Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
35266 views
1
//===- InstCombineCompares.cpp --------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the visitICmp and visitFCmp functions.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "InstCombineInternal.h"
14
#include "llvm/ADT/APSInt.h"
15
#include "llvm/ADT/ScopeExit.h"
16
#include "llvm/ADT/SetVector.h"
17
#include "llvm/ADT/Statistic.h"
18
#include "llvm/Analysis/CaptureTracking.h"
19
#include "llvm/Analysis/CmpInstAnalysis.h"
20
#include "llvm/Analysis/ConstantFolding.h"
21
#include "llvm/Analysis/InstructionSimplify.h"
22
#include "llvm/Analysis/Utils/Local.h"
23
#include "llvm/Analysis/VectorUtils.h"
24
#include "llvm/IR/ConstantRange.h"
25
#include "llvm/IR/DataLayout.h"
26
#include "llvm/IR/InstrTypes.h"
27
#include "llvm/IR/IntrinsicInst.h"
28
#include "llvm/IR/PatternMatch.h"
29
#include "llvm/Support/KnownBits.h"
30
#include "llvm/Transforms/InstCombine/InstCombiner.h"
31
#include <bitset>
32
33
using namespace llvm;
34
using namespace PatternMatch;
35
36
#define DEBUG_TYPE "instcombine"
37
38
// How many times is a select replaced by one of its operands?
39
STATISTIC(NumSel, "Number of select opts");
40
41
42
/// Compute Result = In1+In2, returning true if the result overflowed for this
43
/// type.
44
static bool addWithOverflow(APInt &Result, const APInt &In1,
45
const APInt &In2, bool IsSigned = false) {
46
bool Overflow;
47
if (IsSigned)
48
Result = In1.sadd_ov(In2, Overflow);
49
else
50
Result = In1.uadd_ov(In2, Overflow);
51
52
return Overflow;
53
}
54
55
/// Compute Result = In1-In2, returning true if the result overflowed for this
56
/// type.
57
static bool subWithOverflow(APInt &Result, const APInt &In1,
58
const APInt &In2, bool IsSigned = false) {
59
bool Overflow;
60
if (IsSigned)
61
Result = In1.ssub_ov(In2, Overflow);
62
else
63
Result = In1.usub_ov(In2, Overflow);
64
65
return Overflow;
66
}
67
68
/// Given an icmp instruction, return true if any use of this comparison is a
69
/// branch on sign bit comparison.
70
static bool hasBranchUse(ICmpInst &I) {
71
for (auto *U : I.users())
72
if (isa<BranchInst>(U))
73
return true;
74
return false;
75
}
76
77
/// Returns true if the exploded icmp can be expressed as a signed comparison
78
/// to zero and updates the predicate accordingly.
79
/// The signedness of the comparison is preserved.
80
/// TODO: Refactor with decomposeBitTestICmp()?
81
static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
82
if (!ICmpInst::isSigned(Pred))
83
return false;
84
85
if (C.isZero())
86
return ICmpInst::isRelational(Pred);
87
88
if (C.isOne()) {
89
if (Pred == ICmpInst::ICMP_SLT) {
90
Pred = ICmpInst::ICMP_SLE;
91
return true;
92
}
93
} else if (C.isAllOnes()) {
94
if (Pred == ICmpInst::ICMP_SGT) {
95
Pred = ICmpInst::ICMP_SGE;
96
return true;
97
}
98
}
99
100
return false;
101
}
102
103
/// This is called when we see this pattern:
104
/// cmp pred (load (gep GV, ...)), cmpcst
105
/// where GV is a global variable with a constant initializer. Try to simplify
106
/// this into some simple computation that does not need the load. For example
107
/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
108
///
109
/// If AndCst is non-null, then the loaded value is masked with that constant
110
/// before doing the comparison. This handles cases like "A[i]&4 == 0".
111
Instruction *InstCombinerImpl::foldCmpLoadFromIndexedGlobal(
112
LoadInst *LI, GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI,
113
ConstantInt *AndCst) {
114
if (LI->isVolatile() || LI->getType() != GEP->getResultElementType() ||
115
GV->getValueType() != GEP->getSourceElementType() || !GV->isConstant() ||
116
!GV->hasDefinitiveInitializer())
117
return nullptr;
118
119
Constant *Init = GV->getInitializer();
120
if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
121
return nullptr;
122
123
uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
124
// Don't blow up on huge arrays.
125
if (ArrayElementCount > MaxArraySizeForCombine)
126
return nullptr;
127
128
// There are many forms of this optimization we can handle, for now, just do
129
// the simple index into a single-dimensional array.
130
//
131
// Require: GEP GV, 0, i {{, constant indices}}
132
if (GEP->getNumOperands() < 3 || !isa<ConstantInt>(GEP->getOperand(1)) ||
133
!cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
134
isa<Constant>(GEP->getOperand(2)))
135
return nullptr;
136
137
// Check that indices after the variable are constants and in-range for the
138
// type they index. Collect the indices. This is typically for arrays of
139
// structs.
140
SmallVector<unsigned, 4> LaterIndices;
141
142
Type *EltTy = Init->getType()->getArrayElementType();
143
for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
144
ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
145
if (!Idx)
146
return nullptr; // Variable index.
147
148
uint64_t IdxVal = Idx->getZExtValue();
149
if ((unsigned)IdxVal != IdxVal)
150
return nullptr; // Too large array index.
151
152
if (StructType *STy = dyn_cast<StructType>(EltTy))
153
EltTy = STy->getElementType(IdxVal);
154
else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
155
if (IdxVal >= ATy->getNumElements())
156
return nullptr;
157
EltTy = ATy->getElementType();
158
} else {
159
return nullptr; // Unknown type.
160
}
161
162
LaterIndices.push_back(IdxVal);
163
}
164
165
enum { Overdefined = -3, Undefined = -2 };
166
167
// Variables for our state machines.
168
169
// FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
170
// "i == 47 | i == 87", where 47 is the first index the condition is true for,
171
// and 87 is the second (and last) index. FirstTrueElement is -2 when
172
// undefined, otherwise set to the first true element. SecondTrueElement is
173
// -2 when undefined, -3 when overdefined and >= 0 when that index is true.
174
int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
175
176
// FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
177
// form "i != 47 & i != 87". Same state transitions as for true elements.
178
int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
179
180
/// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
181
/// define a state machine that triggers for ranges of values that the index
182
/// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
183
/// This is -2 when undefined, -3 when overdefined, and otherwise the last
184
/// index in the range (inclusive). We use -2 for undefined here because we
185
/// use relative comparisons and don't want 0-1 to match -1.
186
int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
187
188
// MagicBitvector - This is a magic bitvector where we set a bit if the
189
// comparison is true for element 'i'. If there are 64 elements or less in
190
// the array, this will fully represent all the comparison results.
191
uint64_t MagicBitvector = 0;
192
193
// Scan the array and see if one of our patterns matches.
194
Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
195
for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
196
Constant *Elt = Init->getAggregateElement(i);
197
if (!Elt)
198
return nullptr;
199
200
// If this is indexing an array of structures, get the structure element.
201
if (!LaterIndices.empty()) {
202
Elt = ConstantFoldExtractValueInstruction(Elt, LaterIndices);
203
if (!Elt)
204
return nullptr;
205
}
206
207
// If the element is masked, handle it.
208
if (AndCst) {
209
Elt = ConstantFoldBinaryOpOperands(Instruction::And, Elt, AndCst, DL);
210
if (!Elt)
211
return nullptr;
212
}
213
214
// Find out if the comparison would be true or false for the i'th element.
215
Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
216
CompareRHS, DL, &TLI);
217
if (!C)
218
return nullptr;
219
220
// If the result is undef for this element, ignore it.
221
if (isa<UndefValue>(C)) {
222
// Extend range state machines to cover this element in case there is an
223
// undef in the middle of the range.
224
if (TrueRangeEnd == (int)i - 1)
225
TrueRangeEnd = i;
226
if (FalseRangeEnd == (int)i - 1)
227
FalseRangeEnd = i;
228
continue;
229
}
230
231
// If we can't compute the result for any of the elements, we have to give
232
// up evaluating the entire conditional.
233
if (!isa<ConstantInt>(C))
234
return nullptr;
235
236
// Otherwise, we know if the comparison is true or false for this element,
237
// update our state machines.
238
bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
239
240
// State machine for single/double/range index comparison.
241
if (IsTrueForElt) {
242
// Update the TrueElement state machine.
243
if (FirstTrueElement == Undefined)
244
FirstTrueElement = TrueRangeEnd = i; // First true element.
245
else {
246
// Update double-compare state machine.
247
if (SecondTrueElement == Undefined)
248
SecondTrueElement = i;
249
else
250
SecondTrueElement = Overdefined;
251
252
// Update range state machine.
253
if (TrueRangeEnd == (int)i - 1)
254
TrueRangeEnd = i;
255
else
256
TrueRangeEnd = Overdefined;
257
}
258
} else {
259
// Update the FalseElement state machine.
260
if (FirstFalseElement == Undefined)
261
FirstFalseElement = FalseRangeEnd = i; // First false element.
262
else {
263
// Update double-compare state machine.
264
if (SecondFalseElement == Undefined)
265
SecondFalseElement = i;
266
else
267
SecondFalseElement = Overdefined;
268
269
// Update range state machine.
270
if (FalseRangeEnd == (int)i - 1)
271
FalseRangeEnd = i;
272
else
273
FalseRangeEnd = Overdefined;
274
}
275
}
276
277
// If this element is in range, update our magic bitvector.
278
if (i < 64 && IsTrueForElt)
279
MagicBitvector |= 1ULL << i;
280
281
// If all of our states become overdefined, bail out early. Since the
282
// predicate is expensive, only check it every 8 elements. This is only
283
// really useful for really huge arrays.
284
if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
285
SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
286
FalseRangeEnd == Overdefined)
287
return nullptr;
288
}
289
290
// Now that we've scanned the entire array, emit our new comparison(s). We
291
// order the state machines in complexity of the generated code.
292
Value *Idx = GEP->getOperand(2);
293
294
// If the index is larger than the pointer offset size of the target, truncate
295
// the index down like the GEP would do implicitly. We don't have to do this
296
// for an inbounds GEP because the index can't be out of range.
297
if (!GEP->isInBounds()) {
298
Type *PtrIdxTy = DL.getIndexType(GEP->getType());
299
unsigned OffsetSize = PtrIdxTy->getIntegerBitWidth();
300
if (Idx->getType()->getPrimitiveSizeInBits().getFixedValue() > OffsetSize)
301
Idx = Builder.CreateTrunc(Idx, PtrIdxTy);
302
}
303
304
// If inbounds keyword is not present, Idx * ElementSize can overflow.
305
// Let's assume that ElementSize is 2 and the wanted value is at offset 0.
306
// Then, there are two possible values for Idx to match offset 0:
307
// 0x00..00, 0x80..00.
308
// Emitting 'icmp eq Idx, 0' isn't correct in this case because the
309
// comparison is false if Idx was 0x80..00.
310
// We need to erase the highest countTrailingZeros(ElementSize) bits of Idx.
311
unsigned ElementSize =
312
DL.getTypeAllocSize(Init->getType()->getArrayElementType());
313
auto MaskIdx = [&](Value *Idx) {
314
if (!GEP->isInBounds() && llvm::countr_zero(ElementSize) != 0) {
315
Value *Mask = ConstantInt::get(Idx->getType(), -1);
316
Mask = Builder.CreateLShr(Mask, llvm::countr_zero(ElementSize));
317
Idx = Builder.CreateAnd(Idx, Mask);
318
}
319
return Idx;
320
};
321
322
// If the comparison is only true for one or two elements, emit direct
323
// comparisons.
324
if (SecondTrueElement != Overdefined) {
325
Idx = MaskIdx(Idx);
326
// None true -> false.
327
if (FirstTrueElement == Undefined)
328
return replaceInstUsesWith(ICI, Builder.getFalse());
329
330
Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
331
332
// True for one element -> 'i == 47'.
333
if (SecondTrueElement == Undefined)
334
return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
335
336
// True for two elements -> 'i == 47 | i == 72'.
337
Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
338
Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
339
Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
340
return BinaryOperator::CreateOr(C1, C2);
341
}
342
343
// If the comparison is only false for one or two elements, emit direct
344
// comparisons.
345
if (SecondFalseElement != Overdefined) {
346
Idx = MaskIdx(Idx);
347
// None false -> true.
348
if (FirstFalseElement == Undefined)
349
return replaceInstUsesWith(ICI, Builder.getTrue());
350
351
Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
352
353
// False for one element -> 'i != 47'.
354
if (SecondFalseElement == Undefined)
355
return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
356
357
// False for two elements -> 'i != 47 & i != 72'.
358
Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
359
Value *SecondFalseIdx =
360
ConstantInt::get(Idx->getType(), SecondFalseElement);
361
Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
362
return BinaryOperator::CreateAnd(C1, C2);
363
}
364
365
// If the comparison can be replaced with a range comparison for the elements
366
// where it is true, emit the range check.
367
if (TrueRangeEnd != Overdefined) {
368
assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
369
Idx = MaskIdx(Idx);
370
371
// Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
372
if (FirstTrueElement) {
373
Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
374
Idx = Builder.CreateAdd(Idx, Offs);
375
}
376
377
Value *End =
378
ConstantInt::get(Idx->getType(), TrueRangeEnd - FirstTrueElement + 1);
379
return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
380
}
381
382
// False range check.
383
if (FalseRangeEnd != Overdefined) {
384
assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
385
Idx = MaskIdx(Idx);
386
// Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
387
if (FirstFalseElement) {
388
Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
389
Idx = Builder.CreateAdd(Idx, Offs);
390
}
391
392
Value *End =
393
ConstantInt::get(Idx->getType(), FalseRangeEnd - FirstFalseElement);
394
return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
395
}
396
397
// If a magic bitvector captures the entire comparison state
398
// of this load, replace it with computation that does:
399
// ((magic_cst >> i) & 1) != 0
400
{
401
Type *Ty = nullptr;
402
403
// Look for an appropriate type:
404
// - The type of Idx if the magic fits
405
// - The smallest fitting legal type
406
if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
407
Ty = Idx->getType();
408
else
409
Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
410
411
if (Ty) {
412
Idx = MaskIdx(Idx);
413
Value *V = Builder.CreateIntCast(Idx, Ty, false);
414
V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
415
V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
416
return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
417
}
418
}
419
420
return nullptr;
421
}
422
423
/// Returns true if we can rewrite Start as a GEP with pointer Base
424
/// and some integer offset. The nodes that need to be re-written
425
/// for this transformation will be added to Explored.
426
static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
427
const DataLayout &DL,
428
SetVector<Value *> &Explored) {
429
SmallVector<Value *, 16> WorkList(1, Start);
430
Explored.insert(Base);
431
432
// The following traversal gives us an order which can be used
433
// when doing the final transformation. Since in the final
434
// transformation we create the PHI replacement instructions first,
435
// we don't have to get them in any particular order.
436
//
437
// However, for other instructions we will have to traverse the
438
// operands of an instruction first, which means that we have to
439
// do a post-order traversal.
440
while (!WorkList.empty()) {
441
SetVector<PHINode *> PHIs;
442
443
while (!WorkList.empty()) {
444
if (Explored.size() >= 100)
445
return false;
446
447
Value *V = WorkList.back();
448
449
if (Explored.contains(V)) {
450
WorkList.pop_back();
451
continue;
452
}
453
454
if (!isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
455
// We've found some value that we can't explore which is different from
456
// the base. Therefore we can't do this transformation.
457
return false;
458
459
if (auto *GEP = dyn_cast<GEPOperator>(V)) {
460
// Only allow inbounds GEPs with at most one variable offset.
461
auto IsNonConst = [](Value *V) { return !isa<ConstantInt>(V); };
462
if (!GEP->isInBounds() || count_if(GEP->indices(), IsNonConst) > 1)
463
return false;
464
465
if (!Explored.contains(GEP->getOperand(0)))
466
WorkList.push_back(GEP->getOperand(0));
467
}
468
469
if (WorkList.back() == V) {
470
WorkList.pop_back();
471
// We've finished visiting this node, mark it as such.
472
Explored.insert(V);
473
}
474
475
if (auto *PN = dyn_cast<PHINode>(V)) {
476
// We cannot transform PHIs on unsplittable basic blocks.
477
if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
478
return false;
479
Explored.insert(PN);
480
PHIs.insert(PN);
481
}
482
}
483
484
// Explore the PHI nodes further.
485
for (auto *PN : PHIs)
486
for (Value *Op : PN->incoming_values())
487
if (!Explored.contains(Op))
488
WorkList.push_back(Op);
489
}
490
491
// Make sure that we can do this. Since we can't insert GEPs in a basic
492
// block before a PHI node, we can't easily do this transformation if
493
// we have PHI node users of transformed instructions.
494
for (Value *Val : Explored) {
495
for (Value *Use : Val->uses()) {
496
497
auto *PHI = dyn_cast<PHINode>(Use);
498
auto *Inst = dyn_cast<Instruction>(Val);
499
500
if (Inst == Base || Inst == PHI || !Inst || !PHI ||
501
!Explored.contains(PHI))
502
continue;
503
504
if (PHI->getParent() == Inst->getParent())
505
return false;
506
}
507
}
508
return true;
509
}
510
511
// Sets the appropriate insert point on Builder where we can add
512
// a replacement Instruction for V (if that is possible).
513
static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
514
bool Before = true) {
515
if (auto *PHI = dyn_cast<PHINode>(V)) {
516
BasicBlock *Parent = PHI->getParent();
517
Builder.SetInsertPoint(Parent, Parent->getFirstInsertionPt());
518
return;
519
}
520
if (auto *I = dyn_cast<Instruction>(V)) {
521
if (!Before)
522
I = &*std::next(I->getIterator());
523
Builder.SetInsertPoint(I);
524
return;
525
}
526
if (auto *A = dyn_cast<Argument>(V)) {
527
// Set the insertion point in the entry block.
528
BasicBlock &Entry = A->getParent()->getEntryBlock();
529
Builder.SetInsertPoint(&Entry, Entry.getFirstInsertionPt());
530
return;
531
}
532
// Otherwise, this is a constant and we don't need to set a new
533
// insertion point.
534
assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
535
}
536
537
/// Returns a re-written value of Start as an indexed GEP using Base as a
538
/// pointer.
539
static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
540
const DataLayout &DL,
541
SetVector<Value *> &Explored,
542
InstCombiner &IC) {
543
// Perform all the substitutions. This is a bit tricky because we can
544
// have cycles in our use-def chains.
545
// 1. Create the PHI nodes without any incoming values.
546
// 2. Create all the other values.
547
// 3. Add the edges for the PHI nodes.
548
// 4. Emit GEPs to get the original pointers.
549
// 5. Remove the original instructions.
550
Type *IndexType = IntegerType::get(
551
Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
552
553
DenseMap<Value *, Value *> NewInsts;
554
NewInsts[Base] = ConstantInt::getNullValue(IndexType);
555
556
// Create the new PHI nodes, without adding any incoming values.
557
for (Value *Val : Explored) {
558
if (Val == Base)
559
continue;
560
// Create empty phi nodes. This avoids cyclic dependencies when creating
561
// the remaining instructions.
562
if (auto *PHI = dyn_cast<PHINode>(Val))
563
NewInsts[PHI] =
564
PHINode::Create(IndexType, PHI->getNumIncomingValues(),
565
PHI->getName() + ".idx", PHI->getIterator());
566
}
567
IRBuilder<> Builder(Base->getContext());
568
569
// Create all the other instructions.
570
for (Value *Val : Explored) {
571
if (NewInsts.contains(Val))
572
continue;
573
574
if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
575
setInsertionPoint(Builder, GEP);
576
Value *Op = NewInsts[GEP->getOperand(0)];
577
Value *OffsetV = emitGEPOffset(&Builder, DL, GEP);
578
if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
579
NewInsts[GEP] = OffsetV;
580
else
581
NewInsts[GEP] = Builder.CreateNSWAdd(
582
Op, OffsetV, GEP->getOperand(0)->getName() + ".add");
583
continue;
584
}
585
if (isa<PHINode>(Val))
586
continue;
587
588
llvm_unreachable("Unexpected instruction type");
589
}
590
591
// Add the incoming values to the PHI nodes.
592
for (Value *Val : Explored) {
593
if (Val == Base)
594
continue;
595
// All the instructions have been created, we can now add edges to the
596
// phi nodes.
597
if (auto *PHI = dyn_cast<PHINode>(Val)) {
598
PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
599
for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
600
Value *NewIncoming = PHI->getIncomingValue(I);
601
602
if (NewInsts.contains(NewIncoming))
603
NewIncoming = NewInsts[NewIncoming];
604
605
NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
606
}
607
}
608
}
609
610
for (Value *Val : Explored) {
611
if (Val == Base)
612
continue;
613
614
setInsertionPoint(Builder, Val, false);
615
// Create GEP for external users.
616
Value *NewVal = Builder.CreateInBoundsGEP(
617
Builder.getInt8Ty(), Base, NewInsts[Val], Val->getName() + ".ptr");
618
IC.replaceInstUsesWith(*cast<Instruction>(Val), NewVal);
619
// Add old instruction to worklist for DCE. We don't directly remove it
620
// here because the original compare is one of the users.
621
IC.addToWorklist(cast<Instruction>(Val));
622
}
623
624
return NewInsts[Start];
625
}
626
627
/// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
628
/// We can look through PHIs, GEPs and casts in order to determine a common base
629
/// between GEPLHS and RHS.
630
static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
631
ICmpInst::Predicate Cond,
632
const DataLayout &DL,
633
InstCombiner &IC) {
634
// FIXME: Support vector of pointers.
635
if (GEPLHS->getType()->isVectorTy())
636
return nullptr;
637
638
if (!GEPLHS->hasAllConstantIndices())
639
return nullptr;
640
641
APInt Offset(DL.getIndexTypeSizeInBits(GEPLHS->getType()), 0);
642
Value *PtrBase =
643
GEPLHS->stripAndAccumulateConstantOffsets(DL, Offset,
644
/*AllowNonInbounds*/ false);
645
646
// Bail if we looked through addrspacecast.
647
if (PtrBase->getType() != GEPLHS->getType())
648
return nullptr;
649
650
// The set of nodes that will take part in this transformation.
651
SetVector<Value *> Nodes;
652
653
if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
654
return nullptr;
655
656
// We know we can re-write this as
657
// ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
658
// Since we've only looked through inbouds GEPs we know that we
659
// can't have overflow on either side. We can therefore re-write
660
// this as:
661
// OFFSET1 cmp OFFSET2
662
Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes, IC);
663
664
// RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
665
// GEP having PtrBase as the pointer base, and has returned in NewRHS the
666
// offset. Since Index is the offset of LHS to the base pointer, we will now
667
// compare the offsets instead of comparing the pointers.
668
return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
669
IC.Builder.getInt(Offset), NewRHS);
670
}
671
672
/// Fold comparisons between a GEP instruction and something else. At this point
673
/// we know that the GEP is on the LHS of the comparison.
674
Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
675
ICmpInst::Predicate Cond,
676
Instruction &I) {
677
// Don't transform signed compares of GEPs into index compares. Even if the
678
// GEP is inbounds, the final add of the base pointer can have signed overflow
679
// and would change the result of the icmp.
680
// e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
681
// the maximum signed value for the pointer type.
682
if (ICmpInst::isSigned(Cond))
683
return nullptr;
684
685
// Look through bitcasts and addrspacecasts. We do not however want to remove
686
// 0 GEPs.
687
if (!isa<GetElementPtrInst>(RHS))
688
RHS = RHS->stripPointerCasts();
689
690
Value *PtrBase = GEPLHS->getOperand(0);
691
if (PtrBase == RHS && (GEPLHS->isInBounds() || ICmpInst::isEquality(Cond))) {
692
// ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
693
Value *Offset = EmitGEPOffset(GEPLHS);
694
return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
695
Constant::getNullValue(Offset->getType()));
696
}
697
698
if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
699
isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
700
!NullPointerIsDefined(I.getFunction(),
701
RHS->getType()->getPointerAddressSpace())) {
702
// For most address spaces, an allocation can't be placed at null, but null
703
// itself is treated as a 0 size allocation in the in bounds rules. Thus,
704
// the only valid inbounds address derived from null, is null itself.
705
// Thus, we have four cases to consider:
706
// 1) Base == nullptr, Offset == 0 -> inbounds, null
707
// 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
708
// 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
709
// 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
710
//
711
// (Note if we're indexing a type of size 0, that simply collapses into one
712
// of the buckets above.)
713
//
714
// In general, we're allowed to make values less poison (i.e. remove
715
// sources of full UB), so in this case, we just select between the two
716
// non-poison cases (1 and 4 above).
717
//
718
// For vectors, we apply the same reasoning on a per-lane basis.
719
auto *Base = GEPLHS->getPointerOperand();
720
if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
721
auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount();
722
Base = Builder.CreateVectorSplat(EC, Base);
723
}
724
return new ICmpInst(Cond, Base,
725
ConstantExpr::getPointerBitCastOrAddrSpaceCast(
726
cast<Constant>(RHS), Base->getType()));
727
} else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
728
// If the base pointers are different, but the indices are the same, just
729
// compare the base pointer.
730
if (PtrBase != GEPRHS->getOperand(0)) {
731
bool IndicesTheSame =
732
GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
733
GEPLHS->getPointerOperand()->getType() ==
734
GEPRHS->getPointerOperand()->getType() &&
735
GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType();
736
if (IndicesTheSame)
737
for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
738
if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
739
IndicesTheSame = false;
740
break;
741
}
742
743
// If all indices are the same, just compare the base pointers.
744
Type *BaseType = GEPLHS->getOperand(0)->getType();
745
if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
746
return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
747
748
// If we're comparing GEPs with two base pointers that only differ in type
749
// and both GEPs have only constant indices or just one use, then fold
750
// the compare with the adjusted indices.
751
// FIXME: Support vector of pointers.
752
if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
753
(GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
754
(GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
755
PtrBase->stripPointerCasts() ==
756
GEPRHS->getOperand(0)->stripPointerCasts() &&
757
!GEPLHS->getType()->isVectorTy()) {
758
Value *LOffset = EmitGEPOffset(GEPLHS);
759
Value *ROffset = EmitGEPOffset(GEPRHS);
760
761
// If we looked through an addrspacecast between different sized address
762
// spaces, the LHS and RHS pointers are different sized
763
// integers. Truncate to the smaller one.
764
Type *LHSIndexTy = LOffset->getType();
765
Type *RHSIndexTy = ROffset->getType();
766
if (LHSIndexTy != RHSIndexTy) {
767
if (LHSIndexTy->getPrimitiveSizeInBits().getFixedValue() <
768
RHSIndexTy->getPrimitiveSizeInBits().getFixedValue()) {
769
ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
770
} else
771
LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
772
}
773
774
Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
775
LOffset, ROffset);
776
return replaceInstUsesWith(I, Cmp);
777
}
778
779
// Otherwise, the base pointers are different and the indices are
780
// different. Try convert this to an indexed compare by looking through
781
// PHIs/casts.
782
return transformToIndexedCompare(GEPLHS, RHS, Cond, DL, *this);
783
}
784
785
bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
786
if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands() &&
787
GEPLHS->getSourceElementType() == GEPRHS->getSourceElementType()) {
788
// If the GEPs only differ by one index, compare it.
789
unsigned NumDifferences = 0; // Keep track of # differences.
790
unsigned DiffOperand = 0; // The operand that differs.
791
for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
792
if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
793
Type *LHSType = GEPLHS->getOperand(i)->getType();
794
Type *RHSType = GEPRHS->getOperand(i)->getType();
795
// FIXME: Better support for vector of pointers.
796
if (LHSType->getPrimitiveSizeInBits() !=
797
RHSType->getPrimitiveSizeInBits() ||
798
(GEPLHS->getType()->isVectorTy() &&
799
(!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
800
// Irreconcilable differences.
801
NumDifferences = 2;
802
break;
803
}
804
805
if (NumDifferences++) break;
806
DiffOperand = i;
807
}
808
809
if (NumDifferences == 0) // SAME GEP?
810
return replaceInstUsesWith(I, // No comparison is needed here.
811
ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
812
813
else if (NumDifferences == 1 && GEPsInBounds) {
814
Value *LHSV = GEPLHS->getOperand(DiffOperand);
815
Value *RHSV = GEPRHS->getOperand(DiffOperand);
816
// Make sure we do a signed comparison here.
817
return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
818
}
819
}
820
821
if (GEPsInBounds || CmpInst::isEquality(Cond)) {
822
// ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
823
Value *L = EmitGEPOffset(GEPLHS, /*RewriteGEP=*/true);
824
Value *R = EmitGEPOffset(GEPRHS, /*RewriteGEP=*/true);
825
return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
826
}
827
}
828
829
// Try convert this to an indexed compare by looking through PHIs/casts as a
830
// last resort.
831
return transformToIndexedCompare(GEPLHS, RHS, Cond, DL, *this);
832
}
833
834
bool InstCombinerImpl::foldAllocaCmp(AllocaInst *Alloca) {
835
// It would be tempting to fold away comparisons between allocas and any
836
// pointer not based on that alloca (e.g. an argument). However, even
837
// though such pointers cannot alias, they can still compare equal.
838
//
839
// But LLVM doesn't specify where allocas get their memory, so if the alloca
840
// doesn't escape we can argue that it's impossible to guess its value, and we
841
// can therefore act as if any such guesses are wrong.
842
//
843
// However, we need to ensure that this folding is consistent: We can't fold
844
// one comparison to false, and then leave a different comparison against the
845
// same value alone (as it might evaluate to true at runtime, leading to a
846
// contradiction). As such, this code ensures that all comparisons are folded
847
// at the same time, and there are no other escapes.
848
849
struct CmpCaptureTracker : public CaptureTracker {
850
AllocaInst *Alloca;
851
bool Captured = false;
852
/// The value of the map is a bit mask of which icmp operands the alloca is
853
/// used in.
854
SmallMapVector<ICmpInst *, unsigned, 4> ICmps;
855
856
CmpCaptureTracker(AllocaInst *Alloca) : Alloca(Alloca) {}
857
858
void tooManyUses() override { Captured = true; }
859
860
bool captured(const Use *U) override {
861
auto *ICmp = dyn_cast<ICmpInst>(U->getUser());
862
// We need to check that U is based *only* on the alloca, and doesn't
863
// have other contributions from a select/phi operand.
864
// TODO: We could check whether getUnderlyingObjects() reduces to one
865
// object, which would allow looking through phi nodes.
866
if (ICmp && ICmp->isEquality() && getUnderlyingObject(*U) == Alloca) {
867
// Collect equality icmps of the alloca, and don't treat them as
868
// captures.
869
auto Res = ICmps.insert({ICmp, 0});
870
Res.first->second |= 1u << U->getOperandNo();
871
return false;
872
}
873
874
Captured = true;
875
return true;
876
}
877
};
878
879
CmpCaptureTracker Tracker(Alloca);
880
PointerMayBeCaptured(Alloca, &Tracker);
881
if (Tracker.Captured)
882
return false;
883
884
bool Changed = false;
885
for (auto [ICmp, Operands] : Tracker.ICmps) {
886
switch (Operands) {
887
case 1:
888
case 2: {
889
// The alloca is only used in one icmp operand. Assume that the
890
// equality is false.
891
auto *Res = ConstantInt::get(
892
ICmp->getType(), ICmp->getPredicate() == ICmpInst::ICMP_NE);
893
replaceInstUsesWith(*ICmp, Res);
894
eraseInstFromFunction(*ICmp);
895
Changed = true;
896
break;
897
}
898
case 3:
899
// Both icmp operands are based on the alloca, so this is comparing
900
// pointer offsets, without leaking any information about the address
901
// of the alloca. Ignore such comparisons.
902
break;
903
default:
904
llvm_unreachable("Cannot happen");
905
}
906
}
907
908
return Changed;
909
}
910
911
/// Fold "icmp pred (X+C), X".
912
Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
913
ICmpInst::Predicate Pred) {
914
// From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
915
// so the values can never be equal. Similarly for all other "or equals"
916
// operators.
917
assert(!!C && "C should not be zero!");
918
919
// (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
920
// (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
921
// (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
922
if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
923
Constant *R = ConstantInt::get(X->getType(),
924
APInt::getMaxValue(C.getBitWidth()) - C);
925
return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
926
}
927
928
// (X+1) >u X --> X <u (0-1) --> X != 255
929
// (X+2) >u X --> X <u (0-2) --> X <u 254
930
// (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
931
if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
932
return new ICmpInst(ICmpInst::ICMP_ULT, X,
933
ConstantInt::get(X->getType(), -C));
934
935
APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
936
937
// (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
938
// (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
939
// (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
940
// (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
941
// (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
942
// (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
943
if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
944
return new ICmpInst(ICmpInst::ICMP_SGT, X,
945
ConstantInt::get(X->getType(), SMax - C));
946
947
// (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
948
// (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
949
// (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
950
// (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
951
// (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
952
// (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
953
954
assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
955
return new ICmpInst(ICmpInst::ICMP_SLT, X,
956
ConstantInt::get(X->getType(), SMax - (C - 1)));
957
}
958
959
/// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
960
/// (icmp eq/ne A, Log2(AP2/AP1)) ->
961
/// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
962
Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
963
const APInt &AP1,
964
const APInt &AP2) {
965
assert(I.isEquality() && "Cannot fold icmp gt/lt");
966
967
auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
968
if (I.getPredicate() == I.ICMP_NE)
969
Pred = CmpInst::getInversePredicate(Pred);
970
return new ICmpInst(Pred, LHS, RHS);
971
};
972
973
// Don't bother doing any work for cases which InstSimplify handles.
974
if (AP2.isZero())
975
return nullptr;
976
977
bool IsAShr = isa<AShrOperator>(I.getOperand(0));
978
if (IsAShr) {
979
if (AP2.isAllOnes())
980
return nullptr;
981
if (AP2.isNegative() != AP1.isNegative())
982
return nullptr;
983
if (AP2.sgt(AP1))
984
return nullptr;
985
}
986
987
if (!AP1)
988
// 'A' must be large enough to shift out the highest set bit.
989
return getICmp(I.ICMP_UGT, A,
990
ConstantInt::get(A->getType(), AP2.logBase2()));
991
992
if (AP1 == AP2)
993
return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
994
995
int Shift;
996
if (IsAShr && AP1.isNegative())
997
Shift = AP1.countl_one() - AP2.countl_one();
998
else
999
Shift = AP1.countl_zero() - AP2.countl_zero();
1000
1001
if (Shift > 0) {
1002
if (IsAShr && AP1 == AP2.ashr(Shift)) {
1003
// There are multiple solutions if we are comparing against -1 and the LHS
1004
// of the ashr is not a power of two.
1005
if (AP1.isAllOnes() && !AP2.isPowerOf2())
1006
return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1007
return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1008
} else if (AP1 == AP2.lshr(Shift)) {
1009
return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1010
}
1011
}
1012
1013
// Shifting const2 will never be equal to const1.
1014
// FIXME: This should always be handled by InstSimplify?
1015
auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1016
return replaceInstUsesWith(I, TorF);
1017
}
1018
1019
/// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1020
/// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1021
Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
1022
const APInt &AP1,
1023
const APInt &AP2) {
1024
assert(I.isEquality() && "Cannot fold icmp gt/lt");
1025
1026
auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1027
if (I.getPredicate() == I.ICMP_NE)
1028
Pred = CmpInst::getInversePredicate(Pred);
1029
return new ICmpInst(Pred, LHS, RHS);
1030
};
1031
1032
// Don't bother doing any work for cases which InstSimplify handles.
1033
if (AP2.isZero())
1034
return nullptr;
1035
1036
unsigned AP2TrailingZeros = AP2.countr_zero();
1037
1038
if (!AP1 && AP2TrailingZeros != 0)
1039
return getICmp(
1040
I.ICMP_UGE, A,
1041
ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1042
1043
if (AP1 == AP2)
1044
return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1045
1046
// Get the distance between the lowest bits that are set.
1047
int Shift = AP1.countr_zero() - AP2TrailingZeros;
1048
1049
if (Shift > 0 && AP2.shl(Shift) == AP1)
1050
return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1051
1052
// Shifting const2 will never be equal to const1.
1053
// FIXME: This should always be handled by InstSimplify?
1054
auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1055
return replaceInstUsesWith(I, TorF);
1056
}
1057
1058
/// The caller has matched a pattern of the form:
1059
/// I = icmp ugt (add (add A, B), CI2), CI1
1060
/// If this is of the form:
1061
/// sum = a + b
1062
/// if (sum+128 >u 255)
1063
/// Then replace it with llvm.sadd.with.overflow.i8.
1064
///
1065
static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1066
ConstantInt *CI2, ConstantInt *CI1,
1067
InstCombinerImpl &IC) {
1068
// The transformation we're trying to do here is to transform this into an
1069
// llvm.sadd.with.overflow. To do this, we have to replace the original add
1070
// with a narrower add, and discard the add-with-constant that is part of the
1071
// range check (if we can't eliminate it, this isn't profitable).
1072
1073
// In order to eliminate the add-with-constant, the compare can be its only
1074
// use.
1075
Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1076
if (!AddWithCst->hasOneUse())
1077
return nullptr;
1078
1079
// If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1080
if (!CI2->getValue().isPowerOf2())
1081
return nullptr;
1082
unsigned NewWidth = CI2->getValue().countr_zero();
1083
if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1084
return nullptr;
1085
1086
// The width of the new add formed is 1 more than the bias.
1087
++NewWidth;
1088
1089
// Check to see that CI1 is an all-ones value with NewWidth bits.
1090
if (CI1->getBitWidth() == NewWidth ||
1091
CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1092
return nullptr;
1093
1094
// This is only really a signed overflow check if the inputs have been
1095
// sign-extended; check for that condition. For example, if CI2 is 2^31 and
1096
// the operands of the add are 64 bits wide, we need at least 33 sign bits.
1097
if (IC.ComputeMaxSignificantBits(A, 0, &I) > NewWidth ||
1098
IC.ComputeMaxSignificantBits(B, 0, &I) > NewWidth)
1099
return nullptr;
1100
1101
// In order to replace the original add with a narrower
1102
// llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1103
// and truncates that discard the high bits of the add. Verify that this is
1104
// the case.
1105
Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1106
for (User *U : OrigAdd->users()) {
1107
if (U == AddWithCst)
1108
continue;
1109
1110
// Only accept truncates for now. We would really like a nice recursive
1111
// predicate like SimplifyDemandedBits, but which goes downwards the use-def
1112
// chain to see which bits of a value are actually demanded. If the
1113
// original add had another add which was then immediately truncated, we
1114
// could still do the transformation.
1115
TruncInst *TI = dyn_cast<TruncInst>(U);
1116
if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1117
return nullptr;
1118
}
1119
1120
// If the pattern matches, truncate the inputs to the narrower type and
1121
// use the sadd_with_overflow intrinsic to efficiently compute both the
1122
// result and the overflow bit.
1123
Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1124
Function *F = Intrinsic::getDeclaration(
1125
I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1126
1127
InstCombiner::BuilderTy &Builder = IC.Builder;
1128
1129
// Put the new code above the original add, in case there are any uses of the
1130
// add between the add and the compare.
1131
Builder.SetInsertPoint(OrigAdd);
1132
1133
Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1134
Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1135
CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1136
Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1137
Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1138
1139
// The inner add was the result of the narrow add, zero extended to the
1140
// wider type. Replace it with the result computed by the intrinsic.
1141
IC.replaceInstUsesWith(*OrigAdd, ZExt);
1142
IC.eraseInstFromFunction(*OrigAdd);
1143
1144
// The original icmp gets replaced with the overflow value.
1145
return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1146
}
1147
1148
/// If we have:
1149
/// icmp eq/ne (urem/srem %x, %y), 0
1150
/// iff %y is a power-of-two, we can replace this with a bit test:
1151
/// icmp eq/ne (and %x, (add %y, -1)), 0
1152
Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1153
// This fold is only valid for equality predicates.
1154
if (!I.isEquality())
1155
return nullptr;
1156
ICmpInst::Predicate Pred;
1157
Value *X, *Y, *Zero;
1158
if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1159
m_CombineAnd(m_Zero(), m_Value(Zero)))))
1160
return nullptr;
1161
if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1162
return nullptr;
1163
// This may increase instruction count, we don't enforce that Y is a constant.
1164
Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1165
Value *Masked = Builder.CreateAnd(X, Mask);
1166
return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1167
}
1168
1169
/// Fold equality-comparison between zero and any (maybe truncated) right-shift
1170
/// by one-less-than-bitwidth into a sign test on the original value.
1171
Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
1172
Instruction *Val;
1173
ICmpInst::Predicate Pred;
1174
if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1175
return nullptr;
1176
1177
Value *X;
1178
Type *XTy;
1179
1180
Constant *C;
1181
if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1182
XTy = X->getType();
1183
unsigned XBitWidth = XTy->getScalarSizeInBits();
1184
if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1185
APInt(XBitWidth, XBitWidth - 1))))
1186
return nullptr;
1187
} else if (isa<BinaryOperator>(Val) &&
1188
(X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1189
cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1190
/*AnalyzeForSignBitExtraction=*/true))) {
1191
XTy = X->getType();
1192
} else
1193
return nullptr;
1194
1195
return ICmpInst::Create(Instruction::ICmp,
1196
Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1197
: ICmpInst::ICMP_SLT,
1198
X, ConstantInt::getNullValue(XTy));
1199
}
1200
1201
// Handle icmp pred X, 0
1202
Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
1203
CmpInst::Predicate Pred = Cmp.getPredicate();
1204
if (!match(Cmp.getOperand(1), m_Zero()))
1205
return nullptr;
1206
1207
// (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1208
if (Pred == ICmpInst::ICMP_SGT) {
1209
Value *A, *B;
1210
if (match(Cmp.getOperand(0), m_SMin(m_Value(A), m_Value(B)))) {
1211
if (isKnownPositive(A, SQ.getWithInstruction(&Cmp)))
1212
return new ICmpInst(Pred, B, Cmp.getOperand(1));
1213
if (isKnownPositive(B, SQ.getWithInstruction(&Cmp)))
1214
return new ICmpInst(Pred, A, Cmp.getOperand(1));
1215
}
1216
}
1217
1218
if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1219
return New;
1220
1221
// Given:
1222
// icmp eq/ne (urem %x, %y), 0
1223
// Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1224
// icmp eq/ne %x, 0
1225
Value *X, *Y;
1226
if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1227
ICmpInst::isEquality(Pred)) {
1228
KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1229
KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1230
if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1231
return new ICmpInst(Pred, X, Cmp.getOperand(1));
1232
}
1233
1234
// (icmp eq/ne (mul X Y)) -> (icmp eq/ne X/Y) if we know about whether X/Y are
1235
// odd/non-zero/there is no overflow.
