Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
35266 views
1
//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the visit functions for load, store and alloca.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "InstCombineInternal.h"
14
#include "llvm/ADT/MapVector.h"
15
#include "llvm/ADT/SmallString.h"
16
#include "llvm/ADT/Statistic.h"
17
#include "llvm/Analysis/AliasAnalysis.h"
18
#include "llvm/Analysis/Loads.h"
19
#include "llvm/IR/DataLayout.h"
20
#include "llvm/IR/DebugInfoMetadata.h"
21
#include "llvm/IR/IntrinsicInst.h"
22
#include "llvm/IR/LLVMContext.h"
23
#include "llvm/IR/PatternMatch.h"
24
#include "llvm/Transforms/InstCombine/InstCombiner.h"
25
#include "llvm/Transforms/Utils/Local.h"
26
using namespace llvm;
27
using namespace PatternMatch;
28
29
#define DEBUG_TYPE "instcombine"
30
31
STATISTIC(NumDeadStore, "Number of dead stores eliminated");
32
STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
33
34
static cl::opt<unsigned> MaxCopiedFromConstantUsers(
35
"instcombine-max-copied-from-constant-users", cl::init(300),
36
cl::desc("Maximum users to visit in copy from constant transform"),
37
cl::Hidden);
38
39
namespace llvm {
40
cl::opt<bool> EnableInferAlignmentPass(
41
"enable-infer-alignment-pass", cl::init(true), cl::Hidden, cl::ZeroOrMore,
42
cl::desc("Enable the InferAlignment pass, disabling alignment inference in "
43
"InstCombine"));
44
}
45
46
/// isOnlyCopiedFromConstantMemory - Recursively walk the uses of a (derived)
47
/// pointer to an alloca. Ignore any reads of the pointer, return false if we
48
/// see any stores or other unknown uses. If we see pointer arithmetic, keep
49
/// track of whether it moves the pointer (with IsOffset) but otherwise traverse
50
/// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
51
/// the alloca, and if the source pointer is a pointer to a constant memory
52
/// location, we can optimize this.
53
static bool
54
isOnlyCopiedFromConstantMemory(AAResults *AA, AllocaInst *V,
55
MemTransferInst *&TheCopy,
56
SmallVectorImpl<Instruction *> &ToDelete) {
57
// We track lifetime intrinsics as we encounter them. If we decide to go
58
// ahead and replace the value with the memory location, this lets the caller
59
// quickly eliminate the markers.
60
61
using ValueAndIsOffset = PointerIntPair<Value *, 1, bool>;
62
SmallVector<ValueAndIsOffset, 32> Worklist;
63
SmallPtrSet<ValueAndIsOffset, 32> Visited;
64
Worklist.emplace_back(V, false);
65
while (!Worklist.empty()) {
66
ValueAndIsOffset Elem = Worklist.pop_back_val();
67
if (!Visited.insert(Elem).second)
68
continue;
69
if (Visited.size() > MaxCopiedFromConstantUsers)
70
return false;
71
72
const auto [Value, IsOffset] = Elem;
73
for (auto &U : Value->uses()) {
74
auto *I = cast<Instruction>(U.getUser());
75
76
if (auto *LI = dyn_cast<LoadInst>(I)) {
77
// Ignore non-volatile loads, they are always ok.
78
if (!LI->isSimple()) return false;
79
continue;
80
}
81
82
if (isa<PHINode, SelectInst>(I)) {
83
// We set IsOffset=true, to forbid the memcpy from occurring after the
84
// phi: If one of the phi operands is not based on the alloca, we
85
// would incorrectly omit a write.
86
Worklist.emplace_back(I, true);
87
continue;
88
}
89
if (isa<BitCastInst, AddrSpaceCastInst>(I)) {
90
// If uses of the bitcast are ok, we are ok.
91
Worklist.emplace_back(I, IsOffset);
92
continue;
93
}
94
if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
95
// If the GEP has all zero indices, it doesn't offset the pointer. If it
96
// doesn't, it does.
97
Worklist.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
98
continue;
99
}
100
101
if (auto *Call = dyn_cast<CallBase>(I)) {
102
// If this is the function being called then we treat it like a load and
103
// ignore it.
104
if (Call->isCallee(&U))
105
continue;
106
107
unsigned DataOpNo = Call->getDataOperandNo(&U);
108
bool IsArgOperand = Call->isArgOperand(&U);
109
110
// Inalloca arguments are clobbered by the call.
