Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineInternal.h
35266 views
1
//===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
/// \file
10
///
11
/// This file provides internal interfaces used to implement the InstCombine.
12
//
13
//===----------------------------------------------------------------------===//
14
15
#ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
16
#define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
17
18
#include "llvm/ADT/Statistic.h"
19
#include "llvm/ADT/PostOrderIterator.h"
20
#include "llvm/Analysis/InstructionSimplify.h"
21
#include "llvm/Analysis/TargetFolder.h"
22
#include "llvm/Analysis/ValueTracking.h"
23
#include "llvm/IR/IRBuilder.h"
24
#include "llvm/IR/InstVisitor.h"
25
#include "llvm/IR/PatternMatch.h"
26
#include "llvm/IR/Value.h"
27
#include "llvm/Support/Debug.h"
28
#include "llvm/Support/KnownBits.h"
29
#include "llvm/Transforms/InstCombine/InstCombiner.h"
30
#include "llvm/Transforms/Utils/Local.h"
31
#include <cassert>
32
33
#define DEBUG_TYPE "instcombine"
34
#include "llvm/Transforms/Utils/InstructionWorklist.h"
35
36
using namespace llvm::PatternMatch;
37
38
// As a default, let's assume that we want to be aggressive,
39
// and attempt to traverse with no limits in attempt to sink negation.
40
static constexpr unsigned NegatorDefaultMaxDepth = ~0U;
41
42
// Let's guesstimate that most often we will end up visiting/producing
43
// fairly small number of new instructions.
44
static constexpr unsigned NegatorMaxNodesSSO = 16;
45
46
namespace llvm {
47
48
class AAResults;
49
class APInt;
50
class AssumptionCache;
51
class BlockFrequencyInfo;
52
class DataLayout;
53
class DominatorTree;
54
class GEPOperator;
55
class GlobalVariable;
56
class LoopInfo;
57
class OptimizationRemarkEmitter;
58
class ProfileSummaryInfo;
59
class TargetLibraryInfo;
60
class User;
61
62
class LLVM_LIBRARY_VISIBILITY InstCombinerImpl final
63
: public InstCombiner,
64
public InstVisitor<InstCombinerImpl, Instruction *> {
65
public:
66
InstCombinerImpl(InstructionWorklist &Worklist, BuilderTy &Builder,
67
bool MinimizeSize, AAResults *AA, AssumptionCache &AC,
68
TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
69
DominatorTree &DT, OptimizationRemarkEmitter &ORE,
70
BlockFrequencyInfo *BFI, BranchProbabilityInfo *BPI,
71
ProfileSummaryInfo *PSI, const DataLayout &DL, LoopInfo *LI)
72
: InstCombiner(Worklist, Builder, MinimizeSize, AA, AC, TLI, TTI, DT, ORE,
73
BFI, BPI, PSI, DL, LI) {}
74
75
virtual ~InstCombinerImpl() = default;
76
77
/// Perform early cleanup and prepare the InstCombine worklist.
78
bool prepareWorklist(Function &F,
79
ReversePostOrderTraversal<BasicBlock *> &RPOT);
80
81
/// Run the combiner over the entire worklist until it is empty.
82
///
83
/// \returns true if the IR is changed.
84
bool run();
85
86
// Visitation implementation - Implement instruction combining for different
87
// instruction types. The semantics are as follows:
88
// Return Value:
89
// null - No change was made
90
// I - Change was made, I is still valid, I may be dead though
91
// otherwise - Change was made, replace I with returned instruction
92
//
93
Instruction *visitFNeg(UnaryOperator &I);
94
Instruction *visitAdd(BinaryOperator &I);
95
Instruction *visitFAdd(BinaryOperator &I);
96
Value *OptimizePointerDifference(
97
Value *LHS, Value *RHS, Type *Ty, bool isNUW);
98
Instruction *visitSub(BinaryOperator &I);
99
Instruction *visitFSub(BinaryOperator &I);
100
Instruction *visitMul(BinaryOperator &I);
101
Instruction *foldPowiReassoc(BinaryOperator &I);
102
Instruction *foldFMulReassoc(BinaryOperator &I);
103
Instruction *visitFMul(BinaryOperator &I);
104
Instruction *visitURem(BinaryOperator &I);
105
Instruction *visitSRem(BinaryOperator &I);
106
Instruction *visitFRem(BinaryOperator &I);
107
bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I);
108
Instruction *commonIRemTransforms(BinaryOperator &I);
109
Instruction *commonIDivTransforms(BinaryOperator &I);
110
Instruction *visitUDiv(BinaryOperator &I);
111
Instruction *visitSDiv(BinaryOperator &I);
112
Instruction *visitFDiv(BinaryOperator &I);
