Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/IPO/HotColdSplitting.cpp
35294 views
1
//===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
///
9
/// \file
10
/// The goal of hot/cold splitting is to improve the memory locality of code.
11
/// The splitting pass does this by identifying cold blocks and moving them into
12
/// separate functions.
13
///
14
/// When the splitting pass finds a cold block (referred to as "the sink"), it
15
/// grows a maximal cold region around that block. The maximal region contains
16
/// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as
17
/// cold as the sink. Once a region is found, it's split out of the original
18
/// function provided it's profitable to do so.
19
///
20
/// [*] In practice, there is some added complexity because some blocks are not
21
/// safe to extract.
22
///
23
/// TODO: Use the PM to get domtrees, and preserve BFI/BPI.
24
/// TODO: Reorder outlined functions.
25
///
26
//===----------------------------------------------------------------------===//
27
28
#include "llvm/Transforms/IPO/HotColdSplitting.h"
29
#include "llvm/ADT/PostOrderIterator.h"
30
#include "llvm/ADT/SmallVector.h"
31
#include "llvm/ADT/Statistic.h"
32
#include "llvm/Analysis/AssumptionCache.h"
33
#include "llvm/Analysis/BlockFrequencyInfo.h"
34
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
35
#include "llvm/Analysis/PostDominators.h"
36
#include "llvm/Analysis/ProfileSummaryInfo.h"
37
#include "llvm/Analysis/TargetTransformInfo.h"
38
#include "llvm/IR/BasicBlock.h"
39
#include "llvm/IR/CFG.h"
40
#include "llvm/IR/DiagnosticInfo.h"
41
#include "llvm/IR/Dominators.h"
42
#include "llvm/IR/EHPersonalities.h"
43
#include "llvm/IR/Function.h"
44
#include "llvm/IR/Instruction.h"
45
#include "llvm/IR/Instructions.h"
46
#include "llvm/IR/Module.h"
47
#include "llvm/IR/PassManager.h"
48
#include "llvm/IR/ProfDataUtils.h"
49
#include "llvm/IR/User.h"
50
#include "llvm/IR/Value.h"
51
#include "llvm/Support/CommandLine.h"
52
#include "llvm/Support/Debug.h"
53
#include "llvm/Support/raw_ostream.h"
54
#include "llvm/Transforms/IPO.h"
55
#include "llvm/Transforms/Utils/CodeExtractor.h"
56
#include <algorithm>
57
#include <cassert>
58
#include <limits>
59
#include <string>
60
61
#define DEBUG_TYPE "hotcoldsplit"
62
63
STATISTIC(NumColdRegionsFound, "Number of cold regions found.");
64
STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined.");
65
66
using namespace llvm;
67
68
static cl::opt<bool> EnableStaticAnalysis("hot-cold-static-analysis",
69
cl::init(true), cl::Hidden);
70
71
static cl::opt<int>
72
SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden,
73
cl::desc("Base penalty for splitting cold code (as a "
74
"multiple of TCC_Basic)"));
75
76
static cl::opt<bool> EnableColdSection(
77
"enable-cold-section", cl::init(false), cl::Hidden,
78
cl::desc("Enable placement of extracted cold functions"
79
" into a separate section after hot-cold splitting."));
80
81
static cl::opt<std::string>
82
ColdSectionName("hotcoldsplit-cold-section-name", cl::init("__llvm_cold"),
83
cl::Hidden,
84
cl::desc("Name for the section containing cold functions "
85
"extracted by hot-cold splitting."));
86
87
static cl::opt<int> MaxParametersForSplit(
88
"hotcoldsplit-max-params", cl::init(4), cl::Hidden,
89
cl::desc("Maximum number of parameters for a split function"));
90
91
static cl::opt<int> ColdBranchProbDenom(
92
"hotcoldsplit-cold-probability-denom", cl::init(100), cl::Hidden,
93
cl::desc("Divisor of cold branch probability."
94
"BranchProbability = 1/ColdBranchProbDenom"));
95
96
namespace {
97
// Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify
98
// this function unless you modify the MBB version as well.
