Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/IPO/Inliner.cpp
35269 views
1
//===- Inliner.cpp - Code common to all inliners --------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the mechanics required to implement inlining without
10
// missing any calls and updating the call graph. The decisions of which calls
11
// are profitable to inline are implemented elsewhere.
12
//
13
//===----------------------------------------------------------------------===//
14
15
#include "llvm/Transforms/IPO/Inliner.h"
16
#include "llvm/ADT/PriorityWorklist.h"
17
#include "llvm/ADT/STLExtras.h"
18
#include "llvm/ADT/ScopeExit.h"
19
#include "llvm/ADT/SetVector.h"
20
#include "llvm/ADT/SmallPtrSet.h"
21
#include "llvm/ADT/SmallVector.h"
22
#include "llvm/ADT/Statistic.h"
23
#include "llvm/ADT/StringExtras.h"
24
#include "llvm/ADT/StringRef.h"
25
#include "llvm/Analysis/AssumptionCache.h"
26
#include "llvm/Analysis/BasicAliasAnalysis.h"
27
#include "llvm/Analysis/BlockFrequencyInfo.h"
28
#include "llvm/Analysis/CGSCCPassManager.h"
29
#include "llvm/Analysis/InlineAdvisor.h"
30
#include "llvm/Analysis/InlineCost.h"
31
#include "llvm/Analysis/LazyCallGraph.h"
32
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
33
#include "llvm/Analysis/ProfileSummaryInfo.h"
34
#include "llvm/Analysis/ReplayInlineAdvisor.h"
35
#include "llvm/Analysis/TargetLibraryInfo.h"
36
#include "llvm/Analysis/Utils/ImportedFunctionsInliningStatistics.h"
37
#include "llvm/IR/Attributes.h"
38
#include "llvm/IR/BasicBlock.h"
39
#include "llvm/IR/DebugLoc.h"
40
#include "llvm/IR/DerivedTypes.h"
41
#include "llvm/IR/DiagnosticInfo.h"
42
#include "llvm/IR/Function.h"
43
#include "llvm/IR/InstIterator.h"
44
#include "llvm/IR/Instruction.h"
45
#include "llvm/IR/Instructions.h"
46
#include "llvm/IR/IntrinsicInst.h"
47
#include "llvm/IR/Metadata.h"
48
#include "llvm/IR/Module.h"
49
#include "llvm/IR/PassManager.h"
50
#include "llvm/IR/User.h"
51
#include "llvm/IR/Value.h"
52
#include "llvm/Pass.h"
53
#include "llvm/Support/Casting.h"
54
#include "llvm/Support/CommandLine.h"
55
#include "llvm/Support/Debug.h"
56
#include "llvm/Support/raw_ostream.h"
57
#include "llvm/Transforms/Utils/CallPromotionUtils.h"
58
#include "llvm/Transforms/Utils/Cloning.h"
59
#include "llvm/Transforms/Utils/Local.h"
60
#include "llvm/Transforms/Utils/ModuleUtils.h"
61
#include <algorithm>
62
#include <cassert>
63
#include <functional>
64
#include <utility>
65
66
using namespace llvm;
67
68
#define DEBUG_TYPE "inline"
69
70
STATISTIC(NumInlined, "Number of functions inlined");
71
STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
72
73
static cl::opt<int> IntraSCCCostMultiplier(
74
"intra-scc-cost-multiplier", cl::init(2), cl::Hidden,
75
cl::desc(
76
"Cost multiplier to multiply onto inlined call sites where the "
77
"new call was previously an intra-SCC call (not relevant when the "
78
"original call was already intra-SCC). This can accumulate over "
79
"multiple inlinings (e.g. if a call site already had a cost "
80
"multiplier and one of its inlined calls was also subject to "
81
"this, the inlined call would have the original multiplier "
82
"multiplied by intra-scc-cost-multiplier). This is to prevent tons of "
83
"inlining through a child SCC which can cause terrible compile times"));
84
85
/// A flag for test, so we can print the content of the advisor when running it
86
/// as part of the default (e.g. -O3) pipeline.
87
static cl::opt<bool> KeepAdvisorForPrinting("keep-inline-advisor-for-printing",
88
cl::init(false), cl::Hidden);
89
90
/// Allows printing the contents of the advisor after each SCC inliner pass.