113
Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
114
Instruction *visitAnd(BinaryOperator &I);
115
Instruction *visitOr(BinaryOperator &I);
116
bool sinkNotIntoLogicalOp(Instruction &I);
117
bool sinkNotIntoOtherHandOfLogicalOp(Instruction &I);
118
Instruction *visitXor(BinaryOperator &I);
119
Instruction *visitShl(BinaryOperator &I);
120
Value *reassociateShiftAmtsOfTwoSameDirectionShifts(
121
BinaryOperator *Sh0, const SimplifyQuery &SQ,
122
bool AnalyzeForSignBitExtraction = false);
123
Instruction *canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
124
BinaryOperator &I);
125
Instruction *foldVariableSignZeroExtensionOfVariableHighBitExtract(
126
BinaryOperator &OldAShr);
127
Instruction *visitAShr(BinaryOperator &I);
128
Instruction *visitLShr(BinaryOperator &I);
129
Instruction *commonShiftTransforms(BinaryOperator &I);
130
Instruction *visitFCmpInst(FCmpInst &I);
131
CmpInst *canonicalizeICmpPredicate(CmpInst &I);
132
Instruction *visitICmpInst(ICmpInst &I);
133
Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
134
BinaryOperator &I);
135
Instruction *commonCastTransforms(CastInst &CI);
136
Instruction *visitTrunc(TruncInst &CI);
137
Instruction *visitZExt(ZExtInst &Zext);
138
Instruction *visitSExt(SExtInst &Sext);
139
Instruction *visitFPTrunc(FPTruncInst &CI);
140
Instruction *visitFPExt(CastInst &CI);
141
Instruction *visitFPToUI(FPToUIInst &FI);
142
Instruction *visitFPToSI(FPToSIInst &FI);
143
Instruction *visitUIToFP(CastInst &CI);
144
Instruction *visitSIToFP(CastInst &CI);
145
Instruction *visitPtrToInt(PtrToIntInst &CI);
146
Instruction *visitIntToPtr(IntToPtrInst &CI);
147
Instruction *visitBitCast(BitCastInst &CI);
148
Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
149
Instruction *foldItoFPtoI(CastInst &FI);
150
Instruction *visitSelectInst(SelectInst &SI);
151
Instruction *visitCallInst(CallInst &CI);
152
Instruction *visitInvokeInst(InvokeInst &II);
153
Instruction *visitCallBrInst(CallBrInst &CBI);
154
155
Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
156
Instruction *visitPHINode(PHINode &PN);
157
Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
158
Instruction *visitGEPOfGEP(GetElementPtrInst &GEP, GEPOperator *Src);
159
Instruction *visitAllocaInst(AllocaInst &AI);
160
Instruction *visitAllocSite(Instruction &FI);
161
Instruction *visitFree(CallInst &FI, Value *FreedOp);
162
Instruction *visitLoadInst(LoadInst &LI);
163
Instruction *visitStoreInst(StoreInst &SI);
164
Instruction *visitAtomicRMWInst(AtomicRMWInst &SI);
165
Instruction *visitUnconditionalBranchInst(BranchInst &BI);
166
Instruction *visitBranchInst(BranchInst &BI);
167
Instruction *visitFenceInst(FenceInst &FI);
168
Instruction *visitSwitchInst(SwitchInst &SI);
169
Instruction *visitReturnInst(ReturnInst &RI);
170
Instruction *visitUnreachableInst(UnreachableInst &I);
171
Instruction *
172
foldAggregateConstructionIntoAggregateReuse(InsertValueInst &OrigIVI);
173
Instruction *visitInsertValueInst(InsertValueInst &IV);
174
Instruction *visitInsertElementInst(InsertElementInst &IE);
175
Instruction *visitExtractElementInst(ExtractElementInst &EI);
176
Instruction *simplifyBinOpSplats(ShuffleVectorInst &SVI);
177
Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
178
Instruction *visitExtractValueInst(ExtractValueInst &EV);
179
Instruction *visitLandingPadInst(LandingPadInst &LI);
180
Instruction *visitVAEndInst(VAEndInst &I);
181
Value *pushFreezeToPreventPoisonFromPropagating(FreezeInst &FI);
182
bool freezeOtherUses(FreezeInst &FI);
183
Instruction *foldFreezeIntoRecurrence(FreezeInst &I, PHINode *PN);
184
Instruction *visitFreeze(FreezeInst &I);
185
186
/// Specify what to return for unhandled instructions.
187
Instruction *visitInstruction(Instruction &I) { return nullptr; }
188
189
/// True when DB dominates all uses of DI except UI.
190
/// UI must be in the same block as DI.
191
/// The routine checks that the DI parent and DB are different.
192
bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
193
const BasicBlock *DB) const;
194
195
/// Try to replace select with select operand SIOpd in SI-ICmp sequence.