111
if (IsArgOperand && Call->isInAllocaArgument(DataOpNo))
112
return false;
113
114
// If this call site doesn't modify the memory, then we know it is just
115
// a load (but one that potentially returns the value itself), so we can
116
// ignore it if we know that the value isn't captured.
117
bool NoCapture = Call->doesNotCapture(DataOpNo);
118
if ((Call->onlyReadsMemory() && (Call->use_empty() || NoCapture)) ||
119
(Call->onlyReadsMemory(DataOpNo) && NoCapture))
120
continue;
121
122
// If this is being passed as a byval argument, the caller is making a
123
// copy, so it is only a read of the alloca.
124
if (IsArgOperand && Call->isByValArgument(DataOpNo))
125
continue;
126
}
127
128
// Lifetime intrinsics can be handled by the caller.
129
if (I->isLifetimeStartOrEnd()) {
130
assert(I->use_empty() && "Lifetime markers have no result to use!");
131
ToDelete.push_back(I);
132
continue;
133
}
134
135
// If this is isn't our memcpy/memmove, reject it as something we can't
136
// handle.
137
MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
138
if (!MI)
139
return false;
140
141
// If the transfer is volatile, reject it.
142
if (MI->isVolatile())
143
return false;
144
145
// If the transfer is using the alloca as a source of the transfer, then
146
// ignore it since it is a load (unless the transfer is volatile).
147
if (U.getOperandNo() == 1)
148
continue;
149
150
// If we already have seen a copy, reject the second one.
151
if (TheCopy) return false;
152
153
// If the pointer has been offset from the start of the alloca, we can't
154
// safely handle this.
155
if (IsOffset) return false;
156
157
// If the memintrinsic isn't using the alloca as the dest, reject it.
158
if (U.getOperandNo() != 0) return false;
159
160
// If the source of the memcpy/move is not constant, reject it.
161
if (isModSet(AA->getModRefInfoMask(MI->getSource())))
162
return false;
163
164
// Otherwise, the transform is safe. Remember the copy instruction.
165
TheCopy = MI;
166
}
167
}
168
return true;
169
}
170
171
/// isOnlyCopiedFromConstantMemory - Return true if the specified alloca is only
172
/// modified by a copy from a constant memory location. If we can prove this, we
173
/// can replace any uses of the alloca with uses of the memory location
174
/// directly.
175
static MemTransferInst *
176
isOnlyCopiedFromConstantMemory(AAResults *AA,
177
AllocaInst *AI,
178
SmallVectorImpl<Instruction *> &ToDelete) {
179
MemTransferInst *TheCopy = nullptr;
180
if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete))
181
return TheCopy;
182
return nullptr;
183
}
184
185
/// Returns true if V is dereferenceable for size of alloca.
186
static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI,
187
const DataLayout &DL) {
188
if (AI->isArrayAllocation())
189
return false;
190
uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType());
191
if (!AllocaSize)
192
return false;
193
return isDereferenceableAndAlignedPointer(V, AI->getAlign(),
194
APInt(64, AllocaSize), DL);
195
}
196
197
static Instruction *simplifyAllocaArraySize(InstCombinerImpl &IC,
198
AllocaInst &AI, DominatorTree &DT) {
199
// Check for array size of 1 (scalar allocation).
200
if (!AI.isArrayAllocation()) {
201
// i32 1 is the canonical array size for scalar allocations.
202
if (AI.getArraySize()->getType()->isIntegerTy(32))
203
return nullptr;
204
205
// Canonicalize it.
206
return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1));
207
}
208
209
// Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
210
if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
211
if (C->getValue().getActiveBits() <= 64) {
212
Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
213
AllocaInst *New = IC.Builder.CreateAlloca(NewTy, AI.getAddressSpace(),
214
nullptr, AI.getName());
215
New->setAlignment(AI.getAlign());
216
New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
217
218
replaceAllDbgUsesWith(AI, *New, *New, DT);
219
return IC.replaceInstUsesWith(AI, New);
220
}
221
}
222
223
if (isa<UndefValue>(AI.getArraySize()))
224
return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
225
226
// Ensure that the alloca array size argument has type equal to the offset
227
// size of the alloca() pointer, which, in the tyical case, is intptr_t,
228
// so that any casting is exposed early.