1236
if (match(Cmp.getOperand(0), m_Mul(m_Value(X), m_Value(Y))) &&
1237
ICmpInst::isEquality(Pred)) {
1238
1239
KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1240
// if X % 2 != 0
1241
// (icmp eq/ne Y)
1242
if (XKnown.countMaxTrailingZeros() == 0)
1243
return new ICmpInst(Pred, Y, Cmp.getOperand(1));
1244
1245
KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1246
// if Y % 2 != 0
1247
// (icmp eq/ne X)
1248
if (YKnown.countMaxTrailingZeros() == 0)
1249
return new ICmpInst(Pred, X, Cmp.getOperand(1));
1250
1251
auto *BO0 = cast<OverflowingBinaryOperator>(Cmp.getOperand(0));
1252
if (BO0->hasNoUnsignedWrap() || BO0->hasNoSignedWrap()) {
1253
const SimplifyQuery Q = SQ.getWithInstruction(&Cmp);
1254
// `isKnownNonZero` does more analysis than just `!KnownBits.One.isZero()`
1255
// but to avoid unnecessary work, first just if this is an obvious case.
1256
1257
// if X non-zero and NoOverflow(X * Y)
1258
// (icmp eq/ne Y)
1259
if (!XKnown.One.isZero() || isKnownNonZero(X, Q))
1260
return new ICmpInst(Pred, Y, Cmp.getOperand(1));
1261
1262
// if Y non-zero and NoOverflow(X * Y)
1263
// (icmp eq/ne X)
1264
if (!YKnown.One.isZero() || isKnownNonZero(Y, Q))
1265
return new ICmpInst(Pred, X, Cmp.getOperand(1));
1266
}
1267
// Note, we are skipping cases:
1268
// if Y % 2 != 0 AND X % 2 != 0
1269
// (false/true)
1270
// if X non-zero and Y non-zero and NoOverflow(X * Y)
1271
// (false/true)
1272
// Those can be simplified later as we would have already replaced the (icmp
1273
// eq/ne (mul X, Y)) with (icmp eq/ne X/Y) and if X/Y is known non-zero that
1274
// will fold to a constant elsewhere.
1275
}
1276
return nullptr;
1277
}
1278
1279
/// Fold icmp Pred X, C.
1280
/// TODO: This code structure does not make sense. The saturating add fold
1281
/// should be moved to some other helper and extended as noted below (it is also
1282
/// possible that code has been made unnecessary - do we canonicalize IR to
1283
/// overflow/saturating intrinsics or not?).
1284
Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
1285
// Match the following pattern, which is a common idiom when writing
1286
// overflow-safe integer arithmetic functions. The source performs an addition
1287
// in wider type and explicitly checks for overflow using comparisons against
1288
// INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1289
//
1290
// TODO: This could probably be generalized to handle other overflow-safe
1291
// operations if we worked out the formulas to compute the appropriate magic
1292
// constants.
1293
//
1294
// sum = a + b
1295
// if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
1296
CmpInst::Predicate Pred = Cmp.getPredicate();
1297
Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1298
Value *A, *B;
1299
ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1300
if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1301
match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1302
if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1303
return Res;
1304
1305
// icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1306
Constant *C = dyn_cast<Constant>(Op1);
1307
if (!C)
1308
return nullptr;
1309
1310
if (auto *Phi = dyn_cast<PHINode>(Op0))
1311
if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1312
SmallVector<Constant *> Ops;
1313
for (Value *V : Phi->incoming_values()) {
1314
Constant *Res =
1315
ConstantFoldCompareInstOperands(Pred, cast<Constant>(V), C, DL);
1316
if (!Res)
1317
return nullptr;
1318
Ops.push_back(Res);
1319
}
1320
Builder.SetInsertPoint(Phi);
1321
PHINode *NewPhi = Builder.CreatePHI(Cmp.getType(), Phi->getNumOperands());
1322
for (auto [V, Pred] : zip(Ops, Phi->blocks()))
1323
NewPhi->addIncoming(V, Pred);
1324
return replaceInstUsesWith(Cmp, NewPhi);
1325
}
1326
1327
if (Instruction *R = tryFoldInstWithCtpopWithNot(&Cmp))
1328
return R;
1329
1330
return nullptr;
1331
}
1332
1333
/// Canonicalize icmp instructions based on dominating conditions.
1334
Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1335
// We already checked simple implication in InstSimplify, only handle complex
1336
// cases here.
1337
Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1338
const APInt *C;
1339
if (!match(Y, m_APInt(C)))
1340
return nullptr;
1341
1342
CmpInst::Predicate Pred = Cmp.getPredicate();
1343
ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C);
1344
1345
auto handleDomCond = [&](ICmpInst::Predicate DomPred,
1346
const APInt *DomC) -> Instruction * {
1347
// We have 2 compares of a variable with constants. Calculate the constant
1348
// ranges of those compares to see if we can transform the 2nd compare:
1349
// DomBB:
1350
// DomCond = icmp DomPred X, DomC
1351
// br DomCond, CmpBB, FalseBB
1352
// CmpBB:
1353
// Cmp = icmp Pred X, C
1354
ConstantRange DominatingCR =
1355
ConstantRange::makeExactICmpRegion(DomPred, *DomC);
1356
ConstantRange Intersection = DominatingCR.intersectWith(CR);
1357
ConstantRange Difference = DominatingCR.difference(CR);
1358
if (Intersection.isEmptySet())
1359
return replaceInstUsesWith(Cmp, Builder.getFalse());
1360
if (Difference.isEmptySet())
1361
return replaceInstUsesWith(Cmp, Builder.getTrue());
1362
1363
// Canonicalizing a sign bit comparison that gets used in a branch,
1364
// pessimizes codegen by generating branch on zero instruction instead
1365
// of a test and branch. So we avoid canonicalizing in such situations
1366
// because test and branch instruction has better branch displacement
1367
// than compare and branch instruction.
1368
bool UnusedBit;
1369
bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1370
if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1371
return nullptr;
1372
1373
// Avoid an infinite loop with min/max canonicalization.
1374
// TODO: This will be unnecessary if we canonicalize to min/max intrinsics.
1375
if (Cmp.hasOneUse() &&
1376
match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value())))
1377
return nullptr;
1378
1379
if (const APInt *EqC = Intersection.getSingleElement())
1380
return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1381
if (const APInt *NeC = Difference.getSingleElement())
1382
return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1383
return nullptr;
1384
};
1385
1386
for (BranchInst *BI : DC.conditionsFor(X)) {
1387
ICmpInst::Predicate DomPred;
1388
const APInt *DomC;
1389
if (!match(BI->getCondition(),
1390
m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))))
1391
continue;
1392
1393
BasicBlockEdge Edge0(BI->getParent(), BI->getSuccessor(0));
1394
if (DT.dominates(Edge0, Cmp.getParent())) {
1395
if (auto *V = handleDomCond(DomPred, DomC))
1396
return V;
1397
} else {
1398
BasicBlockEdge Edge1(BI->getParent(), BI->getSuccessor(1));
1399
if (DT.dominates(Edge1, Cmp.getParent()))
1400
if (auto *V =
1401
handleDomCond(CmpInst::getInversePredicate(DomPred), DomC))
1402
return V;
1403
}
1404
}
1405
1406
return nullptr;
1407
}
1408
1409
/// Fold icmp (trunc X), C.
1410
Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
1411
TruncInst *Trunc,
1412
const APInt &C) {
1413
ICmpInst::Predicate Pred = Cmp.getPredicate();
1414
Value *X = Trunc->getOperand(0);
1415
Type *SrcTy = X->getType();
1416
unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1417
SrcBits = SrcTy->getScalarSizeInBits();
1418
1419
// Match (icmp pred (trunc nuw/nsw X), C)
1420
// Which we can convert to (icmp pred X, (sext/zext C))
1421
if (shouldChangeType(Trunc->getType(), SrcTy)) {
1422
if (Trunc->hasNoSignedWrap())
1423
return new ICmpInst(Pred, X, ConstantInt::get(SrcTy, C.sext(SrcBits)));
1424
if (!Cmp.isSigned() && Trunc->hasNoUnsignedWrap())
1425
return new ICmpInst(Pred, X, ConstantInt::get(SrcTy, C.zext(SrcBits)));
1426
}
1427
1428
if (C.isOne() && C.getBitWidth() > 1) {
1429
// icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1430
Value *V = nullptr;
1431
if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1432
return new ICmpInst(ICmpInst::ICMP_SLT, V,
1433
ConstantInt::get(V->getType(), 1));
1434
}
1435
1436
// TODO: Handle any shifted constant by subtracting trailing zeros.
1437
// TODO: Handle non-equality predicates.
1438
Value *Y;
1439
if (Cmp.isEquality() && match(X, m_Shl(m_One(), m_Value(Y)))) {
1440
// (trunc (1 << Y) to iN) == 0 --> Y u>= N
1441
// (trunc (1 << Y) to iN) != 0 --> Y u< N
1442
if (C.isZero()) {
1443
auto NewPred = (Pred == Cmp.ICMP_EQ) ? Cmp.ICMP_UGE : Cmp.ICMP_ULT;
1444
return new ICmpInst(NewPred, Y, ConstantInt::get(SrcTy, DstBits));
1445
}
1446
// (trunc (1 << Y) to iN) == 2**C --> Y == C
1447
// (trunc (1 << Y) to iN) != 2**C --> Y != C
1448
if (C.isPowerOf2())
1449
return new ICmpInst(Pred, Y, ConstantInt::get(SrcTy, C.logBase2()));
1450
}
1451
1452
if (Cmp.isEquality() && Trunc->hasOneUse()) {
1453
// Canonicalize to a mask and wider compare if the wide type is suitable:
1454
// (trunc X to i8) == C --> (X & 0xff) == (zext C)
1455
if (!SrcTy->isVectorTy() && shouldChangeType(DstBits, SrcBits)) {
1456
Constant *Mask =
1457
ConstantInt::get(SrcTy, APInt::getLowBitsSet(SrcBits, DstBits));
1458
Value *And = Builder.CreateAnd(X, Mask);
1459
Constant *WideC = ConstantInt::get(SrcTy, C.zext(SrcBits));
1460
return new ICmpInst(Pred, And, WideC);
1461
}
1462
1463
// Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1464
// of the high bits truncated out of x are known.
1465
KnownBits Known = computeKnownBits(X, 0, &Cmp);
1466
1467
// If all the high bits are known, we can do this xform.
1468
if ((Known.Zero | Known.One).countl_one() >= SrcBits - DstBits) {
1469
// Pull in the high bits from known-ones set.
1470
APInt NewRHS = C.zext(SrcBits);
1471
NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1472
return new ICmpInst(Pred, X, ConstantInt::get(SrcTy, NewRHS));
1473
}
1474
}
1475
1476
// Look through truncated right-shift of the sign-bit for a sign-bit check:
1477
// trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0
1478
// trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
1479
Value *ShOp;
1480
const APInt *ShAmtC;
1481
bool TrueIfSigned;
1482
if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1483
match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) &&
1484
DstBits == SrcBits - ShAmtC->getZExtValue()) {
1485
return TrueIfSigned ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp,
1486
ConstantInt::getNullValue(SrcTy))
1487
: new ICmpInst(ICmpInst::ICMP_SGT, ShOp,
1488
ConstantInt::getAllOnesValue(SrcTy));
1489
}
1490
1491
return nullptr;
1492
}
1493
1494
/// Fold icmp (trunc nuw/nsw X), (trunc nuw/nsw Y).
1495
/// Fold icmp (trunc nuw/nsw X), (zext/sext Y).
1496
Instruction *
1497
InstCombinerImpl::foldICmpTruncWithTruncOrExt(ICmpInst &Cmp,
1498
const SimplifyQuery &Q) {
1499
Value *X, *Y;
1500
ICmpInst::Predicate Pred;
1501
bool YIsSExt = false;
1502
// Try to match icmp (trunc X), (trunc Y)
1503
if (match(&Cmp, m_ICmp(Pred, m_Trunc(m_Value(X)), m_Trunc(m_Value(Y))))) {
1504
unsigned NoWrapFlags = cast<TruncInst>(Cmp.getOperand(0))->getNoWrapKind() &
1505
cast<TruncInst>(Cmp.getOperand(1))->getNoWrapKind();
1506
if (Cmp.isSigned()) {
1507
// For signed comparisons, both truncs must be nsw.
1508
if (!(NoWrapFlags & TruncInst::NoSignedWrap))
1509
return nullptr;
1510
} else {
1511
// For unsigned and equality comparisons, either both must be nuw or
1512
// both must be nsw, we don't care which.
1513
if (!NoWrapFlags)
1514
return nullptr;
1515
}
1516
1517
if (X->getType() != Y->getType() &&
1518
(!Cmp.getOperand(0)->hasOneUse() || !Cmp.getOperand(1)->hasOneUse()))
1519
return nullptr;
1520
if (!isDesirableIntType(X->getType()->getScalarSizeInBits()) &&
1521
isDesirableIntType(Y->getType()->getScalarSizeInBits())) {
1522
std::swap(X, Y);
1523
Pred = Cmp.getSwappedPredicate(Pred);
1524
}
1525
YIsSExt = !(NoWrapFlags & TruncInst::NoUnsignedWrap);
1526
}
1527
// Try to match icmp (trunc nuw X), (zext Y)
1528
else if (!Cmp.isSigned() &&
1529
match(&Cmp, m_c_ICmp(Pred, m_NUWTrunc(m_Value(X)),
1530
m_OneUse(m_ZExt(m_Value(Y)))))) {
1531
// Can fold trunc nuw + zext for unsigned and equality predicates.
1532
}
1533
// Try to match icmp (trunc nsw X), (sext Y)
1534
else if (match(&Cmp, m_c_ICmp(Pred, m_NSWTrunc(m_Value(X)),
1535
m_OneUse(m_ZExtOrSExt(m_Value(Y)))))) {
1536
// Can fold trunc nsw + zext/sext for all predicates.
1537
YIsSExt =
1538
isa<SExtInst>(Cmp.getOperand(0)) || isa<SExtInst>(Cmp.getOperand(1));
1539
} else
1540
return nullptr;
1541
1542
Type *TruncTy = Cmp.getOperand(0)->getType();
1543
unsigned TruncBits = TruncTy->getScalarSizeInBits();
1544
1545
// If this transform will end up changing from desirable types -> undesirable
1546
// types skip it.
1547
if (isDesirableIntType(TruncBits) &&
1548
!isDesirableIntType(X->getType()->getScalarSizeInBits()))
1549
return nullptr;
1550
1551
Value *NewY = Builder.CreateIntCast(Y, X->getType(), YIsSExt);
1552
return new ICmpInst(Pred, X, NewY);
1553
}
1554
1555
/// Fold icmp (xor X, Y), C.
1556
Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
1557
BinaryOperator *Xor,
1558
const APInt &C) {
1559
if (Instruction *I = foldICmpXorShiftConst(Cmp, Xor, C))
1560
return I;
1561
1562
Value *X = Xor->getOperand(0);
1563
Value *Y = Xor->getOperand(1);
1564
const APInt *XorC;
1565
if (!match(Y, m_APInt(XorC)))
1566
return nullptr;
1567
1568
// If this is a comparison that tests the signbit (X < 0) or (x > -1),
1569
// fold the xor.
1570
ICmpInst::Predicate Pred = Cmp.getPredicate();
1571
bool TrueIfSigned = false;
1572
if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1573
1574
// If the sign bit of the XorCst is not set, there is no change to
1575
// the operation, just stop using the Xor.
1576
if (!XorC->isNegative())
1577
return replaceOperand(Cmp, 0, X);
1578
1579
// Emit the opposite comparison.
1580
if (TrueIfSigned)
1581
return new ICmpInst(ICmpInst::ICMP_SGT, X,
1582
ConstantInt::getAllOnesValue(X->getType()));
1583
else
1584
return new ICmpInst(ICmpInst::ICMP_SLT, X,
1585
ConstantInt::getNullValue(X->getType()));
1586
}
1587
1588
if (Xor->hasOneUse()) {
1589
// (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1590
if (!Cmp.isEquality() && XorC->isSignMask()) {
1591
Pred = Cmp.getFlippedSignednessPredicate();
1592
return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1593
}
1594
1595
// (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1596
if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1597
Pred = Cmp.getFlippedSignednessPredicate();
1598
Pred = Cmp.getSwappedPredicate(Pred);
1599
return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1600
}
1601
}
1602
1603
// Mask constant magic can eliminate an 'xor' with unsigned compares.
1604
if (Pred == ICmpInst::ICMP_UGT) {
1605
// (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1606
if (*XorC == ~C && (C + 1).isPowerOf2())
1607
return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1608
// (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1609
if (*XorC == C && (C + 1).isPowerOf2())
1610
return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1611
}
1612
if (Pred == ICmpInst::ICMP_ULT) {
1613
// (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1614
if (*XorC == -C && C.isPowerOf2())
1615
return new ICmpInst(ICmpInst::ICMP_UGT, X,
1616
ConstantInt::get(X->getType(), ~C));
1617
// (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1618
if (*XorC == C && (-C).isPowerOf2())
1619
return new ICmpInst(ICmpInst::ICMP_UGT, X,
1620
ConstantInt::get(X->getType(), ~C));
1621
}
1622
return nullptr;
1623
}
1624
1625
/// For power-of-2 C:
1626
/// ((X s>> ShiftC) ^ X) u< C --> (X + C) u< (C << 1)
1627
/// ((X s>> ShiftC) ^ X) u> (C - 1) --> (X + C) u> ((C << 1) - 1)
1628
Instruction *InstCombinerImpl::foldICmpXorShiftConst(ICmpInst &Cmp,
1629
BinaryOperator *Xor,
1630
const APInt &C) {
1631
CmpInst::Predicate Pred = Cmp.getPredicate();
1632
APInt PowerOf2;
1633
if (Pred == ICmpInst::ICMP_ULT)
1634
PowerOf2 = C;
1635
else if (Pred == ICmpInst::ICMP_UGT && !C.isMaxValue())
1636
PowerOf2 = C + 1;
1637
else
1638
return nullptr;
1639
if (!PowerOf2.isPowerOf2())
1640
return nullptr;
1641
Value *X;
1642
const APInt *ShiftC;
1643
if (!match(Xor, m_OneUse(m_c_Xor(m_Value(X),
1644
m_AShr(m_Deferred(X), m_APInt(ShiftC))))))
1645
return nullptr;
1646
uint64_t Shift = ShiftC->getLimitedValue();
1647
Type *XType = X->getType();
1648
if (Shift == 0 || PowerOf2.isMinSignedValue())
1649
return nullptr;
1650
Value *Add = Builder.CreateAdd(X, ConstantInt::get(XType, PowerOf2));
1651
APInt Bound =
1652
Pred == ICmpInst::ICMP_ULT ? PowerOf2 << 1 : ((PowerOf2 << 1) - 1);
1653
return new ICmpInst(Pred, Add, ConstantInt::get(XType, Bound));
1654
}
1655
1656
/// Fold icmp (and (sh X, Y), C2), C1.
1657
Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
1658
BinaryOperator *And,
1659
const APInt &C1,
1660
const APInt &C2) {
1661
BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1662
if (!Shift || !Shift->isShift())
1663
return nullptr;
1664
1665
// If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1666
// exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1667
// code produced by the clang front-end, for bitfield access.
1668
// This seemingly simple opportunity to fold away a shift turns out to be
1669
// rather complicated. See PR17827 for details.
1670
unsigned ShiftOpcode = Shift->getOpcode();
1671
bool IsShl = ShiftOpcode == Instruction::Shl;
1672
const APInt *C3;
1673
if (match(Shift->getOperand(1), m_APInt(C3))) {
1674
APInt NewAndCst, NewCmpCst;
1675
bool AnyCmpCstBitsShiftedOut;
1676
if (ShiftOpcode == Instruction::Shl) {
1677
// For a left shift, we can fold if the comparison is not signed. We can
1678
// also fold a signed comparison if the mask value and comparison value
1679
// are not negative. These constraints may not be obvious, but we can
1680
// prove that they are correct using an SMT solver.
1681
if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1682
return nullptr;
1683
1684
NewCmpCst = C1.lshr(*C3);
1685
NewAndCst = C2.lshr(*C3);
1686
AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1687
} else if (ShiftOpcode == Instruction::LShr) {
1688
// For a logical right shift, we can fold if the comparison is not signed.
1689
// We can also fold a signed comparison if the shifted mask value and the
1690
// shifted comparison value are not negative. These constraints may not be
1691
// obvious, but we can prove that they are correct using an SMT solver.
1692
NewCmpCst = C1.shl(*C3);
1693
NewAndCst = C2.shl(*C3);
1694
AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1695
if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1696
return nullptr;
1697
} else {
1698
// For an arithmetic shift, check that both constants don't use (in a
1699
// signed sense) the top bits being shifted out.
1700
assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1701
NewCmpCst = C1.shl(*C3);
1702
NewAndCst = C2.shl(*C3);
1703
AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1704
if (NewAndCst.ashr(*C3) != C2)
1705
return nullptr;
1706
}
1707
1708
if (AnyCmpCstBitsShiftedOut) {
1709
// If we shifted bits out, the fold is not going to work out. As a
1710
// special case, check to see if this means that the result is always
1711
// true or false now.
1712
if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1713
return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1714
if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1715
return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1716
} else {
1717
Value *NewAnd = Builder.CreateAnd(
1718
Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1719
return new ICmpInst(Cmp.getPredicate(),
1720
NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1721
}
1722
}
1723
1724
// Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is
1725
// preferable because it allows the C2 << Y expression to be hoisted out of a
1726
// loop if Y is invariant and X is not.
1727
if (Shift->hasOneUse() && C1.isZero() && Cmp.isEquality() &&
1728
!Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1729
// Compute C2 << Y.
1730
Value *NewShift =
1731
IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1732
: Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1733
1734
// Compute X & (C2 << Y).
1735
Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1736
return replaceOperand(Cmp, 0, NewAnd);
1737
}
1738
1739
return nullptr;
1740
}
1741
1742
/// Fold icmp (and X, C2), C1.
1743
Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
1744
BinaryOperator *And,
1745
const APInt &C1) {
1746
bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1747
1748
// For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1749
// TODO: We canonicalize to the longer form for scalars because we have
1750
// better analysis/folds for icmp, and codegen may be better with icmp.
1751
if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isZero() &&
1752
match(And->getOperand(1), m_One()))
1753
return new TruncInst(And->getOperand(0), Cmp.getType());
1754
1755
const APInt *C2;
1756
Value *X;
1757
if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1758
return nullptr;
1759
1760
// Don't perform the following transforms if the AND has multiple uses
1761
if (!And->hasOneUse())
1762
return nullptr;
1763
1764
if (Cmp.isEquality() && C1.isZero()) {
1765
// Restrict this fold to single-use 'and' (PR10267).
1766
// Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1767
if (C2->isSignMask()) {
1768
Constant *Zero = Constant::getNullValue(X->getType());
1769
auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1770
return new ICmpInst(NewPred, X, Zero);
1771
}
1772
1773
APInt NewC2 = *C2;
1774
KnownBits Know = computeKnownBits(And->getOperand(0), 0, And);
1775
// Set high zeros of C2 to allow matching negated power-of-2.
1776
NewC2 = *C2 | APInt::getHighBitsSet(C2->getBitWidth(),
1777
Know.countMinLeadingZeros());
1778
1779
// Restrict this fold only for single-use 'and' (PR10267).
1780
// ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two.
1781
if (NewC2.isNegatedPowerOf2()) {
1782
Constant *NegBOC = ConstantInt::get(And->getType(), -NewC2);
1783
auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1784
return new ICmpInst(NewPred, X, NegBOC);
1785
}
1786
}
1787
1788
// If the LHS is an 'and' of a truncate and we can widen the and/compare to
1789
// the input width without changing the value produced, eliminate the cast:
1790
//
1791
// icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1792
//
1793
// We can do this transformation if the constants do not have their sign bits
1794
// set or if it is an equality comparison. Extending a relational comparison
1795
// when we're checking the sign bit would not work.
1796
Value *W;
1797
if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1798
(Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1799
// TODO: Is this a good transform for vectors? Wider types may reduce
1800
// throughput. Should this transform be limited (even for scalars) by using
1801
// shouldChangeType()?
1802
if (!Cmp.getType()->isVectorTy()) {
1803
Type *WideType = W->getType();
1804
unsigned WideScalarBits = WideType->getScalarSizeInBits();
1805
Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1806
Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1807
Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1808
return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1809
}
1810
}
1811
1812
if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1813
return I;
1814
1815
// (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1816
// (icmp pred (and A, (or (shl 1, B), 1), 0))
1817
//
1818
// iff pred isn't signed
1819
if (!Cmp.isSigned() && C1.isZero() && And->getOperand(0)->hasOneUse() &&
1820
match(And->getOperand(1), m_One())) {
1821
Constant *One = cast<Constant>(And->getOperand(1));
1822
Value *Or = And->getOperand(0);
1823
Value *A, *B, *LShr;
1824
if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1825
match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1826
unsigned UsesRemoved = 0;
1827
if (And->hasOneUse())
1828
++UsesRemoved;
1829
if (Or->hasOneUse())
1830
++UsesRemoved;
1831
if (LShr->hasOneUse())
1832
++UsesRemoved;
1833
1834
// Compute A & ((1 << B) | 1)
1835
unsigned RequireUsesRemoved = match(B, m_ImmConstant()) ? 1 : 3;
1836
if (UsesRemoved >= RequireUsesRemoved) {
1837
Value *NewOr =
1838
Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1839
/*HasNUW=*/true),
1840
One, Or->getName());
1841
Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1842
return replaceOperand(Cmp, 0, NewAnd);
1843
}
1844
}
1845
}
1846
1847
// (icmp eq (and (bitcast X to int), ExponentMask), ExponentMask) -->
1848
// llvm.is.fpclass(X, fcInf|fcNan)
1849
// (icmp ne (and (bitcast X to int), ExponentMask), ExponentMask) -->
1850
// llvm.is.fpclass(X, ~(fcInf|fcNan))
1851
Value *V;
1852
if (!Cmp.getParent()->getParent()->hasFnAttribute(
1853
Attribute::NoImplicitFloat) &&
1854
Cmp.isEquality() &&
1855
match(X, m_OneUse(m_ElementWiseBitCast(m_Value(V))))) {
1856
Type *FPType = V->getType()->getScalarType();
1857
if (FPType->isIEEELikeFPTy() && C1 == *C2) {
1858
APInt ExponentMask =
1859
APFloat::getInf(FPType->getFltSemantics()).bitcastToAPInt();
1860
if (C1 == ExponentMask) {
1861
unsigned Mask = FPClassTest::fcNan | FPClassTest::fcInf;
1862
if (isICMP_NE)
1863
Mask = ~Mask & fcAllFlags;
1864
return replaceInstUsesWith(Cmp, Builder.createIsFPClass(V, Mask));
1865
}
1866
}
1867
}
1868
1869
return nullptr;
1870
}
1871
1872
/// Fold icmp (and X, Y), C.
1873
Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
1874
BinaryOperator *And,
1875
const APInt &C) {
1876
if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1877
return I;
1878
1879
const ICmpInst::Predicate Pred = Cmp.getPredicate();
1880
bool TrueIfNeg;
1881
if (isSignBitCheck(Pred, C, TrueIfNeg)) {
1882
// ((X - 1) & ~X) < 0 --> X == 0
1883
// ((X - 1) & ~X) >= 0 --> X != 0
1884
Value *X;
1885
if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) &&
1886
match(And->getOperand(1), m_Not(m_Specific(X)))) {
1887
auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1888
return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType()));
1889
}
1890
// (X & -X) < 0 --> X == MinSignedC
1891
// (X & -X) > -1 --> X != MinSignedC
1892
if (match(And, m_c_And(m_Neg(m_Value(X)), m_Deferred(X)))) {
1893
Constant *MinSignedC = ConstantInt::get(
1894
X->getType(),
1895
APInt::getSignedMinValue(X->getType()->getScalarSizeInBits()));
1896
auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1897
return new ICmpInst(NewPred, X, MinSignedC);
1898
}
1899
}
1900
1901
// TODO: These all require that Y is constant too, so refactor with the above.
1902
1903
// Try to optimize things like "A[i] & 42 == 0" to index computations.
1904
Value *X = And->getOperand(0);
1905
Value *Y = And->getOperand(1);
1906
if (auto *C2 = dyn_cast<ConstantInt>(Y))
1907
if (auto *LI = dyn_cast<LoadInst>(X))
1908
if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1909
if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1910
if (Instruction *Res =
1911
foldCmpLoadFromIndexedGlobal(LI, GEP, GV, Cmp, C2))
1912
return Res;
1913
1914
if (!Cmp.isEquality())
1915
return nullptr;
1916
1917
// X & -C == -C -> X > u ~C
1918
// X & -C != -C -> X <= u ~C
1919
// iff C is a power of 2
1920
if (Cmp.getOperand(1) == Y && C.isNegatedPowerOf2()) {
1921
auto NewPred =
1922
Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE;
1923
return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1924
}
1925
1926
// If we are testing the intersection of 2 select-of-nonzero-constants with no
1927
// common bits set, it's the same as checking if exactly one select condition
1928
// is set:
1929
// ((A ? TC : FC) & (B ? TC : FC)) == 0 --> xor A, B
1930
// ((A ? TC : FC) & (B ? TC : FC)) != 0 --> not(xor A, B)
1931
// TODO: Generalize for non-constant values.
1932
// TODO: Handle signed/unsigned predicates.
1933
// TODO: Handle other bitwise logic connectors.
1934
// TODO: Extend to handle a non-zero compare constant.
1935
if (C.isZero() && (Pred == CmpInst::ICMP_EQ || And->hasOneUse())) {
1936
assert(Cmp.isEquality() && "Not expecting non-equality predicates");
1937
Value *A, *B;
1938
const APInt *TC, *FC;
1939
if (match(X, m_Select(m_Value(A), m_APInt(TC), m_APInt(FC))) &&
1940
match(Y,
1941
m_Select(m_Value(B), m_SpecificInt(*TC), m_SpecificInt(*FC))) &&
1942
!TC->isZero() && !FC->isZero() && !TC->intersects(*FC)) {
1943
Value *R = Builder.CreateXor(A, B);
1944
if (Pred == CmpInst::ICMP_NE)
1945
R = Builder.CreateNot(R);
1946
return replaceInstUsesWith(Cmp, R);
1947
}
1948
}
1949
1950
// ((zext i1 X) & Y) == 0 --> !((trunc Y) & X)
1951
// ((zext i1 X) & Y) != 0 --> ((trunc Y) & X)
1952
// ((zext i1 X) & Y) == 1 --> ((trunc Y) & X)
1953
// ((zext i1 X) & Y) != 1 --> !((trunc Y) & X)
1954
if (match(And, m_OneUse(m_c_And(m_OneUse(m_ZExt(m_Value(X))), m_Value(Y)))) &&
1955
X->getType()->isIntOrIntVectorTy(1) && (C.isZero() || C.isOne())) {
1956
Value *TruncY = Builder.CreateTrunc(Y, X->getType());
1957
if (C.isZero() ^ (Pred == CmpInst::ICMP_NE)) {
1958
Value *And = Builder.CreateAnd(TruncY, X);
1959
return BinaryOperator::CreateNot(And);
1960
}
1961
return BinaryOperator::CreateAnd(TruncY, X);
1962
}
1963
1964
// (icmp eq/ne (and (shl -1, X), Y), 0)
1965
// -> (icmp eq/ne (lshr Y, X), 0)
1966
// We could technically handle any C == 0 or (C < 0 && isOdd(C)) but it seems
1967
// highly unlikely the non-zero case will ever show up in code.
1968
if (C.isZero() &&
1969
match(And, m_OneUse(m_c_And(m_OneUse(m_Shl(m_AllOnes(), m_Value(X))),
1970
m_Value(Y))))) {
1971
Value *LShr = Builder.CreateLShr(Y, X);
1972
return new ICmpInst(Pred, LShr, Constant::getNullValue(LShr->getType()));
1973
}
1974
1975
return nullptr;
1976
}
1977
1978
/// Fold icmp eq/ne (or (xor/sub (X1, X2), xor/sub (X3, X4))), 0.
1979
static Value *foldICmpOrXorSubChain(ICmpInst &Cmp, BinaryOperator *Or,
1980
InstCombiner::BuilderTy &Builder) {
1981
// Are we using xors or subs to bitwise check for a pair or pairs of
1982
// (in)equalities? Convert to a shorter form that has more potential to be
1983
// folded even further.
1984
// ((X1 ^/- X2) || (X3 ^/- X4)) == 0 --> (X1 == X2) && (X3 == X4)
1985
// ((X1 ^/- X2) || (X3 ^/- X4)) != 0 --> (X1 != X2) || (X3 != X4)
1986
// ((X1 ^/- X2) || (X3 ^/- X4) || (X5 ^/- X6)) == 0 -->
1987
// (X1 == X2) && (X3 == X4) && (X5 == X6)
1988
// ((X1 ^/- X2) || (X3 ^/- X4) || (X5 ^/- X6)) != 0 -->
1989
// (X1 != X2) || (X3 != X4) || (X5 != X6)
1990
SmallVector<std::pair<Value *, Value *>, 2> CmpValues;
1991
SmallVector<Value *, 16> WorkList(1, Or);
1992
1993
while (!WorkList.empty()) {
1994
auto MatchOrOperatorArgument = [&](Value *OrOperatorArgument) {
1995
Value *Lhs, *Rhs;
1996
1997
if (match(OrOperatorArgument,
1998
m_OneUse(m_Xor(m_Value(Lhs), m_Value(Rhs))))) {
1999
CmpValues.emplace_back(Lhs, Rhs);
2000
return;
2001
}
2002
2003
if (match(OrOperatorArgument,
2004
m_OneUse(m_Sub(m_Value(Lhs), m_Value(Rhs))))) {
2005
CmpValues.emplace_back(Lhs, Rhs);
2006
return;
2007
}
2008
2009
WorkList.push_back(OrOperatorArgument);
2010
};
2011
2012
Value *CurrentValue = WorkList.pop_back_val();
2013
Value *OrOperatorLhs, *OrOperatorRhs;
2014
2015
if (!match(CurrentValue,
2016
m_Or(m_Value(OrOperatorLhs), m_Value(OrOperatorRhs)))) {
2017
return nullptr;
2018
}
2019
2020
MatchOrOperatorArgument(OrOperatorRhs);
2021
MatchOrOperatorArgument(OrOperatorLhs);
2022
}
2023
2024
ICmpInst::Predicate Pred = Cmp.getPredicate();
2025
auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
2026
Value *LhsCmp = Builder.CreateICmp(Pred, CmpValues.rbegin()->first,
2027
CmpValues.rbegin()->second);
2028
2029
for (auto It = CmpValues.rbegin() + 1; It != CmpValues.rend(); ++It) {
2030
Value *RhsCmp = Builder.CreateICmp(Pred, It->first, It->second);
2031
LhsCmp = Builder.CreateBinOp(BOpc, LhsCmp, RhsCmp);
2032
}
2033
2034
return LhsCmp;
2035
}
2036
2037
/// Fold icmp (or X, Y), C.
2038
Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
2039
BinaryOperator *Or,
2040
const APInt &C) {
2041
ICmpInst::Predicate Pred = Cmp.getPredicate();
2042
if (C.isOne()) {
2043
// icmp slt signum(V) 1 --> icmp slt V, 1
2044
Value *V = nullptr;
2045
if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
2046
return new ICmpInst(ICmpInst::ICMP_SLT, V,
2047
ConstantInt::get(V->getType(), 1));
2048
}
2049
2050
Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
2051
2052
// (icmp eq/ne (or disjoint x, C0), C1)
2053
// -> (icmp eq/ne x, C0^C1)
2054
if (Cmp.isEquality() && match(OrOp1, m_ImmConstant()) &&
2055
cast<PossiblyDisjointInst>(Or)->isDisjoint()) {
2056
Value *NewC =
2057
Builder.CreateXor(OrOp1, ConstantInt::get(OrOp1->getType(), C));
2058
return new ICmpInst(Pred, OrOp0, NewC);
2059
}
2060
2061
const APInt *MaskC;
2062
if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
2063
if (*MaskC == C && (C + 1).isPowerOf2()) {
2064
// X | C == C --> X <=u C
2065
// X | C != C --> X >u C
2066
// iff C+1 is a power of 2 (C is a bitmask of the low bits)
2067
Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
2068
return new ICmpInst(Pred, OrOp0, OrOp1);
2069
}
2070
2071
// More general: canonicalize 'equality with set bits mask' to
2072
// 'equality with clear bits mask'.
2073
// (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
2074
// (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
2075
if (Or->hasOneUse()) {
2076
Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
2077
Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
2078
return new ICmpInst(Pred, And, NewC);
2079
}
2080
}
2081
2082
// (X | (X-1)) s< 0 --> X s< 1
2083
// (X | (X-1)) s> -1 --> X s> 0
2084
Value *X;
2085
bool TrueIfSigned;
2086
if (isSignBitCheck(Pred, C, TrueIfSigned) &&
2087
match(Or, m_c_Or(m_Add(m_Value(X), m_AllOnes()), m_Deferred(X)))) {
2088
auto NewPred = TrueIfSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGT;
2089
Constant *NewC = ConstantInt::get(X->getType(), TrueIfSigned ? 1 : 0);
2090
return new ICmpInst(NewPred, X, NewC);
2091
}
2092
2093
const APInt *OrC;
2094
// icmp(X | OrC, C) --> icmp(X, 0)
2095
if (C.isNonNegative() && match(Or, m_Or(m_Value(X), m_APInt(OrC)))) {
2096
switch (Pred) {
2097
// X | OrC s< C --> X s< 0 iff OrC s>= C s>= 0
2098
case ICmpInst::ICMP_SLT:
2099
// X | OrC s>= C --> X s>= 0 iff OrC s>= C s>= 0
2100
case ICmpInst::ICMP_SGE:
2101
if (OrC->sge(C))
2102
return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2103
break;
2104
// X | OrC s<= C --> X s< 0 iff OrC s> C s>= 0
2105
case ICmpInst::ICMP_SLE:
2106
// X | OrC s> C --> X s>= 0 iff OrC s> C s>= 0
2107
case ICmpInst::ICMP_SGT:
2108
if (OrC->sgt(C))
2109
return new ICmpInst(ICmpInst::getFlippedStrictnessPredicate(Pred), X,
2110
ConstantInt::getNullValue(X->getType()));
2111
break;
2112
default:
2113
break;
2114
}
2115
}
2116
2117
if (!Cmp.isEquality() || !C.isZero() || !Or->hasOneUse())
2118
return nullptr;
2119
2120
Value *P, *Q;
2121
if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
2122
// Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
2123
// -> and (icmp eq P, null), (icmp eq Q, null).
2124
Value *CmpP =
2125
Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
2126
Value *CmpQ =
2127
Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
2128
auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
2129
return BinaryOperator::Create(BOpc, CmpP, CmpQ);
2130
}
2131
2132
if (Value *V = foldICmpOrXorSubChain(Cmp, Or, Builder))
2133
return replaceInstUsesWith(Cmp, V);
2134
2135
return nullptr;
2136
}
2137
2138
/// Fold icmp (mul X, Y), C.
2139
Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
2140
BinaryOperator *Mul,
2141
const APInt &C) {
2142
ICmpInst::Predicate Pred = Cmp.getPredicate();
2143
Type *MulTy = Mul->getType();
2144
Value *X = Mul->getOperand(0);
2145
2146
// If there's no overflow:
2147
// X * X == 0 --> X == 0
2148
// X * X != 0 --> X != 0
2149
if (Cmp.isEquality() && C.isZero() && X == Mul->getOperand(1) &&
2150
(Mul->hasNoUnsignedWrap() || Mul->hasNoSignedWrap()))
2151
return new ICmpInst(Pred, X, ConstantInt::getNullValue(MulTy));
2152
2153
const APInt *MulC;
2154
if (!match(Mul->getOperand(1), m_APInt(MulC)))
2155
return nullptr;
2156
2157
// If this is a test of the sign bit and the multiply is sign-preserving with
2158
// a constant operand, use the multiply LHS operand instead:
2159
// (X * +MulC) < 0 --> X < 0
2160
// (X * -MulC) < 0 --> X > 0
2161
if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
2162
if (MulC->isNegative())
2163
Pred = ICmpInst::getSwappedPredicate(Pred);
2164
return new ICmpInst(Pred, X, ConstantInt::getNullValue(MulTy));
2165
}
2166
2167
if (MulC->isZero())
2168
return nullptr;
2169
2170
// If the multiply does not wrap or the constant is odd, try to divide the
2171
// compare constant by the multiplication factor.
2172
if (Cmp.isEquality()) {
2173
// (mul nsw X, MulC) eq/ne C --> X eq/ne C /s MulC
2174
if (Mul->hasNoSignedWrap() && C.srem(*MulC).isZero()) {
2175
Constant *NewC = ConstantInt::get(MulTy, C.sdiv(*MulC));
2176
return new ICmpInst(Pred, X, NewC);
2177
}
2178
2179
// C % MulC == 0 is weaker than we could use if MulC is odd because it
2180
// correct to transform if MulC * N == C including overflow. I.e with i8
2181
// (icmp eq (mul X, 5), 101) -> (icmp eq X, 225) but since 101 % 5 != 0, we
2182
// miss that case.
2183
if (C.urem(*MulC).isZero()) {
2184
// (mul nuw X, MulC) eq/ne C --> X eq/ne C /u MulC
2185
// (mul X, OddC) eq/ne N * C --> X eq/ne N
2186
if ((*MulC & 1).isOne() || Mul->hasNoUnsignedWrap()) {
2187
Constant *NewC = ConstantInt::get(MulTy, C.udiv(*MulC));
2188
return new ICmpInst(Pred, X, NewC);
2189
}
2190
}
2191
}
2192
2193
// With a matching no-overflow guarantee, fold the constants:
2194
// (X * MulC) < C --> X < (C / MulC)
2195
// (X * MulC) > C --> X > (C / MulC)
2196
// TODO: Assert that Pred is not equal to SGE, SLE, UGE, ULE?
2197
Constant *NewC = nullptr;
2198
if (Mul->hasNoSignedWrap() && ICmpInst::isSigned(Pred)) {
2199
// MININT / -1 --> overflow.