99
//
100
/// A no successor, non-return block probably ends in unreachable and is cold.
101
/// Also consider a block that ends in an indirect branch to be a return block,
102
/// since many targets use plain indirect branches to return.
103
bool blockEndsInUnreachable(const BasicBlock &BB) {
104
if (!succ_empty(&BB))
105
return false;
106
if (BB.empty())
107
return true;
108
const Instruction *I = BB.getTerminator();
109
return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I));
110
}
111
112
void analyzeProfMetadata(BasicBlock *BB,
113
BranchProbability ColdProbThresh,
114
SmallPtrSetImpl<BasicBlock *> &AnnotatedColdBlocks) {
115
// TODO: Handle branches with > 2 successors.
116
BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
117
if (!CondBr)
118
return;
119
120
uint64_t TrueWt, FalseWt;
121
if (!extractBranchWeights(*CondBr, TrueWt, FalseWt))
122
return;
123
124
auto SumWt = TrueWt + FalseWt;
125
if (SumWt == 0)
126
return;
127
128
auto TrueProb = BranchProbability::getBranchProbability(TrueWt, SumWt);
129
auto FalseProb = BranchProbability::getBranchProbability(FalseWt, SumWt);
130
131
if (TrueProb <= ColdProbThresh)
132
AnnotatedColdBlocks.insert(CondBr->getSuccessor(0));
133
134
if (FalseProb <= ColdProbThresh)
135
AnnotatedColdBlocks.insert(CondBr->getSuccessor(1));
136
}
137
138
bool unlikelyExecuted(BasicBlock &BB) {
139
// Exception handling blocks are unlikely executed.
140
if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator()))
141
return true;
142
143
// The block is cold if it calls/invokes a cold function. However, do not
144
// mark sanitizer traps as cold.
145
for (Instruction &I : BB)
146
if (auto *CB = dyn_cast<CallBase>(&I))
147
if (CB->hasFnAttr(Attribute::Cold) &&
148
!CB->getMetadata(LLVMContext::MD_nosanitize))
149
return true;
150
151
// The block is cold if it has an unreachable terminator, unless it's
152
// preceded by a call to a (possibly warm) noreturn call (e.g. longjmp).
153
if (blockEndsInUnreachable(BB)) {
154
if (auto *CI =
155
dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode()))
156
if (CI->hasFnAttr(Attribute::NoReturn))
157
return false;
158
return true;
159
}
160
161
return false;
162
}
163
164
/// Check whether it's safe to outline \p BB.
165
static bool mayExtractBlock(const BasicBlock &BB) {
166
// EH pads are unsafe to outline because doing so breaks EH type tables. It
167
// follows that invoke instructions cannot be extracted, because CodeExtractor
168
// requires unwind destinations to be within the extraction region.
169
//
170
// Resumes that are not reachable from a cleanup landing pad are considered to
171
// be unreachable. It’s not safe to split them out either.
172
173
if (BB.hasAddressTaken() || BB.isEHPad())
174
return false;
175
auto Term = BB.getTerminator();
176
if (isa<InvokeInst>(Term) || isa<ResumeInst>(Term))
177
return false;
178
179
// Do not outline basic blocks that have token type instructions. e.g.,
180
// exception:
181
// %0 = cleanuppad within none []
182
// call void @"?terminate@@YAXXZ"() [ "funclet"(token %0) ]
183
// br label %continue-exception
184
if (llvm::any_of(
185
BB, [](const Instruction &I) { return I.getType()->isTokenTy(); })) {
186
return false;
187
}
188
189
return true;
190
}
191
192
/// Mark \p F cold. Based on this assumption, also optimize it for minimum size.
193
/// If \p UpdateEntryCount is true (set when this is a new split function and
194
/// module has profile data), set entry count to 0 to ensure treated as cold.
195
/// Return true if the function is changed.