229
Type *PtrIdxTy = IC.getDataLayout().getIndexType(AI.getType());
230
if (AI.getArraySize()->getType() != PtrIdxTy) {
231
Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), PtrIdxTy, false);
232
return IC.replaceOperand(AI, 0, V);
233
}
234
235
return nullptr;
236
}
237
238
namespace {
239
// If I and V are pointers in different address space, it is not allowed to
240
// use replaceAllUsesWith since I and V have different types. A
241
// non-target-specific transformation should not use addrspacecast on V since
242
// the two address space may be disjoint depending on target.
243
//
244
// This class chases down uses of the old pointer until reaching the load
245
// instructions, then replaces the old pointer in the load instructions with
246
// the new pointer. If during the chasing it sees bitcast or GEP, it will
247
// create new bitcast or GEP with the new pointer and use them in the load
248
// instruction.
249
class PointerReplacer {
250
public:
251
PointerReplacer(InstCombinerImpl &IC, Instruction &Root, unsigned SrcAS)
252
: IC(IC), Root(Root), FromAS(SrcAS) {}
253
254
bool collectUsers();
255
void replacePointer(Value *V);
256
257
private:
258
bool collectUsersRecursive(Instruction &I);
259
void replace(Instruction *I);
260
Value *getReplacement(Value *I);
261
bool isAvailable(Instruction *I) const {
262
return I == &Root || Worklist.contains(I);
263
}
264
265
bool isEqualOrValidAddrSpaceCast(const Instruction *I,
266
unsigned FromAS) const {
267
const auto *ASC = dyn_cast<AddrSpaceCastInst>(I);
268
if (!ASC)
269
return false;
270
unsigned ToAS = ASC->getDestAddressSpace();
271
return (FromAS == ToAS) || IC.isValidAddrSpaceCast(FromAS, ToAS);
272
}
273
274
SmallPtrSet<Instruction *, 32> ValuesToRevisit;
275
SmallSetVector<Instruction *, 4> Worklist;
276
MapVector<Value *, Value *> WorkMap;
277
InstCombinerImpl &IC;
278
Instruction &Root;
279
unsigned FromAS;
280
};
281
} // end anonymous namespace
282
283
bool PointerReplacer::collectUsers() {
284
if (!collectUsersRecursive(Root))
285
return false;
286
287
// Ensure that all outstanding (indirect) users of I
288
// are inserted into the Worklist. Return false
289
// otherwise.
290
for (auto *Inst : ValuesToRevisit)
291
if (!Worklist.contains(Inst))
292
return false;
293
return true;
294
}
295
296
bool PointerReplacer::collectUsersRecursive(Instruction &I) {
297
for (auto *U : I.users()) {
298
auto *Inst = cast<Instruction>(&*U);
299
if (auto *Load = dyn_cast<LoadInst>(Inst)) {
300
if (Load->isVolatile())
301
return false;
302
Worklist.insert(Load);
303
} else if (auto *PHI = dyn_cast<PHINode>(Inst)) {
304
// All incoming values must be instructions for replacability
305
if (any_of(PHI->incoming_values(),
306
[](Value *V) { return !isa<Instruction>(V); }))
307
return false;
308
309
// If at least one incoming value of the PHI is not in Worklist,
310
// store the PHI for revisiting and skip this iteration of the
311
// loop.
312
if (any_of(PHI->incoming_values(), [this](Value *V) {
313
return !isAvailable(cast<Instruction>(V));
314
})) {
315
ValuesToRevisit.insert(Inst);
316
continue;
317
}
318
319
Worklist.insert(PHI);
320
if (!collectUsersRecursive(*PHI))
321
return false;
322
} else if (auto *SI = dyn_cast<SelectInst>(Inst)) {
323
if (!isa<Instruction>(SI->getTrueValue()) ||
324
!isa<Instruction>(SI->getFalseValue()))
325
return false;
326
327
if (!isAvailable(cast<Instruction>(SI->getTrueValue())) ||
328
!isAvailable(cast<Instruction>(SI->getFalseValue()))) {
329
ValuesToRevisit.insert(Inst);
330
continue;
331
}
332
Worklist.insert(SI);
333
if (!collectUsersRecursive(*SI))
334
return false;
335
} else if (isa<GetElementPtrInst>(Inst)) {
336
Worklist.insert(Inst);
337
if (!collectUsersRecursive(*Inst))
338
return false;
339
} else if (auto *MI = dyn_cast<MemTransferInst>(Inst)) {
340
if (MI->isVolatile())
341
return false;
342
Worklist.insert(Inst);
343
} else if (isEqualOrValidAddrSpaceCast(Inst, FromAS)) {
344
Worklist.insert(Inst);
345
if (!collectUsersRecursive(*Inst))
346
return false;
347
} else if (Inst->isLifetimeStartOrEnd()) {
348
continue;
349
} else {
350
// TODO: For arbitrary uses with address space mismatches, should we check
351
// if we can introduce a valid addrspacecast?