91
static cl::opt<bool>
92
EnablePostSCCAdvisorPrinting("enable-scc-inline-advisor-printing",
93
cl::init(false), cl::Hidden);
94
95
96
static cl::opt<std::string> CGSCCInlineReplayFile(
97
"cgscc-inline-replay", cl::init(""), cl::value_desc("filename"),
98
cl::desc(
99
"Optimization remarks file containing inline remarks to be replayed "
100
"by cgscc inlining."),
101
cl::Hidden);
102
103
static cl::opt<ReplayInlinerSettings::Scope> CGSCCInlineReplayScope(
104
"cgscc-inline-replay-scope",
105
cl::init(ReplayInlinerSettings::Scope::Function),
106
cl::values(clEnumValN(ReplayInlinerSettings::Scope::Function, "Function",
107
"Replay on functions that have remarks associated "
108
"with them (default)"),
109
clEnumValN(ReplayInlinerSettings::Scope::Module, "Module",
110
"Replay on the entire module")),
111
cl::desc("Whether inline replay should be applied to the entire "
112
"Module or just the Functions (default) that are present as "
113
"callers in remarks during cgscc inlining."),
114
cl::Hidden);
115
116
static cl::opt<ReplayInlinerSettings::Fallback> CGSCCInlineReplayFallback(
117
"cgscc-inline-replay-fallback",
118
cl::init(ReplayInlinerSettings::Fallback::Original),
119
cl::values(
120
clEnumValN(
121
ReplayInlinerSettings::Fallback::Original, "Original",
122
"All decisions not in replay send to original advisor (default)"),
123
clEnumValN(ReplayInlinerSettings::Fallback::AlwaysInline,
124
"AlwaysInline", "All decisions not in replay are inlined"),
125
clEnumValN(ReplayInlinerSettings::Fallback::NeverInline, "NeverInline",
126
"All decisions not in replay are not inlined")),
127
cl::desc(
128
"How cgscc inline replay treats sites that don't come from the replay. "
129
"Original: defers to original advisor, AlwaysInline: inline all sites "
130
"not in replay, NeverInline: inline no sites not in replay"),
131
cl::Hidden);
132
133
static cl::opt<CallSiteFormat::Format> CGSCCInlineReplayFormat(
134
"cgscc-inline-replay-format",
135
cl::init(CallSiteFormat::Format::LineColumnDiscriminator),
136
cl::values(
137
clEnumValN(CallSiteFormat::Format::Line, "Line", "<Line Number>"),
138
clEnumValN(CallSiteFormat::Format::LineColumn, "LineColumn",
139
"<Line Number>:<Column Number>"),
140
clEnumValN(CallSiteFormat::Format::LineDiscriminator,
141
"LineDiscriminator", "<Line Number>.<Discriminator>"),
142
clEnumValN(CallSiteFormat::Format::LineColumnDiscriminator,
143
"LineColumnDiscriminator",
144
"<Line Number>:<Column Number>.<Discriminator> (default)")),
145
cl::desc("How cgscc inline replay file is formatted"), cl::Hidden);
146
147
/// Return true if the specified inline history ID
148
/// indicates an inline history that includes the specified function.
149
static bool inlineHistoryIncludes(
150
Function *F, int InlineHistoryID,
151
const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
152
while (InlineHistoryID != -1) {
153
assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
154
"Invalid inline history ID");
155
if (InlineHistory[InlineHistoryID].first == F)
156
return true;
157
InlineHistoryID = InlineHistory[InlineHistoryID].second;
158
}
159
return false;
160
}
161
162
InlineAdvisor &
163
InlinerPass::getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result &MAM,
164
FunctionAnalysisManager &FAM, Module &M) {
165
if (OwnedAdvisor)
166
return *OwnedAdvisor;
167
168
auto *IAA = MAM.getCachedResult<InlineAdvisorAnalysis>(M);
169
if (!IAA) {
170
// It should still be possible to run the inliner as a stand-alone SCC pass,
171
// for test scenarios. In that case, we default to the
172
// DefaultInlineAdvisor, which doesn't need to keep state between SCC pass
173
// runs. It also uses just the default InlineParams.
174
// In this case, we need to use the provided FAM, which is valid for the
175
// duration of the inliner pass, and thus the lifetime of the owned advisor.