196
static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) {
197
assert(!F.hasOptNone() && "Can't mark this cold");
198
bool Changed = false;
199
if (!F.hasFnAttribute(Attribute::Cold)) {
200
F.addFnAttr(Attribute::Cold);
201
Changed = true;
202
}
203
if (!F.hasFnAttribute(Attribute::MinSize)) {
204
F.addFnAttr(Attribute::MinSize);
205
Changed = true;
206
}
207
if (UpdateEntryCount) {
208
// Set the entry count to 0 to ensure it is placed in the unlikely text
209
// section when function sections are enabled.
210
F.setEntryCount(0);
211
Changed = true;
212
}
213
214
return Changed;
215
}
216
217
} // end anonymous namespace
218
219
/// Check whether \p F is inherently cold.
220
bool HotColdSplitting::isFunctionCold(const Function &F) const {
221
if (F.hasFnAttribute(Attribute::Cold))
222
return true;
223
224
if (F.getCallingConv() == CallingConv::Cold)
225
return true;
226
227
if (PSI->isFunctionEntryCold(&F))
228
return true;
229
230
return false;
231
}
232
233
bool HotColdSplitting::isBasicBlockCold(
234
BasicBlock *BB, BranchProbability ColdProbThresh,
235
SmallPtrSetImpl<BasicBlock *> &AnnotatedColdBlocks,
236
BlockFrequencyInfo *BFI) const {
237
if (BFI) {
238
if (PSI->isColdBlock(BB, BFI))
239
return true;
240
} else {
241
// Find cold blocks of successors of BB during a reverse postorder traversal.
242
analyzeProfMetadata(BB, ColdProbThresh, AnnotatedColdBlocks);
243
244
// A statically cold BB would be known before it is visited
245
// because the prof-data of incoming edges are 'analyzed' as part of RPOT.
246
if (AnnotatedColdBlocks.count(BB))
247
return true;
248
}
249
250
if (EnableStaticAnalysis && unlikelyExecuted(*BB))
251
return true;
252
253
return false;
254
}
255
256
// Returns false if the function should not be considered for hot-cold split
257
// optimization.
258
bool HotColdSplitting::shouldOutlineFrom(const Function &F) const {
259
if (F.hasFnAttribute(Attribute::AlwaysInline))
260
return false;
261
262
if (F.hasFnAttribute(Attribute::NoInline))
263
return false;
264
265
// A function marked `noreturn` may contain unreachable terminators: these
266
// should not be considered cold, as the function may be a trampoline.
267
if (F.hasFnAttribute(Attribute::NoReturn))
268
return false;
269
270
if (F.hasFnAttribute(Attribute::SanitizeAddress) ||
271
F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
272
F.hasFnAttribute(Attribute::SanitizeThread) ||
273
F.hasFnAttribute(Attribute::SanitizeMemory))
274
return false;
275
276
// Do not outline scoped EH personality functions.
277
if (F.hasPersonalityFn())
278
if (isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
279
return false;
280
281
return true;
282
}
283
284
/// Get the benefit score of outlining \p Region.
285
static InstructionCost getOutliningBenefit(ArrayRef<BasicBlock *> Region,
286
TargetTransformInfo &TTI) {
287
// Sum up the code size costs of non-terminator instructions. Tight coupling
288
// with \ref getOutliningPenalty is needed to model the costs of terminators.
289
InstructionCost Benefit = 0;
290
for (BasicBlock *BB : Region)
291
for (Instruction &I : BB->instructionsWithoutDebug())
292
if (&I != BB->getTerminator())
293
Benefit +=
294
TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
295
296
return Benefit;
297
}
298
299
/// Get the penalty score for outlining \p Region.
300
static int getOutliningPenalty(ArrayRef<BasicBlock *> Region,
301
unsigned NumInputs, unsigned NumOutputs) {
302
int Penalty = SplittingThreshold;
303
LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n");
304
305
// If the splitting threshold is set at or below zero, skip the usual
306
// profitability check.
307
if (SplittingThreshold <= 0)
308
return Penalty;
309
310
// Find the number of distinct exit blocks for the region. Use a conservative
311
// check to determine whether control returns from the region.
