()->getFunctionList().insert(F.getIterator(), NF);
176
NF->takeName(&F);
177
NF->IsNewDbgInfoFormat = F.IsNewDbgInfoFormat;
178
179
// Loop over all the callers of the function, transforming the call sites
180
// to pass in a smaller number of arguments into the new function.
181
//
182
std::vector<Value *> Args;
183
for (User *U : llvm::make_early_inc_range(F.users())) {
184
CallBase *CB = dyn_cast<CallBase>(U);
185
if (!CB)
186
continue;
187
188
// Pass all the same arguments.
189
Args.assign(CB->arg_begin(), CB->arg_begin() + NumArgs);
190
191
// Drop any attributes that were on the vararg arguments.
192
AttributeList PAL = CB->getAttributes();
193
if (!PAL.isEmpty()) {
194
SmallVector<AttributeSet, 8> ArgAttrs;
195
for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo)
196
ArgAttrs.push_back(PAL.getParamAttrs(ArgNo));
197
PAL = AttributeList::get(F.getContext(), PAL.getFnAttrs(),
198
PAL.getRetAttrs(), ArgAttrs);
199
}
200
201
SmallVector<OperandBundleDef, 1> OpBundles;
202
CB->getOperandBundlesAsDefs(OpBundles);
203
204
CallBase *NewCB = nullptr;
205
if (InvokeInst *II = dyn_cast<InvokeInst>(CB)) {
206
NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
207
Args, OpBundles, "", CB->getIterator());
208
} else {
209
NewCB = CallInst::Create(NF, Args, OpBundles, "", CB->getIterator());
210
cast<CallInst>(NewCB)->setTailCallKind(
211
cast<CallInst>(CB)->getTailCallKind());
212
}
213
NewCB->setCallingConv(CB->getCallingConv());
214
NewCB->setAttributes(PAL);
215
NewCB->copyMetadata(*CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
216
217
Args.clear();
218
219
if (!CB->use_empty())
220
CB->replaceAllUsesWith(NewCB);
221
222
NewCB->takeName(CB);
223
224
// Finally, remove the old call from the program, reducing the use-count of
225
// F.
226
CB->eraseFromParent();
227
}
228
229
// Since we have now created the new function, splice the body of the old
230
// function right into the new function, leaving the old rotting hulk of the
231
// function empty.
232
NF->splice(NF->begin(), &F);
233
234
// Loop over the argument list, transferring uses of the old arguments over to
235
// the new arguments, also transferring over the names as well. While we're
236
// at it, remove the dead arguments from the DeadArguments list.
237
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(),
238
I2 = NF->arg_begin();
239
I != E; ++I, ++I2) {
240
// Move the name and users over to the new version.
241
I->replaceAllUsesWith(&*I2);
242
I2->takeName(&*I);
243
}
244
245
// Clone metadata from the old function, including debug info descriptor.
246
SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
247
F.getAllMetadata(MDs);
248
for (auto [KindID, Node] : MDs)
249
NF->addMetadata(KindID, *Node);
250
251
// Fix up any BlockAddresses that refer to the function.
252
F.replaceAllUsesWith(NF);
253
// Delete the bitcast that we just created, so that NF does not
254
// appear to be address-taken.
255
NF->removeDeadConstantUsers();
256
// Finally, nuke the old function.
257
F.eraseFromParent();
258
return true;
259
}
260
261
/// Checks if the given function has any arguments that are unused, and changes
262
/// the caller parameters to be poison instead.
263
bool DeadArgumentEliminationPass::removeDeadArgumentsFromCallers(Function &F) {
264
// We cannot change the arguments if this TU does not define the function or
265
// if the linker may choose a function body from another TU, even if the
266
// nominal linkage indicates that other copies of the function have the same
267
// semantics. In the below example, the dead load from %p may not have been
268
// eliminated from the linker-chosen copy of f, so replacing %p with poison
269
// in callers may introduce undefined behavior.
270
//
271
// define linkonce_odr void @f(i32* %p) {
272
// %v = load i32 %p
273
// ret void
274
// }
275
if (!F.hasExactDefinition())
276
return false;
277
278
// Functions with local linkage should already have been handled, except if
279
// they are fully alive (e.g., called indirectly) and except for the fragile
280
// (variadic) ones. In these cases, we may still be able to improve their
281
// statically known call sites.
282
if ((F.hasLocalLinkage() && !LiveFunctions.count(&F)) &&
283
!F.getFunctionType()->isVarArg())
284
return false;
285
286
// Don't touch naked functions. The assembly might be using an argument, or
287
// otherwise rely on the frame layout in a way that this analysis will not
288
// see.