176
// The one we would get from the MAM can be invalidated as a result of the
177
// inliner's activity.
178
OwnedAdvisor = std::make_unique<DefaultInlineAdvisor>(
179
M, FAM, getInlineParams(),
180
InlineContext{LTOPhase, InlinePass::CGSCCInliner});
181
182
if (!CGSCCInlineReplayFile.empty())
183
OwnedAdvisor = getReplayInlineAdvisor(
184
M, FAM, M.getContext(), std::move(OwnedAdvisor),
185
ReplayInlinerSettings{CGSCCInlineReplayFile,
186
CGSCCInlineReplayScope,
187
CGSCCInlineReplayFallback,
188
{CGSCCInlineReplayFormat}},
189
/*EmitRemarks=*/true,
190
InlineContext{LTOPhase, InlinePass::ReplayCGSCCInliner});
191
192
return *OwnedAdvisor;
193
}
194
assert(IAA->getAdvisor() &&
195
"Expected a present InlineAdvisorAnalysis also have an "
196
"InlineAdvisor initialized");
197
return *IAA->getAdvisor();
198
}
199
200
void makeFunctionBodyUnreachable(Function &F) {
201
F.dropAllReferences();
202
for (BasicBlock &BB : make_early_inc_range(F))
203
BB.eraseFromParent();
204
BasicBlock *BB = BasicBlock::Create(F.getContext(), "", &F);
205
new UnreachableInst(F.getContext(), BB);
206
}
207
208
PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC,
209
CGSCCAnalysisManager &AM, LazyCallGraph &CG,
210
CGSCCUpdateResult &UR) {
211
const auto &MAMProxy =
212
AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG);
213
bool Changed = false;
214
215
assert(InitialC.size() > 0 && "Cannot handle an empty SCC!");
216
Module &M = *InitialC.begin()->getFunction().getParent();
217
ProfileSummaryInfo *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(M);
218
219
FunctionAnalysisManager &FAM =
220
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG)
221
.getManager();
222
223
InlineAdvisor &Advisor = getAdvisor(MAMProxy, FAM, M);
224
Advisor.onPassEntry(&InitialC);
225
226
// We use a single common worklist for calls across the entire SCC. We
227
// process these in-order and append new calls introduced during inlining to
228
// the end. The PriorityInlineOrder is optional here, in which the smaller
229
// callee would have a higher priority to inline.
230
//
231
// Note that this particular order of processing is actually critical to
232
// avoid very bad behaviors. Consider *highly connected* call graphs where
233
// each function contains a small amount of code and a couple of calls to
234
// other functions. Because the LLVM inliner is fundamentally a bottom-up
235
// inliner, it can handle gracefully the fact that these all appear to be
236
// reasonable inlining candidates as it will flatten things until they become
237
// too big to inline, and then move on and flatten another batch.
238
//
239
// However, when processing call edges *within* an SCC we cannot rely on this
240
// bottom-up behavior. As a consequence, with heavily connected *SCCs* of
241
// functions we can end up incrementally inlining N calls into each of
242
// N functions because each incremental inlining decision looks good and we
243
// don't have a topological ordering to prevent explosions.
244
//
245
// To compensate for this, we don't process transitive edges made immediate
246
// by inlining until we've done one pass of inlining across the entire SCC.
247
// Large, highly connected SCCs still lead to some amount of code bloat in
248
// this model, but it is uniformly spread across all the functions in the SCC
249
// and eventually they all become too large to inline, rather than
250
// incrementally maknig a single function grow in a super linear fashion.
251
SmallVector<std::pair<CallBase *, int>, 16> Calls;
252
253
// Populate the initial list of calls in this SCC.
254
for (auto &N : InitialC) {
255
auto &ORE =
256
FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction());
257
// We want to generally process call sites top-down in order for
258
// simplifications stemming from replacing the call with the returned value
259
// after inlining to be visible to subsequent inlining decisions.
260
// FIXME: Using instructions sequence is a really bad way to do this.
261
// Instead we should do an actual RPO walk of the function body.
