Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
35266 views
1
//===- InstCombineCasts.cpp -----------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the visit functions for cast operations.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "InstCombineInternal.h"
14
#include "llvm/ADT/SetVector.h"
15
#include "llvm/Analysis/ConstantFolding.h"
16
#include "llvm/IR/DataLayout.h"
17
#include "llvm/IR/DebugInfo.h"
18
#include "llvm/IR/PatternMatch.h"
19
#include "llvm/Support/KnownBits.h"
20
#include "llvm/Transforms/InstCombine/InstCombiner.h"
21
#include <optional>
22
23
using namespace llvm;
24
using namespace PatternMatch;
25
26
#define DEBUG_TYPE "instcombine"
27
28
/// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
29
/// true for, actually insert the code to evaluate the expression.
30
Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty,
31
bool isSigned) {
32
if (Constant *C = dyn_cast<Constant>(V))
33
return ConstantFoldIntegerCast(C, Ty, isSigned, DL);
34
35
// Otherwise, it must be an instruction.
36
Instruction *I = cast<Instruction>(V);
37
Instruction *Res = nullptr;
38
unsigned Opc = I->getOpcode();
39
switch (Opc) {
40
case Instruction::Add:
41
case Instruction::Sub:
42
case Instruction::Mul:
43
case Instruction::And:
44
case Instruction::Or:
45
case Instruction::Xor:
46
case Instruction::AShr:
47
case Instruction::LShr:
48
case Instruction::Shl:
49
case Instruction::UDiv:
50
case Instruction::URem: {
51
Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
52
Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
53
Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
54
break;
55
}
56
case Instruction::Trunc:
57
case Instruction::ZExt:
58
case Instruction::SExt:
59
// If the source type of the cast is the type we're trying for then we can
60
// just return the source. There's no need to insert it because it is not
61
// new.
62
if (I->getOperand(0)->getType() == Ty)
63
return I->getOperand(0);
64
65
// Otherwise, must be the same type of cast, so just reinsert a new one.
66
// This also handles the case of zext(trunc(x)) -> zext(x).
67
Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
68
Opc == Instruction::SExt);
69
break;
70
case Instruction::Select: {
71
Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
72
Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
73
Res = SelectInst::Create(I->getOperand(0), True, False);
74
break;
75
}
76
case Instruction::PHI: {
77
PHINode *OPN = cast<PHINode>(I);
78
PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
79
for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
80
Value *V =
81
EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
82
NPN->addIncoming(V, OPN->getIncomingBlock(i));
83
}
84
Res = NPN;
85
break;
86
}
87
case Instruction::FPToUI:
88
case Instruction::FPToSI:
89
Res = CastInst::Create(
90
static_cast<Instruction::CastOps>(Opc), I->getOperand(0), Ty);
91
break;
92
case Instruction::Call:
93
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
94
switch (II->getIntrinsicID()) {
95
default:
96
llvm_unreachable("Unsupported call!");
97
case Intrinsic::vscale: {
98
Function *Fn =
99
Intrinsic::getDeclaration(I->getModule(), Intrinsic::vscale, {Ty});
100
Res = CallInst::Create(Fn->getFunctionType(), Fn);
101
break;
102
}
103
}
104
}
105
break;
106
case Instruction::ShuffleVector: {
107
auto *ScalarTy = cast<VectorType>(Ty)->getElementType();
108
auto *VTy = cast<VectorType>(I->getOperand(0)->getType());
109
auto *FixedTy = VectorType::get(ScalarTy, VTy->getElementCount());
110
Value *Op0 = EvaluateInDifferentType(I->getOperand(0), FixedTy, isSigned);
111
Value *Op1 = EvaluateInDifferentType(I->getOperand(1), FixedTy, isSigned);
112
Res = new ShuffleVectorInst(Op0, Op1,
113
cast<ShuffleVectorInst>(I)->getShuffleMask());
114
break;
115
}
116
default:
117
// TODO: Can handle more cases here.
118
llvm_unreachable("Unreachable!");
119
}
120
121
Res->takeName(I);
122
return InsertNewInstWith(Res, I->getIterator());
123
}
124
125
Instruction::CastOps
126
InstCombinerImpl::isEliminableCastPair(const CastInst *CI1,
127
const CastInst *CI2) {
128
Type *SrcTy = CI1->getSrcTy();
129
Type *MidTy = CI1->getDestTy();
130
Type *DstTy = CI2->getDestTy();
131
132
Instruction::CastOps firstOp = CI1->getOpcode();
133
Instruction::CastOps secondOp = CI2->getOpcode();
134
Type *SrcIntPtrTy =
135
SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
136
Type *MidIntPtrTy =
137
MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
138
Type *DstIntPtrTy =
139
DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
140
unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
141
DstTy, SrcIntPtrTy, MidIntPtrTy,
142
DstIntPtrTy);
143
144
// We don't want to form an inttoptr or ptrtoint that converts to an integer
145
// type that differs from the pointer size.
146
if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
147
(Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
148
Res = 0;
149
150
return Instruction::CastOps(Res);
151
}
152
153
/// Implement the transforms common to all CastInst visitors.
154
Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) {
155
Value *Src = CI.getOperand(0);
156
Type *Ty = CI.getType();
157
158
if (auto *SrcC = dyn_cast<Constant>(Src))
159
if (Constant *Res = ConstantFoldCastOperand(CI.getOpcode(), SrcC, Ty, DL))
160
return replaceInstUsesWith(CI, Res);
161
162
// Try to eliminate a cast of a cast.
163
if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
164
if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
165
// The first cast (CSrc) is eliminable so we need to fix up or replace
166
// the second cast (CI). CSrc will then have a good chance of being dead.
167
auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
168
// Point debug users of the dying cast to the new one.
169
if (CSrc->hasOneUse())
170
replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
171
return Res;
172
}
173
}
174
175
if (auto *Sel = dyn_cast<SelectInst>(Src)) {
176
// We are casting a select. Try to fold the cast into the select if the
177
// select does not have a compare instruction with matching operand types
178
// or the select is likely better done in a narrow type.
179
// Creating a select with operands that are different sizes than its
180
// condition may inhibit other folds and lead to worse codegen.
181
auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
182
if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() ||
183
(CI.getOpcode() == Instruction::Trunc &&
184
shouldChangeType(CI.getSrcTy(), CI.getType()))) {
185
186
// If it's a bitcast involving vectors, make sure it has the same number
187
// of elements on both sides.
188
if (CI.getOpcode() != Instruction::BitCast ||
189
match(&CI, m_ElementWiseBitCast(m_Value()))) {
190
if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
191
replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
192
return NV;
193
}
194
}
195
}
196
}
197
198
// If we are casting a PHI, then fold the cast into the PHI.
199
if (auto *PN = dyn_cast<PHINode>(Src)) {
200
// Don't do this if it would create a PHI node with an illegal type from a
201
// legal type.
202
if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
203
shouldChangeType(CI.getSrcTy(), CI.getType()))
204
if (Instruction *NV = foldOpIntoPhi(CI, PN))
205
return NV;
206
}
207
208
// Canonicalize a unary shuffle after the cast if neither operation changes
209
// the size or element size of the input vector.
210
// TODO: We could allow size-changing ops if that doesn't harm codegen.
211
// cast (shuffle X, Mask) --> shuffle (cast X), Mask
212
Value *X;
213
ArrayRef<int> Mask;
214
if (match(Src, m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))) {
215
// TODO: Allow scalable vectors?
216
auto *SrcTy = dyn_cast<FixedVectorType>(X->getType());
217
auto *DestTy = dyn_cast<FixedVectorType>(Ty);
218
if (SrcTy && DestTy &&
219
SrcTy->getNumElements() == DestTy->getNumElements() &&
220
SrcTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) {
221
Value *CastX = Builder.CreateCast(CI.getOpcode(), X, DestTy);
222
return new ShuffleVectorInst(CastX, Mask);
223
}
224
}
225
226
return nullptr;
227
}
228
229
/// Constants and extensions/truncates from the destination type are always
230
/// free to be evaluated in that type. This is a helper for canEvaluate*.
231
static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
232
if (isa<Constant>(V))
233
return match(V, m_ImmConstant());
234
235
Value *X;
236
if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
237
X->getType() == Ty)
238
return true;
239
240
return false;
241
}
242
243
/// Filter out values that we can not evaluate in the destination type for free.
244
/// This is a helper for canEvaluate*.
245
static bool canNotEvaluateInType(Value *V, Type *Ty) {
246
if (!isa<Instruction>(V))
247
return true;
248
// We don't extend or shrink something that has multiple uses -- doing so
249
// would require duplicating the instruction which isn't profitable.
250
if (!V->hasOneUse())
251
return true;
252
253
return false;
254
}
255
256
/// Return true if we can evaluate the specified expression tree as type Ty
257
/// instead of its larger type, and arrive with the same value.
258
/// This is used by code that tries to eliminate truncates.
259
///
260
/// Ty will always be a type smaller than V. We should return true if trunc(V)
261
/// can be computed by computing V in the smaller type. If V is an instruction,
262
/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
263
/// makes sense if x and y can be efficiently truncated.
264
///
265
/// This function works on both vectors and scalars.
266
///
267
static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC,
268
Instruction *CxtI) {
269
if (canAlwaysEvaluateInType(V, Ty))
270
return true;
271
if (canNotEvaluateInType(V, Ty))
272
return false;
273
274
auto *I = cast<Instruction>(V);
275
Type *OrigTy = V->getType();
276
switch (I->getOpcode()) {
277
case Instruction::Add:
278
case Instruction::Sub:
279
case Instruction::Mul:
280
case Instruction::And:
281
case Instruction::Or:
282
case Instruction::Xor:
283
// These operators can all arbitrarily be extended or truncated.
284
return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
285
canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
286
287
case Instruction::UDiv:
288
case Instruction::URem: {
289
// UDiv and URem can be truncated if all the truncated bits are zero.
290
uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
291
uint32_t BitWidth = Ty->getScalarSizeInBits();
292
assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
293
APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
294
// Do not preserve the original context instruction. Simplifying div/rem
295
// based on later context may introduce a trap.
296
if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, I) &&
297
IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, I)) {
298
return canEvaluateTruncated(I->getOperand(0), Ty, IC, I) &&
299
canEvaluateTruncated(I->getOperand(1), Ty, IC, I);
300
}
301
break;
302
}
303
case Instruction::Shl: {
304
// If we are truncating the result of this SHL, and if it's a shift of an
305
// inrange amount, we can always perform a SHL in a smaller type.
306
uint32_t BitWidth = Ty->getScalarSizeInBits();
307
KnownBits AmtKnownBits =
308
llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
309
if (AmtKnownBits.getMaxValue().ult(BitWidth))
310
return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
311
canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
312
break;
313
}
314
case Instruction::LShr: {
315
// If this is a truncate of a logical shr, we can truncate it to a smaller
316
// lshr iff we know that the bits we would otherwise be shifting in are
317
// already zeros.
318
// TODO: It is enough to check that the bits we would be shifting in are
319
// zero - use AmtKnownBits.getMaxValue().
320
uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
321
uint32_t BitWidth = Ty->getScalarSizeInBits();
322
KnownBits AmtKnownBits =
323
llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
324
APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
325
if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
326
IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) {
327
return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
328
canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
329
}
330
break;
331
}
332
case Instruction::AShr: {
333
// If this is a truncate of an arithmetic shr, we can truncate it to a
334
// smaller ashr iff we know that all the bits from the sign bit of the
335
// original type and the sign bit of the truncate type are similar.
336
// TODO: It is enough to check that the bits we would be shifting in are
337
// similar to sign bit of the truncate type.
338
uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
339
uint32_t BitWidth = Ty->getScalarSizeInBits();
340
KnownBits AmtKnownBits =
341
llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
342
unsigned ShiftedBits = OrigBitWidth - BitWidth;
343
if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
344
ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
345
return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
346
canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
347
break;
348
}
349
case Instruction::Trunc:
350
// trunc(trunc(x)) -> trunc(x)
351
return true;
352
case Instruction::ZExt:
353
case Instruction::SExt:
354
// trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
355
// trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
356
return true;
357
case Instruction::Select: {
358
SelectInst *SI = cast<SelectInst>(I);
359
return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
360
canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
361
}
362
case Instruction::PHI: {
363
// We can change a phi if we can change all operands. Note that we never
364
// get into trouble with cyclic PHIs here because we only consider
365
// instructions with a single use.
366
PHINode *PN = cast<PHINode>(I);
367
for (Value *IncValue : PN->incoming_values())
368
if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
369
return false;
370
return true;
371
}
372
case Instruction::FPToUI:
373
case Instruction::FPToSI: {
374
// If the integer type can hold the max FP value, it is safe to cast
375
// directly to that type. Otherwise, we may create poison via overflow
376
// that did not exist in the original code.
377
Type *InputTy = I->getOperand(0)->getType()->getScalarType();
378
const fltSemantics &Semantics = InputTy->getFltSemantics();
379
uint32_t MinBitWidth =
380
APFloatBase::semanticsIntSizeInBits(Semantics,
381
I->getOpcode() == Instruction::FPToSI);
382
return Ty->getScalarSizeInBits() >= MinBitWidth;
383
}
384
case Instruction::ShuffleVector:
385
return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
386
canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
387
default:
388
// TODO: Can handle more cases here.
389
break;
390
}
391
392
return false;
393
}
394
395
/// Given a vector that is bitcast to an integer, optionally logically
396
/// right-shifted, and truncated, convert it to an extractelement.
