Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/IPO/WholeProgramDevirt.cpp
35266 views
1
//===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This pass implements whole program optimization of virtual calls in cases
10
// where we know (via !type metadata) that the list of callees is fixed. This
11
// includes the following:
12
// - Single implementation devirtualization: if a virtual call has a single
13
// possible callee, replace all calls with a direct call to that callee.
14
// - Virtual constant propagation: if the virtual function's return type is an
15
// integer <=64 bits and all possible callees are readnone, for each class and
16
// each list of constant arguments: evaluate the function, store the return
17
// value alongside the virtual table, and rewrite each virtual call as a load
18
// from the virtual table.
19
// - Uniform return value optimization: if the conditions for virtual constant
20
// propagation hold and each function returns the same constant value, replace
21
// each virtual call with that constant.
22
// - Unique return value optimization for i1 return values: if the conditions
23
// for virtual constant propagation hold and a single vtable's function
24
// returns 0, or a single vtable's function returns 1, replace each virtual
25
// call with a comparison of the vptr against that vtable's address.
26
//
27
// This pass is intended to be used during the regular and thin LTO pipelines:
28
//
29
// During regular LTO, the pass determines the best optimization for each
30
// virtual call and applies the resolutions directly to virtual calls that are
31
// eligible for virtual call optimization (i.e. calls that use either of the
32
// llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
33
//
34
// During hybrid Regular/ThinLTO, the pass operates in two phases:
35
// - Export phase: this is run during the thin link over a single merged module
36
// that contains all vtables with !type metadata that participate in the link.
37
// The pass computes a resolution for each virtual call and stores it in the
38
// type identifier summary.
39
// - Import phase: this is run during the thin backends over the individual
40
// modules. The pass applies the resolutions previously computed during the
41
// import phase to each eligible virtual call.
42
//
43
// During ThinLTO, the pass operates in two phases:
44
// - Export phase: this is run during the thin link over the index which
45
// contains a summary of all vtables with !type metadata that participate in
46
// the link. It computes a resolution for each virtual call and stores it in
47
// the type identifier summary. Only single implementation devirtualization
48
// is supported.
49
// - Import phase: (same as with hybrid case above).
50
//
51
//===----------------------------------------------------------------------===//
52
53
#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
54
#include "llvm/ADT/ArrayRef.h"
55
#include "llvm/ADT/DenseMap.h"
56
#include "llvm/ADT/DenseMapInfo.h"
57
#include "llvm/ADT/DenseSet.h"
58
#include "llvm/ADT/MapVector.h"
59
#include "llvm/ADT/SmallVector.h"
60
#include "llvm/ADT/Statistic.h"
61
#include "llvm/Analysis/AssumptionCache.h"
62
#include "llvm/Analysis/BasicAliasAnalysis.h"
63
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
64
#include "llvm/Analysis/TypeMetadataUtils.h"
65
#include "llvm/Bitcode/BitcodeReader.h"
66
#include "llvm/Bitcode/BitcodeWriter.h"
67
#include "llvm/IR/Constants.h"
68
#include "llvm/IR/DataLayout.h"
69
#include "llvm/IR/DebugLoc.h"
70
#include "llvm/IR/DerivedTypes.h"
71
#include "llvm/IR/Dominators.h"
72
#include "llvm/IR/Function.h"
73
#include "llvm/IR/GlobalAlias.h"
74
#include "llvm/IR/GlobalVariable.h"
75
#include "llvm/IR/IRBuilder.h"
76
#include "llvm/IR/InstrTypes.h"
77
#include "llvm/IR/Instruction.h"
78
#include "llvm/IR/Instructions.h"
79
#include "llvm/IR/Intrinsics.h"
80
#include "llvm/IR/LLVMContext.h"
81
#include "llvm/IR/MDBuilder.h"
82
#include "llvm/IR/Metadata.h"
83
#include "llvm/IR/Module.h"
84
#include "llvm/IR/ModuleSummaryIndexYAML.h"
85
#include "llvm/Support/Casting.h"
86
#include "llvm/Support/CommandLine.h"
87
#include "llvm/Support/Errc.h"
88
#include "llvm/Support/Error.h"
89
#include "llvm/Support/FileSystem.h"
90
#include "llvm/Support/GlobPattern.h"
91
#include "llvm/Support/MathExtras.h"
92
#include "llvm/TargetParser/Triple.h"
93
#include "llvm/Transforms/IPO.h"
94
#include "llvm/Transforms/IPO/FunctionAttrs.h"
95
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
96
#include "llvm/Transforms/Utils/CallPromotionUtils.h"
97
#include "llvm/Transforms/Utils/Evaluator.h"
98
#include <algorithm>
99
#include <cstddef>
100
#include <map>
101
#include <set>
102
#include <string>
103
104
using namespace llvm;
105
using namespace wholeprogramdevirt;
106
107
#define DEBUG_TYPE "wholeprogramdevirt"
108
109
STATISTIC(NumDevirtTargets, "Number of whole program devirtualization targets");
110
STATISTIC(NumSingleImpl, "Number of single implementation devirtualizations");
111
STATISTIC(NumBranchFunnel, "Number of branch funnels");
112
STATISTIC(NumUniformRetVal, "Number of uniform return value optimizations");
113
STATISTIC(NumUniqueRetVal, "Number of unique return value optimizations");
114
STATISTIC(NumVirtConstProp1Bit,
115
"Number of 1 bit virtual constant propagations");
116
STATISTIC(NumVirtConstProp, "Number of virtual constant propagations");
117
118
static cl::opt<PassSummaryAction> ClSummaryAction(
119
"wholeprogramdevirt-summary-action",
120
cl::desc("What to do with the summary when running this pass"),
121
cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
122
clEnumValN(PassSummaryAction::Import, "import",
123
"Import typeid resolutions from summary and globals"),
124
clEnumValN(PassSummaryAction::Export, "export",
125
"Export typeid resolutions to summary and globals")),
126
cl::Hidden);
127
128
static cl::opt<std::string> ClReadSummary(
129
"wholeprogramdevirt-read-summary",
130
cl::desc(
131
"Read summary from given bitcode or YAML file before running pass"),
132
cl::Hidden);
133
134
static cl::opt<std::string> ClWriteSummary(
135
"wholeprogramdevirt-write-summary",
136
cl::desc("Write summary to given bitcode or YAML file after running pass. "
137
"Output file format is deduced from extension: *.bc means writing "
138
"bitcode, otherwise YAML"),
139
cl::Hidden);
140
141
static cl::opt<unsigned>
142
ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
143
cl::init(10),
144
cl::desc("Maximum number of call targets per "
145
"call site to enable branch funnels"));
146
147
static cl::opt<bool>
148
PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden,
149
cl::desc("Print index-based devirtualization messages"));
150
151
/// Provide a way to force enable whole program visibility in tests.
152
/// This is needed to support legacy tests that don't contain
153
/// !vcall_visibility metadata (the mere presense of type tests
154
/// previously implied hidden visibility).
155
static cl::opt<bool>
156
WholeProgramVisibility("whole-program-visibility", cl::Hidden,
157
cl::desc("Enable whole program visibility"));
158
159
/// Provide a way to force disable whole program for debugging or workarounds,
160
/// when enabled via the linker.
161
static cl::opt<bool> DisableWholeProgramVisibility(
162
"disable-whole-program-visibility", cl::Hidden,
163
cl::desc("Disable whole program visibility (overrides enabling options)"));
164
165
/// Provide way to prevent certain function from being devirtualized
166
static cl::list<std::string>
167
SkipFunctionNames("wholeprogramdevirt-skip",
168
cl::desc("Prevent function(s) from being devirtualized"),
169
cl::Hidden, cl::CommaSeparated);
170
171
/// Mechanism to add runtime checking of devirtualization decisions, optionally
172
/// trapping or falling back to indirect call on any that are not correct.
173
/// Trapping mode is useful for debugging undefined behavior leading to failures
174
/// with WPD. Fallback mode is useful for ensuring safety when whole program
175
/// visibility may be compromised.
176
enum WPDCheckMode { None, Trap, Fallback };
177
static cl::opt<WPDCheckMode> DevirtCheckMode(
178
"wholeprogramdevirt-check", cl::Hidden,
179
cl::desc("Type of checking for incorrect devirtualizations"),
180
cl::values(clEnumValN(WPDCheckMode::None, "none", "No checking"),
181
clEnumValN(WPDCheckMode::Trap, "trap", "Trap when incorrect"),
182
clEnumValN(WPDCheckMode::Fallback, "fallback",
183
"Fallback to indirect when incorrect")));
184
185
namespace {
186
struct PatternList {
187
std::vector<GlobPattern> Patterns;
188
template <class T> void init(const T &StringList) {
189
for (const auto &S : StringList)
190
if (Expected<GlobPattern> Pat = GlobPattern::create(S))
191
Patterns.push_back(std::move(*Pat));
192
}
193
bool match(StringRef S) {
194
for (const GlobPattern &P : Patterns)
195
if (P.match(S))
196
return true;
197
return false;
198
}
199
};
200
} // namespace
201
202
// Find the minimum offset that we may store a value of size Size bits at. If
203
// IsAfter is set, look for an offset before the object, otherwise look for an
204
// offset after the object.
205
uint64_t
206
wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
207
bool IsAfter, uint64_t Size) {
208
// Find a minimum offset taking into account only vtable sizes.
209
uint64_t MinByte = 0;
210
for (const VirtualCallTarget &Target : Targets) {
211
if (IsAfter)
212
MinByte = std::max(MinByte, Target.minAfterBytes());
213
else
214
MinByte = std::max(MinByte, Target.minBeforeBytes());
215
}
216
217
// Build a vector of arrays of bytes covering, for each target, a slice of the
218
// used region (see AccumBitVector::BytesUsed in
219
// llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
220
// this aligns the used regions to start at MinByte.
221
//
222
// In this example, A, B and C are vtables, # is a byte already allocated for
223
// a virtual function pointer, AAAA... (etc.) are the used regions for the
224
// vtables and Offset(X) is the value computed for the Offset variable below
225
// for X.
226
//
227
// Offset(A)
228
// | |
229
// |MinByte
230
// A: ################AAAAAAAA|AAAAAAAA
231
// B: ########BBBBBBBBBBBBBBBB|BBBB
232
// C: ########################|CCCCCCCCCCCCCCCC
233
// | Offset(B) |
234
//
235
// This code produces the slices of A, B and C that appear after the divider
236
// at MinByte.
237
std::vector<ArrayRef<uint8_t>> Used;
238
for (const VirtualCallTarget &Target : Targets) {
239
ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
240
: Target.TM->Bits->Before.BytesUsed;
241
uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
242
: MinByte - Target.minBeforeBytes();
243
244
// Disregard used regions that are smaller than Offset. These are
245
// effectively all-free regions that do not need to be checked.
246
if (VTUsed.size() > Offset)
247
Used.push_back(VTUsed.slice(Offset));
248
}
249
250
if (Size == 1) {
251
// Find a free bit in each member of Used.
252
for (unsigned I = 0;; ++I) {
253
uint8_t BitsUsed = 0;
254
for (auto &&B : Used)
255
if (I < B.size())
256
BitsUsed |= B[I];
257
if (BitsUsed != 0xff)
258
return (MinByte + I) * 8 + llvm::countr_zero(uint8_t(~BitsUsed));
259
}
260
} else {
261
// Find a free (Size/8) byte region in each member of Used.
262
// FIXME: see if alignment helps.
263
for (unsigned I = 0;; ++I) {
264
for (auto &&B : Used) {
265
unsigned Byte = 0;
266
while ((I + Byte) < B.size() && Byte < (Size / 8)) {
267
if (B[I + Byte])
268
goto NextI;
269
++Byte;
270
}
271
}
272
return (MinByte + I) * 8;
273
NextI:;
274
}
275
}
276
}
277
278
void wholeprogramdevirt::setBeforeReturnValues(
279
MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
280
unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
281
if (BitWidth == 1)
282
OffsetByte = -(AllocBefore / 8 + 1);
283
else
284
OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
285
OffsetBit = AllocBefore % 8;
286
287
for (VirtualCallTarget &Target : Targets) {
288
if (BitWidth == 1)
289
Target.setBeforeBit(AllocBefore);
290
else
291
Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
292
}
293
}
294
295
void wholeprogramdevirt::setAfterReturnValues(
296
MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
297
unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
298
if (BitWidth == 1)
299
OffsetByte = AllocAfter / 8;
300
else
301
OffsetByte = (AllocAfter + 7) / 8;
302
OffsetBit = AllocAfter % 8;
303
304
for (VirtualCallTarget &Target : Targets) {
305
if (BitWidth == 1)
306
Target.setAfterBit(AllocAfter);
307
else
308
Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
309
}
310
}
311
312
VirtualCallTarget::VirtualCallTarget(GlobalValue *Fn, const TypeMemberInfo *TM)
313
: Fn(Fn), TM(TM),
314
IsBigEndian(Fn->getDataLayout().isBigEndian()),
315
WasDevirt(false) {}
316
317
namespace {
318
319
// A slot in a set of virtual tables. The TypeID identifies the set of virtual
320
// tables, and the ByteOffset is the offset in bytes from the address point to
321
// the virtual function pointer.