289
if (F.hasFnAttribute(Attribute::Naked))
290
return false;
291
292
if (F.use_empty())
293
return false;
294
295
SmallVector<unsigned, 8> UnusedArgs;
296
bool Changed = false;
297
298
AttributeMask UBImplyingAttributes =
299
AttributeFuncs::getUBImplyingAttributes();
300
for (Argument &Arg : F.args()) {
301
if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() &&
302
!Arg.hasPassPointeeByValueCopyAttr()) {
303
if (Arg.isUsedByMetadata()) {
304
Arg.replaceAllUsesWith(PoisonValue::get(Arg.getType()));
305
Changed = true;
306
}
307
UnusedArgs.push_back(Arg.getArgNo());
308
F.removeParamAttrs(Arg.getArgNo(), UBImplyingAttributes);
309
}
310
}
311
312
if (UnusedArgs.empty())
313
return false;
314
315
for (Use &U : F.uses()) {
316
CallBase *CB = dyn_cast<CallBase>(U.getUser());
317
if (!CB || !CB->isCallee(&U) ||
318
CB->getFunctionType() != F.getFunctionType())
319
continue;
320
321
// Now go through all unused args and replace them with poison.
322
for (unsigned ArgNo : UnusedArgs) {
323
Value *Arg = CB->getArgOperand(ArgNo);
324
CB->setArgOperand(ArgNo, PoisonValue::get(Arg->getType()));
325
CB->removeParamAttrs(ArgNo, UBImplyingAttributes);
326
327
++NumArgumentsReplacedWithPoison;
328
Changed = true;
329
}
330
}
331
332
return Changed;
333
}
334
335
/// Convenience function that returns the number of return values. It returns 0
336
/// for void functions and 1 for functions not returning a struct. It returns
337
/// the number of struct elements for functions returning a struct.
338
static unsigned numRetVals(const Function *F) {
339
Type *RetTy = F->getReturnType();
340
if (RetTy->isVoidTy())
341
return 0;
342
if (StructType *STy = dyn_cast<StructType>(RetTy))
343
return STy->getNumElements();
344
if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
345
return ATy->getNumElements();
346
return 1;
347
}
348
349
/// Returns the sub-type a function will return at a given Idx. Should
350
/// correspond to the result type of an ExtractValue instruction executed with
351
/// just that one Idx (i.e. only top-level structure is considered).
352
static Type *getRetComponentType(const Function *F, unsigned Idx) {
353
Type *RetTy = F->getReturnType();
354
assert(!RetTy->isVoidTy() && "void type has no subtype");
355
356
if (StructType *STy = dyn_cast<StructType>(RetTy))
357
return STy->getElementType(Idx);
358
if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
359
return ATy->getElementType();
360
return RetTy;
361
}
362
363
/// Checks Use for liveness in LiveValues. If Use is not live, it adds Use to
364
/// the MaybeLiveUses argument. Returns the determined liveness of Use.
365
DeadArgumentEliminationPass::Liveness
366
DeadArgumentEliminationPass::markIfNotLive(RetOrArg Use,
367
UseVector &MaybeLiveUses) {
368
// We're live if our use or its Function is already marked as live.
369
if (isLive(Use))
370
return Live;
371
372
// We're maybe live otherwise, but remember that we must become live if
373
// Use becomes live.
374
MaybeLiveUses.push_back(Use);
375
return MaybeLive;
376
}
377
378
/// Looks at a single use of an argument or return value and determines if it
379
/// should be alive or not. Adds this use to MaybeLiveUses if it causes the
380
/// used value to become MaybeLive.
381
///
382
/// RetValNum is the return value number to use when this use is used in a
383
/// return instruction. This is used in the recursion, you should always leave
384
/// it at 0.
385
DeadArgumentEliminationPass::Liveness
386
DeadArgumentEliminationPass::surveyUse(const Use *U, UseVector &MaybeLiveUses,
387
unsigned RetValNum) {
388
const User *V = U->getUser();
389
if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
390
// The value is returned from a function. It's only live when the
391
// function's return value is live. We use RetValNum here, for the case
392
// that U is really a use of an insertvalue instruction that uses the
393
// original Use.
394
const Function *F = RI->getParent()->getParent();
395
if (RetValNum != -1U) {
396
RetOrArg Use = createRet(F, RetValNum);
397
// We might be live, depending on the liveness of Use.
398
return markIfNotLive(Use, MaybeLiveUses);
399
}
400
401
DeadArgumentEliminationPass::Liveness Result = MaybeLive;
402
for (unsigned Ri = 0; Ri < numRetVals(F); ++Ri) {
403
RetOrArg Use = createRet(F, Ri);
404
// We might be live, depending on the liveness of Use. If any
405
// sub-value is live, then the entire value is considered live. This
406
// is a conservative choice, and better tracking is possible.
407
DeadArgumentEliminationPass::Liveness SubResult =
408
markIfNotLive(Use, MaybeLiveUses);
409
if (Result != Live)
410
Result = SubResult;
411
}
412
return Result;
413
}
414
415
if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
416
if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex() &&
417
IV->hasIndices())
418
// The use we are examining is inserted into an aggregate. Our liveness
419
// depends on all uses of that aggregate, but if it is used as a return
420
// value, only index at which we were inserted counts.