352
LLVM_DEBUG(dbgs() << "Cannot handle pointer user: " << *U << '\n');
353
return false;
354
}
355
}
356
357
return true;
358
}
359
360
Value *PointerReplacer::getReplacement(Value *V) { return WorkMap.lookup(V); }
361
362
void PointerReplacer::replace(Instruction *I) {
363
if (getReplacement(I))
364
return;
365
366
if (auto *LT = dyn_cast<LoadInst>(I)) {
367
auto *V = getReplacement(LT->getPointerOperand());
368
assert(V && "Operand not replaced");
369
auto *NewI = new LoadInst(LT->getType(), V, "", LT->isVolatile(),
370
LT->getAlign(), LT->getOrdering(),
371
LT->getSyncScopeID());
372
NewI->takeName(LT);
373
copyMetadataForLoad(*NewI, *LT);
374
375
IC.InsertNewInstWith(NewI, LT->getIterator());
376
IC.replaceInstUsesWith(*LT, NewI);
377
WorkMap[LT] = NewI;
378
} else if (auto *PHI = dyn_cast<PHINode>(I)) {
379
Type *NewTy = getReplacement(PHI->getIncomingValue(0))->getType();
380
auto *NewPHI = PHINode::Create(NewTy, PHI->getNumIncomingValues(),
381
PHI->getName(), PHI->getIterator());
382
for (unsigned int I = 0; I < PHI->getNumIncomingValues(); ++I)
383
NewPHI->addIncoming(getReplacement(PHI->getIncomingValue(I)),
384
PHI->getIncomingBlock(I));
385
WorkMap[PHI] = NewPHI;
386
} else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
387
auto *V = getReplacement(GEP->getPointerOperand());
388
assert(V && "Operand not replaced");
389
SmallVector<Value *, 8> Indices(GEP->indices());
390
auto *NewI =
391
GetElementPtrInst::Create(GEP->getSourceElementType(), V, Indices);
392
IC.InsertNewInstWith(NewI, GEP->getIterator());
393
NewI->takeName(GEP);
394
NewI->setNoWrapFlags(GEP->getNoWrapFlags());
395
WorkMap[GEP] = NewI;
396
} else if (auto *SI = dyn_cast<SelectInst>(I)) {
397
Value *TrueValue = SI->getTrueValue();
398
Value *FalseValue = SI->getFalseValue();
399
if (Value *Replacement = getReplacement(TrueValue))
400
TrueValue = Replacement;
401
if (Value *Replacement = getReplacement(FalseValue))
402
FalseValue = Replacement;
403
auto *NewSI = SelectInst::Create(SI->getCondition(), TrueValue, FalseValue,
404
SI->getName(), nullptr, SI);
405
IC.InsertNewInstWith(NewSI, SI->getIterator());
406
NewSI->takeName(SI);
407
WorkMap[SI] = NewSI;
408
} else if (auto *MemCpy = dyn_cast<MemTransferInst>(I)) {
409
auto *DestV = MemCpy->getRawDest();
410
auto *SrcV = MemCpy->getRawSource();
411
412
if (auto *DestReplace = getReplacement(DestV))
413
DestV = DestReplace;
414
if (auto *SrcReplace = getReplacement(SrcV))
415
SrcV = SrcReplace;
416
417
IC.Builder.SetInsertPoint(MemCpy);
418
auto *NewI = IC.Builder.CreateMemTransferInst(
419
MemCpy->getIntrinsicID(), DestV, MemCpy->getDestAlign(), SrcV,
420
MemCpy->getSourceAlign(), MemCpy->getLength(), MemCpy->isVolatile());
421
AAMDNodes AAMD = MemCpy->getAAMetadata();
422
if (AAMD)
423
NewI->setAAMetadata(AAMD);
424
425
IC.eraseInstFromFunction(*MemCpy);
426
WorkMap[MemCpy] = NewI;
427
} else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(I)) {
428
auto *V = getReplacement(ASC->getPointerOperand());
429
assert(V && "Operand not replaced");
430
assert(isEqualOrValidAddrSpaceCast(
431
ASC, V->getType()->getPointerAddressSpace()) &&
432
"Invalid address space cast!");
433
434
if (V->getType()->getPointerAddressSpace() !=
435
ASC->getType()->getPointerAddressSpace()) {
436
auto *NewI = new AddrSpaceCastInst(V, ASC->getType(), "");
437
NewI->takeName(ASC);
438
IC.InsertNewInstWith(NewI, ASC->getIterator());
439
WorkMap[ASC] = NewI;
440
} else {
441
WorkMap[ASC] = V;
442
}
443
444
} else {
445
llvm_unreachable("should never reach here");
446
}
447
}
448
449
void PointerReplacer::replacePointer(Value *V) {
450
#ifndef NDEBUG
451
auto *PT = cast<PointerType>(Root.getType());
452
auto *NT = cast<PointerType>(V->getType());
453
assert(PT != NT && "Invalid usage");