322
struct VTableSlot {
323
Metadata *TypeID;
324
uint64_t ByteOffset;
325
};
326
327
} // end anonymous namespace
328
329
namespace llvm {
330
331
template <> struct DenseMapInfo<VTableSlot> {
332
static VTableSlot getEmptyKey() {
333
return {DenseMapInfo<Metadata *>::getEmptyKey(),
334
DenseMapInfo<uint64_t>::getEmptyKey()};
335
}
336
static VTableSlot getTombstoneKey() {
337
return {DenseMapInfo<Metadata *>::getTombstoneKey(),
338
DenseMapInfo<uint64_t>::getTombstoneKey()};
339
}
340
static unsigned getHashValue(const VTableSlot &I) {
341
return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
342
DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
343
}
344
static bool isEqual(const VTableSlot &LHS,
345
const VTableSlot &RHS) {
346
return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
347
}
348
};
349
350
template <> struct DenseMapInfo<VTableSlotSummary> {
351
static VTableSlotSummary getEmptyKey() {
352
return {DenseMapInfo<StringRef>::getEmptyKey(),
353
DenseMapInfo<uint64_t>::getEmptyKey()};
354
}
355
static VTableSlotSummary getTombstoneKey() {
356
return {DenseMapInfo<StringRef>::getTombstoneKey(),
357
DenseMapInfo<uint64_t>::getTombstoneKey()};
358
}
359
static unsigned getHashValue(const VTableSlotSummary &I) {
360
return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^
361
DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
362
}
363
static bool isEqual(const VTableSlotSummary &LHS,
364
const VTableSlotSummary &RHS) {
365
return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
366
}
367
};
368
369
} // end namespace llvm
370
371
// Returns true if the function must be unreachable based on ValueInfo.
372
//
373
// In particular, identifies a function as unreachable in the following
374
// conditions
375
// 1) All summaries are live.
376
// 2) All function summaries indicate it's unreachable
377
// 3) There is no non-function with the same GUID (which is rare)
378
static bool mustBeUnreachableFunction(ValueInfo TheFnVI) {
379
if ((!TheFnVI) || TheFnVI.getSummaryList().empty()) {
380
// Returns false if ValueInfo is absent, or the summary list is empty
381
// (e.g., function declarations).
382
return false;
383
}
384
385
for (const auto &Summary : TheFnVI.getSummaryList()) {
386
// Conservatively returns false if any non-live functions are seen.
387
// In general either all summaries should be live or all should be dead.
388
if (!Summary->isLive())
389
return false;
390
if (auto *FS = dyn_cast<FunctionSummary>(Summary->getBaseObject())) {
391
if (!FS->fflags().MustBeUnreachable)
392
return false;
393
}
394
// Be conservative if a non-function has the same GUID (which is rare).
395
else
396
return false;
397
}
398
// All function summaries are live and all of them agree that the function is
399
// unreachble.
400
return true;
401
}
402
403
namespace {
404
// A virtual call site. VTable is the loaded virtual table pointer, and CS is
405
// the indirect virtual call.
406
struct VirtualCallSite {
407
Value *VTable = nullptr;
408
CallBase &CB;
409
410
// If non-null, this field points to the associated unsafe use count stored in
411
// the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
412
// of that field for details.
413
unsigned *NumUnsafeUses = nullptr;
414
415
void
416
emitRemark(const StringRef OptName, const StringRef TargetName,
417
function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
418
Function *F = CB.getCaller();
419
DebugLoc DLoc = CB.getDebugLoc();
420
BasicBlock *Block = CB.getParent();
421
422
using namespace ore;
423
OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
424
<< NV("Optimization", OptName)
425
<< ": devirtualized a call to "
426
<< NV("FunctionName", TargetName));
427
}
428
429
void replaceAndErase(
430
const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
431
function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
432
Value *New) {
433
if (RemarksEnabled)
434
emitRemark(OptName, TargetName, OREGetter);
435
CB.replaceAllUsesWith(New);
436
if (auto *II = dyn_cast<InvokeInst>(&CB)) {
437
BranchInst::Create(II->getNormalDest(), CB.getIterator());
438
II->getUnwindDest()->removePredecessor(II->getParent());
439
}
440
CB.eraseFromParent();
441
// This use is no longer unsafe.
442
if (NumUnsafeUses)
443
--*NumUnsafeUses;
444
}
445
};
446
447
// Call site information collected for a specific VTableSlot and possibly a list
448
// of constant integer arguments. The grouping by arguments is handled by the
449
// VTableSlotInfo class.
450
struct CallSiteInfo {
451
/// The set of call sites for this slot. Used during regular LTO and the
452
/// import phase of ThinLTO (as well as the export phase of ThinLTO for any
453
/// call sites that appear in the merged module itself); in each of these
454
/// cases we are directly operating on the call sites at the IR level.
455
std::vector<VirtualCallSite> CallSites;
456
457
/// Whether all call sites represented by this CallSiteInfo, including those
458
/// in summaries, have been devirtualized. This starts off as true because a
459
/// default constructed CallSiteInfo represents no call sites.
460
bool AllCallSitesDevirted = true;
461
462
// These fields are used during the export phase of ThinLTO and reflect
463
// information collected from function summaries.
464
465
/// Whether any function summary contains an llvm.assume(llvm.type.test) for
466
/// this slot.
467
bool SummaryHasTypeTestAssumeUsers = false;
468
469
/// CFI-specific: a vector containing the list of function summaries that use
470
/// the llvm.type.checked.load intrinsic and therefore will require
471
/// resolutions for llvm.type.test in order to implement CFI checks if
472
/// devirtualization was unsuccessful. If devirtualization was successful, the
473
/// pass will clear this vector by calling markDevirt(). If at the end of the
474
/// pass the vector is non-empty, we will need to add a use of llvm.type.test
475
/// to each of the function summaries in the vector.
476
std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
477
std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers;
478
479
bool isExported() const {
480
return SummaryHasTypeTestAssumeUsers ||
481
!SummaryTypeCheckedLoadUsers.empty();
482
}
483
484
void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
485
SummaryTypeCheckedLoadUsers.push_back(FS);
486
AllCallSitesDevirted = false;
487
}
488
489
void addSummaryTypeTestAssumeUser(FunctionSummary *FS) {
490
SummaryTypeTestAssumeUsers.push_back(FS);
491
SummaryHasTypeTestAssumeUsers = true;
492
AllCallSitesDevirted = false;
493
}
494
495
void markDevirt() {
496
AllCallSitesDevirted = true;
497
498
// As explained in the comment for SummaryTypeCheckedLoadUsers.
499
SummaryTypeCheckedLoadUsers.clear();
500
}
501
};
502
503
// Call site information collected for a specific VTableSlot.
504
struct VTableSlotInfo {
505
// The set of call sites which do not have all constant integer arguments
506
// (excluding "this").
507
CallSiteInfo CSInfo;
508
509
// The set of call sites with all constant integer arguments (excluding
510
// "this"), grouped by argument list.
511
std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
512
513
void addCallSite(Value *VTable, CallBase &CB, unsigned *NumUnsafeUses);
514
515
private:
516
CallSiteInfo &findCallSiteInfo(CallBase &CB);
517
};
518
519
CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallBase &CB) {
520
std::vector<uint64_t> Args;
521
auto *CBType = dyn_cast<IntegerType>(CB.getType());
522
if (!CBType || CBType->getBitWidth() > 64 || CB.arg_empty())
523
return CSInfo;
524
for (auto &&Arg : drop_begin(CB.args())) {
525
auto *CI = dyn_cast<ConstantInt>(Arg);
526
if (!CI || CI->getBitWidth() > 64)
527
return CSInfo;
528
Args.push_back(CI->getZExtValue());
529
}
530
return ConstCSInfo[Args];
531
}
532
533
void VTableSlotInfo::addCallSite(Value *VTable, CallBase &CB,
534
unsigned *NumUnsafeUses) {
535
auto &CSI = findCallSiteInfo(CB);
536
CSI.AllCallSitesDevirted = false;
537
CSI.CallSites.push_back({VTable, CB, NumUnsafeUses});
538
}
539
540
struct DevirtModule {
541
Module &M;
542
function_ref<AAResults &(Function &)> AARGetter;
543
function_ref<DominatorTree &(Function &)> LookupDomTree;
544
545
ModuleSummaryIndex *ExportSummary;
546
const ModuleSummaryIndex *ImportSummary;
547
548
IntegerType *Int8Ty;
549
PointerType *Int8PtrTy;
550
IntegerType *Int32Ty;
551
IntegerType *Int64Ty;
552
IntegerType *IntPtrTy;
553
/// Sizeless array type, used for imported vtables. This provides a signal
554
/// to analyzers that these imports may alias, as they do for example
555
/// when multiple unique return values occur in the same vtable.
556
ArrayType *Int8Arr0Ty;
557
558
bool RemarksEnabled;
559
function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
560
561
MapVector<VTableSlot, VTableSlotInfo> CallSlots;
562
563
// Calls that have already been optimized. We may add a call to multiple
564
// VTableSlotInfos if vtable loads are coalesced and need to make sure not to
565
// optimize a call more than once.
566
SmallPtrSet<CallBase *, 8> OptimizedCalls;
567
568
// Store calls that had their ptrauth bundle removed. They are to be deleted
569
// at the end of the optimization.
570
SmallVector<CallBase *, 8> CallsWithPtrAuthBundleRemoved;
571
572
// This map keeps track of the number of "unsafe" uses of a loaded function
573
// pointer. The key is the associated llvm.type.test intrinsic call generated
574
// by this pass. An unsafe use is one that calls the loaded function pointer
575
// directly. Every time we eliminate an unsafe use (for example, by
576
// devirtualizing it or by applying virtual constant propagation), we
577
// decrement the value stored in this map. If a value reaches zero, we can
578
// eliminate the type check by RAUWing the associated llvm.type.test call with
579
// true.
580
std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
581
PatternList FunctionsToSkip;
582
583
DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
584
function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
585
function_ref<DominatorTree &(Function &)> LookupDomTree,
586
ModuleSummaryIndex *ExportSummary,
587
const ModuleSummaryIndex *ImportSummary)
588
: M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree),
589
ExportSummary(ExportSummary), ImportSummary(ImportSummary),
590
Int8Ty(Type::getInt8Ty(M.getContext())),
591
Int8PtrTy(PointerType::getUnqual(M.getContext())),
592
Int32Ty(Type::getInt32Ty(M.getContext())),
593
Int64Ty(Type::getInt64Ty(M.getContext())),
594
IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
595
Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M.getContext()), 0)),
596
RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
597
assert(!(ExportSummary && ImportSummary));
598
FunctionsToSkip.init(SkipFunctionNames);
599
}
600
601
bool areRemarksEnabled();
602
603
void
604
scanTypeTestUsers(Function *TypeTestFunc,
605
DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
606
void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
607
608
void buildTypeIdentifierMap(
609
std::vector<VTableBits> &Bits,
610
DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
611
612
bool
613
tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
614
const std::set<TypeMemberInfo> &TypeMemberInfos,
615
uint64_t ByteOffset,
616
ModuleSummaryIndex *ExportSummary);
617
618
void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
619
bool &IsExported);
620
bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary,
621
MutableArrayRef<VirtualCallTarget> TargetsForSlot,
622
VTableSlotInfo &SlotInfo,
623
WholeProgramDevirtResolution *Res);
624
625
void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
626
bool &IsExported);
627
void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
628
VTableSlotInfo &SlotInfo,
629
WholeProgramDevirtResolution *Res, VTableSlot Slot);
630
631
bool tryEvaluateFunctionsWithArgs(
632
MutableArrayRef<VirtualCallTarget> TargetsForSlot,
633
ArrayRef<uint64_t> Args);
634
635
void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
636
uint64_t TheRetVal);
637
bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
638
CallSiteInfo &CSInfo,
639
WholeProgramDevirtResolution::ByArg *Res);
640
641
// Returns the global symbol name that is used to export information about the
642
// given vtable slot and list of arguments.