2200
if (C.isMinSignedValue() && MulC->isAllOnes())
2201
return nullptr;
2202
if (MulC->isNegative())
2203
Pred = ICmpInst::getSwappedPredicate(Pred);
2204
2205
if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2206
NewC = ConstantInt::get(
2207
MulTy, APIntOps::RoundingSDiv(C, *MulC, APInt::Rounding::UP));
2208
} else {
2209
assert((Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_SGT) &&
2210
"Unexpected predicate");
2211
NewC = ConstantInt::get(
2212
MulTy, APIntOps::RoundingSDiv(C, *MulC, APInt::Rounding::DOWN));
2213
}
2214
} else if (Mul->hasNoUnsignedWrap() && ICmpInst::isUnsigned(Pred)) {
2215
if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) {
2216
NewC = ConstantInt::get(
2217
MulTy, APIntOps::RoundingUDiv(C, *MulC, APInt::Rounding::UP));
2218
} else {
2219
assert((Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
2220
"Unexpected predicate");
2221
NewC = ConstantInt::get(
2222
MulTy, APIntOps::RoundingUDiv(C, *MulC, APInt::Rounding::DOWN));
2223
}
2224
}
2225
2226
return NewC ? new ICmpInst(Pred, X, NewC) : nullptr;
2227
}
2228
2229
/// Fold icmp (shl 1, Y), C.
2230
static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
2231
const APInt &C) {
2232
Value *Y;
2233
if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
2234
return nullptr;
2235
2236
Type *ShiftType = Shl->getType();
2237
unsigned TypeBits = C.getBitWidth();
2238
bool CIsPowerOf2 = C.isPowerOf2();
2239
ICmpInst::Predicate Pred = Cmp.getPredicate();
2240
if (Cmp.isUnsigned()) {
2241
// (1 << Y) pred C -> Y pred Log2(C)
2242
if (!CIsPowerOf2) {
2243
// (1 << Y) < 30 -> Y <= 4
2244
// (1 << Y) <= 30 -> Y <= 4
2245
// (1 << Y) >= 30 -> Y > 4
2246
// (1 << Y) > 30 -> Y > 4
2247
if (Pred == ICmpInst::ICMP_ULT)
2248
Pred = ICmpInst::ICMP_ULE;
2249
else if (Pred == ICmpInst::ICMP_UGE)
2250
Pred = ICmpInst::ICMP_UGT;
2251
}
2252
2253
unsigned CLog2 = C.logBase2();
2254
return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2255
} else if (Cmp.isSigned()) {
2256
Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2257
// (1 << Y) > 0 -> Y != 31
2258
// (1 << Y) > C -> Y != 31 if C is negative.
2259
if (Pred == ICmpInst::ICMP_SGT && C.sle(0))
2260
return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2261
2262
// (1 << Y) < 0 -> Y == 31
2263
// (1 << Y) < 1 -> Y == 31
2264
// (1 << Y) < C -> Y == 31 if C is negative and not signed min.
2265
// Exclude signed min by subtracting 1 and lower the upper bound to 0.
2266
if (Pred == ICmpInst::ICMP_SLT && (C-1).sle(0))
2267
return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2268
}
2269
2270
return nullptr;
2271
}
2272
2273
/// Fold icmp (shl X, Y), C.
2274
Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
2275
BinaryOperator *Shl,
2276
const APInt &C) {
2277
const APInt *ShiftVal;
2278
if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2279
return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2280
2281
ICmpInst::Predicate Pred = Cmp.getPredicate();
2282
// (icmp pred (shl nuw&nsw X, Y), Csle0)
2283
// -> (icmp pred X, Csle0)
2284
//
2285
// The idea is the nuw/nsw essentially freeze the sign bit for the shift op
2286
// so X's must be what is used.
2287
if (C.sle(0) && Shl->hasNoUnsignedWrap() && Shl->hasNoSignedWrap())
2288
return new ICmpInst(Pred, Shl->getOperand(0), Cmp.getOperand(1));
2289
2290
// (icmp eq/ne (shl nuw|nsw X, Y), 0)
2291
// -> (icmp eq/ne X, 0)
2292
if (ICmpInst::isEquality(Pred) && C.isZero() &&
2293
(Shl->hasNoUnsignedWrap() || Shl->hasNoSignedWrap()))
2294
return new ICmpInst(Pred, Shl->getOperand(0), Cmp.getOperand(1));
2295
2296
// (icmp slt (shl nsw X, Y), 0/1)
2297
// -> (icmp slt X, 0/1)
2298
// (icmp sgt (shl nsw X, Y), 0/-1)
2299
// -> (icmp sgt X, 0/-1)
2300
//
2301
// NB: sge/sle with a constant will canonicalize to sgt/slt.
2302
if (Shl->hasNoSignedWrap() &&
2303
(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT))
2304
if (C.isZero() || (Pred == ICmpInst::ICMP_SGT ? C.isAllOnes() : C.isOne()))
2305
return new ICmpInst(Pred, Shl->getOperand(0), Cmp.getOperand(1));
2306
2307
const APInt *ShiftAmt;
2308
if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2309
return foldICmpShlOne(Cmp, Shl, C);
2310
2311
// Check that the shift amount is in range. If not, don't perform undefined
2312
// shifts. When the shift is visited, it will be simplified.
2313
unsigned TypeBits = C.getBitWidth();
2314
if (ShiftAmt->uge(TypeBits))
2315
return nullptr;
2316
2317
Value *X = Shl->getOperand(0);
2318
Type *ShType = Shl->getType();
2319
2320
// NSW guarantees that we are only shifting out sign bits from the high bits,
2321
// so we can ASHR the compare constant without needing a mask and eliminate
2322
// the shift.
2323
if (Shl->hasNoSignedWrap()) {
2324
if (Pred == ICmpInst::ICMP_SGT) {
2325
// icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2326
APInt ShiftedC = C.ashr(*ShiftAmt);
2327
return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2328
}
2329
if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2330
C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2331
APInt ShiftedC = C.ashr(*ShiftAmt);
2332
return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2333
}
2334
if (Pred == ICmpInst::ICMP_SLT) {
2335
// SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2336
// (X << S) <=s C is equiv to X <=s (C >> S) for all C
2337
// (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2338
// (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2339
assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2340
APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2341
return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2342
}
2343
}
2344
2345
// NUW guarantees that we are only shifting out zero bits from the high bits,
2346
// so we can LSHR the compare constant without needing a mask and eliminate
2347
// the shift.
2348
if (Shl->hasNoUnsignedWrap()) {
2349
if (Pred == ICmpInst::ICMP_UGT) {
2350
// icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2351
APInt ShiftedC = C.lshr(*ShiftAmt);
2352
return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2353
}
2354
if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2355
C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2356
APInt ShiftedC = C.lshr(*ShiftAmt);
2357
return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2358
}
2359
if (Pred == ICmpInst::ICMP_ULT) {
2360
// ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2361
// (X << S) <=u C is equiv to X <=u (C >> S) for all C
2362
// (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2363
// (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2364
assert(C.ugt(0) && "ult 0 should have been eliminated");
2365
APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2366
return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2367
}
2368
}
2369
2370
if (Cmp.isEquality() && Shl->hasOneUse()) {
2371
// Strength-reduce the shift into an 'and'.
2372
Constant *Mask = ConstantInt::get(
2373
ShType,
2374
APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2375
Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2376
Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2377
return new ICmpInst(Pred, And, LShrC);
2378
}
2379
2380
// Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2381
bool TrueIfSigned = false;
2382
if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2383
// (X << 31) <s 0 --> (X & 1) != 0
2384
Constant *Mask = ConstantInt::get(
2385
ShType,
2386
APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2387
Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2388
return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2389
And, Constant::getNullValue(ShType));
2390
}
2391
2392
// Simplify 'shl' inequality test into 'and' equality test.
2393
if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2394
// (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2395
if ((C + 1).isPowerOf2() &&
2396
(Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2397
Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2398
return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2399
: ICmpInst::ICMP_NE,
2400
And, Constant::getNullValue(ShType));
2401
}
2402
// (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2403
if (C.isPowerOf2() &&
2404
(Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2405
Value *And =
2406
Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2407
return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2408
: ICmpInst::ICMP_NE,
2409
And, Constant::getNullValue(ShType));
2410
}
2411
}
2412
2413
// Transform (icmp pred iM (shl iM %v, N), C)
2414
// -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2415
// Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2416
// This enables us to get rid of the shift in favor of a trunc that may be
2417
// free on the target. It has the additional benefit of comparing to a
2418
// smaller constant that may be more target-friendly.
2419
unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2420
if (Shl->hasOneUse() && Amt != 0 &&
2421
shouldChangeType(ShType->getScalarSizeInBits(), TypeBits - Amt)) {
2422
ICmpInst::Predicate CmpPred = Pred;
2423
APInt RHSC = C;
2424
2425
if (RHSC.countr_zero() < Amt && ICmpInst::isStrictPredicate(CmpPred)) {
2426
// Try the flipped strictness predicate.
2427
// e.g.:
2428
// icmp ult i64 (shl X, 32), 8589934593 ->
2429
// icmp ule i64 (shl X, 32), 8589934592 ->
2430
// icmp ule i32 (trunc X, i32), 2 ->
2431
// icmp ult i32 (trunc X, i32), 3
2432
if (auto FlippedStrictness =
2433
InstCombiner::getFlippedStrictnessPredicateAndConstant(
2434
Pred, ConstantInt::get(ShType->getContext(), C))) {
2435
CmpPred = FlippedStrictness->first;
2436
RHSC = cast<ConstantInt>(FlippedStrictness->second)->getValue();
2437
}
2438
}
2439
2440
if (RHSC.countr_zero() >= Amt) {
2441
Type *TruncTy = ShType->getWithNewBitWidth(TypeBits - Amt);
2442
Constant *NewC =
2443
ConstantInt::get(TruncTy, RHSC.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2444
return new ICmpInst(CmpPred,
2445
Builder.CreateTrunc(X, TruncTy, "", /*IsNUW=*/false,
2446
Shl->hasNoSignedWrap()),
2447
NewC);
2448
}
2449
}
2450
2451
return nullptr;
2452
}
2453
2454
/// Fold icmp ({al}shr X, Y), C.
2455
Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
2456
BinaryOperator *Shr,
2457
const APInt &C) {
2458
// An exact shr only shifts out zero bits, so:
2459
// icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2460
Value *X = Shr->getOperand(0);
2461
CmpInst::Predicate Pred = Cmp.getPredicate();
2462
if (Cmp.isEquality() && Shr->isExact() && C.isZero())
2463
return new ICmpInst(Pred, X, Cmp.getOperand(1));
2464
2465
bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2466
const APInt *ShiftValC;
2467
if (match(X, m_APInt(ShiftValC))) {
2468
if (Cmp.isEquality())
2469
return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftValC);
2470
2471
// (ShiftValC >> Y) >s -1 --> Y != 0 with ShiftValC < 0
2472
// (ShiftValC >> Y) <s 0 --> Y == 0 with ShiftValC < 0
2473
bool TrueIfSigned;
2474
if (!IsAShr && ShiftValC->isNegative() &&
2475
isSignBitCheck(Pred, C, TrueIfSigned))
2476
return new ICmpInst(TrueIfSigned ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE,
2477
Shr->getOperand(1),
2478
ConstantInt::getNullValue(X->getType()));
2479
2480
// If the shifted constant is a power-of-2, test the shift amount directly:
2481
// (ShiftValC >> Y) >u C --> X <u (LZ(C) - LZ(ShiftValC))
2482
// (ShiftValC >> Y) <u C --> X >=u (LZ(C-1) - LZ(ShiftValC))
2483
if (!IsAShr && ShiftValC->isPowerOf2() &&
2484
(Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_ULT)) {
2485
bool IsUGT = Pred == CmpInst::ICMP_UGT;
2486
assert(ShiftValC->uge(C) && "Expected simplify of compare");
2487
assert((IsUGT || !C.isZero()) && "Expected X u< 0 to simplify");
2488
2489
unsigned CmpLZ = IsUGT ? C.countl_zero() : (C - 1).countl_zero();
2490
unsigned ShiftLZ = ShiftValC->countl_zero();
2491
Constant *NewC = ConstantInt::get(Shr->getType(), CmpLZ - ShiftLZ);
2492
auto NewPred = IsUGT ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
2493
return new ICmpInst(NewPred, Shr->getOperand(1), NewC);
2494
}
2495
}
2496
2497
const APInt *ShiftAmtC;
2498
if (!match(Shr->getOperand(1), m_APInt(ShiftAmtC)))
2499
return nullptr;
2500
2501
// Check that the shift amount is in range. If not, don't perform undefined
2502
// shifts. When the shift is visited it will be simplified.
2503
unsigned TypeBits = C.getBitWidth();
2504
unsigned ShAmtVal = ShiftAmtC->getLimitedValue(TypeBits);
2505
if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2506
return nullptr;
2507
2508
bool IsExact = Shr->isExact();
2509
Type *ShrTy = Shr->getType();
2510
// TODO: If we could guarantee that InstSimplify would handle all of the
2511
// constant-value-based preconditions in the folds below, then we could assert
2512
// those conditions rather than checking them. This is difficult because of
2513
// undef/poison (PR34838).
2514
if (IsAShr && Shr->hasOneUse()) {
2515
if (IsExact && (Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) &&
2516
(C - 1).isPowerOf2() && C.countLeadingZeros() > ShAmtVal) {
2517
// When C - 1 is a power of two and the transform can be legally
2518
// performed, prefer this form so the produced constant is close to a
2519
// power of two.
2520
// icmp slt/ult (ashr exact X, ShAmtC), C
2521
// --> icmp slt/ult X, (C - 1) << ShAmtC) + 1
2522
APInt ShiftedC = (C - 1).shl(ShAmtVal) + 1;
2523
return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2524
}
2525
if (IsExact || Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT) {
2526
// When ShAmtC can be shifted losslessly:
2527
// icmp PRED (ashr exact X, ShAmtC), C --> icmp PRED X, (C << ShAmtC)
2528
// icmp slt/ult (ashr X, ShAmtC), C --> icmp slt/ult X, (C << ShAmtC)
2529
APInt ShiftedC = C.shl(ShAmtVal);
2530
if (ShiftedC.ashr(ShAmtVal) == C)
2531
return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2532
}
2533
if (Pred == CmpInst::ICMP_SGT) {
2534
// icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2535
APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2536
if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2537
(ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2538
return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2539
}
2540
if (Pred == CmpInst::ICMP_UGT) {
2541
// icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2542
// 'C + 1 << ShAmtC' can overflow as a signed number, so the 2nd
2543
// clause accounts for that pattern.
2544
APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2545
if ((ShiftedC + 1).ashr(ShAmtVal) == (C + 1) ||
2546
(C + 1).shl(ShAmtVal).isMinSignedValue())
2547
return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2548
}
2549
2550
// If the compare constant has significant bits above the lowest sign-bit,
2551
// then convert an unsigned cmp to a test of the sign-bit:
2552
// (ashr X, ShiftC) u> C --> X s< 0
2553
// (ashr X, ShiftC) u< C --> X s> -1
2554
if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) {
2555
if (Pred == CmpInst::ICMP_UGT) {
2556
return new ICmpInst(CmpInst::ICMP_SLT, X,
2557
ConstantInt::getNullValue(ShrTy));
2558
}
2559
if (Pred == CmpInst::ICMP_ULT) {
2560
return new ICmpInst(CmpInst::ICMP_SGT, X,
2561
ConstantInt::getAllOnesValue(ShrTy));
2562
}
2563
}
2564
} else if (!IsAShr) {
2565
if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2566
// icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2567
// icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2568
APInt ShiftedC = C.shl(ShAmtVal);
2569
if (ShiftedC.lshr(ShAmtVal) == C)
2570
return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2571
}
2572
if (Pred == CmpInst::ICMP_UGT) {
2573
// icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2574
APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2575
if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2576
return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2577
}
2578
}
2579
2580
if (!Cmp.isEquality())
2581
return nullptr;
2582
2583
// Handle equality comparisons of shift-by-constant.
2584
2585
// If the comparison constant changes with the shift, the comparison cannot
2586
// succeed (bits of the comparison constant cannot match the shifted value).
2587
// This should be known by InstSimplify and already be folded to true/false.
2588
assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2589
(!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2590
"Expected icmp+shr simplify did not occur.");
2591
2592
// If the bits shifted out are known zero, compare the unshifted value:
2593
// (X & 4) >> 1 == 2 --> (X & 4) == 4.
2594
if (Shr->isExact())
2595
return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2596
2597
if (C.isZero()) {
2598
// == 0 is u< 1.
2599
if (Pred == CmpInst::ICMP_EQ)
2600
return new ICmpInst(CmpInst::ICMP_ULT, X,
2601
ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal)));
2602
else
2603
return new ICmpInst(CmpInst::ICMP_UGT, X,
2604
ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1));
2605
}
2606
2607
if (Shr->hasOneUse()) {
2608
// Canonicalize the shift into an 'and':
2609
// icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2610
APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2611
Constant *Mask = ConstantInt::get(ShrTy, Val);
2612
Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2613
return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2614
}
2615
2616
return nullptr;
2617
}
2618
2619
Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
2620
BinaryOperator *SRem,
2621
const APInt &C) {
2622
// Match an 'is positive' or 'is negative' comparison of remainder by a
2623
// constant power-of-2 value:
2624
// (X % pow2C) sgt/slt 0
2625
const ICmpInst::Predicate Pred = Cmp.getPredicate();
2626
if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT &&
2627
Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2628
return nullptr;
2629
2630
// TODO: The one-use check is standard because we do not typically want to
2631
// create longer instruction sequences, but this might be a special-case
2632
// because srem is not good for analysis or codegen.
2633
if (!SRem->hasOneUse())
2634
return nullptr;
2635
2636
const APInt *DivisorC;
2637
if (!match(SRem->getOperand(1), m_Power2(DivisorC)))
2638
return nullptr;
2639
2640
// For cmp_sgt/cmp_slt only zero valued C is handled.
2641
// For cmp_eq/cmp_ne only positive valued C is handled.
2642
if (((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT) &&
2643
!C.isZero()) ||
2644
((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2645
!C.isStrictlyPositive()))
2646
return nullptr;
2647
2648
// Mask off the sign bit and the modulo bits (low-bits).
2649
Type *Ty = SRem->getType();
2650
APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2651
Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2652
Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2653
2654
if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)
2655
return new ICmpInst(Pred, And, ConstantInt::get(Ty, C));
2656
2657
// For 'is positive?' check that the sign-bit is clear and at least 1 masked
2658
// bit is set. Example:
2659
// (i8 X % 32) s> 0 --> (X & 159) s> 0
2660
if (Pred == ICmpInst::ICMP_SGT)
2661
return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2662
2663
// For 'is negative?' check that the sign-bit is set and at least 1 masked
2664
// bit is set. Example:
2665
// (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2666
return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2667
}
2668
2669
/// Fold icmp (udiv X, Y), C.
2670
Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
2671
BinaryOperator *UDiv,
2672
const APInt &C) {
2673
ICmpInst::Predicate Pred = Cmp.getPredicate();
2674
Value *X = UDiv->getOperand(0);
2675
Value *Y = UDiv->getOperand(1);
2676
Type *Ty = UDiv->getType();
2677
2678
const APInt *C2;
2679
if (!match(X, m_APInt(C2)))
2680
return nullptr;
2681
2682
assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2683
2684
// (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2685
if (Pred == ICmpInst::ICMP_UGT) {
2686
assert(!C.isMaxValue() &&
2687
"icmp ugt X, UINT_MAX should have been simplified already.");
2688
return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2689
ConstantInt::get(Ty, C2->udiv(C + 1)));
2690
}
2691
2692
// (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2693
if (Pred == ICmpInst::ICMP_ULT) {
2694
assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2695
return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2696
ConstantInt::get(Ty, C2->udiv(C)));
2697
}
2698
2699
return nullptr;
2700
}
2701
2702
/// Fold icmp ({su}div X, Y), C.
2703
Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
2704
BinaryOperator *Div,
2705
const APInt &C) {
2706
ICmpInst::Predicate Pred = Cmp.getPredicate();
2707
Value *X = Div->getOperand(0);
2708
Value *Y = Div->getOperand(1);
2709
Type *Ty = Div->getType();
2710
bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2711
2712
// If unsigned division and the compare constant is bigger than
2713
// UMAX/2 (negative), there's only one pair of values that satisfies an
2714
// equality check, so eliminate the division:
2715
// (X u/ Y) == C --> (X == C) && (Y == 1)
2716
// (X u/ Y) != C --> (X != C) || (Y != 1)
2717
// Similarly, if signed division and the compare constant is exactly SMIN:
2718
// (X s/ Y) == SMIN --> (X == SMIN) && (Y == 1)
2719
// (X s/ Y) != SMIN --> (X != SMIN) || (Y != 1)
2720
if (Cmp.isEquality() && Div->hasOneUse() && C.isSignBitSet() &&
2721
(!DivIsSigned || C.isMinSignedValue())) {
2722
Value *XBig = Builder.CreateICmp(Pred, X, ConstantInt::get(Ty, C));
2723
Value *YOne = Builder.CreateICmp(Pred, Y, ConstantInt::get(Ty, 1));
2724
auto Logic = Pred == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
2725
return BinaryOperator::Create(Logic, XBig, YOne);
2726
}
2727
2728
// Fold: icmp pred ([us]div X, C2), C -> range test
2729
// Fold this div into the comparison, producing a range check.
2730
// Determine, based on the divide type, what the range is being
2731
// checked. If there is an overflow on the low or high side, remember
2732
// it, otherwise compute the range [low, hi) bounding the new value.
2733
// See: InsertRangeTest above for the kinds of replacements possible.
2734
const APInt *C2;
2735
if (!match(Y, m_APInt(C2)))
2736
return nullptr;
2737
2738
// FIXME: If the operand types don't match the type of the divide
2739
// then don't attempt this transform. The code below doesn't have the
2740
// logic to deal with a signed divide and an unsigned compare (and
2741
// vice versa). This is because (x /s C2) <s C produces different
2742
// results than (x /s C2) <u C or (x /u C2) <s C or even
2743
// (x /u C2) <u C. Simply casting the operands and result won't
2744
// work. :( The if statement below tests that condition and bails
2745
// if it finds it.
2746
if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2747
return nullptr;
2748
2749
// The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2750
// INT_MIN will also fail if the divisor is 1. Although folds of all these
2751
// division-by-constant cases should be present, we can not assert that they
2752
// have happened before we reach this icmp instruction.
2753
if (C2->isZero() || C2->isOne() || (DivIsSigned && C2->isAllOnes()))
2754
return nullptr;
2755
2756
// Compute Prod = C * C2. We are essentially solving an equation of
2757
// form X / C2 = C. We solve for X by multiplying C2 and C.
2758
// By solving for X, we can turn this into a range check instead of computing
2759
// a divide.
2760
APInt Prod = C * *C2;
2761
2762
// Determine if the product overflows by seeing if the product is not equal to
2763
// the divide. Make sure we do the same kind of divide as in the LHS
2764
// instruction that we're folding.
2765
bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2766
2767
// If the division is known to be exact, then there is no remainder from the
2768
// divide, so the covered range size is unit, otherwise it is the divisor.
2769
APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2770
2771
// Figure out the interval that is being checked. For example, a comparison
2772
// like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2773
// Compute this interval based on the constants involved and the signedness of
2774
// the compare/divide. This computes a half-open interval, keeping track of
2775
// whether either value in the interval overflows. After analysis each
2776
// overflow variable is set to 0 if it's corresponding bound variable is valid
2777
// -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2778
int LoOverflow = 0, HiOverflow = 0;
2779
APInt LoBound, HiBound;
2780
2781
if (!DivIsSigned) { // udiv
2782
// e.g. X/5 op 3 --> [15, 20)
2783
LoBound = Prod;
2784
HiOverflow = LoOverflow = ProdOV;
2785
if (!HiOverflow) {
2786
// If this is not an exact divide, then many values in the range collapse
2787
// to the same result value.
2788
HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2789
}
2790
} else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2791
if (C.isZero()) { // (X / pos) op 0
2792
// Can't overflow. e.g. X/2 op 0 --> [-1, 2)
2793
LoBound = -(RangeSize - 1);
2794
HiBound = RangeSize;
2795
} else if (C.isStrictlyPositive()) { // (X / pos) op pos
2796
LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
2797
HiOverflow = LoOverflow = ProdOV;
2798
if (!HiOverflow)
2799
HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2800
} else { // (X / pos) op neg
2801
// e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
2802
HiBound = Prod + 1;
2803
LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2804
if (!LoOverflow) {
2805
APInt DivNeg = -RangeSize;
2806
LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2807
}
2808
}
2809
} else if (C2->isNegative()) { // Divisor is < 0.
2810
if (Div->isExact())
2811
RangeSize.negate();
2812
if (C.isZero()) { // (X / neg) op 0
2813
// e.g. X/-5 op 0 --> [-4, 5)
2814
LoBound = RangeSize + 1;
2815
HiBound = -RangeSize;
2816
if (HiBound == *C2) { // -INTMIN = INTMIN
2817
HiOverflow = 1; // [INTMIN+1, overflow)
2818
HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN
2819
}
2820
} else if (C.isStrictlyPositive()) { // (X / neg) op pos
2821
// e.g. X/-5 op 3 --> [-19, -14)
2822
HiBound = Prod + 1;
2823
HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2824
if (!LoOverflow)
2825
LoOverflow =
2826
addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1 : 0;
2827
} else { // (X / neg) op neg
2828
LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
2829
LoOverflow = HiOverflow = ProdOV;
2830
if (!HiOverflow)
2831
HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2832
}
2833
2834
// Dividing by a negative swaps the condition. LT <-> GT
2835
Pred = ICmpInst::getSwappedPredicate(Pred);
2836
}
2837
2838
switch (Pred) {
2839
default:
2840
llvm_unreachable("Unhandled icmp predicate!");
2841
case ICmpInst::ICMP_EQ:
2842
if (LoOverflow && HiOverflow)
2843
return replaceInstUsesWith(Cmp, Builder.getFalse());
2844
if (HiOverflow)
2845
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE,
2846
X, ConstantInt::get(Ty, LoBound));
2847
if (LoOverflow)
2848
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
2849
X, ConstantInt::get(Ty, HiBound));
2850
return replaceInstUsesWith(
2851
Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2852
case ICmpInst::ICMP_NE:
2853
if (LoOverflow && HiOverflow)
2854
return replaceInstUsesWith(Cmp, Builder.getTrue());
2855
if (HiOverflow)
2856
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
2857
X, ConstantInt::get(Ty, LoBound));
2858
if (LoOverflow)
2859
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE,
2860
X, ConstantInt::get(Ty, HiBound));
2861
return replaceInstUsesWith(
2862
Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, false));
2863
case ICmpInst::ICMP_ULT:
2864
case ICmpInst::ICMP_SLT:
2865
if (LoOverflow == +1) // Low bound is greater than input range.
2866
return replaceInstUsesWith(Cmp, Builder.getTrue());
2867
if (LoOverflow == -1) // Low bound is less than input range.
2868
return replaceInstUsesWith(Cmp, Builder.getFalse());
2869
return new ICmpInst(Pred, X, ConstantInt::get(Ty, LoBound));
2870
case ICmpInst::ICMP_UGT:
2871
case ICmpInst::ICMP_SGT:
2872
if (HiOverflow == +1) // High bound greater than input range.
2873
return replaceInstUsesWith(Cmp, Builder.getFalse());
2874
if (HiOverflow == -1) // High bound less than input range.
2875
return replaceInstUsesWith(Cmp, Builder.getTrue());
2876
if (Pred == ICmpInst::ICMP_UGT)
2877
return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, HiBound));
2878
return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, HiBound));
2879
}
2880
2881
return nullptr;
2882
}
2883
2884
/// Fold icmp (sub X, Y), C.
2885
Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
2886
BinaryOperator *Sub,
2887
const APInt &C) {
2888
Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2889
ICmpInst::Predicate Pred = Cmp.getPredicate();
2890
Type *Ty = Sub->getType();
2891
2892
// (SubC - Y) == C) --> Y == (SubC - C)
2893
// (SubC - Y) != C) --> Y != (SubC - C)
2894
Constant *SubC;
2895
if (Cmp.isEquality() && match(X, m_ImmConstant(SubC))) {
2896
return new ICmpInst(Pred, Y,
2897
ConstantExpr::getSub(SubC, ConstantInt::get(Ty, C)));
2898
}
2899
2900
// (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2901
const APInt *C2;
2902
APInt SubResult;
2903
ICmpInst::Predicate SwappedPred = Cmp.getSwappedPredicate();
2904
bool HasNSW = Sub->hasNoSignedWrap();
2905
bool HasNUW = Sub->hasNoUnsignedWrap();
2906
if (match(X, m_APInt(C2)) &&
2907
((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) &&
2908
!subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2909
return new ICmpInst(SwappedPred, Y, ConstantInt::get(Ty, SubResult));
2910
2911
// X - Y == 0 --> X == Y.
2912
// X - Y != 0 --> X != Y.
2913
// TODO: We allow this with multiple uses as long as the other uses are not
2914
// in phis. The phi use check is guarding against a codegen regression
2915
// for a loop test. If the backend could undo this (and possibly
2916
// subsequent transforms), we would not need this hack.
2917
if (Cmp.isEquality() && C.isZero() &&
2918
none_of((Sub->users()), [](const User *U) { return isa<PHINode>(U); }))
2919
return new ICmpInst(Pred, X, Y);
2920
2921
// The following transforms are only worth it if the only user of the subtract
2922
// is the icmp.
2923
// TODO: This is an artificial restriction for all of the transforms below
2924
// that only need a single replacement icmp. Can these use the phi test
2925
// like the transform above here?
2926
if (!Sub->hasOneUse())
2927
return nullptr;
2928
2929
if (Sub->hasNoSignedWrap()) {
2930
// (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2931
if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes())
2932
return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2933
2934
// (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2935
if (Pred == ICmpInst::ICMP_SGT && C.isZero())
2936
return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2937
2938
// (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2939
if (Pred == ICmpInst::ICMP_SLT && C.isZero())
2940
return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2941
2942
// (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2943
if (Pred == ICmpInst::ICMP_SLT && C.isOne())
2944
return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2945
}
2946
2947
if (!match(X, m_APInt(C2)))
2948
return nullptr;
2949
2950
// C2 - Y <u C -> (Y | (C - 1)) == C2
2951
// iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2952
if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2953
(*C2 & (C - 1)) == (C - 1))
2954
return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2955
2956
// C2 - Y >u C -> (Y | C) != C2
2957
// iff C2 & C == C and C + 1 is a power of 2
2958
if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2959
return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2960
2961
// We have handled special cases that reduce.
2962
// Canonicalize any remaining sub to add as:
2963
// (C2 - Y) > C --> (Y + ~C2) < ~C
2964
Value *Add = Builder.CreateAdd(Y, ConstantInt::get(Ty, ~(*C2)), "notsub",
2965
HasNUW, HasNSW);
2966
return new ICmpInst(SwappedPred, Add, ConstantInt::get(Ty, ~C));
2967
}
2968
2969
static Value *createLogicFromTable(const std::bitset<4> &Table, Value *Op0,
2970
Value *Op1, IRBuilderBase &Builder,
2971
bool HasOneUse) {
2972
auto FoldConstant = [&](bool Val) {
2973
Constant *Res = Val ? Builder.getTrue() : Builder.getFalse();
2974
if (Op0->getType()->isVectorTy())
2975
Res = ConstantVector::getSplat(
2976
cast<VectorType>(Op0->getType())->getElementCount(), Res);
2977
return Res;
2978
};
2979
2980
switch (Table.to_ulong()) {
2981
case 0: // 0 0 0 0
2982
return FoldConstant(false);
2983
case 1: // 0 0 0 1
2984
return HasOneUse ? Builder.CreateNot(Builder.CreateOr(Op0, Op1)) : nullptr;
2985
case 2: // 0 0 1 0
2986
return HasOneUse ? Builder.CreateAnd(Builder.CreateNot(Op0), Op1) : nullptr;
2987
case 3: // 0 0 1 1
2988
return Builder.CreateNot(Op0);
2989
case 4: // 0 1 0 0
2990
return HasOneUse ? Builder.CreateAnd(Op0, Builder.CreateNot(Op1)) : nullptr;
2991
case 5: // 0 1 0 1
2992
return Builder.CreateNot(Op1);
2993
case 6: // 0 1 1 0
2994
return Builder.CreateXor(Op0, Op1);
2995
case 7: // 0 1 1 1
2996
return HasOneUse ? Builder.CreateNot(Builder.CreateAnd(Op0, Op1)) : nullptr;
2997
case 8: // 1 0 0 0
2998
return Builder.CreateAnd(Op0, Op1);
2999
case 9: // 1 0 0 1
3000
return HasOneUse ? Builder.CreateNot(Builder.CreateXor(Op0, Op1)) : nullptr;
3001
case 10: // 1 0 1 0
3002
return Op1;
3003
case 11: // 1 0 1 1
3004
return HasOneUse ? Builder.CreateOr(Builder.CreateNot(Op0), Op1) : nullptr;
3005
case 12: // 1 1 0 0
3006
return Op0;
3007
case 13: // 1 1 0 1
3008
return HasOneUse ? Builder.CreateOr(Op0, Builder.CreateNot(Op1)) : nullptr;
3009
case 14: // 1 1 1 0
3010
return Builder.CreateOr(Op0, Op1);
3011
case 15: // 1 1 1 1
3012
return FoldConstant(true);
3013
default:
3014
llvm_unreachable("Invalid Operation");
3015
}
3016
return nullptr;
3017
}
3018
3019
/// Fold icmp (add X, Y), C.
3020
Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
3021
BinaryOperator *Add,
3022
const APInt &C) {
3023
Value *Y = Add->getOperand(1);
3024
Value *X = Add->getOperand(0);
3025
3026
Value *Op0, *Op1;
3027
Instruction *Ext0, *Ext1;
3028
const CmpInst::Predicate Pred = Cmp.getPredicate();
3029
if (match(Add,
3030
m_Add(m_CombineAnd(m_Instruction(Ext0), m_ZExtOrSExt(m_Value(Op0))),
3031
m_CombineAnd(m_Instruction(Ext1),
3032
m_ZExtOrSExt(m_Value(Op1))))) &&
3033
Op0->getType()->isIntOrIntVectorTy(1) &&
3034
Op1->getType()->isIntOrIntVectorTy(1)) {
3035
unsigned BW = C.getBitWidth();
3036
std::bitset<4> Table;
3037
auto ComputeTable = [&](bool Op0Val, bool Op1Val) {
3038
int Res = 0;
3039
if (Op0Val)
3040
Res += isa<ZExtInst>(Ext0) ? 1 : -1;
3041
if (Op1Val)
3042
Res += isa<ZExtInst>(Ext1) ? 1 : -1;
3043
return ICmpInst::compare(APInt(BW, Res, true), C, Pred);
3044
};
3045
3046
Table[0] = ComputeTable(false, false);
3047
Table[1] = ComputeTable(false, true);
3048
Table[2] = ComputeTable(true, false);
3049
Table[3] = ComputeTable(true, true);
3050
if (auto *Cond =
3051
createLogicFromTable(Table, Op0, Op1, Builder, Add->hasOneUse()))
3052
return replaceInstUsesWith(Cmp, Cond);
3053
}
3054
const APInt *C2;
3055
if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
3056
return nullptr;
3057
3058
// Fold icmp pred (add X, C2), C.
3059
Type *Ty = Add->getType();
3060
3061
// If the add does not wrap, we can always adjust the compare by subtracting
3062
// the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
3063
// are canonicalized to SGT/SLT/UGT/ULT.
3064
if ((Add->hasNoSignedWrap() &&
3065
(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
3066
(Add->hasNoUnsignedWrap() &&
3067
(Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
3068
bool Overflow;
3069
APInt NewC =
3070
Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
3071
// If there is overflow, the result must be true or false.
3072
// TODO: Can we assert there is no overflow because InstSimplify always
3073
// handles those cases?
3074
if (!Overflow)
3075
// icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
3076
return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
3077
}
3078
3079
auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
3080
const APInt &Upper = CR.getUpper();
3081
const APInt &Lower = CR.getLower();
3082
if (Cmp.isSigned()) {
3083
if (Lower.isSignMask())
3084
return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
3085
if (Upper.isSignMask())
3086
return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
3087
} else {
3088
if (Lower.isMinValue())
3089
return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
3090
if (Upper.isMinValue())
3091
return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
3092
}
3093
3094
// This set of folds is intentionally placed after folds that use no-wrapping
3095
// flags because those folds are likely better for later analysis/codegen.
3096
const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
3097
const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
3098
3099
// Fold compare with offset to opposite sign compare if it eliminates offset:
3100
// (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX)
3101
if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax)
3102
return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2)));
3103
3104
// (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN)
3105
if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin)
3106
return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2)));
3107
3108
// (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1)
3109
if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1)
3110
return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C));
3111
3112
// (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2)
3113
if (Pred == CmpInst::ICMP_SLT && C == *C2)
3114
return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax));
3115
3116
// (X + -1) <u C --> X <=u C (if X is never null)
3117
if (Pred == CmpInst::ICMP_ULT && C2->isAllOnes()) {
3118
const SimplifyQuery Q = SQ.getWithInstruction(&Cmp);
3119
if (llvm::isKnownNonZero(X, Q))
3120
return new ICmpInst(ICmpInst::ICMP_ULE, X, ConstantInt::get(Ty, C));
3121
}
3122
3123
if (!Add->hasOneUse())
3124
return nullptr;
3125
3126
// X+C <u C2 -> (X & -C2) == C
3127
// iff C & (C2-1) == 0
3128
// C2 is a power of 2
3129
if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
3130
return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
3131
ConstantExpr::getNeg(cast<Constant>(Y)));
3132
3133
// X+C2 <u C -> (X & C) == 2C
3134
// iff C == -(C2)
3135
// C2 is a power of 2
3136
if (Pred == ICmpInst::ICMP_ULT && C2->isPowerOf2() && C == -*C2)
3137
return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, C),
3138
ConstantInt::get(Ty, C * 2));
3139
3140
// X+C >u C2 -> (X & ~C2) != C
3141
// iff C & C2 == 0
3142
// C2+1 is a power of 2
3143
if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
3144
return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
3145
ConstantExpr::getNeg(cast<Constant>(Y)));
3146
3147
// The range test idiom can use either ult or ugt. Arbitrarily canonicalize
3148
// to the ult form.
3149
// X+C2 >u C -> X+(C2-C-1) <u ~C
3150
if (Pred == ICmpInst::ICMP_UGT)
3151
return new ICmpInst(ICmpInst::ICMP_ULT,
3152
Builder.CreateAdd(X, ConstantInt::get(Ty, *C2 - C - 1)),
3153
ConstantInt::get(Ty, ~C));
3154
3155
return nullptr;
3156
}
3157
3158
bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
3159
Value *&RHS, ConstantInt *&Less,
3160
ConstantInt *&Equal,
3161
ConstantInt *&Greater) {
3162
// TODO: Generalize this to work with other comparison idioms or ensure
3163
// they get canonicalized into this form.
3164
3165
// select i1 (a == b),
3166
// i32 Equal,
3167
// i32 (select i1 (a < b), i32 Less, i32 Greater)
3168
// where Equal, Less and Greater are placeholders for any three constants.
3169
ICmpInst::Predicate PredA;
3170
if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
3171
!ICmpInst::isEquality(PredA))
3172
return false;
3173
Value *EqualVal = SI->getTrueValue();
3174
Value *UnequalVal = SI->getFalseValue();
3175
// We still can get non-canonical predicate here, so canonicalize.
3176
if (PredA == ICmpInst::ICMP_NE)
3177
std::swap(EqualVal, UnequalVal);
3178
if (!match(EqualVal, m_ConstantInt(Equal)))
3179
return false;
3180
ICmpInst::Predicate PredB;
3181
Value *LHS2, *RHS2;
3182
if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
3183
m_ConstantInt(Less), m_ConstantInt(Greater))))
3184
return false;
3185
// We can get predicate mismatch here, so canonicalize if possible:
3186
// First, ensure that 'LHS' match.
3187
if (LHS2 != LHS) {
3188
// x sgt y <--> y slt x
3189
std::swap(LHS2, RHS2);
3190
PredB = ICmpInst::getSwappedPredicate(PredB);
3191
}
3192
if (LHS2 != LHS)
3193
return false;
3194
// We also need to canonicalize 'RHS'.
3195
if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
3196
// x sgt C-1 <--> x sge C <--> not(x slt C)
3197
auto FlippedStrictness =
3198
InstCombiner::getFlippedStrictnessPredicateAndConstant(
3199
PredB, cast<Constant>(RHS2));
3200
if (!FlippedStrictness)
3201
return false;
3202
assert(FlippedStrictness->first == ICmpInst::ICMP_SGE &&
3203
"basic correctness failure");
3204
RHS2 = FlippedStrictness->second;
3205
// And kind-of perform the result swap.
3206
std::swap(Less, Greater);
3207
PredB = ICmpInst::ICMP_SLT;
3208
}
3209
return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
3210
}
3211
3212
Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
3213
SelectInst *Select,
3214
ConstantInt *C) {
3215
3216
assert(C && "Cmp RHS should be a constant int!");
3217
// If we're testing a constant value against the result of a three way
3218
// comparison, the result can be expressed directly in terms of the
3219
// original values being compared. Note: We could possibly be more
3220
// aggressive here and remove the hasOneUse test. The original select is
3221
// really likely to simplify or sink when we remove a test of the result.
3222
Value *OrigLHS, *OrigRHS;
3223
ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
3224
if (Cmp.hasOneUse() &&
3225
matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
3226
C3GreaterThan)) {
3227
assert(C1LessThan && C2Equal && C3GreaterThan);
3228
3229
bool TrueWhenLessThan = ICmpInst::compare(
3230
C1LessThan->getValue(), C->getValue(), Cmp.getPredicate());
3231
bool TrueWhenEqual = ICmpInst::compare(C2Equal->getValue(), C->getValue(),
3232
Cmp.getPredicate());
3233
bool TrueWhenGreaterThan = ICmpInst::compare(
3234
C3GreaterThan->getValue(), C->getValue(), Cmp.getPredicate());
3235
3236
// This generates the new instruction that will replace the original Cmp
3237
// Instruction. Instead of enumerating the various combinations when
3238
// TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
3239
// false, we rely on chaining of ORs and future passes of InstCombine to
3240
// simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
3241
3242
// When none of the three constants satisfy the predicate for the RHS (C),
3243
// the entire original Cmp can be simplified to a false.
