Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/IPO/SampleProfileProbe.cpp
35266 views
1
//===- SampleProfileProbe.cpp - Pseudo probe Instrumentation -------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the SampleProfileProber transformation.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "llvm/Transforms/IPO/SampleProfileProbe.h"
14
#include "llvm/ADT/Statistic.h"
15
#include "llvm/Analysis/BlockFrequencyInfo.h"
16
#include "llvm/Analysis/EHUtils.h"
17
#include "llvm/Analysis/LoopInfo.h"
18
#include "llvm/IR/BasicBlock.h"
19
#include "llvm/IR/Constants.h"
20
#include "llvm/IR/DebugInfoMetadata.h"
21
#include "llvm/IR/DiagnosticInfo.h"
22
#include "llvm/IR/IRBuilder.h"
23
#include "llvm/IR/Instruction.h"
24
#include "llvm/IR/IntrinsicInst.h"
25
#include "llvm/IR/MDBuilder.h"
26
#include "llvm/IR/Module.h"
27
#include "llvm/IR/PseudoProbe.h"
28
#include "llvm/ProfileData/SampleProf.h"
29
#include "llvm/Support/CRC.h"
30
#include "llvm/Support/CommandLine.h"
31
#include "llvm/Target/TargetMachine.h"
32
#include "llvm/Transforms/Instrumentation.h"
33
#include "llvm/Transforms/Utils/ModuleUtils.h"
34
#include <unordered_set>
35
#include <vector>
36
37
using namespace llvm;
38
#define DEBUG_TYPE "pseudo-probe"
39
40
STATISTIC(ArtificialDbgLine,
41
"Number of probes that have an artificial debug line");
42
43
static cl::opt<bool>
44
VerifyPseudoProbe("verify-pseudo-probe", cl::init(false), cl::Hidden,
45
cl::desc("Do pseudo probe verification"));
46
47
static cl::list<std::string> VerifyPseudoProbeFuncList(
48
"verify-pseudo-probe-funcs", cl::Hidden,
49
cl::desc("The option to specify the name of the functions to verify."));
50
51
static cl::opt<bool>
52
UpdatePseudoProbe("update-pseudo-probe", cl::init(true), cl::Hidden,
53
cl::desc("Update pseudo probe distribution factor"));
54
55
static uint64_t getCallStackHash(const DILocation *DIL) {
56
uint64_t Hash = 0;
57
const DILocation *InlinedAt = DIL ? DIL->getInlinedAt() : nullptr;
58
while (InlinedAt) {
59
Hash ^= MD5Hash(std::to_string(InlinedAt->getLine()));
60
Hash ^= MD5Hash(std::to_string(InlinedAt->getColumn()));
61
auto Name = InlinedAt->getSubprogramLinkageName();
62
Hash ^= MD5Hash(Name);
63
InlinedAt = InlinedAt->getInlinedAt();
64
}
65
return Hash;
66
}
67
68
static uint64_t computeCallStackHash(const Instruction &Inst) {
69
return getCallStackHash(Inst.getDebugLoc());
70
}
71
72
bool PseudoProbeVerifier::shouldVerifyFunction(const Function *F) {
73
// Skip function declaration.
74
if (F->isDeclaration())
75
return false;
76
// Skip function that will not be emitted into object file. The prevailing
77
// defintion will be verified instead.
78
if (F->hasAvailableExternallyLinkage())
79
return false;
80
// Do a name matching.
81
static std::unordered_set<std::string> VerifyFuncNames(
82
VerifyPseudoProbeFuncList.begin(), VerifyPseudoProbeFuncList.end());
83
return VerifyFuncNames.empty() || VerifyFuncNames.count(F->getName().str());
84
}
85
86
void PseudoProbeVerifier::registerCallbacks(PassInstrumentationCallbacks &PIC) {
87
if (VerifyPseudoProbe) {
88
PIC.registerAfterPassCallback(
89
[this](StringRef P, Any IR, const PreservedAnalyses &) {
90
this->runAfterPass(P, IR);
91
});
92
}
93
}
94
95
// Callback to run after each transformation for the new pass manager.