643
std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
644
StringRef Name);
645
646
bool shouldExportConstantsAsAbsoluteSymbols();
647
648
// This function is called during the export phase to create a symbol
649
// definition containing information about the given vtable slot and list of
650
// arguments.
651
void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
652
Constant *C);
653
void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
654
uint32_t Const, uint32_t &Storage);
655
656
// This function is called during the import phase to create a reference to
657
// the symbol definition created during the export phase.
658
Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
659
StringRef Name);
660
Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
661
StringRef Name, IntegerType *IntTy,
662
uint32_t Storage);
663
664
Constant *getMemberAddr(const TypeMemberInfo *M);
665
666
void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
667
Constant *UniqueMemberAddr);
668
bool tryUniqueRetValOpt(unsigned BitWidth,
669
MutableArrayRef<VirtualCallTarget> TargetsForSlot,
670
CallSiteInfo &CSInfo,
671
WholeProgramDevirtResolution::ByArg *Res,
672
VTableSlot Slot, ArrayRef<uint64_t> Args);
673
674
void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
675
Constant *Byte, Constant *Bit);
676
bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
677
VTableSlotInfo &SlotInfo,
678
WholeProgramDevirtResolution *Res, VTableSlot Slot);
679
680
void rebuildGlobal(VTableBits &B);
681
682
// Apply the summary resolution for Slot to all virtual calls in SlotInfo.
683
void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
684
685
// If we were able to eliminate all unsafe uses for a type checked load,
686
// eliminate the associated type tests by replacing them with true.
687
void removeRedundantTypeTests();
688
689
bool run();
690
691
// Look up the corresponding ValueInfo entry of `TheFn` in `ExportSummary`.
692
//
693
// Caller guarantees that `ExportSummary` is not nullptr.
694
static ValueInfo lookUpFunctionValueInfo(Function *TheFn,
695
ModuleSummaryIndex *ExportSummary);
696
697
// Returns true if the function definition must be unreachable.
698
//
699
// Note if this helper function returns true, `F` is guaranteed
700
// to be unreachable; if it returns false, `F` might still
701
// be unreachable but not covered by this helper function.
702
//
703
// Implementation-wise, if function definition is present, IR is analyzed; if
704
// not, look up function flags from ExportSummary as a fallback.
705
static bool mustBeUnreachableFunction(Function *const F,
706
ModuleSummaryIndex *ExportSummary);
707
708
// Lower the module using the action and summary passed as command line
709
// arguments. For testing purposes only.
710
static bool
711
runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter,
712
function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
713
function_ref<DominatorTree &(Function &)> LookupDomTree);
714
};
715
716
struct DevirtIndex {
717
ModuleSummaryIndex &ExportSummary;
718
// The set in which to record GUIDs exported from their module by
719
// devirtualization, used by client to ensure they are not internalized.
720
std::set<GlobalValue::GUID> &ExportedGUIDs;
721
// A map in which to record the information necessary to locate the WPD
722
// resolution for local targets in case they are exported by cross module
723
// importing.
724
std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap;
725
726
MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots;
727
728
PatternList FunctionsToSkip;
729
730
DevirtIndex(
731
ModuleSummaryIndex &ExportSummary,
732
std::set<GlobalValue::GUID> &ExportedGUIDs,
733
std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap)
734
: ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs),
735
LocalWPDTargetsMap(LocalWPDTargetsMap) {
736
FunctionsToSkip.init(SkipFunctionNames);
737
}
738
739
bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot,
740
const TypeIdCompatibleVtableInfo TIdInfo,
741
uint64_t ByteOffset);
742
743
bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
744
VTableSlotSummary &SlotSummary,
745
VTableSlotInfo &SlotInfo,
746
WholeProgramDevirtResolution *Res,
747
std::set<ValueInfo> &DevirtTargets);
748
749
void run();
750
};
751
} // end anonymous namespace
752
753
PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
754
ModuleAnalysisManager &AM) {
755
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
756
auto AARGetter = [&](Function &F) -> AAResults & {
757
return FAM.getResult<AAManager>(F);
758
};
759
auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
760
return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
761
};
762
auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
763
return FAM.getResult<DominatorTreeAnalysis>(F);
764
};
765
if (UseCommandLine) {
766
if (!DevirtModule::runForTesting(M, AARGetter, OREGetter, LookupDomTree))
767
return PreservedAnalyses::all();
768
return PreservedAnalyses::none();
769
}
770
if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary,
771
ImportSummary)
772
.run())
773
return PreservedAnalyses::all();
774
return PreservedAnalyses::none();
775
}
776
777
// Enable whole program visibility if enabled by client (e.g. linker) or
778
// internal option, and not force disabled.
779
bool llvm::hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO) {
780
return (WholeProgramVisibilityEnabledInLTO || WholeProgramVisibility) &&
781
!DisableWholeProgramVisibility;
782
}
783
784
static bool
785
typeIDVisibleToRegularObj(StringRef TypeID,
786
function_ref<bool(StringRef)> IsVisibleToRegularObj) {
787
// TypeID for member function pointer type is an internal construct
788
// and won't exist in IsVisibleToRegularObj. The full TypeID
789
// will be present and participate in invalidation.
790
if (TypeID.ends_with(".virtual"))
791
return false;
792
793
// TypeID that doesn't start with Itanium mangling (_ZTS) will be
794
// non-externally visible types which cannot interact with
795
// external native files. See CodeGenModule::CreateMetadataIdentifierImpl.
796
if (!TypeID.consume_front("_ZTS"))
797
return false;
798
799
// TypeID is keyed off the type name symbol (_ZTS). However, the native
800
// object may not contain this symbol if it does not contain a key
801
// function for the base type and thus only contains a reference to the
802
// type info (_ZTI). To catch this case we query using the type info
803
// symbol corresponding to the TypeID.
804
std::string typeInfo = ("_ZTI" + TypeID).str();
805
return IsVisibleToRegularObj(typeInfo);
806
}
807
808
static bool
809
skipUpdateDueToValidation(GlobalVariable &GV,
810
function_ref<bool(StringRef)> IsVisibleToRegularObj) {
811
SmallVector<MDNode *, 2> Types;
812
GV.getMetadata(LLVMContext::MD_type, Types);
813
814
for (auto Type : Types)
815
if (auto *TypeID = dyn_cast<MDString>(Type->getOperand(1).get()))
816
return typeIDVisibleToRegularObj(TypeID->getString(),
817
IsVisibleToRegularObj);
818
819
return false;
820
}
821
822
/// If whole program visibility asserted, then upgrade all public vcall
823
/// visibility metadata on vtable definitions to linkage unit visibility in
824
/// Module IR (for regular or hybrid LTO).
825
void llvm::updateVCallVisibilityInModule(
826
Module &M, bool WholeProgramVisibilityEnabledInLTO,
827
const DenseSet<GlobalValue::GUID> &DynamicExportSymbols,
828
bool ValidateAllVtablesHaveTypeInfos,
829
function_ref<bool(StringRef)> IsVisibleToRegularObj) {
830
if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
831
return;
832
for (GlobalVariable &GV : M.globals()) {
833
// Add linkage unit visibility to any variable with type metadata, which are
834
// the vtable definitions. We won't have an existing vcall_visibility
835
// metadata on vtable definitions with public visibility.
836
if (GV.hasMetadata(LLVMContext::MD_type) &&
837
GV.getVCallVisibility() == GlobalObject::VCallVisibilityPublic &&
838
// Don't upgrade the visibility for symbols exported to the dynamic
839
// linker, as we have no information on their eventual use.
840
!DynamicExportSymbols.count(GV.getGUID()) &&
841
// With validation enabled, we want to exclude symbols visible to
842
// regular objects. Local symbols will be in this group due to the
843
// current implementation but those with VCallVisibilityTranslationUnit
844
// will have already been marked in clang so are unaffected.
845
!(ValidateAllVtablesHaveTypeInfos &&
846
skipUpdateDueToValidation(GV, IsVisibleToRegularObj)))
847
GV.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit);
848
}
849
}
850
851
void llvm::updatePublicTypeTestCalls(Module &M,
852
bool WholeProgramVisibilityEnabledInLTO) {
853
Function *PublicTypeTestFunc =
854
M.getFunction(Intrinsic::getName(Intrinsic::public_type_test));
855
if (!PublicTypeTestFunc)
856
return;
857
if (hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) {
858
Function *TypeTestFunc =
859
Intrinsic::getDeclaration(&M, Intrinsic::type_test);
860
for (Use &U : make_early_inc_range(PublicTypeTestFunc->uses())) {
861
auto *CI = cast<CallInst>(U.getUser());
862
auto *NewCI = CallInst::Create(
863
TypeTestFunc, {CI->getArgOperand(0), CI->getArgOperand(1)},
864
std::nullopt, "", CI->getIterator());
865
CI->replaceAllUsesWith(NewCI);
866
CI->eraseFromParent();
867
}
868
} else {
869
auto *True = ConstantInt::getTrue(M.getContext());
870
for (Use &U : make_early_inc_range(PublicTypeTestFunc->uses())) {
871
auto *CI = cast<CallInst>(U.getUser());
872
CI->replaceAllUsesWith(True);
873
CI->eraseFromParent();
874
}
875
}
876
}
877
878
/// Based on typeID string, get all associated vtable GUIDS that are
879
/// visible to regular objects.
880
void llvm::getVisibleToRegularObjVtableGUIDs(
881
ModuleSummaryIndex &Index,
882
DenseSet<GlobalValue::GUID> &VisibleToRegularObjSymbols,
883
function_ref<bool(StringRef)> IsVisibleToRegularObj) {
884
for (const auto &typeID : Index.typeIdCompatibleVtableMap()) {
885
if (typeIDVisibleToRegularObj(typeID.first, IsVisibleToRegularObj))
886
for (const TypeIdOffsetVtableInfo &P : typeID.second)
887
VisibleToRegularObjSymbols.insert(P.VTableVI.getGUID());
888
}
889
}
890
891
/// If whole program visibility asserted, then upgrade all public vcall
892
/// visibility metadata on vtable definition summaries to linkage unit
893
/// visibility in Module summary index (for ThinLTO).
894
void llvm::updateVCallVisibilityInIndex(
895
ModuleSummaryIndex &Index, bool WholeProgramVisibilityEnabledInLTO,
896
const DenseSet<GlobalValue::GUID> &DynamicExportSymbols,
897
const DenseSet<GlobalValue::GUID> &VisibleToRegularObjSymbols) {
898
if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
899
return;
900
for (auto &P : Index) {
901
// Don't upgrade the visibility for symbols exported to the dynamic
902
// linker, as we have no information on their eventual use.
903
if (DynamicExportSymbols.count(P.first))
904
continue;
905
for (auto &S : P.second.SummaryList) {
906
auto *GVar = dyn_cast<GlobalVarSummary>(S.get());
907
if (!GVar ||
908
GVar->getVCallVisibility() != GlobalObject::VCallVisibilityPublic)
909
continue;
910
// With validation enabled, we want to exclude symbols visible to regular
911
// objects. Local symbols will be in this group due to the current
912
// implementation but those with VCallVisibilityTranslationUnit will have
913
// already been marked in clang so are unaffected.
914
if (VisibleToRegularObjSymbols.count(P.first))
915
continue;
916
GVar->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit);
917
}
918
}
919
}
920
921
void llvm::runWholeProgramDevirtOnIndex(
922
ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs,
923
std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
924
DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run();
925
}
926
927
void llvm::updateIndexWPDForExports(
928
ModuleSummaryIndex &Summary,
929
function_ref<bool(StringRef, ValueInfo)> isExported,
930
std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
931
for (auto &T : LocalWPDTargetsMap) {
932
auto &VI = T.first;
933
// This was enforced earlier during trySingleImplDevirt.
934
assert(VI.getSummaryList().size() == 1 &&
935
"Devirt of local target has more than one copy");
936
auto &S = VI.getSummaryList()[0];
937
if (!isExported(S->modulePath(), VI))
938
continue;
939
940
// It's been exported by a cross module import.