3244
Value *Cond = Builder.getFalse();
3245
if (TrueWhenLessThan)
3246
Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
3247
OrigLHS, OrigRHS));
3248
if (TrueWhenEqual)
3249
Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
3250
OrigLHS, OrigRHS));
3251
if (TrueWhenGreaterThan)
3252
Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
3253
OrigLHS, OrigRHS));
3254
3255
return replaceInstUsesWith(Cmp, Cond);
3256
}
3257
return nullptr;
3258
}
3259
3260
Instruction *InstCombinerImpl::foldICmpBitCast(ICmpInst &Cmp) {
3261
auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
3262
if (!Bitcast)
3263
return nullptr;
3264
3265
ICmpInst::Predicate Pred = Cmp.getPredicate();
3266
Value *Op1 = Cmp.getOperand(1);
3267
Value *BCSrcOp = Bitcast->getOperand(0);
3268
Type *SrcType = Bitcast->getSrcTy();
3269
Type *DstType = Bitcast->getType();
3270
3271
// Make sure the bitcast doesn't change between scalar and vector and
3272
// doesn't change the number of vector elements.
3273
if (SrcType->isVectorTy() == DstType->isVectorTy() &&
3274
SrcType->getScalarSizeInBits() == DstType->getScalarSizeInBits()) {
3275
// Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
3276
Value *X;
3277
if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
3278
// icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0
3279
// icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0
3280
// icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
3281
// icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
3282
if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
3283
Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
3284
match(Op1, m_Zero()))
3285
return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
3286
3287
// icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
3288
if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
3289
return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
3290
3291
// icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
3292
if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
3293
return new ICmpInst(Pred, X,
3294
ConstantInt::getAllOnesValue(X->getType()));
3295
}
3296
3297
// Zero-equality checks are preserved through unsigned floating-point casts:
3298
// icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
3299
// icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
3300
if (match(BCSrcOp, m_UIToFP(m_Value(X))))
3301
if (Cmp.isEquality() && match(Op1, m_Zero()))
3302
return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
3303
3304
const APInt *C;
3305
bool TrueIfSigned;
3306
if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse()) {
3307
// If this is a sign-bit test of a bitcast of a casted FP value, eliminate
3308
// the FP extend/truncate because that cast does not change the sign-bit.
3309
// This is true for all standard IEEE-754 types and the X86 80-bit type.
3310
// The sign-bit is always the most significant bit in those types.
3311
if (isSignBitCheck(Pred, *C, TrueIfSigned) &&
3312
(match(BCSrcOp, m_FPExt(m_Value(X))) ||
3313
match(BCSrcOp, m_FPTrunc(m_Value(X))))) {
3314
// (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
3315
// (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
3316
Type *XType = X->getType();
3317
3318
// We can't currently handle Power style floating point operations here.
3319
if (!(XType->isPPC_FP128Ty() || SrcType->isPPC_FP128Ty())) {
3320
Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
3321
if (auto *XVTy = dyn_cast<VectorType>(XType))
3322
NewType = VectorType::get(NewType, XVTy->getElementCount());
3323
Value *NewBitcast = Builder.CreateBitCast(X, NewType);
3324
if (TrueIfSigned)
3325
return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
3326
ConstantInt::getNullValue(NewType));
3327
else
3328
return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
3329
ConstantInt::getAllOnesValue(NewType));
3330
}
3331
}
3332
3333
// icmp eq/ne (bitcast X to int), special fp -> llvm.is.fpclass(X, class)
3334
Type *FPType = SrcType->getScalarType();
3335
if (!Cmp.getParent()->getParent()->hasFnAttribute(
3336
Attribute::NoImplicitFloat) &&
3337
Cmp.isEquality() && FPType->isIEEELikeFPTy()) {
3338
FPClassTest Mask = APFloat(FPType->getFltSemantics(), *C).classify();
3339
if (Mask & (fcInf | fcZero)) {
3340
if (Pred == ICmpInst::ICMP_NE)
3341
Mask = ~Mask;
3342
return replaceInstUsesWith(Cmp,
3343
Builder.createIsFPClass(BCSrcOp, Mask));
3344
}
3345
}
3346
}
3347
}
3348
3349
const APInt *C;
3350
if (!match(Cmp.getOperand(1), m_APInt(C)) || !DstType->isIntegerTy() ||
3351
!SrcType->isIntOrIntVectorTy())
3352
return nullptr;
3353
3354
// If this is checking if all elements of a vector compare are set or not,
3355
// invert the casted vector equality compare and test if all compare
3356
// elements are clear or not. Compare against zero is generally easier for
3357
// analysis and codegen.
3358
// icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0
3359
// Example: are all elements equal? --> are zero elements not equal?
3360
// TODO: Try harder to reduce compare of 2 freely invertible operands?
3361
if (Cmp.isEquality() && C->isAllOnes() && Bitcast->hasOneUse()) {
3362
if (Value *NotBCSrcOp =
3363
getFreelyInverted(BCSrcOp, BCSrcOp->hasOneUse(), &Builder)) {
3364
Value *Cast = Builder.CreateBitCast(NotBCSrcOp, DstType);
3365
return new ICmpInst(Pred, Cast, ConstantInt::getNullValue(DstType));
3366
}
3367
}
3368
3369
// If this is checking if all elements of an extended vector are clear or not,
3370
// compare in a narrow type to eliminate the extend:
3371
// icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0
3372
Value *X;
3373
if (Cmp.isEquality() && C->isZero() && Bitcast->hasOneUse() &&
3374
match(BCSrcOp, m_ZExtOrSExt(m_Value(X)))) {
3375
if (auto *VecTy = dyn_cast<FixedVectorType>(X->getType())) {
3376
Type *NewType = Builder.getIntNTy(VecTy->getPrimitiveSizeInBits());
3377
Value *NewCast = Builder.CreateBitCast(X, NewType);
3378
return new ICmpInst(Pred, NewCast, ConstantInt::getNullValue(NewType));
3379
}
3380
}
3381
3382
// Folding: icmp <pred> iN X, C
3383
// where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
3384
// and C is a splat of a K-bit pattern
3385
// and SC is a constant vector = <C', C', C', ..., C'>
3386
// Into:
3387
// %E = extractelement <M x iK> %vec, i32 C'
3388
// icmp <pred> iK %E, trunc(C)
3389
Value *Vec;
3390
ArrayRef<int> Mask;
3391
if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
3392
// Check whether every element of Mask is the same constant
3393
if (all_equal(Mask)) {
3394
auto *VecTy = cast<VectorType>(SrcType);
3395
auto *EltTy = cast<IntegerType>(VecTy->getElementType());
3396
if (C->isSplat(EltTy->getBitWidth())) {
3397
// Fold the icmp based on the value of C
3398
// If C is M copies of an iK sized bit pattern,
3399
// then:
3400
// => %E = extractelement <N x iK> %vec, i32 Elem
3401
// icmp <pred> iK %SplatVal, <pattern>
3402
Value *Elem = Builder.getInt32(Mask[0]);
3403
Value *Extract = Builder.CreateExtractElement(Vec, Elem);
3404
Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
3405
return new ICmpInst(Pred, Extract, NewC);
3406
}
3407
}
3408
}
3409
return nullptr;
3410
}
3411
3412
/// Try to fold integer comparisons with a constant operand: icmp Pred X, C
3413
/// where X is some kind of instruction.
3414
Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
3415
const APInt *C;
3416
3417
if (match(Cmp.getOperand(1), m_APInt(C))) {
3418
if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0)))
3419
if (Instruction *I = foldICmpBinOpWithConstant(Cmp, BO, *C))
3420
return I;
3421
3422
if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0)))
3423
// For now, we only support constant integers while folding the
3424
// ICMP(SELECT)) pattern. We can extend this to support vector of integers
3425
// similar to the cases handled by binary ops above.
3426
if (auto *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
3427
if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
3428
return I;
3429
3430
if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0)))
3431
if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
3432
return I;
3433
3434
if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
3435
if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
3436
return I;
3437
3438
// (extractval ([s/u]subo X, Y), 0) == 0 --> X == Y
3439
// (extractval ([s/u]subo X, Y), 0) != 0 --> X != Y
3440
// TODO: This checks one-use, but that is not strictly necessary.
3441
Value *Cmp0 = Cmp.getOperand(0);
3442
Value *X, *Y;
3443
if (C->isZero() && Cmp.isEquality() && Cmp0->hasOneUse() &&
3444
(match(Cmp0,
3445
m_ExtractValue<0>(m_Intrinsic<Intrinsic::ssub_with_overflow>(
3446
m_Value(X), m_Value(Y)))) ||
3447
match(Cmp0,
3448
m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>(
3449
m_Value(X), m_Value(Y))))))
3450
return new ICmpInst(Cmp.getPredicate(), X, Y);
3451
}
3452
3453
if (match(Cmp.getOperand(1), m_APIntAllowPoison(C)))
3454
return foldICmpInstWithConstantAllowPoison(Cmp, *C);
3455
3456
return nullptr;
3457
}
3458
3459
/// Fold an icmp equality instruction with binary operator LHS and constant RHS:
3460
/// icmp eq/ne BO, C.
3461
Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
3462
ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
3463
// TODO: Some of these folds could work with arbitrary constants, but this
3464
// function is limited to scalar and vector splat constants.
3465
if (!Cmp.isEquality())
3466
return nullptr;
3467
3468
ICmpInst::Predicate Pred = Cmp.getPredicate();
3469
bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
3470
Constant *RHS = cast<Constant>(Cmp.getOperand(1));
3471
Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
3472
3473
switch (BO->getOpcode()) {
3474
case Instruction::SRem:
3475
// If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3476
if (C.isZero() && BO->hasOneUse()) {
3477
const APInt *BOC;
3478
if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
3479
Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
3480
return new ICmpInst(Pred, NewRem,
3481
Constant::getNullValue(BO->getType()));
3482
}
3483
}
3484
break;
3485
case Instruction::Add: {
3486
// (A + C2) == C --> A == (C - C2)
3487
// (A + C2) != C --> A != (C - C2)
3488
// TODO: Remove the one-use limitation? See discussion in D58633.
3489
if (Constant *C2 = dyn_cast<Constant>(BOp1)) {
3490
if (BO->hasOneUse())
3491
return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, C2));
3492
} else if (C.isZero()) {
3493
// Replace ((add A, B) != 0) with (A != -B) if A or B is
3494
// efficiently invertible, or if the add has just this one use.
3495
if (Value *NegVal = dyn_castNegVal(BOp1))
3496
return new ICmpInst(Pred, BOp0, NegVal);
3497
if (Value *NegVal = dyn_castNegVal(BOp0))
3498
return new ICmpInst(Pred, NegVal, BOp1);
3499
if (BO->hasOneUse()) {
3500
// (add nuw A, B) != 0 -> (or A, B) != 0
3501
if (match(BO, m_NUWAdd(m_Value(), m_Value()))) {
3502
Value *Or = Builder.CreateOr(BOp0, BOp1);
3503
return new ICmpInst(Pred, Or, Constant::getNullValue(BO->getType()));
3504
}
3505
Value *Neg = Builder.CreateNeg(BOp1);
3506
Neg->takeName(BO);
3507
return new ICmpInst(Pred, BOp0, Neg);
3508
}
3509
}
3510
break;
3511
}
3512
case Instruction::Xor:
3513
if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3514
// For the xor case, we can xor two constants together, eliminating
3515
// the explicit xor.
3516
return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3517
} else if (C.isZero()) {
3518
// Replace ((xor A, B) != 0) with (A != B)
3519
return new ICmpInst(Pred, BOp0, BOp1);
3520
}
3521
break;
3522
case Instruction::Or: {
3523
const APInt *BOC;
3524
if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3525
// Comparing if all bits outside of a constant mask are set?
3526
// Replace (X | C) == -1 with (X & ~C) == ~C.
3527
// This removes the -1 constant.
3528
Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3529
Value *And = Builder.CreateAnd(BOp0, NotBOC);
3530
return new ICmpInst(Pred, And, NotBOC);
3531
}
3532
break;
3533
}
3534
case Instruction::UDiv:
3535
case Instruction::SDiv:
3536
if (BO->isExact()) {
3537
// div exact X, Y eq/ne 0 -> X eq/ne 0
3538
// div exact X, Y eq/ne 1 -> X eq/ne Y
3539
// div exact X, Y eq/ne C ->
3540
// if Y * C never-overflow && OneUse:
3541
// -> Y * C eq/ne X
3542
if (C.isZero())
3543
return new ICmpInst(Pred, BOp0, Constant::getNullValue(BO->getType()));
3544
else if (C.isOne())
3545
return new ICmpInst(Pred, BOp0, BOp1);
3546
else if (BO->hasOneUse()) {
3547
OverflowResult OR = computeOverflow(
3548
Instruction::Mul, BO->getOpcode() == Instruction::SDiv, BOp1,
3549
Cmp.getOperand(1), BO);
3550
if (OR == OverflowResult::NeverOverflows) {
3551
Value *YC =
3552
Builder.CreateMul(BOp1, ConstantInt::get(BO->getType(), C));
3553
return new ICmpInst(Pred, YC, BOp0);
3554
}
3555
}
3556
}
3557
if (BO->getOpcode() == Instruction::UDiv && C.isZero()) {
3558
// (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3559
auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3560
return new ICmpInst(NewPred, BOp1, BOp0);
3561
}
3562
break;
3563
default:
3564
break;
3565
}
3566
return nullptr;
3567
}
3568
3569
static Instruction *foldCtpopPow2Test(ICmpInst &I, IntrinsicInst *CtpopLhs,
3570
const APInt &CRhs,
3571
InstCombiner::BuilderTy &Builder,
3572
const SimplifyQuery &Q) {
3573
assert(CtpopLhs->getIntrinsicID() == Intrinsic::ctpop &&
3574
"Non-ctpop intrin in ctpop fold");
3575
if (!CtpopLhs->hasOneUse())
3576
return nullptr;
3577
3578
// Power of 2 test:
3579
// isPow2OrZero : ctpop(X) u< 2
3580
// isPow2 : ctpop(X) == 1
3581
// NotPow2OrZero: ctpop(X) u> 1
3582
// NotPow2 : ctpop(X) != 1
3583
// If we know any bit of X can be folded to:
3584
// IsPow2 : X & (~Bit) == 0
3585
// NotPow2 : X & (~Bit) != 0
3586
const ICmpInst::Predicate Pred = I.getPredicate();
3587
if (((I.isEquality() || Pred == ICmpInst::ICMP_UGT) && CRhs == 1) ||
3588
(Pred == ICmpInst::ICMP_ULT && CRhs == 2)) {
3589
Value *Op = CtpopLhs->getArgOperand(0);
3590
KnownBits OpKnown = computeKnownBits(Op, Q.DL,
3591
/*Depth*/ 0, Q.AC, Q.CxtI, Q.DT);
3592
// No need to check for count > 1, that should be already constant folded.
3593
if (OpKnown.countMinPopulation() == 1) {
3594
Value *And = Builder.CreateAnd(
3595
Op, Constant::getIntegerValue(Op->getType(), ~(OpKnown.One)));
3596
return new ICmpInst(
3597
(Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_ULT)
3598
? ICmpInst::ICMP_EQ
3599
: ICmpInst::ICMP_NE,
3600
And, Constant::getNullValue(Op->getType()));
3601
}
3602
}
3603
3604
return nullptr;
3605
}
3606
3607
/// Fold an equality icmp with LLVM intrinsic and constant operand.
3608
Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3609
ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3610
Type *Ty = II->getType();
3611
unsigned BitWidth = C.getBitWidth();
3612
const ICmpInst::Predicate Pred = Cmp.getPredicate();
3613
3614
switch (II->getIntrinsicID()) {
3615
case Intrinsic::abs:
3616
// abs(A) == 0 -> A == 0
3617
// abs(A) == INT_MIN -> A == INT_MIN
3618
if (C.isZero() || C.isMinSignedValue())
3619
return new ICmpInst(Pred, II->getArgOperand(0), ConstantInt::get(Ty, C));
3620
break;
3621
3622
case Intrinsic::bswap:
3623
// bswap(A) == C -> A == bswap(C)
3624
return new ICmpInst(Pred, II->getArgOperand(0),
3625
ConstantInt::get(Ty, C.byteSwap()));
3626
3627
case Intrinsic::bitreverse:
3628
// bitreverse(A) == C -> A == bitreverse(C)
3629
return new ICmpInst(Pred, II->getArgOperand(0),
3630
ConstantInt::get(Ty, C.reverseBits()));
3631
3632
case Intrinsic::ctlz:
3633
case Intrinsic::cttz: {
3634
// ctz(A) == bitwidth(A) -> A == 0 and likewise for !=
3635
if (C == BitWidth)
3636
return new ICmpInst(Pred, II->getArgOperand(0),
3637
ConstantInt::getNullValue(Ty));
3638
3639
// ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3640
// and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3641
// Limit to one use to ensure we don't increase instruction count.
3642
unsigned Num = C.getLimitedValue(BitWidth);
3643
if (Num != BitWidth && II->hasOneUse()) {
3644
bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3645
APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3646
: APInt::getHighBitsSet(BitWidth, Num + 1);
3647
APInt Mask2 = IsTrailing
3648
? APInt::getOneBitSet(BitWidth, Num)
3649
: APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3650
return new ICmpInst(Pred, Builder.CreateAnd(II->getArgOperand(0), Mask1),
3651
ConstantInt::get(Ty, Mask2));
3652
}
3653
break;
3654
}
3655
3656
case Intrinsic::ctpop: {
3657
// popcount(A) == 0 -> A == 0 and likewise for !=
3658
// popcount(A) == bitwidth(A) -> A == -1 and likewise for !=
3659
bool IsZero = C.isZero();
3660
if (IsZero || C == BitWidth)
3661
return new ICmpInst(Pred, II->getArgOperand(0),
3662
IsZero ? Constant::getNullValue(Ty)
3663
: Constant::getAllOnesValue(Ty));
3664
3665
break;
3666
}
3667
3668
case Intrinsic::fshl:
3669
case Intrinsic::fshr:
3670
if (II->getArgOperand(0) == II->getArgOperand(1)) {
3671
const APInt *RotAmtC;
3672
// ror(X, RotAmtC) == C --> X == rol(C, RotAmtC)
3673
// rol(X, RotAmtC) == C --> X == ror(C, RotAmtC)
3674
if (match(II->getArgOperand(2), m_APInt(RotAmtC)))
3675
return new ICmpInst(Pred, II->getArgOperand(0),
3676
II->getIntrinsicID() == Intrinsic::fshl
3677
? ConstantInt::get(Ty, C.rotr(*RotAmtC))
3678
: ConstantInt::get(Ty, C.rotl(*RotAmtC)));
3679
}
3680
break;
3681
3682
case Intrinsic::umax:
3683
case Intrinsic::uadd_sat: {
3684
// uadd.sat(a, b) == 0 -> (a | b) == 0
3685
// umax(a, b) == 0 -> (a | b) == 0
3686
if (C.isZero() && II->hasOneUse()) {
3687
Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3688
return new ICmpInst(Pred, Or, Constant::getNullValue(Ty));
3689
}
3690
break;
3691
}
3692
3693
case Intrinsic::ssub_sat:
3694
// ssub.sat(a, b) == 0 -> a == b
3695
if (C.isZero())
3696
return new ICmpInst(Pred, II->getArgOperand(0), II->getArgOperand(1));
3697
break;
3698
case Intrinsic::usub_sat: {
3699
// usub.sat(a, b) == 0 -> a <= b
3700
if (C.isZero()) {
3701
ICmpInst::Predicate NewPred =
3702
Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3703
return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3704
}
3705
break;
3706
}
3707
default:
3708
break;
3709
}
3710
3711
return nullptr;
3712
}
3713
3714
/// Fold an icmp with LLVM intrinsics
3715
static Instruction *
3716
foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp,
3717
InstCombiner::BuilderTy &Builder) {
3718
assert(Cmp.isEquality());
3719
3720
ICmpInst::Predicate Pred = Cmp.getPredicate();
3721
Value *Op0 = Cmp.getOperand(0);
3722
Value *Op1 = Cmp.getOperand(1);
3723
const auto *IIOp0 = dyn_cast<IntrinsicInst>(Op0);
3724
const auto *IIOp1 = dyn_cast<IntrinsicInst>(Op1);
3725
if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID())
3726
return nullptr;
3727
3728
switch (IIOp0->getIntrinsicID()) {
3729
case Intrinsic::bswap:
3730
case Intrinsic::bitreverse:
3731
// If both operands are byte-swapped or bit-reversed, just compare the
3732
// original values.
3733
return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3734
case Intrinsic::fshl:
3735
case Intrinsic::fshr: {
3736
// If both operands are rotated by same amount, just compare the
3737
// original values.
3738
if (IIOp0->getOperand(0) != IIOp0->getOperand(1))
3739
break;
3740
if (IIOp1->getOperand(0) != IIOp1->getOperand(1))
3741
break;
3742
if (IIOp0->getOperand(2) == IIOp1->getOperand(2))
3743
return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3744
3745
// rotate(X, AmtX) == rotate(Y, AmtY)
3746
// -> rotate(X, AmtX - AmtY) == Y
3747
// Do this if either both rotates have one use or if only one has one use
3748
// and AmtX/AmtY are constants.
3749
unsigned OneUses = IIOp0->hasOneUse() + IIOp1->hasOneUse();
3750
if (OneUses == 2 ||
3751
(OneUses == 1 && match(IIOp0->getOperand(2), m_ImmConstant()) &&
3752
match(IIOp1->getOperand(2), m_ImmConstant()))) {
3753
Value *SubAmt =
3754
Builder.CreateSub(IIOp0->getOperand(2), IIOp1->getOperand(2));
3755
Value *CombinedRotate = Builder.CreateIntrinsic(
3756
Op0->getType(), IIOp0->getIntrinsicID(),
3757
{IIOp0->getOperand(0), IIOp0->getOperand(0), SubAmt});
3758
return new ICmpInst(Pred, IIOp1->getOperand(0), CombinedRotate);
3759
}
3760
} break;
3761
default:
3762
break;
3763
}
3764
3765
return nullptr;
3766
}
3767
3768
/// Try to fold integer comparisons with a constant operand: icmp Pred X, C
3769
/// where X is some kind of instruction and C is AllowPoison.
3770
/// TODO: Move more folds which allow poison to this function.
3771
Instruction *
3772
InstCombinerImpl::foldICmpInstWithConstantAllowPoison(ICmpInst &Cmp,
3773
const APInt &C) {
3774
const ICmpInst::Predicate Pred = Cmp.getPredicate();
3775
if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) {
3776
switch (II->getIntrinsicID()) {
3777
default:
3778
break;
3779
case Intrinsic::fshl:
3780
case Intrinsic::fshr:
3781
if (Cmp.isEquality() && II->getArgOperand(0) == II->getArgOperand(1)) {
3782
// (rot X, ?) == 0/-1 --> X == 0/-1
3783
if (C.isZero() || C.isAllOnes())
3784
return new ICmpInst(Pred, II->getArgOperand(0), Cmp.getOperand(1));
3785
}
3786
break;
3787
}
3788
}
3789
3790
return nullptr;
3791
}
3792
3793
/// Fold an icmp with BinaryOp and constant operand: icmp Pred BO, C.
3794
Instruction *InstCombinerImpl::foldICmpBinOpWithConstant(ICmpInst &Cmp,
3795
BinaryOperator *BO,
3796
const APInt &C) {
3797
switch (BO->getOpcode()) {
3798
case Instruction::Xor:
3799
if (Instruction *I = foldICmpXorConstant(Cmp, BO, C))
3800
return I;
3801
break;
3802
case Instruction::And:
3803
if (Instruction *I = foldICmpAndConstant(Cmp, BO, C))
3804
return I;
3805
break;
3806
case Instruction::Or:
3807
if (Instruction *I = foldICmpOrConstant(Cmp, BO, C))
3808
return I;
3809
break;
3810
case Instruction::Mul:
3811
if (Instruction *I = foldICmpMulConstant(Cmp, BO, C))
3812
return I;
3813
break;
3814
case Instruction::Shl:
3815
if (Instruction *I = foldICmpShlConstant(Cmp, BO, C))
3816
return I;
3817
break;
3818
case Instruction::LShr:
3819
case Instruction::AShr:
3820
if (Instruction *I = foldICmpShrConstant(Cmp, BO, C))
3821
return I;
3822
break;
3823
case Instruction::SRem:
3824
if (Instruction *I = foldICmpSRemConstant(Cmp, BO, C))
3825
return I;
3826
break;
3827
case Instruction::UDiv:
3828
if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C))
3829
return I;
3830
[[fallthrough]];
3831
case Instruction::SDiv:
3832
if (Instruction *I = foldICmpDivConstant(Cmp, BO, C))
3833
return I;
3834
break;
3835
case Instruction::Sub:
3836
if (Instruction *I = foldICmpSubConstant(Cmp, BO, C))
3837
return I;
3838
break;
3839
case Instruction::Add:
3840
if (Instruction *I = foldICmpAddConstant(Cmp, BO, C))
3841
return I;
3842
break;
3843
default:
3844
break;
3845
}
3846
3847
// TODO: These folds could be refactored to be part of the above calls.
3848
return foldICmpBinOpEqualityWithConstant(Cmp, BO, C);
3849
}
3850
3851
static Instruction *
3852
foldICmpUSubSatOrUAddSatWithConstant(ICmpInst::Predicate Pred,
3853
SaturatingInst *II, const APInt &C,
3854
InstCombiner::BuilderTy &Builder) {
3855
// This transform may end up producing more than one instruction for the
3856
// intrinsic, so limit it to one user of the intrinsic.
3857
if (!II->hasOneUse())
3858
return nullptr;
3859
3860
// Let Y = [add/sub]_sat(X, C) pred C2
3861
// SatVal = The saturating value for the operation
3862
// WillWrap = Whether or not the operation will underflow / overflow
3863
// => Y = (WillWrap ? SatVal : (X binop C)) pred C2
3864
// => Y = WillWrap ? (SatVal pred C2) : ((X binop C) pred C2)
3865
//
3866
// When (SatVal pred C2) is true, then
3867
// Y = WillWrap ? true : ((X binop C) pred C2)
3868
// => Y = WillWrap || ((X binop C) pred C2)
3869
// else
3870
// Y = WillWrap ? false : ((X binop C) pred C2)
3871
// => Y = !WillWrap ? ((X binop C) pred C2) : false
3872
// => Y = !WillWrap && ((X binop C) pred C2)
3873
Value *Op0 = II->getOperand(0);
3874
Value *Op1 = II->getOperand(1);
3875
3876
const APInt *COp1;
3877
// This transform only works when the intrinsic has an integral constant or
3878
// splat vector as the second operand.
3879
if (!match(Op1, m_APInt(COp1)))
3880
return nullptr;
3881
3882
APInt SatVal;
3883
switch (II->getIntrinsicID()) {
3884
default:
3885
llvm_unreachable(
3886
"This function only works with usub_sat and uadd_sat for now!");
3887
case Intrinsic::uadd_sat:
3888
SatVal = APInt::getAllOnes(C.getBitWidth());
3889
break;
3890
case Intrinsic::usub_sat:
3891
SatVal = APInt::getZero(C.getBitWidth());
3892
break;
3893
}
3894
3895
// Check (SatVal pred C2)
3896
bool SatValCheck = ICmpInst::compare(SatVal, C, Pred);
3897
3898
// !WillWrap.
3899
ConstantRange C1 = ConstantRange::makeExactNoWrapRegion(
3900
II->getBinaryOp(), *COp1, II->getNoWrapKind());
3901
3902
// WillWrap.
3903
if (SatValCheck)
3904
C1 = C1.inverse();
3905
3906
ConstantRange C2 = ConstantRange::makeExactICmpRegion(Pred, C);
3907
if (II->getBinaryOp() == Instruction::Add)
3908
C2 = C2.sub(*COp1);
3909
else
3910
C2 = C2.add(*COp1);
3911
3912
Instruction::BinaryOps CombiningOp =
3913
SatValCheck ? Instruction::BinaryOps::Or : Instruction::BinaryOps::And;
3914
3915
std::optional<ConstantRange> Combination;
3916
if (CombiningOp == Instruction::BinaryOps::Or)
3917
Combination = C1.exactUnionWith(C2);
3918
else /* CombiningOp == Instruction::BinaryOps::And */
3919
Combination = C1.exactIntersectWith(C2);
3920
3921
if (!Combination)
3922
return nullptr;
3923
3924
CmpInst::Predicate EquivPred;
3925
APInt EquivInt;
3926
APInt EquivOffset;
3927
3928
Combination->getEquivalentICmp(EquivPred, EquivInt, EquivOffset);
3929
3930
return new ICmpInst(
3931
EquivPred,
3932
Builder.CreateAdd(Op0, ConstantInt::get(Op1->getType(), EquivOffset)),
3933
ConstantInt::get(Op1->getType(), EquivInt));
3934
}
3935
3936
static Instruction *
3937
foldICmpOfCmpIntrinsicWithConstant(ICmpInst::Predicate Pred, IntrinsicInst *I,
3938
const APInt &C,
3939
InstCombiner::BuilderTy &Builder) {
3940
std::optional<ICmpInst::Predicate> NewPredicate = std::nullopt;
3941
switch (Pred) {
3942
case ICmpInst::ICMP_EQ:
3943
case ICmpInst::ICMP_NE:
3944
if (C.isZero())
3945
NewPredicate = Pred;
3946
else if (C.isOne())
3947
NewPredicate =
3948
Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_ULE;
3949
else if (C.isAllOnes())
3950
NewPredicate =
3951
Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
3952
break;
3953
3954
case ICmpInst::ICMP_SGT:
3955
if (C.isAllOnes())
3956
NewPredicate = ICmpInst::ICMP_UGE;
3957
else if (C.isZero())
3958
NewPredicate = ICmpInst::ICMP_UGT;
3959
break;
3960
3961
case ICmpInst::ICMP_SLT:
3962
if (C.isZero())
3963
NewPredicate = ICmpInst::ICMP_ULT;
3964
else if (C.isOne())
3965
NewPredicate = ICmpInst::ICMP_ULE;
3966
break;
3967
3968
default:
3969
break;
3970
}
3971
3972
if (!NewPredicate)
3973
return nullptr;
3974
3975
if (I->getIntrinsicID() == Intrinsic::scmp)
3976
NewPredicate = ICmpInst::getSignedPredicate(*NewPredicate);
3977
Value *LHS = I->getOperand(0);
3978
Value *RHS = I->getOperand(1);
3979
return new ICmpInst(*NewPredicate, LHS, RHS);
3980
}
3981
3982
/// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3983
Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3984
IntrinsicInst *II,
3985
const APInt &C) {
3986
ICmpInst::Predicate Pred = Cmp.getPredicate();
3987
3988
// Handle folds that apply for any kind of icmp.
3989
switch (II->getIntrinsicID()) {
3990
default:
3991
break;
3992
case Intrinsic::uadd_sat:
3993
case Intrinsic::usub_sat:
3994
if (auto *Folded = foldICmpUSubSatOrUAddSatWithConstant(
3995
Pred, cast<SaturatingInst>(II), C, Builder))
3996
return Folded;
3997
break;
3998
case Intrinsic::ctpop: {
3999
const SimplifyQuery Q = SQ.getWithInstruction(&Cmp);
4000
if (Instruction *R = foldCtpopPow2Test(Cmp, II, C, Builder, Q))
4001
return R;
4002
} break;
4003
case Intrinsic::scmp:
4004
case Intrinsic::ucmp:
4005
if (auto *Folded = foldICmpOfCmpIntrinsicWithConstant(Pred, II, C, Builder))
4006
return Folded;
4007
break;
4008
}
4009
4010
if (Cmp.isEquality())
4011
return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
4012
4013
Type *Ty = II->getType();
4014
unsigned BitWidth = C.getBitWidth();
4015
switch (II->getIntrinsicID()) {
4016
case Intrinsic::ctpop: {
4017
// (ctpop X > BitWidth - 1) --> X == -1
4018
Value *X = II->getArgOperand(0);
4019
if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT)
4020
return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X,
4021
ConstantInt::getAllOnesValue(Ty));
4022
// (ctpop X < BitWidth) --> X != -1
4023
if (C == BitWidth && Pred == ICmpInst::ICMP_ULT)
4024
return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X,
4025
ConstantInt::getAllOnesValue(Ty));
4026
break;
4027
}
4028
case Intrinsic::ctlz: {
4029
// ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
4030
if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
4031
unsigned Num = C.getLimitedValue();
4032
APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
4033
return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
4034
II->getArgOperand(0), ConstantInt::get(Ty, Limit));
4035
}
4036
4037
// ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
4038
if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
4039
unsigned Num = C.getLimitedValue();
4040
APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
4041
return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
4042
II->getArgOperand(0), ConstantInt::get(Ty, Limit));
4043
}
4044
break;
4045
}
4046
case Intrinsic::cttz: {
4047
// Limit to one use to ensure we don't increase instruction count.
4048
if (!II->hasOneUse())
4049
return nullptr;
4050
4051
// cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
4052
if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
4053
APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
4054
return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
4055
Builder.CreateAnd(II->getArgOperand(0), Mask),
4056
ConstantInt::getNullValue(Ty));
4057
}
4058
4059
// cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
4060
if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
4061
APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
4062
return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
4063
Builder.CreateAnd(II->getArgOperand(0), Mask),
4064
ConstantInt::getNullValue(Ty));
4065
}
4066
break;
4067
}
4068
case Intrinsic::ssub_sat:
4069
// ssub.sat(a, b) spred 0 -> a spred b
4070
if (ICmpInst::isSigned(Pred)) {
4071
if (C.isZero())
4072
return new ICmpInst(Pred, II->getArgOperand(0), II->getArgOperand(1));
4073
// X s<= 0 is cannonicalized to X s< 1
4074
if (Pred == ICmpInst::ICMP_SLT && C.isOne())
4075
return new ICmpInst(ICmpInst::ICMP_SLE, II->getArgOperand(0),
4076
II->getArgOperand(1));
4077
// X s>= 0 is cannonicalized to X s> -1
4078
if (Pred == ICmpInst::ICMP_SGT && C.isAllOnes())
4079
return new ICmpInst(ICmpInst::ICMP_SGE, II->getArgOperand(0),
4080
II->getArgOperand(1));
4081
}
4082
break;
4083
default:
4084
break;
4085
}
4086
4087
return nullptr;
4088
}
4089
4090
/// Handle icmp with constant (but not simple integer constant) RHS.
4091
Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
4092
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4093
Constant *RHSC = dyn_cast<Constant>(Op1);
4094
Instruction *LHSI = dyn_cast<Instruction>(Op0);
4095
if (!RHSC || !LHSI)
4096
return nullptr;
4097
4098
switch (LHSI->getOpcode()) {
4099
case Instruction::PHI:
4100
if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
4101
return NV;
4102
break;
4103
case Instruction::IntToPtr:
4104
// icmp pred inttoptr(X), null -> icmp pred X, 0
4105
if (RHSC->isNullValue() &&
4106
DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
4107
return new ICmpInst(
4108
I.getPredicate(), LHSI->getOperand(0),
4109
Constant::getNullValue(LHSI->getOperand(0)->getType()));
4110
break;
4111
4112
case Instruction::Load:
4113
// Try to optimize things like "A[i] > 4" to index computations.
4114
if (GetElementPtrInst *GEP =
4115
dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
4116
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
4117
if (Instruction *Res =
4118
foldCmpLoadFromIndexedGlobal(cast<LoadInst>(LHSI), GEP, GV, I))
4119
return Res;
4120
break;
4121
}
4122
4123
return nullptr;
4124
}
4125
4126
Instruction *InstCombinerImpl::foldSelectICmp(ICmpInst::Predicate Pred,
4127
SelectInst *SI, Value *RHS,
4128
const ICmpInst &I) {
4129
// Try to fold the comparison into the select arms, which will cause the
4130
// select to be converted into a logical and/or.
4131
auto SimplifyOp = [&](Value *Op, bool SelectCondIsTrue) -> Value * {
4132
if (Value *Res = simplifyICmpInst(Pred, Op, RHS, SQ))
4133
return Res;
4134
if (std::optional<bool> Impl = isImpliedCondition(
4135
SI->getCondition(), Pred, Op, RHS, DL, SelectCondIsTrue))
4136
return ConstantInt::get(I.getType(), *Impl);
4137
return nullptr;
4138
};
4139
4140
ConstantInt *CI = nullptr;
4141
Value *Op1 = SimplifyOp(SI->getOperand(1), true);
4142
if (Op1)
4143
CI = dyn_cast<ConstantInt>(Op1);
4144
4145
Value *Op2 = SimplifyOp(SI->getOperand(2), false);
4146
if (Op2)
4147
CI = dyn_cast<ConstantInt>(Op2);
4148
4149
// We only want to perform this transformation if it will not lead to
4150
// additional code. This is true if either both sides of the select
4151
// fold to a constant (in which case the icmp is replaced with a select
4152
// which will usually simplify) or this is the only user of the
4153
// select (in which case we are trading a select+icmp for a simpler
4154
// select+icmp) or all uses of the select can be replaced based on
4155
// dominance information ("Global cases").
4156
bool Transform = false;
4157
if (Op1 && Op2)
4158
Transform = true;
4159
else if (Op1 || Op2) {
4160
// Local case
4161
if (SI->hasOneUse())
4162
Transform = true;
4163
// Global cases
4164
else if (CI && !CI->isZero())
4165
// When Op1 is constant try replacing select with second operand.
4166
// Otherwise Op2 is constant and try replacing select with first
4167
// operand.
4168
Transform = replacedSelectWithOperand(SI, &I, Op1 ? 2 : 1);
4169
}
4170
if (Transform) {
4171
if (!Op1)
4172
Op1 = Builder.CreateICmp(Pred, SI->getOperand(1), RHS, I.getName());
4173
if (!Op2)
4174
Op2 = Builder.CreateICmp(Pred, SI->getOperand(2), RHS, I.getName());
4175
return SelectInst::Create(SI->getOperand(0), Op1, Op2);
4176
}
4177
4178
return nullptr;
4179
}
4180
4181
// Returns whether V is a Mask ((X + 1) & X == 0) or ~Mask (-Pow2OrZero)
4182
static bool isMaskOrZero(const Value *V, bool Not, const SimplifyQuery &Q,
4183
unsigned Depth = 0) {
4184
if (Not ? match(V, m_NegatedPower2OrZero()) : match(V, m_LowBitMaskOrZero()))
4185
return true;
4186
if (V->getType()->getScalarSizeInBits() == 1)
4187
return true;
4188
if (Depth++ >= MaxAnalysisRecursionDepth)
4189
return false;
4190
Value *X;
4191
const Instruction *I = dyn_cast<Instruction>(V);
4192
if (!I)
4193
return false;
4194
switch (I->getOpcode()) {
4195
case Instruction::ZExt:
4196
// ZExt(Mask) is a Mask.
4197
return !Not && isMaskOrZero(I->getOperand(0), Not, Q, Depth);
4198
case Instruction::SExt:
4199
// SExt(Mask) is a Mask.
4200
// SExt(~Mask) is a ~Mask.
4201
return isMaskOrZero(I->getOperand(0), Not, Q, Depth);
4202
case Instruction::And:
4203
case Instruction::Or:
4204
// Mask0 | Mask1 is a Mask.
4205
// Mask0 & Mask1 is a Mask.
4206
// ~Mask0 | ~Mask1 is a ~Mask.
4207
// ~Mask0 & ~Mask1 is a ~Mask.
4208
return isMaskOrZero(I->getOperand(1), Not, Q, Depth) &&
4209
isMaskOrZero(I->getOperand(0), Not, Q, Depth);
4210
case Instruction::Xor:
4211
if (match(V, m_Not(m_Value(X))))
4212
return isMaskOrZero(X, !Not, Q, Depth);
4213
4214
// (X ^ -X) is a ~Mask
4215
if (Not)
4216
return match(V, m_c_Xor(m_Value(X), m_Neg(m_Deferred(X))));
4217
// (X ^ (X - 1)) is a Mask
4218
else
4219
return match(V, m_c_Xor(m_Value(X), m_Add(m_Deferred(X), m_AllOnes())));
4220
case Instruction::Select:
4221
// c ? Mask0 : Mask1 is a Mask.
4222
return isMaskOrZero(I->getOperand(1), Not, Q, Depth) &&
4223
isMaskOrZero(I->getOperand(2), Not, Q, Depth);
4224
case Instruction::Shl:
4225
// (~Mask) << X is a ~Mask.
4226
return Not && isMaskOrZero(I->getOperand(0), Not, Q, Depth);
4227
case Instruction::LShr:
4228
// Mask >> X is a Mask.
4229
return !Not && isMaskOrZero(I->getOperand(0), Not, Q, Depth);
4230
case Instruction::AShr:
4231
// Mask s>> X is a Mask.
4232
// ~Mask s>> X is a ~Mask.
4233
return isMaskOrZero(I->getOperand(0), Not, Q, Depth);
4234
case Instruction::Add:
4235
// Pow2 - 1 is a Mask.
4236
if (!Not && match(I->getOperand(1), m_AllOnes()))
4237
return isKnownToBeAPowerOfTwo(I->getOperand(0), Q.DL, /*OrZero*/ true,
4238
Depth, Q.AC, Q.CxtI, Q.DT);
4239
break;
4240
case Instruction::Sub:
4241
// -Pow2 is a ~Mask.
4242
if (Not && match(I->getOperand(0), m_Zero()))
4243
return isKnownToBeAPowerOfTwo(I->getOperand(1), Q.DL, /*OrZero*/ true,
4244
Depth, Q.AC, Q.CxtI, Q.DT);
4245
break;
4246
case Instruction::Call: {
4247
if (auto *II = dyn_cast<IntrinsicInst>(I)) {
4248
switch (II->getIntrinsicID()) {
4249
// min/max(Mask0, Mask1) is a Mask.
4250
// min/max(~Mask0, ~Mask1) is a ~Mask.
