Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/IPO/IROutliner.cpp
35294 views
1
//===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
///
9
/// \file
10
// Implementation for the IROutliner which is used by the IROutliner Pass.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "llvm/Transforms/IPO/IROutliner.h"
15
#include "llvm/Analysis/IRSimilarityIdentifier.h"
16
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
17
#include "llvm/Analysis/TargetTransformInfo.h"
18
#include "llvm/IR/Attributes.h"
19
#include "llvm/IR/DIBuilder.h"
20
#include "llvm/IR/DebugInfo.h"
21
#include "llvm/IR/DebugInfoMetadata.h"
22
#include "llvm/IR/Dominators.h"
23
#include "llvm/IR/Mangler.h"
24
#include "llvm/IR/PassManager.h"
25
#include "llvm/Support/CommandLine.h"
26
#include "llvm/Transforms/IPO.h"
27
#include <optional>
28
#include <vector>
29
30
#define DEBUG_TYPE "iroutliner"
31
32
using namespace llvm;
33
using namespace IRSimilarity;
34
35
// A command flag to be used for debugging to exclude branches from similarity
36
// matching and outlining.
37
namespace llvm {
38
extern cl::opt<bool> DisableBranches;
39
40
// A command flag to be used for debugging to indirect calls from similarity
41
// matching and outlining.
42
extern cl::opt<bool> DisableIndirectCalls;
43
44
// A command flag to be used for debugging to exclude intrinsics from similarity
45
// matching and outlining.
46
extern cl::opt<bool> DisableIntrinsics;
47
48
} // namespace llvm
49
50
// Set to true if the user wants the ir outliner to run on linkonceodr linkage
51
// functions. This is false by default because the linker can dedupe linkonceodr
52
// functions. Since the outliner is confined to a single module (modulo LTO),
53
// this is off by default. It should, however, be the default behavior in
54
// LTO.
55
static cl::opt<bool> EnableLinkOnceODRIROutlining(
56
"enable-linkonceodr-ir-outlining", cl::Hidden,
57
cl::desc("Enable the IR outliner on linkonceodr functions"),
58
cl::init(false));
59
60
// This is a debug option to test small pieces of code to ensure that outlining
61
// works correctly.
62
static cl::opt<bool> NoCostModel(
63
"ir-outlining-no-cost", cl::init(false), cl::ReallyHidden,
64
cl::desc("Debug option to outline greedily, without restriction that "
65
"calculated benefit outweighs cost"));
66
67
/// The OutlinableGroup holds all the overarching information for outlining
68
/// a set of regions that are structurally similar to one another, such as the
69
/// types of the overall function, the output blocks, the sets of stores needed
70
/// and a list of the different regions. This information is used in the
71
/// deduplication of extracted regions with the same structure.
72
struct OutlinableGroup {
73
/// The sections that could be outlined
74
std::vector<OutlinableRegion *> Regions;
75
76
/// The argument types for the function created as the overall function to
77
/// replace the extracted function for each region.
78
std::vector<Type *> ArgumentTypes;
79
/// The FunctionType for the overall function.
80
FunctionType *OutlinedFunctionType = nullptr;
81
/// The Function for the collective overall function.
82
Function *OutlinedFunction = nullptr;
83
84
/// Flag for whether we should not consider this group of OutlinableRegions
85
/// for extraction.
86
bool IgnoreGroup = false;
87
88
/// The return blocks for the overall function.
89
DenseMap<Value *, BasicBlock *> EndBBs;
90
91
/// The PHIBlocks with their corresponding return block based on the return
92
/// value as the key.
93
DenseMap<Value *, BasicBlock *> PHIBlocks;
94
95
/// A set containing the different GVN store sets needed. Each array contains
96
/// a sorted list of the different values that need to be stored into output
97
/// registers.
98
DenseSet<ArrayRef<unsigned>> OutputGVNCombinations;
99
100
/// Flag for whether the \ref ArgumentTypes have been defined after the
101
/// extraction of the first region.
102
bool InputTypesSet = false;
103
104
/// The number of input values in \ref ArgumentTypes. Anything after this
105
/// index in ArgumentTypes is an output argument.
106
unsigned NumAggregateInputs = 0;
107
108
/// The mapping of the canonical numbering of the values in outlined sections
109
/// to specific arguments.
110
DenseMap<unsigned, unsigned> CanonicalNumberToAggArg;
111
112
/// The number of branches in the region target a basic block that is outside
113
/// of the region.
114
unsigned BranchesToOutside = 0;
115
116
/// Tracker counting backwards from the highest unsigned value possible to
117
/// avoid conflicting with the GVNs of assigned values. We start at -3 since
118
/// -2 and -1 are assigned by the DenseMap.
119
unsigned PHINodeGVNTracker = -3;
120
121
DenseMap<unsigned,
122
std::pair<std::pair<unsigned, unsigned>, SmallVector<unsigned, 2>>>
123
PHINodeGVNToGVNs;
124
DenseMap<hash_code, unsigned> GVNsToPHINodeGVN;
125
126
/// The number of instructions that will be outlined by extracting \ref
127
/// Regions.
128
InstructionCost Benefit = 0;
129
/// The number of added instructions needed for the outlining of the \ref
130
/// Regions.
131
InstructionCost Cost = 0;
132
133
/// The argument that needs to be marked with the swifterr attribute. If not
134
/// needed, there is no value.
135
std::optional<unsigned> SwiftErrorArgument;
136
137
/// For the \ref Regions, we look at every Value. If it is a constant,
138
/// we check whether it is the same in Region.
139
///
140
/// \param [in,out] NotSame contains the global value numbers where the
141
/// constant is not always the same, and must be passed in as an argument.
142
void findSameConstants(DenseSet<unsigned> &NotSame);
143
144
/// For the regions, look at each set of GVN stores needed and account for
145
/// each combination. Add an argument to the argument types if there is
146
/// more than one combination.
147
///
148
/// \param [in] M - The module we are outlining from.
149
void collectGVNStoreSets(Module &M);
150
};
151
152
/// Move the contents of \p SourceBB to before the last instruction of \p
153
/// TargetBB.
154
/// \param SourceBB - the BasicBlock to pull Instructions from.
155
/// \param TargetBB - the BasicBlock to put Instruction into.
156
static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) {
157
TargetBB.splice(TargetBB.end(), &SourceBB);
158
}
159
160
/// A function to sort the keys of \p Map, which must be a mapping of constant
161
/// values to basic blocks and return it in \p SortedKeys
162
///
163
/// \param SortedKeys - The vector the keys will be return in and sorted.
164
/// \param Map - The DenseMap containing keys to sort.
165
static void getSortedConstantKeys(std::vector<Value *> &SortedKeys,
166
DenseMap<Value *, BasicBlock *> &Map) {
167
for (auto &VtoBB : Map)
168
SortedKeys.push_back(VtoBB.first);
169
170
// Here we expect to have either 1 value that is void (nullptr) or multiple
171
// values that are all constant integers.
172
if (SortedKeys.size() == 1) {
173
assert(!SortedKeys[0] && "Expected a single void value.");
174
return;
175
}
176
177
stable_sort(SortedKeys, [](const Value *LHS, const Value *RHS) {
178
assert(LHS && RHS && "Expected non void values.");
179
const ConstantInt *LHSC = cast<ConstantInt>(LHS);
180
const ConstantInt *RHSC = cast<ConstantInt>(RHS);
181
182
return LHSC->getLimitedValue() < RHSC->getLimitedValue();
183
});
184
}
185
186
Value *OutlinableRegion::findCorrespondingValueIn(const OutlinableRegion &Other,
187
Value *V) {
188
std::optional<unsigned> GVN = Candidate->getGVN(V);
189
assert(GVN && "No GVN for incoming value");
190
std::optional<unsigned> CanonNum = Candidate->getCanonicalNum(*GVN);
191
std::optional<unsigned> FirstGVN =
192
Other.Candidate->fromCanonicalNum(*CanonNum);
193
std::optional<Value *> FoundValueOpt = Other.Candidate->fromGVN(*FirstGVN);
194
return FoundValueOpt.value_or(nullptr);
195
}
196
197
BasicBlock *
198
OutlinableRegion::findCorrespondingBlockIn(const OutlinableRegion &Other,
199
BasicBlock *BB) {
200
Instruction *FirstNonPHI = BB->getFirstNonPHIOrDbg();
201
assert(FirstNonPHI && "block is empty?");
202
Value *CorrespondingVal = findCorrespondingValueIn(Other, FirstNonPHI);
203
if (!CorrespondingVal)
204
return nullptr;
205
BasicBlock *CorrespondingBlock =
206
cast<Instruction>(CorrespondingVal)->getParent();
207
return CorrespondingBlock;
208
}
209
210
/// Rewrite the BranchInsts in the incoming blocks to \p PHIBlock that are found
211
/// in \p Included to branch to BasicBlock \p Replace if they currently branch
212
/// to the BasicBlock \p Find. This is used to fix up the incoming basic blocks
213
/// when PHINodes are included in outlined regions.
214
///
215
/// \param PHIBlock - The BasicBlock containing the PHINodes that need to be
216
/// checked.
217
/// \param Find - The successor block to be replaced.
218
/// \param Replace - The new succesor block to branch to.
219
/// \param Included - The set of blocks about to be outlined.
220
static void replaceTargetsFromPHINode(BasicBlock *PHIBlock, BasicBlock *Find,
221
BasicBlock *Replace,
222
DenseSet<BasicBlock *> &Included) {
223
for (PHINode &PN : PHIBlock->phis()) {
224
for (unsigned Idx = 0, PNEnd = PN.getNumIncomingValues(); Idx != PNEnd;
225
++Idx) {
226
// Check if the incoming block is included in the set of blocks being
227
// outlined.
228
BasicBlock *Incoming = PN.getIncomingBlock(Idx);
229
if (!Included.contains(Incoming))
230
continue;
231
232
BranchInst *BI = dyn_cast<BranchInst>(Incoming->getTerminator());
233
assert(BI && "Not a branch instruction?");
234
// Look over the branching instructions into this block to see if we
235
// used to branch to Find in this outlined block.
236
for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ != End;
237
Succ++) {
238
// If we have found the block to replace, we do so here.
239
if (BI->getSuccessor(Succ) != Find)
240
continue;
241
BI->setSuccessor(Succ, Replace);
242
}
243
}
244
}
245
}
246
247
248
void OutlinableRegion::splitCandidate() {
249
assert(!CandidateSplit && "Candidate already split!");
250
251
Instruction *BackInst = Candidate->backInstruction();
252
253
Instruction *EndInst = nullptr;
254
// Check whether the last instruction is a terminator, if it is, we do
255
// not split on the following instruction. We leave the block as it is. We
256
// also check that this is not the last instruction in the Module, otherwise
257
// the check for whether the current following instruction matches the
258
// previously recorded instruction will be incorrect.
259
if (!BackInst->isTerminator() ||
260
BackInst->getParent() != &BackInst->getFunction()->back()) {
261
EndInst = Candidate->end()->Inst;
262
assert(EndInst && "Expected an end instruction?");
263
}
264
265
// We check if the current instruction following the last instruction in the
266
// region is the same as the recorded instruction following the last
267
// instruction. If they do not match, there could be problems in rewriting
268
// the program after outlining, so we ignore it.
269
if (!BackInst->isTerminator() &&
270
EndInst != BackInst->getNextNonDebugInstruction())
271
return;
272
273
Instruction *StartInst = (*Candidate->begin()).Inst;
274
assert(StartInst && "Expected a start instruction?");
275
StartBB = StartInst->getParent();
276
PrevBB = StartBB;
277
278
DenseSet<BasicBlock *> BBSet;
279
Candidate->getBasicBlocks(BBSet);
280
281
// We iterate over the instructions in the region, if we find a PHINode, we
282
// check if there are predecessors outside of the region, if there are,
283
// we ignore this region since we are unable to handle the severing of the
284
// phi node right now.
285
286
// TODO: Handle extraneous inputs for PHINodes through variable number of
287
// inputs, similar to how outputs are handled.
288
BasicBlock::iterator It = StartInst->getIterator();
289
EndBB = BackInst->getParent();
290
BasicBlock *IBlock;
291
BasicBlock *PHIPredBlock = nullptr;
292
bool EndBBTermAndBackInstDifferent = EndBB->getTerminator() != BackInst;
293
while (PHINode *PN = dyn_cast<PHINode>(&*It)) {
294
unsigned NumPredsOutsideRegion = 0;
295
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
296
if (!BBSet.contains(PN->getIncomingBlock(i))) {
297
PHIPredBlock = PN->getIncomingBlock(i);
298
++NumPredsOutsideRegion;
299
continue;
300
}
301
302
// We must consider the case there the incoming block to the PHINode is
303
// the same as the final block of the OutlinableRegion. If this is the
304
// case, the branch from this block must also be outlined to be valid.
305
IBlock = PN->getIncomingBlock(i);
306
if (IBlock == EndBB && EndBBTermAndBackInstDifferent) {
307
PHIPredBlock = PN->getIncomingBlock(i);
308
++NumPredsOutsideRegion;
309
}
310
}
311
312
if (NumPredsOutsideRegion > 1)
313
return;
314
315
It++;
316
}
317
318
// If the region starts with a PHINode, but is not the initial instruction of
319
// the BasicBlock, we ignore this region for now.
320
if (isa<PHINode>(StartInst) && StartInst != &*StartBB->begin())
321
return;
322
323
// If the region ends with a PHINode, but does not contain all of the phi node
324
// instructions of the region, we ignore it for now.
325
if (isa<PHINode>(BackInst) &&
326
BackInst != &*std::prev(EndBB->getFirstInsertionPt()))
327
return;
328
329
// The basic block gets split like so:
330
// block: block:
331
// inst1 inst1
332
// inst2 inst2
333
// region1 br block_to_outline
334
// region2 block_to_outline:
335
// region3 -> region1
336
// region4 region2
337
// inst3 region3
338
// inst4 region4
339
// br block_after_outline
340
// block_after_outline:
341
// inst3
342
// inst4
343
344
std::string OriginalName = PrevBB->getName().str();
345
346
StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline");
347
PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, StartBB);
348
// If there was a PHINode with an incoming block outside the region,
349
// make sure is correctly updated in the newly split block.
350
if (PHIPredBlock)
351
PrevBB->replaceSuccessorsPhiUsesWith(PHIPredBlock, PrevBB);
352
353
CandidateSplit = true;
354
if (!BackInst->isTerminator()) {
355
EndBB = EndInst->getParent();
356
FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline");
357
EndBB->replaceSuccessorsPhiUsesWith(EndBB, FollowBB);
358
FollowBB->replaceSuccessorsPhiUsesWith(PrevBB, FollowBB);
359
} else {
360
EndBB = BackInst->getParent();
361
EndsInBranch = true;
362
FollowBB = nullptr;
363
}
364
365
// Refind the basic block set.
366
BBSet.clear();
367
Candidate->getBasicBlocks(BBSet);
368
// For the phi nodes in the new starting basic block of the region, we
369
// reassign the targets of the basic blocks branching instructions.
370
replaceTargetsFromPHINode(StartBB, PrevBB, StartBB, BBSet);
371
if (FollowBB)
372
replaceTargetsFromPHINode(FollowBB, EndBB, FollowBB, BBSet);
373
}
374
375
void OutlinableRegion::reattachCandidate() {
376
assert(CandidateSplit && "Candidate is not split!");
377
378
// The basic block gets reattached like so:
379
// block: block:
380
// inst1 inst1
381
// inst2 inst2
382
// br block_to_outline region1
383
// block_to_outline: -> region2
384
// region1 region3
385
// region2 region4
386
// region3 inst3
387
// region4 inst4
388
// br block_after_outline
389
// block_after_outline:
390
// inst3
391
// inst4
392
assert(StartBB != nullptr && "StartBB for Candidate is not defined!");
393
394
assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!");
395
// Make sure PHINode references to the block we are merging into are
396
// updated to be incoming blocks from the predecessor to the current block.
397
398
// NOTE: If this is updated such that the outlined block can have more than
399
// one incoming block to a PHINode, this logic will have to updated
400
// to handle multiple precessors instead.
401
402
// We only need to update this if the outlined section contains a PHINode, if
403
// it does not, then the incoming block was never changed in the first place.