941
for (auto &SlotSummary : T.second) {
942
auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID);
943
assert(TIdSum);
944
auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset);
945
assert(WPDRes != TIdSum->WPDRes.end());
946
WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
947
WPDRes->second.SingleImplName,
948
Summary.getModuleHash(S->modulePath()));
949
}
950
}
951
}
952
953
static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) {
954
// Check that summary index contains regular LTO module when performing
955
// export to prevent occasional use of index from pure ThinLTO compilation
956
// (-fno-split-lto-module). This kind of summary index is passed to
957
// DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting.
958
const auto &ModPaths = Summary->modulePaths();
959
if (ClSummaryAction != PassSummaryAction::Import &&
960
!ModPaths.contains(ModuleSummaryIndex::getRegularLTOModuleName()))
961
return createStringError(
962
errc::invalid_argument,
963
"combined summary should contain Regular LTO module");
964
return ErrorSuccess();
965
}
966
967
bool DevirtModule::runForTesting(
968
Module &M, function_ref<AAResults &(Function &)> AARGetter,
969
function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
970
function_ref<DominatorTree &(Function &)> LookupDomTree) {
971
std::unique_ptr<ModuleSummaryIndex> Summary =
972
std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
973
974
// Handle the command-line summary arguments. This code is for testing
975
// purposes only, so we handle errors directly.
976
if (!ClReadSummary.empty()) {
977
ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
978
": ");
979
auto ReadSummaryFile =
980
ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
981
if (Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr =
982
getModuleSummaryIndex(*ReadSummaryFile)) {
983
Summary = std::move(*SummaryOrErr);
984
ExitOnErr(checkCombinedSummaryForTesting(Summary.get()));
985
} else {
986
// Try YAML if we've failed with bitcode.
987
consumeError(SummaryOrErr.takeError());
988
yaml::Input In(ReadSummaryFile->getBuffer());
989
In >> *Summary;
990
ExitOnErr(errorCodeToError(In.error()));
991
}
992
}
993
994
bool Changed =
995
DevirtModule(M, AARGetter, OREGetter, LookupDomTree,
996
ClSummaryAction == PassSummaryAction::Export ? Summary.get()
997
: nullptr,
998
ClSummaryAction == PassSummaryAction::Import ? Summary.get()
999
: nullptr)
1000
.run();
1001
1002
if (!ClWriteSummary.empty()) {
1003
ExitOnError ExitOnErr(
1004
"-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
1005
std::error_code EC;
1006
if (StringRef(ClWriteSummary).ends_with(".bc")) {
1007
raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None);
1008
ExitOnErr(errorCodeToError(EC));
1009
writeIndexToFile(*Summary, OS);
1010
} else {
1011
raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_TextWithCRLF);
1012
ExitOnErr(errorCodeToError(EC));
1013
yaml::Output Out(OS);
1014
Out << *Summary;
1015
}
1016
}
1017
1018
return Changed;
1019
}
1020
1021
void DevirtModule::buildTypeIdentifierMap(
1022
std::vector<VTableBits> &Bits,
1023
DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
1024
DenseMap<GlobalVariable *, VTableBits *> GVToBits;
1025
Bits.reserve(M.global_size());
1026
SmallVector<MDNode *, 2> Types;
1027
for (GlobalVariable &GV : M.globals()) {
1028
Types.clear();
1029
GV.getMetadata(LLVMContext::MD_type, Types);
1030
if (GV.isDeclaration() || Types.empty())
1031
continue;
1032
1033
VTableBits *&BitsPtr = GVToBits[&GV];
1034
if (!BitsPtr) {
1035
Bits.emplace_back();
1036
Bits.back().GV = &GV;
1037
Bits.back().ObjectSize =
1038
M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
1039
BitsPtr = &Bits.back();
1040
}
1041
1042
for (MDNode *Type : Types) {
1043
auto TypeID = Type->getOperand(1).get();
1044
1045
uint64_t Offset =
1046
cast<ConstantInt>(
1047
cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
1048
->getZExtValue();
1049
1050
TypeIdMap[TypeID].insert({BitsPtr, Offset});
1051
}
1052
}
1053
}
1054
1055
bool DevirtModule::tryFindVirtualCallTargets(
1056
std::vector<VirtualCallTarget> &TargetsForSlot,
1057
const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset,
1058
ModuleSummaryIndex *ExportSummary) {
1059
for (const TypeMemberInfo &TM : TypeMemberInfos) {
1060
if (!TM.Bits->GV->isConstant())
1061
return false;
1062
1063
// We cannot perform whole program devirtualization analysis on a vtable
1064
// with public LTO visibility.
1065
if (TM.Bits->GV->getVCallVisibility() ==
1066
GlobalObject::VCallVisibilityPublic)
1067
return false;
1068
1069
Function *Fn = nullptr;
1070
Constant *C = nullptr;
1071
std::tie(Fn, C) =
1072
getFunctionAtVTableOffset(TM.Bits->GV, TM.Offset + ByteOffset, M);
1073
1074
if (!Fn)
1075
return false;
1076
1077
if (FunctionsToSkip.match(Fn->getName()))
1078
return false;
1079
1080
// We can disregard __cxa_pure_virtual as a possible call target, as
1081
// calls to pure virtuals are UB.
1082
if (Fn->getName() == "__cxa_pure_virtual")
1083
continue;
1084
1085
// We can disregard unreachable functions as possible call targets, as
1086
// unreachable functions shouldn't be called.
1087
if (mustBeUnreachableFunction(Fn, ExportSummary))
1088
continue;
1089
1090
// Save the symbol used in the vtable to use as the devirtualization
1091
// target.
1092
auto GV = dyn_cast<GlobalValue>(C);
1093
assert(GV);
1094
TargetsForSlot.push_back({GV, &TM});
1095
}
1096
1097
// Give up if we couldn't find any targets.
1098
return !TargetsForSlot.empty();
1099
}
1100
1101
bool DevirtIndex::tryFindVirtualCallTargets(
1102
std::vector<ValueInfo> &TargetsForSlot,
1103
const TypeIdCompatibleVtableInfo TIdInfo, uint64_t ByteOffset) {
1104
for (const TypeIdOffsetVtableInfo &P : TIdInfo) {
1105
// Find a representative copy of the vtable initializer.
1106
// We can have multiple available_externally, linkonce_odr and weak_odr
1107
// vtable initializers. We can also have multiple external vtable
1108
// initializers in the case of comdats, which we cannot check here.
1109
// The linker should give an error in this case.
1110
//
1111
// Also, handle the case of same-named local Vtables with the same path
1112
// and therefore the same GUID. This can happen if there isn't enough
1113
// distinguishing path when compiling the source file. In that case we
1114
// conservatively return false early.
1115
const GlobalVarSummary *VS = nullptr;
1116
bool LocalFound = false;
1117
for (const auto &S : P.VTableVI.getSummaryList()) {
1118
if (GlobalValue::isLocalLinkage(S->linkage())) {
1119
if (LocalFound)
1120
return false;
1121
LocalFound = true;
1122
}
1123
auto *CurVS = cast<GlobalVarSummary>(S->getBaseObject());
1124
if (!CurVS->vTableFuncs().empty() ||
1125
// Previously clang did not attach the necessary type metadata to
1126
// available_externally vtables, in which case there would not
1127
// be any vtable functions listed in the summary and we need
1128
// to treat this case conservatively (in case the bitcode is old).
1129
// However, we will also not have any vtable functions in the
1130
// case of a pure virtual base class. In that case we do want
1131
// to set VS to avoid treating it conservatively.
1132
!GlobalValue::isAvailableExternallyLinkage(S->linkage())) {
1133
VS = CurVS;
1134
// We cannot perform whole program devirtualization analysis on a vtable
1135
// with public LTO visibility.
1136
if (VS->getVCallVisibility() == GlobalObject::VCallVisibilityPublic)
1137
return false;
1138
}
1139
}
1140
// There will be no VS if all copies are available_externally having no
1141
// type metadata. In that case we can't safely perform WPD.
1142
if (!VS)
1143
return false;
1144
if (!VS->isLive())
1145
continue;
1146
for (auto VTP : VS->vTableFuncs()) {
1147
if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset)
1148
continue;
1149
1150
if (mustBeUnreachableFunction(VTP.FuncVI))
1151
continue;
1152
1153
TargetsForSlot.push_back(VTP.FuncVI);
1154
}
1155
}
1156
1157
// Give up if we couldn't find any targets.
1158
return !TargetsForSlot.empty();
1159
}
1160
1161
void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
1162
Constant *TheFn, bool &IsExported) {
1163
// Don't devirtualize function if we're told to skip it
1164
// in -wholeprogramdevirt-skip.
1165
if (FunctionsToSkip.match(TheFn->stripPointerCasts()->getName()))
1166
return;
1167
auto Apply = [&](CallSiteInfo &CSInfo) {
1168
for (auto &&VCallSite : CSInfo.CallSites) {
1169
if (!OptimizedCalls.insert(&VCallSite.CB).second)
1170
continue;
1171
1172
if (RemarksEnabled)
1173
VCallSite.emitRemark("single-impl",
1174
TheFn->stripPointerCasts()->getName(), OREGetter);
1175
NumSingleImpl++;
1176
auto &CB = VCallSite.CB;
1177
assert(!CB.getCalledFunction() && "devirtualizing direct call?");
1178
IRBuilder<> Builder(&CB);
1179
Value *Callee =
1180
Builder.CreateBitCast(TheFn, CB.getCalledOperand()->getType());
1181
1182
// If trap checking is enabled, add support to compare the virtual
1183
// function pointer to the devirtualized target. In case of a mismatch,
1184
// perform a debug trap.
1185
if (DevirtCheckMode == WPDCheckMode::Trap) {
1186
auto *Cond = Builder.CreateICmpNE(CB.getCalledOperand(), Callee);
1187
Instruction *ThenTerm =
1188
SplitBlockAndInsertIfThen(Cond, &CB, /*Unreachable=*/false);
1189
Builder.SetInsertPoint(ThenTerm);
1190
Function *TrapFn = Intrinsic::getDeclaration(&M, Intrinsic::debugtrap);
1191
auto *CallTrap = Builder.CreateCall(TrapFn);
1192
CallTrap->setDebugLoc(CB.getDebugLoc());
1193
}
1194
1195
// If fallback checking is enabled, add support to compare the virtual
1196
// function pointer to the devirtualized target. In case of a mismatch,
1197
// fall back to indirect call.
1198
if (DevirtCheckMode == WPDCheckMode::Fallback) {
1199
MDNode *Weights = MDBuilder(M.getContext()).createLikelyBranchWeights();
1200
// Version the indirect call site. If the called value is equal to the
1201
// given callee, 'NewInst' will be executed, otherwise the original call
1202
// site will be executed.
1203
CallBase &NewInst = versionCallSite(CB, Callee, Weights);
1204
NewInst.setCalledOperand(Callee);
1205
// Since the new call site is direct, we must clear metadata that
1206
// is only appropriate for indirect calls. This includes !prof and
1207
// !callees metadata.
1208
NewInst.setMetadata(LLVMContext::MD_prof, nullptr);
1209
NewInst.setMetadata(LLVMContext::MD_callees, nullptr);
1210
// Additionally, we should remove them from the fallback indirect call,
1211
// so that we don't attempt to perform indirect call promotion later.
1212
CB.setMetadata(LLVMContext::MD_prof, nullptr);
1213
CB.setMetadata(LLVMContext::MD_callees, nullptr);
1214
}
1215
1216
// In either trapping or non-checking mode, devirtualize original call.
1217
else {
1218
// Devirtualize unconditionally.
1219
CB.setCalledOperand(Callee);
1220
// Since the call site is now direct, we must clear metadata that
1221
// is only appropriate for indirect calls. This includes !prof and
1222
// !callees metadata.
1223
CB.setMetadata(LLVMContext::MD_prof, nullptr);
1224
CB.setMetadata(LLVMContext::MD_callees, nullptr);
1225
if (CB.getCalledOperand() &&
1226
CB.getOperandBundle(LLVMContext::OB_ptrauth)) {
1227
auto *NewCS = CallBase::removeOperandBundle(
1228
&CB, LLVMContext::OB_ptrauth, CB.getIterator());
1229
CB.replaceAllUsesWith(NewCS);
1230
// Schedule for deletion at the end of pass run.