312
bool NoBlocksReturn = true;
313
SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion;
314
for (BasicBlock *BB : Region) {
315
// If a block has no successors, only assume it does not return if it's
316
// unreachable.
317
if (succ_empty(BB)) {
318
NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator());
319
continue;
320
}
321
322
for (BasicBlock *SuccBB : successors(BB)) {
323
if (!is_contained(Region, SuccBB)) {
324
NoBlocksReturn = false;
325
SuccsOutsideRegion.insert(SuccBB);
326
}
327
}
328
}
329
330
// Count the number of phis in exit blocks with >= 2 incoming values from the
331
// outlining region. These phis are split (\ref severSplitPHINodesOfExits),
332
// and new outputs are created to supply the split phis. CodeExtractor can't
333
// report these new outputs until extraction begins, but it's important to
334
// factor the cost of the outputs into the cost calculation.
335
unsigned NumSplitExitPhis = 0;
336
for (BasicBlock *ExitBB : SuccsOutsideRegion) {
337
for (PHINode &PN : ExitBB->phis()) {
338
// Find all incoming values from the outlining region.
339
int NumIncomingVals = 0;
340
for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
341
if (llvm::is_contained(Region, PN.getIncomingBlock(i))) {
342
++NumIncomingVals;
343
if (NumIncomingVals > 1) {
344
++NumSplitExitPhis;
345
break;
346
}
347
}
348
}
349
}
350
351
// Apply a penalty for calling the split function. Factor in the cost of
352
// materializing all of the parameters.
353
int NumOutputsAndSplitPhis = NumOutputs + NumSplitExitPhis;
354
int NumParams = NumInputs + NumOutputsAndSplitPhis;
355
if (NumParams > MaxParametersForSplit) {
356
LLVM_DEBUG(dbgs() << NumInputs << " inputs and " << NumOutputsAndSplitPhis
357
<< " outputs exceeds parameter limit ("
358
<< MaxParametersForSplit << ")\n");
359
return std::numeric_limits<int>::max();
360
}
361
const int CostForArgMaterialization = 2 * TargetTransformInfo::TCC_Basic;
362
LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumParams << " params\n");
363
Penalty += CostForArgMaterialization * NumParams;
364
365
// Apply the typical code size cost for an output alloca and its associated
366
// reload in the caller. Also penalize the associated store in the callee.
367
LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputsAndSplitPhis
368
<< " outputs/split phis\n");
369
const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic;
370
Penalty += CostForRegionOutput * NumOutputsAndSplitPhis;
371
372
// Apply a `noreturn` bonus.
373
if (NoBlocksReturn) {
374
LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size()
375
<< " non-returning terminators\n");
376
Penalty -= Region.size();
377
}
378
379
// Apply a penalty for having more than one successor outside of the region.
380
// This penalty accounts for the switch needed in the caller.
381
if (SuccsOutsideRegion.size() > 1) {
382
LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size()
383
<< " non-region successors\n");
384
Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic;
385
}
386
387
return Penalty;
388
}
389
390
// Determine if it is beneficial to split the \p Region.
391
bool HotColdSplitting::isSplittingBeneficial(CodeExtractor &CE,
392
const BlockSequence &Region,
393
TargetTransformInfo &TTI) {
394
assert(!Region.empty());
395
396
// Perform a simple cost/benefit analysis to decide whether or not to permit
397
// splitting.
398
SetVector<Value *> Inputs, Outputs, Sinks;
399
CE.findInputsOutputs(Inputs, Outputs, Sinks);
400
InstructionCost OutliningBenefit = getOutliningBenefit(Region, TTI);
401
int OutliningPenalty =
402
getOutliningPenalty(Region, Inputs.size(), Outputs.size());
403
LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit
404
<< ", penalty = " << OutliningPenalty << "\n");
405
if (!OutliningBenefit.isValid() || OutliningBenefit <= OutliningPenalty)
406
return false;
407
408
return true;
409
}
410
411
// Split the single \p EntryPoint cold region. \p CE is the region code
412
// extractor.