404
// On the other hand, if PrevBB has no predecessors, it means that all
405
// incoming blocks to the first block are contained in the region, and there
406
// will be nothing to update.
407
Instruction *StartInst = (*Candidate->begin()).Inst;
408
if (isa<PHINode>(StartInst) && !PrevBB->hasNPredecessors(0)) {
409
assert(!PrevBB->hasNPredecessorsOrMore(2) &&
410
"PrevBB has more than one predecessor. Should be 0 or 1.");
411
BasicBlock *BeforePrevBB = PrevBB->getSinglePredecessor();
412
PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, BeforePrevBB);
413
}
414
PrevBB->getTerminator()->eraseFromParent();
415
416
// If we reattaching after outlining, we iterate over the phi nodes to
417
// the initial block, and reassign the branch instructions of the incoming
418
// blocks to the block we are remerging into.
419
if (!ExtractedFunction) {
420
DenseSet<BasicBlock *> BBSet;
421
Candidate->getBasicBlocks(BBSet);
422
423
replaceTargetsFromPHINode(StartBB, StartBB, PrevBB, BBSet);
424
if (!EndsInBranch)
425
replaceTargetsFromPHINode(FollowBB, FollowBB, EndBB, BBSet);
426
}
427
428
moveBBContents(*StartBB, *PrevBB);
429
430
BasicBlock *PlacementBB = PrevBB;
431
if (StartBB != EndBB)
432
PlacementBB = EndBB;
433
if (!EndsInBranch && PlacementBB->getUniqueSuccessor() != nullptr) {
434
assert(FollowBB != nullptr && "FollowBB for Candidate is not defined!");
435
assert(PlacementBB->getTerminator() && "Terminator removed from EndBB!");
436
PlacementBB->getTerminator()->eraseFromParent();
437
moveBBContents(*FollowBB, *PlacementBB);
438
PlacementBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB);
439
FollowBB->eraseFromParent();
440
}
441
442
PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB);
443
StartBB->eraseFromParent();
444
445
// Make sure to save changes back to the StartBB.
446
StartBB = PrevBB;
447
EndBB = nullptr;
448
PrevBB = nullptr;
449
FollowBB = nullptr;
450
451
CandidateSplit = false;
452
}
453
454
/// Find whether \p V matches the Constants previously found for the \p GVN.
455
///
456
/// \param V - The value to check for consistency.
457
/// \param GVN - The global value number assigned to \p V.
458
/// \param GVNToConstant - The mapping of global value number to Constants.
459
/// \returns true if the Value matches the Constant mapped to by V and false if
460
/// it \p V is a Constant but does not match.
461
/// \returns std::nullopt if \p V is not a Constant.
462
static std::optional<bool>
463
constantMatches(Value *V, unsigned GVN,
464
DenseMap<unsigned, Constant *> &GVNToConstant) {
465
// See if we have a constants
466
Constant *CST = dyn_cast<Constant>(V);
467
if (!CST)
468
return std::nullopt;
469
470
// Holds a mapping from a global value number to a Constant.
471
DenseMap<unsigned, Constant *>::iterator GVNToConstantIt;
472
bool Inserted;
473
474
475
// If we have a constant, try to make a new entry in the GVNToConstant.
476
std::tie(GVNToConstantIt, Inserted) =
477
GVNToConstant.insert(std::make_pair(GVN, CST));
478
// If it was found and is not equal, it is not the same. We do not
479
// handle this case yet, and exit early.
480
if (Inserted || (GVNToConstantIt->second == CST))
481
return true;
482
483
return false;
484
}
485
486
InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) {
487
InstructionCost Benefit = 0;
488
489
// Estimate the benefit of outlining a specific sections of the program. We
490
// delegate mostly this task to the TargetTransformInfo so that if the target
491
// has specific changes, we can have a more accurate estimate.
492
493
// However, getInstructionCost delegates the code size calculation for
494
// arithmetic instructions to getArithmeticInstrCost in
495
// include/Analysis/TargetTransformImpl.h, where it always estimates that the
496
// code size for a division and remainder instruction to be equal to 4, and
497
// everything else to 1. This is not an accurate representation of the
498
// division instruction for targets that have a native division instruction.
499
// To be overly conservative, we only add 1 to the number of instructions for
500
// each division instruction.
501
for (IRInstructionData &ID : *Candidate) {
502
Instruction *I = ID.Inst;
503
switch (I->getOpcode()) {
504
case Instruction::FDiv:
505
case Instruction::FRem:
506
case Instruction::SDiv:
507
case Instruction::SRem:
508
case Instruction::UDiv:
509
case Instruction::URem:
510
Benefit += 1;
511
break;
512
default:
513
Benefit += TTI.getInstructionCost(I, TargetTransformInfo::TCK_CodeSize);
514
break;
515
}
516
}
517
518
return Benefit;
519
}
520
521
/// Check the \p OutputMappings structure for value \p Input, if it exists
522
/// it has been used as an output for outlining, and has been renamed, and we
523
/// return the new value, otherwise, we return the same value.
524
///
525
/// \param OutputMappings [in] - The mapping of values to their renamed value
526
/// after being used as an output for an outlined region.
527
/// \param Input [in] - The value to find the remapped value of, if it exists.
528
/// \return The remapped value if it has been renamed, and the same value if has
529
/// not.
530
static Value *findOutputMapping(const DenseMap<Value *, Value *> OutputMappings,
531
Value *Input) {
532
DenseMap<Value *, Value *>::const_iterator OutputMapping =
533
OutputMappings.find(Input);
534
if (OutputMapping != OutputMappings.end())
535
return OutputMapping->second;
536
return Input;
537
}
538
539
/// Find whether \p Region matches the global value numbering to Constant
540
/// mapping found so far.
541
///
542
/// \param Region - The OutlinableRegion we are checking for constants
543
/// \param GVNToConstant - The mapping of global value number to Constants.
544
/// \param NotSame - The set of global value numbers that do not have the same
545
/// constant in each region.
546
/// \returns true if all Constants are the same in every use of a Constant in \p
547
/// Region and false if not
548
static bool
549
collectRegionsConstants(OutlinableRegion &Region,
550
DenseMap<unsigned, Constant *> &GVNToConstant,
551
DenseSet<unsigned> &NotSame) {
552
bool ConstantsTheSame = true;
553
554
IRSimilarityCandidate &C = *Region.Candidate;
555
for (IRInstructionData &ID : C) {
556
557
// Iterate over the operands in an instruction. If the global value number,
558
// assigned by the IRSimilarityCandidate, has been seen before, we check if
559
// the number has been found to be not the same value in each instance.
560
for (Value *V : ID.OperVals) {
561
std::optional<unsigned> GVNOpt = C.getGVN(V);
562
assert(GVNOpt && "Expected a GVN for operand?");
563
unsigned GVN = *GVNOpt;
564
565
// Check if this global value has been found to not be the same already.
566
if (NotSame.contains(GVN)) {
567
if (isa<Constant>(V))
568
ConstantsTheSame = false;
569
continue;
570
}
571
572
// If it has been the same so far, we check the value for if the
573
// associated Constant value match the previous instances of the same
574
// global value number. If the global value does not map to a Constant,
575
// it is considered to not be the same value.
576
std::optional<bool> ConstantMatches =
577
constantMatches(V, GVN, GVNToConstant);
578
if (ConstantMatches) {
579
if (*ConstantMatches)
580
continue;
581
else
582
ConstantsTheSame = false;
583
}
584
585
// While this value is a register, it might not have been previously,
586
// make sure we don't already have a constant mapped to this global value
587
// number.
588
if (GVNToConstant.contains(GVN))
589
ConstantsTheSame = false;
590
591
NotSame.insert(GVN);
592
}
593
}
594
595
return ConstantsTheSame;
596
}
597
598
void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) {
599
DenseMap<unsigned, Constant *> GVNToConstant;
600
601
for (OutlinableRegion *Region : Regions)
602
collectRegionsConstants(*Region, GVNToConstant, NotSame);
603
}
604
605
void OutlinableGroup::collectGVNStoreSets(Module &M) {
606
for (OutlinableRegion *OS : Regions)
607
OutputGVNCombinations.insert(OS->GVNStores);
608
609
// We are adding an extracted argument to decide between which output path
610
// to use in the basic block. It is used in a switch statement and only
611
// needs to be an integer.
612
if (OutputGVNCombinations.size() > 1)
613
ArgumentTypes.push_back(Type::getInt32Ty(M.getContext()));
614
}
615
616
/// Get the subprogram if it exists for one of the outlined regions.
617
///
618
/// \param [in] Group - The set of regions to find a subprogram for.
619
/// \returns the subprogram if it exists, or nullptr.
620
static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) {
621
for (OutlinableRegion *OS : Group.Regions)
622
if (Function *F = OS->Call->getFunction())
623
if (DISubprogram *SP = F->getSubprogram())
624
return SP;
625
626
return nullptr;
627
}
628
629
Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group,
630
unsigned FunctionNameSuffix) {
631
assert(!Group.OutlinedFunction && "Function is already defined!");
632
633
Type *RetTy = Type::getVoidTy(M.getContext());
634
// All extracted functions _should_ have the same return type at this point
635
// since the similarity identifier ensures that all branches outside of the
636
// region occur in the same place.
637
638
// NOTE: Should we ever move to the model that uses a switch at every point
639
// needed, meaning that we could branch within the region or out, it is
640
// possible that we will need to switch to using the most general case all of
641
// the time.
642
for (OutlinableRegion *R : Group.Regions) {
643
Type *ExtractedFuncType = R->ExtractedFunction->getReturnType();
644
if ((RetTy->isVoidTy() && !ExtractedFuncType->isVoidTy()) ||
645
(RetTy->isIntegerTy(1) && ExtractedFuncType->isIntegerTy(16)))
646
RetTy = ExtractedFuncType;
647
}
648
649
Group.OutlinedFunctionType = FunctionType::get(
650
RetTy, Group.ArgumentTypes, false);
651
652
// These functions will only be called from within the same module, so
653
// we can set an internal linkage.
654
Group.OutlinedFunction = Function::Create(
655
Group.OutlinedFunctionType, GlobalValue::InternalLinkage,
656
"outlined_ir_func_" + std::to_string(FunctionNameSuffix), M);
657
658
// Transfer the swifterr attribute to the correct function parameter.
659
if (Group.SwiftErrorArgument)
660
Group.OutlinedFunction->addParamAttr(*Group.SwiftErrorArgument,
661
Attribute::SwiftError);
662
663
Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize);
664
Group.OutlinedFunction->addFnAttr(Attribute::MinSize);
665
666
// If there's a DISubprogram associated with this outlined function, then
667
// emit debug info for the outlined function.
668
if (DISubprogram *SP = getSubprogramOrNull(Group)) {
669
Function *F = Group.OutlinedFunction;
670
// We have a DISubprogram. Get its DICompileUnit.
671
DICompileUnit *CU = SP->getUnit();
672
DIBuilder DB(M, true, CU);
673
DIFile *Unit = SP->getFile();
674
Mangler Mg;
675
// Get the mangled name of the function for the linkage name.
676
std::string Dummy;
677
llvm::raw_string_ostream MangledNameStream(Dummy);
678
Mg.getNameWithPrefix(MangledNameStream, F, false);
679
680
DISubprogram *OutlinedSP = DB.createFunction(
681
Unit /* Context */, F->getName(), Dummy,
682
Unit /* File */,
683
0 /* Line 0 is reserved for compiler-generated code. */,
684
DB.createSubroutineType(
685
DB.getOrCreateTypeArray(std::nullopt)), /* void type */
686
0, /* Line 0 is reserved for compiler-generated code. */
687
DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
688
/* Outlined code is optimized code by definition. */
689
DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
690
691
// Don't add any new variables to the subprogram.
692
DB.finalizeSubprogram(OutlinedSP);
693
694
// Attach subprogram to the function.
695
F->setSubprogram(OutlinedSP);
696
// We're done with the DIBuilder.
697
DB.finalize();
698
}
699
700
return Group.OutlinedFunction;
701
}
702
703
/// Move each BasicBlock in \p Old to \p New.
704
///
705
/// \param [in] Old - The function to move the basic blocks from.
706
/// \param [in] New - The function to move the basic blocks to.
707
/// \param [out] NewEnds - The return blocks of the new overall function.
708
static void moveFunctionData(Function &Old, Function &New,
709
DenseMap<Value *, BasicBlock *> &NewEnds) {
710
for (BasicBlock &CurrBB : llvm::make_early_inc_range(Old)) {
711
CurrBB.removeFromParent();
712
CurrBB.insertInto(&New);
713
Instruction *I = CurrBB.getTerminator();
714
715
// For each block we find a return instruction is, it is a potential exit
716
// path for the function. We keep track of each block based on the return
717
// value here.
718
if (ReturnInst *RI = dyn_cast<ReturnInst>(I))
719
NewEnds.insert(std::make_pair(RI->getReturnValue(), &CurrBB));
720
721
std::vector<Instruction *> DebugInsts;
722
723
for (Instruction &Val : CurrBB) {
724
// Since debug-info originates from many different locations in the
725
// program, it will cause incorrect reporting from a debugger if we keep
726
// the same debug instructions. Drop non-intrinsic DbgVariableRecords
727
// here, collect intrinsics for removal later.
728
Val.dropDbgRecords();
729
730
// We must handle the scoping of called functions differently than
731
// other outlined instructions.
732
if (!isa<CallInst>(&Val)) {
733
// Remove the debug information for outlined functions.
734
Val.setDebugLoc(DebugLoc());
735
736
// Loop info metadata may contain line locations. Update them to have no
737
// value in the new subprogram since the outlined code could be from
738
// several locations.
739
auto updateLoopInfoLoc = [&New](Metadata *MD) -> Metadata * {
740
if (DISubprogram *SP = New.getSubprogram())
741
if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
742
return DILocation::get(New.getContext(), Loc->getLine(),
743
Loc->getColumn(), SP, nullptr);
744
return MD;
745
};
746
updateLoopMetadataDebugLocations(Val, updateLoopInfoLoc);
747
continue;
748
}
749
750
// From this point we are only handling call instructions.
751
CallInst *CI = cast<CallInst>(&Val);
752
753
// Collect debug intrinsics for later removal.
754
if (isa<DbgInfoIntrinsic>(CI)) {
755
DebugInsts.push_back(&Val);
756
continue;
757
}
758
759
// Edit the scope of called functions inside of outlined functions.
760
if (DISubprogram *SP = New.getSubprogram()) {
761
DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP);
762
Val.setDebugLoc(DI);
763
}
764
}
765
766
for (Instruction *I : DebugInsts)
767
I->eraseFromParent();
768
}
769
}
770
771
/// Find the constants that will need to be lifted into arguments
772
/// as they are not the same in each instance of the region.
773
///
774
/// \param [in] C - The IRSimilarityCandidate containing the region we are
775
/// analyzing.
776
/// \param [in] NotSame - The set of global value numbers that do not have a
777
/// single Constant across all OutlinableRegions similar to \p C.
778
/// \param [out] Inputs - The list containing the global value numbers of the
779
/// arguments needed for the region of code.
780
static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame,
781
std::vector<unsigned> &Inputs) {
782
DenseSet<unsigned> Seen;
783
// Iterate over the instructions, and find what constants will need to be
784
// extracted into arguments.
785
for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end();
786
IDIt != EndIDIt; IDIt++) {
787
for (Value *V : (*IDIt).OperVals) {
788
// Since these are stored before any outlining, they will be in the
789
// global value numbering.
790
unsigned GVN = *C.getGVN(V);
791
if (isa<Constant>(V))
792
if (NotSame.contains(GVN) && !Seen.contains(GVN)) {
793
Inputs.push_back(GVN);
794
Seen.insert(GVN);
795
}
796
}
797
}
798
}
799
800
/// Find the GVN for the inputs that have been found by the CodeExtractor.
801
///
802
/// \param [in] C - The IRSimilarityCandidate containing the region we are
803
/// analyzing.
804
/// \param [in] CurrentInputs - The set of inputs found by the
805
/// CodeExtractor.
806
/// \param [in] OutputMappings - The mapping of values that have been replaced
807
/// by a new output value.
808
/// \param [out] EndInputNumbers - The global value numbers for the extracted
809
/// arguments.