4251
case Intrinsic::umax:
4252
case Intrinsic::smax:
4253
case Intrinsic::umin:
4254
case Intrinsic::smin:
4255
return isMaskOrZero(II->getArgOperand(1), Not, Q, Depth) &&
4256
isMaskOrZero(II->getArgOperand(0), Not, Q, Depth);
4257
4258
// In the context of masks, bitreverse(Mask) == ~Mask
4259
case Intrinsic::bitreverse:
4260
return isMaskOrZero(II->getArgOperand(0), !Not, Q, Depth);
4261
default:
4262
break;
4263
}
4264
}
4265
break;
4266
}
4267
default:
4268
break;
4269
}
4270
return false;
4271
}
4272
4273
/// Some comparisons can be simplified.
4274
/// In this case, we are looking for comparisons that look like
4275
/// a check for a lossy truncation.
4276
/// Folds:
4277
/// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask
4278
/// icmp SrcPred (x & ~Mask), ~Mask to icmp DstPred x, ~Mask
4279
/// icmp eq/ne (x & ~Mask), 0 to icmp DstPred x, Mask
4280
/// icmp eq/ne (~x | Mask), -1 to icmp DstPred x, Mask
4281
/// Where Mask is some pattern that produces all-ones in low bits:
4282
/// (-1 >> y)
4283
/// ((-1 << y) >> y) <- non-canonical, has extra uses
4284
/// ~(-1 << y)
4285
/// ((1 << y) + (-1)) <- non-canonical, has extra uses
4286
/// The Mask can be a constant, too.
4287
/// For some predicates, the operands are commutative.
4288
/// For others, x can only be on a specific side.
4289
static Value *foldICmpWithLowBitMaskedVal(ICmpInst::Predicate Pred, Value *Op0,
4290
Value *Op1, const SimplifyQuery &Q,
4291
InstCombiner &IC) {
4292
4293
ICmpInst::Predicate DstPred;
4294
switch (Pred) {
4295
case ICmpInst::Predicate::ICMP_EQ:
4296
// x & Mask == x
4297
// x & ~Mask == 0
4298
// ~x | Mask == -1
4299
// -> x u<= Mask
4300
// x & ~Mask == ~Mask
4301
// -> ~Mask u<= x
4302
DstPred = ICmpInst::Predicate::ICMP_ULE;
4303
break;
4304
case ICmpInst::Predicate::ICMP_NE:
4305
// x & Mask != x
4306
// x & ~Mask != 0
4307
// ~x | Mask != -1
4308
// -> x u> Mask
4309
// x & ~Mask != ~Mask
4310
// -> ~Mask u> x
4311
DstPred = ICmpInst::Predicate::ICMP_UGT;
4312
break;
4313
case ICmpInst::Predicate::ICMP_ULT:
4314
// x & Mask u< x
4315
// -> x u> Mask
4316
// x & ~Mask u< ~Mask
4317
// -> ~Mask u> x
4318
DstPred = ICmpInst::Predicate::ICMP_UGT;
4319
break;
4320
case ICmpInst::Predicate::ICMP_UGE:
4321
// x & Mask u>= x
4322
// -> x u<= Mask
4323
// x & ~Mask u>= ~Mask
4324
// -> ~Mask u<= x
4325
DstPred = ICmpInst::Predicate::ICMP_ULE;
4326
break;
4327
case ICmpInst::Predicate::ICMP_SLT:
4328
// x & Mask s< x [iff Mask s>= 0]
4329
// -> x s> Mask
4330
// x & ~Mask s< ~Mask [iff ~Mask != 0]
4331
// -> ~Mask s> x
4332
DstPred = ICmpInst::Predicate::ICMP_SGT;
4333
break;
4334
case ICmpInst::Predicate::ICMP_SGE:
4335
// x & Mask s>= x [iff Mask s>= 0]
4336
// -> x s<= Mask
4337
// x & ~Mask s>= ~Mask [iff ~Mask != 0]
4338
// -> ~Mask s<= x
4339
DstPred = ICmpInst::Predicate::ICMP_SLE;
4340
break;
4341
default:
4342
// We don't support sgt,sle
4343
// ult/ugt are simplified to true/false respectively.
4344
return nullptr;
4345
}
4346
4347
Value *X, *M;
4348
// Put search code in lambda for early positive returns.
4349
auto IsLowBitMask = [&]() {
4350
if (match(Op0, m_c_And(m_Specific(Op1), m_Value(M)))) {
4351
X = Op1;
4352
// Look for: x & Mask pred x
4353
if (isMaskOrZero(M, /*Not=*/false, Q)) {
4354
return !ICmpInst::isSigned(Pred) ||
4355
(match(M, m_NonNegative()) || isKnownNonNegative(M, Q));
4356
}
4357
4358
// Look for: x & ~Mask pred ~Mask
4359
if (isMaskOrZero(X, /*Not=*/true, Q)) {
4360
return !ICmpInst::isSigned(Pred) || isKnownNonZero(X, Q);
4361
}
4362
return false;
4363
}
4364
if (ICmpInst::isEquality(Pred) && match(Op1, m_AllOnes()) &&
4365
match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(M))))) {
4366
4367
auto Check = [&]() {
4368
// Look for: ~x | Mask == -1
4369
if (isMaskOrZero(M, /*Not=*/false, Q)) {
4370
if (Value *NotX =
4371
IC.getFreelyInverted(X, X->hasOneUse(), &IC.Builder)) {
4372
X = NotX;
4373
return true;
4374
}
4375
}
4376
return false;
4377
};
4378
if (Check())
4379
return true;
4380
std::swap(X, M);
4381
return Check();
4382
}
4383
if (ICmpInst::isEquality(Pred) && match(Op1, m_Zero()) &&
4384
match(Op0, m_OneUse(m_And(m_Value(X), m_Value(M))))) {
4385
auto Check = [&]() {
4386
// Look for: x & ~Mask == 0
4387
if (isMaskOrZero(M, /*Not=*/true, Q)) {
4388
if (Value *NotM =
4389
IC.getFreelyInverted(M, M->hasOneUse(), &IC.Builder)) {
4390
M = NotM;
4391
return true;
4392
}
4393
}
4394
return false;
4395
};
4396
if (Check())
4397
return true;
4398
std::swap(X, M);
4399
return Check();
4400
}
4401
return false;
4402
};
4403
4404
if (!IsLowBitMask())
4405
return nullptr;
4406
4407
return IC.Builder.CreateICmp(DstPred, X, M);
4408
}
4409
4410
/// Some comparisons can be simplified.
4411
/// In this case, we are looking for comparisons that look like
4412
/// a check for a lossy signed truncation.
4413
/// Folds: (MaskedBits is a constant.)
4414
/// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
4415
/// Into:
4416
/// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
4417
/// Where KeptBits = bitwidth(%x) - MaskedBits
4418
static Value *
4419
foldICmpWithTruncSignExtendedVal(ICmpInst &I,
4420
InstCombiner::BuilderTy &Builder) {
4421
ICmpInst::Predicate SrcPred;
4422
Value *X;
4423
const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
4424
// We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
4425
if (!match(&I, m_c_ICmp(SrcPred,
4426
m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
4427
m_APInt(C1))),
4428
m_Deferred(X))))
4429
return nullptr;
4430
4431
// Potential handling of non-splats: for each element:
4432
// * if both are undef, replace with constant 0.
4433
// Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
4434
// * if both are not undef, and are different, bailout.
4435
// * else, only one is undef, then pick the non-undef one.
4436
4437
// The shift amount must be equal.
4438
if (*C0 != *C1)
4439
return nullptr;
4440
const APInt &MaskedBits = *C0;
4441
assert(MaskedBits != 0 && "shift by zero should be folded away already.");
4442
4443
ICmpInst::Predicate DstPred;
4444
switch (SrcPred) {
4445
case ICmpInst::Predicate::ICMP_EQ:
4446
// ((%x << MaskedBits) a>> MaskedBits) == %x
4447
// =>
4448
// (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
4449
DstPred = ICmpInst::Predicate::ICMP_ULT;
4450
break;
4451
case ICmpInst::Predicate::ICMP_NE:
4452
// ((%x << MaskedBits) a>> MaskedBits) != %x
4453
// =>
4454
// (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
4455
DstPred = ICmpInst::Predicate::ICMP_UGE;
4456
break;
4457
// FIXME: are more folds possible?
4458
default:
4459
return nullptr;
4460
}
4461
4462
auto *XType = X->getType();
4463
const unsigned XBitWidth = XType->getScalarSizeInBits();
4464
const APInt BitWidth = APInt(XBitWidth, XBitWidth);
4465
assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
4466
4467
// KeptBits = bitwidth(%x) - MaskedBits
4468
const APInt KeptBits = BitWidth - MaskedBits;
4469
assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
4470
// ICmpCst = (1 << KeptBits)
4471
const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
4472
assert(ICmpCst.isPowerOf2());
4473
// AddCst = (1 << (KeptBits-1))
4474
const APInt AddCst = ICmpCst.lshr(1);
4475
assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
4476
4477
// T0 = add %x, AddCst
4478
Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
4479
// T1 = T0 DstPred ICmpCst
4480
Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
4481
4482
return T1;
4483
}
4484
4485
// Given pattern:
4486
// icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
4487
// we should move shifts to the same hand of 'and', i.e. rewrite as
4488
// icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x)
4489
// We are only interested in opposite logical shifts here.
4490
// One of the shifts can be truncated.
4491
// If we can, we want to end up creating 'lshr' shift.
4492
static Value *
4493
foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
4494
InstCombiner::BuilderTy &Builder) {
4495
if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
4496
!I.getOperand(0)->hasOneUse())
4497
return nullptr;
4498
4499
auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
4500
4501
// Look for an 'and' of two logical shifts, one of which may be truncated.
4502
// We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
4503
Instruction *XShift, *MaybeTruncation, *YShift;
4504
if (!match(
4505
I.getOperand(0),
4506
m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
4507
m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
4508
m_AnyLogicalShift, m_Instruction(YShift))),
4509
m_Instruction(MaybeTruncation)))))
4510
return nullptr;
4511
4512
// We potentially looked past 'trunc', but only when matching YShift,
4513
// therefore YShift must have the widest type.
4514
Instruction *WidestShift = YShift;
4515
// Therefore XShift must have the shallowest type.
4516
// Or they both have identical types if there was no truncation.
4517
Instruction *NarrowestShift = XShift;
4518
4519
Type *WidestTy = WidestShift->getType();
4520
Type *NarrowestTy = NarrowestShift->getType();
4521
assert(NarrowestTy == I.getOperand(0)->getType() &&
4522
"We did not look past any shifts while matching XShift though.");
4523
bool HadTrunc = WidestTy != I.getOperand(0)->getType();
4524
4525
// If YShift is a 'lshr', swap the shifts around.
4526
if (match(YShift, m_LShr(m_Value(), m_Value())))
4527
std::swap(XShift, YShift);
4528
4529
// The shifts must be in opposite directions.
4530
auto XShiftOpcode = XShift->getOpcode();
4531
if (XShiftOpcode == YShift->getOpcode())
4532
return nullptr; // Do not care about same-direction shifts here.
4533
4534
Value *X, *XShAmt, *Y, *YShAmt;
4535
match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
4536
match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
4537
4538
// If one of the values being shifted is a constant, then we will end with
4539
// and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
4540
// however, we will need to ensure that we won't increase instruction count.
4541
if (!isa<Constant>(X) && !isa<Constant>(Y)) {
4542
// At least one of the hands of the 'and' should be one-use shift.
4543
if (!match(I.getOperand(0),
4544
m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
4545
return nullptr;
4546
if (HadTrunc) {
4547
// Due to the 'trunc', we will need to widen X. For that either the old
4548
// 'trunc' or the shift amt in the non-truncated shift should be one-use.
4549
if (!MaybeTruncation->hasOneUse() &&
4550
!NarrowestShift->getOperand(1)->hasOneUse())
4551
return nullptr;
4552
}
4553
}
4554
4555
// We have two shift amounts from two different shifts. The types of those
4556
// shift amounts may not match. If that's the case let's bailout now.
4557
if (XShAmt->getType() != YShAmt->getType())
4558
return nullptr;
4559
4560
// As input, we have the following pattern:
4561
// icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
4562
// We want to rewrite that as:
4563
// icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x)
4564
// While we know that originally (Q+K) would not overflow
4565
// (because 2 * (N-1) u<= iN -1), we have looked past extensions of
4566
// shift amounts. so it may now overflow in smaller bitwidth.
4567
// To ensure that does not happen, we need to ensure that the total maximal
4568
// shift amount is still representable in that smaller bit width.
4569
unsigned MaximalPossibleTotalShiftAmount =
4570
(WidestTy->getScalarSizeInBits() - 1) +
4571
(NarrowestTy->getScalarSizeInBits() - 1);
4572
APInt MaximalRepresentableShiftAmount =
4573
APInt::getAllOnes(XShAmt->getType()->getScalarSizeInBits());
4574
if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
4575
return nullptr;
4576
4577
// Can we fold (XShAmt+YShAmt) ?
4578
auto *NewShAmt = dyn_cast_or_null<Constant>(
4579
simplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
4580
/*isNUW=*/false, SQ.getWithInstruction(&I)));
4581
if (!NewShAmt)
4582
return nullptr;
4583
if (NewShAmt->getType() != WidestTy) {
4584
NewShAmt =
4585
ConstantFoldCastOperand(Instruction::ZExt, NewShAmt, WidestTy, SQ.DL);
4586
if (!NewShAmt)
4587
return nullptr;
4588
}
4589
unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
4590
4591
// Is the new shift amount smaller than the bit width?
4592
// FIXME: could also rely on ConstantRange.
4593
if (!match(NewShAmt,
4594
m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
4595
APInt(WidestBitWidth, WidestBitWidth))))
4596
return nullptr;
4597
4598
// An extra legality check is needed if we had trunc-of-lshr.
4599
if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
4600
auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
4601
WidestShift]() {
4602
// It isn't obvious whether it's worth it to analyze non-constants here.
4603
// Also, let's basically give up on non-splat cases, pessimizing vectors.
4604
// If *any* of these preconditions matches we can perform the fold.
4605
Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
4606
? NewShAmt->getSplatValue()
4607
: NewShAmt;
4608
// If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
4609
if (NewShAmtSplat &&
4610
(NewShAmtSplat->isNullValue() ||
4611
NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
4612
return true;
4613
// We consider *min* leading zeros so a single outlier
4614
// blocks the transform as opposed to allowing it.
4615
if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
4616
KnownBits Known = computeKnownBits(C, SQ.DL);
4617
unsigned MinLeadZero = Known.countMinLeadingZeros();
4618
// If the value being shifted has at most lowest bit set we can fold.
4619
unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
4620
if (MaxActiveBits <= 1)
4621
return true;
4622
// Precondition: NewShAmt u<= countLeadingZeros(C)
4623
if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
4624
return true;
4625
}
4626
if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
4627
KnownBits Known = computeKnownBits(C, SQ.DL);
4628
unsigned MinLeadZero = Known.countMinLeadingZeros();
4629
// If the value being shifted has at most lowest bit set we can fold.
4630
unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
4631
if (MaxActiveBits <= 1)
4632
return true;
4633
// Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
4634
if (NewShAmtSplat) {
4635
APInt AdjNewShAmt =
4636
(WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
4637
if (AdjNewShAmt.ule(MinLeadZero))
4638
return true;
4639
}
4640
}
4641
return false; // Can't tell if it's ok.
4642
};
4643
if (!CanFold())
4644
return nullptr;
4645
}
4646
4647
// All good, we can do this fold.
4648
X = Builder.CreateZExt(X, WidestTy);
4649
Y = Builder.CreateZExt(Y, WidestTy);
4650
// The shift is the same that was for X.
4651
Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
4652
? Builder.CreateLShr(X, NewShAmt)
4653
: Builder.CreateShl(X, NewShAmt);
4654
Value *T1 = Builder.CreateAnd(T0, Y);
4655
return Builder.CreateICmp(I.getPredicate(), T1,
4656
Constant::getNullValue(WidestTy));
4657
}
4658
4659
/// Fold
4660
/// (-1 u/ x) u< y
4661
/// ((x * y) ?/ x) != y
4662
/// to
4663
/// @llvm.?mul.with.overflow(x, y) plus extraction of overflow bit
4664
/// Note that the comparison is commutative, while inverted (u>=, ==) predicate
4665
/// will mean that we are looking for the opposite answer.
4666
Value *InstCombinerImpl::foldMultiplicationOverflowCheck(ICmpInst &I) {
4667
ICmpInst::Predicate Pred;
4668
Value *X, *Y;
4669
Instruction *Mul;
4670
Instruction *Div;
4671
bool NeedNegation;
4672
// Look for: (-1 u/ x) u</u>= y
4673
if (!I.isEquality() &&
4674
match(&I, m_c_ICmp(Pred,
4675
m_CombineAnd(m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
4676
m_Instruction(Div)),
4677
m_Value(Y)))) {
4678
Mul = nullptr;
4679
4680
// Are we checking that overflow does not happen, or does happen?
4681
switch (Pred) {
4682
case ICmpInst::Predicate::ICMP_ULT:
4683
NeedNegation = false;
4684
break; // OK
4685
case ICmpInst::Predicate::ICMP_UGE:
4686
NeedNegation = true;
4687
break; // OK
4688
default:
4689
return nullptr; // Wrong predicate.
4690
}
4691
} else // Look for: ((x * y) / x) !=/== y
4692
if (I.isEquality() &&
4693
match(&I,
4694
m_c_ICmp(Pred, m_Value(Y),
4695
m_CombineAnd(
4696
m_OneUse(m_IDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
4697
m_Value(X)),
4698
m_Instruction(Mul)),
4699
m_Deferred(X))),
4700
m_Instruction(Div))))) {
4701
NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
4702
} else
4703
return nullptr;
4704
4705
BuilderTy::InsertPointGuard Guard(Builder);
4706
// If the pattern included (x * y), we'll want to insert new instructions
4707
// right before that original multiplication so that we can replace it.
4708
bool MulHadOtherUses = Mul && !Mul->hasOneUse();
4709
if (MulHadOtherUses)
4710
Builder.SetInsertPoint(Mul);
4711
4712
Function *F = Intrinsic::getDeclaration(I.getModule(),
4713
Div->getOpcode() == Instruction::UDiv
4714
? Intrinsic::umul_with_overflow
4715
: Intrinsic::smul_with_overflow,
4716
X->getType());
4717
CallInst *Call = Builder.CreateCall(F, {X, Y}, "mul");
4718
4719
// If the multiplication was used elsewhere, to ensure that we don't leave
4720
// "duplicate" instructions, replace uses of that original multiplication
4721
// with the multiplication result from the with.overflow intrinsic.
4722
if (MulHadOtherUses)
4723
replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "mul.val"));
4724
4725
Value *Res = Builder.CreateExtractValue(Call, 1, "mul.ov");
4726
if (NeedNegation) // This technically increases instruction count.
4727
Res = Builder.CreateNot(Res, "mul.not.ov");
4728
4729
// If we replaced the mul, erase it. Do this after all uses of Builder,
4730
// as the mul is used as insertion point.
4731
if (MulHadOtherUses)
4732
eraseInstFromFunction(*Mul);
4733
4734
return Res;
4735
}
4736
4737
static Instruction *foldICmpXNegX(ICmpInst &I,
4738
InstCombiner::BuilderTy &Builder) {
4739
CmpInst::Predicate Pred;
4740
Value *X;
4741
if (match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) {
4742
4743
if (ICmpInst::isSigned(Pred))
4744
Pred = ICmpInst::getSwappedPredicate(Pred);
4745
else if (ICmpInst::isUnsigned(Pred))
4746
Pred = ICmpInst::getSignedPredicate(Pred);
4747
// else for equality-comparisons just keep the predicate.
4748
4749
return ICmpInst::Create(Instruction::ICmp, Pred, X,
4750
Constant::getNullValue(X->getType()), I.getName());
4751
}
4752
4753
// A value is not equal to its negation unless that value is 0 or
4754
// MinSignedValue, ie: a != -a --> (a & MaxSignedVal) != 0
4755
if (match(&I, m_c_ICmp(Pred, m_OneUse(m_Neg(m_Value(X))), m_Deferred(X))) &&
4756
ICmpInst::isEquality(Pred)) {
4757
Type *Ty = X->getType();
4758
uint32_t BitWidth = Ty->getScalarSizeInBits();
4759
Constant *MaxSignedVal =
4760
ConstantInt::get(Ty, APInt::getSignedMaxValue(BitWidth));
4761
Value *And = Builder.CreateAnd(X, MaxSignedVal);
4762
Constant *Zero = Constant::getNullValue(Ty);
4763
return CmpInst::Create(Instruction::ICmp, Pred, And, Zero);
4764
}
4765
4766
return nullptr;
4767
}
4768
4769
static Instruction *foldICmpAndXX(ICmpInst &I, const SimplifyQuery &Q,
4770
InstCombinerImpl &IC) {
4771
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *A;
4772
// Normalize and operand as operand 0.
4773
CmpInst::Predicate Pred = I.getPredicate();
4774
if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) {
4775
std::swap(Op0, Op1);
4776
Pred = ICmpInst::getSwappedPredicate(Pred);
4777
}
4778
4779
if (!match(Op0, m_c_And(m_Specific(Op1), m_Value(A))))
4780
return nullptr;
4781
4782
// (icmp (X & Y) u< X --> (X & Y) != X
4783
if (Pred == ICmpInst::ICMP_ULT)
4784
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4785
4786
// (icmp (X & Y) u>= X --> (X & Y) == X
4787
if (Pred == ICmpInst::ICMP_UGE)
4788
return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4789
4790
if (ICmpInst::isEquality(Pred) && Op0->hasOneUse()) {
4791
// icmp (X & Y) eq/ne Y --> (X | ~Y) eq/ne -1 if Y is freely invertible and
4792
// Y is non-constant. If Y is constant the `X & C == C` form is preferable
4793
// so don't do this fold.
4794
if (!match(Op1, m_ImmConstant()))
4795
if (auto *NotOp1 =
4796
IC.getFreelyInverted(Op1, !Op1->hasNUsesOrMore(3), &IC.Builder))
4797
return new ICmpInst(Pred, IC.Builder.CreateOr(A, NotOp1),
4798
Constant::getAllOnesValue(Op1->getType()));
4799
// icmp (X & Y) eq/ne Y --> (~X & Y) eq/ne 0 if X is freely invertible.
4800
if (auto *NotA = IC.getFreelyInverted(A, A->hasOneUse(), &IC.Builder))
4801
return new ICmpInst(Pred, IC.Builder.CreateAnd(Op1, NotA),
4802
Constant::getNullValue(Op1->getType()));
4803
}
4804
4805
if (!ICmpInst::isSigned(Pred))
4806
return nullptr;
4807
4808
KnownBits KnownY = IC.computeKnownBits(A, /*Depth=*/0, &I);
4809
// (X & NegY) spred X --> (X & NegY) upred X
4810
if (KnownY.isNegative())
4811
return new ICmpInst(ICmpInst::getUnsignedPredicate(Pred), Op0, Op1);
4812
4813
if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGT)
4814
return nullptr;
4815
4816
if (KnownY.isNonNegative())
4817
// (X & PosY) s<= X --> X s>= 0
4818
// (X & PosY) s> X --> X s< 0
4819
return new ICmpInst(ICmpInst::getSwappedPredicate(Pred), Op1,
4820
Constant::getNullValue(Op1->getType()));
4821
4822
if (isKnownNegative(Op1, IC.getSimplifyQuery().getWithInstruction(&I)))
4823
// (NegX & Y) s<= NegX --> Y s< 0
4824
// (NegX & Y) s> NegX --> Y s>= 0
4825
return new ICmpInst(ICmpInst::getFlippedStrictnessPredicate(Pred), A,
4826
Constant::getNullValue(A->getType()));
4827
4828
return nullptr;
4829
}
4830
4831
static Instruction *foldICmpOrXX(ICmpInst &I, const SimplifyQuery &Q,
4832
InstCombinerImpl &IC) {
4833
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *A;
4834
4835
// Normalize or operand as operand 0.
4836
CmpInst::Predicate Pred = I.getPredicate();
4837
if (match(Op1, m_c_Or(m_Specific(Op0), m_Value(A)))) {
4838
std::swap(Op0, Op1);
4839
Pred = ICmpInst::getSwappedPredicate(Pred);
4840
} else if (!match(Op0, m_c_Or(m_Specific(Op1), m_Value(A)))) {
4841
return nullptr;
4842
}
4843
4844
// icmp (X | Y) u<= X --> (X | Y) == X
4845
if (Pred == ICmpInst::ICMP_ULE)
4846
return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4847
4848
// icmp (X | Y) u> X --> (X | Y) != X
4849
if (Pred == ICmpInst::ICMP_UGT)
4850
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4851
4852
if (ICmpInst::isEquality(Pred) && Op0->hasOneUse()) {
4853
// icmp (X | Y) eq/ne Y --> (X & ~Y) eq/ne 0 if Y is freely invertible
4854
if (Value *NotOp1 =
4855
IC.getFreelyInverted(Op1, !Op1->hasNUsesOrMore(3), &IC.Builder))
4856
return new ICmpInst(Pred, IC.Builder.CreateAnd(A, NotOp1),
4857
Constant::getNullValue(Op1->getType()));
4858
// icmp (X | Y) eq/ne Y --> (~X | Y) eq/ne -1 if X is freely invertible.
4859
if (Value *NotA = IC.getFreelyInverted(A, A->hasOneUse(), &IC.Builder))
4860
return new ICmpInst(Pred, IC.Builder.CreateOr(Op1, NotA),
4861
Constant::getAllOnesValue(Op1->getType()));
4862
}
4863
return nullptr;
4864
}
4865
4866
static Instruction *foldICmpXorXX(ICmpInst &I, const SimplifyQuery &Q,
4867
InstCombinerImpl &IC) {
4868
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *A;
4869
// Normalize xor operand as operand 0.
4870
CmpInst::Predicate Pred = I.getPredicate();
4871
if (match(Op1, m_c_Xor(m_Specific(Op0), m_Value()))) {
4872
std::swap(Op0, Op1);
4873
Pred = ICmpInst::getSwappedPredicate(Pred);
4874
}
4875
if (!match(Op0, m_c_Xor(m_Specific(Op1), m_Value(A))))
4876
return nullptr;
4877
4878
// icmp (X ^ Y_NonZero) u>= X --> icmp (X ^ Y_NonZero) u> X
4879
// icmp (X ^ Y_NonZero) u<= X --> icmp (X ^ Y_NonZero) u< X
4880
// icmp (X ^ Y_NonZero) s>= X --> icmp (X ^ Y_NonZero) s> X
4881
// icmp (X ^ Y_NonZero) s<= X --> icmp (X ^ Y_NonZero) s< X
4882
CmpInst::Predicate PredOut = CmpInst::getStrictPredicate(Pred);
4883
if (PredOut != Pred && isKnownNonZero(A, Q))
4884
return new ICmpInst(PredOut, Op0, Op1);
4885
4886
return nullptr;
4887
}
4888
4889
/// Try to fold icmp (binop), X or icmp X, (binop).
4890
/// TODO: A large part of this logic is duplicated in InstSimplify's
4891
/// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
4892
/// duplication.
4893
Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
4894
const SimplifyQuery &SQ) {
4895
const SimplifyQuery Q = SQ.getWithInstruction(&I);
4896
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4897
4898
// Special logic for binary operators.
4899
BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
4900
BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
4901
if (!BO0 && !BO1)
4902
return nullptr;
4903
4904
if (Instruction *NewICmp = foldICmpXNegX(I, Builder))
4905
return NewICmp;
4906
4907
const CmpInst::Predicate Pred = I.getPredicate();
4908
Value *X;
4909
4910
// Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
4911
// (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
4912
if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
4913
(Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
4914
return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
4915
// Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
4916
if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
4917
(Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
4918
return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
4919
4920
{
4921
// (Op1 + X) + C u</u>= Op1 --> ~C - X u</u>= Op1
4922
Constant *C;
4923
if (match(Op0, m_OneUse(m_Add(m_c_Add(m_Specific(Op1), m_Value(X)),
4924
m_ImmConstant(C)))) &&
4925
(Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
4926
Constant *C2 = ConstantExpr::getNot(C);
4927
return new ICmpInst(Pred, Builder.CreateSub(C2, X), Op1);
4928
}
4929
// Op0 u>/u<= (Op0 + X) + C --> Op0 u>/u<= ~C - X
4930
if (match(Op1, m_OneUse(m_Add(m_c_Add(m_Specific(Op0), m_Value(X)),
4931
m_ImmConstant(C)))) &&
4932
(Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) {
4933
Constant *C2 = ConstantExpr::getNot(C);
4934
return new ICmpInst(Pred, Op0, Builder.CreateSub(C2, X));
4935
}
4936
}
4937
4938
{
4939
// Similar to above: an unsigned overflow comparison may use offset + mask:
4940
// ((Op1 + C) & C) u< Op1 --> Op1 != 0
4941
// ((Op1 + C) & C) u>= Op1 --> Op1 == 0
4942
// Op0 u> ((Op0 + C) & C) --> Op0 != 0
4943
// Op0 u<= ((Op0 + C) & C) --> Op0 == 0
4944
BinaryOperator *BO;
4945
const APInt *C;
4946
if ((Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE) &&
4947
match(Op0, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
4948
match(BO, m_Add(m_Specific(Op1), m_SpecificIntAllowPoison(*C)))) {
4949
CmpInst::Predicate NewPred =
4950
Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
4951
Constant *Zero = ConstantInt::getNullValue(Op1->getType());
4952
return new ICmpInst(NewPred, Op1, Zero);
4953
}
4954
4955
if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) &&
4956
match(Op1, m_And(m_BinOp(BO), m_LowBitMask(C))) &&
4957
match(BO, m_Add(m_Specific(Op0), m_SpecificIntAllowPoison(*C)))) {
4958
CmpInst::Predicate NewPred =
4959
Pred == ICmpInst::ICMP_UGT ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
4960
Constant *Zero = ConstantInt::getNullValue(Op1->getType());
4961
return new ICmpInst(NewPred, Op0, Zero);
4962
}
4963
}
4964
4965
bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
4966
bool Op0HasNUW = false, Op1HasNUW = false;
4967
bool Op0HasNSW = false, Op1HasNSW = false;
4968
// Analyze the case when either Op0 or Op1 is an add instruction.
4969
// Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
4970
auto hasNoWrapProblem = [](const BinaryOperator &BO, CmpInst::Predicate Pred,
4971
bool &HasNSW, bool &HasNUW) -> bool {
4972
if (isa<OverflowingBinaryOperator>(BO)) {
4973
HasNUW = BO.hasNoUnsignedWrap();
4974
HasNSW = BO.hasNoSignedWrap();
4975
return ICmpInst::isEquality(Pred) ||
4976
(CmpInst::isUnsigned(Pred) && HasNUW) ||
4977
(CmpInst::isSigned(Pred) && HasNSW);
4978
} else if (BO.getOpcode() == Instruction::Or) {
4979
HasNUW = true;
4980
HasNSW = true;
4981
return true;
4982
} else {
4983
return false;
4984
}
4985
};
4986
Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
4987
4988
if (BO0) {
4989
match(BO0, m_AddLike(m_Value(A), m_Value(B)));
4990
NoOp0WrapProblem = hasNoWrapProblem(*BO0, Pred, Op0HasNSW, Op0HasNUW);
4991
}
4992
if (BO1) {
4993
match(BO1, m_AddLike(m_Value(C), m_Value(D)));
4994
NoOp1WrapProblem = hasNoWrapProblem(*BO1, Pred, Op1HasNSW, Op1HasNUW);
4995
}
4996
4997
// icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
4998
// icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
4999
if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
5000
return new ICmpInst(Pred, A == Op1 ? B : A,
5001
Constant::getNullValue(Op1->getType()));
5002
5003
// icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
5004
// icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
5005
if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
5006
return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
5007
C == Op0 ? D : C);
5008
5009
// icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
5010
if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
5011
NoOp1WrapProblem) {
5012
// Determine Y and Z in the form icmp (X+Y), (X+Z).
5013
Value *Y, *Z;
5014
if (A == C) {
5015
// C + B == C + D -> B == D
5016
Y = B;
5017
Z = D;
5018
} else if (A == D) {
5019
// D + B == C + D -> B == C
5020
Y = B;
5021
Z = C;
5022
} else if (B == C) {
5023
// A + C == C + D -> A == D
5024
Y = A;
5025
Z = D;
5026
} else {
5027
assert(B == D);
5028
// A + D == C + D -> A == C
5029
Y = A;
5030
Z = C;
5031
}
5032
return new ICmpInst(Pred, Y, Z);
5033
}
5034
5035
// icmp slt (A + -1), Op1 -> icmp sle A, Op1
5036
if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
5037
match(B, m_AllOnes()))
5038
return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
5039
5040
// icmp sge (A + -1), Op1 -> icmp sgt A, Op1
5041
if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
5042
match(B, m_AllOnes()))
5043
return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
5044
5045
// icmp sle (A + 1), Op1 -> icmp slt A, Op1
5046
if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
5047
return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
5048
5049
// icmp sgt (A + 1), Op1 -> icmp sge A, Op1
5050
if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
5051
return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
5052
5053
// icmp sgt Op0, (C + -1) -> icmp sge Op0, C
5054
if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
5055
match(D, m_AllOnes()))
5056
return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
5057
5058
// icmp sle Op0, (C + -1) -> icmp slt Op0, C
5059
if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
5060
match(D, m_AllOnes()))
5061
return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
5062
5063
// icmp sge Op0, (C + 1) -> icmp sgt Op0, C
5064
if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
5065
return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
5066
5067
// icmp slt Op0, (C + 1) -> icmp sle Op0, C
5068
if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
5069
return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
5070
5071
// TODO: The subtraction-related identities shown below also hold, but
5072
// canonicalization from (X -nuw 1) to (X + -1) means that the combinations
5073
// wouldn't happen even if they were implemented.
5074
//
5075
// icmp ult (A - 1), Op1 -> icmp ule A, Op1
5076
// icmp uge (A - 1), Op1 -> icmp ugt A, Op1
5077
// icmp ugt Op0, (C - 1) -> icmp uge Op0, C
5078
// icmp ule Op0, (C - 1) -> icmp ult Op0, C
5079
5080
// icmp ule (A + 1), Op0 -> icmp ult A, Op1
5081
if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
5082
return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
5083
5084
// icmp ugt (A + 1), Op0 -> icmp uge A, Op1
5085
if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
5086
return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
5087
5088
// icmp uge Op0, (C + 1) -> icmp ugt Op0, C
5089
if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
5090
return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
5091
5092
// icmp ult Op0, (C + 1) -> icmp ule Op0, C
5093
if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
5094
return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
5095
5096
// if C1 has greater magnitude than C2:
5097
// icmp (A + C1), (C + C2) -> icmp (A + C3), C
5098
// s.t. C3 = C1 - C2
5099
//
5100
// if C2 has greater magnitude than C1:
5101
// icmp (A + C1), (C + C2) -> icmp A, (C + C3)
5102
// s.t. C3 = C2 - C1
5103
if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
5104
(BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) {
5105
const APInt *AP1, *AP2;
5106
// TODO: Support non-uniform vectors.
5107
// TODO: Allow poison passthrough if B or D's element is poison.
5108
if (match(B, m_APIntAllowPoison(AP1)) &&
5109
match(D, m_APIntAllowPoison(AP2)) &&
5110
AP1->isNegative() == AP2->isNegative()) {
5111
APInt AP1Abs = AP1->abs();
5112
APInt AP2Abs = AP2->abs();
5113
if (AP1Abs.uge(AP2Abs)) {
5114
APInt Diff = *AP1 - *AP2;
5115
Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff);
5116
Value *NewAdd = Builder.CreateAdd(
5117
A, C3, "", Op0HasNUW && Diff.ule(*AP1), Op0HasNSW);
5118
return new ICmpInst(Pred, NewAdd, C);
5119
} else {
5120
APInt Diff = *AP2 - *AP1;
5121
Constant *C3 = Constant::getIntegerValue(BO0->getType(), Diff);
5122
Value *NewAdd = Builder.CreateAdd(
5123
C, C3, "", Op1HasNUW && Diff.ule(*AP2), Op1HasNSW);
5124
return new ICmpInst(Pred, A, NewAdd);
5125
}
5126
}
5127
Constant *Cst1, *Cst2;
5128
if (match(B, m_ImmConstant(Cst1)) && match(D, m_ImmConstant(Cst2)) &&
5129
ICmpInst::isEquality(Pred)) {
5130
Constant *Diff = ConstantExpr::getSub(Cst2, Cst1);
5131
Value *NewAdd = Builder.CreateAdd(C, Diff);
5132
return new ICmpInst(Pred, A, NewAdd);
5133
}
5134
}
5135
5136
// Analyze the case when either Op0 or Op1 is a sub instruction.
5137
// Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
5138
A = nullptr;
5139
B = nullptr;
5140
C = nullptr;
5141
D = nullptr;
5142
if (BO0 && BO0->getOpcode() == Instruction::Sub) {
5143
A = BO0->getOperand(0);
5144
B = BO0->getOperand(1);
5145
}
5146
if (BO1 && BO1->getOpcode() == Instruction::Sub) {
5147
C = BO1->getOperand(0);
5148
D = BO1->getOperand(1);
5149
}
5150
5151
// icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
5152
if (A == Op1 && NoOp0WrapProblem)
5153
return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
5154
// icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
5155
if (C == Op0 && NoOp1WrapProblem)
5156
return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
5157
5158
// Convert sub-with-unsigned-overflow comparisons into a comparison of args.
5159
// (A - B) u>/u<= A --> B u>/u<= A
5160
if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
5161
return new ICmpInst(Pred, B, A);
5162
// C u</u>= (C - D) --> C u</u>= D
5163
if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
5164
return new ICmpInst(Pred, C, D);
5165
// (A - B) u>=/u< A --> B u>/u<= A iff B != 0
5166
if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
5167
isKnownNonZero(B, Q))
5168
return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
5169
// C u<=/u> (C - D) --> C u</u>= D iff B != 0
5170
if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
5171
isKnownNonZero(D, Q))
5172
return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
5173
5174
// icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
5175
if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
5176
return new ICmpInst(Pred, A, C);
5177
5178
// icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
5179
if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
5180
return new ICmpInst(Pred, D, B);
5181
5182
// icmp (0-X) < cst --> x > -cst
5183
if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
5184
Value *X;
5185
if (match(BO0, m_Neg(m_Value(X))))
5186
if (Constant *RHSC = dyn_cast<Constant>(Op1))
5187
if (RHSC->isNotMinSignedValue())
5188
return new ICmpInst(I.getSwappedPredicate(), X,
5189
ConstantExpr::getNeg(RHSC));
5190
}
5191
5192
if (Instruction * R = foldICmpXorXX(I, Q, *this))
5193
return R;
5194
if (Instruction *R = foldICmpOrXX(I, Q, *this))
5195
return R;
5196
5197
{
5198
// Try to remove shared multiplier from comparison:
5199
// X * Z u{lt/le/gt/ge}/eq/ne Y * Z
5200
Value *X, *Y, *Z;
5201
if (Pred == ICmpInst::getUnsignedPredicate(Pred) &&
5202
((match(Op0, m_Mul(m_Value(X), m_Value(Z))) &&
5203
match(Op1, m_c_Mul(m_Specific(Z), m_Value(Y)))) ||
5204
(match(Op0, m_Mul(m_Value(Z), m_Value(X))) &&
5205
match(Op1, m_c_Mul(m_Specific(Z), m_Value(Y)))))) {
5206
bool NonZero;
5207
if (ICmpInst::isEquality(Pred)) {
5208
KnownBits ZKnown = computeKnownBits(Z, 0, &I);
5209
// if Z % 2 != 0
5210
// X * Z eq/ne Y * Z -> X eq/ne Y
5211
if (ZKnown.countMaxTrailingZeros() == 0)
5212
return new ICmpInst(Pred, X, Y);
5213
NonZero = !ZKnown.One.isZero() || isKnownNonZero(Z, Q);
5214
// if Z != 0 and nsw(X * Z) and nsw(Y * Z)
5215
// X * Z eq/ne Y * Z -> X eq/ne Y
5216
if (NonZero && BO0 && BO1 && Op0HasNSW && Op1HasNSW)
5217
return new ICmpInst(Pred, X, Y);
5218
} else
5219
NonZero = isKnownNonZero(Z, Q);
5220
5221
// If Z != 0 and nuw(X * Z) and nuw(Y * Z)
5222
// X * Z u{lt/le/gt/ge}/eq/ne Y * Z -> X u{lt/le/gt/ge}/eq/ne Y
5223
if (NonZero && BO0 && BO1 && Op0HasNUW && Op1HasNUW)
5224
return new ICmpInst(Pred, X, Y);
5225
}
5226
}
5227
5228
BinaryOperator *SRem = nullptr;
5229
// icmp (srem X, Y), Y
5230
if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
5231
SRem = BO0;
5232
// icmp Y, (srem X, Y)
5233
else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
5234
Op0 == BO1->getOperand(1))
5235
SRem = BO1;
5236
if (SRem) {
5237
// We don't check hasOneUse to avoid increasing register pressure because
5238
// the value we use is the same value this instruction was already using.
5239
switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
5240
default:
5241
break;
5242
case ICmpInst::ICMP_EQ:
5243
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5244
case ICmpInst::ICMP_NE:
5245
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5246
case ICmpInst::ICMP_SGT:
5247
case ICmpInst::ICMP_SGE:
5248
return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
5249
Constant::getAllOnesValue(SRem->getType()));
5250
case ICmpInst::ICMP_SLT:
5251
case ICmpInst::ICMP_SLE:
5252
return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
5253
Constant::getNullValue(SRem->getType()));
5254
}
5255
}
5256
5257
if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
5258
(BO0->hasOneUse() || BO1->hasOneUse()) &&
5259
BO0->getOperand(1) == BO1->getOperand(1)) {
5260
switch (BO0->getOpcode()) {
5261
default:
5262
break;
5263
case Instruction::Add:
5264
case Instruction::Sub:
5265
case Instruction::Xor: {
5266
if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
5267
return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
5268
5269
const APInt *C;
5270
if (match(BO0->getOperand(1), m_APInt(C))) {
5271
// icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
5272
if (C->isSignMask()) {
5273
ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
5274
return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
5275
}
5276
5277
// icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
5278
if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
5279
ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
5280
NewPred = I.getSwappedPredicate(NewPred);
5281
return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
5282
}
5283
}
5284
break;
5285
}
5286
case Instruction::Mul: {
5287
if (!I.isEquality())
5288
break;
5289
5290
const APInt *C;
5291
if (match(BO0->getOperand(1), m_APInt(C)) && !C->isZero() &&
5292
!C->isOne()) {
5293
// icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
5294
// Mask = -1 >> count-trailing-zeros(C).