196
bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
197
const unsigned SIOpd);
198
199
LoadInst *combineLoadToNewType(LoadInst &LI, Type *NewTy,
200
const Twine &Suffix = "");
201
202
KnownFPClass computeKnownFPClass(Value *Val, FastMathFlags FMF,
203
FPClassTest Interested = fcAllFlags,
204
const Instruction *CtxI = nullptr,
205
unsigned Depth = 0) const {
206
return llvm::computeKnownFPClass(
207
Val, FMF, Interested, Depth,
208
getSimplifyQuery().getWithInstruction(CtxI));
209
}
210
211
KnownFPClass computeKnownFPClass(Value *Val,
212
FPClassTest Interested = fcAllFlags,
213
const Instruction *CtxI = nullptr,
214
unsigned Depth = 0) const {
215
return llvm::computeKnownFPClass(
216
Val, Interested, Depth, getSimplifyQuery().getWithInstruction(CtxI));
217
}
218
219
/// Check if fmul \p MulVal, +0.0 will yield +0.0 (or signed zero is
220
/// ignorable).
221
bool fmulByZeroIsZero(Value *MulVal, FastMathFlags FMF,
222
const Instruction *CtxI) const;
223
224
Constant *getLosslessTrunc(Constant *C, Type *TruncTy, unsigned ExtOp) {
225
Constant *TruncC = ConstantExpr::getTrunc(C, TruncTy);
226
Constant *ExtTruncC =
227
ConstantFoldCastOperand(ExtOp, TruncC, C->getType(), DL);
228
if (ExtTruncC && ExtTruncC == C)
229
return TruncC;
230
return nullptr;
231
}
232
233
Constant *getLosslessUnsignedTrunc(Constant *C, Type *TruncTy) {
234
return getLosslessTrunc(C, TruncTy, Instruction::ZExt);
235
}
236
237
Constant *getLosslessSignedTrunc(Constant *C, Type *TruncTy) {
238
return getLosslessTrunc(C, TruncTy, Instruction::SExt);
239
}
240
241
std::optional<std::pair<Intrinsic::ID, SmallVector<Value *, 3>>>
242
convertOrOfShiftsToFunnelShift(Instruction &Or);
243
244
private:
245
bool annotateAnyAllocSite(CallBase &Call, const TargetLibraryInfo *TLI);
246
bool isDesirableIntType(unsigned BitWidth) const;
247
bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
248
bool shouldChangeType(Type *From, Type *To) const;
249
Value *dyn_castNegVal(Value *V) const;
250
251
/// Classify whether a cast is worth optimizing.
252
///
253
/// This is a helper to decide whether the simplification of
254
/// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
255
///
256
/// \param CI The cast we are interested in.
257
///
258
/// \return true if this cast actually results in any code being generated and
259
/// if it cannot already be eliminated by some other transformation.
260
bool shouldOptimizeCast(CastInst *CI);
261
262
/// Try to optimize a sequence of instructions checking if an operation
263
/// on LHS and RHS overflows.
264
///
265
/// If this overflow check is done via one of the overflow check intrinsics,
266
/// then CtxI has to be the call instruction calling that intrinsic. If this
267
/// overflow check is done by arithmetic followed by a compare, then CtxI has
268
/// to be the arithmetic instruction.
269
///
270
/// If a simplification is possible, stores the simplified result of the
271
/// operation in OperationResult and result of the overflow check in
272
/// OverflowResult, and return true. If no simplification is possible,
273
/// returns false.
274
bool OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, bool IsSigned,
275
Value *LHS, Value *RHS,
276
Instruction &CtxI, Value *&OperationResult,
277
Constant *&OverflowResult);
278
279
Instruction *visitCallBase(CallBase &Call);
280
Instruction *tryOptimizeCall(CallInst *CI);
281
bool transformConstExprCastCall(CallBase &Call);
282
Instruction *transformCallThroughTrampoline(CallBase &Call,
283
IntrinsicInst &Tramp);
284
285
// Return (a, b) if (LHS, RHS) is known to be (a, b) or (b, a).
286
// Otherwise, return std::nullopt
287
// Currently it matches:
288
// - LHS = (select c, a, b), RHS = (select c, b, a)
289
// - LHS = (phi [a, BB0], [b, BB1]), RHS = (phi [b, BB0], [a, BB1])
290
// - LHS = min(a, b), RHS = max(a, b)
291
std::optional<std::pair<Value *, Value *>> matchSymmetricPair(Value *LHS,
292
Value *RHS);
293
294
Value *simplifyMaskedLoad(IntrinsicInst &II);
295
Instruction *simplifyMaskedStore(IntrinsicInst &II);
296
Instruction *simplifyMaskedGather(IntrinsicInst &II);
297
Instruction *simplifyMaskedScatter(IntrinsicInst &II);
298
299
/// Transform (zext icmp) to bitwise / integer operations in order to
300
/// eliminate it.