810
static void mapInputsToGVNs(IRSimilarityCandidate &C,
811
SetVector<Value *> &CurrentInputs,
812
const DenseMap<Value *, Value *> &OutputMappings,
813
std::vector<unsigned> &EndInputNumbers) {
814
// Get the Global Value Number for each input. We check if the Value has been
815
// replaced by a different value at output, and use the original value before
816
// replacement.
817
for (Value *Input : CurrentInputs) {
818
assert(Input && "Have a nullptr as an input");
819
if (OutputMappings.contains(Input))
820
Input = OutputMappings.find(Input)->second;
821
assert(C.getGVN(Input) && "Could not find a numbering for the given input");
822
EndInputNumbers.push_back(*C.getGVN(Input));
823
}
824
}
825
826
/// Find the original value for the \p ArgInput values if any one of them was
827
/// replaced during a previous extraction.
828
///
829
/// \param [in] ArgInputs - The inputs to be extracted by the code extractor.
830
/// \param [in] OutputMappings - The mapping of values that have been replaced
831
/// by a new output value.
832
/// \param [out] RemappedArgInputs - The remapped values according to
833
/// \p OutputMappings that will be extracted.
834
static void
835
remapExtractedInputs(const ArrayRef<Value *> ArgInputs,
836
const DenseMap<Value *, Value *> &OutputMappings,
837
SetVector<Value *> &RemappedArgInputs) {
838
// Get the global value number for each input that will be extracted as an
839
// argument by the code extractor, remapping if needed for reloaded values.
840
for (Value *Input : ArgInputs) {
841
if (OutputMappings.contains(Input))
842
Input = OutputMappings.find(Input)->second;
843
RemappedArgInputs.insert(Input);
844
}
845
}
846
847
/// Find the input GVNs and the output values for a region of Instructions.
848
/// Using the code extractor, we collect the inputs to the extracted function.
849
///
850
/// The \p Region can be identified as needing to be ignored in this function.
851
/// It should be checked whether it should be ignored after a call to this
852
/// function.
853
///
854
/// \param [in,out] Region - The region of code to be analyzed.
855
/// \param [out] InputGVNs - The global value numbers for the extracted
856
/// arguments.
857
/// \param [in] NotSame - The global value numbers in the region that do not
858
/// have the same constant value in the regions structurally similar to
859
/// \p Region.
860
/// \param [in] OutputMappings - The mapping of values that have been replaced
861
/// by a new output value after extraction.
862
/// \param [out] ArgInputs - The values of the inputs to the extracted function.
863
/// \param [out] Outputs - The set of values extracted by the CodeExtractor
864
/// as outputs.
865
static void getCodeExtractorArguments(
866
OutlinableRegion &Region, std::vector<unsigned> &InputGVNs,
867
DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings,
868
SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) {
869
IRSimilarityCandidate &C = *Region.Candidate;
870
871
// OverallInputs are the inputs to the region found by the CodeExtractor,
872
// SinkCands and HoistCands are used by the CodeExtractor to find sunken
873
// allocas of values whose lifetimes are contained completely within the
874
// outlined region. PremappedInputs are the arguments found by the
875
// CodeExtractor, removing conditions such as sunken allocas, but that
876
// may need to be remapped due to the extracted output values replacing
877
// the original values. We use DummyOutputs for this first run of finding
878
// inputs and outputs since the outputs could change during findAllocas,
879
// the correct set of extracted outputs will be in the final Outputs ValueSet.
880
SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands,
881
DummyOutputs;
882
883
// Use the code extractor to get the inputs and outputs, without sunken
884
// allocas or removing llvm.assumes.
885
CodeExtractor *CE = Region.CE;
886
CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands);
887
assert(Region.StartBB && "Region must have a start BasicBlock!");
888
Function *OrigF = Region.StartBB->getParent();
889
CodeExtractorAnalysisCache CEAC(*OrigF);
890
BasicBlock *Dummy = nullptr;
891
892
// The region may be ineligible due to VarArgs in the parent function. In this
893
// case we ignore the region.
894
if (!CE->isEligible()) {
895
Region.IgnoreRegion = true;
896
return;
897
}
898
899
// Find if any values are going to be sunk into the function when extracted
900
CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy);
901
CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands);
902
903
// TODO: Support regions with sunken allocas: values whose lifetimes are
904
// contained completely within the outlined region. These are not guaranteed
905
// to be the same in every region, so we must elevate them all to arguments
906
// when they appear. If these values are not equal, it means there is some
907
// Input in OverallInputs that was removed for ArgInputs.
908
if (OverallInputs.size() != PremappedInputs.size()) {
909
Region.IgnoreRegion = true;
910
return;
911
}
912
913
findConstants(C, NotSame, InputGVNs);
914
915
mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs);
916
917
remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings,
918
ArgInputs);
919
920
// Sort the GVNs, since we now have constants included in the \ref InputGVNs
921
// we need to make sure they are in a deterministic order.
922
stable_sort(InputGVNs);
923
}
924
925
/// Look over the inputs and map each input argument to an argument in the
926
/// overall function for the OutlinableRegions. This creates a way to replace
927
/// the arguments of the extracted function with the arguments of the new
928
/// overall function.
929
///
930
/// \param [in,out] Region - The region of code to be analyzed.
931
/// \param [in] InputGVNs - The global value numbering of the input values
932
/// collected.
933
/// \param [in] ArgInputs - The values of the arguments to the extracted
934
/// function.
935
static void
936
findExtractedInputToOverallInputMapping(OutlinableRegion &Region,
937
std::vector<unsigned> &InputGVNs,
938
SetVector<Value *> &ArgInputs) {
939
940
IRSimilarityCandidate &C = *Region.Candidate;
941
OutlinableGroup &Group = *Region.Parent;
942
943
// This counts the argument number in the overall function.
944
unsigned TypeIndex = 0;
945
946
// This counts the argument number in the extracted function.
947
unsigned OriginalIndex = 0;
948
949
// Find the mapping of the extracted arguments to the arguments for the
950
// overall function. Since there may be extra arguments in the overall
951
// function to account for the extracted constants, we have two different
952
// counters as we find extracted arguments, and as we come across overall
953
// arguments.
954
955
// Additionally, in our first pass, for the first extracted function,
956
// we find argument locations for the canonical value numbering. This
957
// numbering overrides any discovered location for the extracted code.
958
for (unsigned InputVal : InputGVNs) {
959
std::optional<unsigned> CanonicalNumberOpt = C.getCanonicalNum(InputVal);
960
assert(CanonicalNumberOpt && "Canonical number not found?");
961
unsigned CanonicalNumber = *CanonicalNumberOpt;
962
963
std::optional<Value *> InputOpt = C.fromGVN(InputVal);
964
assert(InputOpt && "Global value number not found?");
965
Value *Input = *InputOpt;
966
967
DenseMap<unsigned, unsigned>::iterator AggArgIt =
968
Group.CanonicalNumberToAggArg.find(CanonicalNumber);
969
970
if (!Group.InputTypesSet) {
971
Group.ArgumentTypes.push_back(Input->getType());
972
// If the input value has a swifterr attribute, make sure to mark the
973
// argument in the overall function.
974
if (Input->isSwiftError()) {
975
assert(
976
!Group.SwiftErrorArgument &&
977
"Argument already marked with swifterr for this OutlinableGroup!");
978
Group.SwiftErrorArgument = TypeIndex;
979
}
980
}
981
982
// Check if we have a constant. If we do add it to the overall argument
983
// number to Constant map for the region, and continue to the next input.
984
if (Constant *CST = dyn_cast<Constant>(Input)) {
985
if (AggArgIt != Group.CanonicalNumberToAggArg.end())
986
Region.AggArgToConstant.insert(std::make_pair(AggArgIt->second, CST));
987
else {
988
Group.CanonicalNumberToAggArg.insert(
989
std::make_pair(CanonicalNumber, TypeIndex));
990
Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST));
991
}
992
TypeIndex++;
993
continue;
994
}
995
996
// It is not a constant, we create the mapping from extracted argument list
997
// to the overall argument list, using the canonical location, if it exists.
998
assert(ArgInputs.count(Input) && "Input cannot be found!");
999
1000
if (AggArgIt != Group.CanonicalNumberToAggArg.end()) {
1001
if (OriginalIndex != AggArgIt->second)
1002
Region.ChangedArgOrder = true;
1003
Region.ExtractedArgToAgg.insert(
1004
std::make_pair(OriginalIndex, AggArgIt->second));
1005
Region.AggArgToExtracted.insert(
1006
std::make_pair(AggArgIt->second, OriginalIndex));
1007
} else {
1008
Group.CanonicalNumberToAggArg.insert(
1009
std::make_pair(CanonicalNumber, TypeIndex));
1010
Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex));
1011
Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex));
1012
}
1013
OriginalIndex++;
1014
TypeIndex++;
1015
}
1016
1017
// If the function type definitions for the OutlinableGroup holding the region
1018
// have not been set, set the length of the inputs here. We should have the
1019
// same inputs for all of the different regions contained in the
1020
// OutlinableGroup since they are all structurally similar to one another.
1021
if (!Group.InputTypesSet) {
1022
Group.NumAggregateInputs = TypeIndex;
1023
Group.InputTypesSet = true;
1024
}
1025
1026
Region.NumExtractedInputs = OriginalIndex;
1027
}
1028
1029
/// Check if the \p V has any uses outside of the region other than \p PN.
1030
///
1031
/// \param V [in] - The value to check.
1032
/// \param PHILoc [in] - The location in the PHINode of \p V.
1033
/// \param PN [in] - The PHINode using \p V.
1034
/// \param Exits [in] - The potential blocks we exit to from the outlined
1035
/// region.
1036
/// \param BlocksInRegion [in] - The basic blocks contained in the region.
1037
/// \returns true if \p V has any use soutside its region other than \p PN.
1038
static bool outputHasNonPHI(Value *V, unsigned PHILoc, PHINode &PN,
1039
SmallPtrSet<BasicBlock *, 1> &Exits,
1040
DenseSet<BasicBlock *> &BlocksInRegion) {
1041
// We check to see if the value is used by the PHINode from some other
1042
// predecessor not included in the region. If it is, we make sure
1043
// to keep it as an output.
1044
if (any_of(llvm::seq<unsigned>(0, PN.getNumIncomingValues()),
1045
[PHILoc, &PN, V, &BlocksInRegion](unsigned Idx) {
1046
return (Idx != PHILoc && V == PN.getIncomingValue(Idx) &&
1047
!BlocksInRegion.contains(PN.getIncomingBlock(Idx)));
1048
}))
1049
return true;
1050
1051
// Check if the value is used by any other instructions outside the region.
1052
return any_of(V->users(), [&Exits, &BlocksInRegion](User *U) {
1053
Instruction *I = dyn_cast<Instruction>(U);
1054
if (!I)
1055
return false;
1056
1057
// If the use of the item is inside the region, we skip it. Uses
1058
// inside the region give us useful information about how the item could be
1059
// used as an output.
1060
BasicBlock *Parent = I->getParent();
1061
if (BlocksInRegion.contains(Parent))
1062
return false;
1063
1064
// If it's not a PHINode then we definitely know the use matters. This
1065
// output value will not completely combined with another item in a PHINode
1066
// as it is directly reference by another non-phi instruction
1067
if (!isa<PHINode>(I))
1068
return true;
1069
1070
// If we have a PHINode outside one of the exit locations, then it
1071
// can be considered an outside use as well. If there is a PHINode
1072
// contained in the Exit where this values use matters, it will be
1073
// caught when we analyze that PHINode.
1074
if (!Exits.contains(Parent))
1075
return true;
1076
1077
return false;
1078
});
1079
}
1080
1081
/// Test whether \p CurrentExitFromRegion contains any PhiNodes that should be
1082
/// considered outputs. A PHINodes is an output when more than one incoming
1083
/// value has been marked by the CodeExtractor as an output.
1084
///
1085
/// \param CurrentExitFromRegion [in] - The block to analyze.
1086
/// \param PotentialExitsFromRegion [in] - The potential exit blocks from the
1087
/// region.
1088
/// \param RegionBlocks [in] - The basic blocks in the region.
1089
/// \param Outputs [in, out] - The existing outputs for the region, we may add
1090
/// PHINodes to this as we find that they replace output values.
1091
/// \param OutputsReplacedByPHINode [out] - A set containing outputs that are
1092
/// totally replaced by a PHINode.
1093
/// \param OutputsWithNonPhiUses [out] - A set containing outputs that are used
1094
/// in PHINodes, but have other uses, and should still be considered outputs.
1095
static void analyzeExitPHIsForOutputUses(
1096
BasicBlock *CurrentExitFromRegion,
1097
SmallPtrSet<BasicBlock *, 1> &PotentialExitsFromRegion,
1098
DenseSet<BasicBlock *> &RegionBlocks, SetVector<Value *> &Outputs,
1099
DenseSet<Value *> &OutputsReplacedByPHINode,
1100
DenseSet<Value *> &OutputsWithNonPhiUses) {
1101
for (PHINode &PN : CurrentExitFromRegion->phis()) {
1102
// Find all incoming values from the outlining region.
1103
SmallVector<unsigned, 2> IncomingVals;
1104
for (unsigned I = 0, E = PN.getNumIncomingValues(); I < E; ++I)
1105
if (RegionBlocks.contains(PN.getIncomingBlock(I)))
1106
IncomingVals.push_back(I);
1107
1108
// Do not process PHI if there are no predecessors from region.
1109
unsigned NumIncomingVals = IncomingVals.size();
1110
if (NumIncomingVals == 0)
1111
continue;
1112
1113
// If there is one predecessor, we mark it as a value that needs to be kept
1114
// as an output.
1115
if (NumIncomingVals == 1) {
1116
Value *V = PN.getIncomingValue(*IncomingVals.begin());
1117
OutputsWithNonPhiUses.insert(V);
1118
OutputsReplacedByPHINode.erase(V);
1119
continue;
1120
}
1121
1122
// This PHINode will be used as an output value, so we add it to our list.
1123
Outputs.insert(&PN);
1124
1125
// Not all of the incoming values should be ignored as other inputs and
1126
// outputs may have uses in outlined region. If they have other uses
1127
// outside of the single PHINode we should not skip over it.
1128
for (unsigned Idx : IncomingVals) {
1129
Value *V = PN.getIncomingValue(Idx);
1130
if (outputHasNonPHI(V, Idx, PN, PotentialExitsFromRegion, RegionBlocks)) {
1131
OutputsWithNonPhiUses.insert(V);
1132
OutputsReplacedByPHINode.erase(V);
1133
continue;
1134
}
1135
if (!OutputsWithNonPhiUses.contains(V))
1136
OutputsReplacedByPHINode.insert(V);
1137
}
1138
}
1139
}
1140
1141
// Represents the type for the unsigned number denoting the output number for
1142
// phi node, along with the canonical number for the exit block.
1143
using ArgLocWithBBCanon = std::pair<unsigned, unsigned>;
1144
// The list of canonical numbers for the incoming values to a PHINode.
1145
using CanonList = SmallVector<unsigned, 2>;
1146
// The pair type representing the set of canonical values being combined in the
1147
// PHINode, along with the location data for the PHINode.
1148
using PHINodeData = std::pair<ArgLocWithBBCanon, CanonList>;
1149
1150
/// Encode \p PND as an integer for easy lookup based on the argument location,
1151
/// the parent BasicBlock canonical numbering, and the canonical numbering of
1152
/// the values stored in the PHINode.
1153
///
1154
/// \param PND - The data to hash.
1155
/// \returns The hash code of \p PND.
1156
static hash_code encodePHINodeData(PHINodeData &PND) {
1157
return llvm::hash_combine(
1158
llvm::hash_value(PND.first.first), llvm::hash_value(PND.first.second),
1159
llvm::hash_combine_range(PND.second.begin(), PND.second.end()));
1160
}
1161
1162
/// Create a special GVN for PHINodes that will be used outside of
1163
/// the region. We create a hash code based on the Canonical number of the
1164
/// parent BasicBlock, the canonical numbering of the values stored in the
1165
/// PHINode and the aggregate argument location. This is used to find whether
1166
/// this PHINode type has been given a canonical numbering already. If not, we
1167
/// assign it a value and store it for later use. The value is returned to
1168
/// identify different output schemes for the set of regions.
1169
///
1170
/// \param Region - The region that \p PN is an output for.