397
/// Example (big endian):
398
/// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
399
/// --->
400
/// extractelement <4 x i32> %X, 1
401
static Instruction *foldVecTruncToExtElt(TruncInst &Trunc,
402
InstCombinerImpl &IC) {
403
Value *TruncOp = Trunc.getOperand(0);
404
Type *DestType = Trunc.getType();
405
if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
406
return nullptr;
407
408
Value *VecInput = nullptr;
409
ConstantInt *ShiftVal = nullptr;
410
if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
411
m_LShr(m_BitCast(m_Value(VecInput)),
412
m_ConstantInt(ShiftVal)))) ||
413
!isa<VectorType>(VecInput->getType()))
414
return nullptr;
415
416
VectorType *VecType = cast<VectorType>(VecInput->getType());
417
unsigned VecWidth = VecType->getPrimitiveSizeInBits();
418
unsigned DestWidth = DestType->getPrimitiveSizeInBits();
419
unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
420
421
if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
422
return nullptr;
423
424
// If the element type of the vector doesn't match the result type,
425
// bitcast it to a vector type that we can extract from.
426
unsigned NumVecElts = VecWidth / DestWidth;
427
if (VecType->getElementType() != DestType) {
428
VecType = FixedVectorType::get(DestType, NumVecElts);
429
VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
430
}
431
432
unsigned Elt = ShiftAmount / DestWidth;
433
if (IC.getDataLayout().isBigEndian())
434
Elt = NumVecElts - 1 - Elt;
435
436
return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
437
}
438
439
/// Funnel/Rotate left/right may occur in a wider type than necessary because of
440
/// type promotion rules. Try to narrow the inputs and convert to funnel shift.
441
Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) {
442
assert((isa<VectorType>(Trunc.getSrcTy()) ||
443
shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
444
"Don't narrow to an illegal scalar type");
445
446
// Bail out on strange types. It is possible to handle some of these patterns
447
// even with non-power-of-2 sizes, but it is not a likely scenario.
448
Type *DestTy = Trunc.getType();
449
unsigned NarrowWidth = DestTy->getScalarSizeInBits();
450
unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
451
if (!isPowerOf2_32(NarrowWidth))
452
return nullptr;
453
454
// First, find an or'd pair of opposite shifts:
455
// trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1))
456
BinaryOperator *Or0, *Or1;
457
if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
458
return nullptr;
459
460
Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
461
if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
462
!match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
463
Or0->getOpcode() == Or1->getOpcode())
464
return nullptr;
465
466
// Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
467
if (Or0->getOpcode() == BinaryOperator::LShr) {
468
std::swap(Or0, Or1);
469
std::swap(ShVal0, ShVal1);
470
std::swap(ShAmt0, ShAmt1);
471
}
472
assert(Or0->getOpcode() == BinaryOperator::Shl &&
473
Or1->getOpcode() == BinaryOperator::LShr &&
474
"Illegal or(shift,shift) pair");
475
476
// Match the shift amount operands for a funnel/rotate pattern. This always
477
// matches a subtraction on the R operand.
478
auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
479
// The shift amounts may add up to the narrow bit width:
480
// (shl ShVal0, L) | (lshr ShVal1, Width - L)
481
// If this is a funnel shift (different operands are shifted), then the
482
// shift amount can not over-shift (create poison) in the narrow type.
483
unsigned MaxShiftAmountWidth = Log2_32(NarrowWidth);
484
APInt HiBitMask = ~APInt::getLowBitsSet(WideWidth, MaxShiftAmountWidth);
485
if (ShVal0 == ShVal1 || MaskedValueIsZero(L, HiBitMask))
486
if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L)))))
487
return L;
488
489
// The following patterns currently only work for rotation patterns.
490
// TODO: Add more general funnel-shift compatible patterns.
491
if (ShVal0 != ShVal1)
492
return nullptr;
493
494
// The shift amount may be masked with negation:
495
// (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1)))
496
Value *X;
497
unsigned Mask = Width - 1;
498
if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
499
match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
500
return X;
501
502
// Same as above, but the shift amount may be extended after masking:
503
if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
504
match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
505
return X;
506
507
return nullptr;
508
};
509
510
Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth);
511
bool IsFshl = true; // Sub on LSHR.
512
if (!ShAmt) {
513
ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth);
514
IsFshl = false; // Sub on SHL.
515
}
516
if (!ShAmt)
517
return nullptr;
518
519
// The right-shifted value must have high zeros in the wide type (for example
520
// from 'zext', 'and' or 'shift'). High bits of the left-shifted value are
521
// truncated, so those do not matter.
522
APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
523
if (!MaskedValueIsZero(ShVal1, HiBitMask, 0, &Trunc))
524
return nullptr;
525
526
// Adjust the width of ShAmt for narrowed funnel shift operation:
527
// - Zero-extend if ShAmt is narrower than the destination type.
528
// - Truncate if ShAmt is wider, discarding non-significant high-order bits.
529
// This prepares ShAmt for llvm.fshl.i8(trunc(ShVal), trunc(ShVal),
530
// zext/trunc(ShAmt)).
531
Value *NarrowShAmt = Builder.CreateZExtOrTrunc(ShAmt, DestTy);
532
533
Value *X, *Y;
534
X = Y = Builder.CreateTrunc(ShVal0, DestTy);
535
if (ShVal0 != ShVal1)
536
Y = Builder.CreateTrunc(ShVal1, DestTy);
537
Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
538
Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy);
539
return CallInst::Create(F, {X, Y, NarrowShAmt});
540
}
541
542
/// Try to narrow the width of math or bitwise logic instructions by pulling a
543
/// truncate ahead of binary operators.
544
Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) {
545
Type *SrcTy = Trunc.getSrcTy();
546
Type *DestTy = Trunc.getType();
547
unsigned SrcWidth = SrcTy->getScalarSizeInBits();
548
unsigned DestWidth = DestTy->getScalarSizeInBits();
549
550
if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
551
return nullptr;
552
553
BinaryOperator *BinOp;
554
if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
555
return nullptr;
556
557
Value *BinOp0 = BinOp->getOperand(0);
558
Value *BinOp1 = BinOp->getOperand(1);
559
switch (BinOp->getOpcode()) {
560
case Instruction::And:
561
case Instruction::Or:
562
case Instruction::Xor:
563
case Instruction::Add:
564
case Instruction::Sub:
565
case Instruction::Mul: {
566
Constant *C;
567
if (match(BinOp0, m_Constant(C))) {
568
// trunc (binop C, X) --> binop (trunc C', X)
569
Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
570
Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
571
return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
572
}
573
if (match(BinOp1, m_Constant(C))) {
574
// trunc (binop X, C) --> binop (trunc X, C')
575
Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
576
Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
577
return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
578
}
579
Value *X;
580
if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
581
// trunc (binop (ext X), Y) --> binop X, (trunc Y)
582
Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
583
return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
584
}
585
if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
586
// trunc (binop Y, (ext X)) --> binop (trunc Y), X
587
Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
588
return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
589
}
590
break;
591
}
592
case Instruction::LShr:
593
case Instruction::AShr: {
594
// trunc (*shr (trunc A), C) --> trunc(*shr A, C)
595
Value *A;
596
Constant *C;
597
if (match(BinOp0, m_Trunc(m_Value(A))) && match(BinOp1, m_Constant(C))) {
598
unsigned MaxShiftAmt = SrcWidth - DestWidth;
599
// If the shift is small enough, all zero/sign bits created by the shift
600
// are removed by the trunc.
601
if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
602
APInt(SrcWidth, MaxShiftAmt)))) {
603
auto *OldShift = cast<Instruction>(Trunc.getOperand(0));
604
bool IsExact = OldShift->isExact();
605
if (Constant *ShAmt = ConstantFoldIntegerCast(C, A->getType(),
606
/*IsSigned*/ true, DL)) {
607
ShAmt = Constant::mergeUndefsWith(ShAmt, C);
608
Value *Shift =
609
OldShift->getOpcode() == Instruction::AShr
610
? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact)
611
: Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact);
612
return CastInst::CreateTruncOrBitCast(Shift, DestTy);
613
}
614
}
615
}
616
break;
617
}
618
default: break;
619
}
620
621
if (Instruction *NarrowOr = narrowFunnelShift(Trunc))
622
return NarrowOr;
623
624
return nullptr;
625
}
626
627
/// Try to narrow the width of a splat shuffle. This could be generalized to any
628
/// shuffle with a constant operand, but we limit the transform to avoid
629
/// creating a shuffle type that targets may not be able to lower effectively.
630
static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
631
InstCombiner::BuilderTy &Builder) {
632
auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
633
if (Shuf && Shuf->hasOneUse() && match(Shuf->getOperand(1), m_Undef()) &&
634
all_equal(Shuf->getShuffleMask()) &&
635
Shuf->getType() == Shuf->getOperand(0)->getType()) {
636
// trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Poison, SplatMask
637
// trunc (shuf X, Poison, SplatMask) --> shuf (trunc X), Poison, SplatMask
638
Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
639
return new ShuffleVectorInst(NarrowOp, Shuf->getShuffleMask());
640
}
641
642
return nullptr;
643
}
644
645
/// Try to narrow the width of an insert element. This could be generalized for
646
/// any vector constant, but we limit the transform to insertion into undef to
647
/// avoid potential backend problems from unsupported insertion widths. This
648
/// could also be extended to handle the case of inserting a scalar constant
649
/// into a vector variable.
650
static Instruction *shrinkInsertElt(CastInst &Trunc,
651
InstCombiner::BuilderTy &Builder) {
652
Instruction::CastOps Opcode = Trunc.getOpcode();
653
assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
654
"Unexpected instruction for shrinking");
655
656
auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
657
if (!InsElt || !InsElt->hasOneUse())
658
return nullptr;
659
660
Type *DestTy = Trunc.getType();
661
Type *DestScalarTy = DestTy->getScalarType();
662
Value *VecOp = InsElt->getOperand(0);
663
Value *ScalarOp = InsElt->getOperand(1);
664
Value *Index = InsElt->getOperand(2);
665
666
if (match(VecOp, m_Undef())) {
667
// trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index
668
// fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
669
UndefValue *NarrowUndef = UndefValue::get(DestTy);
670
Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
671
return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
672
}
673
674
return nullptr;
675
}
676
677
Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) {
678
if (Instruction *Result = commonCastTransforms(Trunc))
679
return Result;
680
681
Value *Src = Trunc.getOperand(0);
682
Type *DestTy = Trunc.getType(), *SrcTy = Src->getType();
683
unsigned DestWidth = DestTy->getScalarSizeInBits();
684
unsigned SrcWidth = SrcTy->getScalarSizeInBits();
685
686
// Attempt to truncate the entire input expression tree to the destination
687
// type. Only do this if the dest type is a simple type, don't convert the
688
// expression tree to something weird like i93 unless the source is also
689
// strange.
690
if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
691
canEvaluateTruncated(Src, DestTy, *this, &Trunc)) {
692
693
// If this cast is a truncate, evaluting in a different type always
694
// eliminates the cast, so it is always a win.
695
LLVM_DEBUG(
696
dbgs() << "ICE: EvaluateInDifferentType converting expression type"
697
" to avoid cast: "
698
<< Trunc << '\n');
699
Value *Res = EvaluateInDifferentType(Src, DestTy, false);
700
assert(Res->getType() == DestTy);
701
return replaceInstUsesWith(Trunc, Res);
702
}
703
704
// For integer types, check if we can shorten the entire input expression to
705
// DestWidth * 2, which won't allow removing the truncate, but reducing the
706
// width may enable further optimizations, e.g. allowing for larger
707
// vectorization factors.
708
if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) {
709
if (DestWidth * 2 < SrcWidth) {
710
auto *NewDestTy = DestITy->getExtendedType();
711
if (shouldChangeType(SrcTy, NewDestTy) &&
712
canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) {
713
LLVM_DEBUG(
714
dbgs() << "ICE: EvaluateInDifferentType converting expression type"
715
" to reduce the width of operand of"
716
<< Trunc << '\n');
717
Value *Res = EvaluateInDifferentType(Src, NewDestTy, false);
718
return new TruncInst(Res, DestTy);
719
}
720
}
721
}
722
723
// Test if the trunc is the user of a select which is part of a
724
// minimum or maximum operation. If so, don't do any more simplification.
725
// Even simplifying demanded bits can break the canonical form of a
726
// min/max.
727
Value *LHS, *RHS;
728
if (SelectInst *Sel = dyn_cast<SelectInst>(Src))
729
if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN)
730
return nullptr;
731
732
// See if we can simplify any instructions used by the input whose sole
733
// purpose is to compute bits we don't care about.
734
if (SimplifyDemandedInstructionBits(Trunc))
735
return &Trunc;
736
737
if (DestWidth == 1) {
738
Value *Zero = Constant::getNullValue(SrcTy);
739
740
Value *X;
741
const APInt *C1;
742
Constant *C2;
743
if (match(Src, m_OneUse(m_Shr(m_Shl(m_Power2(C1), m_Value(X)),
744
m_ImmConstant(C2))))) {
745
// trunc ((C1 << X) >> C2) to i1 --> X == (C2-cttz(C1)), where C1 is pow2
746
Constant *Log2C1 = ConstantInt::get(SrcTy, C1->exactLogBase2());
747
Constant *CmpC = ConstantExpr::getSub(C2, Log2C1);
748
return new ICmpInst(ICmpInst::ICMP_EQ, X, CmpC);
749
}
750
751
Constant *C;
752
if (match(Src, m_OneUse(m_LShr(m_Value(X), m_ImmConstant(C))))) {
753
// trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
754
Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
755
Value *MaskC = Builder.CreateShl(One, C);
756
Value *And = Builder.CreateAnd(X, MaskC);
757
return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
758
}
759
if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_ImmConstant(C)),
760
m_Deferred(X))))) {
761
// trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
762
Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
763
Value *MaskC = Builder.CreateShl(One, C);
764
Value *And = Builder.CreateAnd(X, Builder.CreateOr(MaskC, One));
765
return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
766
}
767
768
{
769
const APInt *C;
770
if (match(Src, m_Shl(m_APInt(C), m_Value(X))) && (*C)[0] == 1) {
771
// trunc (C << X) to i1 --> X == 0, where C is odd
772
return new ICmpInst(ICmpInst::Predicate::ICMP_EQ, X, Zero);
773
}
774
}
775
776
if (Trunc.hasNoUnsignedWrap() || Trunc.hasNoSignedWrap()) {
777
Value *X, *Y;
778
if (match(Src, m_Xor(m_Value(X), m_Value(Y))))
779
return new ICmpInst(ICmpInst::ICMP_NE, X, Y);
780
}
781
}
782
783
Value *A, *B;
784
Constant *C;
785
if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) {
786
unsigned AWidth = A->getType()->getScalarSizeInBits();
787
unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth);
788
auto *OldSh = cast<Instruction>(Src);
789
bool IsExact = OldSh->isExact();
790
791
// If the shift is small enough, all zero bits created by the shift are
792
// removed by the trunc.