421
RetValNum = *IV->idx_begin();
422
423
// Note that if we are used as the aggregate operand to the insertvalue,
424
// we don't change RetValNum, but do survey all our uses.
425
426
Liveness Result = MaybeLive;
427
for (const Use &UU : IV->uses()) {
428
Result = surveyUse(&UU, MaybeLiveUses, RetValNum);
429
if (Result == Live)
430
break;
431
}
432
return Result;
433
}
434
435
if (const auto *CB = dyn_cast<CallBase>(V)) {
436
const Function *F = CB->getCalledFunction();
437
if (F) {
438
// Used in a direct call.
439
440
// The function argument is live if it is used as a bundle operand.
441
if (CB->isBundleOperand(U))
442
return Live;
443
444
// Find the argument number. We know for sure that this use is an
445
// argument, since if it was the function argument this would be an
446
// indirect call and that we know can't be looking at a value of the
447
// label type (for the invoke instruction).
448
unsigned ArgNo = CB->getArgOperandNo(U);
449
450
if (ArgNo >= F->getFunctionType()->getNumParams())
451
// The value is passed in through a vararg! Must be live.
452
return Live;
453
454
assert(CB->getArgOperand(ArgNo) == CB->getOperand(U->getOperandNo()) &&
455
"Argument is not where we expected it");
456
457
// Value passed to a normal call. It's only live when the corresponding
458
// argument to the called function turns out live.
459
RetOrArg Use = createArg(F, ArgNo);
460
return markIfNotLive(Use, MaybeLiveUses);
461
}
462
}
463
// Used in any other way? Value must be live.
464
return Live;
465
}
466
467
/// Looks at all the uses of the given value
468
/// Returns the Liveness deduced from the uses of this value.
469
///
470
/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
471
/// the result is Live, MaybeLiveUses might be modified but its content should
472
/// be ignored (since it might not be complete).
473
DeadArgumentEliminationPass::Liveness
474
DeadArgumentEliminationPass::surveyUses(const Value *V,
475
UseVector &MaybeLiveUses) {
476
// Assume it's dead (which will only hold if there are no uses at all..).
477
Liveness Result = MaybeLive;
478
// Check each use.
479
for (const Use &U : V->uses()) {
480
Result = surveyUse(&U, MaybeLiveUses);
481
if (Result == Live)
482
break;
483
}
484
return Result;
485
}
486
487
/// Performs the initial survey of the specified function, checking out whether
488
/// it uses any of its incoming arguments or whether any callers use the return
489
/// value. This fills in the LiveValues set and Uses map.
490
///
491
/// We consider arguments of non-internal functions to be intrinsically alive as
492
/// well as arguments to functions which have their "address taken".
493
void DeadArgumentEliminationPass::surveyFunction(const Function &F) {
494
// Functions with inalloca/preallocated parameters are expecting args in a
495
// particular register and memory layout.
496
if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
497
F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
498
markLive(F);
499
return;
500
}
501
502
// Don't touch naked functions. The assembly might be using an argument, or
503
// otherwise rely on the frame layout in a way that this analysis will not
504
// see.
505
if (F.hasFnAttribute(Attribute::Naked)) {
506
markLive(F);
507
return;
508
}
509
510
unsigned RetCount = numRetVals(&F);
511
512
// Assume all return values are dead
513
using RetVals = SmallVector<Liveness, 5>;
514
515
RetVals RetValLiveness(RetCount, MaybeLive);
516
517
using RetUses = SmallVector<UseVector, 5>;
518
519
// These vectors map each return value to the uses that make it MaybeLive, so
520
// we can add those to the Uses map if the return value really turns out to be
521
// MaybeLive. Initialized to a list of RetCount empty lists.
522
RetUses MaybeLiveRetUses(RetCount);
523
524
bool HasMustTailCalls = false;
525
for (const BasicBlock &BB : F) {
526
// If we have any returns of `musttail` results - the signature can't
527
// change
528
if (const auto *TC = BB.getTerminatingMustTailCall()) {
529
HasMustTailCalls = true;
530
// In addition, if the called function is not locally defined (or unknown,
531
// if this is an indirect call), we can't change the callsite and thus
532
// can't change this function's signature either.
533
if (!isMustTailCalleeAnalyzable(*TC)) {
534
markLive(F);
535
return;
536
}
537
}
538
}
539
540
if (HasMustTailCalls) {
541
LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
542
<< " has musttail calls\n");
543
}
544
545
if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) {
546
markLive(F);
547
return;
548
}
549
550
LLVM_DEBUG(
551
dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: "
552
<< F.getName() << "\n");
553
// Keep track of the number of live retvals, so we can skip checks once all
554
// of them turn out to be live.
555
unsigned NumLiveRetVals = 0;
556
557
bool HasMustTailCallers = false;
558
559
// Loop all uses of the function.
560
for (const Use &U : F.uses()) {
561
// If the function is PASSED IN as an argument, its address has been
562
// taken.