1171
/// \param PN - The PHINode we are analyzing.
1172
/// \param Blocks - The blocks for the region we are analyzing.
1173
/// \param AggArgIdx - The argument \p PN will be stored into.
1174
/// \returns An optional holding the assigned canonical number, or std::nullopt
1175
/// if there is some attribute of the PHINode blocking it from being used.
1176
static std::optional<unsigned> getGVNForPHINode(OutlinableRegion &Region,
1177
PHINode *PN,
1178
DenseSet<BasicBlock *> &Blocks,
1179
unsigned AggArgIdx) {
1180
OutlinableGroup &Group = *Region.Parent;
1181
IRSimilarityCandidate &Cand = *Region.Candidate;
1182
BasicBlock *PHIBB = PN->getParent();
1183
CanonList PHIGVNs;
1184
Value *Incoming;
1185
BasicBlock *IncomingBlock;
1186
for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
1187
Incoming = PN->getIncomingValue(Idx);
1188
IncomingBlock = PN->getIncomingBlock(Idx);
1189
// If we cannot find a GVN, and the incoming block is included in the region
1190
// this means that the input to the PHINode is not included in the region we
1191
// are trying to analyze, meaning, that if it was outlined, we would be
1192
// adding an extra input. We ignore this case for now, and so ignore the
1193
// region.
1194
std::optional<unsigned> OGVN = Cand.getGVN(Incoming);
1195
if (!OGVN && Blocks.contains(IncomingBlock)) {
1196
Region.IgnoreRegion = true;
1197
return std::nullopt;
1198
}
1199
1200
// If the incoming block isn't in the region, we don't have to worry about
1201
// this incoming value.
1202
if (!Blocks.contains(IncomingBlock))
1203
continue;
1204
1205
// Collect the canonical numbers of the values in the PHINode.
1206
unsigned GVN = *OGVN;
1207
OGVN = Cand.getCanonicalNum(GVN);
1208
assert(OGVN && "No GVN found for incoming value?");
1209
PHIGVNs.push_back(*OGVN);
1210
1211
// Find the incoming block and use the canonical numbering as well to define
1212
// the hash for the PHINode.
1213
OGVN = Cand.getGVN(IncomingBlock);
1214
1215
// If there is no number for the incoming block, it is because we have
1216
// split the candidate basic blocks. So we use the previous block that it
1217
// was split from to find the valid global value numbering for the PHINode.
1218
if (!OGVN) {
1219
assert(Cand.getStartBB() == IncomingBlock &&
1220
"Unknown basic block used in exit path PHINode.");
1221
1222
BasicBlock *PrevBlock = nullptr;
1223
// Iterate over the predecessors to the incoming block of the
1224
// PHINode, when we find a block that is not contained in the region
1225
// we know that this is the first block that we split from, and should
1226
// have a valid global value numbering.
1227
for (BasicBlock *Pred : predecessors(IncomingBlock))
1228
if (!Blocks.contains(Pred)) {
1229
PrevBlock = Pred;
1230
break;
1231
}
1232
assert(PrevBlock && "Expected a predecessor not in the reigon!");
1233
OGVN = Cand.getGVN(PrevBlock);
1234
}
1235
GVN = *OGVN;
1236
OGVN = Cand.getCanonicalNum(GVN);
1237
assert(OGVN && "No GVN found for incoming block?");
1238
PHIGVNs.push_back(*OGVN);
1239
}
1240
1241
// Now that we have the GVNs for the incoming values, we are going to combine
1242
// them with the GVN of the incoming bock, and the output location of the
1243
// PHINode to generate a hash value representing this instance of the PHINode.
1244
DenseMap<hash_code, unsigned>::iterator GVNToPHIIt;
1245
DenseMap<unsigned, PHINodeData>::iterator PHIToGVNIt;
1246
std::optional<unsigned> BBGVN = Cand.getGVN(PHIBB);
1247
assert(BBGVN && "Could not find GVN for the incoming block!");
1248
1249
BBGVN = Cand.getCanonicalNum(*BBGVN);
1250
assert(BBGVN && "Could not find canonical number for the incoming block!");
1251
// Create a pair of the exit block canonical value, and the aggregate
1252
// argument location, connected to the canonical numbers stored in the
1253
// PHINode.
1254
PHINodeData TemporaryPair =
1255
std::make_pair(std::make_pair(*BBGVN, AggArgIdx), PHIGVNs);
1256
hash_code PHINodeDataHash = encodePHINodeData(TemporaryPair);
1257
1258
// Look for and create a new entry in our connection between canonical
1259
// numbers for PHINodes, and the set of objects we just created.
1260
GVNToPHIIt = Group.GVNsToPHINodeGVN.find(PHINodeDataHash);
1261
if (GVNToPHIIt == Group.GVNsToPHINodeGVN.end()) {
1262
bool Inserted = false;
1263
std::tie(PHIToGVNIt, Inserted) = Group.PHINodeGVNToGVNs.insert(
1264
std::make_pair(Group.PHINodeGVNTracker, TemporaryPair));
1265
std::tie(GVNToPHIIt, Inserted) = Group.GVNsToPHINodeGVN.insert(
1266
std::make_pair(PHINodeDataHash, Group.PHINodeGVNTracker--));
1267
}
1268
1269
return GVNToPHIIt->second;
1270
}
1271
1272
/// Create a mapping of the output arguments for the \p Region to the output
1273
/// arguments of the overall outlined function.
1274
///
1275
/// \param [in,out] Region - The region of code to be analyzed.
1276
/// \param [in] Outputs - The values found by the code extractor.
1277
static void
1278
findExtractedOutputToOverallOutputMapping(Module &M, OutlinableRegion &Region,
1279
SetVector<Value *> &Outputs) {
1280
OutlinableGroup &Group = *Region.Parent;
1281
IRSimilarityCandidate &C = *Region.Candidate;
1282
1283
SmallVector<BasicBlock *> BE;
1284
DenseSet<BasicBlock *> BlocksInRegion;
1285
C.getBasicBlocks(BlocksInRegion, BE);
1286
1287
// Find the exits to the region.
1288
SmallPtrSet<BasicBlock *, 1> Exits;
1289
for (BasicBlock *Block : BE)
1290
for (BasicBlock *Succ : successors(Block))
1291
if (!BlocksInRegion.contains(Succ))
1292
Exits.insert(Succ);
1293
1294
// After determining which blocks exit to PHINodes, we add these PHINodes to
1295
// the set of outputs to be processed. We also check the incoming values of
1296
// the PHINodes for whether they should no longer be considered outputs.
1297
DenseSet<Value *> OutputsReplacedByPHINode;
1298
DenseSet<Value *> OutputsWithNonPhiUses;
1299
for (BasicBlock *ExitBB : Exits)
1300
analyzeExitPHIsForOutputUses(ExitBB, Exits, BlocksInRegion, Outputs,
1301
OutputsReplacedByPHINode,
1302
OutputsWithNonPhiUses);
1303
1304
// This counts the argument number in the extracted function.
1305
unsigned OriginalIndex = Region.NumExtractedInputs;
1306
1307
// This counts the argument number in the overall function.
1308
unsigned TypeIndex = Group.NumAggregateInputs;
1309
bool TypeFound;
1310
DenseSet<unsigned> AggArgsUsed;
1311
1312
// Iterate over the output types and identify if there is an aggregate pointer
1313
// type whose base type matches the current output type. If there is, we mark
1314
// that we will use this output register for this value. If not we add another
1315
// type to the overall argument type list. We also store the GVNs used for
1316
// stores to identify which values will need to be moved into an special
1317
// block that holds the stores to the output registers.
1318
for (Value *Output : Outputs) {
1319
TypeFound = false;
1320
// We can do this since it is a result value, and will have a number
1321
// that is necessarily the same. BUT if in the future, the instructions
1322
// do not have to be in same order, but are functionally the same, we will
1323
// have to use a different scheme, as one-to-one correspondence is not
1324
// guaranteed.
1325
unsigned ArgumentSize = Group.ArgumentTypes.size();
1326
1327
// If the output is combined in a PHINode, we make sure to skip over it.
1328
if (OutputsReplacedByPHINode.contains(Output))
1329
continue;
1330
1331
unsigned AggArgIdx = 0;
1332
for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) {
1333
if (!isa<PointerType>(Group.ArgumentTypes[Jdx]))
1334
continue;
1335
1336
if (AggArgsUsed.contains(Jdx))
1337
continue;
1338
1339
TypeFound = true;
1340
AggArgsUsed.insert(Jdx);
1341
Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx));
1342
Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex));
1343
AggArgIdx = Jdx;
1344
break;
1345
}
1346
1347
// We were unable to find an unused type in the output type set that matches
1348
// the output, so we add a pointer type to the argument types of the overall
1349
// function to handle this output and create a mapping to it.
1350
if (!TypeFound) {
1351
Group.ArgumentTypes.push_back(PointerType::get(Output->getContext(),
1352
M.getDataLayout().getAllocaAddrSpace()));
1353
// Mark the new pointer type as the last value in the aggregate argument
1354
// list.
1355
unsigned ArgTypeIdx = Group.ArgumentTypes.size() - 1;
1356
AggArgsUsed.insert(ArgTypeIdx);
1357
Region.ExtractedArgToAgg.insert(
1358
std::make_pair(OriginalIndex, ArgTypeIdx));
1359
Region.AggArgToExtracted.insert(
1360
std::make_pair(ArgTypeIdx, OriginalIndex));
1361
AggArgIdx = ArgTypeIdx;
1362
}
1363
1364
// TODO: Adapt to the extra input from the PHINode.
1365
PHINode *PN = dyn_cast<PHINode>(Output);
1366
1367
std::optional<unsigned> GVN;
1368
if (PN && !BlocksInRegion.contains(PN->getParent())) {
1369
// Values outside the region can be combined into PHINode when we
1370
// have multiple exits. We collect both of these into a list to identify
1371
// which values are being used in the PHINode. Each list identifies a
1372
// different PHINode, and a different output. We store the PHINode as it's
1373
// own canonical value. These canonical values are also dependent on the
1374
// output argument it is saved to.
1375
1376
// If two PHINodes have the same canonical values, but different aggregate
1377
// argument locations, then they will have distinct Canonical Values.
1378
GVN = getGVNForPHINode(Region, PN, BlocksInRegion, AggArgIdx);
1379
if (!GVN)
1380
return;
1381
} else {
1382
// If we do not have a PHINode we use the global value numbering for the
1383
// output value, to find the canonical number to add to the set of stored
1384
// values.
1385
GVN = C.getGVN(Output);
1386
GVN = C.getCanonicalNum(*GVN);
1387
}
1388
1389
// Each region has a potentially unique set of outputs. We save which
1390
// values are output in a list of canonical values so we can differentiate
1391
// among the different store schemes.
1392
Region.GVNStores.push_back(*GVN);
1393
1394
OriginalIndex++;
1395
TypeIndex++;
1396
}
1397
1398
// We sort the stored values to make sure that we are not affected by analysis
1399
// order when determining what combination of items were stored.
1400
stable_sort(Region.GVNStores);
1401
}
1402
1403
void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region,
1404
DenseSet<unsigned> &NotSame) {
1405
std::vector<unsigned> Inputs;
1406
SetVector<Value *> ArgInputs, Outputs;
1407
1408
getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs,
1409
Outputs);
1410
1411
if (Region.IgnoreRegion)
1412
return;
1413
1414
// Map the inputs found by the CodeExtractor to the arguments found for
1415
// the overall function.
1416
findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs);
1417
1418
// Map the outputs found by the CodeExtractor to the arguments found for
1419
// the overall function.
1420
findExtractedOutputToOverallOutputMapping(M, Region, Outputs);
1421
}
1422
1423
/// Replace the extracted function in the Region with a call to the overall
1424
/// function constructed from the deduplicated similar regions, replacing and
1425
/// remapping the values passed to the extracted function as arguments to the
1426
/// new arguments of the overall function.
1427
///
1428
/// \param [in] M - The module to outline from.
1429
/// \param [in] Region - The regions of extracted code to be replaced with a new
1430
/// function.
1431
/// \returns a call instruction with the replaced function.
1432
CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) {
1433
std::vector<Value *> NewCallArgs;
1434
DenseMap<unsigned, unsigned>::iterator ArgPair;
1435
1436
OutlinableGroup &Group = *Region.Parent;
1437
CallInst *Call = Region.Call;
1438
assert(Call && "Call to replace is nullptr?");
1439
Function *AggFunc = Group.OutlinedFunction;
1440
assert(AggFunc && "Function to replace with is nullptr?");
1441
1442
// If the arguments are the same size, there are not values that need to be
1443
// made into an argument, the argument ordering has not been change, or
1444
// different output registers to handle. We can simply replace the called
1445
// function in this case.
1446
if (!Region.ChangedArgOrder && AggFunc->arg_size() == Call->arg_size()) {
1447
LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
1448
<< *AggFunc << " with same number of arguments\n");
1449
Call->setCalledFunction(AggFunc);
1450
return Call;
1451
}
1452
1453
// We have a different number of arguments than the new function, so
1454
// we need to use our previously mappings off extracted argument to overall
1455
// function argument, and constants to overall function argument to create the
1456
// new argument list.
1457
for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) {
1458
1459
if (AggArgIdx == AggFunc->arg_size() - 1 &&
1460
Group.OutputGVNCombinations.size() > 1) {
1461
// If we are on the last argument, and we need to differentiate between
1462
// output blocks, add an integer to the argument list to determine
1463
// what block to take
1464
LLVM_DEBUG(dbgs() << "Set switch block argument to "
1465
<< Region.OutputBlockNum << "\n");
1466
NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()),
1467
Region.OutputBlockNum));
1468
continue;
1469
}
1470
1471
ArgPair = Region.AggArgToExtracted.find(AggArgIdx);
1472
if (ArgPair != Region.AggArgToExtracted.end()) {
1473
Value *ArgumentValue = Call->getArgOperand(ArgPair->second);
1474
// If we found the mapping from the extracted function to the overall
1475
// function, we simply add it to the argument list. We use the same
1476
// value, it just needs to honor the new order of arguments.
1477
LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
1478
<< *ArgumentValue << "\n");
1479
NewCallArgs.push_back(ArgumentValue);
1480
continue;
1481
}
1482
1483
// If it is a constant, we simply add it to the argument list as a value.
1484
if (Region.AggArgToConstant.contains(AggArgIdx)) {
1485
Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second;
1486
LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
1487
<< *CST << "\n");
1488
NewCallArgs.push_back(CST);
1489
continue;
1490
}
1491
1492
// Add a nullptr value if the argument is not found in the extracted
1493
// function. If we cannot find a value, it means it is not in use
1494
// for the region, so we should not pass anything to it.
1495
LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n");
1496
NewCallArgs.push_back(ConstantPointerNull::get(
1497
static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType())));
1498
}
1499
1500
LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
1501
<< *AggFunc << " with new set of arguments\n");
1502
// Create the new call instruction and erase the old one.
1503
Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "",
1504
Call->getIterator());
1505
1506
// It is possible that the call to the outlined function is either the first
1507
// instruction is in the new block, the last instruction, or both. If either
1508
// of these is the case, we need to make sure that we replace the instruction
1509
// in the IRInstructionData struct with the new call.
1510
CallInst *OldCall = Region.Call;
1511
if (Region.NewFront->Inst == OldCall)
1512
Region.NewFront->Inst = Call;
1513
if (Region.NewBack->Inst == OldCall)
1514
Region.NewBack->Inst = Call;
1515
1516
// Transfer any debug information.
1517
Call->setDebugLoc(Region.Call->getDebugLoc());
1518
// Since our output may determine which branch we go to, we make sure to
1519
// propogate this new call value through the module.
1520
OldCall->replaceAllUsesWith(Call);
1521
1522
// Remove the old instruction.
1523
OldCall->eraseFromParent();
1524
Region.Call = Call;
1525
1526
// Make sure that the argument in the new function has the SwiftError
1527
// argument.
1528
if (Group.SwiftErrorArgument)
1529
Call->addParamAttr(*Group.SwiftErrorArgument, Attribute::SwiftError);
1530
1531
return Call;
1532
}
1533
1534
/// Find or create a BasicBlock in the outlined function containing PhiBlocks
1535
/// for \p RetVal.
1536
///
1537
/// \param Group - The OutlinableGroup containing the information about the
1538
/// overall outlined function.