793
if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
794
APInt(SrcWidth, MaxShiftAmt)))) {
795
auto GetNewShAmt = [&](unsigned Width) {
796
Constant *MaxAmt = ConstantInt::get(SrcTy, Width - 1, false);
797
Constant *Cmp =
798
ConstantFoldCompareInstOperands(ICmpInst::ICMP_ULT, C, MaxAmt, DL);
799
Constant *ShAmt = ConstantFoldSelectInstruction(Cmp, C, MaxAmt);
800
return ConstantFoldCastOperand(Instruction::Trunc, ShAmt, A->getType(),
801
DL);
802
};
803
804
// trunc (lshr (sext A), C) --> ashr A, C
805
if (A->getType() == DestTy) {
806
Constant *ShAmt = GetNewShAmt(DestWidth);
807
ShAmt = Constant::mergeUndefsWith(ShAmt, C);
808
return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt)
809
: BinaryOperator::CreateAShr(A, ShAmt);
810
}
811
// The types are mismatched, so create a cast after shifting:
812
// trunc (lshr (sext A), C) --> sext/trunc (ashr A, C)
813
if (Src->hasOneUse()) {
814
Constant *ShAmt = GetNewShAmt(AWidth);
815
Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact);
816
return CastInst::CreateIntegerCast(Shift, DestTy, true);
817
}
818
}
819
// TODO: Mask high bits with 'and'.
820
}
821
822
if (Instruction *I = narrowBinOp(Trunc))
823
return I;
824
825
if (Instruction *I = shrinkSplatShuffle(Trunc, Builder))
826
return I;
827
828
if (Instruction *I = shrinkInsertElt(Trunc, Builder))
829
return I;
830
831
if (Src->hasOneUse() &&
832
(isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) {
833
// Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
834
// dest type is native and cst < dest size.
835
if (match(Src, m_Shl(m_Value(A), m_Constant(C))) &&
836
!match(A, m_Shr(m_Value(), m_Constant()))) {
837
// Skip shifts of shift by constants. It undoes a combine in
838
// FoldShiftByConstant and is the extend in reg pattern.
839
APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth);
840
if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) {
841
Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
842
return BinaryOperator::Create(Instruction::Shl, NewTrunc,
843
ConstantExpr::getTrunc(C, DestTy));
844
}
845
}
846
}
847
848
if (Instruction *I = foldVecTruncToExtElt(Trunc, *this))
849
return I;
850
851
// Whenever an element is extracted from a vector, and then truncated,
852
// canonicalize by converting it to a bitcast followed by an
853
// extractelement.
854
//
855
// Example (little endian):
856
// trunc (extractelement <4 x i64> %X, 0) to i32
857
// --->
858
// extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0
859
Value *VecOp;
860
ConstantInt *Cst;
861
if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) {
862
auto *VecOpTy = cast<VectorType>(VecOp->getType());
863
auto VecElts = VecOpTy->getElementCount();
864
865
// A badly fit destination size would result in an invalid cast.
866
if (SrcWidth % DestWidth == 0) {
867
uint64_t TruncRatio = SrcWidth / DestWidth;
868
uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio;
869
uint64_t VecOpIdx = Cst->getZExtValue();
870
uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1
871
: VecOpIdx * TruncRatio;
872
assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() &&
873
"overflow 32-bits");
874
875
auto *BitCastTo =
876
VectorType::get(DestTy, BitCastNumElts, VecElts.isScalable());
877
Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo);
878
return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx));
879
}
880
}
881
882
// trunc (ctlz_i32(zext(A), B) --> add(ctlz_i16(A, B), C)
883
if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ctlz>(m_ZExt(m_Value(A)),
884
m_Value(B))))) {
885
unsigned AWidth = A->getType()->getScalarSizeInBits();
886
if (AWidth == DestWidth && AWidth > Log2_32(SrcWidth)) {
887
Value *WidthDiff = ConstantInt::get(A->getType(), SrcWidth - AWidth);
888
Value *NarrowCtlz =
889
Builder.CreateIntrinsic(Intrinsic::ctlz, {Trunc.getType()}, {A, B});
890
return BinaryOperator::CreateAdd(NarrowCtlz, WidthDiff);
891
}
892
}
893
894
if (match(Src, m_VScale())) {
895
if (Trunc.getFunction() &&
896
Trunc.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
897
Attribute Attr =
898
Trunc.getFunction()->getFnAttribute(Attribute::VScaleRange);
899
if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
900
if (Log2_32(*MaxVScale) < DestWidth) {
901
Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
902
return replaceInstUsesWith(Trunc, VScale);
903
}
904
}
905
}
906
}
907
908
bool Changed = false;
909
if (!Trunc.hasNoSignedWrap() &&
910
ComputeMaxSignificantBits(Src, /*Depth=*/0, &Trunc) <= DestWidth) {
911
Trunc.setHasNoSignedWrap(true);
912
Changed = true;
913
}
914
if (!Trunc.hasNoUnsignedWrap() &&
915
MaskedValueIsZero(Src, APInt::getBitsSetFrom(SrcWidth, DestWidth),
916
/*Depth=*/0, &Trunc)) {
917
Trunc.setHasNoUnsignedWrap(true);
918
Changed = true;
919
}
920
921
return Changed ? &Trunc : nullptr;
922
}
923
924
Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp,
925
ZExtInst &Zext) {
926
// If we are just checking for a icmp eq of a single bit and zext'ing it
927
// to an integer, then shift the bit to the appropriate place and then
928
// cast to integer to avoid the comparison.
929
930
// FIXME: This set of transforms does not check for extra uses and/or creates
931
// an extra instruction (an optional final cast is not included
932
// in the transform comments). We may also want to favor icmp over
933
// shifts in cases of equal instructions because icmp has better
934
// analysis in general (invert the transform).
935
936
const APInt *Op1CV;
937
if (match(Cmp->getOperand(1), m_APInt(Op1CV))) {
938
939
// zext (x <s 0) to i32 --> x>>u31 true if signbit set.
940
if (Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isZero()) {
941
Value *In = Cmp->getOperand(0);
942
Value *Sh = ConstantInt::get(In->getType(),
943
In->getType()->getScalarSizeInBits() - 1);
944
In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
945
if (In->getType() != Zext.getType())
946
In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/);
947
948
return replaceInstUsesWith(Zext, In);
949
}
950
951
// zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
952
// zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
953
// zext (X != 0) to i32 --> X iff X has only the low bit set.
954
// zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
955
956
if (Op1CV->isZero() && Cmp->isEquality()) {
957
// Exactly 1 possible 1? But not the high-bit because that is
958
// canonicalized to this form.
959
KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext);
960
APInt KnownZeroMask(~Known.Zero);
961
uint32_t ShAmt = KnownZeroMask.logBase2();
962
bool IsExpectShAmt = KnownZeroMask.isPowerOf2() &&
963
(Zext.getType()->getScalarSizeInBits() != ShAmt + 1);
964
if (IsExpectShAmt &&
965
(Cmp->getOperand(0)->getType() == Zext.getType() ||
966
Cmp->getPredicate() == ICmpInst::ICMP_NE || ShAmt == 0)) {
967
Value *In = Cmp->getOperand(0);
968
if (ShAmt) {
969
// Perform a logical shr by shiftamt.
970
// Insert the shift to put the result in the low bit.
971
In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
972
In->getName() + ".lobit");
973
}
974
975
// Toggle the low bit for "X == 0".
976
if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
977
In = Builder.CreateXor(In, ConstantInt::get(In->getType(), 1));
978
979
if (Zext.getType() == In->getType())
980
return replaceInstUsesWith(Zext, In);
981
982
Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false);
983
return replaceInstUsesWith(Zext, IntCast);
984
}
985
}
986
}
987
988
if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) {
989
// Test if a bit is clear/set using a shifted-one mask:
990
// zext (icmp eq (and X, (1 << ShAmt)), 0) --> and (lshr (not X), ShAmt), 1
991
// zext (icmp ne (and X, (1 << ShAmt)), 0) --> and (lshr X, ShAmt), 1
992
Value *X, *ShAmt;
993
if (Cmp->hasOneUse() && match(Cmp->getOperand(1), m_ZeroInt()) &&
994
match(Cmp->getOperand(0),
995
m_OneUse(m_c_And(m_Shl(m_One(), m_Value(ShAmt)), m_Value(X))))) {
996
if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
997
X = Builder.CreateNot(X);
998
Value *Lshr = Builder.CreateLShr(X, ShAmt);
999
Value *And1 = Builder.CreateAnd(Lshr, ConstantInt::get(X->getType(), 1));
1000
return replaceInstUsesWith(Zext, And1);
1001
}
1002
}
1003
1004
return nullptr;
1005
}
1006
1007
/// Determine if the specified value can be computed in the specified wider type
1008
/// and produce the same low bits. If not, return false.
1009
///
1010
/// If this function returns true, it can also return a non-zero number of bits
1011
/// (in BitsToClear) which indicates that the value it computes is correct for
1012
/// the zero extend, but that the additional BitsToClear bits need to be zero'd
1013
/// out. For example, to promote something like:
1014
///
1015
/// %B = trunc i64 %A to i32
1016
/// %C = lshr i32 %B, 8
1017
/// %E = zext i32 %C to i64
1018
///
1019
/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
1020
/// set to 8 to indicate that the promoted value needs to have bits 24-31
1021
/// cleared in addition to bits 32-63. Since an 'and' will be generated to
1022
/// clear the top bits anyway, doing this has no extra cost.
1023
///
1024
/// This function works on both vectors and scalars.
1025
static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
1026
InstCombinerImpl &IC, Instruction *CxtI) {
1027
BitsToClear = 0;
1028
if (canAlwaysEvaluateInType(V, Ty))
1029
return true;
1030
if (canNotEvaluateInType(V, Ty))
1031
return false;
1032
1033
auto *I = cast<Instruction>(V);
1034
unsigned Tmp;
1035
switch (I->getOpcode()) {
1036
case Instruction::ZExt: // zext(zext(x)) -> zext(x).
1037
case Instruction::SExt: // zext(sext(x)) -> sext(x).
1038
case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
1039
return true;
1040
case Instruction::And:
1041
case Instruction::Or:
1042
case Instruction::Xor:
1043
case Instruction::Add:
1044
case Instruction::Sub:
1045
case Instruction::Mul:
1046
if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
1047
!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
1048
return false;
1049
// These can all be promoted if neither operand has 'bits to clear'.
1050
if (BitsToClear == 0 && Tmp == 0)
1051
return true;
1052
1053
// If the operation is an AND/OR/XOR and the bits to clear are zero in the
1054
// other side, BitsToClear is ok.
1055
if (Tmp == 0 && I->isBitwiseLogicOp()) {
1056
// We use MaskedValueIsZero here for generality, but the case we care
1057
// about the most is constant RHS.
1058
unsigned VSize = V->getType()->getScalarSizeInBits();
1059
if (IC.MaskedValueIsZero(I->getOperand(1),
1060
APInt::getHighBitsSet(VSize, BitsToClear),
1061
0, CxtI)) {
1062
// If this is an And instruction and all of the BitsToClear are
1063
// known to be zero we can reset BitsToClear.
1064
if (I->getOpcode() == Instruction::And)
1065
BitsToClear = 0;
1066
return true;
1067
}
1068
}
1069
1070
// Otherwise, we don't know how to analyze this BitsToClear case yet.
1071
return false;
1072
1073
case Instruction::Shl: {
1074
// We can promote shl(x, cst) if we can promote x. Since shl overwrites the
1075
// upper bits we can reduce BitsToClear by the shift amount.
1076
const APInt *Amt;
1077
if (match(I->getOperand(1), m_APInt(Amt))) {
1078
if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1079
return false;
1080
uint64_t ShiftAmt = Amt->getZExtValue();
1081
BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
1082
return true;
1083
}
1084
return false;
1085
}
1086
case Instruction::LShr: {
1087
// We can promote lshr(x, cst) if we can promote x. This requires the
1088
// ultimate 'and' to clear out the high zero bits we're clearing out though.
1089
const APInt *Amt;
1090
if (match(I->getOperand(1), m_APInt(Amt))) {
1091
if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1092
return false;
1093
BitsToClear += Amt->getZExtValue();
1094
if (BitsToClear > V->getType()->getScalarSizeInBits())
1095
BitsToClear = V->getType()->getScalarSizeInBits();
1096
return true;
1097
}
1098
// Cannot promote variable LSHR.
1099
return false;
1100
}
1101
case Instruction::Select:
1102
if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
1103
!canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
1104
// TODO: If important, we could handle the case when the BitsToClear are
1105
// known zero in the disagreeing side.
1106
Tmp != BitsToClear)
1107
return false;
1108
return true;
1109
1110
case Instruction::PHI: {
1111
// We can change a phi if we can change all operands. Note that we never
1112
// get into trouble with cyclic PHIs here because we only consider
1113
// instructions with a single use.