96
void PseudoProbeVerifier::runAfterPass(StringRef PassID, Any IR) {
97
std::string Banner =
98
"\n*** Pseudo Probe Verification After " + PassID.str() + " ***\n";
99
dbgs() << Banner;
100
if (const auto **M = llvm::any_cast<const Module *>(&IR))
101
runAfterPass(*M);
102
else if (const auto **F = llvm::any_cast<const Function *>(&IR))
103
runAfterPass(*F);
104
else if (const auto **C = llvm::any_cast<const LazyCallGraph::SCC *>(&IR))
105
runAfterPass(*C);
106
else if (const auto **L = llvm::any_cast<const Loop *>(&IR))
107
runAfterPass(*L);
108
else
109
llvm_unreachable("Unknown IR unit");
110
}
111
112
void PseudoProbeVerifier::runAfterPass(const Module *M) {
113
for (const Function &F : *M)
114
runAfterPass(&F);
115
}
116
117
void PseudoProbeVerifier::runAfterPass(const LazyCallGraph::SCC *C) {
118
for (const LazyCallGraph::Node &N : *C)
119
runAfterPass(&N.getFunction());
120
}
121
122
void PseudoProbeVerifier::runAfterPass(const Function *F) {
123
if (!shouldVerifyFunction(F))
124
return;
125
ProbeFactorMap ProbeFactors;
126
for (const auto &BB : *F)
127
collectProbeFactors(&BB, ProbeFactors);
128
verifyProbeFactors(F, ProbeFactors);
129
}
130
131
void PseudoProbeVerifier::runAfterPass(const Loop *L) {
132
const Function *F = L->getHeader()->getParent();
133
runAfterPass(F);
134
}
135
136
void PseudoProbeVerifier::collectProbeFactors(const BasicBlock *Block,
137
ProbeFactorMap &ProbeFactors) {
138
for (const auto &I : *Block) {
139
if (std::optional<PseudoProbe> Probe = extractProbe(I)) {
140
uint64_t Hash = computeCallStackHash(I);
141
ProbeFactors[{Probe->Id, Hash}] += Probe->Factor;
142
}
143
}
144
}
145
146
void PseudoProbeVerifier::verifyProbeFactors(
147
const Function *F, const ProbeFactorMap &ProbeFactors) {
148
bool BannerPrinted = false;
149
auto &PrevProbeFactors = FunctionProbeFactors[F->getName()];
150
for (const auto &I : ProbeFactors) {
151
float CurProbeFactor = I.second;
152
if (PrevProbeFactors.count(I.first)) {
153
float PrevProbeFactor = PrevProbeFactors[I.first];
154
if (std::abs(CurProbeFactor - PrevProbeFactor) >
155
DistributionFactorVariance) {
156
if (!BannerPrinted) {
157
dbgs() << "Function " << F->getName() << ":\n";
158
BannerPrinted = true;
159
}
160
dbgs() << "Probe " << I.first.first << "\tprevious factor "
161
<< format("%0.2f", PrevProbeFactor) << "\tcurrent factor "
162
<< format("%0.2f", CurProbeFactor) << "\n";
163
}
164
}
165
166
// Update
167
PrevProbeFactors[I.first] = I.second;
168
}
169
}
170
171
SampleProfileProber::SampleProfileProber(Function &Func,
172
const std::string &CurModuleUniqueId)
173
: F(&Func), CurModuleUniqueId(CurModuleUniqueId) {
174
BlockProbeIds.clear();
175
CallProbeIds.clear();
176
LastProbeId = (uint32_t)PseudoProbeReservedId::Last;
177
178
DenseSet<BasicBlock *> BlocksToIgnore;
179
DenseSet<BasicBlock *> BlocksAndCallsToIgnore;
180
computeBlocksToIgnore(BlocksToIgnore, BlocksAndCallsToIgnore);
181
182
computeProbeId(BlocksToIgnore, BlocksAndCallsToIgnore);
183
computeCFGHash(BlocksToIgnore);
184
}
185
186
// Two purposes to compute the blocks to ignore:
187
// 1. Reduce the IR size.
188
// 2. Make the instrumentation(checksum) stable. e.g. the frondend may
189
// generate unstable IR while optimizing nounwind attribute, some versions are
190
// optimized with the call-to-invoke conversion, while other versions do not.
191
// This discrepancy in probe ID could cause profile mismatching issues.
192
// Note that those ignored blocks are either cold blocks or new split blocks
193
// whose original blocks are instrumented, so it shouldn't degrade the profile
194
// quality.
195
void SampleProfileProber::computeBlocksToIgnore(
196
DenseSet<BasicBlock *> &BlocksToIgnore,
197
DenseSet<BasicBlock *> &BlocksAndCallsToIgnore) {
198
// Ignore the cold EH and unreachable blocks and calls.