1539
/// \param RetVal - The return value or exit option that we are currently
1540
/// evaluating.
1541
/// \returns The found or newly created BasicBlock to contain the needed
1542
/// PHINodes to be used as outputs.
1543
static BasicBlock *findOrCreatePHIBlock(OutlinableGroup &Group, Value *RetVal) {
1544
DenseMap<Value *, BasicBlock *>::iterator PhiBlockForRetVal,
1545
ReturnBlockForRetVal;
1546
PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
1547
ReturnBlockForRetVal = Group.EndBBs.find(RetVal);
1548
assert(ReturnBlockForRetVal != Group.EndBBs.end() &&
1549
"Could not find output value!");
1550
BasicBlock *ReturnBB = ReturnBlockForRetVal->second;
1551
1552
// Find if a PHIBlock exists for this return value already. If it is
1553
// the first time we are analyzing this, we will not, so we record it.
1554
PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
1555
if (PhiBlockForRetVal != Group.PHIBlocks.end())
1556
return PhiBlockForRetVal->second;
1557
1558
// If we did not find a block, we create one, and insert it into the
1559
// overall function and record it.
1560
bool Inserted = false;
1561
BasicBlock *PHIBlock = BasicBlock::Create(ReturnBB->getContext(), "phi_block",
1562
ReturnBB->getParent());
1563
std::tie(PhiBlockForRetVal, Inserted) =
1564
Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
1565
1566
// We find the predecessors of the return block in the newly created outlined
1567
// function in order to point them to the new PHIBlock rather than the already
1568
// existing return block.
1569
SmallVector<BranchInst *, 2> BranchesToChange;
1570
for (BasicBlock *Pred : predecessors(ReturnBB))
1571
BranchesToChange.push_back(cast<BranchInst>(Pred->getTerminator()));
1572
1573
// Now we mark the branch instructions found, and change the references of the
1574
// return block to the newly created PHIBlock.
1575
for (BranchInst *BI : BranchesToChange)
1576
for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ < End; Succ++) {
1577
if (BI->getSuccessor(Succ) != ReturnBB)
1578
continue;
1579
BI->setSuccessor(Succ, PHIBlock);
1580
}
1581
1582
BranchInst::Create(ReturnBB, PHIBlock);
1583
1584
return PhiBlockForRetVal->second;
1585
}
1586
1587
/// For the function call now representing the \p Region, find the passed value
1588
/// to that call that represents Argument \p A at the call location if the
1589
/// call has already been replaced with a call to the overall, aggregate
1590
/// function.
1591
///
1592
/// \param A - The Argument to get the passed value for.
1593
/// \param Region - The extracted Region corresponding to the outlined function.
1594
/// \returns The Value representing \p A at the call site.
1595
static Value *
1596
getPassedArgumentInAlreadyOutlinedFunction(const Argument *A,
1597
const OutlinableRegion &Region) {
1598
// If we don't need to adjust the argument number at all (since the call
1599
// has already been replaced by a call to the overall outlined function)
1600
// we can just get the specified argument.
1601
return Region.Call->getArgOperand(A->getArgNo());
1602
}
1603
1604
/// For the function call now representing the \p Region, find the passed value
1605
/// to that call that represents Argument \p A at the call location if the
1606
/// call has only been replaced by the call to the aggregate function.
1607
///
1608
/// \param A - The Argument to get the passed value for.
1609
/// \param Region - The extracted Region corresponding to the outlined function.
1610
/// \returns The Value representing \p A at the call site.
1611
static Value *
1612
getPassedArgumentAndAdjustArgumentLocation(const Argument *A,
1613
const OutlinableRegion &Region) {
1614
unsigned ArgNum = A->getArgNo();
1615
1616
// If it is a constant, we can look at our mapping from when we created
1617
// the outputs to figure out what the constant value is.
1618
if (Region.AggArgToConstant.count(ArgNum))
1619
return Region.AggArgToConstant.find(ArgNum)->second;
1620
1621
// If it is not a constant, and we are not looking at the overall function, we
1622
// need to adjust which argument we are looking at.
1623
ArgNum = Region.AggArgToExtracted.find(ArgNum)->second;
1624
return Region.Call->getArgOperand(ArgNum);
1625
}
1626
1627
/// Find the canonical numbering for the incoming Values into the PHINode \p PN.
1628
///
1629
/// \param PN [in] - The PHINode that we are finding the canonical numbers for.
1630
/// \param Region [in] - The OutlinableRegion containing \p PN.
1631
/// \param OutputMappings [in] - The mapping of output values from outlined
1632
/// region to their original values.
1633
/// \param CanonNums [out] - The canonical numbering for the incoming values to
1634
/// \p PN paired with their incoming block.
1635
/// \param ReplacedWithOutlinedCall - A flag to use the extracted function call
1636
/// of \p Region rather than the overall function's call.
1637
static void findCanonNumsForPHI(
1638
PHINode *PN, OutlinableRegion &Region,
1639
const DenseMap<Value *, Value *> &OutputMappings,
1640
SmallVector<std::pair<unsigned, BasicBlock *>> &CanonNums,
1641
bool ReplacedWithOutlinedCall = true) {
1642
// Iterate over the incoming values.
1643
for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
1644
Value *IVal = PN->getIncomingValue(Idx);
1645
BasicBlock *IBlock = PN->getIncomingBlock(Idx);
1646
// If we have an argument as incoming value, we need to grab the passed
1647
// value from the call itself.
1648
if (Argument *A = dyn_cast<Argument>(IVal)) {
1649
if (ReplacedWithOutlinedCall)
1650
IVal = getPassedArgumentInAlreadyOutlinedFunction(A, Region);
1651
else
1652
IVal = getPassedArgumentAndAdjustArgumentLocation(A, Region);
1653
}
1654
1655
// Get the original value if it has been replaced by an output value.
1656
IVal = findOutputMapping(OutputMappings, IVal);
1657
1658
// Find and add the canonical number for the incoming value.
1659
std::optional<unsigned> GVN = Region.Candidate->getGVN(IVal);
1660
assert(GVN && "No GVN for incoming value");
1661
std::optional<unsigned> CanonNum = Region.Candidate->getCanonicalNum(*GVN);
1662
assert(CanonNum && "No Canonical Number for GVN");
1663
CanonNums.push_back(std::make_pair(*CanonNum, IBlock));
1664
}
1665
}
1666
1667
/// Find, or add PHINode \p PN to the combined PHINode Block \p OverallPHIBlock
1668
/// in order to condense the number of instructions added to the outlined
1669
/// function.
1670
///
1671
/// \param PN [in] - The PHINode that we are finding the canonical numbers for.
1672
/// \param Region [in] - The OutlinableRegion containing \p PN.
1673
/// \param OverallPhiBlock [in] - The overall PHIBlock we are trying to find
1674
/// \p PN in.
1675
/// \param OutputMappings [in] - The mapping of output values from outlined
1676
/// region to their original values.
1677
/// \param UsedPHIs [in, out] - The PHINodes in the block that have already been
1678
/// matched.
1679
/// \return the newly found or created PHINode in \p OverallPhiBlock.
1680
static PHINode*
1681
findOrCreatePHIInBlock(PHINode &PN, OutlinableRegion &Region,
1682
BasicBlock *OverallPhiBlock,
1683
const DenseMap<Value *, Value *> &OutputMappings,
1684
DenseSet<PHINode *> &UsedPHIs) {
1685
OutlinableGroup &Group = *Region.Parent;
1686
1687
1688
// A list of the canonical numbering assigned to each incoming value, paired
1689
// with the incoming block for the PHINode passed into this function.
1690
SmallVector<std::pair<unsigned, BasicBlock *>> PNCanonNums;
1691
1692
// We have to use the extracted function since we have merged this region into
1693
// the overall function yet. We make sure to reassign the argument numbering
1694
// since it is possible that the argument ordering is different between the
1695
// functions.
1696
findCanonNumsForPHI(&PN, Region, OutputMappings, PNCanonNums,
1697
/* ReplacedWithOutlinedCall = */ false);
1698
1699
OutlinableRegion *FirstRegion = Group.Regions[0];
1700
1701
// A list of the canonical numbering assigned to each incoming value, paired
1702
// with the incoming block for the PHINode that we are currently comparing
1703
// the passed PHINode to.
1704
SmallVector<std::pair<unsigned, BasicBlock *>> CurrentCanonNums;
1705
1706
// Find the Canonical Numbering for each PHINode, if it matches, we replace
1707
// the uses of the PHINode we are searching for, with the found PHINode.
1708
for (PHINode &CurrPN : OverallPhiBlock->phis()) {
1709
// If this PHINode has already been matched to another PHINode to be merged,
1710
// we skip it.
1711
if (UsedPHIs.contains(&CurrPN))
1712
continue;
1713
1714
CurrentCanonNums.clear();
1715
findCanonNumsForPHI(&CurrPN, *FirstRegion, OutputMappings, CurrentCanonNums,
1716
/* ReplacedWithOutlinedCall = */ true);
1717
1718
// If the list of incoming values is not the same length, then they cannot
1719
// match since there is not an analogue for each incoming value.
1720
if (PNCanonNums.size() != CurrentCanonNums.size())
1721
continue;
1722
1723
bool FoundMatch = true;
1724
1725
// We compare the canonical value for each incoming value in the passed
1726
// in PHINode to one already present in the outlined region. If the
1727
// incoming values do not match, then the PHINodes do not match.
1728
1729
// We also check to make sure that the incoming block matches as well by
1730
// finding the corresponding incoming block in the combined outlined region
1731
// for the current outlined region.
1732
for (unsigned Idx = 0, Edx = PNCanonNums.size(); Idx < Edx; ++Idx) {
1733
std::pair<unsigned, BasicBlock *> ToCompareTo = CurrentCanonNums[Idx];
1734
std::pair<unsigned, BasicBlock *> ToAdd = PNCanonNums[Idx];
1735
if (ToCompareTo.first != ToAdd.first) {
1736
FoundMatch = false;
1737
break;
1738
}
1739
1740
BasicBlock *CorrespondingBlock =
1741
Region.findCorrespondingBlockIn(*FirstRegion, ToAdd.second);
1742
assert(CorrespondingBlock && "Found block is nullptr");
1743
if (CorrespondingBlock != ToCompareTo.second) {
1744
FoundMatch = false;
1745
break;
1746
}
1747
}
1748
1749
// If all incoming values and branches matched, then we can merge
1750
// into the found PHINode.
1751
if (FoundMatch) {
1752
UsedPHIs.insert(&CurrPN);
1753
return &CurrPN;
1754
}
1755
}
1756
1757
// If we've made it here, it means we weren't able to replace the PHINode, so
1758
// we must insert it ourselves.
1759
PHINode *NewPN = cast<PHINode>(PN.clone());
1760
NewPN->insertBefore(&*OverallPhiBlock->begin());
1761
for (unsigned Idx = 0, Edx = NewPN->getNumIncomingValues(); Idx < Edx;
1762
Idx++) {
1763
Value *IncomingVal = NewPN->getIncomingValue(Idx);
1764
BasicBlock *IncomingBlock = NewPN->getIncomingBlock(Idx);
1765
1766
// Find corresponding basic block in the overall function for the incoming
1767
// block.
1768
BasicBlock *BlockToUse =
1769
Region.findCorrespondingBlockIn(*FirstRegion, IncomingBlock);
1770
NewPN->setIncomingBlock(Idx, BlockToUse);
1771
1772
// If we have an argument we make sure we replace using the argument from
1773
// the correct function.
1774
if (Argument *A = dyn_cast<Argument>(IncomingVal)) {
1775
Value *Val = Group.OutlinedFunction->getArg(A->getArgNo());
1776
NewPN->setIncomingValue(Idx, Val);
1777
continue;
1778
}
1779
1780
// Find the corresponding value in the overall function.
1781
IncomingVal = findOutputMapping(OutputMappings, IncomingVal);
1782
Value *Val = Region.findCorrespondingValueIn(*FirstRegion, IncomingVal);
1783
assert(Val && "Value is nullptr?");
1784
DenseMap<Value *, Value *>::iterator RemappedIt =
1785
FirstRegion->RemappedArguments.find(Val);
1786
if (RemappedIt != FirstRegion->RemappedArguments.end())
1787
Val = RemappedIt->second;
1788
NewPN->setIncomingValue(Idx, Val);
1789
}
1790
return NewPN;
1791
}
1792
1793
// Within an extracted function, replace the argument uses of the extracted
1794
// region with the arguments of the function for an OutlinableGroup.
1795
//
1796
/// \param [in] Region - The region of extracted code to be changed.
1797
/// \param [in,out] OutputBBs - The BasicBlock for the output stores for this
1798
/// region.
1799
/// \param [in] FirstFunction - A flag to indicate whether we are using this
1800
/// function to define the overall outlined function for all the regions, or
1801
/// if we are operating on one of the following regions.
1802
static void
1803
replaceArgumentUses(OutlinableRegion &Region,
1804
DenseMap<Value *, BasicBlock *> &OutputBBs,
1805
const DenseMap<Value *, Value *> &OutputMappings,
1806
bool FirstFunction = false) {
1807
OutlinableGroup &Group = *Region.Parent;
1808
assert(Region.ExtractedFunction && "Region has no extracted function?");
1809
1810
Function *DominatingFunction = Region.ExtractedFunction;
1811
if (FirstFunction)
1812
DominatingFunction = Group.OutlinedFunction;
1813
DominatorTree DT(*DominatingFunction);
1814
DenseSet<PHINode *> UsedPHIs;
1815
1816
for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size();
1817
ArgIdx++) {
1818
assert(Region.ExtractedArgToAgg.contains(ArgIdx) &&
1819
"No mapping from extracted to outlined?");
1820
unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second;
1821
Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx);
1822
Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx);
1823
// The argument is an input, so we can simply replace it with the overall
1824
// argument value
1825
if (ArgIdx < Region.NumExtractedInputs) {
1826
LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function "
1827
<< *Region.ExtractedFunction << " with " << *AggArg
1828
<< " in function " << *Group.OutlinedFunction << "\n");
1829
Arg->replaceAllUsesWith(AggArg);
1830
Value *V = Region.Call->getArgOperand(ArgIdx);
1831
Region.RemappedArguments.insert(std::make_pair(V, AggArg));
1832
continue;
1833
}
1834
1835
// If we are replacing an output, we place the store value in its own
1836
// block inside the overall function before replacing the use of the output
1837
// in the function.
1838
assert(Arg->hasOneUse() && "Output argument can only have one use");
1839
User *InstAsUser = Arg->user_back();
1840
assert(InstAsUser && "User is nullptr!");
1841
1842
Instruction *I = cast<Instruction>(InstAsUser);
1843
BasicBlock *BB = I->getParent();
1844
SmallVector<BasicBlock *, 4> Descendants;
1845
DT.getDescendants(BB, Descendants);
1846
bool EdgeAdded = false;
1847
if (Descendants.size() == 0) {
1848
EdgeAdded = true;
1849
DT.insertEdge(&DominatingFunction->getEntryBlock(), BB);
1850
DT.getDescendants(BB, Descendants);
1851
}
1852
1853
// Iterate over the following blocks, looking for return instructions,
1854
// if we find one, find the corresponding output block for the return value
1855
// and move our store instruction there.
1856
for (BasicBlock *DescendBB : Descendants) {
1857
ReturnInst *RI = dyn_cast<ReturnInst>(DescendBB->getTerminator());
1858
if (!RI)
1859
continue;
1860
Value *RetVal = RI->getReturnValue();
1861
auto VBBIt = OutputBBs.find(RetVal);
1862
assert(VBBIt != OutputBBs.end() && "Could not find output value!");
1863
1864
// If this is storing a PHINode, we must make sure it is included in the
1865
// overall function.
1866
StoreInst *SI = cast<StoreInst>(I);
1867
1868
Value *ValueOperand = SI->getValueOperand();
1869
1870
StoreInst *NewI = cast<StoreInst>(I->clone());
1871
NewI->setDebugLoc(DebugLoc());
1872
BasicBlock *OutputBB = VBBIt->second;
1873
NewI->insertInto(OutputBB, OutputBB->end());
1874
LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to "
1875
<< *OutputBB << "\n");
1876
1877
// If this is storing a PHINode, we must make sure it is included in the
1878
// overall function.