1114
PHINode *PN = cast<PHINode>(I);
1115
if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
1116
return false;
1117
for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
1118
if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
1119
// TODO: If important, we could handle the case when the BitsToClear
1120
// are known zero in the disagreeing input.
1121
Tmp != BitsToClear)
1122
return false;
1123
return true;
1124
}
1125
case Instruction::Call:
1126
// llvm.vscale() can always be executed in larger type, because the
1127
// value is automatically zero-extended.
1128
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1129
if (II->getIntrinsicID() == Intrinsic::vscale)
1130
return true;
1131
return false;
1132
default:
1133
// TODO: Can handle more cases here.
1134
return false;
1135
}
1136
}
1137
1138
Instruction *InstCombinerImpl::visitZExt(ZExtInst &Zext) {
1139
// If this zero extend is only used by a truncate, let the truncate be
1140
// eliminated before we try to optimize this zext.
1141
if (Zext.hasOneUse() && isa<TruncInst>(Zext.user_back()) &&
1142
!isa<Constant>(Zext.getOperand(0)))
1143
return nullptr;
1144
1145
// If one of the common conversion will work, do it.
1146
if (Instruction *Result = commonCastTransforms(Zext))
1147
return Result;
1148
1149
Value *Src = Zext.getOperand(0);
1150
Type *SrcTy = Src->getType(), *DestTy = Zext.getType();
1151
1152
// zext nneg bool x -> 0
1153
if (SrcTy->isIntOrIntVectorTy(1) && Zext.hasNonNeg())
1154
return replaceInstUsesWith(Zext, Constant::getNullValue(Zext.getType()));
1155
1156
// Try to extend the entire expression tree to the wide destination type.
1157
unsigned BitsToClear;
1158
if (shouldChangeType(SrcTy, DestTy) &&
1159
canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &Zext)) {
1160
assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
1161
"Can't clear more bits than in SrcTy");
1162
1163
// Okay, we can transform this! Insert the new expression now.
1164
LLVM_DEBUG(
1165
dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1166
" to avoid zero extend: "
1167
<< Zext << '\n');
1168
Value *Res = EvaluateInDifferentType(Src, DestTy, false);
1169
assert(Res->getType() == DestTy);
1170
1171
// Preserve debug values referring to Src if the zext is its last use.
1172
if (auto *SrcOp = dyn_cast<Instruction>(Src))
1173
if (SrcOp->hasOneUse())
1174
replaceAllDbgUsesWith(*SrcOp, *Res, Zext, DT);
1175
1176
uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits() - BitsToClear;
1177
uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1178
1179
// If the high bits are already filled with zeros, just replace this
1180
// cast with the result.
1181
if (MaskedValueIsZero(Res,
1182
APInt::getHighBitsSet(DestBitSize,
1183
DestBitSize - SrcBitsKept),
1184
0, &Zext))
1185
return replaceInstUsesWith(Zext, Res);
1186
1187
// We need to emit an AND to clear the high bits.
1188
Constant *C = ConstantInt::get(Res->getType(),
1189
APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
1190
return BinaryOperator::CreateAnd(Res, C);
1191
}
1192
1193
// If this is a TRUNC followed by a ZEXT then we are dealing with integral
1194
// types and if the sizes are just right we can convert this into a logical
1195
// 'and' which will be much cheaper than the pair of casts.
1196
if (auto *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
1197
// TODO: Subsume this into EvaluateInDifferentType.
1198
1199
// Get the sizes of the types involved. We know that the intermediate type
1200
// will be smaller than A or C, but don't know the relation between A and C.
1201
Value *A = CSrc->getOperand(0);
1202
unsigned SrcSize = A->getType()->getScalarSizeInBits();
1203
unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
1204
unsigned DstSize = DestTy->getScalarSizeInBits();
1205
// If we're actually extending zero bits, then if
1206
// SrcSize < DstSize: zext(a & mask)
1207
// SrcSize == DstSize: a & mask
1208
// SrcSize > DstSize: trunc(a) & mask
1209
if (SrcSize < DstSize) {
1210
APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1211
Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
1212
Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
1213
return new ZExtInst(And, DestTy);
1214
}
1215
1216
if (SrcSize == DstSize) {
1217
APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1218
return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
1219
AndValue));
1220
}
1221
if (SrcSize > DstSize) {
1222
Value *Trunc = Builder.CreateTrunc(A, DestTy);
1223
APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
1224
return BinaryOperator::CreateAnd(Trunc,
1225
ConstantInt::get(Trunc->getType(),
1226
AndValue));
1227
}
1228
}
1229
1230
if (auto *Cmp = dyn_cast<ICmpInst>(Src))
1231
return transformZExtICmp(Cmp, Zext);
1232
1233
// zext(trunc(X) & C) -> (X & zext(C)).
1234
Constant *C;
1235
Value *X;
1236
if (match(Src, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1237
X->getType() == DestTy)
1238
return BinaryOperator::CreateAnd(X, Builder.CreateZExt(C, DestTy));
1239
1240
// zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1241
Value *And;
1242
if (match(Src, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1243
match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1244
X->getType() == DestTy) {
1245
Value *ZC = Builder.CreateZExt(C, DestTy);
1246
return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1247
}
1248
1249
// If we are truncating, masking, and then zexting back to the original type,
1250
// that's just a mask. This is not handled by canEvaluateZextd if the
1251
// intermediate values have extra uses. This could be generalized further for
1252
// a non-constant mask operand.
1253
// zext (and (trunc X), C) --> and X, (zext C)
1254
if (match(Src, m_And(m_Trunc(m_Value(X)), m_Constant(C))) &&
1255
X->getType() == DestTy) {
1256
Value *ZextC = Builder.CreateZExt(C, DestTy);
1257
return BinaryOperator::CreateAnd(X, ZextC);
1258
}
1259
1260
if (match(Src, m_VScale())) {
1261
if (Zext.getFunction() &&
1262
Zext.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
1263
Attribute Attr =
1264
Zext.getFunction()->getFnAttribute(Attribute::VScaleRange);
1265
if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
1266
unsigned TypeWidth = Src->getType()->getScalarSizeInBits();
1267
if (Log2_32(*MaxVScale) < TypeWidth) {
1268
Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
1269
return replaceInstUsesWith(Zext, VScale);
1270
}
1271
}
1272
}
1273
}
1274
1275
if (!Zext.hasNonNeg()) {
1276
// If this zero extend is only used by a shift, add nneg flag.
1277
if (Zext.hasOneUse() &&
1278
SrcTy->getScalarSizeInBits() >
1279
Log2_64_Ceil(DestTy->getScalarSizeInBits()) &&
1280
match(Zext.user_back(), m_Shift(m_Value(), m_Specific(&Zext)))) {
1281
Zext.setNonNeg();
1282
return &Zext;
1283
}
1284
1285
if (isKnownNonNegative(Src, SQ.getWithInstruction(&Zext))) {
1286
Zext.setNonNeg();
1287
return &Zext;
1288
}
1289
}
1290
1291
return nullptr;
1292
}
1293
1294
/// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
1295
Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *Cmp,
1296
SExtInst &Sext) {
1297
Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
1298
ICmpInst::Predicate Pred = Cmp->getPredicate();
1299
1300
// Don't bother if Op1 isn't of vector or integer type.
1301
if (!Op1->getType()->isIntOrIntVectorTy())
1302
return nullptr;
1303
1304
if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) {
1305
// sext (x <s 0) --> ashr x, 31 (all ones if negative)
1306
Value *Sh = ConstantInt::get(Op0->getType(),
1307
Op0->getType()->getScalarSizeInBits() - 1);
1308
Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1309
if (In->getType() != Sext.getType())
1310
In = Builder.CreateIntCast(In, Sext.getType(), true /*SExt*/);
1311
1312
return replaceInstUsesWith(Sext, In);
1313
}
1314
1315
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1316
// If we know that only one bit of the LHS of the icmp can be set and we
1317
// have an equality comparison with zero or a power of 2, we can transform
1318
// the icmp and sext into bitwise/integer operations.
1319
if (Cmp->hasOneUse() &&
1320
Cmp->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1321
KnownBits Known = computeKnownBits(Op0, 0, &Sext);
1322
1323
APInt KnownZeroMask(~Known.Zero);
1324
if (KnownZeroMask.isPowerOf2()) {
1325
Value *In = Cmp->getOperand(0);
1326
1327
// If the icmp tests for a known zero bit we can constant fold it.
1328
if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1329
Value *V = Pred == ICmpInst::ICMP_NE ?
1330
ConstantInt::getAllOnesValue(Sext.getType()) :
1331
ConstantInt::getNullValue(Sext.getType());
1332
return replaceInstUsesWith(Sext, V);
1333
}
1334
1335
if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1336
// sext ((x & 2^n) == 0) -> (x >> n) - 1
1337
// sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1338
unsigned ShiftAmt = KnownZeroMask.countr_zero();
1339
// Perform a right shift to place the desired bit in the LSB.
1340
if (ShiftAmt)
1341
In = Builder.CreateLShr(In,
1342
ConstantInt::get(In->getType(), ShiftAmt));
1343
1344
// At this point "In" is either 1 or 0. Subtract 1 to turn
1345
// {1, 0} -> {0, -1}.
1346
In = Builder.CreateAdd(In,
1347
ConstantInt::getAllOnesValue(In->getType()),
1348
"sext");
1349
} else {
1350
// sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1
1351
// sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1352
unsigned ShiftAmt = KnownZeroMask.countl_zero();
1353
// Perform a left shift to place the desired bit in the MSB.
1354
if (ShiftAmt)
1355
In = Builder.CreateShl(In,
1356
ConstantInt::get(In->getType(), ShiftAmt));
1357
1358
// Distribute the bit over the whole bit width.
1359
In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1360
KnownZeroMask.getBitWidth() - 1), "sext");
1361
}
1362
1363
if (Sext.getType() == In->getType())
1364
return replaceInstUsesWith(Sext, In);
1365
return CastInst::CreateIntegerCast(In, Sext.getType(), true/*SExt*/);
1366
}
1367
}
1368
}
1369
1370
return nullptr;
1371
}
1372
1373
/// Return true if we can take the specified value and return it as type Ty
1374
/// without inserting any new casts and without changing the value of the common
1375
/// low bits. This is used by code that tries to promote integer operations to
1376
/// a wider types will allow us to eliminate the extension.
1377
///
1378
/// This function works on both vectors and scalars.
1379
///
1380
static bool canEvaluateSExtd(Value *V, Type *Ty) {
1381
assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1382
"Can't sign extend type to a smaller type");
1383
if (canAlwaysEvaluateInType(V, Ty))
1384
return true;
1385
if (canNotEvaluateInType(V, Ty))
1386
return false;
1387
1388
auto *I = cast<Instruction>(V);
1389
switch (I->getOpcode()) {
1390
case Instruction::SExt: // sext(sext(x)) -> sext(x)
1391
case Instruction::ZExt: // sext(zext(x)) -> zext(x)
1392
case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1393
return true;
1394
case Instruction::And:
1395
case Instruction::Or:
1396
case Instruction::Xor:
1397
case Instruction::Add:
1398
case Instruction::Sub:
1399
case Instruction::Mul:
1400
// These operators can all arbitrarily be extended if their inputs can.
1401
return canEvaluateSExtd(I->getOperand(0), Ty) &&
1402
canEvaluateSExtd(I->getOperand(1), Ty);
1403
1404
//case Instruction::Shl: TODO
1405
//case Instruction::LShr: TODO
1406
1407
case Instruction::Select:
1408
return canEvaluateSExtd(I->getOperand(1), Ty) &&
1409
canEvaluateSExtd(I->getOperand(2), Ty);
1410
1411
case Instruction::PHI: {
1412
// We can change a phi if we can change all operands. Note that we never
1413
// get into trouble with cyclic PHIs here because we only consider
1414
// instructions with a single use.
1415
PHINode *PN = cast<PHINode>(I);
1416
for (Value *IncValue : PN->incoming_values())
1417
if (!canEvaluateSExtd(IncValue, Ty)) return false;
1418
return true;
1419
}
1420
default:
1421
// TODO: Can handle more cases here.
1422
break;
1423
}
1424
1425
return false;
1426
}
1427
1428
Instruction *InstCombinerImpl::visitSExt(SExtInst &Sext) {
1429
// If this sign extend is only used by a truncate, let the truncate be
1430
// eliminated before we try to optimize this sext.
1431
if (Sext.hasOneUse() && isa<TruncInst>(Sext.user_back()))
1432
return nullptr;
1433
1434
if (Instruction *I = commonCastTransforms(Sext))
1435
return I;
1436
1437
Value *Src = Sext.getOperand(0);
1438
Type *SrcTy = Src->getType(), *DestTy = Sext.getType();
1439
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1440
unsigned DestBitSize = DestTy->getScalarSizeInBits();
1441
1442
// If the value being extended is zero or positive, use a zext instead.
1443
if (isKnownNonNegative(Src, SQ.getWithInstruction(&Sext))) {
1444
auto CI = CastInst::Create(Instruction::ZExt, Src, DestTy);
1445
CI->setNonNeg(true);
1446
return CI;
1447
}
1448
1449
// Try to extend the entire expression tree to the wide destination type.
1450
if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) {
1451
// Okay, we can transform this! Insert the new expression now.
1452
LLVM_DEBUG(
1453
dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1454
" to avoid sign extend: "
1455
<< Sext << '\n');
1456
Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1457
assert(Res->getType() == DestTy);
1458
1459
// If the high bits are already filled with sign bit, just replace this
1460
// cast with the result.
1461
if (ComputeNumSignBits(Res, 0, &Sext) > DestBitSize - SrcBitSize)
1462
return replaceInstUsesWith(Sext, Res);
1463
1464
// We need to emit a shl + ashr to do the sign extend.