563
const auto *CB = dyn_cast<CallBase>(U.getUser());
564
if (!CB || !CB->isCallee(&U) ||
565
CB->getFunctionType() != F.getFunctionType()) {
566
markLive(F);
567
return;
568
}
569
570
// The number of arguments for `musttail` call must match the number of
571
// arguments of the caller
572
if (CB->isMustTailCall())
573
HasMustTailCallers = true;
574
575
// If we end up here, we are looking at a direct call to our function.
576
577
// Now, check how our return value(s) is/are used in this caller. Don't
578
// bother checking return values if all of them are live already.
579
if (NumLiveRetVals == RetCount)
580
continue;
581
582
// Check all uses of the return value.
583
for (const Use &UU : CB->uses()) {
584
if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(UU.getUser())) {
585
// This use uses a part of our return value, survey the uses of
586
// that part and store the results for this index only.
587
unsigned Idx = *Ext->idx_begin();
588
if (RetValLiveness[Idx] != Live) {
589
RetValLiveness[Idx] = surveyUses(Ext, MaybeLiveRetUses[Idx]);
590
if (RetValLiveness[Idx] == Live)
591
NumLiveRetVals++;
592
}
593
} else {
594
// Used by something else than extractvalue. Survey, but assume that the
595
// result applies to all sub-values.
596
UseVector MaybeLiveAggregateUses;
597
if (surveyUse(&UU, MaybeLiveAggregateUses) == Live) {
598
NumLiveRetVals = RetCount;
599
RetValLiveness.assign(RetCount, Live);
600
break;
601
}
602
603
for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
604
if (RetValLiveness[Ri] != Live)
605
MaybeLiveRetUses[Ri].append(MaybeLiveAggregateUses.begin(),
606
MaybeLiveAggregateUses.end());
607
}
608
}
609
}
610
}
611
612
if (HasMustTailCallers) {
613
LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
614
<< " has musttail callers\n");
615
}
616
617
// Now we've inspected all callers, record the liveness of our return values.
618
for (unsigned Ri = 0; Ri != RetCount; ++Ri)
619
markValue(createRet(&F, Ri), RetValLiveness[Ri], MaybeLiveRetUses[Ri]);
620
621
LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: "
622
<< F.getName() << "\n");
623
624
// Now, check all of our arguments.
625
unsigned ArgI = 0;
626
UseVector MaybeLiveArgUses;
627
for (Function::const_arg_iterator AI = F.arg_begin(), E = F.arg_end();
628
AI != E; ++AI, ++ArgI) {
629
Liveness Result;
630
if (F.getFunctionType()->isVarArg() || HasMustTailCallers ||
631
HasMustTailCalls) {
632
// Variadic functions will already have a va_arg function expanded inside
633
// them, making them potentially very sensitive to ABI changes resulting
634
// from removing arguments entirely, so don't. For example AArch64 handles
635
// register and stack HFAs very differently, and this is reflected in the
636
// IR which has already been generated.
637
//
638
// `musttail` calls to this function restrict argument removal attempts.
639
// The signature of the caller must match the signature of the function.
640
//
641
// `musttail` calls in this function prevents us from changing its
642
// signature
643
Result = Live;
644
} else {
645
// See what the effect of this use is (recording any uses that cause
646
// MaybeLive in MaybeLiveArgUses).
647
Result = surveyUses(&*AI, MaybeLiveArgUses);
648
}
649
650
// Mark the result.
651
markValue(createArg(&F, ArgI), Result, MaybeLiveArgUses);
652
// Clear the vector again for the next iteration.
653
MaybeLiveArgUses.clear();
654
}
655
}
656
657
/// Marks the liveness of RA depending on L. If L is MaybeLive, it also takes
658
/// all uses in MaybeLiveUses and records them in Uses, such that RA will be
659
/// marked live if any use in MaybeLiveUses gets marked live later on.
660
void DeadArgumentEliminationPass::markValue(const RetOrArg &RA, Liveness L,
661
const UseVector &MaybeLiveUses) {
662
switch (L) {
663
case Live:
664
markLive(RA);
665
break;
666
case MaybeLive:
667
assert(!isLive(RA) && "Use is already live!");
668
for (const auto &MaybeLiveUse : MaybeLiveUses) {
669
if (isLive(MaybeLiveUse)) {
670
// A use is live, so this value is live.
671
markLive(RA);
672
break;
673
}
674
// Note any uses of this value, so this value can be
675
// marked live whenever one of the uses becomes live.
676
Uses.emplace(MaybeLiveUse, RA);
677
}
678
break;
679
}
680
}
681
682
/// Mark the given Function as alive, meaning that it cannot be changed in any
683
/// way. Additionally, mark any values that are used as this function's
684
/// parameters or by its return values (according to Uses) live as well.
685
void DeadArgumentEliminationPass::markLive(const Function &F) {
686
LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: "
687
<< F.getName() << "\n");
688
// Mark the function as live.