199
computeEHOnlyBlocks(*F, BlocksAndCallsToIgnore);
200
findUnreachableBlocks(BlocksAndCallsToIgnore);
201
202
BlocksToIgnore.insert(BlocksAndCallsToIgnore.begin(),
203
BlocksAndCallsToIgnore.end());
204
205
// Handle the call-to-invoke conversion case: make sure that the probe id and
206
// callsite id are consistent before and after the block split. For block
207
// probe, we only keep the head block probe id and ignore the block ids of the
208
// normal dests. For callsite probe, it's different to block probe, there is
209
// no additional callsite in the normal dests, so we don't ignore the
210
// callsites.
211
findInvokeNormalDests(BlocksToIgnore);
212
}
213
214
// Unreachable blocks and calls are always cold, ignore them.
215
void SampleProfileProber::findUnreachableBlocks(
216
DenseSet<BasicBlock *> &BlocksToIgnore) {
217
for (auto &BB : *F) {
218
if (&BB != &F->getEntryBlock() && pred_size(&BB) == 0)
219
BlocksToIgnore.insert(&BB);
220
}
221
}
222
223
// In call-to-invoke conversion, basic block can be split into multiple blocks,
224
// only instrument probe in the head block, ignore the normal dests.
225
void SampleProfileProber::findInvokeNormalDests(
226
DenseSet<BasicBlock *> &InvokeNormalDests) {
227
for (auto &BB : *F) {
228
auto *TI = BB.getTerminator();
229
if (auto *II = dyn_cast<InvokeInst>(TI)) {
230
auto *ND = II->getNormalDest();
231
InvokeNormalDests.insert(ND);
232
233
// The normal dest and the try/catch block are connected by an
234
// unconditional branch.
235
while (pred_size(ND) == 1) {
236
auto *Pred = *pred_begin(ND);
237
if (succ_size(Pred) == 1) {
238
InvokeNormalDests.insert(Pred);
239
ND = Pred;
240
} else
241
break;
242
}
243
}
244
}
245
}
246
247
// The call-to-invoke conversion splits the original block into a list of block,
248
// we need to compute the hash using the original block's successors to keep the
249
// CFG Hash consistent. For a given head block, we keep searching the
250
// succesor(normal dest or unconditional branch dest) to find the tail block,
251
// the tail block's successors are the original block's successors.
252
const Instruction *SampleProfileProber::getOriginalTerminator(
253
const BasicBlock *Head, const DenseSet<BasicBlock *> &BlocksToIgnore) {
254
auto *TI = Head->getTerminator();
255
if (auto *II = dyn_cast<InvokeInst>(TI)) {
256
return getOriginalTerminator(II->getNormalDest(), BlocksToIgnore);
257
} else if (succ_size(Head) == 1 &&
258
BlocksToIgnore.contains(*succ_begin(Head))) {
259
// Go to the unconditional branch dest.
260
return getOriginalTerminator(*succ_begin(Head), BlocksToIgnore);
261
}
262
return TI;
263
}
264
265
// Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index
266
// value of each BB in the CFG. The higher 32 bits record the number of edges
267
// preceded by the number of indirect calls.
268
// This is derived from FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash().
269
void SampleProfileProber::computeCFGHash(
270
const DenseSet<BasicBlock *> &BlocksToIgnore) {
271
std::vector<uint8_t> Indexes;
272
JamCRC JC;
273
for (auto &BB : *F) {
274
if (BlocksToIgnore.contains(&BB))
275
continue;
276
277
auto *TI = getOriginalTerminator(&BB, BlocksToIgnore);
278
for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
279
auto *Succ = TI->getSuccessor(I);
280
auto Index = getBlockId(Succ);
281
// Ingore ignored-block(zero ID) to avoid unstable checksum.
282
if (Index == 0)
283
continue;
284
for (int J = 0; J < 4; J++)
285
Indexes.push_back((uint8_t)(Index >> (J * 8)));
286
}
287
}
288
289
JC.update(Indexes);
290
291
FunctionHash = (uint64_t)CallProbeIds.size() << 48 |
292
(uint64_t)Indexes.size() << 32 | JC.getCRC();
293
// Reserve bit 60-63 for other information purpose.