5295
if (unsigned TZs = C->countr_zero()) {
5296
Constant *Mask = ConstantInt::get(
5297
BO0->getType(),
5298
APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
5299
Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
5300
Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
5301
return new ICmpInst(Pred, And1, And2);
5302
}
5303
}
5304
break;
5305
}
5306
case Instruction::UDiv:
5307
case Instruction::LShr:
5308
if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
5309
break;
5310
return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
5311
5312
case Instruction::SDiv:
5313
if (!(I.isEquality() || match(BO0->getOperand(1), m_NonNegative())) ||
5314
!BO0->isExact() || !BO1->isExact())
5315
break;
5316
return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
5317
5318
case Instruction::AShr:
5319
if (!BO0->isExact() || !BO1->isExact())
5320
break;
5321
return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
5322
5323
case Instruction::Shl: {
5324
bool NUW = Op0HasNUW && Op1HasNUW;
5325
bool NSW = Op0HasNSW && Op1HasNSW;
5326
if (!NUW && !NSW)
5327
break;
5328
if (!NSW && I.isSigned())
5329
break;
5330
return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
5331
}
5332
}
5333
}
5334
5335
if (BO0) {
5336
// Transform A & (L - 1) `ult` L --> L != 0
5337
auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
5338
auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
5339
5340
if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
5341
auto *Zero = Constant::getNullValue(BO0->getType());
5342
return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
5343
}
5344
}
5345
5346
// For unsigned predicates / eq / ne:
5347
// icmp pred (x << 1), x --> icmp getSignedPredicate(pred) x, 0
5348
// icmp pred x, (x << 1) --> icmp getSignedPredicate(pred) 0, x
5349
if (!ICmpInst::isSigned(Pred)) {
5350
if (match(Op0, m_Shl(m_Specific(Op1), m_One())))
5351
return new ICmpInst(ICmpInst::getSignedPredicate(Pred), Op1,
5352
Constant::getNullValue(Op1->getType()));
5353
else if (match(Op1, m_Shl(m_Specific(Op0), m_One())))
5354
return new ICmpInst(ICmpInst::getSignedPredicate(Pred),
5355
Constant::getNullValue(Op0->getType()), Op0);
5356
}
5357
5358
if (Value *V = foldMultiplicationOverflowCheck(I))
5359
return replaceInstUsesWith(I, V);
5360
5361
if (Instruction *R = foldICmpAndXX(I, Q, *this))
5362
return R;
5363
5364
if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
5365
return replaceInstUsesWith(I, V);
5366
5367
if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
5368
return replaceInstUsesWith(I, V);
5369
5370
return nullptr;
5371
}
5372
5373
/// Fold icmp Pred min|max(X, Y), Z.
5374
Instruction *InstCombinerImpl::foldICmpWithMinMax(Instruction &I,
5375
MinMaxIntrinsic *MinMax,
5376
Value *Z,
5377
ICmpInst::Predicate Pred) {
5378
Value *X = MinMax->getLHS();
5379
Value *Y = MinMax->getRHS();
5380
if (ICmpInst::isSigned(Pred) && !MinMax->isSigned())
5381
return nullptr;
5382
if (ICmpInst::isUnsigned(Pred) && MinMax->isSigned()) {
5383
// Revert the transform signed pred -> unsigned pred
5384
// TODO: We can flip the signedness of predicate if both operands of icmp
5385
// are negative.
5386
if (isKnownNonNegative(Z, SQ.getWithInstruction(&I)) &&
5387
isKnownNonNegative(MinMax, SQ.getWithInstruction(&I))) {
5388
Pred = ICmpInst::getFlippedSignednessPredicate(Pred);
5389
} else
5390
return nullptr;
5391
}
5392
SimplifyQuery Q = SQ.getWithInstruction(&I);
5393
auto IsCondKnownTrue = [](Value *Val) -> std::optional<bool> {
5394
if (!Val)
5395
return std::nullopt;
5396
if (match(Val, m_One()))
5397
return true;
5398
if (match(Val, m_Zero()))
5399
return false;
5400
return std::nullopt;
5401
};
5402
auto CmpXZ = IsCondKnownTrue(simplifyICmpInst(Pred, X, Z, Q));
5403
auto CmpYZ = IsCondKnownTrue(simplifyICmpInst(Pred, Y, Z, Q));
5404
if (!CmpXZ.has_value() && !CmpYZ.has_value())
5405
return nullptr;
5406
if (!CmpXZ.has_value()) {
5407
std::swap(X, Y);
5408
std::swap(CmpXZ, CmpYZ);
5409
}
5410
5411
auto FoldIntoCmpYZ = [&]() -> Instruction * {
5412
if (CmpYZ.has_value())
5413
return replaceInstUsesWith(I, ConstantInt::getBool(I.getType(), *CmpYZ));
5414
return ICmpInst::Create(Instruction::ICmp, Pred, Y, Z);
5415
};
5416
5417
switch (Pred) {
5418
case ICmpInst::ICMP_EQ:
5419
case ICmpInst::ICMP_NE: {
5420
// If X == Z:
5421
// Expr Result
5422
// min(X, Y) == Z X <= Y
5423
// max(X, Y) == Z X >= Y
5424
// min(X, Y) != Z X > Y
5425
// max(X, Y) != Z X < Y
5426
if ((Pred == ICmpInst::ICMP_EQ) == *CmpXZ) {
5427
ICmpInst::Predicate NewPred =
5428
ICmpInst::getNonStrictPredicate(MinMax->getPredicate());
5429
if (Pred == ICmpInst::ICMP_NE)
5430
NewPred = ICmpInst::getInversePredicate(NewPred);
5431
return ICmpInst::Create(Instruction::ICmp, NewPred, X, Y);
5432
}
5433
// Otherwise (X != Z):
5434
ICmpInst::Predicate NewPred = MinMax->getPredicate();
5435
auto MinMaxCmpXZ = IsCondKnownTrue(simplifyICmpInst(NewPred, X, Z, Q));
5436
if (!MinMaxCmpXZ.has_value()) {
5437
std::swap(X, Y);
5438
std::swap(CmpXZ, CmpYZ);
5439
// Re-check pre-condition X != Z
5440
if (!CmpXZ.has_value() || (Pred == ICmpInst::ICMP_EQ) == *CmpXZ)
5441
break;
5442
MinMaxCmpXZ = IsCondKnownTrue(simplifyICmpInst(NewPred, X, Z, Q));
5443
}
5444
if (!MinMaxCmpXZ.has_value())
5445
break;
5446
if (*MinMaxCmpXZ) {
5447
// Expr Fact Result
5448
// min(X, Y) == Z X < Z false
5449
// max(X, Y) == Z X > Z false
5450
// min(X, Y) != Z X < Z true
5451
// max(X, Y) != Z X > Z true
5452
return replaceInstUsesWith(
5453
I, ConstantInt::getBool(I.getType(), Pred == ICmpInst::ICMP_NE));
5454
} else {
5455
// Expr Fact Result
5456
// min(X, Y) == Z X > Z Y == Z
5457
// max(X, Y) == Z X < Z Y == Z
5458
// min(X, Y) != Z X > Z Y != Z
5459
// max(X, Y) != Z X < Z Y != Z
5460
return FoldIntoCmpYZ();
5461
}
5462
break;
5463
}
5464
case ICmpInst::ICMP_SLT:
5465
case ICmpInst::ICMP_ULT:
5466
case ICmpInst::ICMP_SLE:
5467
case ICmpInst::ICMP_ULE:
5468
case ICmpInst::ICMP_SGT:
5469
case ICmpInst::ICMP_UGT:
5470
case ICmpInst::ICMP_SGE:
5471
case ICmpInst::ICMP_UGE: {
5472
bool IsSame = MinMax->getPredicate() == ICmpInst::getStrictPredicate(Pred);
5473
if (*CmpXZ) {
5474
if (IsSame) {
5475
// Expr Fact Result
5476
// min(X, Y) < Z X < Z true
5477
// min(X, Y) <= Z X <= Z true
5478
// max(X, Y) > Z X > Z true
5479
// max(X, Y) >= Z X >= Z true
5480
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5481
} else {
5482
// Expr Fact Result
5483
// max(X, Y) < Z X < Z Y < Z
5484
// max(X, Y) <= Z X <= Z Y <= Z
5485
// min(X, Y) > Z X > Z Y > Z
5486
// min(X, Y) >= Z X >= Z Y >= Z
5487
return FoldIntoCmpYZ();
5488
}
5489
} else {
5490
if (IsSame) {
5491
// Expr Fact Result
5492
// min(X, Y) < Z X >= Z Y < Z
5493
// min(X, Y) <= Z X > Z Y <= Z
5494
// max(X, Y) > Z X <= Z Y > Z
5495
// max(X, Y) >= Z X < Z Y >= Z
5496
return FoldIntoCmpYZ();
5497
} else {
5498
// Expr Fact Result
5499
// max(X, Y) < Z X >= Z false
5500
// max(X, Y) <= Z X > Z false
5501
// min(X, Y) > Z X <= Z false
5502
// min(X, Y) >= Z X < Z false
5503
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5504
}
5505
}
5506
break;
5507
}
5508
default:
5509
break;
5510
}
5511
5512
return nullptr;
5513
}
5514
5515
// Canonicalize checking for a power-of-2-or-zero value:
5516
static Instruction *foldICmpPow2Test(ICmpInst &I,
5517
InstCombiner::BuilderTy &Builder) {
5518
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5519
const CmpInst::Predicate Pred = I.getPredicate();
5520
Value *A = nullptr;
5521
bool CheckIs;
5522
if (I.isEquality()) {
5523
// (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
5524
// ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
5525
if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
5526
m_Deferred(A)))) ||
5527
!match(Op1, m_ZeroInt()))
5528
A = nullptr;
5529
5530
// (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
5531
// (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
5532
if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
5533
A = Op1;
5534
else if (match(Op1,
5535
m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
5536
A = Op0;
5537
5538
CheckIs = Pred == ICmpInst::ICMP_EQ;
5539
} else if (ICmpInst::isUnsigned(Pred)) {
5540
// (A ^ (A-1)) u>= A --> ctpop(A) < 2 (two commuted variants)
5541
// ((A-1) ^ A) u< A --> ctpop(A) > 1 (two commuted variants)
5542
5543
if ((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
5544
match(Op0, m_OneUse(m_c_Xor(m_Add(m_Specific(Op1), m_AllOnes()),
5545
m_Specific(Op1))))) {
5546
A = Op1;
5547
CheckIs = Pred == ICmpInst::ICMP_UGE;
5548
} else if ((Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE) &&
5549
match(Op1, m_OneUse(m_c_Xor(m_Add(m_Specific(Op0), m_AllOnes()),
5550
m_Specific(Op0))))) {
5551
A = Op0;
5552
CheckIs = Pred == ICmpInst::ICMP_ULE;
5553
}
5554
}
5555
5556
if (A) {
5557
Type *Ty = A->getType();
5558
CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
5559
return CheckIs ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop,
5560
ConstantInt::get(Ty, 2))
5561
: new ICmpInst(ICmpInst::ICMP_UGT, CtPop,
5562
ConstantInt::get(Ty, 1));
5563
}
5564
5565
return nullptr;
5566
}
5567
5568
Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
5569
if (!I.isEquality())
5570
return nullptr;
5571
5572
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5573
const CmpInst::Predicate Pred = I.getPredicate();
5574
Value *A, *B, *C, *D;
5575
if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
5576
if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
5577
Value *OtherVal = A == Op1 ? B : A;
5578
return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
5579
}
5580
5581
if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
5582
// A^c1 == C^c2 --> A == C^(c1^c2)
5583
ConstantInt *C1, *C2;
5584
if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
5585
Op1->hasOneUse()) {
5586
Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
5587
Value *Xor = Builder.CreateXor(C, NC);
5588
return new ICmpInst(Pred, A, Xor);
5589
}
5590
5591
// A^B == A^D -> B == D
5592
if (A == C)
5593
return new ICmpInst(Pred, B, D);
5594
if (A == D)
5595
return new ICmpInst(Pred, B, C);
5596
if (B == C)
5597
return new ICmpInst(Pred, A, D);
5598
if (B == D)
5599
return new ICmpInst(Pred, A, C);
5600
}
5601
}
5602
5603
if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
5604
// A == (A^B) -> B == 0
5605
Value *OtherVal = A == Op0 ? B : A;
5606
return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
5607
}
5608
5609
// (X&Z) == (Y&Z) -> (X^Y) & Z == 0
5610
if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
5611
match(Op1, m_And(m_Value(C), m_Value(D)))) {
5612
Value *X = nullptr, *Y = nullptr, *Z = nullptr;
5613
5614
if (A == C) {
5615
X = B;
5616
Y = D;
5617
Z = A;
5618
} else if (A == D) {
5619
X = B;
5620
Y = C;
5621
Z = A;
5622
} else if (B == C) {
5623
X = A;
5624
Y = D;
5625
Z = B;
5626
} else if (B == D) {
5627
X = A;
5628
Y = C;
5629
Z = B;
5630
}
5631
5632
if (X) {
5633
// If X^Y is a negative power of two, then `icmp eq/ne (Z & NegP2), 0`
5634
// will fold to `icmp ult/uge Z, -NegP2` incurringb no additional
5635
// instructions.
5636
const APInt *C0, *C1;
5637
bool XorIsNegP2 = match(X, m_APInt(C0)) && match(Y, m_APInt(C1)) &&
5638
(*C0 ^ *C1).isNegatedPowerOf2();
5639
5640
// If either Op0/Op1 are both one use or X^Y will constant fold and one of
5641
// Op0/Op1 are one use, proceed. In those cases we are instruction neutral
5642
// but `icmp eq/ne A, 0` is easier to analyze than `icmp eq/ne A, B`.
5643
int UseCnt =
5644
int(Op0->hasOneUse()) + int(Op1->hasOneUse()) +
5645
(int(match(X, m_ImmConstant()) && match(Y, m_ImmConstant())));
5646
if (XorIsNegP2 || UseCnt >= 2) {
5647
// Build (X^Y) & Z
5648
Op1 = Builder.CreateXor(X, Y);
5649
Op1 = Builder.CreateAnd(Op1, Z);
5650
return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
5651
}
5652
}
5653
}
5654
5655
{
5656
// Similar to above, but specialized for constant because invert is needed:
5657
// (X | C) == (Y | C) --> (X ^ Y) & ~C == 0
5658
Value *X, *Y;
5659
Constant *C;
5660
if (match(Op0, m_OneUse(m_Or(m_Value(X), m_Constant(C)))) &&
5661
match(Op1, m_OneUse(m_Or(m_Value(Y), m_Specific(C))))) {
5662
Value *Xor = Builder.CreateXor(X, Y);
5663
Value *And = Builder.CreateAnd(Xor, ConstantExpr::getNot(C));
5664
return new ICmpInst(Pred, And, Constant::getNullValue(And->getType()));
5665
}
5666
}
5667
5668
if (match(Op1, m_ZExt(m_Value(A))) &&
5669
(Op0->hasOneUse() || Op1->hasOneUse())) {
5670
// (B & (Pow2C-1)) == zext A --> A == trunc B
5671
// (B & (Pow2C-1)) != zext A --> A != trunc B
5672
const APInt *MaskC;
5673
if (match(Op0, m_And(m_Value(B), m_LowBitMask(MaskC))) &&
5674
MaskC->countr_one() == A->getType()->getScalarSizeInBits())
5675
return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
5676
}
5677
5678
// (A >> C) == (B >> C) --> (A^B) u< (1 << C)
5679
// For lshr and ashr pairs.
5680
const APInt *AP1, *AP2;
5681
if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_APIntAllowPoison(AP1)))) &&
5682
match(Op1, m_OneUse(m_LShr(m_Value(B), m_APIntAllowPoison(AP2))))) ||
5683
(match(Op0, m_OneUse(m_AShr(m_Value(A), m_APIntAllowPoison(AP1)))) &&
5684
match(Op1, m_OneUse(m_AShr(m_Value(B), m_APIntAllowPoison(AP2)))))) {
5685
if (AP1 != AP2)
5686
return nullptr;
5687
unsigned TypeBits = AP1->getBitWidth();
5688
unsigned ShAmt = AP1->getLimitedValue(TypeBits);
5689
if (ShAmt < TypeBits && ShAmt != 0) {
5690
ICmpInst::Predicate NewPred =
5691
Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
5692
Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
5693
APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
5694
return new ICmpInst(NewPred, Xor, ConstantInt::get(A->getType(), CmpVal));
5695
}
5696
}
5697
5698
// (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
5699
ConstantInt *Cst1;
5700
if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
5701
match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
5702
unsigned TypeBits = Cst1->getBitWidth();
5703
unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
5704
if (ShAmt < TypeBits && ShAmt != 0) {
5705
Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
5706
APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
5707
Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
5708
I.getName() + ".mask");
5709
return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
5710
}
5711
}
5712
5713
// Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
5714
// "icmp (and X, mask), cst"
5715
uint64_t ShAmt = 0;
5716
if (Op0->hasOneUse() &&
5717
match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
5718
match(Op1, m_ConstantInt(Cst1)) &&
5719
// Only do this when A has multiple uses. This is most important to do
5720
// when it exposes other optimizations.
5721
!A->hasOneUse()) {
5722
unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
5723
5724
if (ShAmt < ASize) {
5725
APInt MaskV =
5726
APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
5727
MaskV <<= ShAmt;
5728
5729
APInt CmpV = Cst1->getValue().zext(ASize);
5730
CmpV <<= ShAmt;
5731
5732
Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
5733
return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
5734
}
5735
}
5736
5737
if (Instruction *ICmp = foldICmpIntrinsicWithIntrinsic(I, Builder))
5738
return ICmp;
5739
5740
// Match icmp eq (trunc (lshr A, BW), (ashr (trunc A), BW-1)), which checks the
5741
// top BW/2 + 1 bits are all the same. Create "A >=s INT_MIN && A <=s INT_MAX",
5742
// which we generate as "icmp ult (add A, 2^(BW-1)), 2^BW" to skip a few steps
5743
// of instcombine.
5744
unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
5745
if (match(Op0, m_AShr(m_Trunc(m_Value(A)), m_SpecificInt(BitWidth - 1))) &&
5746
match(Op1, m_Trunc(m_LShr(m_Specific(A), m_SpecificInt(BitWidth)))) &&
5747
A->getType()->getScalarSizeInBits() == BitWidth * 2 &&
5748
(I.getOperand(0)->hasOneUse() || I.getOperand(1)->hasOneUse())) {
5749
APInt C = APInt::getOneBitSet(BitWidth * 2, BitWidth - 1);
5750
Value *Add = Builder.CreateAdd(A, ConstantInt::get(A->getType(), C));
5751
return new ICmpInst(Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_ULT
5752
: ICmpInst::ICMP_UGE,
5753
Add, ConstantInt::get(A->getType(), C.shl(1)));
5754
}
5755
5756
// Canonicalize:
5757
// Assume B_Pow2 != 0
5758
// 1. A & B_Pow2 != B_Pow2 -> A & B_Pow2 == 0
5759
// 2. A & B_Pow2 == B_Pow2 -> A & B_Pow2 != 0
5760
if (match(Op0, m_c_And(m_Specific(Op1), m_Value())) &&
5761
isKnownToBeAPowerOfTwo(Op1, /* OrZero */ false, 0, &I))
5762
return new ICmpInst(CmpInst::getInversePredicate(Pred), Op0,
5763
ConstantInt::getNullValue(Op0->getType()));
5764
5765
if (match(Op1, m_c_And(m_Specific(Op0), m_Value())) &&
5766
isKnownToBeAPowerOfTwo(Op0, /* OrZero */ false, 0, &I))
5767
return new ICmpInst(CmpInst::getInversePredicate(Pred), Op1,
5768
ConstantInt::getNullValue(Op1->getType()));
5769
5770
// Canonicalize:
5771
// icmp eq/ne X, OneUse(rotate-right(X))
5772
// -> icmp eq/ne X, rotate-left(X)
5773
// We generally try to convert rotate-right -> rotate-left, this just
5774
// canonicalizes another case.
5775
CmpInst::Predicate PredUnused = Pred;
5776
if (match(&I, m_c_ICmp(PredUnused, m_Value(A),
5777
m_OneUse(m_Intrinsic<Intrinsic::fshr>(
5778
m_Deferred(A), m_Deferred(A), m_Value(B))))))
5779
return new ICmpInst(
5780
Pred, A,
5781
Builder.CreateIntrinsic(Op0->getType(), Intrinsic::fshl, {A, A, B}));
5782
5783
// Canonicalize:
5784
// icmp eq/ne OneUse(A ^ Cst), B --> icmp eq/ne (A ^ B), Cst
5785
Constant *Cst;
5786
if (match(&I, m_c_ICmp(PredUnused,
5787
m_OneUse(m_Xor(m_Value(A), m_ImmConstant(Cst))),
5788
m_CombineAnd(m_Value(B), m_Unless(m_ImmConstant())))))
5789
return new ICmpInst(Pred, Builder.CreateXor(A, B), Cst);
5790
5791
{
5792
// (icmp eq/ne (and (add/sub/xor X, P2), P2), P2)
5793
auto m_Matcher =
5794
m_CombineOr(m_CombineOr(m_c_Add(m_Value(B), m_Deferred(A)),
5795
m_c_Xor(m_Value(B), m_Deferred(A))),
5796
m_Sub(m_Value(B), m_Deferred(A)));
5797
std::optional<bool> IsZero = std::nullopt;
5798
if (match(&I, m_c_ICmp(PredUnused, m_OneUse(m_c_And(m_Value(A), m_Matcher)),
5799
m_Deferred(A))))
5800
IsZero = false;
5801
// (icmp eq/ne (and (add/sub/xor X, P2), P2), 0)
5802
else if (match(&I,
5803
m_ICmp(PredUnused, m_OneUse(m_c_And(m_Value(A), m_Matcher)),
5804
m_Zero())))
5805
IsZero = true;
5806
5807
if (IsZero && isKnownToBeAPowerOfTwo(A, /* OrZero */ true, /*Depth*/ 0, &I))
5808
// (icmp eq/ne (and (add/sub/xor X, P2), P2), P2)
5809
// -> (icmp eq/ne (and X, P2), 0)
5810
// (icmp eq/ne (and (add/sub/xor X, P2), P2), 0)
5811
// -> (icmp eq/ne (and X, P2), P2)
5812
return new ICmpInst(Pred, Builder.CreateAnd(B, A),
5813
*IsZero ? A
5814
: ConstantInt::getNullValue(A->getType()));
5815
}
5816
5817
return nullptr;
5818
}
5819
5820
Instruction *InstCombinerImpl::foldICmpWithTrunc(ICmpInst &ICmp) {
5821
ICmpInst::Predicate Pred = ICmp.getPredicate();
5822
Value *Op0 = ICmp.getOperand(0), *Op1 = ICmp.getOperand(1);
5823
5824
// Try to canonicalize trunc + compare-to-constant into a mask + cmp.
5825
// The trunc masks high bits while the compare may effectively mask low bits.
5826
Value *X;
5827
const APInt *C;
5828
if (!match(Op0, m_OneUse(m_Trunc(m_Value(X)))) || !match(Op1, m_APInt(C)))
5829
return nullptr;
5830
5831
// This matches patterns corresponding to tests of the signbit as well as:
5832
// (trunc X) u< C --> (X & -C) == 0 (are all masked-high-bits clear?)
5833
// (trunc X) u> C --> (X & ~C) != 0 (are any masked-high-bits set?)
5834
APInt Mask;
5835
if (decomposeBitTestICmp(Op0, Op1, Pred, X, Mask, true /* WithTrunc */)) {
5836
Value *And = Builder.CreateAnd(X, Mask);
5837
Constant *Zero = ConstantInt::getNullValue(X->getType());
5838
return new ICmpInst(Pred, And, Zero);
5839
}
5840
5841
unsigned SrcBits = X->getType()->getScalarSizeInBits();
5842
if (Pred == ICmpInst::ICMP_ULT && C->isNegatedPowerOf2()) {
5843
// If C is a negative power-of-2 (high-bit mask):
5844
// (trunc X) u< C --> (X & C) != C (are any masked-high-bits clear?)
5845
Constant *MaskC = ConstantInt::get(X->getType(), C->zext(SrcBits));
5846
Value *And = Builder.CreateAnd(X, MaskC);
5847
return new ICmpInst(ICmpInst::ICMP_NE, And, MaskC);
5848
}
5849
5850
if (Pred == ICmpInst::ICMP_UGT && (~*C).isPowerOf2()) {
5851
// If C is not-of-power-of-2 (one clear bit):
5852
// (trunc X) u> C --> (X & (C+1)) == C+1 (are all masked-high-bits set?)
5853
Constant *MaskC = ConstantInt::get(X->getType(), (*C + 1).zext(SrcBits));
5854
Value *And = Builder.CreateAnd(X, MaskC);
5855
return new ICmpInst(ICmpInst::ICMP_EQ, And, MaskC);
5856
}
5857
5858
if (auto *II = dyn_cast<IntrinsicInst>(X)) {
5859
if (II->getIntrinsicID() == Intrinsic::cttz ||
5860
II->getIntrinsicID() == Intrinsic::ctlz) {
5861
unsigned MaxRet = SrcBits;
5862
// If the "is_zero_poison" argument is set, then we know at least
5863
// one bit is set in the input, so the result is always at least one
5864
// less than the full bitwidth of that input.
5865
if (match(II->getArgOperand(1), m_One()))
5866
MaxRet--;
5867
5868
// Make sure the destination is wide enough to hold the largest output of
5869
// the intrinsic.
5870
if (llvm::Log2_32(MaxRet) + 1 <= Op0->getType()->getScalarSizeInBits())
5871
if (Instruction *I =
5872
foldICmpIntrinsicWithConstant(ICmp, II, C->zext(SrcBits)))
5873
return I;
5874
}
5875
}
5876
5877
return nullptr;
5878
}
5879
5880
Instruction *InstCombinerImpl::foldICmpWithZextOrSext(ICmpInst &ICmp) {
5881
assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
5882
auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
5883
Value *X;
5884
if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
5885
return nullptr;
5886
5887
bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
5888
bool IsSignedCmp = ICmp.isSigned();
5889
5890
// icmp Pred (ext X), (ext Y)
5891
Value *Y;
5892
if (match(ICmp.getOperand(1), m_ZExtOrSExt(m_Value(Y)))) {
5893
bool IsZext0 = isa<ZExtInst>(ICmp.getOperand(0));
5894
bool IsZext1 = isa<ZExtInst>(ICmp.getOperand(1));
5895
5896
if (IsZext0 != IsZext1) {
5897
// If X and Y and both i1
5898
// (icmp eq/ne (zext X) (sext Y))
5899
// eq -> (icmp eq (or X, Y), 0)
5900
// ne -> (icmp ne (or X, Y), 0)
5901
if (ICmp.isEquality() && X->getType()->isIntOrIntVectorTy(1) &&
5902
Y->getType()->isIntOrIntVectorTy(1))
5903
return new ICmpInst(ICmp.getPredicate(), Builder.CreateOr(X, Y),
5904
Constant::getNullValue(X->getType()));
5905
5906
// If we have mismatched casts and zext has the nneg flag, we can
5907
// treat the "zext nneg" as "sext". Otherwise, we cannot fold and quit.
5908
5909
auto *NonNegInst0 = dyn_cast<PossiblyNonNegInst>(ICmp.getOperand(0));
5910
auto *NonNegInst1 = dyn_cast<PossiblyNonNegInst>(ICmp.getOperand(1));
5911
5912
bool IsNonNeg0 = NonNegInst0 && NonNegInst0->hasNonNeg();
5913
bool IsNonNeg1 = NonNegInst1 && NonNegInst1->hasNonNeg();
5914
5915
if ((IsZext0 && IsNonNeg0) || (IsZext1 && IsNonNeg1))
5916
IsSignedExt = true;
5917
else
5918
return nullptr;
5919
}
5920
5921
// Not an extension from the same type?
5922
Type *XTy = X->getType(), *YTy = Y->getType();
5923
if (XTy != YTy) {
5924
// One of the casts must have one use because we are creating a new cast.
5925
if (!ICmp.getOperand(0)->hasOneUse() && !ICmp.getOperand(1)->hasOneUse())
5926
return nullptr;
5927
// Extend the narrower operand to the type of the wider operand.
5928
CastInst::CastOps CastOpcode =
5929
IsSignedExt ? Instruction::SExt : Instruction::ZExt;
5930
if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
5931
X = Builder.CreateCast(CastOpcode, X, YTy);
5932
else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
5933
Y = Builder.CreateCast(CastOpcode, Y, XTy);
5934
else
5935
return nullptr;
5936
}
5937
5938
// (zext X) == (zext Y) --> X == Y
5939
// (sext X) == (sext Y) --> X == Y
5940
if (ICmp.isEquality())
5941
return new ICmpInst(ICmp.getPredicate(), X, Y);
5942
5943
// A signed comparison of sign extended values simplifies into a
5944
// signed comparison.
5945
if (IsSignedCmp && IsSignedExt)
5946
return new ICmpInst(ICmp.getPredicate(), X, Y);
5947
5948
// The other three cases all fold into an unsigned comparison.
5949
return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
5950
}
5951
5952
// Below here, we are only folding a compare with constant.
5953
auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
5954
if (!C)
5955
return nullptr;
5956
5957
// If a lossless truncate is possible...
5958
Type *SrcTy = CastOp0->getSrcTy();
5959
Constant *Res = getLosslessTrunc(C, SrcTy, CastOp0->getOpcode());
5960
if (Res) {
5961
if (ICmp.isEquality())
5962
return new ICmpInst(ICmp.getPredicate(), X, Res);
5963
5964
// A signed comparison of sign extended values simplifies into a
5965
// signed comparison.
5966
if (IsSignedExt && IsSignedCmp)
5967
return new ICmpInst(ICmp.getPredicate(), X, Res);
5968
5969
// The other three cases all fold into an unsigned comparison.
5970
return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res);
5971
}
5972
5973
// The re-extended constant changed, partly changed (in the case of a vector),
5974
// or could not be determined to be equal (in the case of a constant
5975
// expression), so the constant cannot be represented in the shorter type.
5976
// All the cases that fold to true or false will have already been handled
5977
// by simplifyICmpInst, so only deal with the tricky case.
5978
if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
5979
return nullptr;
5980
5981
// Is source op positive?
5982
// icmp ult (sext X), C --> icmp sgt X, -1
5983
if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
5984
return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
5985
5986
// Is source op negative?
5987
// icmp ugt (sext X), C --> icmp slt X, 0
5988
assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
5989
return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
5990
}
5991
5992
/// Handle icmp (cast x), (cast or constant).
5993
Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
5994
// If any operand of ICmp is a inttoptr roundtrip cast then remove it as
5995
// icmp compares only pointer's value.
5996
// icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2.
5997
Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0));
5998
Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1));
5999
if (SimplifiedOp0 || SimplifiedOp1)
6000
return new ICmpInst(ICmp.getPredicate(),
6001
SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0),
6002
SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1));
6003
6004
auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
6005
if (!CastOp0)
6006
return nullptr;
6007
if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
6008
return nullptr;
6009
6010
Value *Op0Src = CastOp0->getOperand(0);
6011
Type *SrcTy = CastOp0->getSrcTy();
6012
Type *DestTy = CastOp0->getDestTy();
6013
6014
// Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
6015
// integer type is the same size as the pointer type.
6016
auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
6017
if (isa<VectorType>(SrcTy)) {
6018
SrcTy = cast<VectorType>(SrcTy)->getElementType();
6019
DestTy = cast<VectorType>(DestTy)->getElementType();
6020
}
6021
return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
6022
};
6023
if (CastOp0->getOpcode() == Instruction::PtrToInt &&
6024
CompatibleSizes(SrcTy, DestTy)) {
6025
Value *NewOp1 = nullptr;
6026
if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
6027
Value *PtrSrc = PtrToIntOp1->getOperand(0);
6028
if (PtrSrc->getType() == Op0Src->getType())
6029
NewOp1 = PtrToIntOp1->getOperand(0);
6030
} else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
6031
NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
6032
}
6033
6034
if (NewOp1)
6035
return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
6036
}
6037
6038
if (Instruction *R = foldICmpWithTrunc(ICmp))
6039
return R;
6040
6041
return foldICmpWithZextOrSext(ICmp);
6042
}
6043
6044
static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS, bool IsSigned) {
6045
switch (BinaryOp) {
6046
default:
6047
llvm_unreachable("Unsupported binary op");
6048
case Instruction::Add:
6049
case Instruction::Sub:
6050
return match(RHS, m_Zero());
6051
case Instruction::Mul:
6052
return !(RHS->getType()->isIntOrIntVectorTy(1) && IsSigned) &&
6053
match(RHS, m_One());
6054
}
6055
}
6056
6057
OverflowResult
6058
InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
6059
bool IsSigned, Value *LHS, Value *RHS,
6060
Instruction *CxtI) const {
6061
switch (BinaryOp) {
6062
default:
6063
llvm_unreachable("Unsupported binary op");
6064
case Instruction::Add:
6065
if (IsSigned)
6066
return computeOverflowForSignedAdd(LHS, RHS, CxtI);
6067
else
6068
return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
6069
case Instruction::Sub:
6070
if (IsSigned)
6071
return computeOverflowForSignedSub(LHS, RHS, CxtI);
6072
else
6073
return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
6074
case Instruction::Mul:
6075
if (IsSigned)
6076
return computeOverflowForSignedMul(LHS, RHS, CxtI);
6077
else
6078
return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
6079
}
6080
}
6081
6082
bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
6083
bool IsSigned, Value *LHS,
6084
Value *RHS, Instruction &OrigI,
6085
Value *&Result,
6086
Constant *&Overflow) {
6087
if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
6088
std::swap(LHS, RHS);
6089
6090
// If the overflow check was an add followed by a compare, the insertion point
6091
// may be pointing to the compare. We want to insert the new instructions
6092
// before the add in case there are uses of the add between the add and the
6093
// compare.
6094
Builder.SetInsertPoint(&OrigI);
6095
6096
Type *OverflowTy = Type::getInt1Ty(LHS->getContext());
6097
if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType()))
6098
OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount());
6099
6100
if (isNeutralValue(BinaryOp, RHS, IsSigned)) {
6101
Result = LHS;
6102
Overflow = ConstantInt::getFalse(OverflowTy);
6103
return true;
6104
}
6105
6106
switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
6107
case OverflowResult::MayOverflow:
6108
return false;
6109
case OverflowResult::AlwaysOverflowsLow:
6110
case OverflowResult::AlwaysOverflowsHigh:
6111
Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
6112
Result->takeName(&OrigI);
6113
Overflow = ConstantInt::getTrue(OverflowTy);
6114
return true;
6115
case OverflowResult::NeverOverflows:
6116
Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
6117
Result->takeName(&OrigI);
6118
Overflow = ConstantInt::getFalse(OverflowTy);
6119
if (auto *Inst = dyn_cast<Instruction>(Result)) {
6120
if (IsSigned)
6121
Inst->setHasNoSignedWrap();
6122
else
6123
Inst->setHasNoUnsignedWrap();
6124
}
6125
return true;
6126
}
6127
6128
llvm_unreachable("Unexpected overflow result");
6129
}
6130
6131
/// Recognize and process idiom involving test for multiplication
6132
/// overflow.
6133
///
6134
/// The caller has matched a pattern of the form:
6135
/// I = cmp u (mul(zext A, zext B), V
6136
/// The function checks if this is a test for overflow and if so replaces
6137
/// multiplication with call to 'mul.with.overflow' intrinsic.
6138
///
6139
/// \param I Compare instruction.
6140
/// \param MulVal Result of 'mult' instruction. It is one of the arguments of
6141
/// the compare instruction. Must be of integer type.
6142
/// \param OtherVal The other argument of compare instruction.
6143
/// \returns Instruction which must replace the compare instruction, NULL if no
6144
/// replacement required.
6145
static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
6146
const APInt *OtherVal,
6147
InstCombinerImpl &IC) {
6148
// Don't bother doing this transformation for pointers, don't do it for
6149
// vectors.
6150
if (!isa<IntegerType>(MulVal->getType()))
6151
return nullptr;
6152
6153
auto *MulInstr = dyn_cast<Instruction>(MulVal);
6154
if (!MulInstr)
6155
return nullptr;
6156
assert(MulInstr->getOpcode() == Instruction::Mul);
6157
6158
auto *LHS = cast<ZExtInst>(MulInstr->getOperand(0)),
6159
*RHS = cast<ZExtInst>(MulInstr->getOperand(1));
6160
assert(LHS->getOpcode() == Instruction::ZExt);
6161
assert(RHS->getOpcode() == Instruction::ZExt);
6162
Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
6163
6164
// Calculate type and width of the result produced by mul.with.overflow.
6165
Type *TyA = A->getType(), *TyB = B->getType();
6166
unsigned WidthA = TyA->getPrimitiveSizeInBits(),
6167
WidthB = TyB->getPrimitiveSizeInBits();
6168
unsigned MulWidth;
6169
Type *MulType;
6170
if (WidthB > WidthA) {
6171
MulWidth = WidthB;
6172
MulType = TyB;
6173
} else {
6174
MulWidth = WidthA;
6175
MulType = TyA;
6176
}
6177
6178
// In order to replace the original mul with a narrower mul.with.overflow,
6179
// all uses must ignore upper bits of the product. The number of used low
6180
// bits must be not greater than the width of mul.with.overflow.
6181
if (MulVal->hasNUsesOrMore(2))
6182
for (User *U : MulVal->users()) {
6183
if (U == &I)
6184
continue;
6185
if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
6186
// Check if truncation ignores bits above MulWidth.
6187
unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
6188
if (TruncWidth > MulWidth)
6189
return nullptr;
6190
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
6191
// Check if AND ignores bits above MulWidth.
6192
if (BO->getOpcode() != Instruction::And)
6193
return nullptr;
6194
if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
6195
const APInt &CVal = CI->getValue();
6196
if (CVal.getBitWidth() - CVal.countl_zero() > MulWidth)
6197
return nullptr;
6198
} else {
6199
// In this case we could have the operand of the binary operation
6200
// being defined in another block, and performing the replacement
6201
// could break the dominance relation.
6202
return nullptr;
6203
}
6204
} else {
6205
// Other uses prohibit this transformation.
6206
return nullptr;
6207
}
6208
}
6209
6210
// Recognize patterns
6211
switch (I.getPredicate()) {
6212
case ICmpInst::ICMP_UGT: {
6213
// Recognize pattern:
6214
// mulval = mul(zext A, zext B)
6215
// cmp ugt mulval, max
6216
APInt MaxVal = APInt::getMaxValue(MulWidth);
6217
MaxVal = MaxVal.zext(OtherVal->getBitWidth());
6218
if (MaxVal.eq(*OtherVal))
6219
break; // Recognized
6220
return nullptr;
6221
}
6222
6223
case ICmpInst::ICMP_ULT: {
6224
// Recognize pattern:
6225
// mulval = mul(zext A, zext B)
6226
// cmp ule mulval, max + 1
6227
APInt MaxVal = APInt::getOneBitSet(OtherVal->getBitWidth(), MulWidth);
6228
if (MaxVal.eq(*OtherVal))
6229
break; // Recognized
6230
return nullptr;
6231
}
6232
6233
default:
6234
return nullptr;
6235
}
6236
6237
InstCombiner::BuilderTy &Builder = IC.Builder;
6238
Builder.SetInsertPoint(MulInstr);
6239
6240
// Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
6241
Value *MulA = A, *MulB = B;
6242
if (WidthA < MulWidth)
6243
MulA = Builder.CreateZExt(A, MulType);
6244
if (WidthB < MulWidth)
6245
MulB = Builder.CreateZExt(B, MulType);
6246
Function *F = Intrinsic::getDeclaration(
6247
I.getModule(), Intrinsic::umul_with_overflow, MulType);
6248
CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
6249
IC.addToWorklist(MulInstr);
6250
6251
// If there are uses of mul result other than the comparison, we know that
6252
// they are truncation or binary AND. Change them to use result of
6253
// mul.with.overflow and adjust properly mask/size.
6254
if (MulVal->hasNUsesOrMore(2)) {
6255
Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
6256
for (User *U : make_early_inc_range(MulVal->users())) {
6257
if (U == &I)
6258
continue;
6259
if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
6260
if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
6261
IC.replaceInstUsesWith(*TI, Mul);
6262
else
6263
TI->setOperand(0, Mul);
6264
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
6265
assert(BO->getOpcode() == Instruction::And);
6266
// Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
6267
ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
6268
APInt ShortMask = CI->getValue().trunc(MulWidth);
6269
Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
6270
Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
6271
IC.replaceInstUsesWith(*BO, Zext);
6272
} else {
6273
llvm_unreachable("Unexpected Binary operation");
6274
}
6275
IC.addToWorklist(cast<Instruction>(U));
6276
}
6277
}
6278
6279
// The original icmp gets replaced with the overflow value, maybe inverted
6280
// depending on predicate.
6281
if (I.getPredicate() == ICmpInst::ICMP_ULT) {
6282
Value *Res = Builder.CreateExtractValue(Call, 1);
6283
return BinaryOperator::CreateNot(Res);
6284
}
6285
6286
return ExtractValueInst::Create(Call, 1);
6287
}
6288
6289
/// When performing a comparison against a constant, it is possible that not all
6290
/// the bits in the LHS are demanded. This helper method computes the mask that
6291
/// IS demanded.
6292
static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
6293
const APInt *RHS;
6294
if (!match(I.getOperand(1), m_APInt(RHS)))
6295
return APInt::getAllOnes(BitWidth);
6296
6297
// If this is a normal comparison, it demands all bits. If it is a sign bit
6298
// comparison, it only demands the sign bit.
6299
bool UnusedBit;
6300
if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
6301
return APInt::getSignMask(BitWidth);
6302
6303
switch (I.getPredicate()) {
6304
// For a UGT comparison, we don't care about any bits that
6305
// correspond to the trailing ones of the comparand. The value of these
6306
// bits doesn't impact the outcome of the comparison, because any value
6307
// greater than the RHS must differ in a bit higher than these due to carry.
6308
case ICmpInst::ICMP_UGT:
6309
return APInt::getBitsSetFrom(BitWidth, RHS->countr_one());
6310
6311
// Similarly, for a ULT comparison, we don't care about the trailing zeros.