1231
CallsWithPtrAuthBundleRemoved.push_back(&CB);
1232
}
1233
}
1234
1235
// This use is no longer unsafe.
1236
if (VCallSite.NumUnsafeUses)
1237
--*VCallSite.NumUnsafeUses;
1238
}
1239
if (CSInfo.isExported())
1240
IsExported = true;
1241
CSInfo.markDevirt();
1242
};
1243
Apply(SlotInfo.CSInfo);
1244
for (auto &P : SlotInfo.ConstCSInfo)
1245
Apply(P.second);
1246
}
1247
1248
static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) {
1249
// We can't add calls if we haven't seen a definition
1250
if (Callee.getSummaryList().empty())
1251
return false;
1252
1253
// Insert calls into the summary index so that the devirtualized targets
1254
// are eligible for import.
1255
// FIXME: Annotate type tests with hotness. For now, mark these as hot
1256
// to better ensure we have the opportunity to inline them.
1257
bool IsExported = false;
1258
auto &S = Callee.getSummaryList()[0];
1259
CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* HasTailCall = */ false,
1260
/* RelBF = */ 0);
1261
auto AddCalls = [&](CallSiteInfo &CSInfo) {
1262
for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) {
1263
FS->addCall({Callee, CI});
1264
IsExported |= S->modulePath() != FS->modulePath();
1265
}
1266
for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) {
1267
FS->addCall({Callee, CI});
1268
IsExported |= S->modulePath() != FS->modulePath();
1269
}
1270
};
1271
AddCalls(SlotInfo.CSInfo);
1272
for (auto &P : SlotInfo.ConstCSInfo)
1273
AddCalls(P.second);
1274
return IsExported;
1275
}
1276
1277
bool DevirtModule::trySingleImplDevirt(
1278
ModuleSummaryIndex *ExportSummary,
1279
MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1280
WholeProgramDevirtResolution *Res) {
1281
// See if the program contains a single implementation of this virtual
1282
// function.
1283
auto *TheFn = TargetsForSlot[0].Fn;
1284
for (auto &&Target : TargetsForSlot)
1285
if (TheFn != Target.Fn)
1286
return false;
1287
1288
// If so, update each call site to call that implementation directly.
1289
if (RemarksEnabled || AreStatisticsEnabled())
1290
TargetsForSlot[0].WasDevirt = true;
1291
1292
bool IsExported = false;
1293
applySingleImplDevirt(SlotInfo, TheFn, IsExported);
1294
if (!IsExported)
1295
return false;
1296
1297
// If the only implementation has local linkage, we must promote to external
1298
// to make it visible to thin LTO objects. We can only get here during the
1299
// ThinLTO export phase.
1300
if (TheFn->hasLocalLinkage()) {
1301
std::string NewName = (TheFn->getName() + ".llvm.merged").str();
1302
1303
// Since we are renaming the function, any comdats with the same name must
1304
// also be renamed. This is required when targeting COFF, as the comdat name
1305
// must match one of the names of the symbols in the comdat.
1306
if (Comdat *C = TheFn->getComdat()) {
1307
if (C->getName() == TheFn->getName()) {
1308
Comdat *NewC = M.getOrInsertComdat(NewName);
1309
NewC->setSelectionKind(C->getSelectionKind());
1310
for (GlobalObject &GO : M.global_objects())
1311
if (GO.getComdat() == C)
1312
GO.setComdat(NewC);
1313
}
1314
}
1315
1316
TheFn->setLinkage(GlobalValue::ExternalLinkage);
1317
TheFn->setVisibility(GlobalValue::HiddenVisibility);
1318
TheFn->setName(NewName);
1319
}
1320
if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID()))
1321
// Any needed promotion of 'TheFn' has already been done during
1322
// LTO unit split, so we can ignore return value of AddCalls.
1323
AddCalls(SlotInfo, TheFnVI);
1324
1325
Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1326
Res->SingleImplName = std::string(TheFn->getName());
1327
1328
return true;
1329
}
1330
1331
bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
1332
VTableSlotSummary &SlotSummary,
1333
VTableSlotInfo &SlotInfo,
1334
WholeProgramDevirtResolution *Res,
1335
std::set<ValueInfo> &DevirtTargets) {
1336
// See if the program contains a single implementation of this virtual
1337
// function.
1338
auto TheFn = TargetsForSlot[0];
1339
for (auto &&Target : TargetsForSlot)
1340
if (TheFn != Target)
1341
return false;
1342
1343
// Don't devirtualize if we don't have target definition.
1344
auto Size = TheFn.getSummaryList().size();
1345
if (!Size)
1346
return false;
1347
1348
// Don't devirtualize function if we're told to skip it
1349
// in -wholeprogramdevirt-skip.
1350
if (FunctionsToSkip.match(TheFn.name()))
1351
return false;
1352
1353
// If the summary list contains multiple summaries where at least one is
1354
// a local, give up, as we won't know which (possibly promoted) name to use.
1355
for (const auto &S : TheFn.getSummaryList())
1356
if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1)
1357
return false;
1358
1359
// Collect functions devirtualized at least for one call site for stats.
1360
if (PrintSummaryDevirt || AreStatisticsEnabled())
1361
DevirtTargets.insert(TheFn);
1362
1363
auto &S = TheFn.getSummaryList()[0];
1364
bool IsExported = AddCalls(SlotInfo, TheFn);
1365
if (IsExported)
1366
ExportedGUIDs.insert(TheFn.getGUID());
1367
1368
// Record in summary for use in devirtualization during the ThinLTO import
1369
// step.
1370
Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1371
if (GlobalValue::isLocalLinkage(S->linkage())) {
1372
if (IsExported)
1373
// If target is a local function and we are exporting it by
1374
// devirtualizing a call in another module, we need to record the
1375
// promoted name.
1376
Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
1377
TheFn.name(), ExportSummary.getModuleHash(S->modulePath()));
1378
else {
1379
LocalWPDTargetsMap[TheFn].push_back(SlotSummary);
1380
Res->SingleImplName = std::string(TheFn.name());
1381
}
1382
} else
1383
Res->SingleImplName = std::string(TheFn.name());
1384
1385
// Name will be empty if this thin link driven off of serialized combined
1386
// index (e.g. llvm-lto). However, WPD is not supported/invoked for the
1387
// legacy LTO API anyway.
1388
assert(!Res->SingleImplName.empty());
1389
1390
return true;
1391
}
1392
1393
void DevirtModule::tryICallBranchFunnel(
1394
MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1395
WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1396
Triple T(M.getTargetTriple());
1397
if (T.getArch() != Triple::x86_64)
1398
return;
1399
1400
if (TargetsForSlot.size() > ClThreshold)
1401
return;
1402
1403
bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
1404
if (!HasNonDevirt)
1405
for (auto &P : SlotInfo.ConstCSInfo)
1406
if (!P.second.AllCallSitesDevirted) {
1407
HasNonDevirt = true;
1408
break;
1409
}
1410
1411
if (!HasNonDevirt)
1412
return;
1413
1414
FunctionType *FT =
1415
FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
1416
Function *JT;
1417
if (isa<MDString>(Slot.TypeID)) {
1418
JT = Function::Create(FT, Function::ExternalLinkage,
1419
M.getDataLayout().getProgramAddressSpace(),
1420
getGlobalName(Slot, {}, "branch_funnel"), &M);
1421
JT->setVisibility(GlobalValue::HiddenVisibility);
1422
} else {
1423
JT = Function::Create(FT, Function::InternalLinkage,
1424
M.getDataLayout().getProgramAddressSpace(),
1425
"branch_funnel", &M);
1426
}
1427
JT->addParamAttr(0, Attribute::Nest);
1428
1429
std::vector<Value *> JTArgs;
1430
JTArgs.push_back(JT->arg_begin());
1431
for (auto &T : TargetsForSlot) {
1432
JTArgs.push_back(getMemberAddr(T.TM));
1433
JTArgs.push_back(T.Fn);
1434
}
1435
1436
BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
1437
Function *Intr =
1438
Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});
1439
1440
auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
1441
CI->setTailCallKind(CallInst::TCK_MustTail);
1442
ReturnInst::Create(M.getContext(), nullptr, BB);
1443
1444
bool IsExported = false;
1445
applyICallBranchFunnel(SlotInfo, JT, IsExported);
1446
if (IsExported)
1447
Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
1448
}
1449
1450
void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
1451
Constant *JT, bool &IsExported) {
1452
auto Apply = [&](CallSiteInfo &CSInfo) {
1453
if (CSInfo.isExported())
1454
IsExported = true;
1455
if (CSInfo.AllCallSitesDevirted)
1456
return;
1457
1458
std::map<CallBase *, CallBase *> CallBases;
1459
for (auto &&VCallSite : CSInfo.CallSites) {
1460
CallBase &CB = VCallSite.CB;
1461
1462
if (CallBases.find(&CB) != CallBases.end()) {
1463
// When finding devirtualizable calls, it's possible to find the same
1464
// vtable passed to multiple llvm.type.test or llvm.type.checked.load
1465
// calls, which can cause duplicate call sites to be recorded in
1466
// [Const]CallSites. If we've already found one of these
1467
// call instances, just ignore it. It will be replaced later.
1468
continue;
1469
}
1470
1471
// Jump tables are only profitable if the retpoline mitigation is enabled.
1472
Attribute FSAttr = CB.getCaller()->getFnAttribute("target-features");
1473
if (!FSAttr.isValid() ||
1474
!FSAttr.getValueAsString().contains("+retpoline"))
1475
continue;
1476
1477
NumBranchFunnel++;
1478
if (RemarksEnabled)
1479
VCallSite.emitRemark("branch-funnel",
1480
JT->stripPointerCasts()->getName(), OREGetter);
1481
1482
// Pass the address of the vtable in the nest register, which is r10 on
1483
// x86_64.
1484
std::vector<Type *> NewArgs;
1485
NewArgs.push_back(Int8PtrTy);
1486
append_range(NewArgs, CB.getFunctionType()->params());
1487
FunctionType *NewFT =
1488
FunctionType::get(CB.getFunctionType()->getReturnType(), NewArgs,
1489
CB.getFunctionType()->isVarArg());
1490
PointerType *NewFTPtr = PointerType::getUnqual(NewFT);
1491
1492
IRBuilder<> IRB(&CB);
1493
std::vector<Value *> Args;
1494
Args.push_back(VCallSite.VTable);
1495
llvm::append_range(Args, CB.args());
1496
1497
CallBase *NewCS = nullptr;
1498
if (isa<CallInst>(CB))
1499
NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args);
1500
else
1501
NewCS = IRB.CreateInvoke(NewFT, IRB.CreateBitCast(JT, NewFTPtr),
1502
cast<InvokeInst>(CB).getNormalDest(),
1503
cast<InvokeInst>(CB).getUnwindDest(), Args);
1504
NewCS->setCallingConv(CB.getCallingConv());
1505
1506
AttributeList Attrs = CB.getAttributes();
1507
std::vector<AttributeSet> NewArgAttrs;
1508
NewArgAttrs.push_back(AttributeSet::get(
1509
M.getContext(), ArrayRef<Attribute>{Attribute::get(
1510
M.getContext(), Attribute::Nest)}));
1511
for (unsigned I = 0; I + 2 < Attrs.getNumAttrSets(); ++I)
1512
NewArgAttrs.push_back(Attrs.getParamAttrs(I));
1513
NewCS->setAttributes(
1514
AttributeList::get(M.getContext(), Attrs.getFnAttrs(),
1515
Attrs.getRetAttrs(), NewArgAttrs));
1516
1517
CallBases[&CB] = NewCS;
1518
1519
// This use is no longer unsafe.
1520
if (VCallSite.NumUnsafeUses)
1521
--*VCallSite.NumUnsafeUses;
1522
}
1523
// Don't mark as devirtualized because there may be callers compiled without
1524
// retpoline mitigation, which would mean that they are lowered to
1525
// llvm.type.test and therefore require an llvm.type.test resolution for the
1526
// type identifier.
1527
1528
for (auto &[Old, New] : CallBases) {
1529
Old->replaceAllUsesWith(New);
1530
Old->eraseFromParent();
1531
}
1532
};
1533
Apply(SlotInfo.CSInfo);
1534
for (auto &P : SlotInfo.ConstCSInfo)
1535
Apply(P.second);
1536
}
1537
1538
bool DevirtModule::tryEvaluateFunctionsWithArgs(
1539
MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1540
ArrayRef<uint64_t> Args) {
1541
// Evaluate each function and store the result in each target's RetVal
1542
// field.