454
#endif
455
WorkMap[&Root] = V;
456
457
for (Instruction *Workitem : Worklist)
458
replace(Workitem);
459
}
460
461
Instruction *InstCombinerImpl::visitAllocaInst(AllocaInst &AI) {
462
if (auto *I = simplifyAllocaArraySize(*this, AI, DT))
463
return I;
464
465
if (AI.getAllocatedType()->isSized()) {
466
// Move all alloca's of zero byte objects to the entry block and merge them
467
// together. Note that we only do this for alloca's, because malloc should
468
// allocate and return a unique pointer, even for a zero byte allocation.
469
if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinValue() == 0) {
470
// For a zero sized alloca there is no point in doing an array allocation.
471
// This is helpful if the array size is a complicated expression not used
472
// elsewhere.
473
if (AI.isArrayAllocation())
474
return replaceOperand(AI, 0,
475
ConstantInt::get(AI.getArraySize()->getType(), 1));
476
477
// Get the first instruction in the entry block.
478
BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
479
Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
480
if (FirstInst != &AI) {
481
// If the entry block doesn't start with a zero-size alloca then move
482
// this one to the start of the entry block. There is no problem with
483
// dominance as the array size was forced to a constant earlier already.
484
AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
485
if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
486
DL.getTypeAllocSize(EntryAI->getAllocatedType())
487
.getKnownMinValue() != 0) {
488
AI.moveBefore(FirstInst);
489
return &AI;
490
}
491
492
// Replace this zero-sized alloca with the one at the start of the entry
493
// block after ensuring that the address will be aligned enough for both
494
// types.
495
const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign());
496
EntryAI->setAlignment(MaxAlign);
497
return replaceInstUsesWith(AI, EntryAI);
498
}
499
}
500
}
501
502
// Check to see if this allocation is only modified by a memcpy/memmove from
503
// a memory location whose alignment is equal to or exceeds that of the
504
// allocation. If this is the case, we can change all users to use the
505
// constant memory location instead. This is commonly produced by the CFE by
506
// constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
507
// is only subsequently read.
508
SmallVector<Instruction *, 4> ToDelete;
509
if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) {
510
Value *TheSrc = Copy->getSource();
511
Align AllocaAlign = AI.getAlign();
512
Align SourceAlign = getOrEnforceKnownAlignment(
513
TheSrc, AllocaAlign, DL, &AI, &AC, &DT);
514
if (AllocaAlign <= SourceAlign &&
515
isDereferenceableForAllocaSize(TheSrc, &AI, DL) &&
516
!isa<Instruction>(TheSrc)) {
517
// FIXME: Can we sink instructions without violating dominance when TheSrc
518
// is an instruction instead of a constant or argument?
519
LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
520
LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n');
521
unsigned SrcAddrSpace = TheSrc->getType()->getPointerAddressSpace();
522
if (AI.getAddressSpace() == SrcAddrSpace) {
523
for (Instruction *Delete : ToDelete)
524
eraseInstFromFunction(*Delete);
525
526
Instruction *NewI = replaceInstUsesWith(AI, TheSrc);
527
eraseInstFromFunction(*Copy);
528
++NumGlobalCopies;
529
return NewI;
530
}
531
532
PointerReplacer PtrReplacer(*this, AI, SrcAddrSpace);
533
if (PtrReplacer.collectUsers()) {
534
for (Instruction *Delete : ToDelete)
535
eraseInstFromFunction(*Delete);
536
537
PtrReplacer.replacePointer(TheSrc);
538
++NumGlobalCopies;
539
}
540
}
541
}
542
543
// At last, use the generic allocation site handler to aggressively remove
544
// unused allocas.