301
///
302
/// \param ICI The icmp of the (zext icmp) pair we are interested in.
303
/// \parem CI The zext of the (zext icmp) pair we are interested in.
304
///
305
/// \return null if the transformation cannot be performed. If the
306
/// transformation can be performed the new instruction that replaces the
307
/// (zext icmp) pair will be returned.
308
Instruction *transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext);
309
310
Instruction *transformSExtICmp(ICmpInst *Cmp, SExtInst &Sext);
311
312
bool willNotOverflowSignedAdd(const WithCache<const Value *> &LHS,
313
const WithCache<const Value *> &RHS,
314
const Instruction &CxtI) const {
315
return computeOverflowForSignedAdd(LHS, RHS, &CxtI) ==
316
OverflowResult::NeverOverflows;
317
}
318
319
bool willNotOverflowUnsignedAdd(const WithCache<const Value *> &LHS,
320
const WithCache<const Value *> &RHS,
321
const Instruction &CxtI) const {
322
return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) ==
323
OverflowResult::NeverOverflows;
324
}
325
326
bool willNotOverflowAdd(const Value *LHS, const Value *RHS,
327
const Instruction &CxtI, bool IsSigned) const {
328
return IsSigned ? willNotOverflowSignedAdd(LHS, RHS, CxtI)
329
: willNotOverflowUnsignedAdd(LHS, RHS, CxtI);
330
}
331
332
bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS,
333
const Instruction &CxtI) const {
334
return computeOverflowForSignedSub(LHS, RHS, &CxtI) ==
335
OverflowResult::NeverOverflows;
336
}
337
338
bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS,
339
const Instruction &CxtI) const {
340
return computeOverflowForUnsignedSub(LHS, RHS, &CxtI) ==
341
OverflowResult::NeverOverflows;
342
}
343
344
bool willNotOverflowSub(const Value *LHS, const Value *RHS,
345
const Instruction &CxtI, bool IsSigned) const {
346
return IsSigned ? willNotOverflowSignedSub(LHS, RHS, CxtI)
347
: willNotOverflowUnsignedSub(LHS, RHS, CxtI);
348
}
349
350
bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS,
351
const Instruction &CxtI) const {
352
return computeOverflowForSignedMul(LHS, RHS, &CxtI) ==
353
OverflowResult::NeverOverflows;
354
}
355
356
bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS,
357
const Instruction &CxtI,
358
bool IsNSW = false) const {
359
return computeOverflowForUnsignedMul(LHS, RHS, &CxtI, IsNSW) ==
360
OverflowResult::NeverOverflows;
361
}
362
363
bool willNotOverflowMul(const Value *LHS, const Value *RHS,
364
const Instruction &CxtI, bool IsSigned) const {
365
return IsSigned ? willNotOverflowSignedMul(LHS, RHS, CxtI)
366
: willNotOverflowUnsignedMul(LHS, RHS, CxtI);
367
}
368
369
bool willNotOverflow(BinaryOperator::BinaryOps Opcode, const Value *LHS,
370
const Value *RHS, const Instruction &CxtI,
371
bool IsSigned) const {
372
switch (Opcode) {
373
case Instruction::Add: return willNotOverflowAdd(LHS, RHS, CxtI, IsSigned);
374
case Instruction::Sub: return willNotOverflowSub(LHS, RHS, CxtI, IsSigned);
375
case Instruction::Mul: return willNotOverflowMul(LHS, RHS, CxtI, IsSigned);
376
default: llvm_unreachable("Unexpected opcode for overflow query");
377
}
378
}
379
380
Value *EmitGEPOffset(GEPOperator *GEP, bool RewriteGEP = false);
381
Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
382
Instruction *foldBitcastExtElt(ExtractElementInst &ExtElt);
383
Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
384
Instruction *foldFBinOpOfIntCasts(BinaryOperator &I);
385
// Should only be called by `foldFBinOpOfIntCasts`.
386
Instruction *foldFBinOpOfIntCastsFromSign(
387
BinaryOperator &BO, bool OpsFromSigned, std::array<Value *, 2> IntOps,
388
Constant *Op1FpC, SmallVectorImpl<WithCache<const Value *>> &OpsKnown);
389
Instruction *foldBinopOfSextBoolToSelect(BinaryOperator &I);
390
Instruction *narrowBinOp(TruncInst &Trunc);
391
Instruction *narrowMaskedBinOp(BinaryOperator &And);
392
Instruction *narrowMathIfNoOverflow(BinaryOperator &I);
393
Instruction *narrowFunnelShift(TruncInst &Trunc);
394
Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN);
395
Instruction *matchSAddSubSat(IntrinsicInst &MinMax1);
396
Instruction *foldNot(BinaryOperator &I);
397
Instruction *foldBinOpOfDisplacedShifts(BinaryOperator &I);
398
399
/// Determine if a pair of casts can be replaced by a single cast.