689
LiveFunctions.insert(&F);
690
// Mark all arguments as live.
691
for (unsigned ArgI = 0, E = F.arg_size(); ArgI != E; ++ArgI)
692
propagateLiveness(createArg(&F, ArgI));
693
// Mark all return values as live.
694
for (unsigned Ri = 0, E = numRetVals(&F); Ri != E; ++Ri)
695
propagateLiveness(createRet(&F, Ri));
696
}
697
698
/// Mark the given return value or argument as live. Additionally, mark any
699
/// values that are used by this value (according to Uses) live as well.
700
void DeadArgumentEliminationPass::markLive(const RetOrArg &RA) {
701
if (isLive(RA))
702
return; // Already marked Live.
703
704
LiveValues.insert(RA);
705
706
LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking "
707
<< RA.getDescription() << " live\n");
708
propagateLiveness(RA);
709
}
710
711
bool DeadArgumentEliminationPass::isLive(const RetOrArg &RA) {
712
return LiveFunctions.count(RA.F) || LiveValues.count(RA);
713
}
714
715
/// Given that RA is a live value, propagate it's liveness to any other values
716
/// it uses (according to Uses).
717
void DeadArgumentEliminationPass::propagateLiveness(const RetOrArg &RA) {
718
// We don't use upper_bound (or equal_range) here, because our recursive call
719
// to ourselves is likely to cause the upper_bound (which is the first value
720
// not belonging to RA) to become erased and the iterator invalidated.
721
UseMap::iterator Begin = Uses.lower_bound(RA);
722
UseMap::iterator E = Uses.end();
723
UseMap::iterator I;
724
for (I = Begin; I != E && I->first == RA; ++I)
725
markLive(I->second);
726
727
// Erase RA from the Uses map (from the lower bound to wherever we ended up
728
// after the loop).
729
Uses.erase(Begin, I);
730
}
731
732
/// Remove any arguments and return values from F that are not in LiveValues.
733
/// Transform the function and all the callees of the function to not have these
734
/// arguments and return values.
735
bool DeadArgumentEliminationPass::removeDeadStuffFromFunction(Function *F) {
736
// Don't modify fully live functions
737
if (LiveFunctions.count(F))
738
return false;
739
740
// Start by computing a new prototype for the function, which is the same as
741
// the old function, but has fewer arguments and a different return type.
742
FunctionType *FTy = F->getFunctionType();
743
std::vector<Type *> Params;
744
745
// Keep track of if we have a live 'returned' argument
746
bool HasLiveReturnedArg = false;
747
748
// Set up to build a new list of parameter attributes.
749
SmallVector<AttributeSet, 8> ArgAttrVec;
750
const AttributeList &PAL = F->getAttributes();
751
752
// Remember which arguments are still alive.
753
SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
754
// Construct the new parameter list from non-dead arguments. Also construct
755
// a new set of parameter attributes to correspond. Skip the first parameter
756
// attribute, since that belongs to the return value.
757
unsigned ArgI = 0;
758
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
759
++I, ++ArgI) {
760
RetOrArg Arg = createArg(F, ArgI);
761
if (LiveValues.erase(Arg)) {
762
Params.push_back(I->getType());
763
ArgAlive[ArgI] = true;
764
ArgAttrVec.push_back(PAL.getParamAttrs(ArgI));
765
HasLiveReturnedArg |= PAL.hasParamAttr(ArgI, Attribute::Returned);
766
} else {
767
++NumArgumentsEliminated;
768
LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument "
769
<< ArgI << " (" << I->getName() << ") from "
770
<< F->getName() << "\n");
771
}
772
}
773
774
// Find out the new return value.
775
Type *RetTy = FTy->getReturnType();
776
Type *NRetTy = nullptr;
777
unsigned RetCount = numRetVals(F);
778
779
// -1 means unused, other numbers are the new index
780
SmallVector<int, 5> NewRetIdxs(RetCount, -1);
781
std::vector<Type *> RetTypes;
782
783
// If there is a function with a live 'returned' argument but a dead return
784
// value, then there are two possible actions:
785
// 1) Eliminate the return value and take off the 'returned' attribute on the
786
// argument.
787
// 2) Retain the 'returned' attribute and treat the return value (but not the
788
// entire function) as live so that it is not eliminated.
789
//
790
// It's not clear in the general case which option is more profitable because,
791
// even in the absence of explicit uses of the return value, code generation
792
// is free to use the 'returned' attribute to do things like eliding
793
// save/restores of registers across calls. Whether this happens is target and
794
// ABI-specific as well as depending on the amount of register pressure, so
795
// there's no good way for an IR-level pass to figure this out.
796
//
797
// Fortunately, the only places where 'returned' is currently generated by
798
// the FE are places where 'returned' is basically free and almost always a
799
// performance win, so the second option can just be used always for now.
800
//
801
// This should be revisited if 'returned' is ever applied more liberally.