545
return visitAllocSite(AI);
546
}
547
548
// Are we allowed to form a atomic load or store of this type?
549
static bool isSupportedAtomicType(Type *Ty) {
550
return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
551
}
552
553
/// Helper to combine a load to a new type.
554
///
555
/// This just does the work of combining a load to a new type. It handles
556
/// metadata, etc., and returns the new instruction. The \c NewTy should be the
557
/// loaded *value* type. This will convert it to a pointer, cast the operand to
558
/// that pointer type, load it, etc.
559
///
560
/// Note that this will create all of the instructions with whatever insert
561
/// point the \c InstCombinerImpl currently is using.
562
LoadInst *InstCombinerImpl::combineLoadToNewType(LoadInst &LI, Type *NewTy,
563
const Twine &Suffix) {
564
assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
565
"can't fold an atomic load to requested type");
566
567
LoadInst *NewLoad =
568
Builder.CreateAlignedLoad(NewTy, LI.getPointerOperand(), LI.getAlign(),
569
LI.isVolatile(), LI.getName() + Suffix);
570
NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
571
copyMetadataForLoad(*NewLoad, LI);
572
return NewLoad;
573
}
574
575
/// Combine a store to a new type.
576
///
577
/// Returns the newly created store instruction.
578
static StoreInst *combineStoreToNewValue(InstCombinerImpl &IC, StoreInst &SI,
579
Value *V) {
580
assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
581
"can't fold an atomic store of requested type");
582
583
Value *Ptr = SI.getPointerOperand();
584
SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
585
SI.getAllMetadata(MD);
586
587
StoreInst *NewStore =
588
IC.Builder.CreateAlignedStore(V, Ptr, SI.getAlign(), SI.isVolatile());
589
NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
590
for (const auto &MDPair : MD) {
591
unsigned ID = MDPair.first;
592
MDNode *N = MDPair.second;
593
// Note, essentially every kind of metadata should be preserved here! This
594
// routine is supposed to clone a store instruction changing *only its
595
// type*. The only metadata it makes sense to drop is metadata which is
596
// invalidated when the pointer type changes. This should essentially
597
// never be the case in LLVM, but we explicitly switch over only known
598
// metadata to be conservatively correct. If you are adding metadata to
599
// LLVM which pertains to stores, you almost certainly want to add it
600
// here.
601
switch (ID) {
602
case LLVMContext::MD_dbg:
603
case LLVMContext::MD_DIAssignID:
604
case LLVMContext::MD_tbaa:
605
case LLVMContext::MD_prof:
606
case LLVMContext::MD_fpmath:
607
case LLVMContext::MD_tbaa_struct:
608
case LLVMContext::MD_alias_scope:
609
case LLVMContext::MD_noalias:
610
case LLVMContext::MD_nontemporal:
611
case LLVMContext::MD_mem_parallel_loop_access:
612
case LLVMContext::MD_access_group:
613
// All of these directly apply.
614
NewStore->setMetadata(ID, N);
615
break;
616
case LLVMContext::MD_invariant_load:
617
case LLVMContext::MD_nonnull:
618
case LLVMContext::MD_noundef:
619
case LLVMContext::MD_range:
620
case LLVMContext::MD_align:
621
case LLVMContext::MD_dereferenceable:
622
case LLVMContext::MD_dereferenceable_or_null:
623
// These don't apply for stores.
624
break;
625
}
626
}
627
628
return NewStore;
629
}
630
631
/// Combine loads to match the type of their uses' value after looking
632
/// through intervening bitcasts.
633
///
634
/// The core idea here is that if the result of a load is used in an operation,
635
/// we should load the type most conducive to that operation. For example, when
636
/// loading an integer and converting that immediately to a pointer, we should
637
/// instead directly load a pointer.
638
///
639
/// However, this routine must never change the width of a load or the number of
640
/// loads as that would introduce a semantic change. This combine is expected to
641
/// be a semantic no-op which just allows loads to more closely model the types
642
/// of their consuming operations.
643
///
644
/// Currently, we also refuse to change the precise type used for an atomic load
645
/// or a volatile load. This is debatable, and might be reasonable to change
646
/// later. However, it is risky in case some backend or other part of LLVM is
647
/// relying on the exact type loaded to select appropriate atomic operations.