1465
Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1466
return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1467
ShAmt);
1468
}
1469
1470
Value *X;
1471
if (match(Src, m_Trunc(m_Value(X)))) {
1472
// If the input has more sign bits than bits truncated, then convert
1473
// directly to final type.
1474
unsigned XBitSize = X->getType()->getScalarSizeInBits();
1475
if (ComputeNumSignBits(X, 0, &Sext) > XBitSize - SrcBitSize)
1476
return CastInst::CreateIntegerCast(X, DestTy, /* isSigned */ true);
1477
1478
// If input is a trunc from the destination type, then convert into shifts.
1479
if (Src->hasOneUse() && X->getType() == DestTy) {
1480
// sext (trunc X) --> ashr (shl X, C), C
1481
Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1482
return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1483
}
1484
1485
// If we are replacing shifted-in high zero bits with sign bits, convert
1486
// the logic shift to arithmetic shift and eliminate the cast to
1487
// intermediate type:
1488
// sext (trunc (lshr Y, C)) --> sext/trunc (ashr Y, C)
1489
Value *Y;
1490
if (Src->hasOneUse() &&
1491
match(X, m_LShr(m_Value(Y),
1492
m_SpecificIntAllowPoison(XBitSize - SrcBitSize)))) {
1493
Value *Ashr = Builder.CreateAShr(Y, XBitSize - SrcBitSize);
1494
return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true);
1495
}
1496
}
1497
1498
if (auto *Cmp = dyn_cast<ICmpInst>(Src))
1499
return transformSExtICmp(Cmp, Sext);
1500
1501
// If the input is a shl/ashr pair of a same constant, then this is a sign
1502
// extension from a smaller value. If we could trust arbitrary bitwidth
1503
// integers, we could turn this into a truncate to the smaller bit and then
1504
// use a sext for the whole extension. Since we don't, look deeper and check
1505
// for a truncate. If the source and dest are the same type, eliminate the
1506
// trunc and extend and just do shifts. For example, turn:
1507
// %a = trunc i32 %i to i8
1508
// %b = shl i8 %a, C
1509
// %c = ashr i8 %b, C
1510
// %d = sext i8 %c to i32
1511
// into:
1512
// %a = shl i32 %i, 32-(8-C)
1513
// %d = ashr i32 %a, 32-(8-C)
1514
Value *A = nullptr;
1515
// TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1516
Constant *BA = nullptr, *CA = nullptr;
1517
if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)),
1518
m_ImmConstant(CA))) &&
1519
BA->isElementWiseEqual(CA) && A->getType() == DestTy) {
1520
Constant *WideCurrShAmt =
1521
ConstantFoldCastOperand(Instruction::SExt, CA, DestTy, DL);
1522
assert(WideCurrShAmt && "Constant folding of ImmConstant cannot fail");
1523
Constant *NumLowbitsLeft = ConstantExpr::getSub(
1524
ConstantInt::get(DestTy, SrcTy->getScalarSizeInBits()), WideCurrShAmt);
1525
Constant *NewShAmt = ConstantExpr::getSub(
1526
ConstantInt::get(DestTy, DestTy->getScalarSizeInBits()),
1527
NumLowbitsLeft);
1528
NewShAmt =
1529
Constant::mergeUndefsWith(Constant::mergeUndefsWith(NewShAmt, BA), CA);
1530
A = Builder.CreateShl(A, NewShAmt, Sext.getName());
1531
return BinaryOperator::CreateAShr(A, NewShAmt);
1532
}
1533
1534
// Splatting a bit of constant-index across a value:
1535
// sext (ashr (trunc iN X to iM), M-1) to iN --> ashr (shl X, N-M), N-1
1536
// If the dest type is different, use a cast (adjust use check).
1537
if (match(Src, m_OneUse(m_AShr(m_Trunc(m_Value(X)),
1538
m_SpecificInt(SrcBitSize - 1))))) {
1539
Type *XTy = X->getType();
1540
unsigned XBitSize = XTy->getScalarSizeInBits();
1541
Constant *ShlAmtC = ConstantInt::get(XTy, XBitSize - SrcBitSize);
1542
Constant *AshrAmtC = ConstantInt::get(XTy, XBitSize - 1);
1543
if (XTy == DestTy)
1544
return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShlAmtC),
1545
AshrAmtC);
1546
if (cast<BinaryOperator>(Src)->getOperand(0)->hasOneUse()) {
1547
Value *Ashr = Builder.CreateAShr(Builder.CreateShl(X, ShlAmtC), AshrAmtC);
1548
return CastInst::CreateIntegerCast(Ashr, DestTy, /* isSigned */ true);
1549
}
1550
}
1551
1552
if (match(Src, m_VScale())) {
1553
if (Sext.getFunction() &&
1554
Sext.getFunction()->hasFnAttribute(Attribute::VScaleRange)) {
1555
Attribute Attr =
1556
Sext.getFunction()->getFnAttribute(Attribute::VScaleRange);
1557
if (std::optional<unsigned> MaxVScale = Attr.getVScaleRangeMax()) {
1558
if (Log2_32(*MaxVScale) < (SrcBitSize - 1)) {
1559
Value *VScale = Builder.CreateVScale(ConstantInt::get(DestTy, 1));
1560
return replaceInstUsesWith(Sext, VScale);
1561
}
1562
}
1563
}
1564
}
1565
1566
return nullptr;
1567
}
1568
1569
/// Return a Constant* for the specified floating-point constant if it fits
1570
/// in the specified FP type without changing its value.
1571
static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1572
bool losesInfo;
1573
APFloat F = CFP->getValueAPF();
1574
(void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1575
return !losesInfo;
1576
}
1577
1578
static Type *shrinkFPConstant(ConstantFP *CFP, bool PreferBFloat) {
1579
if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
1580
return nullptr; // No constant folding of this.
1581
// See if the value can be truncated to bfloat and then reextended.
1582
if (PreferBFloat && fitsInFPType(CFP, APFloat::BFloat()))
1583
return Type::getBFloatTy(CFP->getContext());
1584
// See if the value can be truncated to half and then reextended.
1585
if (!PreferBFloat && fitsInFPType(CFP, APFloat::IEEEhalf()))
1586
return Type::getHalfTy(CFP->getContext());
1587
// See if the value can be truncated to float and then reextended.
1588
if (fitsInFPType(CFP, APFloat::IEEEsingle()))
1589
return Type::getFloatTy(CFP->getContext());
1590
if (CFP->getType()->isDoubleTy())
1591
return nullptr; // Won't shrink.
1592
if (fitsInFPType(CFP, APFloat::IEEEdouble()))
1593
return Type::getDoubleTy(CFP->getContext());
1594
// Don't try to shrink to various long double types.
1595
return nullptr;
1596
}
1597
1598
// Determine if this is a vector of ConstantFPs and if so, return the minimal
1599
// type we can safely truncate all elements to.
1600
static Type *shrinkFPConstantVector(Value *V, bool PreferBFloat) {
1601
auto *CV = dyn_cast<Constant>(V);
1602
auto *CVVTy = dyn_cast<FixedVectorType>(V->getType());
1603
if (!CV || !CVVTy)
1604
return nullptr;
1605
1606
Type *MinType = nullptr;
1607
1608
unsigned NumElts = CVVTy->getNumElements();
1609
1610
// For fixed-width vectors we find the minimal type by looking
1611
// through the constant values of the vector.
1612
for (unsigned i = 0; i != NumElts; ++i) {
1613
if (isa<UndefValue>(CV->getAggregateElement(i)))
1614
continue;
1615
1616
auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
1617
if (!CFP)
1618
return nullptr;
1619
1620
Type *T = shrinkFPConstant(CFP, PreferBFloat);
1621
if (!T)
1622
return nullptr;
1623
1624
// If we haven't found a type yet or this type has a larger mantissa than
1625
// our previous type, this is our new minimal type.
1626
if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
1627
MinType = T;
1628
}
1629
1630
// Make a vector type from the minimal type.
1631
return MinType ? FixedVectorType::get(MinType, NumElts) : nullptr;
1632
}
1633
1634
/// Find the minimum FP type we can safely truncate to.
1635
static Type *getMinimumFPType(Value *V, bool PreferBFloat) {
1636
if (auto *FPExt = dyn_cast<FPExtInst>(V))
1637
return FPExt->getOperand(0)->getType();
1638
1639
// If this value is a constant, return the constant in the smallest FP type
1640
// that can accurately represent it. This allows us to turn
1641
// (float)((double)X+2.0) into x+2.0f.
1642
if (auto *CFP = dyn_cast<ConstantFP>(V))
1643
if (Type *T = shrinkFPConstant(CFP, PreferBFloat))
1644
return T;
1645
1646
// We can only correctly find a minimum type for a scalable vector when it is
1647
// a splat. For splats of constant values the fpext is wrapped up as a
1648
// ConstantExpr.
1649
if (auto *FPCExt = dyn_cast<ConstantExpr>(V))
1650
if (FPCExt->getOpcode() == Instruction::FPExt)
1651
return FPCExt->getOperand(0)->getType();
1652
1653
// Try to shrink a vector of FP constants. This returns nullptr on scalable
1654
// vectors
1655
if (Type *T = shrinkFPConstantVector(V, PreferBFloat))
1656
return T;
1657
1658
return V->getType();
1659
}
1660
1661
/// Return true if the cast from integer to FP can be proven to be exact for all
1662
/// possible inputs (the conversion does not lose any precision).
1663
static bool isKnownExactCastIntToFP(CastInst &I, InstCombinerImpl &IC) {
1664
CastInst::CastOps Opcode = I.getOpcode();
1665
assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) &&
1666
"Unexpected cast");
1667
Value *Src = I.getOperand(0);
1668
Type *SrcTy = Src->getType();
1669
Type *FPTy = I.getType();
1670
bool IsSigned = Opcode == Instruction::SIToFP;
1671
int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned;
1672
1673
// Easy case - if the source integer type has less bits than the FP mantissa,
1674
// then the cast must be exact.
1675
int DestNumSigBits = FPTy->getFPMantissaWidth();
1676
if (SrcSize <= DestNumSigBits)
1677
return true;
1678
1679
// Cast from FP to integer and back to FP is independent of the intermediate
1680
// integer width because of poison on overflow.
1681
Value *F;
1682
if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) {
1683
// If this is uitofp (fptosi F), the source needs an extra bit to avoid
1684
// potential rounding of negative FP input values.
1685
int SrcNumSigBits = F->getType()->getFPMantissaWidth();
1686
if (!IsSigned && match(Src, m_FPToSI(m_Value())))
1687
SrcNumSigBits++;
1688
1689
// [su]itofp (fpto[su]i F) --> exact if the source type has less or equal
1690
// significant bits than the destination (and make sure neither type is
1691
// weird -- ppc_fp128).
1692
if (SrcNumSigBits > 0 && DestNumSigBits > 0 &&
1693
SrcNumSigBits <= DestNumSigBits)
1694
return true;
1695
}
1696
1697
// TODO:
1698
// Try harder to find if the source integer type has less significant bits.
1699
// For example, compute number of sign bits.
1700
KnownBits SrcKnown = IC.computeKnownBits(Src, 0, &I);
1701
int SigBits = (int)SrcTy->getScalarSizeInBits() -
1702
SrcKnown.countMinLeadingZeros() -
1703
SrcKnown.countMinTrailingZeros();
1704
if (SigBits <= DestNumSigBits)
1705
return true;
1706
1707
return false;
1708
}
1709
1710
Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) {
1711
if (Instruction *I = commonCastTransforms(FPT))
1712
return I;
1713
1714
// If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1715
// simplify this expression to avoid one or more of the trunc/extend
1716
// operations if we can do so without changing the numerical results.
1717
//
1718
// The exact manner in which the widths of the operands interact to limit
1719
// what we can and cannot do safely varies from operation to operation, and
1720
// is explained below in the various case statements.
1721
Type *Ty = FPT.getType();
1722
auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0));
1723
if (BO && BO->hasOneUse()) {
1724
Type *LHSMinType =
1725
getMinimumFPType(BO->getOperand(0), /*PreferBFloat=*/Ty->isBFloatTy());
1726
Type *RHSMinType =
1727
getMinimumFPType(BO->getOperand(1), /*PreferBFloat=*/Ty->isBFloatTy());
1728
unsigned OpWidth = BO->getType()->getFPMantissaWidth();
1729
unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
1730
unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
1731
unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1732
unsigned DstWidth = Ty->getFPMantissaWidth();
1733
switch (BO->getOpcode()) {
1734
default: break;
1735
case Instruction::FAdd:
1736
case Instruction::FSub:
1737
// For addition and subtraction, the infinitely precise result can
1738
// essentially be arbitrarily wide; proving that double rounding
1739
// will not occur because the result of OpI is exact (as we will for
1740
// FMul, for example) is hopeless. However, we *can* nonetheless
1741
// frequently know that double rounding cannot occur (or that it is
1742
// innocuous) by taking advantage of the specific structure of
1743
// infinitely-precise results that admit double rounding.
1744
//
1745
// Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1746
// to represent both sources, we can guarantee that the double
1747
// rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1748
// "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1749
// for proof of this fact).
1750
//
1751
// Note: Figueroa does not consider the case where DstFormat !=
1752
// SrcFormat. It's possible (likely even!) that this analysis
1753
// could be tightened for those cases, but they are rare (the main
1754
// case of interest here is (float)((double)float + float)).
1755
if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1756
Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1757
Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1758
Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS);
1759
RI->copyFastMathFlags(BO);
1760
return RI;
1761
}
1762
break;
1763
case Instruction::FMul:
1764
// For multiplication, the infinitely precise result has at most
1765
// LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1766
// that such a value can be exactly represented, then no double
1767
// rounding can possibly occur; we can safely perform the operation
1768
// in the destination format if it can represent both sources.