413
Function *HotColdSplitting::extractColdRegion(
414
BasicBlock &EntryPoint, CodeExtractor &CE,
415
const CodeExtractorAnalysisCache &CEAC, BlockFrequencyInfo *BFI,
416
TargetTransformInfo &TTI, OptimizationRemarkEmitter &ORE) {
417
Function *OrigF = EntryPoint.getParent();
418
if (Function *OutF = CE.extractCodeRegion(CEAC)) {
419
User *U = *OutF->user_begin();
420
CallInst *CI = cast<CallInst>(U);
421
NumColdRegionsOutlined++;
422
if (TTI.useColdCCForColdCall(*OutF)) {
423
OutF->setCallingConv(CallingConv::Cold);
424
CI->setCallingConv(CallingConv::Cold);
425
}
426
CI->setIsNoInline();
427
428
if (EnableColdSection)
429
OutF->setSection(ColdSectionName);
430
else {
431
if (OrigF->hasSection())
432
OutF->setSection(OrigF->getSection());
433
}
434
435
markFunctionCold(*OutF, BFI != nullptr);
436
437
LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF);
438
ORE.emit([&]() {
439
return OptimizationRemark(DEBUG_TYPE, "HotColdSplit",
440
&*EntryPoint.begin())
441
<< ore::NV("Original", OrigF) << " split cold code into "
442
<< ore::NV("Split", OutF);
443
});
444
return OutF;
445
}
446
447
ORE.emit([&]() {
448
return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
449
&*EntryPoint.begin())
450
<< "Failed to extract region at block "
451
<< ore::NV("Block", &EntryPoint);
452
});
453
return nullptr;
454
}
455
456
/// A pair of (basic block, score).
457
using BlockTy = std::pair<BasicBlock *, unsigned>;
458
459
namespace {
460
/// A maximal outlining region. This contains all blocks post-dominated by a
461
/// sink block, the sink block itself, and all blocks dominated by the sink.
462
/// If sink-predecessors and sink-successors cannot be extracted in one region,
463
/// the static constructor returns a list of suitable extraction regions.
464
class OutliningRegion {
465
/// A list of (block, score) pairs. A block's score is non-zero iff it's a
466
/// viable sub-region entry point. Blocks with higher scores are better entry
467
/// points (i.e. they are more distant ancestors of the sink block).
468
SmallVector<BlockTy, 0> Blocks = {};
469
470
/// The suggested entry point into the region. If the region has multiple
471
/// entry points, all blocks within the region may not be reachable from this
472
/// entry point.
473
BasicBlock *SuggestedEntryPoint = nullptr;
474
475
/// Whether the entire function is cold.
476
bool EntireFunctionCold = false;
477
478
/// If \p BB is a viable entry point, return \p Score. Return 0 otherwise.
479
static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) {
480
return mayExtractBlock(BB) ? Score : 0;
481
}
482
483
/// These scores should be lower than the score for predecessor blocks,
484
/// because regions starting at predecessor blocks are typically larger.
485
static constexpr unsigned ScoreForSuccBlock = 1;
486
static constexpr unsigned ScoreForSinkBlock = 1;
487
488
OutliningRegion(const OutliningRegion &) = delete;
489
OutliningRegion &operator=(const OutliningRegion &) = delete;
490
491
public:
492
OutliningRegion() = default;
493
OutliningRegion(OutliningRegion &&) = default;
494
OutliningRegion &operator=(OutliningRegion &&) = default;
495
496
static std::vector<OutliningRegion> create(BasicBlock &SinkBB,
497
const DominatorTree &DT,
498
const PostDominatorTree &PDT) {
499
std::vector<OutliningRegion> Regions;
500
SmallPtrSet<BasicBlock *, 4> RegionBlocks;
501
502
Regions.emplace_back();
503
OutliningRegion *ColdRegion = &Regions.back();
504
505
auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) {
506
RegionBlocks.insert(BB);
507
ColdRegion->Blocks.emplace_back(BB, Score);
508
};
509
510
// The ancestor farthest-away from SinkBB, and also post-dominated by it.