648
static Instruction *combineLoadToOperationType(InstCombinerImpl &IC,
649
LoadInst &Load) {
650
// FIXME: We could probably with some care handle both volatile and ordered
651
// atomic loads here but it isn't clear that this is important.
652
if (!Load.isUnordered())
653
return nullptr;
654
655
if (Load.use_empty())
656
return nullptr;
657
658
// swifterror values can't be bitcasted.
659
if (Load.getPointerOperand()->isSwiftError())
660
return nullptr;
661
662
// Fold away bit casts of the loaded value by loading the desired type.
663
// Note that we should not do this for pointer<->integer casts,
664
// because that would result in type punning.
665
if (Load.hasOneUse()) {
666
// Don't transform when the type is x86_amx, it makes the pass that lower
667
// x86_amx type happy.
668
Type *LoadTy = Load.getType();
669
if (auto *BC = dyn_cast<BitCastInst>(Load.user_back())) {
670
assert(!LoadTy->isX86_AMXTy() && "Load from x86_amx* should not happen!");
671
if (BC->getType()->isX86_AMXTy())
672
return nullptr;
673
}
674
675
if (auto *CastUser = dyn_cast<CastInst>(Load.user_back())) {
676
Type *DestTy = CastUser->getDestTy();
677
if (CastUser->isNoopCast(IC.getDataLayout()) &&
678
LoadTy->isPtrOrPtrVectorTy() == DestTy->isPtrOrPtrVectorTy() &&
679
(!Load.isAtomic() || isSupportedAtomicType(DestTy))) {
680
LoadInst *NewLoad = IC.combineLoadToNewType(Load, DestTy);
681
CastUser->replaceAllUsesWith(NewLoad);
682
IC.eraseInstFromFunction(*CastUser);
683
return &Load;
684
}
685
}
686
}
687
688
// FIXME: We should also canonicalize loads of vectors when their elements are
689
// cast to other types.
690
return nullptr;
691
}
692
693
static Instruction *unpackLoadToAggregate(InstCombinerImpl &IC, LoadInst &LI) {
694
// FIXME: We could probably with some care handle both volatile and atomic
695
// stores here but it isn't clear that this is important.
696
if (!LI.isSimple())
697
return nullptr;
698
699
Type *T = LI.getType();
700
if (!T->isAggregateType())
701
return nullptr;
702
703
StringRef Name = LI.getName();
704
705
if (auto *ST = dyn_cast<StructType>(T)) {
706
// If the struct only have one element, we unpack.
707
auto NumElements = ST->getNumElements();
708
if (NumElements == 1) {
709
LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U),
710
".unpack");
711
NewLoad->setAAMetadata(LI.getAAMetadata());
712
return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
713
PoisonValue::get(T), NewLoad, 0, Name));
714
}
715
716
// We don't want to break loads with padding here as we'd loose
717
// the knowledge that padding exists for the rest of the pipeline.
718
const DataLayout &DL = IC.getDataLayout();
719
auto *SL = DL.getStructLayout(ST);
720
721
// Don't unpack for structure with scalable vector.
722
if (SL->getSizeInBits().isScalable())
723
return nullptr;
724
725
if (SL->hasPadding())
726
return nullptr;
727
728
const auto Align = LI.getAlign();
729
auto *Addr = LI.getPointerOperand();
730
auto *IdxType = Type::getInt32Ty(T->getContext());
731
auto *Zero = ConstantInt::get(IdxType, 0);
732
733
Value *V = PoisonValue::get(T);
734
for (unsigned i = 0; i < NumElements; i++) {
735
Value *Indices[2] = {
736
Zero,
737
ConstantInt::get(IdxType, i),
738
};
739
auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, ArrayRef(Indices),
740
Name + ".elt");
741
auto *L = IC.Builder.CreateAlignedLoad(
742
ST->getElementType(i), Ptr,
743
commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack");
744
// Propagate AA metadata. It'll still be valid on the narrowed load.
745
L->setAAMetadata(LI.getAAMetadata());
746
V = IC.Builder.CreateInsertValue(V, L, i);
747
}
748
749
V->setName(Name);
750
return IC.replaceInstUsesWith(LI, V);
751
}
752
753
if (auto *AT = dyn_cast<ArrayType>(T)) {
754
auto *ET = AT->getElementType();
755
auto NumElements = AT->getNumElements();
756
if (NumElements == 1) {
757
LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack");
758
NewLoad->setAAMetadata(LI.getAAMetadata());
759
return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
760
PoisonValue::get(T), NewLoad, 0, Name));
761
}
762
763
// Bail out if the array is too large. Ideally we would like to optimize
764
// arrays of arbitrary size but this has a terrible impact on compile time.