802
if (RetTy->isVoidTy() || HasLiveReturnedArg) {
803
NRetTy = RetTy;
804
} else {
805
// Look at each of the original return values individually.
806
for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
807
RetOrArg Ret = createRet(F, Ri);
808
if (LiveValues.erase(Ret)) {
809
RetTypes.push_back(getRetComponentType(F, Ri));
810
NewRetIdxs[Ri] = RetTypes.size() - 1;
811
} else {
812
++NumRetValsEliminated;
813
LLVM_DEBUG(
814
dbgs() << "DeadArgumentEliminationPass - Removing return value "
815
<< Ri << " from " << F->getName() << "\n");
816
}
817
}
818
if (RetTypes.size() > 1) {
819
// More than one return type? Reduce it down to size.
820
if (StructType *STy = dyn_cast<StructType>(RetTy)) {
821
// Make the new struct packed if we used to return a packed struct
822
// already.
823
NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
824
} else {
825
assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
826
NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
827
}
828
} else if (RetTypes.size() == 1)
829
// One return type? Just a simple value then, but only if we didn't use to
830
// return a struct with that simple value before.
831
NRetTy = RetTypes.front();
832
else if (RetTypes.empty())
833
// No return types? Make it void, but only if we didn't use to return {}.
834
NRetTy = Type::getVoidTy(F->getContext());
835
}
836
837
assert(NRetTy && "No new return type found?");
838
839
// The existing function return attributes.
840
AttrBuilder RAttrs(F->getContext(), PAL.getRetAttrs());
841
842
// Remove any incompatible attributes, but only if we removed all return
843
// values. Otherwise, ensure that we don't have any conflicting attributes
844
// here. Currently, this should not be possible, but special handling might be
845
// required when new return value attributes are added.
846
if (NRetTy->isVoidTy())
847
RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
848
else
849
assert(!RAttrs.overlaps(AttributeFuncs::typeIncompatible(NRetTy)) &&
850
"Return attributes no longer compatible?");
851
852
AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
853
854
// Strip allocsize attributes. They might refer to the deleted arguments.
855
AttributeSet FnAttrs =
856
PAL.getFnAttrs().removeAttribute(F->getContext(), Attribute::AllocSize);
857
858
// Reconstruct the AttributesList based on the vector we constructed.
859
assert(ArgAttrVec.size() == Params.size());
860
AttributeList NewPAL =
861
AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
862
863
// Create the new function type based on the recomputed parameters.
864
FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
865
866
// No change?
867
if (NFTy == FTy)
868
return false;
869
870
// Create the new function body and insert it into the module...
871
Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace());
872
NF->copyAttributesFrom(F);
873
NF->setComdat(F->getComdat());
874
NF->setAttributes(NewPAL);
875
// Insert the new function before the old function, so we won't be processing
876
// it again.
877
F->getParent()->getFunctionList().insert(F->getIterator(), NF);
878
NF->takeName(F);
879
NF->IsNewDbgInfoFormat = F->IsNewDbgInfoFormat;
880
881
// Loop over all the callers of the function, transforming the call sites to
882
// pass in a smaller number of arguments into the new function.
883
std::vector<Value *> Args;
884
while (!F->use_empty()) {
885
CallBase &CB = cast<CallBase>(*F->user_back());
886
887
ArgAttrVec.clear();
888
const AttributeList &CallPAL = CB.getAttributes();
889
890
// Adjust the call return attributes in case the function was changed to
891
// return void.
892
AttrBuilder RAttrs(F->getContext(), CallPAL.getRetAttrs());
893
RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
894
AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
895
896
// Declare these outside of the loops, so we can reuse them for the second
897
// loop, which loops the varargs.
898
auto *I = CB.arg_begin();
899
unsigned Pi = 0;
900
// Loop over those operands, corresponding to the normal arguments to the
901
// original function, and add those that are still alive.
902
for (unsigned E = FTy->getNumParams(); Pi != E; ++I, ++Pi)
903
if (ArgAlive[Pi]) {
904
Args.push_back(*I);
905
// Get original parameter attributes, but skip return attributes.
906
AttributeSet Attrs = CallPAL.getParamAttrs(Pi);
907
if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) {
908
// If the return type has changed, then get rid of 'returned' on the
909
// call site. The alternative is to make all 'returned' attributes on
910
// call sites keep the return value alive just like 'returned'
911
// attributes on function declaration, but it's less clearly a win and
912
// this is not an expected case anyway
913
ArgAttrVec.push_back(AttributeSet::get(
914
F->getContext(), AttrBuilder(F->getContext(), Attrs)
915
.removeAttribute(Attribute::Returned)));
916
} else {
917
// Otherwise, use the original attributes.
918
ArgAttrVec.push_back(Attrs);
919
}
920
}
921
922
// Push any varargs arguments on the list. Don't forget their attributes.