1879
if (!isa<PHINode>(ValueOperand) ||
1880
Region.Candidate->getGVN(ValueOperand).has_value()) {
1881
if (FirstFunction)
1882
continue;
1883
Value *CorrVal =
1884
Region.findCorrespondingValueIn(*Group.Regions[0], ValueOperand);
1885
assert(CorrVal && "Value is nullptr?");
1886
NewI->setOperand(0, CorrVal);
1887
continue;
1888
}
1889
PHINode *PN = cast<PHINode>(SI->getValueOperand());
1890
// If it has a value, it was not split by the code extractor, which
1891
// is what we are looking for.
1892
if (Region.Candidate->getGVN(PN))
1893
continue;
1894
1895
// We record the parent block for the PHINode in the Region so that
1896
// we can exclude it from checks later on.
1897
Region.PHIBlocks.insert(std::make_pair(RetVal, PN->getParent()));
1898
1899
// If this is the first function, we do not need to worry about mergiing
1900
// this with any other block in the overall outlined function, so we can
1901
// just continue.
1902
if (FirstFunction) {
1903
BasicBlock *PHIBlock = PN->getParent();
1904
Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
1905
continue;
1906
}
1907
1908
// We look for the aggregate block that contains the PHINodes leading into
1909
// this exit path. If we can't find one, we create one.
1910
BasicBlock *OverallPhiBlock = findOrCreatePHIBlock(Group, RetVal);
1911
1912
// For our PHINode, we find the combined canonical numbering, and
1913
// attempt to find a matching PHINode in the overall PHIBlock. If we
1914
// cannot, we copy the PHINode and move it into this new block.
1915
PHINode *NewPN = findOrCreatePHIInBlock(*PN, Region, OverallPhiBlock,
1916
OutputMappings, UsedPHIs);
1917
NewI->setOperand(0, NewPN);
1918
}
1919
1920
// If we added an edge for basic blocks without a predecessor, we remove it
1921
// here.
1922
if (EdgeAdded)
1923
DT.deleteEdge(&DominatingFunction->getEntryBlock(), BB);
1924
I->eraseFromParent();
1925
1926
LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function "
1927
<< *Region.ExtractedFunction << " with " << *AggArg
1928
<< " in function " << *Group.OutlinedFunction << "\n");
1929
Arg->replaceAllUsesWith(AggArg);
1930
}
1931
}
1932
1933
/// Within an extracted function, replace the constants that need to be lifted
1934
/// into arguments with the actual argument.
1935
///
1936
/// \param Region [in] - The region of extracted code to be changed.
1937
void replaceConstants(OutlinableRegion &Region) {
1938
OutlinableGroup &Group = *Region.Parent;
1939
// Iterate over the constants that need to be elevated into arguments
1940
for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) {
1941
unsigned AggArgIdx = Const.first;
1942
Function *OutlinedFunction = Group.OutlinedFunction;
1943
assert(OutlinedFunction && "Overall Function is not defined?");
1944
Constant *CST = Const.second;
1945
Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx);
1946
// Identify the argument it will be elevated to, and replace instances of
1947
// that constant in the function.
1948
1949
// TODO: If in the future constants do not have one global value number,
1950
// i.e. a constant 1 could be mapped to several values, this check will
1951
// have to be more strict. It cannot be using only replaceUsesWithIf.
1952
1953
LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST
1954
<< " in function " << *OutlinedFunction << " with "
1955
<< *Arg << "\n");
1956
CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) {
1957
if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
1958
return I->getFunction() == OutlinedFunction;
1959
return false;
1960
});
1961
}
1962
}
1963
1964
/// It is possible that there is a basic block that already performs the same
1965
/// stores. This returns a duplicate block, if it exists
1966
///
1967
/// \param OutputBBs [in] the blocks we are looking for a duplicate of.
1968
/// \param OutputStoreBBs [in] The existing output blocks.
1969
/// \returns an optional value with the number output block if there is a match.
1970
std::optional<unsigned> findDuplicateOutputBlock(
1971
DenseMap<Value *, BasicBlock *> &OutputBBs,
1972
std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
1973
1974
bool Mismatch = false;
1975
unsigned MatchingNum = 0;
1976
// We compare the new set output blocks to the other sets of output blocks.
1977
// If they are the same number, and have identical instructions, they are
1978
// considered to be the same.
1979
for (DenseMap<Value *, BasicBlock *> &CompBBs : OutputStoreBBs) {
1980
Mismatch = false;
1981
for (std::pair<Value *, BasicBlock *> &VToB : CompBBs) {
1982
DenseMap<Value *, BasicBlock *>::iterator OutputBBIt =
1983
OutputBBs.find(VToB.first);
1984
if (OutputBBIt == OutputBBs.end()) {
1985
Mismatch = true;
1986
break;
1987
}
1988
1989
BasicBlock *CompBB = VToB.second;
1990
BasicBlock *OutputBB = OutputBBIt->second;
1991
if (CompBB->size() - 1 != OutputBB->size()) {
1992
Mismatch = true;
1993
break;
1994
}
1995
1996
BasicBlock::iterator NIt = OutputBB->begin();
1997
for (Instruction &I : *CompBB) {
1998
if (isa<BranchInst>(&I))
1999
continue;
2000
2001
if (!I.isIdenticalTo(&(*NIt))) {
2002
Mismatch = true;
2003
break;
2004
}
2005
2006
NIt++;
2007
}
2008
}
2009
2010
if (!Mismatch)
2011
return MatchingNum;
2012
2013
MatchingNum++;
2014
}
2015
2016
return std::nullopt;
2017
}
2018
2019
/// Remove empty output blocks from the outlined region.
2020
///
2021
/// \param BlocksToPrune - Mapping of return values output blocks for the \p
2022
/// Region.
2023
/// \param Region - The OutlinableRegion we are analyzing.
2024
static bool
2025
analyzeAndPruneOutputBlocks(DenseMap<Value *, BasicBlock *> &BlocksToPrune,
2026
OutlinableRegion &Region) {
2027
bool AllRemoved = true;
2028
Value *RetValueForBB;
2029
BasicBlock *NewBB;
2030
SmallVector<Value *, 4> ToRemove;
2031
// Iterate over the output blocks created in the outlined section.
2032
for (std::pair<Value *, BasicBlock *> &VtoBB : BlocksToPrune) {
2033
RetValueForBB = VtoBB.first;
2034
NewBB = VtoBB.second;
2035
2036
// If there are no instructions, we remove it from the module, and also
2037
// mark the value for removal from the return value to output block mapping.
2038
if (NewBB->size() == 0) {
2039
NewBB->eraseFromParent();
2040
ToRemove.push_back(RetValueForBB);
2041
continue;
2042
}
2043
2044
// Mark that we could not remove all the blocks since they were not all
2045
// empty.
2046
AllRemoved = false;
2047
}
2048
2049
// Remove the return value from the mapping.
2050
for (Value *V : ToRemove)
2051
BlocksToPrune.erase(V);
2052
2053
// Mark the region as having the no output scheme.
2054
if (AllRemoved)
2055
Region.OutputBlockNum = -1;
2056
2057
return AllRemoved;
2058
}
2059
2060
/// For the outlined section, move needed the StoreInsts for the output
2061
/// registers into their own block. Then, determine if there is a duplicate
2062
/// output block already created.
2063
///
2064
/// \param [in] OG - The OutlinableGroup of regions to be outlined.
2065
/// \param [in] Region - The OutlinableRegion that is being analyzed.
2066
/// \param [in,out] OutputBBs - the blocks that stores for this region will be
2067
/// placed in.
2068
/// \param [in] EndBBs - the final blocks of the extracted function.
2069
/// \param [in] OutputMappings - OutputMappings the mapping of values that have
2070
/// been replaced by a new output value.
2071
/// \param [in,out] OutputStoreBBs - The existing output blocks.
2072
static void alignOutputBlockWithAggFunc(
2073
OutlinableGroup &OG, OutlinableRegion &Region,
2074
DenseMap<Value *, BasicBlock *> &OutputBBs,
2075
DenseMap<Value *, BasicBlock *> &EndBBs,
2076
const DenseMap<Value *, Value *> &OutputMappings,
2077
std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
2078
// If none of the output blocks have any instructions, this means that we do
2079
// not have to determine if it matches any of the other output schemes, and we
2080
// don't have to do anything else.
2081
if (analyzeAndPruneOutputBlocks(OutputBBs, Region))
2082
return;
2083
2084
// Determine is there is a duplicate set of blocks.
2085
std::optional<unsigned> MatchingBB =
2086
findDuplicateOutputBlock(OutputBBs, OutputStoreBBs);
2087
2088
// If there is, we remove the new output blocks. If it does not,
2089
// we add it to our list of sets of output blocks.
2090
if (MatchingBB) {
2091
LLVM_DEBUG(dbgs() << "Set output block for region in function"
2092
<< Region.ExtractedFunction << " to " << *MatchingBB);
2093
2094
Region.OutputBlockNum = *MatchingBB;
2095
for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs)
2096
VtoBB.second->eraseFromParent();
2097
return;
2098
}
2099
2100
Region.OutputBlockNum = OutputStoreBBs.size();
2101
2102
Value *RetValueForBB;
2103
BasicBlock *NewBB;
2104
OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
2105
for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) {
2106
RetValueForBB = VtoBB.first;
2107
NewBB = VtoBB.second;
2108
DenseMap<Value *, BasicBlock *>::iterator VBBIt =
2109
EndBBs.find(RetValueForBB);
2110
LLVM_DEBUG(dbgs() << "Create output block for region in"
2111
<< Region.ExtractedFunction << " to "
2112
<< *NewBB);
2113
BranchInst::Create(VBBIt->second, NewBB);
2114
OutputStoreBBs.back().insert(std::make_pair(RetValueForBB, NewBB));
2115
}
2116
}
2117
2118
/// Takes in a mapping, \p OldMap of ConstantValues to BasicBlocks, sorts keys,
2119
/// before creating a basic block for each \p NewMap, and inserting into the new
2120
/// block. Each BasicBlock is named with the scheme "<basename>_<key_idx>".
2121
///
2122
/// \param OldMap [in] - The mapping to base the new mapping off of.
2123
/// \param NewMap [out] - The output mapping using the keys of \p OldMap.
2124
/// \param ParentFunc [in] - The function to put the new basic block in.
2125
/// \param BaseName [in] - The start of the BasicBlock names to be appended to
2126
/// by an index value.
2127
static void createAndInsertBasicBlocks(DenseMap<Value *, BasicBlock *> &OldMap,
2128
DenseMap<Value *, BasicBlock *> &NewMap,
2129
Function *ParentFunc, Twine BaseName) {
2130
unsigned Idx = 0;
2131
std::vector<Value *> SortedKeys;
2132
2133
getSortedConstantKeys(SortedKeys, OldMap);
2134
2135
for (Value *RetVal : SortedKeys) {
2136
BasicBlock *NewBB = BasicBlock::Create(
2137
ParentFunc->getContext(),
2138
Twine(BaseName) + Twine("_") + Twine(static_cast<unsigned>(Idx++)),
2139
ParentFunc);
2140
NewMap.insert(std::make_pair(RetVal, NewBB));
2141
}
2142
}
2143
2144
/// Create the switch statement for outlined function to differentiate between
2145
/// all the output blocks.
2146
///
2147
/// For the outlined section, determine if an outlined block already exists that
2148
/// matches the needed stores for the extracted section.
2149
/// \param [in] M - The module we are outlining from.
2150
/// \param [in] OG - The group of regions to be outlined.
2151
/// \param [in] EndBBs - The final blocks of the extracted function.
2152
/// \param [in,out] OutputStoreBBs - The existing output blocks.
2153
void createSwitchStatement(
2154
Module &M, OutlinableGroup &OG, DenseMap<Value *, BasicBlock *> &EndBBs,
2155
std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
2156
// We only need the switch statement if there is more than one store
2157
// combination, or there is more than one set of output blocks. The first
2158
// will occur when we store different sets of values for two different
2159
// regions. The second will occur when we have two outputs that are combined
2160
// in a PHINode outside of the region in one outlined instance, and are used
2161
// seaparately in another. This will create the same set of OutputGVNs, but
2162
// will generate two different output schemes.
2163
if (OG.OutputGVNCombinations.size() > 1) {
2164
Function *AggFunc = OG.OutlinedFunction;
2165
// Create a final block for each different return block.
2166
DenseMap<Value *, BasicBlock *> ReturnBBs;
2167
createAndInsertBasicBlocks(OG.EndBBs, ReturnBBs, AggFunc, "final_block");
2168
2169
for (std::pair<Value *, BasicBlock *> &RetBlockPair : ReturnBBs) {
2170
std::pair<Value *, BasicBlock *> &OutputBlock =
2171
*OG.EndBBs.find(RetBlockPair.first);
2172
BasicBlock *ReturnBlock = RetBlockPair.second;
2173
BasicBlock *EndBB = OutputBlock.second;
2174
Instruction *Term = EndBB->getTerminator();
2175
// Move the return value to the final block instead of the original exit
2176
// stub.
2177
Term->moveBefore(*ReturnBlock, ReturnBlock->end());
2178
// Put the switch statement in the old end basic block for the function
2179
// with a fall through to the new return block.
2180
LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for "
2181
<< OutputStoreBBs.size() << "\n");
2182
SwitchInst *SwitchI =
2183
SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1),
2184
ReturnBlock, OutputStoreBBs.size(), EndBB);
2185
2186
unsigned Idx = 0;
2187
for (DenseMap<Value *, BasicBlock *> &OutputStoreBB : OutputStoreBBs) {
2188
DenseMap<Value *, BasicBlock *>::iterator OSBBIt =
2189
OutputStoreBB.find(OutputBlock.first);
2190
2191
if (OSBBIt == OutputStoreBB.end())
2192
continue;
2193
2194
BasicBlock *BB = OSBBIt->second;
2195
SwitchI->addCase(
2196
ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), BB);
2197
Term = BB->getTerminator();
2198
Term->setSuccessor(0, ReturnBlock);
2199
Idx++;
2200
}
2201
}
2202
return;
2203
}
2204
2205
assert(OutputStoreBBs.size() < 2 && "Different store sets not handled!");
2206
2207
// If there needs to be stores, move them from the output blocks to their
2208
// corresponding ending block. We do not check that the OutputGVNCombinations
2209
// is equal to 1 here since that could just been the case where there are 0
2210
// outputs. Instead, we check whether there is more than one set of output
2211
// blocks since this is the only case where we would have to move the
2212
// stores, and erase the extraneous blocks.
2213
if (OutputStoreBBs.size() == 1) {
2214
LLVM_DEBUG(dbgs() << "Move store instructions to the end block in "
2215
<< *OG.OutlinedFunction << "\n");
2216
DenseMap<Value *, BasicBlock *> OutputBlocks = OutputStoreBBs[0];
2217
for (std::pair<Value *, BasicBlock *> &VBPair : OutputBlocks) {
2218
DenseMap<Value *, BasicBlock *>::iterator EndBBIt =
2219
EndBBs.find(VBPair.first);
2220
assert(EndBBIt != EndBBs.end() && "Could not find end block");
2221
BasicBlock *EndBB = EndBBIt->second;
2222
BasicBlock *OutputBB = VBPair.second;
2223
Instruction *Term = OutputBB->getTerminator();
2224
Term->eraseFromParent();
2225
Term = EndBB->getTerminator();
2226
moveBBContents(*OutputBB, *EndBB);
2227
Term->moveBefore(*EndBB, EndBB->end());
2228
OutputBB->eraseFromParent();
2229
}
2230
}
2231
}
2232
2233
/// Fill the new function that will serve as the replacement function for all of
2234
/// the extracted regions of a certain structure from the first region in the
2235
/// list of regions. Replace this first region's extracted function with the
2236
/// new overall function.
2237
///
2238
/// \param [in] M - The module we are outlining from.
2239
/// \param [in] CurrentGroup - The group of regions to be outlined.
2240
/// \param [in,out] OutputStoreBBs - The output blocks for each different
2241
/// set of stores needed for the different functions.
2242
/// \param [in,out] FuncsToRemove - Extracted functions to erase from module
2243
/// once outlining is complete.
2244
/// \param [in] OutputMappings - Extracted functions to erase from module
2245
/// once outlining is complete.