400
///
401
/// \param CI1 The first of a pair of casts.
402
/// \param CI2 The second of a pair of casts.
403
///
404
/// \return 0 if the cast pair cannot be eliminated, otherwise returns an
405
/// Instruction::CastOps value for a cast that can replace the pair, casting
406
/// CI1->getSrcTy() to CI2->getDstTy().
407
///
408
/// \see CastInst::isEliminableCastPair
409
Instruction::CastOps isEliminableCastPair(const CastInst *CI1,
410
const CastInst *CI2);
411
Value *simplifyIntToPtrRoundTripCast(Value *Val);
412
413
Value *foldAndOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &I,
414
bool IsAnd, bool IsLogical = false);
415
Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &Xor);
416
417
Value *foldEqOfParts(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd);
418
419
Value *foldAndOrOfICmpsUsingRanges(ICmpInst *ICmp1, ICmpInst *ICmp2,
420
bool IsAnd);
421
422
/// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
423
/// NOTE: Unlike most of instcombine, this returns a Value which should
424
/// already be inserted into the function.
425
Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd,
426
bool IsLogicalSelect = false);
427
428
Instruction *foldLogicOfIsFPClass(BinaryOperator &Operator, Value *LHS,
429
Value *RHS);
430
431
Instruction *
432
canonicalizeConditionalNegationViaMathToSelect(BinaryOperator &i);
433
434
Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
435
Instruction *CxtI, bool IsAnd,
436
bool IsLogical = false);
437
Value *matchSelectFromAndOr(Value *A, Value *B, Value *C, Value *D,
438
bool InvertFalseVal = false);
439
Value *getSelectCondition(Value *A, Value *B, bool ABIsTheSame);
440
441
Instruction *foldLShrOverflowBit(BinaryOperator &I);
442
Instruction *foldExtractOfOverflowIntrinsic(ExtractValueInst &EV);
443
Instruction *foldIntrinsicWithOverflowCommon(IntrinsicInst *II);
444
Instruction *foldIntrinsicIsFPClass(IntrinsicInst &II);
445
Instruction *foldFPSignBitOps(BinaryOperator &I);
446
Instruction *foldFDivConstantDivisor(BinaryOperator &I);
447
448
// Optimize one of these forms:
449
// and i1 Op, SI / select i1 Op, i1 SI, i1 false (if IsAnd = true)
450
// or i1 Op, SI / select i1 Op, i1 true, i1 SI (if IsAnd = false)
451
// into simplier select instruction using isImpliedCondition.
452
Instruction *foldAndOrOfSelectUsingImpliedCond(Value *Op, SelectInst &SI,
453
bool IsAnd);
454
455
Instruction *hoistFNegAboveFMulFDiv(Value *FNegOp, Instruction &FMFSource);
456
457
public:
458
/// Create and insert the idiom we use to indicate a block is unreachable
459
/// without having to rewrite the CFG from within InstCombine.
460
void CreateNonTerminatorUnreachable(Instruction *InsertAt) {
461
auto &Ctx = InsertAt->getContext();
462
auto *SI = new StoreInst(ConstantInt::getTrue(Ctx),
463
PoisonValue::get(PointerType::getUnqual(Ctx)),
464
/*isVolatile*/ false, Align(1));
465
InsertNewInstWith(SI, InsertAt->getIterator());
466
}
467
468
/// Combiner aware instruction erasure.
469
///
470
/// When dealing with an instruction that has side effects or produces a void
471
/// value, we can't rely on DCE to delete the instruction. Instead, visit
472
/// methods should return the value returned by this function.
473
Instruction *eraseInstFromFunction(Instruction &I) override {
474
LLVM_DEBUG(dbgs() << "IC: ERASE " << I << '\n');
475
assert(I.use_empty() && "Cannot erase instruction that is used!");
476
salvageDebugInfo(I);
477
478
// Make sure that we reprocess all operands now that we reduced their
479
// use counts.
480
SmallVector<Value *> Ops(I.operands());
481
Worklist.remove(&I);
482
DC.removeValue(&I);
483
I.eraseFromParent();
484
for (Value *Op : Ops)
485
Worklist.handleUseCountDecrement(Op);
486
MadeIRChange = true;
487
return nullptr; // Don't do anything with FI
488
}
489
490
OverflowResult computeOverflow(
491
Instruction::BinaryOps BinaryOp, bool IsSigned,
492
Value *LHS, Value *RHS, Instruction *CxtI) const;
493
494
/// Performs a few simplifications for operators which are associative
495
/// or commutative.