1543
for (VirtualCallTarget &Target : TargetsForSlot) {
1544
// TODO: Skip for now if the vtable symbol was an alias to a function,
1545
// need to evaluate whether it would be correct to analyze the aliasee
1546
// function for this optimization.
1547
auto Fn = dyn_cast<Function>(Target.Fn);
1548
if (!Fn)
1549
return false;
1550
1551
if (Fn->arg_size() != Args.size() + 1)
1552
return false;
1553
1554
Evaluator Eval(M.getDataLayout(), nullptr);
1555
SmallVector<Constant *, 2> EvalArgs;
1556
EvalArgs.push_back(
1557
Constant::getNullValue(Fn->getFunctionType()->getParamType(0)));
1558
for (unsigned I = 0; I != Args.size(); ++I) {
1559
auto *ArgTy =
1560
dyn_cast<IntegerType>(Fn->getFunctionType()->getParamType(I + 1));
1561
if (!ArgTy)
1562
return false;
1563
EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
1564
}
1565
1566
Constant *RetVal;
1567
if (!Eval.EvaluateFunction(Fn, RetVal, EvalArgs) ||
1568
!isa<ConstantInt>(RetVal))
1569
return false;
1570
Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
1571
}
1572
return true;
1573
}
1574
1575
void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1576
uint64_t TheRetVal) {
1577
for (auto Call : CSInfo.CallSites) {
1578
if (!OptimizedCalls.insert(&Call.CB).second)
1579
continue;
1580
NumUniformRetVal++;
1581
Call.replaceAndErase(
1582
"uniform-ret-val", FnName, RemarksEnabled, OREGetter,
1583
ConstantInt::get(cast<IntegerType>(Call.CB.getType()), TheRetVal));
1584
}
1585
CSInfo.markDevirt();
1586
}
1587
1588
bool DevirtModule::tryUniformRetValOpt(
1589
MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
1590
WholeProgramDevirtResolution::ByArg *Res) {
1591
// Uniform return value optimization. If all functions return the same
1592
// constant, replace all calls with that constant.
1593
uint64_t TheRetVal = TargetsForSlot[0].RetVal;
1594
for (const VirtualCallTarget &Target : TargetsForSlot)
1595
if (Target.RetVal != TheRetVal)
1596
return false;
1597
1598
if (CSInfo.isExported()) {
1599
Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
1600
Res->Info = TheRetVal;
1601
}
1602
1603
applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
1604
if (RemarksEnabled || AreStatisticsEnabled())
1605
for (auto &&Target : TargetsForSlot)
1606
Target.WasDevirt = true;
1607
return true;
1608
}
1609
1610
std::string DevirtModule::getGlobalName(VTableSlot Slot,
1611
ArrayRef<uint64_t> Args,
1612
StringRef Name) {
1613
std::string FullName = "__typeid_";
1614
raw_string_ostream OS(FullName);
1615
OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
1616
for (uint64_t Arg : Args)
1617
OS << '_' << Arg;
1618
OS << '_' << Name;
1619
return FullName;
1620
}
1621
1622
bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1623
Triple T(M.getTargetTriple());
1624
return T.isX86() && T.getObjectFormat() == Triple::ELF;
1625
}
1626
1627
void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1628
StringRef Name, Constant *C) {
1629
GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
1630
getGlobalName(Slot, Args, Name), C, &M);
1631
GA->setVisibility(GlobalValue::HiddenVisibility);
1632
}
1633
1634
void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1635
StringRef Name, uint32_t Const,
1636
uint32_t &Storage) {
1637
if (shouldExportConstantsAsAbsoluteSymbols()) {
1638
exportGlobal(
1639
Slot, Args, Name,
1640
ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
1641
return;
1642
}
1643
1644
Storage = Const;
1645
}
1646
1647
Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1648
StringRef Name) {
1649
Constant *C =
1650
M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Arr0Ty);
1651
auto *GV = dyn_cast<GlobalVariable>(C);
1652
if (GV)
1653
GV->setVisibility(GlobalValue::HiddenVisibility);
1654
return C;
1655
}
1656
1657
Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1658
StringRef Name, IntegerType *IntTy,
1659
uint32_t Storage) {
1660
if (!shouldExportConstantsAsAbsoluteSymbols())
1661
return ConstantInt::get(IntTy, Storage);
1662
1663
Constant *C = importGlobal(Slot, Args, Name);
1664
auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
1665
C = ConstantExpr::getPtrToInt(C, IntTy);
1666
1667
// We only need to set metadata if the global is newly created, in which
1668
// case it would not have hidden visibility.
1669
if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
1670
return C;
1671
1672
auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
1673
auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
1674
auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
1675
GV->setMetadata(LLVMContext::MD_absolute_symbol,
1676
MDNode::get(M.getContext(), {MinC, MaxC}));
1677
};
1678
unsigned AbsWidth = IntTy->getBitWidth();
1679
if (AbsWidth == IntPtrTy->getBitWidth())
1680
SetAbsRange(~0ull, ~0ull); // Full set.
1681
else
1682
SetAbsRange(0, 1ull << AbsWidth);
1683
return C;
1684
}
1685
1686
void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1687
bool IsOne,
1688
Constant *UniqueMemberAddr) {
1689
for (auto &&Call : CSInfo.CallSites) {
1690
if (!OptimizedCalls.insert(&Call.CB).second)
1691
continue;
1692
IRBuilder<> B(&Call.CB);
1693
Value *Cmp =
1694
B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, Call.VTable,
1695
B.CreateBitCast(UniqueMemberAddr, Call.VTable->getType()));
1696
Cmp = B.CreateZExt(Cmp, Call.CB.getType());
1697
NumUniqueRetVal++;
1698
Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
1699
Cmp);
1700
}
1701
CSInfo.markDevirt();
1702
}
1703
1704
Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
1705
return ConstantExpr::getGetElementPtr(Int8Ty, M->Bits->GV,
1706
ConstantInt::get(Int64Ty, M->Offset));
1707
}
1708
1709
bool DevirtModule::tryUniqueRetValOpt(
1710
unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1711
CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
1712
VTableSlot Slot, ArrayRef<uint64_t> Args) {
1713
// IsOne controls whether we look for a 0 or a 1.
1714
auto tryUniqueRetValOptFor = [&](bool IsOne) {
1715
const TypeMemberInfo *UniqueMember = nullptr;
1716
for (const VirtualCallTarget &Target : TargetsForSlot) {
1717
if (Target.RetVal == (IsOne ? 1 : 0)) {
1718
if (UniqueMember)
1719
return false;
1720
UniqueMember = Target.TM;
1721
}
1722
}
1723
1724
// We should have found a unique member or bailed out by now. We already
1725
// checked for a uniform return value in tryUniformRetValOpt.
1726
assert(UniqueMember);
1727
1728
Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
1729
if (CSInfo.isExported()) {
1730
Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
1731
Res->Info = IsOne;
1732
1733
exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
1734
}
1735
1736
// Replace each call with the comparison.
1737
applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
1738
UniqueMemberAddr);
1739
1740
// Update devirtualization statistics for targets.
1741
if (RemarksEnabled || AreStatisticsEnabled())
1742
for (auto &&Target : TargetsForSlot)
1743
Target.WasDevirt = true;
1744
1745
return true;
1746
};
1747
1748
if (BitWidth == 1) {
1749
if (tryUniqueRetValOptFor(true))
1750
return true;
1751
if (tryUniqueRetValOptFor(false))
1752
return true;
1753
}
1754
return false;
1755
}
1756
1757
void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
1758
Constant *Byte, Constant *Bit) {
1759
for (auto Call : CSInfo.CallSites) {
1760
if (!OptimizedCalls.insert(&Call.CB).second)
1761
continue;
1762
auto *RetType = cast<IntegerType>(Call.CB.getType());
1763
IRBuilder<> B(&Call.CB);
1764
Value *Addr = B.CreatePtrAdd(Call.VTable, Byte);
1765
if (RetType->getBitWidth() == 1) {
1766
Value *Bits = B.CreateLoad(Int8Ty, Addr);
1767
Value *BitsAndBit = B.CreateAnd(Bits, Bit);
1768
auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
1769
NumVirtConstProp1Bit++;
1770
Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
1771
OREGetter, IsBitSet);
1772
} else {
1773
Value *Val = B.CreateLoad(RetType, Addr);
1774
NumVirtConstProp++;
1775
Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
1776
OREGetter, Val);
1777
}
1778
}
1779
CSInfo.markDevirt();
1780
}
1781
1782
bool DevirtModule::tryVirtualConstProp(
1783
MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1784
WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1785
// TODO: Skip for now if the vtable symbol was an alias to a function,
1786
// need to evaluate whether it would be correct to analyze the aliasee
1787
// function for this optimization.
1788
auto Fn = dyn_cast<Function>(TargetsForSlot[0].Fn);
1789
if (!Fn)
1790
return false;
1791
// This only works if the function returns an integer.
1792
auto RetType = dyn_cast<IntegerType>(Fn->getReturnType());
1793
if (!RetType)
1794
return false;
1795
unsigned BitWidth = RetType->getBitWidth();
1796
if (BitWidth > 64)
1797
return false;
1798
1799
// Make sure that each function is defined, does not access memory, takes at
1800
// least one argument, does not use its first argument (which we assume is
1801
// 'this'), and has the same return type.
1802
//
1803
// Note that we test whether this copy of the function is readnone, rather
1804
// than testing function attributes, which must hold for any copy of the
1805
// function, even a less optimized version substituted at link time. This is
1806
// sound because the virtual constant propagation optimizations effectively
1807
// inline all implementations of the virtual function into each call site,
1808
// rather than using function attributes to perform local optimization.
1809
for (VirtualCallTarget &Target : TargetsForSlot) {
1810
// TODO: Skip for now if the vtable symbol was an alias to a function,
1811
// need to evaluate whether it would be correct to analyze the aliasee
1812
// function for this optimization.
1813
auto Fn = dyn_cast<Function>(Target.Fn);
1814
if (!Fn)
1815
return false;
1816
1817
if (Fn->isDeclaration() ||
1818
!computeFunctionBodyMemoryAccess(*Fn, AARGetter(*Fn))
1819
.doesNotAccessMemory() ||
1820
Fn->arg_empty() || !Fn->arg_begin()->use_empty() ||
1821
Fn->getReturnType() != RetType)
1822
return false;
1823
}
1824
1825
for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
1826
if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
1827
continue;
1828
1829
WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
1830
if (Res)
1831
ResByArg = &Res->ResByArg[CSByConstantArg.first];
1832
1833
if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
1834
continue;
1835
1836
if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
1837
ResByArg, Slot, CSByConstantArg.first))
1838
continue;
1839
1840
// Find an allocation offset in bits in all vtables associated with the
1841
// type.
1842
uint64_t AllocBefore =
1843
findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
1844
uint64_t AllocAfter =
1845
findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
1846
1847
// Calculate the total amount of padding needed to store a value at both
1848
// ends of the object.
1849
uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
1850
for (auto &&Target : TargetsForSlot) {
1851
TotalPaddingBefore += std::max<int64_t>(
1852
(AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
1853
TotalPaddingAfter += std::max<int64_t>(
1854
(AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
1855
}
1856
1857
// If the amount of padding is too large, give up.
1858
// FIXME: do something smarter here.
1859
if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
1860
continue;
1861
1862
// Calculate the offset to the value as a (possibly negative) byte offset
1863
// and (if applicable) a bit offset, and store the values in the targets.
1864
int64_t OffsetByte;
1865
uint64_t OffsetBit;
1866
if (TotalPaddingBefore <= TotalPaddingAfter)
1867
setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
1868
OffsetBit);
1869
else
1870
setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
1871
OffsetBit);
1872
1873
if (RemarksEnabled || AreStatisticsEnabled())
1874
for (auto &&Target : TargetsForSlot)
1875
Target.WasDevirt = true;
1876
1877
1878
if (CSByConstantArg.second.isExported()) {
1879
ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
1880
exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
1881
ResByArg->Byte);
1882
exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
1883
ResByArg->Bit);
1884
}
1885
1886
// Rewrite each call to a load from OffsetByte/OffsetBit.