923
for (auto *E = CB.arg_end(); I != E; ++I, ++Pi) {
924
Args.push_back(*I);
925
ArgAttrVec.push_back(CallPAL.getParamAttrs(Pi));
926
}
927
928
// Reconstruct the AttributesList based on the vector we constructed.
929
assert(ArgAttrVec.size() == Args.size());
930
931
// Again, be sure to remove any allocsize attributes, since their indices
932
// may now be incorrect.
933
AttributeSet FnAttrs = CallPAL.getFnAttrs().removeAttribute(
934
F->getContext(), Attribute::AllocSize);
935
936
AttributeList NewCallPAL =
937
AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
938
939
SmallVector<OperandBundleDef, 1> OpBundles;
940
CB.getOperandBundlesAsDefs(OpBundles);
941
942
CallBase *NewCB = nullptr;
943
if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
944
NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
945
Args, OpBundles, "", CB.getParent());
946
} else {
947
NewCB = CallInst::Create(NFTy, NF, Args, OpBundles, "", CB.getIterator());
948
cast<CallInst>(NewCB)->setTailCallKind(
949
cast<CallInst>(&CB)->getTailCallKind());
950
}
951
NewCB->setCallingConv(CB.getCallingConv());
952
NewCB->setAttributes(NewCallPAL);
953
NewCB->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
954
Args.clear();
955
ArgAttrVec.clear();
956
957
if (!CB.use_empty() || CB.isUsedByMetadata()) {
958
if (NewCB->getType() == CB.getType()) {
959
// Return type not changed? Just replace users then.
960
CB.replaceAllUsesWith(NewCB);
961
NewCB->takeName(&CB);
962
} else if (NewCB->getType()->isVoidTy()) {
963
// If the return value is dead, replace any uses of it with poison
964
// (any non-debug value uses will get removed later on).
965
if (!CB.getType()->isX86_MMXTy())
966
CB.replaceAllUsesWith(PoisonValue::get(CB.getType()));
967
} else {
968
assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
969
"Return type changed, but not into a void. The old return type"
970
" must have been a struct or an array!");
971
Instruction *InsertPt = &CB;
972
if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
973
BasicBlock *NewEdge =
974
SplitEdge(NewCB->getParent(), II->getNormalDest());
975
InsertPt = &*NewEdge->getFirstInsertionPt();
976
}
977
978
// We used to return a struct or array. Instead of doing smart stuff
979
// with all the uses, we will just rebuild it using extract/insertvalue
980
// chaining and let instcombine clean that up.
981
//
982
// Start out building up our return value from poison
983
Value *RetVal = PoisonValue::get(RetTy);
984
for (unsigned Ri = 0; Ri != RetCount; ++Ri)
985
if (NewRetIdxs[Ri] != -1) {
986
Value *V;
987
IRBuilder<NoFolder> IRB(InsertPt);
988
if (RetTypes.size() > 1)
989
// We are still returning a struct, so extract the value from our
990
// return value
991
V = IRB.CreateExtractValue(NewCB, NewRetIdxs[Ri], "newret");
992
else
993
// We are now returning a single element, so just insert that
994
V = NewCB;
995
// Insert the value at the old position
996
RetVal = IRB.CreateInsertValue(RetVal, V, Ri, "oldret");
997
}
998
// Now, replace all uses of the old call instruction with the return
999
// struct we built
1000
CB.replaceAllUsesWith(RetVal);
1001
NewCB->takeName(&CB);
1002
}
1003
}
1004
1005
// Finally, remove the old call from the program, reducing the use-count of
1006
// F.
1007
CB.eraseFromParent();
1008
}
1009
1010
// Since we have now created the new function, splice the body of the old
1011
// function right into the new function, leaving the old rotting hulk of the
1012
// function empty.
1013
NF->splice(NF->begin(), F);
1014
1015
// Loop over the argument list, transferring uses of the old arguments over to
1016
// the new arguments, also transferring over the names as well.
1017
ArgI = 0;
1018
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
1019
I2 = NF->arg_begin();
1020
I != E; ++I, ++ArgI)
1021
if (ArgAlive[ArgI]) {
1022
// If this is a live argument, move the name and users over to the new
1023
// version.
1024
I->replaceAllUsesWith(&*I2);
1025
I2->takeName(&*I);
1026
++I2;
1027
} else {
1028
// If this argument is dead, replace any uses of it with poison
1029
// (any non-debug value uses will get removed later on).
1030
if (!I->getType()->isX86_MMXTy())
1031
I->replaceAllUsesWith(PoisonValue::get(I->getType()));
1032
}
1033
1034
// If we change the return value of the function we must rewrite any return
1035
// instructions. Check this now.
1036
if (F->getReturnType() != NF->getReturnType())
1037
for (BasicBlock &BB : *NF)
1038
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
1039
IRBuilder<NoFolder> IRB(RI);
1040
Value *RetVal = nullptr;
1041
1042
if (!NFTy->getReturnType()->isVoidTy()) {
1043
assert(RetTy->isStructTy() || RetTy->isArrayTy());
1044
// The original return value was a struct or array, insert
1045
// extractvalue/insertvalue chains to extract only the values we need
1046
// to return and insert them into our new result.