511
unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock);
512
ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr;
513
unsigned BestScore = SinkScore;
514
515
// Visit SinkBB's ancestors using inverse DFS.
516
auto PredIt = ++idf_begin(&SinkBB);
517
auto PredEnd = idf_end(&SinkBB);
518
while (PredIt != PredEnd) {
519
BasicBlock &PredBB = **PredIt;
520
bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB);
521
522
// If the predecessor is cold and has no predecessors, the entire
523
// function must be cold.
524
if (SinkPostDom && pred_empty(&PredBB)) {
525
ColdRegion->EntireFunctionCold = true;
526
return Regions;
527
}
528
529
// If SinkBB does not post-dominate a predecessor, do not mark the
530
// predecessor (or any of its predecessors) cold.
531
if (!SinkPostDom || !mayExtractBlock(PredBB)) {
532
PredIt.skipChildren();
533
continue;
534
}
535
536
// Keep track of the post-dominated ancestor farthest away from the sink.
537
// The path length is always >= 2, ensuring that predecessor blocks are
538
// considered as entry points before the sink block.
539
unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength());
540
if (PredScore > BestScore) {
541
ColdRegion->SuggestedEntryPoint = &PredBB;
542
BestScore = PredScore;
543
}
544
545
addBlockToRegion(&PredBB, PredScore);
546
++PredIt;
547
}
548
549
// If the sink can be added to the cold region, do so. It's considered as
550
// an entry point before any sink-successor blocks.
551
//
552
// Otherwise, split cold sink-successor blocks using a separate region.
553
// This satisfies the requirement that all extraction blocks other than the
554
// first have predecessors within the extraction region.
555
if (mayExtractBlock(SinkBB)) {
556
addBlockToRegion(&SinkBB, SinkScore);
557
if (pred_empty(&SinkBB)) {
558
ColdRegion->EntireFunctionCold = true;
559
return Regions;
560
}
561
} else {
562
Regions.emplace_back();
563
ColdRegion = &Regions.back();
564
BestScore = 0;
565
}
566
567
// Find all successors of SinkBB dominated by SinkBB using DFS.
568
auto SuccIt = ++df_begin(&SinkBB);
569
auto SuccEnd = df_end(&SinkBB);
570
while (SuccIt != SuccEnd) {
571
BasicBlock &SuccBB = **SuccIt;
572
bool SinkDom = DT.dominates(&SinkBB, &SuccBB);
573
574
// Don't allow the backwards & forwards DFSes to mark the same block.
575
bool DuplicateBlock = RegionBlocks.count(&SuccBB);
576
577
// If SinkBB does not dominate a successor, do not mark the successor (or
578
// any of its successors) cold.
579
if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) {
580
SuccIt.skipChildren();
581
continue;
582
}
583
584
unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock);
585
if (SuccScore > BestScore) {
586
ColdRegion->SuggestedEntryPoint = &SuccBB;
587
BestScore = SuccScore;
588
}
589
590
addBlockToRegion(&SuccBB, SuccScore);
591
++SuccIt;
592
}
593
594
return Regions;
595
}
596
597
/// Whether this region has nothing to extract.
598
bool empty() const { return !SuggestedEntryPoint; }
599
600
/// The blocks in this region.
601
ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; }
602
603
/// Whether the entire function containing this region is cold.
604
bool isEntireFunctionCold() const { return EntireFunctionCold; }
605
606
/// Remove a sub-region from this region and return it as a block sequence.
607
BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) {
608
assert(!empty() && !isEntireFunctionCold() && "Nothing to extract");
609
610
// Remove blocks dominated by the suggested entry point from this region.
611
// During the removal, identify the next best entry point into the region.
612
// Ensure that the first extracted block is the suggested entry point.