2246
static void fillOverallFunction(
2247
Module &M, OutlinableGroup &CurrentGroup,
2248
std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs,
2249
std::vector<Function *> &FuncsToRemove,
2250
const DenseMap<Value *, Value *> &OutputMappings) {
2251
OutlinableRegion *CurrentOS = CurrentGroup.Regions[0];
2252
2253
// Move first extracted function's instructions into new function.
2254
LLVM_DEBUG(dbgs() << "Move instructions from "
2255
<< *CurrentOS->ExtractedFunction << " to instruction "
2256
<< *CurrentGroup.OutlinedFunction << "\n");
2257
moveFunctionData(*CurrentOS->ExtractedFunction,
2258
*CurrentGroup.OutlinedFunction, CurrentGroup.EndBBs);
2259
2260
// Transfer the attributes from the function to the new function.
2261
for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttrs())
2262
CurrentGroup.OutlinedFunction->addFnAttr(A);
2263
2264
// Create a new set of output blocks for the first extracted function.
2265
DenseMap<Value *, BasicBlock *> NewBBs;
2266
createAndInsertBasicBlocks(CurrentGroup.EndBBs, NewBBs,
2267
CurrentGroup.OutlinedFunction, "output_block_0");
2268
CurrentOS->OutputBlockNum = 0;
2269
2270
replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings, true);
2271
replaceConstants(*CurrentOS);
2272
2273
// We first identify if any output blocks are empty, if they are we remove
2274
// them. We then create a branch instruction to the basic block to the return
2275
// block for the function for each non empty output block.
2276
if (!analyzeAndPruneOutputBlocks(NewBBs, *CurrentOS)) {
2277
OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
2278
for (std::pair<Value *, BasicBlock *> &VToBB : NewBBs) {
2279
DenseMap<Value *, BasicBlock *>::iterator VBBIt =
2280
CurrentGroup.EndBBs.find(VToBB.first);
2281
BasicBlock *EndBB = VBBIt->second;
2282
BranchInst::Create(EndBB, VToBB.second);
2283
OutputStoreBBs.back().insert(VToBB);
2284
}
2285
}
2286
2287
// Replace the call to the extracted function with the outlined function.
2288
CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
2289
2290
// We only delete the extracted functions at the end since we may need to
2291
// reference instructions contained in them for mapping purposes.
2292
FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
2293
}
2294
2295
void IROutliner::deduplicateExtractedSections(
2296
Module &M, OutlinableGroup &CurrentGroup,
2297
std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) {
2298
createFunction(M, CurrentGroup, OutlinedFunctionNum);
2299
2300
std::vector<DenseMap<Value *, BasicBlock *>> OutputStoreBBs;
2301
2302
OutlinableRegion *CurrentOS;
2303
2304
fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove,
2305
OutputMappings);
2306
2307
std::vector<Value *> SortedKeys;
2308
for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) {
2309
CurrentOS = CurrentGroup.Regions[Idx];
2310
AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction,
2311
*CurrentOS->ExtractedFunction);
2312
2313
// Create a set of BasicBlocks, one for each return block, to hold the
2314
// needed store instructions.
2315
DenseMap<Value *, BasicBlock *> NewBBs;
2316
createAndInsertBasicBlocks(
2317
CurrentGroup.EndBBs, NewBBs, CurrentGroup.OutlinedFunction,
2318
"output_block_" + Twine(static_cast<unsigned>(Idx)));
2319
replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings);
2320
alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBBs,
2321
CurrentGroup.EndBBs, OutputMappings,
2322
OutputStoreBBs);
2323
2324
CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
2325
FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
2326
}
2327
2328
// Create a switch statement to handle the different output schemes.
2329
createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBBs, OutputStoreBBs);
2330
2331
OutlinedFunctionNum++;
2332
}
2333
2334
/// Checks that the next instruction in the InstructionDataList matches the
2335
/// next instruction in the module. If they do not, there could be the
2336
/// possibility that extra code has been inserted, and we must ignore it.
2337
///
2338
/// \param ID - The IRInstructionData to check the next instruction of.
2339
/// \returns true if the InstructionDataList and actual instruction match.
2340
static bool nextIRInstructionDataMatchesNextInst(IRInstructionData &ID) {
2341
// We check if there is a discrepancy between the InstructionDataList
2342
// and the actual next instruction in the module. If there is, it means
2343
// that an extra instruction was added, likely by the CodeExtractor.
2344
2345
// Since we do not have any similarity data about this particular
2346
// instruction, we cannot confidently outline it, and must discard this
2347
// candidate.
2348
IRInstructionDataList::iterator NextIDIt = std::next(ID.getIterator());
2349
Instruction *NextIDLInst = NextIDIt->Inst;
2350
Instruction *NextModuleInst = nullptr;
2351
if (!ID.Inst->isTerminator())
2352
NextModuleInst = ID.Inst->getNextNonDebugInstruction();
2353
else if (NextIDLInst != nullptr)
2354
NextModuleInst =
2355
&*NextIDIt->Inst->getParent()->instructionsWithoutDebug().begin();
2356
2357
if (NextIDLInst && NextIDLInst != NextModuleInst)
2358
return false;
2359
2360
return true;
2361
}
2362
2363
bool IROutliner::isCompatibleWithAlreadyOutlinedCode(
2364
const OutlinableRegion &Region) {
2365
IRSimilarityCandidate *IRSC = Region.Candidate;
2366
unsigned StartIdx = IRSC->getStartIdx();
2367
unsigned EndIdx = IRSC->getEndIdx();
2368
2369
// A check to make sure that we are not about to attempt to outline something
2370
// that has already been outlined.
2371
for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2372
if (Outlined.contains(Idx))
2373
return false;
2374
2375
// We check if the recorded instruction matches the actual next instruction,
2376
// if it does not, we fix it in the InstructionDataList.
2377
if (!Region.Candidate->backInstruction()->isTerminator()) {
2378
Instruction *NewEndInst =
2379
Region.Candidate->backInstruction()->getNextNonDebugInstruction();
2380
assert(NewEndInst && "Next instruction is a nullptr?");
2381
if (Region.Candidate->end()->Inst != NewEndInst) {
2382
IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
2383
IRInstructionData *NewEndIRID = new (InstDataAllocator.Allocate())
2384
IRInstructionData(*NewEndInst,
2385
InstructionClassifier.visit(*NewEndInst), *IDL);
2386
2387
// Insert the first IRInstructionData of the new region after the
2388
// last IRInstructionData of the IRSimilarityCandidate.
2389
IDL->insert(Region.Candidate->end(), *NewEndIRID);
2390
}
2391
}
2392
2393
return none_of(*IRSC, [this](IRInstructionData &ID) {
2394
if (!nextIRInstructionDataMatchesNextInst(ID))
2395
return true;
2396
2397
return !this->InstructionClassifier.visit(ID.Inst);
2398
});
2399
}
2400
2401
void IROutliner::pruneIncompatibleRegions(
2402
std::vector<IRSimilarityCandidate> &CandidateVec,
2403
OutlinableGroup &CurrentGroup) {
2404
bool PreviouslyOutlined;
2405
2406
// Sort from beginning to end, so the IRSimilarityCandidates are in order.
2407
stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS,
2408
const IRSimilarityCandidate &RHS) {
2409
return LHS.getStartIdx() < RHS.getStartIdx();
2410
});
2411
2412
IRSimilarityCandidate &FirstCandidate = CandidateVec[0];
2413
// Since outlining a call and a branch instruction will be the same as only
2414
// outlinining a call instruction, we ignore it as a space saving.
2415
if (FirstCandidate.getLength() == 2) {
2416
if (isa<CallInst>(FirstCandidate.front()->Inst) &&
2417
isa<BranchInst>(FirstCandidate.back()->Inst))
2418
return;
2419
}
2420
2421
unsigned CurrentEndIdx = 0;
2422
for (IRSimilarityCandidate &IRSC : CandidateVec) {
2423
PreviouslyOutlined = false;
2424
unsigned StartIdx = IRSC.getStartIdx();
2425
unsigned EndIdx = IRSC.getEndIdx();
2426
const Function &FnForCurrCand = *IRSC.getFunction();
2427
2428
for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2429
if (Outlined.contains(Idx)) {
2430
PreviouslyOutlined = true;
2431
break;
2432
}
2433
2434
if (PreviouslyOutlined)
2435
continue;
2436
2437
// Check over the instructions, and if the basic block has its address
2438
// taken for use somewhere else, we do not outline that block.
2439
bool BBHasAddressTaken = any_of(IRSC, [](IRInstructionData &ID){
2440
return ID.Inst->getParent()->hasAddressTaken();
2441
});
2442
2443
if (BBHasAddressTaken)
2444
continue;
2445
2446
if (FnForCurrCand.hasOptNone())
2447
continue;
2448
2449
if (FnForCurrCand.hasFnAttribute("nooutline")) {
2450
LLVM_DEBUG({
2451
dbgs() << "... Skipping function with nooutline attribute: "
2452
<< FnForCurrCand.getName() << "\n";
2453
});
2454
continue;
2455
}
2456
2457
if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() &&
2458
!OutlineFromLinkODRs)
2459
continue;
2460
2461
// Greedily prune out any regions that will overlap with already chosen
2462
// regions.
2463
if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx)
2464
continue;
2465
2466
bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) {
2467
if (!nextIRInstructionDataMatchesNextInst(ID))
2468
return true;
2469
2470
return !this->InstructionClassifier.visit(ID.Inst);
2471
});
2472
2473
if (BadInst)
2474
continue;
2475
2476
OutlinableRegion *OS = new (RegionAllocator.Allocate())
2477
OutlinableRegion(IRSC, CurrentGroup);
2478
CurrentGroup.Regions.push_back(OS);
2479
2480
CurrentEndIdx = EndIdx;
2481
}
2482
}
2483
2484
InstructionCost
2485
IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) {
2486
InstructionCost RegionBenefit = 0;
2487
for (OutlinableRegion *Region : CurrentGroup.Regions) {
2488
TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
2489
// We add the number of instructions in the region to the benefit as an
2490
// estimate as to how much will be removed.
2491
RegionBenefit += Region->getBenefit(TTI);
2492
LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit
2493
<< " saved instructions to overfall benefit.\n");
2494
}
2495
2496
return RegionBenefit;
2497
}
2498
2499
/// For the \p OutputCanon number passed in find the value represented by this
2500
/// canonical number. If it is from a PHINode, we pick the first incoming
2501
/// value and return that Value instead.
2502
///
2503
/// \param Region - The OutlinableRegion to get the Value from.
2504
/// \param OutputCanon - The canonical number to find the Value from.
2505
/// \returns The Value represented by a canonical number \p OutputCanon in \p
2506
/// Region.
2507
static Value *findOutputValueInRegion(OutlinableRegion &Region,
2508
unsigned OutputCanon) {
2509
OutlinableGroup &CurrentGroup = *Region.Parent;
2510
// If the value is greater than the value in the tracker, we have a
2511
// PHINode and will instead use one of the incoming values to find the
2512
// type.
2513
if (OutputCanon > CurrentGroup.PHINodeGVNTracker) {
2514
auto It = CurrentGroup.PHINodeGVNToGVNs.find(OutputCanon);
2515
assert(It != CurrentGroup.PHINodeGVNToGVNs.end() &&
2516
"Could not find GVN set for PHINode number!");
2517
assert(It->second.second.size() > 0 && "PHINode does not have any values!");
2518
OutputCanon = *It->second.second.begin();
2519
}
2520
std::optional<unsigned> OGVN =
2521
Region.Candidate->fromCanonicalNum(OutputCanon);
2522
assert(OGVN && "Could not find GVN for Canonical Number?");
2523
std::optional<Value *> OV = Region.Candidate->fromGVN(*OGVN);
2524
assert(OV && "Could not find value for GVN?");
2525
return *OV;
2526
}
2527
2528
InstructionCost
2529
IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) {
2530
InstructionCost OverallCost = 0;
2531
for (OutlinableRegion *Region : CurrentGroup.Regions) {
2532
TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
2533
2534
// Each output incurs a load after the call, so we add that to the cost.
2535
for (unsigned OutputCanon : Region->GVNStores) {
2536
Value *V = findOutputValueInRegion(*Region, OutputCanon);
2537
InstructionCost LoadCost =
2538
TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
2539
TargetTransformInfo::TCK_CodeSize);
2540
2541
LLVM_DEBUG(dbgs() << "Adding: " << LoadCost
2542
<< " instructions to cost for output of type "
2543
<< *V->getType() << "\n");
2544
OverallCost += LoadCost;
2545
}
2546
}
2547
2548
return OverallCost;
2549
}
2550
2551
/// Find the extra instructions needed to handle any output values for the
2552
/// region.
2553
///
2554
/// \param [in] M - The Module to outline from.
2555
/// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze.
2556
/// \param [in] TTI - The TargetTransformInfo used to collect information for
2557
/// new instruction costs.
2558
/// \returns the additional cost to handle the outputs.
2559
static InstructionCost findCostForOutputBlocks(Module &M,
2560
OutlinableGroup &CurrentGroup,
2561
TargetTransformInfo &TTI) {
2562
InstructionCost OutputCost = 0;
2563
unsigned NumOutputBranches = 0;
2564
2565
OutlinableRegion &FirstRegion = *CurrentGroup.Regions[0];
2566
IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate;
2567
DenseSet<BasicBlock *> CandidateBlocks;
2568
Candidate.getBasicBlocks(CandidateBlocks);
2569
2570
// Count the number of different output branches that point to blocks outside
2571
// of the region.
2572
DenseSet<BasicBlock *> FoundBlocks;
2573
for (IRInstructionData &ID : Candidate) {
2574
if (!isa<BranchInst>(ID.Inst))
2575
continue;
2576
2577
for (Value *V : ID.OperVals) {
2578
BasicBlock *BB = static_cast<BasicBlock *>(V);
2579
if (!CandidateBlocks.contains(BB) && FoundBlocks.insert(BB).second)
2580
NumOutputBranches++;
2581
}
2582
}
2583
2584
CurrentGroup.BranchesToOutside = NumOutputBranches;
2585
2586
for (const ArrayRef<unsigned> &OutputUse :
2587
CurrentGroup.OutputGVNCombinations) {
2588
for (unsigned OutputCanon : OutputUse) {
2589
Value *V = findOutputValueInRegion(FirstRegion, OutputCanon);
2590
InstructionCost StoreCost =
2591
TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
2592
TargetTransformInfo::TCK_CodeSize);
2593
2594
// An instruction cost is added for each store set that needs to occur for
2595
// various output combinations inside the function, plus a branch to
2596
// return to the exit block.
2597
LLVM_DEBUG(dbgs() << "Adding: " << StoreCost
2598
<< " instructions to cost for output of type "
2599
<< *V->getType() << "\n");
2600
OutputCost += StoreCost * NumOutputBranches;
2601
}
2602
2603
InstructionCost BranchCost =
2604
TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
2605
LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for"
2606
<< " a branch instruction\n");
2607
OutputCost += BranchCost * NumOutputBranches;
2608
}
2609
2610
// If there is more than one output scheme, we must have a comparison and
2611
// branch for each different item in the switch statement.
2612
if (CurrentGroup.OutputGVNCombinations.size() > 1) {
2613
InstructionCost ComparisonCost = TTI.getCmpSelInstrCost(
2614
Instruction::ICmp, Type::getInt32Ty(M.getContext()),
2615
Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE,
2616
TargetTransformInfo::TCK_CodeSize);
2617
InstructionCost BranchCost =
2618
TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
2619
2620
unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size();
2621
InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks;
2622
2623
LLVM_DEBUG(dbgs() << "Adding: " << TotalCost
2624
<< " instructions for each switch case for each different"
2625
<< " output path in a function\n");
2626
OutputCost += TotalCost * NumOutputBranches;
2627
}
2628
2629
return OutputCost;
2630
}
2631
2632
void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) {
2633
InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup);
2634
CurrentGroup.Benefit += RegionBenefit;
2635
LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n");
2636
2637
InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup);
2638
CurrentGroup.Cost += OutputReloadCost;
2639
LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2640
2641
InstructionCost AverageRegionBenefit =
2642
RegionBenefit / CurrentGroup.Regions.size();
2643
unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size();
2644
unsigned NumRegions = CurrentGroup.Regions.size();
2645
TargetTransformInfo &TTI =
2646
getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction());
2647
2648
// We add one region to the cost once, to account for the instructions added
2649
// inside of the newly created function.