1047
// This does generate messy code, but we'll let it to instcombine to
1048
// clean that up.
1049
Value *OldRet = RI->getOperand(0);
1050
// Start out building up our return value from poison
1051
RetVal = PoisonValue::get(NRetTy);
1052
for (unsigned RetI = 0; RetI != RetCount; ++RetI)
1053
if (NewRetIdxs[RetI] != -1) {
1054
Value *EV = IRB.CreateExtractValue(OldRet, RetI, "oldret");
1055
1056
if (RetTypes.size() > 1) {
1057
// We're still returning a struct, so reinsert the value into
1058
// our new return value at the new index
1059
1060
RetVal = IRB.CreateInsertValue(RetVal, EV, NewRetIdxs[RetI],
1061
"newret");
1062
} else {
1063
// We are now only returning a simple value, so just return the
1064
// extracted value.
1065
RetVal = EV;
1066
}
1067
}
1068
}
1069
// Replace the return instruction with one returning the new return
1070
// value (possibly 0 if we became void).
1071
auto *NewRet =
1072
ReturnInst::Create(F->getContext(), RetVal, RI->getIterator());
1073
NewRet->setDebugLoc(RI->getDebugLoc());
1074
RI->eraseFromParent();
1075
}
1076
1077
// Clone metadata from the old function, including debug info descriptor.
1078
SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1079
F->getAllMetadata(MDs);
1080
for (auto [KindID, Node] : MDs)
1081
NF->addMetadata(KindID, *Node);
1082
1083
// If either the return value(s) or argument(s) are removed, then probably the
1084
// function does not follow standard calling conventions anymore. Hence, add
1085
// DW_CC_nocall to DISubroutineType to inform debugger that it may not be safe
1086
// to call this function or try to interpret the return value.
1087
if (NFTy != FTy && NF->getSubprogram()) {
1088
DISubprogram *SP = NF->getSubprogram();
1089
auto Temp = SP->getType()->cloneWithCC(llvm::dwarf::DW_CC_nocall);
1090
SP->replaceType(MDNode::replaceWithPermanent(std::move(Temp)));
1091
}
1092
1093
// Now that the old function is dead, delete it.
1094
F->eraseFromParent();
1095
1096
return true;
1097
}
1098
1099
void DeadArgumentEliminationPass::propagateVirtMustcallLiveness(
1100
const Module &M) {
1101
// If a function was marked "live", and it has musttail callers, they in turn
1102
// can't change either.
1103
LiveFuncSet NewLiveFuncs(LiveFunctions);
1104
while (!NewLiveFuncs.empty()) {
1105
LiveFuncSet Temp;
1106
for (const auto *F : NewLiveFuncs)
1107
for (const auto *U : F->users())
1108
if (const auto *CB = dyn_cast<CallBase>(U))
1109
if (CB->isMustTailCall())
1110
if (!LiveFunctions.count(CB->getParent()->getParent()))
1111
Temp.insert(CB->getParent()->getParent());
1112
NewLiveFuncs.clear();
1113
NewLiveFuncs.insert(Temp.begin(), Temp.end());
1114
for (const auto *F : Temp)
1115
markLive(*F);
1116
}
1117
}
1118
1119
PreservedAnalyses DeadArgumentEliminationPass::run(Module &M,
1120
ModuleAnalysisManager &) {
1121
bool Changed = false;
1122
1123
// First pass: Do a simple check to see if any functions can have their "..."
1124
// removed. We can do this if they never call va_start. This loop cannot be
1125
// fused with the next loop, because deleting a function invalidates
1126
// information computed while surveying other functions.
1127
LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n");
1128
for (Function &F : llvm::make_early_inc_range(M))
1129
if (F.getFunctionType()->isVarArg())
1130
Changed |= deleteDeadVarargs(F);
1131
1132
// Second phase: Loop through the module, determining which arguments are
1133
// live. We assume all arguments are dead unless proven otherwise (allowing us
1134
// to determine that dead arguments passed into recursive functions are dead).
1135
LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n");
1136
for (auto &F : M)
1137
surveyFunction(F);
1138
1139
propagateVirtMustcallLiveness(M);
1140
1141
// Now, remove all dead arguments and return values from each function in
1142
// turn. We use make_early_inc_range here because functions will probably get
1143
// removed (i.e. replaced by new ones).
1144
for (Function &F : llvm::make_early_inc_range(M))
1145
Changed |= removeDeadStuffFromFunction(&F);
1146
1147
// Finally, look for any unused parameters in functions with non-local
1148
// linkage and replace the passed in parameters with poison.
1149
for (auto &F : M)
1150
Changed |= removeDeadArgumentsFromCallers(F);
1151
1152
if (!Changed)
1153
return PreservedAnalyses::all();
1154
return PreservedAnalyses::none();
1155
}
1156
1157