496
bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
497
498
/// Tries to simplify binary operations which some other binary
499
/// operation distributes over.
500
///
501
/// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
502
/// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
503
/// & (B | C) -> (A&B) | (A&C)" if this is a win). Returns the simplified
504
/// value, or null if it didn't simplify.
505
Value *foldUsingDistributiveLaws(BinaryOperator &I);
506
507
/// Tries to simplify add operations using the definition of remainder.
508
///
509
/// The definition of remainder is X % C = X - (X / C ) * C. The add
510
/// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to
511
/// X % (C0 * C1)
512
Value *SimplifyAddWithRemainder(BinaryOperator &I);
513
514
// Binary Op helper for select operations where the expression can be
515
// efficiently reorganized.
516
Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS,
517
Value *RHS);
518
519
// If `I` has operand `(ctpop (not x))`, fold `I` with `(sub nuw nsw
520
// BitWidth(x), (ctpop x))`.
521
Instruction *tryFoldInstWithCtpopWithNot(Instruction *I);
522
523
// (Binop1 (Binop2 (logic_shift X, C), C1), (logic_shift Y, C))
524
// -> (logic_shift (Binop1 (Binop2 X, inv_logic_shift(C1, C)), Y), C)
525
// (Binop1 (Binop2 (logic_shift X, Amt), Mask), (logic_shift Y, Amt))
526
// -> (BinOp (logic_shift (BinOp X, Y)), Mask)
527
Instruction *foldBinOpShiftWithShift(BinaryOperator &I);
528
529
/// Tries to simplify binops of select and cast of the select condition.
530
///
531
/// (Binop (cast C), (select C, T, F))
532
/// -> (select C, C0, C1)
533
Instruction *foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I);
534
535
/// This tries to simplify binary operations by factorizing out common terms
536
/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
537
Value *tryFactorizationFolds(BinaryOperator &I);
538
539
/// Match a select chain which produces one of three values based on whether
540
/// the LHS is less than, equal to, or greater than RHS respectively.
541
/// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
542
/// Equal and Greater values are saved in the matching process and returned to
543
/// the caller.
544
bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS,
545
ConstantInt *&Less, ConstantInt *&Equal,
546
ConstantInt *&Greater);
547
548
/// Attempts to replace I with a simpler value based on the demanded
549
/// bits.
550
Value *SimplifyDemandedUseBits(Instruction *I, const APInt &DemandedMask,
551
KnownBits &Known, unsigned Depth,
552
const SimplifyQuery &Q);
553
using InstCombiner::SimplifyDemandedBits;
554
bool SimplifyDemandedBits(Instruction *I, unsigned Op,
555
const APInt &DemandedMask, KnownBits &Known,
556
unsigned Depth, const SimplifyQuery &Q) override;
557
558
/// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
559
/// bits. It also tries to handle simplifications that can be done based on
560
/// DemandedMask, but without modifying the Instruction.
561
Value *SimplifyMultipleUseDemandedBits(Instruction *I,
562
const APInt &DemandedMask,
563
KnownBits &Known, unsigned Depth,
564
const SimplifyQuery &Q);
565
566
/// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
567
/// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
568
Value *simplifyShrShlDemandedBits(
569
Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
570
const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known);
571
572
/// Tries to simplify operands to an integer instruction based on its
573
/// demanded bits.
574
bool SimplifyDemandedInstructionBits(Instruction &Inst);
575
bool SimplifyDemandedInstructionBits(Instruction &Inst, KnownBits &Known);
576
577
Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
578
APInt &PoisonElts, unsigned Depth = 0,
579
bool AllowMultipleUsers = false) override;
580
581
/// Attempts to replace V with a simpler value based on the demanded
582
/// floating-point classes
583
Value *SimplifyDemandedUseFPClass(Value *V, FPClassTest DemandedMask,
584
KnownFPClass &Known, unsigned Depth,
585
Instruction *CxtI);
586
bool SimplifyDemandedFPClass(Instruction *I, unsigned Op,
587
FPClassTest DemandedMask, KnownFPClass &Known,
588
unsigned Depth = 0);
589
590
/// Canonicalize the position of binops relative to shufflevector.
591
Instruction *foldVectorBinop(BinaryOperator &Inst);
592
Instruction *foldVectorSelect(SelectInst &Sel);
593
Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf);
594
595
/// Given a binary operator, cast instruction, or select which has a PHI node
596
/// as operand #0, see if we can fold the instruction into the PHI (which is
597
/// only possible if all operands to the PHI are constants).
598
Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN);
599
600
/// For a binary operator with 2 phi operands, try to hoist the binary
601
/// operation before the phi. This can result in fewer instructions in
602
/// patterns where at least one set of phi operands simplifies.