294
FunctionHash &= 0x0FFFFFFFFFFFFFFF;
295
assert(FunctionHash && "Function checksum should not be zero");
296
LLVM_DEBUG(dbgs() << "\nFunction Hash Computation for " << F->getName()
297
<< ":\n"
298
<< " CRC = " << JC.getCRC() << ", Edges = "
299
<< Indexes.size() << ", ICSites = " << CallProbeIds.size()
300
<< ", Hash = " << FunctionHash << "\n");
301
}
302
303
void SampleProfileProber::computeProbeId(
304
const DenseSet<BasicBlock *> &BlocksToIgnore,
305
const DenseSet<BasicBlock *> &BlocksAndCallsToIgnore) {
306
LLVMContext &Ctx = F->getContext();
307
Module *M = F->getParent();
308
309
for (auto &BB : *F) {
310
if (!BlocksToIgnore.contains(&BB))
311
BlockProbeIds[&BB] = ++LastProbeId;
312
313
if (BlocksAndCallsToIgnore.contains(&BB))
314
continue;
315
for (auto &I : BB) {
316
if (!isa<CallBase>(I) || isa<IntrinsicInst>(&I))
317
continue;
318
319
// The current implementation uses the lower 16 bits of the discriminator
320
// so anything larger than 0xFFFF will be ignored.
321
if (LastProbeId >= 0xFFFF) {
322
std::string Msg = "Pseudo instrumentation incomplete for " +
323
std::string(F->getName()) + " because it's too large";
324
Ctx.diagnose(
325
DiagnosticInfoSampleProfile(M->getName().data(), Msg, DS_Warning));
326
return;
327
}
328
329
CallProbeIds[&I] = ++LastProbeId;
330
}
331
}
332
}
333
334
uint32_t SampleProfileProber::getBlockId(const BasicBlock *BB) const {
335
auto I = BlockProbeIds.find(const_cast<BasicBlock *>(BB));
336
return I == BlockProbeIds.end() ? 0 : I->second;
337
}
338
339
uint32_t SampleProfileProber::getCallsiteId(const Instruction *Call) const {
340
auto Iter = CallProbeIds.find(const_cast<Instruction *>(Call));
341
return Iter == CallProbeIds.end() ? 0 : Iter->second;
342
}
343
344
void SampleProfileProber::instrumentOneFunc(Function &F, TargetMachine *TM) {
345
Module *M = F.getParent();
346
MDBuilder MDB(F.getContext());
347
// Since the GUID from probe desc and inline stack are computed separately, we
348
// need to make sure their names are consistent, so here also use the name
349
// from debug info.
350
StringRef FName = F.getName();
351
if (auto *SP = F.getSubprogram()) {
352
FName = SP->getLinkageName();
353
if (FName.empty())
354
FName = SP->getName();
355
}
356
uint64_t Guid = Function::getGUID(FName);
357
358
// Assign an artificial debug line to a probe that doesn't come with a real
359
// line. A probe not having a debug line will get an incomplete inline
360
// context. This will cause samples collected on the probe to be counted
361
// into the base profile instead of a context profile. The line number
362
// itself is not important though.
363
auto AssignDebugLoc = [&](Instruction *I) {
364
assert((isa<PseudoProbeInst>(I) || isa<CallBase>(I)) &&
365
"Expecting pseudo probe or call instructions");
366
if (!I->getDebugLoc()) {
367
if (auto *SP = F.getSubprogram()) {
368
auto DIL = DILocation::get(SP->getContext(), 0, 0, SP);
369
I->setDebugLoc(DIL);
370
ArtificialDbgLine++;
371
LLVM_DEBUG({
372
dbgs() << "\nIn Function " << F.getName()
373
<< " Probe gets an artificial debug line\n";
374
I->dump();
375
});
376
}
377
}
378
};
379
380
// Probe basic blocks.
381
for (auto &I : BlockProbeIds) {
382
BasicBlock *BB = I.first;
383
uint32_t Index = I.second;
384
// Insert a probe before an instruction with a valid debug line number which
385
// will be assigned to the probe. The line number will be used later to
386
// model the inline context when the probe is inlined into other functions.
387
// Debug instructions, phi nodes and lifetime markers do not have an valid
388
// line number. Real instructions generated by optimizations may not come
389
// with a line number either.
390
auto HasValidDbgLine = [](Instruction *J) {
391
return !isa<PHINode>(J) && !isa<DbgInfoIntrinsic>(J) &&
392
!J->isLifetimeStartOrEnd() && J->getDebugLoc();
393
};
394
395
Instruction *J = &*BB->getFirstInsertionPt();
396
while (J != BB->getTerminator() && !HasValidDbgLine(J)) {
397
J = J->getNextNode();
398
}
399
400
IRBuilder<> Builder(J);
401
assert(Builder.GetInsertPoint() != BB->end() &&
402
"Cannot get the probing point");
403
Function *ProbeFn =
404
llvm::Intrinsic::getDeclaration(M, Intrinsic::pseudoprobe);
405
Value *Args[] = {Builder.getInt64(Guid), Builder.getInt64(Index),
406
Builder.getInt32(0),
407
Builder.getInt64(PseudoProbeFullDistributionFactor)};
408
auto *Probe = Builder.CreateCall(ProbeFn, Args);
409
AssignDebugLoc(Probe);
410
// Reset the dwarf discriminator if the debug location comes with any. The
411
// discriminator field may be used by FS-AFDO later in the pipeline.