2650
LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit
2651
<< " instructions to cost for body of new function.\n");
2652
CurrentGroup.Cost += AverageRegionBenefit;
2653
LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2654
2655
// For each argument, we must add an instruction for loading the argument
2656
// out of the register and into a value inside of the newly outlined function.
2657
LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
2658
<< " instructions to cost for each argument in the new"
2659
<< " function.\n");
2660
CurrentGroup.Cost +=
2661
OverallArgumentNum * TargetTransformInfo::TCC_Basic;
2662
LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2663
2664
// Each argument needs to either be loaded into a register or onto the stack.
2665
// Some arguments will only be loaded into the stack once the argument
2666
// registers are filled.
2667
LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
2668
<< " instructions to cost for each argument in the new"
2669
<< " function " << NumRegions << " times for the "
2670
<< "needed argument handling at the call site.\n");
2671
CurrentGroup.Cost +=
2672
2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions;
2673
LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2674
2675
CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI);
2676
LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2677
}
2678
2679
void IROutliner::updateOutputMapping(OutlinableRegion &Region,
2680
ArrayRef<Value *> Outputs,
2681
LoadInst *LI) {
2682
// For and load instructions following the call
2683
Value *Operand = LI->getPointerOperand();
2684
std::optional<unsigned> OutputIdx;
2685
// Find if the operand it is an output register.
2686
for (unsigned ArgIdx = Region.NumExtractedInputs;
2687
ArgIdx < Region.Call->arg_size(); ArgIdx++) {
2688
if (Operand == Region.Call->getArgOperand(ArgIdx)) {
2689
OutputIdx = ArgIdx - Region.NumExtractedInputs;
2690
break;
2691
}
2692
}
2693
2694
// If we found an output register, place a mapping of the new value
2695
// to the original in the mapping.
2696
if (!OutputIdx)
2697
return;
2698
2699
if (!OutputMappings.contains(Outputs[*OutputIdx])) {
2700
LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to "
2701
<< *Outputs[*OutputIdx] << "\n");
2702
OutputMappings.insert(std::make_pair(LI, Outputs[*OutputIdx]));
2703
} else {
2704
Value *Orig = OutputMappings.find(Outputs[*OutputIdx])->second;
2705
LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to "
2706
<< *Outputs[*OutputIdx] << "\n");
2707
OutputMappings.insert(std::make_pair(LI, Orig));
2708
}
2709
}
2710
2711
bool IROutliner::extractSection(OutlinableRegion &Region) {
2712
SetVector<Value *> ArgInputs, Outputs, SinkCands;
2713
assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!");
2714
BasicBlock *InitialStart = Region.StartBB;
2715
Function *OrigF = Region.StartBB->getParent();
2716
CodeExtractorAnalysisCache CEAC(*OrigF);
2717
Region.ExtractedFunction =
2718
Region.CE->extractCodeRegion(CEAC, ArgInputs, Outputs);
2719
2720
// If the extraction was successful, find the BasicBlock, and reassign the
2721
// OutlinableRegion blocks
2722
if (!Region.ExtractedFunction) {
2723
LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB
2724
<< "\n");
2725
Region.reattachCandidate();
2726
return false;
2727
}
2728
2729
// Get the block containing the called branch, and reassign the blocks as
2730
// necessary. If the original block still exists, it is because we ended on
2731
// a branch instruction, and so we move the contents into the block before
2732
// and assign the previous block correctly.
2733
User *InstAsUser = Region.ExtractedFunction->user_back();
2734
BasicBlock *RewrittenBB = cast<Instruction>(InstAsUser)->getParent();
2735
Region.PrevBB = RewrittenBB->getSinglePredecessor();
2736
assert(Region.PrevBB && "PrevBB is nullptr?");
2737
if (Region.PrevBB == InitialStart) {
2738
BasicBlock *NewPrev = InitialStart->getSinglePredecessor();
2739
Instruction *BI = NewPrev->getTerminator();
2740
BI->eraseFromParent();
2741
moveBBContents(*InitialStart, *NewPrev);
2742
Region.PrevBB = NewPrev;
2743
InitialStart->eraseFromParent();
2744
}
2745
2746
Region.StartBB = RewrittenBB;
2747
Region.EndBB = RewrittenBB;
2748
2749
// The sequences of outlinable regions has now changed. We must fix the
2750
// IRInstructionDataList for consistency. Although they may not be illegal
2751
// instructions, they should not be compared with anything else as they
2752
// should not be outlined in this round. So marking these as illegal is
2753
// allowed.
2754
IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
2755
Instruction *BeginRewritten = &*RewrittenBB->begin();
2756
Instruction *EndRewritten = &*RewrittenBB->begin();
2757
Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData(
2758
*BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL);
2759
Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData(
2760
*EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL);
2761
2762
// Insert the first IRInstructionData of the new region in front of the
2763
// first IRInstructionData of the IRSimilarityCandidate.
2764
IDL->insert(Region.Candidate->begin(), *Region.NewFront);
2765
// Insert the first IRInstructionData of the new region after the
2766
// last IRInstructionData of the IRSimilarityCandidate.
2767
IDL->insert(Region.Candidate->end(), *Region.NewBack);
2768
// Remove the IRInstructionData from the IRSimilarityCandidate.
2769
IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end()));
2770
2771
assert(RewrittenBB != nullptr &&
2772
"Could not find a predecessor after extraction!");
2773
2774
// Iterate over the new set of instructions to find the new call
2775
// instruction.
2776
for (Instruction &I : *RewrittenBB)
2777
if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2778
if (Region.ExtractedFunction == CI->getCalledFunction())
2779
Region.Call = CI;
2780
} else if (LoadInst *LI = dyn_cast<LoadInst>(&I))
2781
updateOutputMapping(Region, Outputs.getArrayRef(), LI);
2782
Region.reattachCandidate();
2783
return true;
2784
}
2785
2786
unsigned IROutliner::doOutline(Module &M) {
2787
// Find the possible similarity sections.
2788
InstructionClassifier.EnableBranches = !DisableBranches;
2789
InstructionClassifier.EnableIndirectCalls = !DisableIndirectCalls;
2790
InstructionClassifier.EnableIntrinsics = !DisableIntrinsics;
2791
2792
IRSimilarityIdentifier &Identifier = getIRSI(M);
2793
SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity();
2794
2795
// Sort them by size of extracted sections
2796
unsigned OutlinedFunctionNum = 0;
2797
// If we only have one SimilarityGroup in SimilarityCandidates, we do not have
2798
// to sort them by the potential number of instructions to be outlined
2799
if (SimilarityCandidates.size() > 1)
2800
llvm::stable_sort(SimilarityCandidates,
2801
[](const std::vector<IRSimilarityCandidate> &LHS,
2802
const std::vector<IRSimilarityCandidate> &RHS) {
2803
return LHS[0].getLength() * LHS.size() >
2804
RHS[0].getLength() * RHS.size();
2805
});
2806
// Creating OutlinableGroups for each SimilarityCandidate to be used in
2807
// each of the following for loops to avoid making an allocator.
2808
std::vector<OutlinableGroup> PotentialGroups(SimilarityCandidates.size());
2809
2810
DenseSet<unsigned> NotSame;
2811
std::vector<OutlinableGroup *> NegativeCostGroups;
2812
std::vector<OutlinableRegion *> OutlinedRegions;
2813
// Iterate over the possible sets of similarity.
2814
unsigned PotentialGroupIdx = 0;
2815
for (SimilarityGroup &CandidateVec : SimilarityCandidates) {
2816
OutlinableGroup &CurrentGroup = PotentialGroups[PotentialGroupIdx++];
2817
2818
// Remove entries that were previously outlined
2819
pruneIncompatibleRegions(CandidateVec, CurrentGroup);
2820
2821
// We pruned the number of regions to 0 to 1, meaning that it's not worth
2822
// trying to outlined since there is no compatible similar instance of this
2823
// code.
2824
if (CurrentGroup.Regions.size() < 2)
2825
continue;
2826
2827
// Determine if there are any values that are the same constant throughout
2828
// each section in the set.
2829
NotSame.clear();
2830
CurrentGroup.findSameConstants(NotSame);
2831
2832
if (CurrentGroup.IgnoreGroup)
2833
continue;
2834
2835
// Create a CodeExtractor for each outlinable region. Identify inputs and
2836
// outputs for each section using the code extractor and create the argument
2837
// types for the Aggregate Outlining Function.
2838
OutlinedRegions.clear();
2839
for (OutlinableRegion *OS : CurrentGroup.Regions) {
2840
// Break the outlinable region out of its parent BasicBlock into its own
2841
// BasicBlocks (see function implementation).
2842
OS->splitCandidate();
2843
2844
// There's a chance that when the region is split, extra instructions are
2845
// added to the region. This makes the region no longer viable
2846
// to be split, so we ignore it for outlining.
2847
if (!OS->CandidateSplit)
2848
continue;
2849
2850
SmallVector<BasicBlock *> BE;
2851
DenseSet<BasicBlock *> BlocksInRegion;
2852
OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
2853
OS->CE = new (ExtractorAllocator.Allocate())
2854
CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
2855
false, nullptr, "outlined");
2856
findAddInputsOutputs(M, *OS, NotSame);
2857
if (!OS->IgnoreRegion)
2858
OutlinedRegions.push_back(OS);
2859
2860
// We recombine the blocks together now that we have gathered all the
2861
// needed information.
2862
OS->reattachCandidate();
2863
}
2864
2865
CurrentGroup.Regions = std::move(OutlinedRegions);
2866
2867
if (CurrentGroup.Regions.empty())
2868
continue;
2869
2870
CurrentGroup.collectGVNStoreSets(M);
2871
2872
if (CostModel)
2873
findCostBenefit(M, CurrentGroup);
2874
2875
// If we are adhering to the cost model, skip those groups where the cost
2876
// outweighs the benefits.
2877
if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) {
2878
OptimizationRemarkEmitter &ORE =
2879
getORE(*CurrentGroup.Regions[0]->Candidate->getFunction());
2880
ORE.emit([&]() {
2881
IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
2882
OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize",
2883
C->frontInstruction());
2884
R << "did not outline "
2885
<< ore::NV(std::to_string(CurrentGroup.Regions.size()))
2886
<< " regions due to estimated increase of "
2887
<< ore::NV("InstructionIncrease",
2888
CurrentGroup.Cost - CurrentGroup.Benefit)
2889
<< " instructions at locations ";
2890
interleave(
2891
CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
2892
[&R](OutlinableRegion *Region) {
2893
R << ore::NV(
2894
"DebugLoc",
2895
Region->Candidate->frontInstruction()->getDebugLoc());
2896
},
2897
[&R]() { R << " "; });
2898
return R;
2899
});
2900
continue;
2901
}
2902
2903
NegativeCostGroups.push_back(&CurrentGroup);
2904
}
2905
2906
ExtractorAllocator.DestroyAll();
2907
2908
if (NegativeCostGroups.size() > 1)
2909
stable_sort(NegativeCostGroups,
2910
[](const OutlinableGroup *LHS, const OutlinableGroup *RHS) {
2911
return LHS->Benefit - LHS->Cost > RHS->Benefit - RHS->Cost;
2912
});
2913
2914
std::vector<Function *> FuncsToRemove;
2915
for (OutlinableGroup *CG : NegativeCostGroups) {
2916
OutlinableGroup &CurrentGroup = *CG;
2917
2918
OutlinedRegions.clear();
2919
for (OutlinableRegion *Region : CurrentGroup.Regions) {
2920
// We check whether our region is compatible with what has already been
2921
// outlined, and whether we need to ignore this item.
2922
if (!isCompatibleWithAlreadyOutlinedCode(*Region))
2923
continue;
2924
OutlinedRegions.push_back(Region);
2925
}
2926
2927
if (OutlinedRegions.size() < 2)
2928
continue;
2929
2930
// Reestimate the cost and benefit of the OutlinableGroup. Continue only if
2931
// we are still outlining enough regions to make up for the added cost.
2932
CurrentGroup.Regions = std::move(OutlinedRegions);
2933
if (CostModel) {
2934
CurrentGroup.Benefit = 0;
2935
CurrentGroup.Cost = 0;
2936
findCostBenefit(M, CurrentGroup);
2937
if (CurrentGroup.Cost >= CurrentGroup.Benefit)
2938
continue;
2939
}
2940
OutlinedRegions.clear();
2941
for (OutlinableRegion *Region : CurrentGroup.Regions) {
2942
Region->splitCandidate();
2943
if (!Region->CandidateSplit)
2944
continue;
2945
OutlinedRegions.push_back(Region);
2946
}
2947
2948
CurrentGroup.Regions = std::move(OutlinedRegions);
2949
if (CurrentGroup.Regions.size() < 2) {
2950
for (OutlinableRegion *R : CurrentGroup.Regions)
2951
R->reattachCandidate();
2952
continue;
2953
}
2954
2955
LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost
2956
<< " and benefit " << CurrentGroup.Benefit << "\n");
2957
2958
// Create functions out of all the sections, and mark them as outlined.
2959
OutlinedRegions.clear();
2960
for (OutlinableRegion *OS : CurrentGroup.Regions) {
2961
SmallVector<BasicBlock *> BE;
2962
DenseSet<BasicBlock *> BlocksInRegion;
2963
OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
2964
OS->CE = new (ExtractorAllocator.Allocate())
2965
CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
2966
false, nullptr, "outlined");
2967
bool FunctionOutlined = extractSection(*OS);
2968
if (FunctionOutlined) {
2969
unsigned StartIdx = OS->Candidate->getStartIdx();
2970
unsigned EndIdx = OS->Candidate->getEndIdx();
2971
for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2972
Outlined.insert(Idx);
2973
2974
OutlinedRegions.push_back(OS);
2975
}
2976
}
2977
2978
LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size()
2979
<< " with benefit " << CurrentGroup.Benefit
2980
<< " and cost " << CurrentGroup.Cost << "\n");
2981
2982
CurrentGroup.Regions = std::move(OutlinedRegions);
2983
2984
if (CurrentGroup.Regions.empty())
2985
continue;
2986
2987
OptimizationRemarkEmitter &ORE =
2988
getORE(*CurrentGroup.Regions[0]->Call->getFunction());
2989
ORE.emit([&]() {
2990
IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
2991
OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst);
2992
R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size()))
2993
<< " regions with decrease of "
2994
<< ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost)
2995
<< " instructions at locations ";
2996
interleave(
2997
CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
2998
[&R](OutlinableRegion *Region) {
2999
R << ore::NV("DebugLoc",
3000
Region->Candidate->frontInstruction()->getDebugLoc());
3001
},
3002
[&R]() { R << " "; });
3003
return R;
3004
});
3005
3006
deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove,
3007
OutlinedFunctionNum);
3008
}
3009
3010
for (Function *F : FuncsToRemove)
3011
F->eraseFromParent();
3012
3013
return OutlinedFunctionNum;
3014
}
3015
3016
bool IROutliner::run(Module &M) {
3017
CostModel = !NoCostModel;
3018
OutlineFromLinkODRs = EnableLinkOnceODRIROutlining;
3019
3020
return doOutline(M) > 0;
3021
}
3022
3023
PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) {
3024
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
3025
3026
std::function<TargetTransformInfo &(Function &)> GTTI =
3027
[&FAM](Function &F) -> TargetTransformInfo & {
3028
return FAM.getResult<TargetIRAnalysis>(F);
3029
};
3030
3031
std::function<IRSimilarityIdentifier &(Module &)> GIRSI =
3032
[&AM](Module &M) -> IRSimilarityIdentifier & {
3033
return AM.getResult<IRSimilarityAnalysis>(M);
3034
};
3035
3036
std::unique_ptr<OptimizationRemarkEmitter> ORE;
3037
std::function<OptimizationRemarkEmitter &(Function &)> GORE =
3038
[&ORE](Function &F) -> OptimizationRemarkEmitter & {
3039
ORE.reset(new OptimizationRemarkEmitter(&F));
3040
return *ORE;
3041
};
3042
3043
if (IROutliner(GTTI, GIRSI, GORE).run(M))
3044
return PreservedAnalyses::none();
3045
return PreservedAnalyses::all();
3046
}
3047
3048