262
for (Instruction &I : instructions(N.getFunction()))
263
if (auto *CB = dyn_cast<CallBase>(&I))
264
if (Function *Callee = CB->getCalledFunction()) {
265
if (!Callee->isDeclaration())
266
Calls.push_back({CB, -1});
267
else if (!isa<IntrinsicInst>(I)) {
268
using namespace ore;
269
setInlineRemark(*CB, "unavailable definition");
270
ORE.emit([&]() {
271
return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
272
<< NV("Callee", Callee) << " will not be inlined into "
273
<< NV("Caller", CB->getCaller())
274
<< " because its definition is unavailable"
275
<< setIsVerbose();
276
});
277
}
278
}
279
}
280
281
// Capture updatable variable for the current SCC.
282
auto *C = &InitialC;
283
284
auto AdvisorOnExit = make_scope_exit([&] { Advisor.onPassExit(C); });
285
286
if (Calls.empty())
287
return PreservedAnalyses::all();
288
289
// When inlining a callee produces new call sites, we want to keep track of
290
// the fact that they were inlined from the callee. This allows us to avoid
291
// infinite inlining in some obscure cases. To represent this, we use an
292
// index into the InlineHistory vector.
293
SmallVector<std::pair<Function *, int>, 16> InlineHistory;
294
295
// Track a set vector of inlined callees so that we can augment the caller
296
// with all of their edges in the call graph before pruning out the ones that
297
// got simplified away.
298
SmallSetVector<Function *, 4> InlinedCallees;
299
300
// Track the dead functions to delete once finished with inlining calls. We
301
// defer deleting these to make it easier to handle the call graph updates.
302
SmallVector<Function *, 4> DeadFunctions;
303
304
// Track potentially dead non-local functions with comdats to see if they can
305
// be deleted as a batch after inlining.
306
SmallVector<Function *, 4> DeadFunctionsInComdats;
307
308
// Loop forward over all of the calls. Note that we cannot cache the size as
309
// inlining can introduce new calls that need to be processed.
310
for (int I = 0; I < (int)Calls.size(); ++I) {
311
// We expect the calls to typically be batched with sequences of calls that
312
// have the same caller, so we first set up some shared infrastructure for
313
// this caller. We also do any pruning we can at this layer on the caller
314
// alone.
315
Function &F = *Calls[I].first->getCaller();
316
LazyCallGraph::Node &N = *CG.lookup(F);
317
if (CG.lookupSCC(N) != C)
318
continue;
319
320
LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n"
321
<< " Function size: " << F.getInstructionCount()
322
<< "\n");
323
324
auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
325
return FAM.getResult<AssumptionAnalysis>(F);
326
};
327
328
// Now process as many calls as we have within this caller in the sequence.
329
// We bail out as soon as the caller has to change so we can update the
330
// call graph and prepare the context of that new caller.
331
bool DidInline = false;
332
for (; I < (int)Calls.size() && Calls[I].first->getCaller() == &F; ++I) {
333
auto &P = Calls[I];
334
CallBase *CB = P.first;
335
const int InlineHistoryID = P.second;
336
Function &Callee = *CB->getCalledFunction();
337
338
if (InlineHistoryID != -1 &&
339
inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) {
340
LLVM_DEBUG(dbgs() << "Skipping inlining due to history: " << F.getName()
341
<< " -> " << Callee.getName() << "\n");
342
setInlineRemark(*CB, "recursive");
343
// Set noinline so that we don't forget this decision across CGSCC
344
// iterations.
345
CB->setIsNoInline();
346
continue;
347
}
348
349
// Check if this inlining may repeat breaking an SCC apart that has
350
// already been split once before. In that case, inlining here may
351
// trigger infinite inlining, much like is prevented within the inliner
352
// itself by the InlineHistory above, but spread across CGSCC iterations
353
// and thus hidden from the full inline history.
354
LazyCallGraph::SCC *CalleeSCC = CG.lookupSCC(*CG.lookup(Callee));
355
if (CalleeSCC == C && UR.InlinedInternalEdges.count({&N, C})) {
356
LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node "
357
"previously split out of this SCC by inlining: "
358
<< F.getName() << " -> " << Callee.getName() << "\n");
359
setInlineRemark(*CB, "recursive SCC split");
360
continue;
361
}
362
363
std::unique_ptr<InlineAdvice> Advice =
364
Advisor.getAdvice(*CB, OnlyMandatory);
365
366
// Check whether we want to inline this callsite.