613
BlockSequence SubRegion = {SuggestedEntryPoint};
614
BasicBlock *NextEntryPoint = nullptr;
615
unsigned NextScore = 0;
616
auto RegionEndIt = Blocks.end();
617
auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) {
618
BasicBlock *BB = Block.first;
619
unsigned Score = Block.second;
620
bool InSubRegion =
621
BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB);
622
if (!InSubRegion && Score > NextScore) {
623
NextEntryPoint = BB;
624
NextScore = Score;
625
}
626
if (InSubRegion && BB != SuggestedEntryPoint)
627
SubRegion.push_back(BB);
628
return InSubRegion;
629
});
630
Blocks.erase(RegionStartIt, RegionEndIt);
631
632
// Update the suggested entry point.
633
SuggestedEntryPoint = NextEntryPoint;
634
635
return SubRegion;
636
}
637
};
638
} // namespace
639
640
bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) {
641
// The set of cold blocks outlined.
642
SmallPtrSet<BasicBlock *, 4> ColdBlocks;
643
644
// The set of cold blocks cannot be outlined.
645
SmallPtrSet<BasicBlock *, 4> CannotBeOutlinedColdBlocks;
646
647
// Set of cold blocks obtained with RPOT.
648
SmallPtrSet<BasicBlock *, 4> AnnotatedColdBlocks;
649
650
// The worklist of non-intersecting regions left to outline. The first member
651
// of the pair is the entry point into the region to be outlined.
652
SmallVector<std::pair<BasicBlock *, CodeExtractor>, 2> OutliningWorklist;
653
654
// Set up an RPO traversal. Experimentally, this performs better (outlines
655
// more) than a PO traversal, because we prevent region overlap by keeping
656
// the first region to contain a block.
657
ReversePostOrderTraversal<Function *> RPOT(&F);
658
659
// Calculate domtrees lazily. This reduces compile-time significantly.
660
std::unique_ptr<DominatorTree> DT;
661
std::unique_ptr<PostDominatorTree> PDT;
662
663
// Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This
664
// reduces compile-time significantly. TODO: When we *do* use BFI, we should
665
// be able to salvage its domtrees instead of recomputing them.
666
BlockFrequencyInfo *BFI = nullptr;
667
if (HasProfileSummary)
668
BFI = GetBFI(F);
669
670
TargetTransformInfo &TTI = GetTTI(F);
671
OptimizationRemarkEmitter &ORE = (*GetORE)(F);
672
AssumptionCache *AC = LookupAC(F);
673
auto ColdProbThresh = TTI.getPredictableBranchThreshold().getCompl();
674
675
if (ColdBranchProbDenom.getNumOccurrences())
676
ColdProbThresh = BranchProbability(1, ColdBranchProbDenom.getValue());
677
678
unsigned OutlinedFunctionID = 1;
679
// Find all cold regions.
680
for (BasicBlock *BB : RPOT) {
681
// This block is already part of some outlining region.
682
if (ColdBlocks.count(BB))
683
continue;
684
685
// This block is already part of some region cannot be outlined.
686
if (CannotBeOutlinedColdBlocks.count(BB))
687
continue;
688
689
if (!isBasicBlockCold(BB, ColdProbThresh, AnnotatedColdBlocks, BFI))
690
continue;
691
692
LLVM_DEBUG({
693
dbgs() << "Found a cold block:\n";
694
BB->dump();
695
});
696
697
if (!DT)
698
DT = std::make_unique<DominatorTree>(F);
699
if (!PDT)
700
PDT = std::make_unique<PostDominatorTree>(F);
701
702
auto Regions = OutliningRegion::create(*BB, *DT, *PDT);
703
for (OutliningRegion &Region : Regions) {
704
if (Region.empty())
705
continue;
706
707
if (Region.isEntireFunctionCold()) {
708
LLVM_DEBUG(dbgs() << "Entire function is cold\n");
709
return markFunctionCold(F);
710
}
711
712
do {
713
BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT);
714
LLVM_DEBUG({
715
dbgs() << "Hot/cold splitting attempting to outline these blocks:\n";
716
for (BasicBlock *BB : SubRegion)
717
BB->dump();
718
});
719
720
// TODO: Pass BFI and BPI to update profile information.