6312
// Any value less than the RHS must differ in a higher bit because of carries.
6313
case ICmpInst::ICMP_ULT:
6314
return APInt::getBitsSetFrom(BitWidth, RHS->countr_zero());
6315
6316
default:
6317
return APInt::getAllOnes(BitWidth);
6318
}
6319
}
6320
6321
/// Check that one use is in the same block as the definition and all
6322
/// other uses are in blocks dominated by a given block.
6323
///
6324
/// \param DI Definition
6325
/// \param UI Use
6326
/// \param DB Block that must dominate all uses of \p DI outside
6327
/// the parent block
6328
/// \return true when \p UI is the only use of \p DI in the parent block
6329
/// and all other uses of \p DI are in blocks dominated by \p DB.
6330
///
6331
bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
6332
const Instruction *UI,
6333
const BasicBlock *DB) const {
6334
assert(DI && UI && "Instruction not defined\n");
6335
// Ignore incomplete definitions.
6336
if (!DI->getParent())
6337
return false;
6338
// DI and UI must be in the same block.
6339
if (DI->getParent() != UI->getParent())
6340
return false;
6341
// Protect from self-referencing blocks.
6342
if (DI->getParent() == DB)
6343
return false;
6344
for (const User *U : DI->users()) {
6345
auto *Usr = cast<Instruction>(U);
6346
if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
6347
return false;
6348
}
6349
return true;
6350
}
6351
6352
/// Return true when the instruction sequence within a block is select-cmp-br.
6353
static bool isChainSelectCmpBranch(const SelectInst *SI) {
6354
const BasicBlock *BB = SI->getParent();
6355
if (!BB)
6356
return false;
6357
auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
6358
if (!BI || BI->getNumSuccessors() != 2)
6359
return false;
6360
auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
6361
if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
6362
return false;
6363
return true;
6364
}
6365
6366
/// True when a select result is replaced by one of its operands
6367
/// in select-icmp sequence. This will eventually result in the elimination
6368
/// of the select.
6369
///
6370
/// \param SI Select instruction
6371
/// \param Icmp Compare instruction
6372
/// \param SIOpd Operand that replaces the select
6373
///
6374
/// Notes:
6375
/// - The replacement is global and requires dominator information
6376
/// - The caller is responsible for the actual replacement
6377
///
6378
/// Example:
6379
///
6380
/// entry:
6381
/// %4 = select i1 %3, %C* %0, %C* null
6382
/// %5 = icmp eq %C* %4, null
6383
/// br i1 %5, label %9, label %7
6384
/// ...
6385
/// ; <label>:7 ; preds = %entry
6386
/// %8 = getelementptr inbounds %C* %4, i64 0, i32 0
6387
/// ...
6388
///
6389
/// can be transformed to
6390
///
6391
/// %5 = icmp eq %C* %0, null
6392
/// %6 = select i1 %3, i1 %5, i1 true
6393
/// br i1 %6, label %9, label %7
6394
/// ...
6395
/// ; <label>:7 ; preds = %entry
6396
/// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0!
6397
///
6398
/// Similar when the first operand of the select is a constant or/and
6399
/// the compare is for not equal rather than equal.
6400
///
6401
/// NOTE: The function is only called when the select and compare constants
6402
/// are equal, the optimization can work only for EQ predicates. This is not a
6403
/// major restriction since a NE compare should be 'normalized' to an equal
6404
/// compare, which usually happens in the combiner and test case
6405
/// select-cmp-br.ll checks for it.
6406
bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
6407
const ICmpInst *Icmp,
6408
const unsigned SIOpd) {
6409
assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
6410
if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
6411
BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
6412
// The check for the single predecessor is not the best that can be
6413
// done. But it protects efficiently against cases like when SI's
6414
// home block has two successors, Succ and Succ1, and Succ1 predecessor
6415
// of Succ. Then SI can't be replaced by SIOpd because the use that gets
6416
// replaced can be reached on either path. So the uniqueness check
6417
// guarantees that the path all uses of SI (outside SI's parent) are on
6418
// is disjoint from all other paths out of SI. But that information
6419
// is more expensive to compute, and the trade-off here is in favor
6420
// of compile-time. It should also be noticed that we check for a single
6421
// predecessor and not only uniqueness. This to handle the situation when
6422
// Succ and Succ1 points to the same basic block.
6423
if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
6424
NumSel++;
6425
SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
6426
return true;
6427
}
6428
}
6429
return false;
6430
}
6431
6432
/// Try to fold the comparison based on range information we can get by checking
6433
/// whether bits are known to be zero or one in the inputs.
6434
Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
6435
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6436
Type *Ty = Op0->getType();
6437
ICmpInst::Predicate Pred = I.getPredicate();
6438
6439
// Get scalar or pointer size.
6440
unsigned BitWidth = Ty->isIntOrIntVectorTy()
6441
? Ty->getScalarSizeInBits()
6442
: DL.getPointerTypeSizeInBits(Ty->getScalarType());
6443
6444
if (!BitWidth)
6445
return nullptr;
6446
6447
KnownBits Op0Known(BitWidth);
6448
KnownBits Op1Known(BitWidth);
6449
6450
{
6451
// Don't use dominating conditions when folding icmp using known bits. This
6452
// may convert signed into unsigned predicates in ways that other passes
6453
// (especially IndVarSimplify) may not be able to reliably undo.
6454
SimplifyQuery Q = SQ.getWithoutDomCondCache().getWithInstruction(&I);
6455
if (SimplifyDemandedBits(&I, 0, getDemandedBitsLHSMask(I, BitWidth),
6456
Op0Known, /*Depth=*/0, Q))
6457
return &I;
6458
6459
if (SimplifyDemandedBits(&I, 1, APInt::getAllOnes(BitWidth), Op1Known,
6460
/*Depth=*/0, Q))
6461
return &I;
6462
}
6463
6464
// Given the known and unknown bits, compute a range that the LHS could be
6465
// in. Compute the Min, Max and RHS values based on the known bits. For the
6466
// EQ and NE we use unsigned values.
6467
APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
6468
APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
6469
if (I.isSigned()) {
6470
Op0Min = Op0Known.getSignedMinValue();
6471
Op0Max = Op0Known.getSignedMaxValue();
6472
Op1Min = Op1Known.getSignedMinValue();
6473
Op1Max = Op1Known.getSignedMaxValue();
6474
} else {
6475
Op0Min = Op0Known.getMinValue();
6476
Op0Max = Op0Known.getMaxValue();
6477
Op1Min = Op1Known.getMinValue();
6478
Op1Max = Op1Known.getMaxValue();
6479
}
6480
6481
// If Min and Max are known to be the same, then SimplifyDemandedBits figured
6482
// out that the LHS or RHS is a constant. Constant fold this now, so that
6483
// code below can assume that Min != Max.
6484
if (!isa<Constant>(Op0) && Op0Min == Op0Max)
6485
return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
6486
if (!isa<Constant>(Op1) && Op1Min == Op1Max)
6487
return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
6488
6489
// Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a
6490
// min/max canonical compare with some other compare. That could lead to
6491
// conflict with select canonicalization and infinite looping.
6492
// FIXME: This constraint may go away if min/max intrinsics are canonical.
6493
auto isMinMaxCmp = [&](Instruction &Cmp) {
6494
if (!Cmp.hasOneUse())
6495
return false;
6496
Value *A, *B;
6497
SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor;
6498
if (!SelectPatternResult::isMinOrMax(SPF))
6499
return false;
6500
return match(Op0, m_MaxOrMin(m_Value(), m_Value())) ||
6501
match(Op1, m_MaxOrMin(m_Value(), m_Value()));
6502
};
6503
if (!isMinMaxCmp(I)) {
6504
switch (Pred) {
6505
default:
6506
break;
6507
case ICmpInst::ICMP_ULT: {
6508
if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
6509
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
6510
const APInt *CmpC;
6511
if (match(Op1, m_APInt(CmpC))) {
6512
// A <u C -> A == C-1 if min(A)+1 == C
6513
if (*CmpC == Op0Min + 1)
6514
return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
6515
ConstantInt::get(Op1->getType(), *CmpC - 1));
6516
// X <u C --> X == 0, if the number of zero bits in the bottom of X
6517
// exceeds the log2 of C.
6518
if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
6519
return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
6520
Constant::getNullValue(Op1->getType()));
6521
}
6522
break;
6523
}
6524
case ICmpInst::ICMP_UGT: {
6525
if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
6526
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
6527
const APInt *CmpC;
6528
if (match(Op1, m_APInt(CmpC))) {
6529
// A >u C -> A == C+1 if max(a)-1 == C
6530
if (*CmpC == Op0Max - 1)
6531
return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
6532
ConstantInt::get(Op1->getType(), *CmpC + 1));
6533
// X >u C --> X != 0, if the number of zero bits in the bottom of X
6534
// exceeds the log2 of C.
6535
if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
6536
return new ICmpInst(ICmpInst::ICMP_NE, Op0,
6537
Constant::getNullValue(Op1->getType()));
6538
}
6539
break;
6540
}
6541
case ICmpInst::ICMP_SLT: {
6542
if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
6543
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
6544
const APInt *CmpC;
6545
if (match(Op1, m_APInt(CmpC))) {
6546
if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
6547
return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
6548
ConstantInt::get(Op1->getType(), *CmpC - 1));
6549
}
6550
break;
6551
}
6552
case ICmpInst::ICMP_SGT: {
6553
if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
6554
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
6555
const APInt *CmpC;
6556
if (match(Op1, m_APInt(CmpC))) {
6557
if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
6558
return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
6559
ConstantInt::get(Op1->getType(), *CmpC + 1));
6560
}
6561
break;
6562
}
6563
}
6564
}
6565
6566
// Based on the range information we know about the LHS, see if we can
6567
// simplify this comparison. For example, (x&4) < 8 is always true.
6568
switch (Pred) {
6569
default:
6570
llvm_unreachable("Unknown icmp opcode!");
6571
case ICmpInst::ICMP_EQ:
6572
case ICmpInst::ICMP_NE: {
6573
if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
6574
return replaceInstUsesWith(
6575
I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE));
6576
6577
// If all bits are known zero except for one, then we know at most one bit
6578
// is set. If the comparison is against zero, then this is a check to see if
6579
// *that* bit is set.
6580
APInt Op0KnownZeroInverted = ~Op0Known.Zero;
6581
if (Op1Known.isZero()) {
6582
// If the LHS is an AND with the same constant, look through it.
6583
Value *LHS = nullptr;
6584
const APInt *LHSC;
6585
if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
6586
*LHSC != Op0KnownZeroInverted)
6587
LHS = Op0;
6588
6589
Value *X;
6590
const APInt *C1;
6591
if (match(LHS, m_Shl(m_Power2(C1), m_Value(X)))) {
6592
Type *XTy = X->getType();
6593
unsigned Log2C1 = C1->countr_zero();
6594
APInt C2 = Op0KnownZeroInverted;
6595
APInt C2Pow2 = (C2 & ~(*C1 - 1)) + *C1;
6596
if (C2Pow2.isPowerOf2()) {
6597
// iff (C1 is pow2) & ((C2 & ~(C1-1)) + C1) is pow2):
6598
// ((C1 << X) & C2) == 0 -> X >= (Log2(C2+C1) - Log2(C1))
6599
// ((C1 << X) & C2) != 0 -> X < (Log2(C2+C1) - Log2(C1))
6600
unsigned Log2C2 = C2Pow2.countr_zero();
6601
auto *CmpC = ConstantInt::get(XTy, Log2C2 - Log2C1);
6602
auto NewPred =
6603
Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
6604
return new ICmpInst(NewPred, X, CmpC);
6605
}
6606
}
6607
}
6608
6609
// Op0 eq C_Pow2 -> Op0 ne 0 if Op0 is known to be C_Pow2 or zero.
6610
if (Op1Known.isConstant() && Op1Known.getConstant().isPowerOf2() &&
6611
(Op0Known & Op1Known) == Op0Known)
6612
return new ICmpInst(CmpInst::getInversePredicate(Pred), Op0,
6613
ConstantInt::getNullValue(Op1->getType()));
6614
break;
6615
}
6616
case ICmpInst::ICMP_ULT: {
6617
if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
6618
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6619
if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
6620
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6621
break;
6622
}
6623
case ICmpInst::ICMP_UGT: {
6624
if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
6625
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6626
if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
6627
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6628
break;
6629
}
6630
case ICmpInst::ICMP_SLT: {
6631
if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
6632
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6633
if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
6634
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6635
break;
6636
}
6637
case ICmpInst::ICMP_SGT: {
6638
if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
6639
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6640
if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
6641
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6642
break;
6643
}
6644
case ICmpInst::ICMP_SGE:
6645
assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
6646
if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
6647
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6648
if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
6649
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6650
if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
6651
return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
6652
break;
6653
case ICmpInst::ICMP_SLE:
6654
assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
6655
if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
6656
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6657
if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
6658
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6659
if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
6660
return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
6661
break;
6662
case ICmpInst::ICMP_UGE:
6663
assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
6664
if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
6665
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6666
if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
6667
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6668
if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
6669
return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
6670
break;
6671
case ICmpInst::ICMP_ULE:
6672
assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
6673
if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
6674
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
6675
if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
6676
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
6677
if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
6678
return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
6679
break;
6680
}
6681
6682
// Turn a signed comparison into an unsigned one if both operands are known to
6683
// have the same sign.
6684
if (I.isSigned() &&
6685
((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
6686
(Op0Known.One.isNegative() && Op1Known.One.isNegative())))
6687
return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
6688
6689
return nullptr;
6690
}
6691
6692
/// If one operand of an icmp is effectively a bool (value range of {0,1}),
6693
/// then try to reduce patterns based on that limit.
6694
Instruction *InstCombinerImpl::foldICmpUsingBoolRange(ICmpInst &I) {
6695
Value *X, *Y;
6696
ICmpInst::Predicate Pred;
6697
6698
// X must be 0 and bool must be true for "ULT":
6699
// X <u (zext i1 Y) --> (X == 0) & Y
6700
if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_ZExt(m_Value(Y))))) &&
6701
Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULT)
6702
return BinaryOperator::CreateAnd(Builder.CreateIsNull(X), Y);
6703
6704
// X must be 0 or bool must be true for "ULE":
6705
// X <=u (sext i1 Y) --> (X == 0) | Y
6706
if (match(&I, m_c_ICmp(Pred, m_Value(X), m_OneUse(m_SExt(m_Value(Y))))) &&
6707
Y->getType()->isIntOrIntVectorTy(1) && Pred == ICmpInst::ICMP_ULE)
6708
return BinaryOperator::CreateOr(Builder.CreateIsNull(X), Y);
6709
6710
// icmp eq/ne X, (zext/sext (icmp eq/ne X, C))
6711
ICmpInst::Predicate Pred1, Pred2;
6712
const APInt *C;
6713
Instruction *ExtI;
6714
if (match(&I, m_c_ICmp(Pred1, m_Value(X),
6715
m_CombineAnd(m_Instruction(ExtI),
6716
m_ZExtOrSExt(m_ICmp(Pred2, m_Deferred(X),
6717
m_APInt(C)))))) &&
6718
ICmpInst::isEquality(Pred1) && ICmpInst::isEquality(Pred2)) {
6719
bool IsSExt = ExtI->getOpcode() == Instruction::SExt;
6720
bool HasOneUse = ExtI->hasOneUse() && ExtI->getOperand(0)->hasOneUse();
6721
auto CreateRangeCheck = [&] {
6722
Value *CmpV1 =
6723
Builder.CreateICmp(Pred1, X, Constant::getNullValue(X->getType()));
6724
Value *CmpV2 = Builder.CreateICmp(
6725
Pred1, X, ConstantInt::getSigned(X->getType(), IsSExt ? -1 : 1));
6726
return BinaryOperator::Create(
6727
Pred1 == ICmpInst::ICMP_EQ ? Instruction::Or : Instruction::And,
6728
CmpV1, CmpV2);
6729
};
6730
if (C->isZero()) {
6731
if (Pred2 == ICmpInst::ICMP_EQ) {
6732
// icmp eq X, (zext/sext (icmp eq X, 0)) --> false
6733
// icmp ne X, (zext/sext (icmp eq X, 0)) --> true
6734
return replaceInstUsesWith(
6735
I, ConstantInt::getBool(I.getType(), Pred1 == ICmpInst::ICMP_NE));
6736
} else if (!IsSExt || HasOneUse) {
6737
// icmp eq X, (zext (icmp ne X, 0)) --> X == 0 || X == 1
6738
// icmp ne X, (zext (icmp ne X, 0)) --> X != 0 && X != 1
6739
// icmp eq X, (sext (icmp ne X, 0)) --> X == 0 || X == -1
6740
// icmp ne X, (sext (icmp ne X, 0)) --> X != 0 && X == -1
6741
return CreateRangeCheck();
6742
}
6743
} else if (IsSExt ? C->isAllOnes() : C->isOne()) {
6744
if (Pred2 == ICmpInst::ICMP_NE) {
6745
// icmp eq X, (zext (icmp ne X, 1)) --> false
6746
// icmp ne X, (zext (icmp ne X, 1)) --> true
6747
// icmp eq X, (sext (icmp ne X, -1)) --> false
6748
// icmp ne X, (sext (icmp ne X, -1)) --> true
6749
return replaceInstUsesWith(
6750
I, ConstantInt::getBool(I.getType(), Pred1 == ICmpInst::ICMP_NE));
6751
} else if (!IsSExt || HasOneUse) {
6752
// icmp eq X, (zext (icmp eq X, 1)) --> X == 0 || X == 1
6753
// icmp ne X, (zext (icmp eq X, 1)) --> X != 0 && X != 1
6754
// icmp eq X, (sext (icmp eq X, -1)) --> X == 0 || X == -1
6755
// icmp ne X, (sext (icmp eq X, -1)) --> X != 0 && X == -1
6756
return CreateRangeCheck();
6757
}
6758
} else {
6759
// when C != 0 && C != 1:
6760
// icmp eq X, (zext (icmp eq X, C)) --> icmp eq X, 0
6761
// icmp eq X, (zext (icmp ne X, C)) --> icmp eq X, 1
6762
// icmp ne X, (zext (icmp eq X, C)) --> icmp ne X, 0
6763
// icmp ne X, (zext (icmp ne X, C)) --> icmp ne X, 1
6764
// when C != 0 && C != -1:
6765
// icmp eq X, (sext (icmp eq X, C)) --> icmp eq X, 0
6766
// icmp eq X, (sext (icmp ne X, C)) --> icmp eq X, -1
6767
// icmp ne X, (sext (icmp eq X, C)) --> icmp ne X, 0
6768
// icmp ne X, (sext (icmp ne X, C)) --> icmp ne X, -1
6769
return ICmpInst::Create(
6770
Instruction::ICmp, Pred1, X,
6771
ConstantInt::getSigned(X->getType(), Pred2 == ICmpInst::ICMP_NE
6772
? (IsSExt ? -1 : 1)
6773
: 0));
6774
}
6775
}
6776
6777
return nullptr;
6778
}
6779
6780
std::optional<std::pair<CmpInst::Predicate, Constant *>>
6781
InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
6782
Constant *C) {
6783
assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
6784
"Only for relational integer predicates.");
6785
6786
Type *Type = C->getType();
6787
bool IsSigned = ICmpInst::isSigned(Pred);
6788
6789
CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
6790
bool WillIncrement =
6791
UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
6792
6793
// Check if the constant operand can be safely incremented/decremented
6794
// without overflowing/underflowing.
6795
auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
6796
return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
6797
};
6798
6799
Constant *SafeReplacementConstant = nullptr;
6800
if (auto *CI = dyn_cast<ConstantInt>(C)) {
6801
// Bail out if the constant can't be safely incremented/decremented.
6802
if (!ConstantIsOk(CI))
6803
return std::nullopt;
6804
} else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
6805
unsigned NumElts = FVTy->getNumElements();
6806
for (unsigned i = 0; i != NumElts; ++i) {
6807
Constant *Elt = C->getAggregateElement(i);
6808
if (!Elt)
6809
return std::nullopt;
6810
6811
if (isa<UndefValue>(Elt))
6812
continue;
6813
6814
// Bail out if we can't determine if this constant is min/max or if we
6815
// know that this constant is min/max.
6816
auto *CI = dyn_cast<ConstantInt>(Elt);
6817
if (!CI || !ConstantIsOk(CI))
6818
return std::nullopt;
6819
6820
if (!SafeReplacementConstant)
6821
SafeReplacementConstant = CI;
6822
}
6823
} else if (isa<VectorType>(C->getType())) {
6824
// Handle scalable splat
6825
Value *SplatC = C->getSplatValue();
6826
auto *CI = dyn_cast_or_null<ConstantInt>(SplatC);
6827
// Bail out if the constant can't be safely incremented/decremented.
6828
if (!CI || !ConstantIsOk(CI))
6829
return std::nullopt;
6830
} else {
6831
// ConstantExpr?
6832
return std::nullopt;
6833
}
6834
6835
// It may not be safe to change a compare predicate in the presence of
6836
// undefined elements, so replace those elements with the first safe constant
6837
// that we found.
6838
// TODO: in case of poison, it is safe; let's replace undefs only.
6839
if (C->containsUndefOrPoisonElement()) {
6840
assert(SafeReplacementConstant && "Replacement constant not set");
6841
C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
6842
}
6843
6844
CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
6845
6846
// Increment or decrement the constant.
6847
Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
6848
Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
6849
6850
return std::make_pair(NewPred, NewC);
6851
}
6852
6853
/// If we have an icmp le or icmp ge instruction with a constant operand, turn
6854
/// it into the appropriate icmp lt or icmp gt instruction. This transform
6855
/// allows them to be folded in visitICmpInst.
6856
static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
6857
ICmpInst::Predicate Pred = I.getPredicate();
6858
if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
6859
InstCombiner::isCanonicalPredicate(Pred))
6860
return nullptr;
6861
6862
Value *Op0 = I.getOperand(0);
6863
Value *Op1 = I.getOperand(1);
6864
auto *Op1C = dyn_cast<Constant>(Op1);
6865
if (!Op1C)
6866
return nullptr;
6867
6868
auto FlippedStrictness =
6869
InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
6870
if (!FlippedStrictness)
6871
return nullptr;
6872
6873
return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
6874
}
6875
6876
/// If we have a comparison with a non-canonical predicate, if we can update
6877
/// all the users, invert the predicate and adjust all the users.
6878
CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
6879
// Is the predicate already canonical?
6880
CmpInst::Predicate Pred = I.getPredicate();
6881
if (InstCombiner::isCanonicalPredicate(Pred))
6882
return nullptr;
6883
6884
// Can all users be adjusted to predicate inversion?
6885
if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
6886
return nullptr;
6887
6888
// Ok, we can canonicalize comparison!
6889
// Let's first invert the comparison's predicate.
6890
I.setPredicate(CmpInst::getInversePredicate(Pred));
6891
I.setName(I.getName() + ".not");
6892
6893
// And, adapt users.
6894
freelyInvertAllUsersOf(&I);
6895
6896
return &I;
6897
}
6898
6899
/// Integer compare with boolean values can always be turned into bitwise ops.
6900
static Instruction *canonicalizeICmpBool(ICmpInst &I,
6901
InstCombiner::BuilderTy &Builder) {
6902
Value *A = I.getOperand(0), *B = I.getOperand(1);
6903
assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
6904
6905
// A boolean compared to true/false can be simplified to Op0/true/false in
6906
// 14 out of the 20 (10 predicates * 2 constants) possible combinations.
6907
// Cases not handled by InstSimplify are always 'not' of Op0.
6908
if (match(B, m_Zero())) {
6909
switch (I.getPredicate()) {
6910
case CmpInst::ICMP_EQ: // A == 0 -> !A
6911
case CmpInst::ICMP_ULE: // A <=u 0 -> !A
6912
case CmpInst::ICMP_SGE: // A >=s 0 -> !A
6913
return BinaryOperator::CreateNot(A);
6914
default:
6915
llvm_unreachable("ICmp i1 X, C not simplified as expected.");
6916
}
6917
} else if (match(B, m_One())) {
6918
switch (I.getPredicate()) {
6919
case CmpInst::ICMP_NE: // A != 1 -> !A
6920
case CmpInst::ICMP_ULT: // A <u 1 -> !A
6921
case CmpInst::ICMP_SGT: // A >s -1 -> !A
6922
return BinaryOperator::CreateNot(A);
6923
default:
6924
llvm_unreachable("ICmp i1 X, C not simplified as expected.");
6925
}
6926
}
6927
6928
switch (I.getPredicate()) {
6929
default:
6930
llvm_unreachable("Invalid icmp instruction!");
6931
case ICmpInst::ICMP_EQ:
6932
// icmp eq i1 A, B -> ~(A ^ B)
6933
return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
6934
6935
case ICmpInst::ICMP_NE:
6936
// icmp ne i1 A, B -> A ^ B
6937
return BinaryOperator::CreateXor(A, B);
6938
6939
case ICmpInst::ICMP_UGT:
6940
// icmp ugt -> icmp ult
6941
std::swap(A, B);
6942
[[fallthrough]];
6943
case ICmpInst::ICMP_ULT:
6944
// icmp ult i1 A, B -> ~A & B
6945
return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
6946
6947
case ICmpInst::ICMP_SGT:
6948
// icmp sgt -> icmp slt
6949
std::swap(A, B);
6950
[[fallthrough]];
6951
case ICmpInst::ICMP_SLT:
6952
// icmp slt i1 A, B -> A & ~B
6953
return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
6954
6955
case ICmpInst::ICMP_UGE:
6956
// icmp uge -> icmp ule
6957
std::swap(A, B);
6958
[[fallthrough]];
6959
case ICmpInst::ICMP_ULE:
6960
// icmp ule i1 A, B -> ~A | B
6961
return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
6962
6963
case ICmpInst::ICMP_SGE:
6964
// icmp sge -> icmp sle
6965
std::swap(A, B);
6966
[[fallthrough]];
6967
case ICmpInst::ICMP_SLE:
6968
// icmp sle i1 A, B -> A | ~B
6969
return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
6970
}
6971
}
6972
6973
// Transform pattern like:
6974
// (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X
6975
// (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X
6976
// Into:
6977
// (X l>> Y) != 0
6978
// (X l>> Y) == 0
6979
static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
6980
InstCombiner::BuilderTy &Builder) {
6981
ICmpInst::Predicate Pred, NewPred;
6982
Value *X, *Y;
6983
if (match(&Cmp,
6984
m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
6985
switch (Pred) {
6986
case ICmpInst::ICMP_ULE:
6987
NewPred = ICmpInst::ICMP_NE;
6988
break;
6989
case ICmpInst::ICMP_UGT:
6990
NewPred = ICmpInst::ICMP_EQ;
6991
break;
6992
default:
6993
return nullptr;
6994
}
6995
} else if (match(&Cmp, m_c_ICmp(Pred,
6996
m_OneUse(m_CombineOr(
6997
m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
6998
m_Add(m_Shl(m_One(), m_Value(Y)),
6999
m_AllOnes()))),
7000
m_Value(X)))) {
7001
// The variant with 'add' is not canonical, (the variant with 'not' is)
7002
// we only get it because it has extra uses, and can't be canonicalized,
7003
7004
switch (Pred) {
7005
case ICmpInst::ICMP_ULT:
7006
NewPred = ICmpInst::ICMP_NE;
7007
break;
7008
case ICmpInst::ICMP_UGE:
7009
NewPred = ICmpInst::ICMP_EQ;
7010
break;
7011
default:
7012
return nullptr;
7013
}
7014
} else
7015
return nullptr;
7016
7017
Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
7018
Constant *Zero = Constant::getNullValue(NewX->getType());
7019
return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
7020
}
7021
7022
static Instruction *foldVectorCmp(CmpInst &Cmp,
7023
InstCombiner::BuilderTy &Builder) {
7024
const CmpInst::Predicate Pred = Cmp.getPredicate();
7025
Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
7026
Value *V1, *V2;
7027
7028
auto createCmpReverse = [&](CmpInst::Predicate Pred, Value *X, Value *Y) {
7029
Value *V = Builder.CreateCmp(Pred, X, Y, Cmp.getName());
7030
if (auto *I = dyn_cast<Instruction>(V))
7031
I->copyIRFlags(&Cmp);
7032
Module *M = Cmp.getModule();
7033
Function *F =
7034
Intrinsic::getDeclaration(M, Intrinsic::vector_reverse, V->getType());
7035
return CallInst::Create(F, V);
7036
};
7037
7038
if (match(LHS, m_VecReverse(m_Value(V1)))) {
7039
// cmp Pred, rev(V1), rev(V2) --> rev(cmp Pred, V1, V2)
7040
if (match(RHS, m_VecReverse(m_Value(V2))) &&
7041
(LHS->hasOneUse() || RHS->hasOneUse()))
7042
return createCmpReverse(Pred, V1, V2);
7043
7044
// cmp Pred, rev(V1), RHSSplat --> rev(cmp Pred, V1, RHSSplat)
7045
if (LHS->hasOneUse() && isSplatValue(RHS))
7046
return createCmpReverse(Pred, V1, RHS);
7047
}
7048
// cmp Pred, LHSSplat, rev(V2) --> rev(cmp Pred, LHSSplat, V2)
7049
else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2)))))
7050
return createCmpReverse(Pred, LHS, V2);
7051
7052
ArrayRef<int> M;
7053
if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
7054
return nullptr;
7055
7056
// If both arguments of the cmp are shuffles that use the same mask and
7057
// shuffle within a single vector, move the shuffle after the cmp:
7058
// cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
7059
Type *V1Ty = V1->getType();
7060
if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
7061
V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
7062
Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
7063
return new ShuffleVectorInst(NewCmp, M);
7064
}
7065
7066
// Try to canonicalize compare with splatted operand and splat constant.
7067
// TODO: We could generalize this for more than splats. See/use the code in
7068
// InstCombiner::foldVectorBinop().
7069
Constant *C;
7070
if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
7071
return nullptr;
7072
7073
// Length-changing splats are ok, so adjust the constants as needed:
7074
// cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
7075
Constant *ScalarC = C->getSplatValue(/* AllowPoison */ true);
7076
int MaskSplatIndex;
7077
if (ScalarC && match(M, m_SplatOrPoisonMask(MaskSplatIndex))) {
7078
// We allow poison in matching, but this transform removes it for safety.
7079
// Demanded elements analysis should be able to recover some/all of that.
7080
C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
7081
ScalarC);
7082
SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
7083
Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
7084
return new ShuffleVectorInst(NewCmp, NewM);
7085
}
7086
7087
return nullptr;
7088
}
7089
7090
// extract(uadd.with.overflow(A, B), 0) ult A
7091
// -> extract(uadd.with.overflow(A, B), 1)
7092
static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
7093
CmpInst::Predicate Pred = I.getPredicate();
7094
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
7095
7096
Value *UAddOv;
7097
Value *A, *B;
7098
auto UAddOvResultPat = m_ExtractValue<0>(
7099
m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
7100
if (match(Op0, UAddOvResultPat) &&
7101
((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
7102
(Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
7103
(match(A, m_One()) || match(B, m_One()))) ||
7104
(Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
7105
(match(A, m_AllOnes()) || match(B, m_AllOnes())))))
7106
// extract(uadd.with.overflow(A, B), 0) < A
7107
// extract(uadd.with.overflow(A, 1), 0) == 0
7108
// extract(uadd.with.overflow(A, -1), 0) != -1
7109
UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
7110
else if (match(Op1, UAddOvResultPat) &&
7111
Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
7112
// A > extract(uadd.with.overflow(A, B), 0)
7113
UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
7114
else
7115
return nullptr;
7116
7117
return ExtractValueInst::Create(UAddOv, 1);
7118
}
7119
7120
static Instruction *foldICmpInvariantGroup(ICmpInst &I) {
7121
if (!I.getOperand(0)->getType()->isPointerTy() ||
7122
NullPointerIsDefined(
7123
I.getParent()->getParent(),
7124
I.getOperand(0)->getType()->getPointerAddressSpace())) {
7125
return nullptr;
7126
}
7127
Instruction *Op;
7128
if (match(I.getOperand(0), m_Instruction(Op)) &&
7129
match(I.getOperand(1), m_Zero()) &&
7130
Op->isLaunderOrStripInvariantGroup()) {
7131
return ICmpInst::Create(Instruction::ICmp, I.getPredicate(),
7132
Op->getOperand(0), I.getOperand(1));
7133
}
7134
return nullptr;
7135
}
7136
7137
/// This function folds patterns produced by lowering of reduce idioms, such as
7138
/// llvm.vector.reduce.and which are lowered into instruction chains. This code
7139
/// attempts to generate fewer number of scalar comparisons instead of vector
7140
/// comparisons when possible.
7141
static Instruction *foldReductionIdiom(ICmpInst &I,
7142
InstCombiner::BuilderTy &Builder,
7143
const DataLayout &DL) {
7144
if (I.getType()->isVectorTy())
7145
return nullptr;
7146
ICmpInst::Predicate OuterPred, InnerPred;
7147
Value *LHS, *RHS;
7148
7149
// Match lowering of @llvm.vector.reduce.and. Turn
7150
/// %vec_ne = icmp ne <8 x i8> %lhs, %rhs
7151
/// %scalar_ne = bitcast <8 x i1> %vec_ne to i8
7152
/// %res = icmp <pred> i8 %scalar_ne, 0
7153
///
7154
/// into
7155
///
7156
/// %lhs.scalar = bitcast <8 x i8> %lhs to i64
7157
/// %rhs.scalar = bitcast <8 x i8> %rhs to i64
7158
/// %res = icmp <pred> i64 %lhs.scalar, %rhs.scalar
7159
///
7160
/// for <pred> in {ne, eq}.
7161
if (!match(&I, m_ICmp(OuterPred,
7162
m_OneUse(m_BitCast(m_OneUse(
7163
m_ICmp(InnerPred, m_Value(LHS), m_Value(RHS))))),
7164
m_Zero())))
7165
return nullptr;
7166
auto *LHSTy = dyn_cast<FixedVectorType>(LHS->getType());
7167
if (!LHSTy || !LHSTy->getElementType()->isIntegerTy())
7168
return nullptr;
7169
unsigned NumBits =
7170
LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth();
7171
// TODO: Relax this to "not wider than max legal integer type"?
7172
if (!DL.isLegalInteger(NumBits))
7173
return nullptr;
7174
7175
if (ICmpInst::isEquality(OuterPred) && InnerPred == ICmpInst::ICMP_NE) {
7176
auto *ScalarTy = Builder.getIntNTy(NumBits);
7177
LHS = Builder.CreateBitCast(LHS, ScalarTy, LHS->getName() + ".scalar");
7178
RHS = Builder.CreateBitCast(RHS, ScalarTy, RHS->getName() + ".scalar");
7179
return ICmpInst::Create(Instruction::ICmp, OuterPred, LHS, RHS,
7180
I.getName());
7181
}
7182
7183
return nullptr;
7184
}
7185
7186
// This helper will be called with icmp operands in both orders.
7187
Instruction *InstCombinerImpl::foldICmpCommutative(ICmpInst::Predicate Pred,
7188
Value *Op0, Value *Op1,
7189
ICmpInst &CxtI) {
7190
// Try to optimize 'icmp GEP, P' or 'icmp P, GEP'.
7191
if (auto *GEP = dyn_cast<GEPOperator>(Op0))
7192
if (Instruction *NI = foldGEPICmp(GEP, Op1, Pred, CxtI))
7193
return NI;
7194
7195
if (auto *SI = dyn_cast<SelectInst>(Op0))
7196
if (Instruction *NI = foldSelectICmp(Pred, SI, Op1, CxtI))
7197
return NI;
7198
7199
if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op0))
7200
if (Instruction *Res = foldICmpWithMinMax(CxtI, MinMax, Op1, Pred))
7201
return Res;
7202
7203
{
7204
Value *X;
7205
const APInt *C;
7206
// icmp X+Cst, X
7207
if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
7208
return foldICmpAddOpConst(X, *C, Pred);
7209
}
7210
7211
// abs(X) >= X --> true
7212
// abs(X) u<= X --> true
7213
// abs(X) < X --> false
7214
// abs(X) u> X --> false
7215
// abs(X) u>= X --> IsIntMinPosion ? `X > -1`: `X u<= INTMIN`
7216
// abs(X) <= X --> IsIntMinPosion ? `X > -1`: `X u<= INTMIN`
7217
// abs(X) == X --> IsIntMinPosion ? `X > -1`: `X u<= INTMIN`
7218
// abs(X) u< X --> IsIntMinPosion ? `X < 0` : `X > INTMIN`
7219
// abs(X) > X --> IsIntMinPosion ? `X < 0` : `X > INTMIN`
7220
// abs(X) != X --> IsIntMinPosion ? `X < 0` : `X > INTMIN`
7221
{
7222
Value *X;
7223
Constant *C;
7224
if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X), m_Constant(C))) &&
7225
match(Op1, m_Specific(X))) {
7226
Value *NullValue = Constant::getNullValue(X->getType());
7227
Value *AllOnesValue = Constant::getAllOnesValue(X->getType());
7228
const APInt SMin =
7229
APInt::getSignedMinValue(X->getType()->getScalarSizeInBits());
7230
bool IsIntMinPosion = C->isAllOnesValue();
7231
switch (Pred) {
7232
case CmpInst::ICMP_ULE:
7233
case CmpInst::ICMP_SGE:
7234
return replaceInstUsesWith(CxtI, ConstantInt::getTrue(CxtI.getType()));
7235
case CmpInst::ICMP_UGT:
7236
case CmpInst::ICMP_SLT:
7237
return replaceInstUsesWith(CxtI, ConstantInt::getFalse(CxtI.getType()));
7238
case CmpInst::ICMP_UGE:
7239
case CmpInst::ICMP_SLE:
7240
case CmpInst::ICMP_EQ: {
7241
return replaceInstUsesWith(
7242
CxtI, IsIntMinPosion
7243
? Builder.CreateICmpSGT(X, AllOnesValue)
7244
: Builder.CreateICmpULT(
7245
X, ConstantInt::get(X->getType(), SMin + 1)));
7246
}
7247
case CmpInst::ICMP_ULT:
7248
case CmpInst::ICMP_SGT:
7249
case CmpInst::ICMP_NE: {
7250
return replaceInstUsesWith(
7251
CxtI, IsIntMinPosion
7252
? Builder.CreateICmpSLT(X, NullValue)
7253
: Builder.CreateICmpUGT(
7254
X, ConstantInt::get(X->getType(), SMin)));
7255
}
7256
default:
7257
llvm_unreachable("Invalid predicate!");
7258
}
7259
}
7260
}
7261
7262
const SimplifyQuery Q = SQ.getWithInstruction(&CxtI);
7263
if (Value *V = foldICmpWithLowBitMaskedVal(Pred, Op0, Op1, Q, *this))
7264
return replaceInstUsesWith(CxtI, V);
7265
7266
// Folding (X / Y) pred X => X swap(pred) 0 for constant Y other than 0 or 1
7267
auto CheckUGT1 = [](const APInt &Divisor) { return Divisor.ugt(1); };
7268
{
7269
if (match(Op0, m_UDiv(m_Specific(Op1), m_CheckedInt(CheckUGT1)))) {
7270
return new ICmpInst(ICmpInst::getSwappedPredicate(Pred), Op1,
7271
Constant::getNullValue(Op1->getType()));
7272
}
7273
7274
if (!ICmpInst::isUnsigned(Pred) &&
7275
match(Op0, m_SDiv(m_Specific(Op1), m_CheckedInt(CheckUGT1)))) {
7276
return new ICmpInst(ICmpInst::getSwappedPredicate(Pred), Op1,
7277
Constant::getNullValue(Op1->getType()));
7278
}
7279
}
7280
7281
// Another case of this fold is (X >> Y) pred X => X swap(pred) 0 if Y != 0
7282
auto CheckNE0 = [](const APInt &Shift) { return !Shift.isZero(); };
7283
{
7284
if (match(Op0, m_LShr(m_Specific(Op1), m_CheckedInt(CheckNE0)))) {
7285
return new ICmpInst(ICmpInst::getSwappedPredicate(Pred), Op1,
7286
Constant::getNullValue(Op1->getType()));
7287
}
7288
7289
if ((Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SGE) &&
7290
match(Op0, m_AShr(m_Specific(Op1), m_CheckedInt(CheckNE0)))) {
7291
return new ICmpInst(ICmpInst::getSwappedPredicate(Pred), Op1,
7292
Constant::getNullValue(Op1->getType()));
7293
}
7294
}
7295
7296
return nullptr;
7297
}
7298
7299
Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
7300
bool Changed = false;
7301
const SimplifyQuery Q = SQ.getWithInstruction(&I);
7302
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
7303
unsigned Op0Cplxity = getComplexity(Op0);
7304
unsigned Op1Cplxity = getComplexity(Op1);
7305
7306
/// Orders the operands of the compare so that they are listed from most
7307
/// complex to least complex. This puts constants before unary operators,
7308
/// before binary operators.
7309
if (Op0Cplxity < Op1Cplxity) {
7310
I.swapOperands();
7311
std::swap(Op0, Op1);
7312
Changed = true;
7313
}
7314
7315
if (Value *V = simplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
7316
return replaceInstUsesWith(I, V);
7317
7318
// Comparing -val or val with non-zero is the same as just comparing val
7319
// ie, abs(val) != 0 -> val != 0
7320
if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
7321
Value *Cond, *SelectTrue, *SelectFalse;
7322
if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
7323
m_Value(SelectFalse)))) {
7324
if (Value *V = dyn_castNegVal(SelectTrue)) {
7325
if (V == SelectFalse)
7326
return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
7327
}
7328
else if (Value *V = dyn_castNegVal(SelectFalse)) {
7329
if (V == SelectTrue)
7330
return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
7331
}
7332
}
7333
}
7334
7335
if (Op0->getType()->isIntOrIntVectorTy(1))
7336
if (Instruction *Res = canonicalizeICmpBool(I, Builder))
7337
return Res;
7338
7339
if (Instruction *Res = canonicalizeCmpWithConstant(I))
7340
return Res;
7341
7342
if (Instruction *Res = canonicalizeICmpPredicate(I))
7343
return Res;
7344
7345
if (Instruction *Res = foldICmpWithConstant(I))
7346
return Res;
7347
7348
if (Instruction *Res = foldICmpWithDominatingICmp(I))
7349
return Res;
7350
7351
if (Instruction *Res = foldICmpUsingBoolRange(I))
7352
return Res;
7353
7354
if (Instruction *Res = foldICmpUsingKnownBits(I))
7355
return Res;
7356
7357
if (Instruction *Res = foldICmpTruncWithTruncOrExt(I, Q))
7358
return Res;
7359
7360
// Test if the ICmpInst instruction is used exclusively by a select as
7361
// part of a minimum or maximum operation. If so, refrain from doing
7362
// any other folding. This helps out other analyses which understand
7363
// non-obfuscated minimum and maximum idioms, such as ScalarEvolution
7364
// and CodeGen. And in this case, at least one of the comparison
7365
// operands has at least one user besides the compare (the select),
7366
// which would often largely negate the benefit of folding anyway.