367
if (!Advice)
368
continue;
369
370
if (!Advice->isInliningRecommended()) {
371
Advice->recordUnattemptedInlining();
372
continue;
373
}
374
375
int CBCostMult =
376
getStringFnAttrAsInt(
377
*CB, InlineConstants::FunctionInlineCostMultiplierAttributeName)
378
.value_or(1);
379
380
// Setup the data structure used to plumb customization into the
381
// `InlineFunction` routine.
382
InlineFunctionInfo IFI(
383
GetAssumptionCache, PSI,
384
&FAM.getResult<BlockFrequencyAnalysis>(*(CB->getCaller())),
385
&FAM.getResult<BlockFrequencyAnalysis>(Callee));
386
387
InlineResult IR =
388
InlineFunction(*CB, IFI, /*MergeAttributes=*/true,
389
&FAM.getResult<AAManager>(*CB->getCaller()));
390
if (!IR.isSuccess()) {
391
Advice->recordUnsuccessfulInlining(IR);
392
continue;
393
}
394
395
DidInline = true;
396
InlinedCallees.insert(&Callee);
397
++NumInlined;
398
399
LLVM_DEBUG(dbgs() << " Size after inlining: "
400
<< F.getInstructionCount() << "\n");
401
402
// Add any new callsites to defined functions to the worklist.
403
if (!IFI.InlinedCallSites.empty()) {
404
int NewHistoryID = InlineHistory.size();
405
InlineHistory.push_back({&Callee, InlineHistoryID});
406
407
for (CallBase *ICB : reverse(IFI.InlinedCallSites)) {
408
Function *NewCallee = ICB->getCalledFunction();
409
assert(!(NewCallee && NewCallee->isIntrinsic()) &&
410
"Intrinsic calls should not be tracked.");
411
if (!NewCallee) {
412
// Try to promote an indirect (virtual) call without waiting for
413
// the post-inline cleanup and the next DevirtSCCRepeatedPass
414
// iteration because the next iteration may not happen and we may
415
// miss inlining it.
416
if (tryPromoteCall(*ICB))
417
NewCallee = ICB->getCalledFunction();
418
}
419
if (NewCallee) {
420
if (!NewCallee->isDeclaration()) {
421
Calls.push_back({ICB, NewHistoryID});
422
// Continually inlining through an SCC can result in huge compile
423
// times and bloated code since we arbitrarily stop at some point
424
// when the inliner decides it's not profitable to inline anymore.
425
// We attempt to mitigate this by making these calls exponentially
426
// more expensive.
427
// This doesn't apply to calls in the same SCC since if we do
428
// inline through the SCC the function will end up being
429
// self-recursive which the inliner bails out on, and inlining
430
// within an SCC is necessary for performance.
431
if (CalleeSCC != C &&
432
CalleeSCC == CG.lookupSCC(CG.get(*NewCallee))) {
433
Attribute NewCBCostMult = Attribute::get(
434
M.getContext(),
435
InlineConstants::FunctionInlineCostMultiplierAttributeName,
436
itostr(CBCostMult * IntraSCCCostMultiplier));
437
ICB->addFnAttr(NewCBCostMult);
438
}
439
}
440
}
441
}
442
}
443
444
// For local functions or discardable functions without comdats, check
445
// whether this makes the callee trivially dead. In that case, we can drop
446
// the body of the function eagerly which may reduce the number of callers
447
// of other functions to one, changing inline cost thresholds. Non-local
448
// discardable functions with comdats are checked later on.
449
bool CalleeWasDeleted = false;
450
if (Callee.isDiscardableIfUnused() && Callee.hasZeroLiveUses() &&
451
!CG.isLibFunction(Callee)) {
452
if (Callee.hasLocalLinkage() || !Callee.hasComdat()) {
453
Calls.erase(
454
std::remove_if(Calls.begin() + I + 1, Calls.end(),
455
[&](const std::pair<CallBase *, int> &Call) {
456
return Call.first->getCaller() == &Callee;
457
}),
458
Calls.end());
459
460
// Clear the body and queue the function itself for call graph
461
// updating when we finish inlining.