1769
if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1770
Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1771
Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1772
return BinaryOperator::CreateFMulFMF(LHS, RHS, BO);
1773
}
1774
break;
1775
case Instruction::FDiv:
1776
// For division, we use again use the bound from Figueroa's
1777
// dissertation. I am entirely certain that this bound can be
1778
// tightened in the unbalanced operand case by an analysis based on
1779
// the diophantine rational approximation bound, but the well-known
1780
// condition used here is a good conservative first pass.
1781
// TODO: Tighten bound via rigorous analysis of the unbalanced case.
1782
if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1783
Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1784
Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1785
return BinaryOperator::CreateFDivFMF(LHS, RHS, BO);
1786
}
1787
break;
1788
case Instruction::FRem: {
1789
// Remainder is straightforward. Remainder is always exact, so the
1790
// type of OpI doesn't enter into things at all. We simply evaluate
1791
// in whichever source type is larger, then convert to the
1792
// destination type.
1793
if (SrcWidth == OpWidth)
1794
break;
1795
Value *LHS, *RHS;
1796
if (LHSWidth == SrcWidth) {
1797
LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType);
1798
RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType);
1799
} else {
1800
LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType);
1801
RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType);
1802
}
1803
1804
Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO);
1805
return CastInst::CreateFPCast(ExactResult, Ty);
1806
}
1807
}
1808
}
1809
1810
// (fptrunc (fneg x)) -> (fneg (fptrunc x))
1811
Value *X;
1812
Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0));
1813
if (Op && Op->hasOneUse()) {
1814
// FIXME: The FMF should propagate from the fptrunc, not the source op.
1815
IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1816
if (isa<FPMathOperator>(Op))
1817
Builder.setFastMathFlags(Op->getFastMathFlags());
1818
1819
if (match(Op, m_FNeg(m_Value(X)))) {
1820
Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty);
1821
1822
return UnaryOperator::CreateFNegFMF(InnerTrunc, Op);
1823
}
1824
1825
// If we are truncating a select that has an extended operand, we can
1826
// narrow the other operand and do the select as a narrow op.
1827
Value *Cond, *X, *Y;
1828
if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) &&
1829
X->getType() == Ty) {
1830
// fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y)
1831
Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1832
Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op);
1833
return replaceInstUsesWith(FPT, Sel);
1834
}
1835
if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) &&
1836
X->getType() == Ty) {
1837
// fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X
1838
Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1839
Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op);
1840
return replaceInstUsesWith(FPT, Sel);
1841
}
1842
}
1843
1844
if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
1845
switch (II->getIntrinsicID()) {
1846
default: break;
1847
case Intrinsic::ceil:
1848
case Intrinsic::fabs:
1849
case Intrinsic::floor:
1850
case Intrinsic::nearbyint:
1851
case Intrinsic::rint:
1852
case Intrinsic::round:
1853
case Intrinsic::roundeven:
1854
case Intrinsic::trunc: {
1855
Value *Src = II->getArgOperand(0);
1856
if (!Src->hasOneUse())
1857
break;
1858
1859
// Except for fabs, this transformation requires the input of the unary FP
1860
// operation to be itself an fpext from the type to which we're
1861
// truncating.
1862
if (II->getIntrinsicID() != Intrinsic::fabs) {
1863
FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1864
if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
1865
break;
1866
}
1867
1868
// Do unary FP operation on smaller type.
1869
// (fptrunc (fabs x)) -> (fabs (fptrunc x))
1870
Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
1871
Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
1872
II->getIntrinsicID(), Ty);
1873
SmallVector<OperandBundleDef, 1> OpBundles;
1874
II->getOperandBundlesAsDefs(OpBundles);
1875
CallInst *NewCI =
1876
CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName());
1877
NewCI->copyFastMathFlags(II);
1878
return NewCI;
1879
}
1880
}
1881
}
1882
1883
if (Instruction *I = shrinkInsertElt(FPT, Builder))
1884
return I;
1885
1886
Value *Src = FPT.getOperand(0);
1887
if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1888
auto *FPCast = cast<CastInst>(Src);
1889
if (isKnownExactCastIntToFP(*FPCast, *this))
1890
return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1891
}
1892
1893
return nullptr;
1894
}
1895
1896
Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) {
1897
// If the source operand is a cast from integer to FP and known exact, then
1898
// cast the integer operand directly to the destination type.
1899
Type *Ty = FPExt.getType();
1900
Value *Src = FPExt.getOperand(0);
1901
if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1902
auto *FPCast = cast<CastInst>(Src);
1903
if (isKnownExactCastIntToFP(*FPCast, *this))
1904
return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1905
}
1906
1907
return commonCastTransforms(FPExt);
1908
}
1909
1910
/// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1911
/// This is safe if the intermediate type has enough bits in its mantissa to
1912
/// accurately represent all values of X. For example, this won't work with
1913
/// i64 -> float -> i64.
1914
Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) {
1915
if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1916
return nullptr;
1917
1918
auto *OpI = cast<CastInst>(FI.getOperand(0));
1919
Value *X = OpI->getOperand(0);
1920
Type *XType = X->getType();
1921
Type *DestType = FI.getType();
1922
bool IsOutputSigned = isa<FPToSIInst>(FI);
1923
1924
// Since we can assume the conversion won't overflow, our decision as to
1925
// whether the input will fit in the float should depend on the minimum
1926
// of the input range and output range.
1927
1928
// This means this is also safe for a signed input and unsigned output, since
1929
// a negative input would lead to undefined behavior.
1930
if (!isKnownExactCastIntToFP(*OpI, *this)) {
1931
// The first cast may not round exactly based on the source integer width
1932
// and FP width, but the overflow UB rules can still allow this to fold.
1933
// If the destination type is narrow, that means the intermediate FP value
1934
// must be large enough to hold the source value exactly.
1935
// For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior.
1936
int OutputSize = (int)DestType->getScalarSizeInBits();
1937
if (OutputSize > OpI->getType()->getFPMantissaWidth())
1938
return nullptr;
1939
}
1940
1941
if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) {
1942
bool IsInputSigned = isa<SIToFPInst>(OpI);
1943
if (IsInputSigned && IsOutputSigned)
1944
return new SExtInst(X, DestType);
1945
return new ZExtInst(X, DestType);
1946
}
1947
if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits())
1948
return new TruncInst(X, DestType);
1949
1950
assert(XType == DestType && "Unexpected types for int to FP to int casts");
1951
return replaceInstUsesWith(FI, X);
1952
}
1953
1954
static Instruction *foldFPtoI(Instruction &FI, InstCombiner &IC) {
1955
// fpto{u/s}i non-norm --> 0
1956
FPClassTest Mask =
1957
FI.getOpcode() == Instruction::FPToUI ? fcPosNormal : fcNormal;
1958
KnownFPClass FPClass =
1959
computeKnownFPClass(FI.getOperand(0), Mask, /*Depth=*/0,
1960
IC.getSimplifyQuery().getWithInstruction(&FI));
1961
if (FPClass.isKnownNever(Mask))
1962
return IC.replaceInstUsesWith(FI, ConstantInt::getNullValue(FI.getType()));
1963
1964
return nullptr;
1965
}
1966
1967
Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) {
1968
if (Instruction *I = foldItoFPtoI(FI))
1969
return I;
1970
1971
if (Instruction *I = foldFPtoI(FI, *this))
1972
return I;
1973
1974
return commonCastTransforms(FI);
1975
}
1976
1977
Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) {
1978
if (Instruction *I = foldItoFPtoI(FI))
1979
return I;
1980
1981
if (Instruction *I = foldFPtoI(FI, *this))
1982
return I;
1983
1984
return commonCastTransforms(FI);
1985
}
1986
1987
Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) {
1988
if (Instruction *R = commonCastTransforms(CI))
1989
return R;
1990
if (!CI.hasNonNeg() && isKnownNonNegative(CI.getOperand(0), SQ)) {
1991
CI.setNonNeg();
1992
return &CI;
1993
}
1994
return nullptr;
1995
}
1996
1997
Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) {
1998
if (Instruction *R = commonCastTransforms(CI))
1999
return R;
2000
if (isKnownNonNegative(CI.getOperand(0), SQ)) {
2001
auto *UI =
2002
CastInst::Create(Instruction::UIToFP, CI.getOperand(0), CI.getType());
2003
UI->setNonNeg(true);
2004
return UI;
2005
}
2006
return nullptr;
2007
}
2008
2009
Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) {
2010
// If the source integer type is not the intptr_t type for this target, do a
2011
// trunc or zext to the intptr_t type, then inttoptr of it. This allows the
2012
// cast to be exposed to other transforms.
2013
unsigned AS = CI.getAddressSpace();
2014
if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
2015
DL.getPointerSizeInBits(AS)) {
2016
Type *Ty = CI.getOperand(0)->getType()->getWithNewType(
2017
DL.getIntPtrType(CI.getContext(), AS));
2018
Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
2019
return new IntToPtrInst(P, CI.getType());
2020
}
2021
2022
if (Instruction *I = commonCastTransforms(CI))
2023
return I;
2024
2025
return nullptr;
2026
}
2027
2028
Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) {
2029
// If the destination integer type is not the intptr_t type for this target,
2030
// do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast
2031
// to be exposed to other transforms.
2032
Value *SrcOp = CI.getPointerOperand();
2033
Type *SrcTy = SrcOp->getType();
2034
Type *Ty = CI.getType();
2035
unsigned AS = CI.getPointerAddressSpace();
2036
unsigned TySize = Ty->getScalarSizeInBits();
2037
unsigned PtrSize = DL.getPointerSizeInBits(AS);
2038
if (TySize != PtrSize) {
2039
Type *IntPtrTy =
2040
SrcTy->getWithNewType(DL.getIntPtrType(CI.getContext(), AS));
2041
Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy);
2042
return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
2043
}
2044
2045
// (ptrtoint (ptrmask P, M))
2046
// -> (and (ptrtoint P), M)
2047
// This is generally beneficial as `and` is better supported than `ptrmask`.
2048
Value *Ptr, *Mask;
2049
if (match(SrcOp, m_OneUse(m_Intrinsic<Intrinsic::ptrmask>(m_Value(Ptr),
2050
m_Value(Mask)))) &&
2051
Mask->getType() == Ty)
2052
return BinaryOperator::CreateAnd(Builder.CreatePtrToInt(Ptr, Ty), Mask);
2053
2054
if (auto *GEP = dyn_cast<GEPOperator>(SrcOp)) {
2055
// Fold ptrtoint(gep null, x) to multiply + constant if the GEP has one use.
2056
// While this can increase the number of instructions it doesn't actually
2057
// increase the overall complexity since the arithmetic is just part of
2058
// the GEP otherwise.
2059
if (GEP->hasOneUse() &&
2060
isa<ConstantPointerNull>(GEP->getPointerOperand())) {
2061
return replaceInstUsesWith(CI,
2062
Builder.CreateIntCast(EmitGEPOffset(GEP), Ty,
2063
/*isSigned=*/false));
2064
}
2065
2066
// (ptrtoint (gep (inttoptr Base), ...)) -> Base + Offset
2067
Value *Base;
2068
if (GEP->hasOneUse() &&
2069
match(GEP->getPointerOperand(), m_OneUse(m_IntToPtr(m_Value(Base)))) &&
2070
Base->getType() == Ty) {
2071
Value *Offset = EmitGEPOffset(GEP);
2072
auto *NewOp = BinaryOperator::CreateAdd(Base, Offset);
2073
if (GEP->hasNoUnsignedWrap() ||
2074
(GEP->hasNoUnsignedSignedWrap() &&
2075
isKnownNonNegative(Offset, SQ.getWithInstruction(&CI))))
2076
NewOp->setHasNoUnsignedWrap(true);
2077
return NewOp;
2078
}
2079
}
2080
2081
Value *Vec, *Scalar, *Index;
2082
if (match(SrcOp, m_OneUse(m_InsertElt(m_IntToPtr(m_Value(Vec)),
2083
m_Value(Scalar), m_Value(Index)))) &&
2084
Vec->getType() == Ty) {
2085
assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type");
2086
// Convert the scalar to int followed by insert to eliminate one cast:
2087
// p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index
2088
Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType());
2089
return InsertElementInst::Create(Vec, NewCast, Index);
2090
}
2091
2092
return commonCastTransforms(CI);
2093
}
2094
2095
/// This input value (which is known to have vector type) is being zero extended
2096
/// or truncated to the specified vector type. Since the zext/trunc is done
2097
/// using an integer type, we have a (bitcast(cast(bitcast))) pattern,
2098
/// endianness will impact which end of the vector that is extended or
2099
/// truncated.
2100
///
2101
/// A vector is always stored with index 0 at the lowest address, which
2102
/// corresponds to the most significant bits for a big endian stored integer and
2103
/// the least significant bits for little endian. A trunc/zext of an integer
2104
/// impacts the big end of the integer. Thus, we need to add/remove elements at
2105
/// the front of the vector for big endian targets, and the back of the vector
2106
/// for little endian targets.
2107
///
2108
/// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
2109
///
2110
/// The source and destination vector types may have different element types.
2111
static Instruction *
2112
optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy,
2113
InstCombinerImpl &IC) {
2114
// We can only do this optimization if the output is a multiple of the input
2115
// element size, or the input is a multiple of the output element size.
2116
// Convert the input type to have the same element type as the output.
2117
VectorType *SrcTy = cast<VectorType>(InVal->getType());
2118
2119
if (SrcTy->getElementType() != DestTy->getElementType()) {
2120
// The input types don't need to be identical, but for now they must be the
2121
// same size. There is no specific reason we couldn't handle things like
2122
// <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
2123
// there yet.