1887
Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
1888
Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
1889
applyVirtualConstProp(CSByConstantArg.second,
1890
TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
1891
}
1892
return true;
1893
}
1894
1895
void DevirtModule::rebuildGlobal(VTableBits &B) {
1896
if (B.Before.Bytes.empty() && B.After.Bytes.empty())
1897
return;
1898
1899
// Align the before byte array to the global's minimum alignment so that we
1900
// don't break any alignment requirements on the global.
1901
Align Alignment = M.getDataLayout().getValueOrABITypeAlignment(
1902
B.GV->getAlign(), B.GV->getValueType());
1903
B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment));
1904
1905
// Before was stored in reverse order; flip it now.
1906
for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
1907
std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
1908
1909
// Build an anonymous global containing the before bytes, followed by the
1910
// original initializer, followed by the after bytes.
1911
auto NewInit = ConstantStruct::getAnon(
1912
{ConstantDataArray::get(M.getContext(), B.Before.Bytes),
1913
B.GV->getInitializer(),
1914
ConstantDataArray::get(M.getContext(), B.After.Bytes)});
1915
auto NewGV =
1916
new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
1917
GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
1918
NewGV->setSection(B.GV->getSection());
1919
NewGV->setComdat(B.GV->getComdat());
1920
NewGV->setAlignment(B.GV->getAlign());
1921
1922
// Copy the original vtable's metadata to the anonymous global, adjusting
1923
// offsets as required.
1924
NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
1925
1926
// Build an alias named after the original global, pointing at the second
1927
// element (the original initializer).
1928
auto Alias = GlobalAlias::create(
1929
B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
1930
ConstantExpr::getInBoundsGetElementPtr(
1931
NewInit->getType(), NewGV,
1932
ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
1933
ConstantInt::get(Int32Ty, 1)}),
1934
&M);
1935
Alias->setVisibility(B.GV->getVisibility());
1936
Alias->takeName(B.GV);
1937
1938
B.GV->replaceAllUsesWith(Alias);
1939
B.GV->eraseFromParent();
1940
}
1941
1942
bool DevirtModule::areRemarksEnabled() {
1943
const auto &FL = M.getFunctionList();
1944
for (const Function &Fn : FL) {
1945
if (Fn.empty())
1946
continue;
1947
auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &Fn.front());
1948
return DI.isEnabled();
1949
}
1950
return false;
1951
}
1952
1953
void DevirtModule::scanTypeTestUsers(
1954
Function *TypeTestFunc,
1955
DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
1956
// Find all virtual calls via a virtual table pointer %p under an assumption
1957
// of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1958
// points to a member of the type identifier %md. Group calls by (type ID,
1959
// offset) pair (effectively the identity of the virtual function) and store
1960
// to CallSlots.
1961
for (Use &U : llvm::make_early_inc_range(TypeTestFunc->uses())) {
1962
auto *CI = dyn_cast<CallInst>(U.getUser());
1963
if (!CI)
1964
continue;
1965
1966
// Search for virtual calls based on %p and add them to DevirtCalls.
1967
SmallVector<DevirtCallSite, 1> DevirtCalls;
1968
SmallVector<CallInst *, 1> Assumes;
1969
auto &DT = LookupDomTree(*CI->getFunction());
1970
findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
1971
1972
Metadata *TypeId =
1973
cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
1974
// If we found any, add them to CallSlots.
1975
if (!Assumes.empty()) {
1976
Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
1977
for (DevirtCallSite Call : DevirtCalls)
1978
CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, nullptr);
1979
}
1980
1981
auto RemoveTypeTestAssumes = [&]() {
1982
// We no longer need the assumes or the type test.
1983
for (auto *Assume : Assumes)
1984
Assume->eraseFromParent();
1985
// We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1986
// may use the vtable argument later.
1987
if (CI->use_empty())
1988
CI->eraseFromParent();
1989
};
1990
1991
// At this point we could remove all type test assume sequences, as they
1992
// were originally inserted for WPD. However, we can keep these in the
1993
// code stream for later analysis (e.g. to help drive more efficient ICP
1994
// sequences). They will eventually be removed by a second LowerTypeTests
1995
// invocation that cleans them up. In order to do this correctly, the first
1996
// LowerTypeTests invocation needs to know that they have "Unknown" type
1997
// test resolution, so that they aren't treated as Unsat and lowered to
1998
// False, which will break any uses on assumes. Below we remove any type
1999
// test assumes that will not be treated as Unknown by LTT.
2000
2001
// The type test assumes will be treated by LTT as Unsat if the type id is
2002
// not used on a global (in which case it has no entry in the TypeIdMap).
2003
if (!TypeIdMap.count(TypeId))
2004
RemoveTypeTestAssumes();
2005
2006
// For ThinLTO importing, we need to remove the type test assumes if this is
2007
// an MDString type id without a corresponding TypeIdSummary. Any
2008
// non-MDString type ids are ignored and treated as Unknown by LTT, so their
2009
// type test assumes can be kept. If the MDString type id is missing a
2010
// TypeIdSummary (e.g. because there was no use on a vcall, preventing the
2011
// exporting phase of WPD from analyzing it), then it would be treated as
2012
// Unsat by LTT and we need to remove its type test assumes here. If not
2013
// used on a vcall we don't need them for later optimization use in any
2014
// case.
2015
else if (ImportSummary && isa<MDString>(TypeId)) {
2016
const TypeIdSummary *TidSummary =
2017
ImportSummary->getTypeIdSummary(cast<MDString>(TypeId)->getString());
2018
if (!TidSummary)
2019
RemoveTypeTestAssumes();
2020
else
2021
// If one was created it should not be Unsat, because if we reached here
2022
// the type id was used on a global.
2023
assert(TidSummary->TTRes.TheKind != TypeTestResolution::Unsat);
2024
}
2025
}
2026
}
2027
2028
void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
2029
Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
2030
2031
for (Use &U : llvm::make_early_inc_range(TypeCheckedLoadFunc->uses())) {
2032
auto *CI = dyn_cast<CallInst>(U.getUser());
2033
if (!CI)
2034
continue;
2035
2036
Value *Ptr = CI->getArgOperand(0);
2037
Value *Offset = CI->getArgOperand(1);
2038
Value *TypeIdValue = CI->getArgOperand(2);
2039
Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
2040
2041
SmallVector<DevirtCallSite, 1> DevirtCalls;
2042
SmallVector<Instruction *, 1> LoadedPtrs;
2043
SmallVector<Instruction *, 1> Preds;
2044
bool HasNonCallUses = false;
2045
auto &DT = LookupDomTree(*CI->getFunction());
2046
findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
2047
HasNonCallUses, CI, DT);
2048
2049
// Start by generating "pessimistic" code that explicitly loads the function
2050
// pointer from the vtable and performs the type check. If possible, we will
2051
// eliminate the load and the type check later.
2052
2053
// If possible, only generate the load at the point where it is used.
2054
// This helps avoid unnecessary spills.
2055
IRBuilder<> LoadB(
2056
(LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
2057
2058
Value *LoadedValue = nullptr;
2059
if (TypeCheckedLoadFunc->getIntrinsicID() ==
2060
Intrinsic::type_checked_load_relative) {
2061
Value *GEP = LoadB.CreatePtrAdd(Ptr, Offset);
2062
LoadedValue = LoadB.CreateLoad(Int32Ty, GEP);
2063
LoadedValue = LoadB.CreateSExt(LoadedValue, IntPtrTy);
2064
GEP = LoadB.CreatePtrToInt(GEP, IntPtrTy);
2065
LoadedValue = LoadB.CreateAdd(GEP, LoadedValue);
2066
LoadedValue = LoadB.CreateIntToPtr(LoadedValue, Int8PtrTy);
2067
} else {
2068
Value *GEP = LoadB.CreatePtrAdd(Ptr, Offset);
2069
LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEP);
2070
}
2071
2072
for (Instruction *LoadedPtr : LoadedPtrs) {
2073
LoadedPtr->replaceAllUsesWith(LoadedValue);
2074
LoadedPtr->eraseFromParent();
2075
}
2076
2077
// Likewise for the type test.
2078
IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
2079
CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
2080
2081
for (Instruction *Pred : Preds) {
2082
Pred->replaceAllUsesWith(TypeTestCall);
2083
Pred->eraseFromParent();
2084
}
2085
2086
// We have already erased any extractvalue instructions that refer to the
2087
// intrinsic call, but the intrinsic may have other non-extractvalue uses
2088
// (although this is unlikely). In that case, explicitly build a pair and
2089
// RAUW it.
2090
if (!CI->use_empty()) {
2091
Value *Pair = PoisonValue::get(CI->getType());
2092
IRBuilder<> B(CI);
2093
Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
2094
Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
2095
CI->replaceAllUsesWith(Pair);
2096
}
2097
2098
// The number of unsafe uses is initially the number of uses.
2099
auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
2100
NumUnsafeUses = DevirtCalls.size();
2101
2102
// If the function pointer has a non-call user, we cannot eliminate the type
2103
// check, as one of those users may eventually call the pointer. Increment
2104
// the unsafe use count to make sure it cannot reach zero.
2105
if (HasNonCallUses)
2106
++NumUnsafeUses;
2107
for (DevirtCallSite Call : DevirtCalls) {
2108
CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB,
2109
&NumUnsafeUses);
2110
}
2111
2112
CI->eraseFromParent();
2113
}
2114
}
2115
2116
void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
2117
auto *TypeId = dyn_cast<MDString>(Slot.TypeID);
2118
if (!TypeId)
2119
return;
2120
const TypeIdSummary *TidSummary =
2121
ImportSummary->getTypeIdSummary(TypeId->getString());
2122
if (!TidSummary)
2123
return;
2124
auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
2125
if (ResI == TidSummary->WPDRes.end())
2126
return;
2127
const WholeProgramDevirtResolution &Res = ResI->second;
2128
2129
if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
2130
assert(!Res.SingleImplName.empty());
2131
// The type of the function in the declaration is irrelevant because every
2132
// call site will cast it to the correct type.
2133
Constant *SingleImpl =
2134
cast<Constant>(M.getOrInsertFunction(Res.SingleImplName,
2135
Type::getVoidTy(M.getContext()))
2136
.getCallee());
2137
2138
// This is the import phase so we should not be exporting anything.
2139
bool IsExported = false;
2140
applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
2141
assert(!IsExported);
2142
}
2143
2144
for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
2145
auto I = Res.ResByArg.find(CSByConstantArg.first);
2146
if (I == Res.ResByArg.end())
2147
continue;
2148
auto &ResByArg = I->second;
2149
// FIXME: We should figure out what to do about the "function name" argument
2150
// to the apply* functions, as the function names are unavailable during the
2151
// importing phase. For now we just pass the empty string. This does not
2152
// impact correctness because the function names are just used for remarks.
2153
switch (ResByArg.TheKind) {
2154
case WholeProgramDevirtResolution::ByArg::UniformRetVal:
2155
applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
2156
break;
2157
case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
2158
Constant *UniqueMemberAddr =
2159
importGlobal(Slot, CSByConstantArg.first, "unique_member");
2160
applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
2161
UniqueMemberAddr);
2162
break;
2163
}
2164
case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
2165
Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
2166
Int32Ty, ResByArg.Byte);
2167
Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
2168
ResByArg.Bit);
2169
applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
2170
break;
2171
}
2172
default:
2173
break;
2174
}
2175
}
2176
2177
if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
2178
// The type of the function is irrelevant, because it's bitcast at calls
2179
// anyhow.
2180
Constant *JT = cast<Constant>(
2181
M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
2182
Type::getVoidTy(M.getContext()))
2183
.getCallee());
2184
bool IsExported = false;
2185
applyICallBranchFunnel(SlotInfo, JT, IsExported);
2186
assert(!IsExported);
2187
}
2188
}
2189
2190
void DevirtModule::removeRedundantTypeTests() {
2191
auto True = ConstantInt::getTrue(M.getContext());
2192
for (auto &&U : NumUnsafeUsesForTypeTest) {
2193
if (U.second == 0) {
2194
U.first->replaceAllUsesWith(True);
2195
U.first->eraseFromParent();
2196
}
2197
}
2198
}
2199
2200
ValueInfo
2201
DevirtModule::lookUpFunctionValueInfo(Function *TheFn,
2202
ModuleSummaryIndex *ExportSummary) {
2203
assert((ExportSummary != nullptr) &&
2204
"Caller guarantees ExportSummary is not nullptr");
2205
2206
const auto TheFnGUID = TheFn->getGUID();
2207
const auto TheFnGUIDWithExportedName = GlobalValue::getGUID(TheFn->getName());
2208
// Look up ValueInfo with the GUID in the current linkage.