462
makeFunctionBodyUnreachable(Callee);
463
assert(!is_contained(DeadFunctions, &Callee) &&
464
"Cannot put cause a function to become dead twice!");
465
DeadFunctions.push_back(&Callee);
466
CalleeWasDeleted = true;
467
} else {
468
DeadFunctionsInComdats.push_back(&Callee);
469
}
470
}
471
if (CalleeWasDeleted)
472
Advice->recordInliningWithCalleeDeleted();
473
else
474
Advice->recordInlining();
475
}
476
477
// Back the call index up by one to put us in a good position to go around
478
// the outer loop.
479
--I;
480
481
if (!DidInline)
482
continue;
483
Changed = true;
484
485
// At this point, since we have made changes we have at least removed
486
// a call instruction. However, in the process we do some incremental
487
// simplification of the surrounding code. This simplification can
488
// essentially do all of the same things as a function pass and we can
489
// re-use the exact same logic for updating the call graph to reflect the
490
// change.
491
492
// Inside the update, we also update the FunctionAnalysisManager in the
493
// proxy for this particular SCC. We do this as the SCC may have changed and
494
// as we're going to mutate this particular function we want to make sure
495
// the proxy is in place to forward any invalidation events.
496
LazyCallGraph::SCC *OldC = C;
497
C = &updateCGAndAnalysisManagerForCGSCCPass(CG, *C, N, AM, UR, FAM);
498
LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n");
499
500
// If this causes an SCC to split apart into multiple smaller SCCs, there
501
// is a subtle risk we need to prepare for. Other transformations may
502
// expose an "infinite inlining" opportunity later, and because of the SCC
503
// mutation, we will revisit this function and potentially re-inline. If we
504
// do, and that re-inlining also has the potentially to mutate the SCC
505
// structure, the infinite inlining problem can manifest through infinite
506
// SCC splits and merges. To avoid this, we capture the originating caller
507
// node and the SCC containing the call edge. This is a slight over
508
// approximation of the possible inlining decisions that must be avoided,
509
// but is relatively efficient to store. We use C != OldC to know when
510
// a new SCC is generated and the original SCC may be generated via merge
511
// in later iterations.
512
//
513
// It is also possible that even if no new SCC is generated
514
// (i.e., C == OldC), the original SCC could be split and then merged
515
// into the same one as itself. and the original SCC will be added into
516
// UR.CWorklist again, we want to catch such cases too.
517
//
518
// FIXME: This seems like a very heavyweight way of retaining the inline
519
// history, we should look for a more efficient way of tracking it.
520
if ((C != OldC || UR.CWorklist.count(OldC)) &&
521
llvm::any_of(InlinedCallees, [&](Function *Callee) {
522
return CG.lookupSCC(*CG.lookup(*Callee)) == OldC;
523
})) {
524
LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, "
525
"retaining this to avoid infinite inlining.\n");
526
UR.InlinedInternalEdges.insert({&N, OldC});
527
}
528
InlinedCallees.clear();
529
530
// Invalidate analyses for this function now so that we don't have to
531
// invalidate analyses for all functions in this SCC later.
532
FAM.invalidate(F, PreservedAnalyses::none());
533
}
534
535
// We must ensure that we only delete functions with comdats if every function
536
// in the comdat is going to be deleted.
537
if (!DeadFunctionsInComdats.empty()) {
538
filterDeadComdatFunctions(DeadFunctionsInComdats);
539
for (auto *Callee : DeadFunctionsInComdats)
540
makeFunctionBodyUnreachable(*Callee);
541
DeadFunctions.append(DeadFunctionsInComdats);
542
}
543
544
// Now that we've finished inlining all of the calls across this SCC, delete
545
// all of the trivially dead functions, updating the call graph and the CGSCC
546
// pass manager in the process.
547
//
548
// Note that this walks a pointer set which has non-deterministic order but
549
// that is OK as all we do is delete things and add pointers to unordered
550
// sets.
551
for (Function *DeadF : DeadFunctions) {
552
CG.markDeadFunction(*DeadF);
553
// Get the necessary information out of the call graph and nuke the
554
// function there. Also, clear out any cached analyses.
555
auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF));
556
FAM.clear(*DeadF, DeadF->getName());
557
AM.clear(DeadC, DeadC.getName());
558
559
// Mark the relevant parts of the call graph as invalid so we don't visit
560
// them.