2124
if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
2125
DestTy->getElementType()->getPrimitiveSizeInBits())
2126
return nullptr;
2127
2128
SrcTy =
2129
FixedVectorType::get(DestTy->getElementType(),
2130
cast<FixedVectorType>(SrcTy)->getNumElements());
2131
InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
2132
}
2133
2134
bool IsBigEndian = IC.getDataLayout().isBigEndian();
2135
unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements();
2136
unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements();
2137
2138
assert(SrcElts != DestElts && "Element counts should be different.");
2139
2140
// Now that the element types match, get the shuffle mask and RHS of the
2141
// shuffle to use, which depends on whether we're increasing or decreasing the
2142
// size of the input.
2143
auto ShuffleMaskStorage = llvm::to_vector<16>(llvm::seq<int>(0, SrcElts));
2144
ArrayRef<int> ShuffleMask;
2145
Value *V2;
2146
2147
if (SrcElts > DestElts) {
2148
// If we're shrinking the number of elements (rewriting an integer
2149
// truncate), just shuffle in the elements corresponding to the least
2150
// significant bits from the input and use poison as the second shuffle
2151
// input.
2152
V2 = PoisonValue::get(SrcTy);
2153
// Make sure the shuffle mask selects the "least significant bits" by
2154
// keeping elements from back of the src vector for big endian, and from the
2155
// front for little endian.
2156
ShuffleMask = ShuffleMaskStorage;
2157
if (IsBigEndian)
2158
ShuffleMask = ShuffleMask.take_back(DestElts);
2159
else
2160
ShuffleMask = ShuffleMask.take_front(DestElts);
2161
} else {
2162
// If we're increasing the number of elements (rewriting an integer zext),
2163
// shuffle in all of the elements from InVal. Fill the rest of the result
2164
// elements with zeros from a constant zero.
2165
V2 = Constant::getNullValue(SrcTy);
2166
// Use first elt from V2 when indicating zero in the shuffle mask.
2167
uint32_t NullElt = SrcElts;
2168
// Extend with null values in the "most significant bits" by adding elements
2169
// in front of the src vector for big endian, and at the back for little
2170
// endian.
2171
unsigned DeltaElts = DestElts - SrcElts;
2172
if (IsBigEndian)
2173
ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt);
2174
else
2175
ShuffleMaskStorage.append(DeltaElts, NullElt);
2176
ShuffleMask = ShuffleMaskStorage;
2177
}
2178
2179
return new ShuffleVectorInst(InVal, V2, ShuffleMask);
2180
}
2181
2182
static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
2183
return Value % Ty->getPrimitiveSizeInBits() == 0;
2184
}
2185
2186
static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
2187
return Value / Ty->getPrimitiveSizeInBits();
2188
}
2189
2190
/// V is a value which is inserted into a vector of VecEltTy.
2191
/// Look through the value to see if we can decompose it into
2192
/// insertions into the vector. See the example in the comment for
2193
/// OptimizeIntegerToVectorInsertions for the pattern this handles.
2194
/// The type of V is always a non-zero multiple of VecEltTy's size.
2195
/// Shift is the number of bits between the lsb of V and the lsb of
2196
/// the vector.
2197
///
2198
/// This returns false if the pattern can't be matched or true if it can,
2199
/// filling in Elements with the elements found here.
2200
static bool collectInsertionElements(Value *V, unsigned Shift,
2201
SmallVectorImpl<Value *> &Elements,
2202
Type *VecEltTy, bool isBigEndian) {
2203
assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
2204
"Shift should be a multiple of the element type size");
2205
2206
// Undef values never contribute useful bits to the result.
2207
if (isa<UndefValue>(V)) return true;
2208
2209
// If we got down to a value of the right type, we win, try inserting into the
2210
// right element.
2211
if (V->getType() == VecEltTy) {
2212
// Inserting null doesn't actually insert any elements.
2213
if (Constant *C = dyn_cast<Constant>(V))
2214
if (C->isNullValue())
2215
return true;
2216
2217
unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
2218
if (isBigEndian)
2219
ElementIndex = Elements.size() - ElementIndex - 1;
2220
2221
// Fail if multiple elements are inserted into this slot.
2222
if (Elements[ElementIndex])
2223
return false;
2224
2225
Elements[ElementIndex] = V;
2226
return true;
2227
}
2228
2229
if (Constant *C = dyn_cast<Constant>(V)) {
2230
// Figure out the # elements this provides, and bitcast it or slice it up
2231
// as required.
2232
unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
2233
VecEltTy);
2234
// If the constant is the size of a vector element, we just need to bitcast
2235
// it to the right type so it gets properly inserted.
2236
if (NumElts == 1)
2237
return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
2238
Shift, Elements, VecEltTy, isBigEndian);
2239
2240
// Okay, this is a constant that covers multiple elements. Slice it up into
2241
// pieces and insert each element-sized piece into the vector.
2242
if (!isa<IntegerType>(C->getType()))
2243
C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
2244
C->getType()->getPrimitiveSizeInBits()));
2245
unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
2246
Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
2247
2248
for (unsigned i = 0; i != NumElts; ++i) {
2249
unsigned ShiftI = i * ElementSize;
2250
Constant *Piece = ConstantFoldBinaryInstruction(
2251
Instruction::LShr, C, ConstantInt::get(C->getType(), ShiftI));
2252
if (!Piece)
2253
return false;
2254
2255
Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
2256
if (!collectInsertionElements(Piece, ShiftI + Shift, Elements, VecEltTy,
2257
isBigEndian))
2258
return false;
2259
}
2260
return true;
2261
}
2262
2263
if (!V->hasOneUse()) return false;
2264
2265
Instruction *I = dyn_cast<Instruction>(V);
2266
if (!I) return false;
2267
switch (I->getOpcode()) {
2268
default: return false; // Unhandled case.
2269
case Instruction::BitCast:
2270
if (I->getOperand(0)->getType()->isVectorTy())
2271
return false;
2272
return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2273
isBigEndian);
2274
case Instruction::ZExt:
2275
if (!isMultipleOfTypeSize(
2276
I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
2277
VecEltTy))
2278
return false;
2279
return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2280
isBigEndian);
2281
case Instruction::Or:
2282
return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2283
isBigEndian) &&
2284
collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
2285
isBigEndian);
2286
case Instruction::Shl: {
2287
// Must be shifting by a constant that is a multiple of the element size.
2288
ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
2289
if (!CI) return false;
2290
Shift += CI->getZExtValue();
2291
if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
2292
return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2293
isBigEndian);
2294
}
2295
2296
}
2297
}
2298
2299
2300
/// If the input is an 'or' instruction, we may be doing shifts and ors to
2301
/// assemble the elements of the vector manually.
2302
/// Try to rip the code out and replace it with insertelements. This is to
2303
/// optimize code like this:
2304
///
2305
/// %tmp37 = bitcast float %inc to i32
2306
/// %tmp38 = zext i32 %tmp37 to i64
2307
/// %tmp31 = bitcast float %inc5 to i32
2308
/// %tmp32 = zext i32 %tmp31 to i64
2309
/// %tmp33 = shl i64 %tmp32, 32
2310
/// %ins35 = or i64 %tmp33, %tmp38
2311
/// %tmp43 = bitcast i64 %ins35 to <2 x float>
2312
///
2313
/// Into two insertelements that do "buildvector{%inc, %inc5}".
2314
static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
2315
InstCombinerImpl &IC) {
2316
auto *DestVecTy = cast<FixedVectorType>(CI.getType());
2317
Value *IntInput = CI.getOperand(0);
2318
2319
SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
2320
if (!collectInsertionElements(IntInput, 0, Elements,
2321
DestVecTy->getElementType(),
2322
IC.getDataLayout().isBigEndian()))
2323
return nullptr;
2324
2325
// If we succeeded, we know that all of the element are specified by Elements
2326
// or are zero if Elements has a null entry. Recast this as a set of
2327
// insertions.
2328
Value *Result = Constant::getNullValue(CI.getType());
2329
for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
2330
if (!Elements[i]) continue; // Unset element.
2331
2332
Result = IC.Builder.CreateInsertElement(Result, Elements[i],
2333
IC.Builder.getInt32(i));
2334
}
2335
2336
return Result;
2337
}
2338
2339
/// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
2340
/// vector followed by extract element. The backend tends to handle bitcasts of
2341
/// vectors better than bitcasts of scalars because vector registers are
2342
/// usually not type-specific like scalar integer or scalar floating-point.
2343
static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
2344
InstCombinerImpl &IC) {
2345
Value *VecOp, *Index;
2346
if (!match(BitCast.getOperand(0),
2347
m_OneUse(m_ExtractElt(m_Value(VecOp), m_Value(Index)))))
2348
return nullptr;
2349
2350
// The bitcast must be to a vectorizable type, otherwise we can't make a new
2351
// type to extract from.
2352
Type *DestType = BitCast.getType();
2353
VectorType *VecType = cast<VectorType>(VecOp->getType());
2354
if (VectorType::isValidElementType(DestType)) {
2355
auto *NewVecType = VectorType::get(DestType, VecType);
2356
auto *NewBC = IC.Builder.CreateBitCast(VecOp, NewVecType, "bc");
2357
return ExtractElementInst::Create(NewBC, Index);
2358
}
2359
2360
// Only solve DestType is vector to avoid inverse transform in visitBitCast.
2361
// bitcast (extractelement <1 x elt>, dest) -> bitcast(<1 x elt>, dest)
2362
auto *FixedVType = dyn_cast<FixedVectorType>(VecType);
2363
if (DestType->isVectorTy() && FixedVType && FixedVType->getNumElements() == 1)
2364
return CastInst::Create(Instruction::BitCast, VecOp, DestType);
2365
2366
return nullptr;
2367
}
2368
2369
/// Change the type of a bitwise logic operation if we can eliminate a bitcast.
2370
static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
2371
InstCombiner::BuilderTy &Builder) {
2372
Type *DestTy = BitCast.getType();
2373
BinaryOperator *BO;
2374
2375
if (!match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
2376
!BO->isBitwiseLogicOp())
2377
return nullptr;
2378
2379
// FIXME: This transform is restricted to vector types to avoid backend
2380
// problems caused by creating potentially illegal operations. If a fix-up is
2381
// added to handle that situation, we can remove this check.
2382
if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
2383
return nullptr;
2384
2385
if (DestTy->isFPOrFPVectorTy()) {
2386
Value *X, *Y;
2387
// bitcast(logic(bitcast(X), bitcast(Y))) -> bitcast'(logic(bitcast'(X), Y))
2388
if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2389
match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(Y))))) {
2390
if (X->getType()->isFPOrFPVectorTy() &&
2391
Y->getType()->isIntOrIntVectorTy()) {
2392
Value *CastedOp =
2393
Builder.CreateBitCast(BO->getOperand(0), Y->getType());
2394
Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, Y);
2395
return CastInst::CreateBitOrPointerCast(NewBO, DestTy);
2396
}
2397
if (X->getType()->isIntOrIntVectorTy() &&
2398
Y->getType()->isFPOrFPVectorTy()) {
2399
Value *CastedOp =
2400
Builder.CreateBitCast(BO->getOperand(1), X->getType());
2401
Value *NewBO = Builder.CreateBinOp(BO->getOpcode(), CastedOp, X);
2402
return CastInst::CreateBitOrPointerCast(NewBO, DestTy);
2403
}
2404
}
2405
return nullptr;
2406
}
2407
2408
if (!DestTy->isIntOrIntVectorTy())
2409
return nullptr;
2410
2411
Value *X;
2412
if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2413
X->getType() == DestTy && !isa<Constant>(X)) {
2414
// bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
2415
Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
2416
return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
2417
}
2418
2419
if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
2420
X->getType() == DestTy && !isa<Constant>(X)) {
2421
// bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
2422
Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2423
return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
2424
}
2425
2426
// Canonicalize vector bitcasts to come before vector bitwise logic with a
2427
// constant. This eases recognition of special constants for later ops.
2428
// Example:
2429
// icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
2430
Constant *C;
2431
if (match(BO->getOperand(1), m_Constant(C))) {
2432
// bitcast (logic X, C) --> logic (bitcast X, C')
2433
Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2434
Value *CastedC = Builder.CreateBitCast(C, DestTy);
2435
return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
2436
}
2437
2438
return nullptr;
2439
}
2440
2441
/// Change the type of a select if we can eliminate a bitcast.
2442
static Instruction *foldBitCastSelect(BitCastInst &BitCast,
2443
InstCombiner::BuilderTy &Builder) {
2444
Value *Cond, *TVal, *FVal;
2445
if (!match(BitCast.getOperand(0),
2446
m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
2447
return nullptr;
2448
2449
// A vector select must maintain the same number of elements in its operands.
2450
Type *CondTy = Cond->getType();
2451
Type *DestTy = BitCast.getType();
2452
if (auto *CondVTy = dyn_cast<VectorType>(CondTy))
2453
if (!DestTy->isVectorTy() ||
2454
CondVTy->getElementCount() !=
2455
cast<VectorType>(DestTy)->getElementCount())
2456
return nullptr;
2457
2458
// FIXME: This transform is restricted from changing the select between
2459
// scalars and vectors to avoid backend problems caused by creating
2460
// potentially illegal operations. If a fix-up is added to handle that
2461
// situation, we can remove this check.
2462
if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
2463
return nullptr;
2464
2465
auto *Sel = cast<Instruction>(BitCast.getOperand(0));
2466
Value *X;
2467
if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2468
!isa<Constant>(X)) {
2469
// bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
2470
Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
2471
return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
2472
}
2473
2474
if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2475
!isa<Constant>(X)) {
2476
// bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
2477
Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
2478
return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
2479
}
2480
2481
return nullptr;
2482
}
2483
2484
/// Check if all users of CI are StoreInsts.
2485
static bool hasStoreUsersOnly(CastInst &CI) {
2486
for (User *U : CI.users()) {
2487
if (!isa<StoreInst>(U))
2488
return false;
2489
}
2490
return true;
2491
}
2492
2493
/// This function handles following case
2494
///
2495
/// A -> B cast
2496
/// PHI
2497
/// B -> A cast
2498
///
2499
/// All the related PHI nodes can be replaced by new PHI nodes with type A.