603
/// Example:
604
/// BB3: binop (phi [X, BB1], [C1, BB2]), (phi [Y, BB1], [C2, BB2])
605
/// -->
606
/// BB1: BO = binop X, Y
607
/// BB3: phi [BO, BB1], [(binop C1, C2), BB2]
608
Instruction *foldBinopWithPhiOperands(BinaryOperator &BO);
609
610
/// Given an instruction with a select as one operand and a constant as the
611
/// other operand, try to fold the binary operator into the select arguments.
612
/// This also works for Cast instructions, which obviously do not have a
613
/// second operand.
614
Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
615
bool FoldWithMultiUse = false);
616
617
/// This is a convenience wrapper function for the above two functions.
618
Instruction *foldBinOpIntoSelectOrPhi(BinaryOperator &I);
619
620
Instruction *foldAddWithConstant(BinaryOperator &Add);
621
622
Instruction *foldSquareSumInt(BinaryOperator &I);
623
Instruction *foldSquareSumFP(BinaryOperator &I);
624
625
/// Try to rotate an operation below a PHI node, using PHI nodes for
626
/// its operands.
627
Instruction *foldPHIArgOpIntoPHI(PHINode &PN);
628
Instruction *foldPHIArgBinOpIntoPHI(PHINode &PN);
629
Instruction *foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN);
630
Instruction *foldPHIArgExtractValueInstructionIntoPHI(PHINode &PN);
631
Instruction *foldPHIArgGEPIntoPHI(PHINode &PN);
632
Instruction *foldPHIArgLoadIntoPHI(PHINode &PN);
633
Instruction *foldPHIArgZextsIntoPHI(PHINode &PN);
634
Instruction *foldPHIArgIntToPtrToPHI(PHINode &PN);
635
636
/// If an integer typed PHI has only one use which is an IntToPtr operation,
637
/// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
638
/// insert a new pointer typed PHI and replace the original one.
639
bool foldIntegerTypedPHI(PHINode &PN);
640
641
/// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
642
/// folded operation.
643
void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN);
644
645
Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
646
ICmpInst::Predicate Cond, Instruction &I);
647
Instruction *foldSelectICmp(ICmpInst::Predicate Pred, SelectInst *SI,
648
Value *RHS, const ICmpInst &I);
649
bool foldAllocaCmp(AllocaInst *Alloca);
650
Instruction *foldCmpLoadFromIndexedGlobal(LoadInst *LI,
651
GetElementPtrInst *GEP,
652
GlobalVariable *GV, CmpInst &ICI,
653
ConstantInt *AndCst = nullptr);
654
Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
655
Constant *RHSC);
656
Instruction *foldICmpAddOpConst(Value *X, const APInt &C,
657
ICmpInst::Predicate Pred);
658
Instruction *foldICmpWithCastOp(ICmpInst &ICmp);
659
Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp);
660
661
Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
662
Instruction *foldICmpWithDominatingICmp(ICmpInst &Cmp);
663
Instruction *foldICmpWithConstant(ICmpInst &Cmp);
664
Instruction *foldICmpUsingBoolRange(ICmpInst &I);
665
Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
666
Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp);
667
Instruction *foldICmpInstWithConstantAllowPoison(ICmpInst &Cmp,
668
const APInt &C);
669
Instruction *foldICmpBinOp(ICmpInst &Cmp, const SimplifyQuery &SQ);
670
Instruction *foldICmpWithMinMax(Instruction &I, MinMaxIntrinsic *MinMax,
671
Value *Z, ICmpInst::Predicate Pred);
672
Instruction *foldICmpEquality(ICmpInst &Cmp);
673
Instruction *foldIRemByPowerOfTwoToBitTest(ICmpInst &I);
674
Instruction *foldSignBitTest(ICmpInst &I);
675
Instruction *foldICmpWithZero(ICmpInst &Cmp);
676
677
Value *foldMultiplicationOverflowCheck(ICmpInst &Cmp);
678
679
Instruction *foldICmpBinOpWithConstant(ICmpInst &Cmp, BinaryOperator *BO,
680
const APInt &C);
681
Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select,
682
ConstantInt *C);
683
Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc,
684
const APInt &C);
685
Instruction *foldICmpTruncWithTruncOrExt(ICmpInst &Cmp,
686
const SimplifyQuery &Q);
687
Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And,
688
const APInt &C);
689
Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor,
690
const APInt &C);
691
Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
692
const APInt &C);
693
Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul,
694
const APInt &C);
695
Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl,
696
const APInt &C);
697
Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr,
698
const APInt &C);
699
Instruction *foldICmpSRemConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
700
const APInt &C);
701
Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
702
const APInt &C);
703
Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div,
704
const APInt &C);
705
Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub,
706
const APInt &C);
707
Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add,
708
const APInt &C);
709
Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And,
710
const APInt &C1);
711
Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
712
const APInt &C1, const APInt &C2);
713
Instruction *foldICmpXorShiftConst(ICmpInst &Cmp, BinaryOperator *Xor,
714
const APInt &C);
715
Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
716
const APInt &C2);
717
Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
718
const APInt &C2);
719
720
Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
721
BinaryOperator *BO,
722
const APInt &C);
723
Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
724
const APInt &C);
725
Instruction *foldICmpEqIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
726
const APInt &C);
727
Instruction *foldICmpBitCast(ICmpInst &Cmp);
728
Instruction *foldICmpWithTrunc(ICmpInst &Cmp);
729
Instruction *foldICmpCommutative(ICmpInst::Predicate Pred, Value *Op0,
730
Value *Op1, ICmpInst &CxtI);
731
732
// Helpers of visitSelectInst().