412
if (auto DIL = Probe->getDebugLoc()) {
413
if (DIL->getDiscriminator()) {
414
DIL = DIL->cloneWithDiscriminator(0);
415
Probe->setDebugLoc(DIL);
416
}
417
}
418
}
419
420
// Probe both direct calls and indirect calls. Direct calls are probed so that
421
// their probe ID can be used as an call site identifier to represent a
422
// calling context.
423
for (auto &I : CallProbeIds) {
424
auto *Call = I.first;
425
uint32_t Index = I.second;
426
uint32_t Type = cast<CallBase>(Call)->getCalledFunction()
427
? (uint32_t)PseudoProbeType::DirectCall
428
: (uint32_t)PseudoProbeType::IndirectCall;
429
AssignDebugLoc(Call);
430
if (auto DIL = Call->getDebugLoc()) {
431
// Levarge the 32-bit discriminator field of debug data to store the ID
432
// and type of a callsite probe. This gets rid of the dependency on
433
// plumbing a customized metadata through the codegen pipeline.
434
uint32_t V = PseudoProbeDwarfDiscriminator::packProbeData(
435
Index, Type, 0, PseudoProbeDwarfDiscriminator::FullDistributionFactor,
436
DIL->getBaseDiscriminator());
437
DIL = DIL->cloneWithDiscriminator(V);
438
Call->setDebugLoc(DIL);
439
}
440
}
441
442
// Create module-level metadata that contains function info necessary to
443
// synthesize probe-based sample counts, which are
444
// - FunctionGUID
445
// - FunctionHash.
446
// - FunctionName
447
auto Hash = getFunctionHash();
448
auto *MD = MDB.createPseudoProbeDesc(Guid, Hash, FName);
449
auto *NMD = M->getNamedMetadata(PseudoProbeDescMetadataName);
450
assert(NMD && "llvm.pseudo_probe_desc should be pre-created");
451
NMD->addOperand(MD);
452
}
453
454
PreservedAnalyses SampleProfileProbePass::run(Module &M,
455
ModuleAnalysisManager &AM) {
456
auto ModuleId = getUniqueModuleId(&M);
457
// Create the pseudo probe desc metadata beforehand.
458
// Note that modules with only data but no functions will require this to
459
// be set up so that they will be known as probed later.
460
M.getOrInsertNamedMetadata(PseudoProbeDescMetadataName);
461
462
for (auto &F : M) {
463
if (F.isDeclaration())
464
continue;
465
SampleProfileProber ProbeManager(F, ModuleId);
466
ProbeManager.instrumentOneFunc(F, TM);
467
}
468
469
return PreservedAnalyses::none();
470
}
471
472
void PseudoProbeUpdatePass::runOnFunction(Function &F,
473
FunctionAnalysisManager &FAM) {
474
BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
475
auto BBProfileCount = [&BFI](BasicBlock *BB) {
476
return BFI.getBlockProfileCount(BB).value_or(0);
477
};
478
479
// Collect the sum of execution weight for each probe.
480
ProbeFactorMap ProbeFactors;
481
for (auto &Block : F) {
482
for (auto &I : Block) {
483
if (std::optional<PseudoProbe> Probe = extractProbe(I)) {
484
uint64_t Hash = computeCallStackHash(I);
485
ProbeFactors[{Probe->Id, Hash}] += BBProfileCount(&Block);
486
}
487
}
488
}
489
490
// Fix up over-counted probes.
491
for (auto &Block : F) {
492
for (auto &I : Block) {
493
if (std::optional<PseudoProbe> Probe = extractProbe(I)) {
494
uint64_t Hash = computeCallStackHash(I);
495
float Sum = ProbeFactors[{Probe->Id, Hash}];
496
if (Sum != 0)
497
setProbeDistributionFactor(I, BBProfileCount(&Block) / Sum);
498
}
499
}
500
}
501
}
502
503
PreservedAnalyses PseudoProbeUpdatePass::run(Module &M,
504
ModuleAnalysisManager &AM) {
505
if (UpdatePseudoProbe) {
506
for (auto &F : M) {
507
if (F.isDeclaration())
508
continue;
509
FunctionAnalysisManager &FAM =
510
AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
511
runOnFunction(F, FAM);
512
}
513
}
514
return PreservedAnalyses::none();
515
}
516
517