2209
ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFnGUID);
2210
// If no entry is found and GUID is different from GUID computed using
2211
// exported name, look up ValueInfo with the exported name unconditionally.
2212
// This is a fallback.
2213
//
2214
// The reason to have a fallback:
2215
// 1. LTO could enable global value internalization via
2216
// `enable-lto-internalization`.
2217
// 2. The GUID in ExportedSummary is computed using exported name.
2218
if ((!TheFnVI) && (TheFnGUID != TheFnGUIDWithExportedName)) {
2219
TheFnVI = ExportSummary->getValueInfo(TheFnGUIDWithExportedName);
2220
}
2221
return TheFnVI;
2222
}
2223
2224
bool DevirtModule::mustBeUnreachableFunction(
2225
Function *const F, ModuleSummaryIndex *ExportSummary) {
2226
// First, learn unreachability by analyzing function IR.
2227
if (!F->isDeclaration()) {
2228
// A function must be unreachable if its entry block ends with an
2229
// 'unreachable'.
2230
return isa<UnreachableInst>(F->getEntryBlock().getTerminator());
2231
}
2232
// Learn unreachability from ExportSummary if ExportSummary is present.
2233
return ExportSummary &&
2234
::mustBeUnreachableFunction(
2235
DevirtModule::lookUpFunctionValueInfo(F, ExportSummary));
2236
}
2237
2238
bool DevirtModule::run() {
2239
// If only some of the modules were split, we cannot correctly perform
2240
// this transformation. We already checked for the presense of type tests
2241
// with partially split modules during the thin link, and would have emitted
2242
// an error if any were found, so here we can simply return.
2243
if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
2244
(ImportSummary && ImportSummary->partiallySplitLTOUnits()))
2245
return false;
2246
2247
Function *TypeTestFunc =
2248
M.getFunction(Intrinsic::getName(Intrinsic::type_test));
2249
Function *TypeCheckedLoadFunc =
2250
M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
2251
Function *TypeCheckedLoadRelativeFunc =
2252
M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load_relative));
2253
Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
2254
2255
// Normally if there are no users of the devirtualization intrinsics in the
2256
// module, this pass has nothing to do. But if we are exporting, we also need
2257
// to handle any users that appear only in the function summaries.
2258
if (!ExportSummary &&
2259
(!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
2260
AssumeFunc->use_empty()) &&
2261
(!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()) &&
2262
(!TypeCheckedLoadRelativeFunc ||
2263
TypeCheckedLoadRelativeFunc->use_empty()))
2264
return false;
2265
2266
// Rebuild type metadata into a map for easy lookup.
2267
std::vector<VTableBits> Bits;
2268
DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
2269
buildTypeIdentifierMap(Bits, TypeIdMap);
2270
2271
if (TypeTestFunc && AssumeFunc)
2272
scanTypeTestUsers(TypeTestFunc, TypeIdMap);
2273
2274
if (TypeCheckedLoadFunc)
2275
scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
2276
2277
if (TypeCheckedLoadRelativeFunc)
2278
scanTypeCheckedLoadUsers(TypeCheckedLoadRelativeFunc);
2279
2280
if (ImportSummary) {
2281
for (auto &S : CallSlots)
2282
importResolution(S.first, S.second);
2283
2284
removeRedundantTypeTests();
2285
2286
// We have lowered or deleted the type intrinsics, so we will no longer have
2287
// enough information to reason about the liveness of virtual function
2288
// pointers in GlobalDCE.
2289
for (GlobalVariable &GV : M.globals())
2290
GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
2291
2292
// The rest of the code is only necessary when exporting or during regular
2293
// LTO, so we are done.
2294
return true;
2295
}
2296
2297
if (TypeIdMap.empty())
2298
return true;
2299
2300
// Collect information from summary about which calls to try to devirtualize.
2301
if (ExportSummary) {
2302
DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
2303
for (auto &P : TypeIdMap) {
2304
if (auto *TypeId = dyn_cast<MDString>(P.first))
2305
MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
2306
TypeId);
2307
}
2308
2309
for (auto &P : *ExportSummary) {
2310
for (auto &S : P.second.SummaryList) {
2311
auto *FS = dyn_cast<FunctionSummary>(S.get());
2312
if (!FS)
2313
continue;
2314
// FIXME: Only add live functions.
2315
for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
2316
for (Metadata *MD : MetadataByGUID[VF.GUID]) {
2317
CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
2318
}
2319
}
2320
for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
2321
for (Metadata *MD : MetadataByGUID[VF.GUID]) {
2322
CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
2323
}
2324
}
2325
for (const FunctionSummary::ConstVCall &VC :
2326
FS->type_test_assume_const_vcalls()) {
2327
for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
2328
CallSlots[{MD, VC.VFunc.Offset}]
2329
.ConstCSInfo[VC.Args]
2330
.addSummaryTypeTestAssumeUser(FS);
2331
}
2332
}
2333
for (const FunctionSummary::ConstVCall &VC :
2334
FS->type_checked_load_const_vcalls()) {
2335
for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
2336
CallSlots[{MD, VC.VFunc.Offset}]
2337
.ConstCSInfo[VC.Args]
2338
.addSummaryTypeCheckedLoadUser(FS);
2339
}
2340
}
2341
}
2342
}
2343
}
2344
2345
// For each (type, offset) pair:
2346
bool DidVirtualConstProp = false;
2347
std::map<std::string, GlobalValue *> DevirtTargets;
2348
for (auto &S : CallSlots) {
2349
// Search each of the members of the type identifier for the virtual
2350
// function implementation at offset S.first.ByteOffset, and add to
2351
// TargetsForSlot.
2352
std::vector<VirtualCallTarget> TargetsForSlot;
2353
WholeProgramDevirtResolution *Res = nullptr;
2354
const std::set<TypeMemberInfo> &TypeMemberInfos = TypeIdMap[S.first.TypeID];
2355
if (ExportSummary && isa<MDString>(S.first.TypeID) &&
2356
TypeMemberInfos.size())
2357
// For any type id used on a global's type metadata, create the type id
2358
// summary resolution regardless of whether we can devirtualize, so that
2359
// lower type tests knows the type id is not Unsat. If it was not used on
2360
// a global's type metadata, the TypeIdMap entry set will be empty, and
2361
// we don't want to create an entry (with the default Unknown type
2362
// resolution), which can prevent detection of the Unsat.
2363
Res = &ExportSummary
2364
->getOrInsertTypeIdSummary(
2365
cast<MDString>(S.first.TypeID)->getString())
2366
.WPDRes[S.first.ByteOffset];
2367
if (tryFindVirtualCallTargets(TargetsForSlot, TypeMemberInfos,
2368
S.first.ByteOffset, ExportSummary)) {
2369
2370
if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) {
2371
DidVirtualConstProp |=
2372
tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);
2373
2374
tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
2375
}
2376
2377
// Collect functions devirtualized at least for one call site for stats.
2378
if (RemarksEnabled || AreStatisticsEnabled())
2379
for (const auto &T : TargetsForSlot)
2380
if (T.WasDevirt)
2381
DevirtTargets[std::string(T.Fn->getName())] = T.Fn;
2382
}
2383
2384
// CFI-specific: if we are exporting and any llvm.type.checked.load
2385
// intrinsics were *not* devirtualized, we need to add the resulting
2386
// llvm.type.test intrinsics to the function summaries so that the
2387
// LowerTypeTests pass will export them.
2388
if (ExportSummary && isa<MDString>(S.first.TypeID)) {
2389
auto GUID =
2390
GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
2391
for (auto *FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
2392
FS->addTypeTest(GUID);
2393
for (auto &CCS : S.second.ConstCSInfo)
2394
for (auto *FS : CCS.second.SummaryTypeCheckedLoadUsers)
2395
FS->addTypeTest(GUID);
2396
}
2397
}
2398
2399
if (RemarksEnabled) {
2400
// Generate remarks for each devirtualized function.
2401
for (const auto &DT : DevirtTargets) {
2402
GlobalValue *GV = DT.second;
2403
auto F = dyn_cast<Function>(GV);
2404
if (!F) {
2405
auto A = dyn_cast<GlobalAlias>(GV);
2406
assert(A && isa<Function>(A->getAliasee()));
2407
F = dyn_cast<Function>(A->getAliasee());
2408
assert(F);
2409
}
2410
2411
using namespace ore;
2412
OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
2413
<< "devirtualized "
2414
<< NV("FunctionName", DT.first));
2415
}
2416
}
2417
2418
NumDevirtTargets += DevirtTargets.size();
2419
2420
removeRedundantTypeTests();
2421
2422
// Rebuild each global we touched as part of virtual constant propagation to
2423
// include the before and after bytes.
2424
if (DidVirtualConstProp)
2425
for (VTableBits &B : Bits)
2426
rebuildGlobal(B);
2427
2428
// We have lowered or deleted the type intrinsics, so we will no longer have
2429
// enough information to reason about the liveness of virtual function
2430
// pointers in GlobalDCE.
2431
for (GlobalVariable &GV : M.globals())
2432
GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
2433
2434
for (auto *CI : CallsWithPtrAuthBundleRemoved)
2435
CI->eraseFromParent();
2436
2437
return true;
2438
}
2439
2440
void DevirtIndex::run() {
2441
if (ExportSummary.typeIdCompatibleVtableMap().empty())
2442
return;
2443
2444
DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID;
2445
for (const auto &P : ExportSummary.typeIdCompatibleVtableMap()) {
2446
NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first);
2447
// Create the type id summary resolution regardlness of whether we can
2448
// devirtualize, so that lower type tests knows the type id is used on
2449
// a global and not Unsat. We do this here rather than in the loop over the
2450
// CallSlots, since that handling will only see type tests that directly
2451
// feed assumes, and we would miss any that aren't currently handled by WPD
2452
// (such as type tests that feed assumes via phis).
2453
ExportSummary.getOrInsertTypeIdSummary(P.first);
2454
}
2455
2456
// Collect information from summary about which calls to try to devirtualize.
2457
for (auto &P : ExportSummary) {
2458
for (auto &S : P.second.SummaryList) {
2459
auto *FS = dyn_cast<FunctionSummary>(S.get());
2460
if (!FS)
2461
continue;
2462
// FIXME: Only add live functions.
2463
for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
2464
for (StringRef Name : NameByGUID[VF.GUID]) {
2465
CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
2466
}
2467
}
2468
for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
2469
for (StringRef Name : NameByGUID[VF.GUID]) {
2470
CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
2471
}
2472
}
2473
for (const FunctionSummary::ConstVCall &VC :
2474
FS->type_test_assume_const_vcalls()) {
2475
for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2476
CallSlots[{Name, VC.VFunc.Offset}]
2477
.ConstCSInfo[VC.Args]
2478
.addSummaryTypeTestAssumeUser(FS);
2479
}
2480
}
2481
for (const FunctionSummary::ConstVCall &VC :
2482
FS->type_checked_load_const_vcalls()) {
2483
for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2484
CallSlots[{Name, VC.VFunc.Offset}]
2485
.ConstCSInfo[VC.Args]
2486
.addSummaryTypeCheckedLoadUser(FS);
2487
}
2488
}
2489
}
2490
}
2491
2492
std::set<ValueInfo> DevirtTargets;
2493
// For each (type, offset) pair:
2494
for (auto &S : CallSlots) {
2495
// Search each of the members of the type identifier for the virtual
2496
// function implementation at offset S.first.ByteOffset, and add to
2497
// TargetsForSlot.
2498
std::vector<ValueInfo> TargetsForSlot;
2499
auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID);
2500
assert(TidSummary);
2501
// The type id summary would have been created while building the NameByGUID
2502
// map earlier.
2503
WholeProgramDevirtResolution *Res =
2504
&ExportSummary.getTypeIdSummary(S.first.TypeID)
2505
->WPDRes[S.first.ByteOffset];
2506
if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary,
2507
S.first.ByteOffset)) {
2508
2509
if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res,
2510
DevirtTargets))
2511
continue;
2512
}
2513
}
2514
2515
// Optionally have the thin link print message for each devirtualized
2516
// function.
2517
if (PrintSummaryDevirt)
2518
for (const auto &DT : DevirtTargets)
2519
errs() << "Devirtualized call to " << DT << "\n";
2520
2521
NumDevirtTargets += DevirtTargets.size();
2522
}
2523
2524