2500
/// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
2501
Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI,
2502
PHINode *PN) {
2503
// BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
2504
if (hasStoreUsersOnly(CI))
2505
return nullptr;
2506
2507
Value *Src = CI.getOperand(0);
2508
Type *SrcTy = Src->getType(); // Type B
2509
Type *DestTy = CI.getType(); // Type A
2510
2511
SmallVector<PHINode *, 4> PhiWorklist;
2512
SmallSetVector<PHINode *, 4> OldPhiNodes;
2513
2514
// Find all of the A->B casts and PHI nodes.
2515
// We need to inspect all related PHI nodes, but PHIs can be cyclic, so
2516
// OldPhiNodes is used to track all known PHI nodes, before adding a new
2517
// PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2518
PhiWorklist.push_back(PN);
2519
OldPhiNodes.insert(PN);
2520
while (!PhiWorklist.empty()) {
2521
auto *OldPN = PhiWorklist.pop_back_val();
2522
for (Value *IncValue : OldPN->incoming_values()) {
2523
if (isa<Constant>(IncValue))
2524
continue;
2525
2526
if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
2527
// If there is a sequence of one or more load instructions, each loaded
2528
// value is used as address of later load instruction, bitcast is
2529
// necessary to change the value type, don't optimize it. For
2530
// simplicity we give up if the load address comes from another load.
2531
Value *Addr = LI->getOperand(0);
2532
if (Addr == &CI || isa<LoadInst>(Addr))
2533
return nullptr;
2534
// Don't tranform "load <256 x i32>, <256 x i32>*" to
2535
// "load x86_amx, x86_amx*", because x86_amx* is invalid.
2536
// TODO: Remove this check when bitcast between vector and x86_amx
2537
// is replaced with a specific intrinsic.
2538
if (DestTy->isX86_AMXTy())
2539
return nullptr;
2540
if (LI->hasOneUse() && LI->isSimple())
2541
continue;
2542
// If a LoadInst has more than one use, changing the type of loaded
2543
// value may create another bitcast.
2544
return nullptr;
2545
}
2546
2547
if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2548
if (OldPhiNodes.insert(PNode))
2549
PhiWorklist.push_back(PNode);
2550
continue;
2551
}
2552
2553
auto *BCI = dyn_cast<BitCastInst>(IncValue);
2554
// We can't handle other instructions.
2555
if (!BCI)
2556
return nullptr;
2557
2558
// Verify it's a A->B cast.
2559
Type *TyA = BCI->getOperand(0)->getType();
2560
Type *TyB = BCI->getType();
2561
if (TyA != DestTy || TyB != SrcTy)
2562
return nullptr;
2563
}
2564
}
2565
2566
// Check that each user of each old PHI node is something that we can
2567
// rewrite, so that all of the old PHI nodes can be cleaned up afterwards.
2568
for (auto *OldPN : OldPhiNodes) {
2569
for (User *V : OldPN->users()) {
2570
if (auto *SI = dyn_cast<StoreInst>(V)) {
2571
if (!SI->isSimple() || SI->getOperand(0) != OldPN)
2572
return nullptr;
2573
} else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2574
// Verify it's a B->A cast.
2575
Type *TyB = BCI->getOperand(0)->getType();
2576
Type *TyA = BCI->getType();
2577
if (TyA != DestTy || TyB != SrcTy)
2578
return nullptr;
2579
} else if (auto *PHI = dyn_cast<PHINode>(V)) {
2580
// As long as the user is another old PHI node, then even if we don't
2581
// rewrite it, the PHI web we're considering won't have any users
2582
// outside itself, so it'll be dead.
2583
if (!OldPhiNodes.contains(PHI))
2584
return nullptr;
2585
} else {
2586
return nullptr;
2587
}
2588
}
2589
}
2590
2591
// For each old PHI node, create a corresponding new PHI node with a type A.
2592
SmallDenseMap<PHINode *, PHINode *> NewPNodes;
2593
for (auto *OldPN : OldPhiNodes) {
2594
Builder.SetInsertPoint(OldPN);
2595
PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2596
NewPNodes[OldPN] = NewPN;
2597
}
2598
2599
// Fill in the operands of new PHI nodes.
2600
for (auto *OldPN : OldPhiNodes) {
2601
PHINode *NewPN = NewPNodes[OldPN];
2602
for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2603
Value *V = OldPN->getOperand(j);
2604
Value *NewV = nullptr;
2605
if (auto *C = dyn_cast<Constant>(V)) {
2606
NewV = ConstantExpr::getBitCast(C, DestTy);
2607
} else if (auto *LI = dyn_cast<LoadInst>(V)) {
2608
// Explicitly perform load combine to make sure no opposing transform
2609
// can remove the bitcast in the meantime and trigger an infinite loop.
2610
Builder.SetInsertPoint(LI);
2611
NewV = combineLoadToNewType(*LI, DestTy);
2612
// Remove the old load and its use in the old phi, which itself becomes
2613
// dead once the whole transform finishes.
2614
replaceInstUsesWith(*LI, PoisonValue::get(LI->getType()));
2615
eraseInstFromFunction(*LI);
2616
} else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2617
NewV = BCI->getOperand(0);
2618
} else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2619
NewV = NewPNodes[PrevPN];
2620
}
2621
assert(NewV);
2622
NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2623
}
2624
}
2625
2626
// Traverse all accumulated PHI nodes and process its users,
2627
// which are Stores and BitcCasts. Without this processing
2628
// NewPHI nodes could be replicated and could lead to extra
2629
// moves generated after DeSSA.
2630
// If there is a store with type B, change it to type A.
2631
2632
2633
// Replace users of BitCast B->A with NewPHI. These will help
2634
// later to get rid off a closure formed by OldPHI nodes.
2635
Instruction *RetVal = nullptr;
2636
for (auto *OldPN : OldPhiNodes) {
2637
PHINode *NewPN = NewPNodes[OldPN];
2638
for (User *V : make_early_inc_range(OldPN->users())) {
2639
if (auto *SI = dyn_cast<StoreInst>(V)) {
2640
assert(SI->isSimple() && SI->getOperand(0) == OldPN);
2641
Builder.SetInsertPoint(SI);
2642
auto *NewBC =
2643
cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy));
2644
SI->setOperand(0, NewBC);
2645
Worklist.push(SI);
2646
assert(hasStoreUsersOnly(*NewBC));
2647
}
2648
else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2649
Type *TyB = BCI->getOperand(0)->getType();
2650
Type *TyA = BCI->getType();
2651
assert(TyA == DestTy && TyB == SrcTy);
2652
(void) TyA;
2653
(void) TyB;
2654
Instruction *I = replaceInstUsesWith(*BCI, NewPN);
2655
if (BCI == &CI)
2656
RetVal = I;
2657
} else if (auto *PHI = dyn_cast<PHINode>(V)) {
2658
assert(OldPhiNodes.contains(PHI));
2659
(void) PHI;
2660
} else {
2661
llvm_unreachable("all uses should be handled");
2662
}
2663
}
2664
}
2665
2666
return RetVal;
2667
}
2668
2669
Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) {
2670
// If the operands are integer typed then apply the integer transforms,
2671
// otherwise just apply the common ones.
2672
Value *Src = CI.getOperand(0);
2673
Type *SrcTy = Src->getType();
2674
Type *DestTy = CI.getType();
2675
2676
// Get rid of casts from one type to the same type. These are useless and can
2677
// be replaced by the operand.
2678
if (DestTy == Src->getType())
2679
return replaceInstUsesWith(CI, Src);
2680
2681
if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) {
2682
// Beware: messing with this target-specific oddity may cause trouble.
2683
if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) {
2684
Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2685
return InsertElementInst::Create(PoisonValue::get(DestTy), Elem,
2686
Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2687
}
2688
2689
if (isa<IntegerType>(SrcTy)) {
2690
// If this is a cast from an integer to vector, check to see if the input
2691
// is a trunc or zext of a bitcast from vector. If so, we can replace all
2692
// the casts with a shuffle and (potentially) a bitcast.
2693
if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2694
CastInst *SrcCast = cast<CastInst>(Src);
2695
if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2696
if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2697
if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts(
2698
BCIn->getOperand(0), cast<VectorType>(DestTy), *this))
2699
return I;
2700
}
2701
2702
// If the input is an 'or' instruction, we may be doing shifts and ors to
2703
// assemble the elements of the vector manually. Try to rip the code out
2704
// and replace it with insertelements.
2705
if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2706
return replaceInstUsesWith(CI, V);
2707
}
2708
}
2709
2710
if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) {
2711
if (SrcVTy->getNumElements() == 1) {
2712
// If our destination is not a vector, then make this a straight
2713
// scalar-scalar cast.
2714
if (!DestTy->isVectorTy()) {
2715
Value *Elem =
2716
Builder.CreateExtractElement(Src,
2717
Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2718
return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2719
}
2720
2721
// Otherwise, see if our source is an insert. If so, then use the scalar
2722
// component directly:
2723
// bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m>
2724
if (auto *InsElt = dyn_cast<InsertElementInst>(Src))
2725
return new BitCastInst(InsElt->getOperand(1), DestTy);
2726
}
2727
2728
// Convert an artificial vector insert into more analyzable bitwise logic.
2729
unsigned BitWidth = DestTy->getScalarSizeInBits();
2730
Value *X, *Y;
2731
uint64_t IndexC;
2732
if (match(Src, m_OneUse(m_InsertElt(m_OneUse(m_BitCast(m_Value(X))),
2733
m_Value(Y), m_ConstantInt(IndexC)))) &&
2734
DestTy->isIntegerTy() && X->getType() == DestTy &&
2735
Y->getType()->isIntegerTy() && isDesirableIntType(BitWidth)) {
2736
// Adjust for big endian - the LSBs are at the high index.
2737
if (DL.isBigEndian())
2738
IndexC = SrcVTy->getNumElements() - 1 - IndexC;
2739
2740
// We only handle (endian-normalized) insert to index 0. Any other insert
2741
// would require a left-shift, so that is an extra instruction.
2742
if (IndexC == 0) {
2743
// bitcast (inselt (bitcast X), Y, 0) --> or (and X, MaskC), (zext Y)
2744
unsigned EltWidth = Y->getType()->getScalarSizeInBits();
2745
APInt MaskC = APInt::getHighBitsSet(BitWidth, BitWidth - EltWidth);
2746
Value *AndX = Builder.CreateAnd(X, MaskC);
2747
Value *ZextY = Builder.CreateZExt(Y, DestTy);
2748
return BinaryOperator::CreateOr(AndX, ZextY);
2749
}
2750
}
2751
}
2752
2753
if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) {
2754
// Okay, we have (bitcast (shuffle ..)). Check to see if this is
2755
// a bitcast to a vector with the same # elts.
2756
Value *ShufOp0 = Shuf->getOperand(0);
2757
Value *ShufOp1 = Shuf->getOperand(1);
2758
auto ShufElts = cast<VectorType>(Shuf->getType())->getElementCount();
2759
auto SrcVecElts = cast<VectorType>(ShufOp0->getType())->getElementCount();
2760
if (Shuf->hasOneUse() && DestTy->isVectorTy() &&
2761
cast<VectorType>(DestTy)->getElementCount() == ShufElts &&
2762
ShufElts == SrcVecElts) {
2763
BitCastInst *Tmp;
2764
// If either of the operands is a cast from CI.getType(), then
2765
// evaluating the shuffle in the casted destination's type will allow
2766
// us to eliminate at least one cast.
2767
if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) &&
2768
Tmp->getOperand(0)->getType() == DestTy) ||
2769
((Tmp = dyn_cast<BitCastInst>(ShufOp1)) &&
2770
Tmp->getOperand(0)->getType() == DestTy)) {
2771
Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy);
2772
Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy);
2773
// Return a new shuffle vector. Use the same element ID's, as we
2774
// know the vector types match #elts.
2775
return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask());
2776
}
2777
}
2778
2779
// A bitcasted-to-scalar and byte/bit reversing shuffle is better recognized
2780
// as a byte/bit swap:
2781
// bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) -> bswap (bitcast X)
2782
// bitcast <N x i1> (shuf X, undef, <N, N-1,...0>) -> bitreverse (bitcast X)
2783
if (DestTy->isIntegerTy() && ShufElts.getKnownMinValue() % 2 == 0 &&
2784
Shuf->hasOneUse() && Shuf->isReverse()) {
2785
unsigned IntrinsicNum = 0;
2786
if (DL.isLegalInteger(DestTy->getScalarSizeInBits()) &&
2787
SrcTy->getScalarSizeInBits() == 8) {
2788
IntrinsicNum = Intrinsic::bswap;
2789
} else if (SrcTy->getScalarSizeInBits() == 1) {
2790
IntrinsicNum = Intrinsic::bitreverse;
2791
}
2792
if (IntrinsicNum != 0) {
2793
assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask");
2794
assert(match(ShufOp1, m_Undef()) && "Unexpected shuffle op");
2795
Function *BswapOrBitreverse =
2796
Intrinsic::getDeclaration(CI.getModule(), IntrinsicNum, DestTy);
2797
Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy);
2798
return CallInst::Create(BswapOrBitreverse, {ScalarX});
2799
}
2800
}
2801
}
2802
2803
// Handle the A->B->A cast, and there is an intervening PHI node.
2804
if (PHINode *PN = dyn_cast<PHINode>(Src))
2805
if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2806
return I;
2807
2808
if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
2809
return I;
2810
2811
if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
2812
return I;
2813
2814
if (Instruction *I = foldBitCastSelect(CI, Builder))
2815
return I;
2816
2817
return commonCastTransforms(CI);
2818
}
2819
2820
Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2821
return commonCastTransforms(CI);
2822
}
2823
2824