721
CodeExtractor CE(
722
SubRegion, &*DT, /* AggregateArgs */ false, /* BFI */ nullptr,
723
/* BPI */ nullptr, AC, /* AllowVarArgs */ false,
724
/* AllowAlloca */ false, /* AllocaBlock */ nullptr,
725
/* Suffix */ "cold." + std::to_string(OutlinedFunctionID));
726
727
if (CE.isEligible() && isSplittingBeneficial(CE, SubRegion, TTI) &&
728
// If this outlining region intersects with another, drop the new
729
// region.
730
//
731
// TODO: It's theoretically possible to outline more by only keeping
732
// the largest region which contains a block, but the extra
733
// bookkeeping to do this is tricky/expensive.
734
none_of(SubRegion, [&](BasicBlock *Block) {
735
return ColdBlocks.contains(Block);
736
})) {
737
ColdBlocks.insert(SubRegion.begin(), SubRegion.end());
738
739
LLVM_DEBUG({
740
for (auto *Block : SubRegion)
741
dbgs() << " contains cold block:" << Block->getName() << "\n";
742
});
743
744
OutliningWorklist.emplace_back(
745
std::make_pair(SubRegion[0], std::move(CE)));
746
++OutlinedFunctionID;
747
} else {
748
// The cold block region cannot be outlined.
749
for (auto *Block : SubRegion)
750
if ((DT->dominates(BB, Block) && PDT->dominates(Block, BB)) ||
751
(PDT->dominates(BB, Block) && DT->dominates(Block, BB)))
752
// Will skip this cold block in the loop to save the compile time
753
CannotBeOutlinedColdBlocks.insert(Block);
754
}
755
} while (!Region.empty());
756
757
++NumColdRegionsFound;
758
}
759
}
760
761
if (OutliningWorklist.empty())
762
return false;
763
764
// Outline single-entry cold regions, splitting up larger regions as needed.
765
// Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time.
766
CodeExtractorAnalysisCache CEAC(F);
767
for (auto &BCE : OutliningWorklist) {
768
Function *Outlined =
769
extractColdRegion(*BCE.first, BCE.second, CEAC, BFI, TTI, ORE);
770
assert(Outlined && "Should be outlined");
771
(void)Outlined;
772
}
773
774
return true;
775
}
776
777
bool HotColdSplitting::run(Module &M) {
778
bool Changed = false;
779
bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr);
780
for (Function &F : M) {
781
// Do not touch declarations.
782
if (F.isDeclaration())
783
continue;
784
785
// Do not modify `optnone` functions.
786
if (F.hasOptNone())
787
continue;
788
789
// Detect inherently cold functions and mark them as such.
790
if (isFunctionCold(F)) {
791
Changed |= markFunctionCold(F);
792
continue;
793
}
794
795
if (!shouldOutlineFrom(F)) {
796
LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n");
797
continue;
798
}
799
800
LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n");
801
Changed |= outlineColdRegions(F, HasProfileSummary);
802
}
803
return Changed;
804
}
805
806
PreservedAnalyses
807
HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) {
808
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
809
810
auto LookupAC = [&FAM](Function &F) -> AssumptionCache * {
811
return FAM.getCachedResult<AssumptionAnalysis>(F);
812
};
813
814
auto GBFI = [&FAM](Function &F) {
815
return &FAM.getResult<BlockFrequencyAnalysis>(F);
816
};
817
818
std::function<TargetTransformInfo &(Function &)> GTTI =
819
[&FAM](Function &F) -> TargetTransformInfo & {
820
return FAM.getResult<TargetIRAnalysis>(F);
821
};
822
823
std::unique_ptr<OptimizationRemarkEmitter> ORE;
824
std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
825
[&ORE](Function &F) -> OptimizationRemarkEmitter & {
826
ORE.reset(new OptimizationRemarkEmitter(&F));
827
return *ORE;
828
};
829
830
ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
831
832
if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M))
833
return PreservedAnalyses::none();
834
return PreservedAnalyses::all();
835
}
836
837