7367
//
7368
// Do the same for the other patterns recognized by matchSelectPattern.
7369
if (I.hasOneUse())
7370
if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
7371
Value *A, *B;
7372
SelectPatternResult SPR = matchSelectPattern(SI, A, B);
7373
if (SPR.Flavor != SPF_UNKNOWN)
7374
return nullptr;
7375
}
7376
7377
// Do this after checking for min/max to prevent infinite looping.
7378
if (Instruction *Res = foldICmpWithZero(I))
7379
return Res;
7380
7381
// FIXME: We only do this after checking for min/max to prevent infinite
7382
// looping caused by a reverse canonicalization of these patterns for min/max.
7383
// FIXME: The organization of folds is a mess. These would naturally go into
7384
// canonicalizeCmpWithConstant(), but we can't move all of the above folds
7385
// down here after the min/max restriction.
7386
ICmpInst::Predicate Pred = I.getPredicate();
7387
const APInt *C;
7388
if (match(Op1, m_APInt(C))) {
7389
// For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set
7390
if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
7391
Constant *Zero = Constant::getNullValue(Op0->getType());
7392
return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
7393
}
7394
7395
// For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear
7396
if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
7397
Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
7398
return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
7399
}
7400
}
7401
7402
// The folds in here may rely on wrapping flags and special constants, so
7403
// they can break up min/max idioms in some cases but not seemingly similar
7404
// patterns.
7405
// FIXME: It may be possible to enhance select folding to make this
7406
// unnecessary. It may also be moot if we canonicalize to min/max
7407
// intrinsics.
7408
if (Instruction *Res = foldICmpBinOp(I, Q))
7409
return Res;
7410
7411
if (Instruction *Res = foldICmpInstWithConstant(I))
7412
return Res;
7413
7414
// Try to match comparison as a sign bit test. Intentionally do this after
7415
// foldICmpInstWithConstant() to potentially let other folds to happen first.
7416
if (Instruction *New = foldSignBitTest(I))
7417
return New;
7418
7419
if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
7420
return Res;
7421
7422
if (Instruction *Res = foldICmpCommutative(I.getPredicate(), Op0, Op1, I))
7423
return Res;
7424
if (Instruction *Res =
7425
foldICmpCommutative(I.getSwappedPredicate(), Op1, Op0, I))
7426
return Res;
7427
7428
if (I.isCommutative()) {
7429
if (auto Pair = matchSymmetricPair(I.getOperand(0), I.getOperand(1))) {
7430
replaceOperand(I, 0, Pair->first);
7431
replaceOperand(I, 1, Pair->second);
7432
return &I;
7433
}
7434
}
7435
7436
// In case of a comparison with two select instructions having the same
7437
// condition, check whether one of the resulting branches can be simplified.
7438
// If so, just compare the other branch and select the appropriate result.
7439
// For example:
7440
// %tmp1 = select i1 %cmp, i32 %y, i32 %x
7441
// %tmp2 = select i1 %cmp, i32 %z, i32 %x
7442
// %cmp2 = icmp slt i32 %tmp2, %tmp1
7443
// The icmp will result false for the false value of selects and the result
7444
// will depend upon the comparison of true values of selects if %cmp is
7445
// true. Thus, transform this into:
7446
// %cmp = icmp slt i32 %y, %z
7447
// %sel = select i1 %cond, i1 %cmp, i1 false
7448
// This handles similar cases to transform.
7449
{
7450
Value *Cond, *A, *B, *C, *D;
7451
if (match(Op0, m_Select(m_Value(Cond), m_Value(A), m_Value(B))) &&
7452
match(Op1, m_Select(m_Specific(Cond), m_Value(C), m_Value(D))) &&
7453
(Op0->hasOneUse() || Op1->hasOneUse())) {
7454
// Check whether comparison of TrueValues can be simplified
7455
if (Value *Res = simplifyICmpInst(Pred, A, C, SQ)) {
7456
Value *NewICMP = Builder.CreateICmp(Pred, B, D);
7457
return SelectInst::Create(Cond, Res, NewICMP);
7458
}
7459
// Check whether comparison of FalseValues can be simplified
7460
if (Value *Res = simplifyICmpInst(Pred, B, D, SQ)) {
7461
Value *NewICMP = Builder.CreateICmp(Pred, A, C);
7462
return SelectInst::Create(Cond, NewICMP, Res);
7463
}
7464
}
7465
}
7466
7467
// Try to optimize equality comparisons against alloca-based pointers.
7468
if (Op0->getType()->isPointerTy() && I.isEquality()) {
7469
assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
7470
if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
7471
if (foldAllocaCmp(Alloca))
7472
return nullptr;
7473
if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
7474
if (foldAllocaCmp(Alloca))
7475
return nullptr;
7476
}
7477
7478
if (Instruction *Res = foldICmpBitCast(I))
7479
return Res;
7480
7481
// TODO: Hoist this above the min/max bailout.
7482
if (Instruction *R = foldICmpWithCastOp(I))
7483
return R;
7484
7485
{
7486
Value *X, *Y;
7487
// Transform (X & ~Y) == 0 --> (X & Y) != 0
7488
// and (X & ~Y) != 0 --> (X & Y) == 0
7489
// if A is a power of 2.
7490
if (match(Op0, m_And(m_Value(X), m_Not(m_Value(Y)))) &&
7491
match(Op1, m_Zero()) && isKnownToBeAPowerOfTwo(X, false, 0, &I) &&
7492
I.isEquality())
7493
return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(X, Y),
7494
Op1);
7495
7496
// Op0 pred Op1 -> ~Op1 pred ~Op0, if this allows us to drop an instruction.
7497
if (Op0->getType()->isIntOrIntVectorTy()) {
7498
bool ConsumesOp0, ConsumesOp1;
7499
if (isFreeToInvert(Op0, Op0->hasOneUse(), ConsumesOp0) &&
7500
isFreeToInvert(Op1, Op1->hasOneUse(), ConsumesOp1) &&
7501
(ConsumesOp0 || ConsumesOp1)) {
7502
Value *InvOp0 = getFreelyInverted(Op0, Op0->hasOneUse(), &Builder);
7503
Value *InvOp1 = getFreelyInverted(Op1, Op1->hasOneUse(), &Builder);
7504
assert(InvOp0 && InvOp1 &&
7505
"Mismatch between isFreeToInvert and getFreelyInverted");
7506
return new ICmpInst(I.getSwappedPredicate(), InvOp0, InvOp1);
7507
}
7508
}
7509
7510
Instruction *AddI = nullptr;
7511
if (match(&I, m_UAddWithOverflow(m_Value(X), m_Value(Y),
7512
m_Instruction(AddI))) &&
7513
isa<IntegerType>(X->getType())) {
7514
Value *Result;
7515
Constant *Overflow;
7516
// m_UAddWithOverflow can match patterns that do not include an explicit
7517
// "add" instruction, so check the opcode of the matched op.
7518
if (AddI->getOpcode() == Instruction::Add &&
7519
OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, X, Y, *AddI,
7520
Result, Overflow)) {
7521
replaceInstUsesWith(*AddI, Result);
7522
eraseInstFromFunction(*AddI);
7523
return replaceInstUsesWith(I, Overflow);
7524
}
7525
}
7526
7527
// (zext X) * (zext Y) --> llvm.umul.with.overflow.
7528
if (match(Op0, m_NUWMul(m_ZExt(m_Value(X)), m_ZExt(m_Value(Y)))) &&
7529
match(Op1, m_APInt(C))) {
7530
if (Instruction *R = processUMulZExtIdiom(I, Op0, C, *this))
7531
return R;
7532
}
7533
7534
// Signbit test folds
7535
// Fold (X u>> BitWidth - 1 Pred ZExt(i1)) --> X s< 0 Pred i1
7536
// Fold (X s>> BitWidth - 1 Pred SExt(i1)) --> X s< 0 Pred i1
7537
Instruction *ExtI;
7538
if ((I.isUnsigned() || I.isEquality()) &&
7539
match(Op1,
7540
m_CombineAnd(m_Instruction(ExtI), m_ZExtOrSExt(m_Value(Y)))) &&
7541
Y->getType()->getScalarSizeInBits() == 1 &&
7542
(Op0->hasOneUse() || Op1->hasOneUse())) {
7543
unsigned OpWidth = Op0->getType()->getScalarSizeInBits();
7544
Instruction *ShiftI;
7545
if (match(Op0, m_CombineAnd(m_Instruction(ShiftI),
7546
m_Shr(m_Value(X), m_SpecificIntAllowPoison(
7547
OpWidth - 1))))) {
7548
unsigned ExtOpc = ExtI->getOpcode();
7549
unsigned ShiftOpc = ShiftI->getOpcode();
7550
if ((ExtOpc == Instruction::ZExt && ShiftOpc == Instruction::LShr) ||
7551
(ExtOpc == Instruction::SExt && ShiftOpc == Instruction::AShr)) {
7552
Value *SLTZero =
7553
Builder.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
7554
Value *Cmp = Builder.CreateICmp(Pred, SLTZero, Y, I.getName());
7555
return replaceInstUsesWith(I, Cmp);
7556
}
7557
}
7558
}
7559
}
7560
7561
if (Instruction *Res = foldICmpEquality(I))
7562
return Res;
7563
7564
if (Instruction *Res = foldICmpPow2Test(I, Builder))
7565
return Res;
7566
7567
if (Instruction *Res = foldICmpOfUAddOv(I))
7568
return Res;
7569
7570
// The 'cmpxchg' instruction returns an aggregate containing the old value and
7571
// an i1 which indicates whether or not we successfully did the swap.
7572
//
7573
// Replace comparisons between the old value and the expected value with the
7574
// indicator that 'cmpxchg' returns.
7575
//
7576
// N.B. This transform is only valid when the 'cmpxchg' is not permitted to
7577
// spuriously fail. In those cases, the old value may equal the expected
7578
// value but it is possible for the swap to not occur.
7579
if (I.getPredicate() == ICmpInst::ICMP_EQ)
7580
if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
7581
if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
7582
if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
7583
!ACXI->isWeak())
7584
return ExtractValueInst::Create(ACXI, 1);
7585
7586
if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
7587
return Res;
7588
7589
if (I.getType()->isVectorTy())
7590
if (Instruction *Res = foldVectorCmp(I, Builder))
7591
return Res;
7592
7593
if (Instruction *Res = foldICmpInvariantGroup(I))
7594
return Res;
7595
7596
if (Instruction *Res = foldReductionIdiom(I, Builder, DL))
7597
return Res;
7598
7599
return Changed ? &I : nullptr;
7600
}
7601
7602
/// Fold fcmp ([us]itofp x, cst) if possible.
7603
Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
7604
Instruction *LHSI,
7605
Constant *RHSC) {
7606
const APFloat *RHS;
7607
if (!match(RHSC, m_APFloat(RHS)))
7608
return nullptr;
7609
7610
// Get the width of the mantissa. We don't want to hack on conversions that
7611
// might lose information from the integer, e.g. "i64 -> float"
7612
int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
7613
if (MantissaWidth == -1) return nullptr; // Unknown.
7614
7615
Type *IntTy = LHSI->getOperand(0)->getType();
7616
unsigned IntWidth = IntTy->getScalarSizeInBits();
7617
bool LHSUnsigned = isa<UIToFPInst>(LHSI);
7618
7619
if (I.isEquality()) {
7620
FCmpInst::Predicate P = I.getPredicate();
7621
bool IsExact = false;
7622
APSInt RHSCvt(IntWidth, LHSUnsigned);
7623
RHS->convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
7624
7625
// If the floating point constant isn't an integer value, we know if we will
7626
// ever compare equal / not equal to it.
7627
if (!IsExact) {
7628
// TODO: Can never be -0.0 and other non-representable values
7629
APFloat RHSRoundInt(*RHS);
7630
RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
7631
if (*RHS != RHSRoundInt) {
7632
if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
7633
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
7634
7635
assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
7636
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
7637
}
7638
}
7639
7640
// TODO: If the constant is exactly representable, is it always OK to do
7641
// equality compares as integer?
7642
}
7643
7644
// Check to see that the input is converted from an integer type that is small
7645
// enough that preserves all bits. TODO: check here for "known" sign bits.
7646
// This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
7647
7648
// Following test does NOT adjust IntWidth downwards for signed inputs,
7649
// because the most negative value still requires all the mantissa bits
7650
// to distinguish it from one less than that value.
7651
if ((int)IntWidth > MantissaWidth) {
7652
// Conversion would lose accuracy. Check if loss can impact comparison.
7653
int Exp = ilogb(*RHS);
7654
if (Exp == APFloat::IEK_Inf) {
7655
int MaxExponent = ilogb(APFloat::getLargest(RHS->getSemantics()));
7656
if (MaxExponent < (int)IntWidth - !LHSUnsigned)
7657
// Conversion could create infinity.
7658
return nullptr;
7659
} else {
7660
// Note that if RHS is zero or NaN, then Exp is negative
7661
// and first condition is trivially false.
7662
if (MantissaWidth <= Exp && Exp <= (int)IntWidth - !LHSUnsigned)
7663
// Conversion could affect comparison.
7664
return nullptr;
7665
}
7666
}
7667
7668
// Otherwise, we can potentially simplify the comparison. We know that it
7669
// will always come through as an integer value and we know the constant is
7670
// not a NAN (it would have been previously simplified).
7671
assert(!RHS->isNaN() && "NaN comparison not already folded!");
7672
7673
ICmpInst::Predicate Pred;
7674
switch (I.getPredicate()) {
7675
default: llvm_unreachable("Unexpected predicate!");
7676
case FCmpInst::FCMP_UEQ:
7677
case FCmpInst::FCMP_OEQ:
7678
Pred = ICmpInst::ICMP_EQ;
7679
break;
7680
case FCmpInst::FCMP_UGT:
7681
case FCmpInst::FCMP_OGT:
7682
Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
7683
break;
7684
case FCmpInst::FCMP_UGE:
7685
case FCmpInst::FCMP_OGE:
7686
Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
7687
break;
7688
case FCmpInst::FCMP_ULT:
7689
case FCmpInst::FCMP_OLT:
7690
Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
7691
break;
7692
case FCmpInst::FCMP_ULE:
7693
case FCmpInst::FCMP_OLE:
7694
Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
7695
break;
7696
case FCmpInst::FCMP_UNE:
7697
case FCmpInst::FCMP_ONE:
7698
Pred = ICmpInst::ICMP_NE;
7699
break;
7700
case FCmpInst::FCMP_ORD:
7701
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
7702
case FCmpInst::FCMP_UNO:
7703
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
7704
}
7705
7706
// Now we know that the APFloat is a normal number, zero or inf.
7707
7708
// See if the FP constant is too large for the integer. For example,
7709
// comparing an i8 to 300.0.
7710
if (!LHSUnsigned) {
7711
// If the RHS value is > SignedMax, fold the comparison. This handles +INF
7712
// and large values.
7713
APFloat SMax(RHS->getSemantics());
7714
SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
7715
APFloat::rmNearestTiesToEven);
7716
if (SMax < *RHS) { // smax < 13123.0
7717
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
7718
Pred == ICmpInst::ICMP_SLE)
7719
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
7720
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
7721
}
7722
} else {
7723
// If the RHS value is > UnsignedMax, fold the comparison. This handles
7724
// +INF and large values.
7725
APFloat UMax(RHS->getSemantics());
7726
UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
7727
APFloat::rmNearestTiesToEven);
7728
if (UMax < *RHS) { // umax < 13123.0
7729
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
7730
Pred == ICmpInst::ICMP_ULE)
7731
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
7732
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
7733
}
7734
}
7735
7736
if (!LHSUnsigned) {
7737
// See if the RHS value is < SignedMin.
7738
APFloat SMin(RHS->getSemantics());
7739
SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
7740
APFloat::rmNearestTiesToEven);
7741
if (SMin > *RHS) { // smin > 12312.0
7742
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
7743
Pred == ICmpInst::ICMP_SGE)
7744
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
7745
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
7746
}
7747
} else {
7748
// See if the RHS value is < UnsignedMin.
7749
APFloat UMin(RHS->getSemantics());
7750
UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
7751
APFloat::rmNearestTiesToEven);
7752
if (UMin > *RHS) { // umin > 12312.0
7753
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
7754
Pred == ICmpInst::ICMP_UGE)
7755
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
7756
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
7757
}
7758
}
7759
7760
// Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
7761
// [0, UMAX], but it may still be fractional. Check whether this is the case
7762
// using the IsExact flag.
7763
// Don't do this for zero, because -0.0 is not fractional.
7764
APSInt RHSInt(IntWidth, LHSUnsigned);
7765
bool IsExact;
7766
RHS->convertToInteger(RHSInt, APFloat::rmTowardZero, &IsExact);
7767
if (!RHS->isZero()) {
7768
if (!IsExact) {
7769
// If we had a comparison against a fractional value, we have to adjust
7770
// the compare predicate and sometimes the value. RHSC is rounded towards
7771
// zero at this point.
7772
switch (Pred) {
7773
default: llvm_unreachable("Unexpected integer comparison!");
7774
case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
7775
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
7776
case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
7777
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
7778
case ICmpInst::ICMP_ULE:
7779
// (float)int <= 4.4 --> int <= 4
7780
// (float)int <= -4.4 --> false
7781
if (RHS->isNegative())
7782
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
7783
break;
7784
case ICmpInst::ICMP_SLE:
7785
// (float)int <= 4.4 --> int <= 4
7786
// (float)int <= -4.4 --> int < -4
7787
if (RHS->isNegative())
7788
Pred = ICmpInst::ICMP_SLT;
7789
break;
7790
case ICmpInst::ICMP_ULT:
7791
// (float)int < -4.4 --> false
7792
// (float)int < 4.4 --> int <= 4
7793
if (RHS->isNegative())
7794
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
7795
Pred = ICmpInst::ICMP_ULE;
7796
break;
7797
case ICmpInst::ICMP_SLT:
7798
// (float)int < -4.4 --> int < -4
7799
// (float)int < 4.4 --> int <= 4
7800
if (!RHS->isNegative())
7801
Pred = ICmpInst::ICMP_SLE;
7802
break;
7803
case ICmpInst::ICMP_UGT:
7804
// (float)int > 4.4 --> int > 4
7805
// (float)int > -4.4 --> true
7806
if (RHS->isNegative())
7807
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
7808
break;
7809
case ICmpInst::ICMP_SGT:
7810
// (float)int > 4.4 --> int > 4
7811
// (float)int > -4.4 --> int >= -4
7812
if (RHS->isNegative())
7813
Pred = ICmpInst::ICMP_SGE;
7814
break;
7815
case ICmpInst::ICMP_UGE:
7816
// (float)int >= -4.4 --> true
7817
// (float)int >= 4.4 --> int > 4
7818
if (RHS->isNegative())
7819
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
7820
Pred = ICmpInst::ICMP_UGT;
7821
break;
7822
case ICmpInst::ICMP_SGE:
7823
// (float)int >= -4.4 --> int >= -4
7824
// (float)int >= 4.4 --> int > 4
7825
if (!RHS->isNegative())
7826
Pred = ICmpInst::ICMP_SGT;
7827
break;
7828
}
7829
}
7830
}
7831
7832
// Lower this FP comparison into an appropriate integer version of the
7833
// comparison.
7834
return new ICmpInst(Pred, LHSI->getOperand(0),
7835
ConstantInt::get(LHSI->getOperand(0)->getType(), RHSInt));
7836
}
7837
7838
/// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
7839
static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
7840
Constant *RHSC) {
7841
// When C is not 0.0 and infinities are not allowed:
7842
// (C / X) < 0.0 is a sign-bit test of X
7843
// (C / X) < 0.0 --> X < 0.0 (if C is positive)
7844
// (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
7845
//
7846
// Proof:
7847
// Multiply (C / X) < 0.0 by X * X / C.
7848
// - X is non zero, if it is the flag 'ninf' is violated.
7849
// - C defines the sign of X * X * C. Thus it also defines whether to swap
7850
// the predicate. C is also non zero by definition.
7851
//
7852
// Thus X * X / C is non zero and the transformation is valid. [qed]
7853
7854
FCmpInst::Predicate Pred = I.getPredicate();
7855
7856
// Check that predicates are valid.
7857
if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
7858
(Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
7859
return nullptr;
7860
7861
// Check that RHS operand is zero.
7862
if (!match(RHSC, m_AnyZeroFP()))
7863
return nullptr;
7864
7865
// Check fastmath flags ('ninf').
7866
if (!LHSI->hasNoInfs() || !I.hasNoInfs())
7867
return nullptr;
7868
7869
// Check the properties of the dividend. It must not be zero to avoid a
7870
// division by zero (see Proof).
7871
const APFloat *C;
7872
if (!match(LHSI->getOperand(0), m_APFloat(C)))
7873
return nullptr;
7874
7875
if (C->isZero())
7876
return nullptr;
7877
7878
// Get swapped predicate if necessary.
7879
if (C->isNegative())
7880
Pred = I.getSwappedPredicate();
7881
7882
return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
7883
}
7884
7885
/// Optimize fabs(X) compared with zero.
7886
static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
7887
Value *X;
7888
if (!match(I.getOperand(0), m_FAbs(m_Value(X))))
7889
return nullptr;
7890
7891
const APFloat *C;
7892
if (!match(I.getOperand(1), m_APFloat(C)))
7893
return nullptr;
7894
7895
if (!C->isPosZero()) {
7896
if (!C->isSmallestNormalized())
7897
return nullptr;
7898
7899
const Function *F = I.getFunction();
7900
DenormalMode Mode = F->getDenormalMode(C->getSemantics());
7901
if (Mode.Input == DenormalMode::PreserveSign ||
7902
Mode.Input == DenormalMode::PositiveZero) {
7903
7904
auto replaceFCmp = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
7905
Constant *Zero = ConstantFP::getZero(X->getType());
7906
return new FCmpInst(P, X, Zero, "", I);
7907
};
7908
7909
switch (I.getPredicate()) {
7910
case FCmpInst::FCMP_OLT:
7911
// fcmp olt fabs(x), smallest_normalized_number -> fcmp oeq x, 0.0
7912
return replaceFCmp(&I, FCmpInst::FCMP_OEQ, X);
7913
case FCmpInst::FCMP_UGE:
7914
// fcmp uge fabs(x), smallest_normalized_number -> fcmp une x, 0.0
7915
return replaceFCmp(&I, FCmpInst::FCMP_UNE, X);
7916
case FCmpInst::FCMP_OGE:
7917
// fcmp oge fabs(x), smallest_normalized_number -> fcmp one x, 0.0
7918
return replaceFCmp(&I, FCmpInst::FCMP_ONE, X);
7919
case FCmpInst::FCMP_ULT:
7920
// fcmp ult fabs(x), smallest_normalized_number -> fcmp ueq x, 0.0
7921
return replaceFCmp(&I, FCmpInst::FCMP_UEQ, X);
7922
default:
7923
break;
7924
}
7925
}
7926
7927
return nullptr;
7928
}
7929
7930
auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
7931
I->setPredicate(P);
7932
return IC.replaceOperand(*I, 0, X);
7933
};
7934
7935
switch (I.getPredicate()) {
7936
case FCmpInst::FCMP_UGE:
7937
case FCmpInst::FCMP_OLT:
7938
// fabs(X) >= 0.0 --> true
7939
// fabs(X) < 0.0 --> false
7940
llvm_unreachable("fcmp should have simplified");
7941
7942
case FCmpInst::FCMP_OGT:
7943
// fabs(X) > 0.0 --> X != 0.0
7944
return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
7945
7946
case FCmpInst::FCMP_UGT:
7947
// fabs(X) u> 0.0 --> X u!= 0.0
7948
return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
7949
7950
case FCmpInst::FCMP_OLE:
7951
// fabs(X) <= 0.0 --> X == 0.0
7952
return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
7953
7954
case FCmpInst::FCMP_ULE:
7955
// fabs(X) u<= 0.0 --> X u== 0.0
7956
return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
7957
7958
case FCmpInst::FCMP_OGE:
7959
// fabs(X) >= 0.0 --> !isnan(X)
7960
assert(!I.hasNoNaNs() && "fcmp should have simplified");
7961
return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
7962
7963
case FCmpInst::FCMP_ULT:
7964
// fabs(X) u< 0.0 --> isnan(X)
7965
assert(!I.hasNoNaNs() && "fcmp should have simplified");
7966
return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
7967
7968
case FCmpInst::FCMP_OEQ:
7969
case FCmpInst::FCMP_UEQ:
7970
case FCmpInst::FCMP_ONE:
7971
case FCmpInst::FCMP_UNE:
7972
case FCmpInst::FCMP_ORD:
7973
case FCmpInst::FCMP_UNO:
7974
// Look through the fabs() because it doesn't change anything but the sign.
7975
// fabs(X) == 0.0 --> X == 0.0,
7976
// fabs(X) != 0.0 --> X != 0.0
7977
// isnan(fabs(X)) --> isnan(X)
7978
// !isnan(fabs(X) --> !isnan(X)
7979
return replacePredAndOp0(&I, I.getPredicate(), X);
7980
7981
default:
7982
return nullptr;
7983
}
7984
}
7985
7986
static Instruction *foldFCmpFNegCommonOp(FCmpInst &I) {
7987
CmpInst::Predicate Pred = I.getPredicate();
7988
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
7989
7990
// Canonicalize fneg as Op1.
7991
if (match(Op0, m_FNeg(m_Value())) && !match(Op1, m_FNeg(m_Value()))) {
7992
std::swap(Op0, Op1);
7993
Pred = I.getSwappedPredicate();
7994
}
7995
7996
if (!match(Op1, m_FNeg(m_Specific(Op0))))
7997
return nullptr;
7998
7999
// Replace the negated operand with 0.0:
8000
// fcmp Pred Op0, -Op0 --> fcmp Pred Op0, 0.0
8001
Constant *Zero = ConstantFP::getZero(Op0->getType());
8002
return new FCmpInst(Pred, Op0, Zero, "", &I);
8003
}
8004
8005
static Instruction *foldFCmpFSubIntoFCmp(FCmpInst &I, Instruction *LHSI,
8006
Constant *RHSC, InstCombinerImpl &CI) {
8007
const CmpInst::Predicate Pred = I.getPredicate();
8008
Value *X = LHSI->getOperand(0);
8009
Value *Y = LHSI->getOperand(1);
8010
switch (Pred) {
8011
default:
8012
break;
8013
case FCmpInst::FCMP_UGT:
8014
case FCmpInst::FCMP_ULT:
8015
case FCmpInst::FCMP_UNE:
8016
case FCmpInst::FCMP_OEQ:
8017
case FCmpInst::FCMP_OGE:
8018
case FCmpInst::FCMP_OLE:
8019
// The optimization is not valid if X and Y are infinities of the same
8020
// sign, i.e. the inf - inf = nan case. If the fsub has the ninf or nnan
8021
// flag then we can assume we do not have that case. Otherwise we might be
8022
// able to prove that either X or Y is not infinity.
8023
if (!LHSI->hasNoNaNs() && !LHSI->hasNoInfs() &&
8024
!isKnownNeverInfinity(Y, /*Depth=*/0,
8025
CI.getSimplifyQuery().getWithInstruction(&I)) &&
8026
!isKnownNeverInfinity(X, /*Depth=*/0,
8027
CI.getSimplifyQuery().getWithInstruction(&I)))
8028
break;
8029
8030
[[fallthrough]];
8031
case FCmpInst::FCMP_OGT:
8032
case FCmpInst::FCMP_OLT:
8033
case FCmpInst::FCMP_ONE:
8034
case FCmpInst::FCMP_UEQ:
8035
case FCmpInst::FCMP_UGE:
8036
case FCmpInst::FCMP_ULE:
8037
// fcmp pred (x - y), 0 --> fcmp pred x, y
8038
if (match(RHSC, m_AnyZeroFP()) &&
8039
I.getFunction()->getDenormalMode(
8040
LHSI->getType()->getScalarType()->getFltSemantics()) ==
8041
DenormalMode::getIEEE()) {
8042
CI.replaceOperand(I, 0, X);
8043
CI.replaceOperand(I, 1, Y);
8044
return &I;
8045
}
8046
break;
8047
}
8048
8049
return nullptr;
8050
}
8051
8052
Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
8053
bool Changed = false;
8054
8055
/// Orders the operands of the compare so that they are listed from most
8056
/// complex to least complex. This puts constants before unary operators,
8057
/// before binary operators.
8058
if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
8059
I.swapOperands();
8060
Changed = true;
8061
}
8062
8063
const CmpInst::Predicate Pred = I.getPredicate();
8064
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
8065
if (Value *V = simplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
8066
SQ.getWithInstruction(&I)))
8067
return replaceInstUsesWith(I, V);
8068
8069
// Simplify 'fcmp pred X, X'
8070
Type *OpType = Op0->getType();
8071
assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
8072
if (Op0 == Op1) {
8073
switch (Pred) {
8074
default: break;
8075
case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
8076
case FCmpInst::FCMP_ULT: // True if unordered or less than
8077
case FCmpInst::FCMP_UGT: // True if unordered or greater than
8078
case FCmpInst::FCMP_UNE: // True if unordered or not equal
8079
// Canonicalize these to be 'fcmp uno %X, 0.0'.
8080
I.setPredicate(FCmpInst::FCMP_UNO);
8081
I.setOperand(1, Constant::getNullValue(OpType));
8082
return &I;
8083
8084
case FCmpInst::FCMP_ORD: // True if ordered (no nans)
8085
case FCmpInst::FCMP_OEQ: // True if ordered and equal
8086
case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
8087
case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
8088
// Canonicalize these to be 'fcmp ord %X, 0.0'.
8089
I.setPredicate(FCmpInst::FCMP_ORD);
8090
I.setOperand(1, Constant::getNullValue(OpType));
8091
return &I;
8092
}
8093
}
8094
8095
if (I.isCommutative()) {
8096
if (auto Pair = matchSymmetricPair(I.getOperand(0), I.getOperand(1))) {
8097
replaceOperand(I, 0, Pair->first);
8098
replaceOperand(I, 1, Pair->second);
8099
return &I;
8100
}
8101
}
8102
8103
// If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
8104
// then canonicalize the operand to 0.0.
8105
if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
8106
if (!match(Op0, m_PosZeroFP()) &&
8107
isKnownNeverNaN(Op0, 0, getSimplifyQuery().getWithInstruction(&I)))
8108
return replaceOperand(I, 0, ConstantFP::getZero(OpType));
8109
8110
if (!match(Op1, m_PosZeroFP()) &&
8111
isKnownNeverNaN(Op1, 0, getSimplifyQuery().getWithInstruction(&I)))
8112
return replaceOperand(I, 1, ConstantFP::getZero(OpType));
8113
}
8114
8115
// fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
8116
Value *X, *Y;
8117
if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
8118
return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
8119
8120
if (Instruction *R = foldFCmpFNegCommonOp(I))
8121
return R;
8122
8123
// Test if the FCmpInst instruction is used exclusively by a select as
8124
// part of a minimum or maximum operation. If so, refrain from doing
8125
// any other folding. This helps out other analyses which understand
8126
// non-obfuscated minimum and maximum idioms, such as ScalarEvolution
8127
// and CodeGen. And in this case, at least one of the comparison
8128
// operands has at least one user besides the compare (the select),
8129
// which would often largely negate the benefit of folding anyway.
8130
if (I.hasOneUse())
8131
if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
8132
Value *A, *B;
8133
SelectPatternResult SPR = matchSelectPattern(SI, A, B);
8134
if (SPR.Flavor != SPF_UNKNOWN)
8135
return nullptr;
8136
}
8137
8138
// The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
8139
// fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
8140
if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
8141
return replaceOperand(I, 1, ConstantFP::getZero(OpType));
8142
8143
// Canonicalize:
8144
// fcmp olt X, +inf -> fcmp one X, +inf
8145
// fcmp ole X, +inf -> fcmp ord X, 0
8146
// fcmp ogt X, +inf -> false
8147
// fcmp oge X, +inf -> fcmp oeq X, +inf
8148
// fcmp ult X, +inf -> fcmp une X, +inf
8149
// fcmp ule X, +inf -> true
8150
// fcmp ugt X, +inf -> fcmp uno X, 0
8151
// fcmp uge X, +inf -> fcmp ueq X, +inf
8152
// fcmp olt X, -inf -> false
8153
// fcmp ole X, -inf -> fcmp oeq X, -inf
8154
// fcmp ogt X, -inf -> fcmp one X, -inf
8155
// fcmp oge X, -inf -> fcmp ord X, 0
8156
// fcmp ult X, -inf -> fcmp uno X, 0
8157
// fcmp ule X, -inf -> fcmp ueq X, -inf
8158
// fcmp ugt X, -inf -> fcmp une X, -inf
8159
// fcmp uge X, -inf -> true
8160
const APFloat *C;
8161
if (match(Op1, m_APFloat(C)) && C->isInfinity()) {
8162
switch (C->isNegative() ? FCmpInst::getSwappedPredicate(Pred) : Pred) {
8163
default:
8164
break;
8165
case FCmpInst::FCMP_ORD:
8166
case FCmpInst::FCMP_UNO:
8167
case FCmpInst::FCMP_TRUE:
8168
case FCmpInst::FCMP_FALSE:
8169
case FCmpInst::FCMP_OGT:
8170
case FCmpInst::FCMP_ULE:
8171
llvm_unreachable("Should be simplified by InstSimplify");
8172
case FCmpInst::FCMP_OLT:
8173
return new FCmpInst(FCmpInst::FCMP_ONE, Op0, Op1, "", &I);
8174
case FCmpInst::FCMP_OLE:
8175
return new FCmpInst(FCmpInst::FCMP_ORD, Op0, ConstantFP::getZero(OpType),
8176
"", &I);
8177
case FCmpInst::FCMP_OGE:
8178
return new FCmpInst(FCmpInst::FCMP_OEQ, Op0, Op1, "", &I);
8179
case FCmpInst::FCMP_ULT:
8180
return new FCmpInst(FCmpInst::FCMP_UNE, Op0, Op1, "", &I);
8181
case FCmpInst::FCMP_UGT:
8182
return new FCmpInst(FCmpInst::FCMP_UNO, Op0, ConstantFP::getZero(OpType),
8183
"", &I);
8184
case FCmpInst::FCMP_UGE:
8185
return new FCmpInst(FCmpInst::FCMP_UEQ, Op0, Op1, "", &I);
8186
}
8187
}
8188
8189
// Ignore signbit of bitcasted int when comparing equality to FP 0.0:
8190
// fcmp oeq/une (bitcast X), 0.0 --> (and X, SignMaskC) ==/!= 0
8191
if (match(Op1, m_PosZeroFP()) &&
8192
match(Op0, m_OneUse(m_ElementWiseBitCast(m_Value(X))))) {
8193
ICmpInst::Predicate IntPred = ICmpInst::BAD_ICMP_PREDICATE;
8194
if (Pred == FCmpInst::FCMP_OEQ)
8195
IntPred = ICmpInst::ICMP_EQ;
8196
else if (Pred == FCmpInst::FCMP_UNE)
8197
IntPred = ICmpInst::ICMP_NE;
8198
8199
if (IntPred != ICmpInst::BAD_ICMP_PREDICATE) {
8200
Type *IntTy = X->getType();
8201
const APInt &SignMask = ~APInt::getSignMask(IntTy->getScalarSizeInBits());
8202
Value *MaskX = Builder.CreateAnd(X, ConstantInt::get(IntTy, SignMask));
8203
return new ICmpInst(IntPred, MaskX, ConstantInt::getNullValue(IntTy));
8204
}
8205
}
8206
8207
// Handle fcmp with instruction LHS and constant RHS.
8208
Instruction *LHSI;
8209
Constant *RHSC;
8210
if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
8211
switch (LHSI->getOpcode()) {
8212
case Instruction::Select:
8213
// fcmp eq (cond ? x : -x), 0 --> fcmp eq x, 0
8214
if (FCmpInst::isEquality(Pred) && match(RHSC, m_AnyZeroFP()) &&
8215
(match(LHSI,
8216
m_Select(m_Value(), m_Value(X), m_FNeg(m_Deferred(X)))) ||
8217
match(LHSI, m_Select(m_Value(), m_FNeg(m_Value(X)), m_Deferred(X)))))
8218
return replaceOperand(I, 0, X);
8219
if (Instruction *NV = FoldOpIntoSelect(I, cast<SelectInst>(LHSI)))
8220
return NV;
8221
break;
8222
case Instruction::FSub:
8223
if (LHSI->hasOneUse())
8224
if (Instruction *NV = foldFCmpFSubIntoFCmp(I, LHSI, RHSC, *this))
8225
return NV;
8226
break;
8227
case Instruction::PHI:
8228
if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
8229
return NV;
8230
break;
8231
case Instruction::SIToFP:
8232
case Instruction::UIToFP:
8233
if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
8234
return NV;
8235
break;
8236
case Instruction::FDiv:
8237
if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
8238
return NV;
8239
break;
8240
case Instruction::Load:
8241
if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
8242
if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
8243
if (Instruction *Res = foldCmpLoadFromIndexedGlobal(
8244
cast<LoadInst>(LHSI), GEP, GV, I))
8245
return Res;
8246
break;
8247
}
8248
}
8249
8250
if (Instruction *R = foldFabsWithFcmpZero(I, *this))
8251
return R;
8252
8253
if (match(Op0, m_FNeg(m_Value(X)))) {
8254
// fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
8255
Constant *C;
8256
if (match(Op1, m_Constant(C)))
8257
if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
8258
return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
8259
}
8260
8261
// fcmp (fadd X, 0.0), Y --> fcmp X, Y
8262
if (match(Op0, m_FAdd(m_Value(X), m_AnyZeroFP())))
8263
return new FCmpInst(Pred, X, Op1, "", &I);
8264
8265
// fcmp X, (fadd Y, 0.0) --> fcmp X, Y
8266
if (match(Op1, m_FAdd(m_Value(Y), m_AnyZeroFP())))
8267
return new FCmpInst(Pred, Op0, Y, "", &I);
8268
8269
if (match(Op0, m_FPExt(m_Value(X)))) {
8270
// fcmp (fpext X), (fpext Y) -> fcmp X, Y
8271
if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
8272
return new FCmpInst(Pred, X, Y, "", &I);
8273
8274
const APFloat *C;
8275
if (match(Op1, m_APFloat(C))) {
8276
const fltSemantics &FPSem =
8277
X->getType()->getScalarType()->getFltSemantics();
8278
bool Lossy;
8279
APFloat TruncC = *C;
8280
TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
8281
8282
if (Lossy) {
8283
// X can't possibly equal the higher-precision constant, so reduce any
8284
// equality comparison.
8285
// TODO: Other predicates can be handled via getFCmpCode().
8286
switch (Pred) {
8287
case FCmpInst::FCMP_OEQ:
8288
// X is ordered and equal to an impossible constant --> false
8289
return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
8290
case FCmpInst::FCMP_ONE:
8291
// X is ordered and not equal to an impossible constant --> ordered
8292
return new FCmpInst(FCmpInst::FCMP_ORD, X,
8293
ConstantFP::getZero(X->getType()));
8294
case FCmpInst::FCMP_UEQ:
8295
// X is unordered or equal to an impossible constant --> unordered
8296
return new FCmpInst(FCmpInst::FCMP_UNO, X,
8297
ConstantFP::getZero(X->getType()));
8298
case FCmpInst::FCMP_UNE:
8299
// X is unordered or not equal to an impossible constant --> true
8300
return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
8301
default:
8302
break;
8303
}
8304
}
8305
8306
// fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
8307
// Avoid lossy conversions and denormals.
8308
// Zero is a special case that's OK to convert.
8309
APFloat Fabs = TruncC;
8310
Fabs.clearSign();
8311
if (!Lossy &&
8312
(Fabs.isZero() || !(Fabs < APFloat::getSmallestNormalized(FPSem)))) {
8313
Constant *NewC = ConstantFP::get(X->getType(), TruncC);
8314
return new FCmpInst(Pred, X, NewC, "", &I);
8315
}
8316
}
8317
}
8318
8319
// Convert a sign-bit test of an FP value into a cast and integer compare.
8320
// TODO: Simplify if the copysign constant is 0.0 or NaN.
8321
// TODO: Handle non-zero compare constants.
8322
// TODO: Handle other predicates.
8323
if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C),
8324
m_Value(X)))) &&
8325
match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) {
8326
Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits());
8327
if (auto *VecTy = dyn_cast<VectorType>(OpType))
8328
IntType = VectorType::get(IntType, VecTy->getElementCount());
8329
8330
// copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0
8331
if (Pred == FCmpInst::FCMP_OLT) {
8332
Value *IntX = Builder.CreateBitCast(X, IntType);
8333
return new ICmpInst(ICmpInst::ICMP_SLT, IntX,
8334
ConstantInt::getNullValue(IntType));
8335
}
8336
}
8337
8338
{
8339
Value *CanonLHS = nullptr, *CanonRHS = nullptr;
8340
match(Op0, m_Intrinsic<Intrinsic::canonicalize>(m_Value(CanonLHS)));
8341
match(Op1, m_Intrinsic<Intrinsic::canonicalize>(m_Value(CanonRHS)));
8342
8343
// (canonicalize(x) == x) => (x == x)
8344
if (CanonLHS == Op1)
8345
return new FCmpInst(Pred, Op1, Op1, "", &I);
8346
8347
// (x == canonicalize(x)) => (x == x)
8348
if (CanonRHS == Op0)
8349
return new FCmpInst(Pred, Op0, Op0, "", &I);
8350
8351
// (canonicalize(x) == canonicalize(y)) => (x == y)
8352
if (CanonLHS && CanonRHS)
8353
return new FCmpInst(Pred, CanonLHS, CanonRHS, "", &I);
8354
}
8355
8356
if (I.getType()->isVectorTy())
8357
if (Instruction *Res = foldVectorCmp(I, Builder))
8358
return Res;
8359
8360
return Changed ? &I : nullptr;
8361
}
8362
8363