561
UR.InvalidatedSCCs.insert(&DeadC);
562
563
UR.DeadFunctions.push_back(DeadF);
564
565
++NumDeleted;
566
}
567
568
if (!Changed)
569
return PreservedAnalyses::all();
570
571
PreservedAnalyses PA;
572
// Even if we change the IR, we update the core CGSCC data structures and so
573
// can preserve the proxy to the function analysis manager.
574
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
575
// We have already invalidated all analyses on modified functions.
576
PA.preserveSet<AllAnalysesOn<Function>>();
577
return PA;
578
}
579
580
ModuleInlinerWrapperPass::ModuleInlinerWrapperPass(InlineParams Params,
581
bool MandatoryFirst,
582
InlineContext IC,
583
InliningAdvisorMode Mode,
584
unsigned MaxDevirtIterations)
585
: Params(Params), IC(IC), Mode(Mode),
586
MaxDevirtIterations(MaxDevirtIterations) {
587
// Run the inliner first. The theory is that we are walking bottom-up and so
588
// the callees have already been fully optimized, and we want to inline them
589
// into the callers so that our optimizations can reflect that.
590
// For PreLinkThinLTO pass, we disable hot-caller heuristic for sample PGO
591
// because it makes profile annotation in the backend inaccurate.
592
if (MandatoryFirst) {
593
PM.addPass(InlinerPass(/*OnlyMandatory*/ true));
594
if (EnablePostSCCAdvisorPrinting)
595
PM.addPass(InlineAdvisorAnalysisPrinterPass(dbgs()));
596
}
597
PM.addPass(InlinerPass());
598
if (EnablePostSCCAdvisorPrinting)
599
PM.addPass(InlineAdvisorAnalysisPrinterPass(dbgs()));
600
}
601
602
PreservedAnalyses ModuleInlinerWrapperPass::run(Module &M,
603
ModuleAnalysisManager &MAM) {
604
auto &IAA = MAM.getResult<InlineAdvisorAnalysis>(M);
605
if (!IAA.tryCreate(Params, Mode,
606
{CGSCCInlineReplayFile,
607
CGSCCInlineReplayScope,
608
CGSCCInlineReplayFallback,
609
{CGSCCInlineReplayFormat}},
610
IC)) {
611
M.getContext().emitError(
612
"Could not setup Inlining Advisor for the requested "
613
"mode and/or options");
614
return PreservedAnalyses::all();
615
}
616
617
// We wrap the CGSCC pipeline in a devirtualization repeater. This will try
618
// to detect when we devirtualize indirect calls and iterate the SCC passes
619
// in that case to try and catch knock-on inlining or function attrs
620
// opportunities. Then we add it to the module pipeline by walking the SCCs
621
// in postorder (or bottom-up).
622
// If MaxDevirtIterations is 0, we just don't use the devirtualization
623
// wrapper.
624
if (MaxDevirtIterations == 0)
625
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(PM)));
626
else
627
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
628
createDevirtSCCRepeatedPass(std::move(PM), MaxDevirtIterations)));
629
630
MPM.addPass(std::move(AfterCGMPM));
631
MPM.run(M, MAM);
632
633
// Discard the InlineAdvisor, a subsequent inlining session should construct
634
// its own.
635
auto PA = PreservedAnalyses::all();
636
if (!KeepAdvisorForPrinting)
637
PA.abandon<InlineAdvisorAnalysis>();
638
return PA;
639
}
640
641
void InlinerPass::printPipeline(
642
raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
643
static_cast<PassInfoMixin<InlinerPass> *>(this)->printPipeline(
644
OS, MapClassName2PassName);
645
if (OnlyMandatory)
646
OS << "<only-mandatory>";
647
}
648
649
void ModuleInlinerWrapperPass::printPipeline(
650
raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
651
// Print some info about passes added to the wrapper. This is however
652
// incomplete as InlineAdvisorAnalysis part isn't included (which also depends
653
// on Params and Mode).
654
if (!MPM.isEmpty()) {
655
MPM.printPipeline(OS, MapClassName2PassName);
656
OS << ',';
657
}
658
OS << "cgscc(";
659
if (MaxDevirtIterations != 0)
660
OS << "devirt<" << MaxDevirtIterations << ">(";
661
PM.printPipeline(OS, MapClassName2PassName);
662
if (MaxDevirtIterations != 0)
663
OS << ')';
664
OS << ')';
665
}
666
667