733
Instruction *foldSelectOfBools(SelectInst &SI);
734
Instruction *foldSelectExtConst(SelectInst &Sel);
735
Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
736
Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *);
737
Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
738
Value *A, Value *B, Instruction &Outer,
739
SelectPatternFlavor SPF2, Value *C);
740
Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
741
Instruction *foldSelectValueEquivalence(SelectInst &SI, ICmpInst &ICI);
742
bool replaceInInstruction(Value *V, Value *Old, Value *New,
743
unsigned Depth = 0);
744
745
Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
746
bool isSigned, bool Inside);
747
bool mergeStoreIntoSuccessor(StoreInst &SI);
748
749
/// Given an initial instruction, check to see if it is the root of a
750
/// bswap/bitreverse idiom. If so, return the equivalent bswap/bitreverse
751
/// intrinsic.
752
Instruction *matchBSwapOrBitReverse(Instruction &I, bool MatchBSwaps,
753
bool MatchBitReversals);
754
755
Instruction *SimplifyAnyMemTransfer(AnyMemTransferInst *MI);
756
Instruction *SimplifyAnyMemSet(AnyMemSetInst *MI);
757
758
Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
759
760
bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock);
761
void tryToSinkInstructionDbgValues(
762
Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock,
763
BasicBlock *DestBlock, SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers);
764
void tryToSinkInstructionDbgVariableRecords(
765
Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock,
766
BasicBlock *DestBlock, SmallVectorImpl<DbgVariableRecord *> &DPUsers);
767
768
bool removeInstructionsBeforeUnreachable(Instruction &I);
769
void addDeadEdge(BasicBlock *From, BasicBlock *To,
770
SmallVectorImpl<BasicBlock *> &Worklist);
771
void handleUnreachableFrom(Instruction *I,
772
SmallVectorImpl<BasicBlock *> &Worklist);
773
void handlePotentiallyDeadBlocks(SmallVectorImpl<BasicBlock *> &Worklist);
774
void handlePotentiallyDeadSuccessors(BasicBlock *BB, BasicBlock *LiveSucc);
775
void freelyInvertAllUsersOf(Value *V, Value *IgnoredUser = nullptr);
776
};
777
778
class Negator final {
779
/// Top-to-bottom, def-to-use negated instruction tree we produced.
780
SmallVector<Instruction *, NegatorMaxNodesSSO> NewInstructions;
781
782
using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>;
783
BuilderTy Builder;
784
785
const bool IsTrulyNegation;
786
787
SmallDenseMap<Value *, Value *> NegationsCache;
788
789
Negator(LLVMContext &C, const DataLayout &DL, bool IsTrulyNegation);
790
791
#if LLVM_ENABLE_STATS
792
unsigned NumValuesVisitedInThisNegator = 0;
793
~Negator();
794
#endif
795
796
using Result = std::pair<ArrayRef<Instruction *> /*NewInstructions*/,
797
Value * /*NegatedRoot*/>;
798
799
std::array<Value *, 2> getSortedOperandsOfBinOp(Instruction *I);
800
801
[[nodiscard]] Value *visitImpl(Value *V, bool IsNSW, unsigned Depth);
802
803
[[nodiscard]] Value *negate(Value *V, bool IsNSW, unsigned Depth);
804
805
/// Recurse depth-first and attempt to sink the negation.
806
/// FIXME: use worklist?
807
[[nodiscard]] std::optional<Result> run(Value *Root, bool IsNSW);
808
809
Negator(const Negator &) = delete;
810
Negator(Negator &&) = delete;
811
Negator &operator=(const Negator &) = delete;
812
Negator &operator=(Negator &&) = delete;
813
814
public:
815
/// Attempt to negate \p Root. Retuns nullptr if negation can't be performed,
816
/// otherwise returns negated value.
817
[[nodiscard]] static Value *Negate(bool LHSIsZero, bool IsNSW, Value *Root,
818
InstCombinerImpl &IC);
819
};
820
821
} // end namespace llvm
822
823
#undef DEBUG_TYPE
824
825
#endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
826
827