765
// The threshold here is chosen arbitrarily, maybe needs a little bit of
766
// tuning.
767
if (NumElements > IC.MaxArraySizeForCombine)
768
return nullptr;
769
770
const DataLayout &DL = IC.getDataLayout();
771
TypeSize EltSize = DL.getTypeAllocSize(ET);
772
const auto Align = LI.getAlign();
773
774
auto *Addr = LI.getPointerOperand();
775
auto *IdxType = Type::getInt64Ty(T->getContext());
776
auto *Zero = ConstantInt::get(IdxType, 0);
777
778
Value *V = PoisonValue::get(T);
779
TypeSize Offset = TypeSize::getZero();
780
for (uint64_t i = 0; i < NumElements; i++) {
781
Value *Indices[2] = {
782
Zero,
783
ConstantInt::get(IdxType, i),
784
};
785
auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, ArrayRef(Indices),
786
Name + ".elt");
787
auto EltAlign = commonAlignment(Align, Offset.getKnownMinValue());
788
auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr,
789
EltAlign, Name + ".unpack");
790
L->setAAMetadata(LI.getAAMetadata());
791
V = IC.Builder.CreateInsertValue(V, L, i);
792
Offset += EltSize;
793
}
794
795
V->setName(Name);
796
return IC.replaceInstUsesWith(LI, V);
797
}
798
799
return nullptr;
800
}
801
802
// If we can determine that all possible objects pointed to by the provided
803
// pointer value are, not only dereferenceable, but also definitively less than
804
// or equal to the provided maximum size, then return true. Otherwise, return
805
// false (constant global values and allocas fall into this category).
806
//
807
// FIXME: This should probably live in ValueTracking (or similar).
808
static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
809
const DataLayout &DL) {
810
SmallPtrSet<Value *, 4> Visited;
811
SmallVector<Value *, 4> Worklist(1, V);
812
813
do {
814
Value *P = Worklist.pop_back_val();
815
P = P->stripPointerCasts();
816
817
if (!Visited.insert(P).second)
818
continue;
819
820
if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
821
Worklist.push_back(SI->getTrueValue());
822
Worklist.push_back(SI->getFalseValue());
823
continue;
824
}
825
826
if (PHINode *PN = dyn_cast<PHINode>(P)) {
827
append_range(Worklist, PN->incoming_values());
828
continue;
829
}
830
831
if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
832
if (GA->isInterposable())
833
return false;
834
Worklist.push_back(GA->getAliasee());
835
continue;
836
}
837
838
// If we know how big this object is, and it is less than MaxSize, continue
839
// searching. Otherwise, return false.
840
if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
841
if (!AI->getAllocatedType()->isSized())
842
return false;
843
844
ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
845
if (!CS)
846
return false;
847
848
TypeSize TS = DL.getTypeAllocSize(AI->getAllocatedType());
849
if (TS.isScalable())
850
return false;
851
// Make sure that, even if the multiplication below would wrap as an
852
// uint64_t, we still do the right thing.
853
if ((CS->getValue().zext(128) * APInt(128, TS.getFixedValue()))
854
.ugt(MaxSize))
855
return false;
856
continue;
857
}
858
859
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
860
if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
861
return false;
862
863
uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
864
if (InitSize > MaxSize)
865
return false;
866
continue;
867
}
868
869
return false;
870
} while (!Worklist.empty());
871
872
return true;
873
}
874
875
// If we're indexing into an object of a known size, and the outer index is
876
// not a constant, but having any value but zero would lead to undefined
877
// behavior, replace it with zero.
878
//
879
// For example, if we have:
880
// @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
881
// ...
882
// %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
883
// ... = load i32* %arrayidx, align 4
884
// Then we know that we can replace %x in the GEP with i64 0.
885
//
886
// FIXME: We could fold any GEP index to zero that would cause UB if it were
887
// not zero. Currently, we only handle the first such index. Also, we could
888
// also search through non-zero constant indices if we kept track of the
889
// offsets those indices implied.
890
static bool canReplaceGEPIdxWithZero(InstCombinerImpl &IC,
891
GetElementPtrInst *GEPI, Instruction *MemI,
892
unsigned &Idx) {
893
if (GEPI->getNumOperands() < 2)
894
return false;
895
896
// Find the first non-zero index of a GEP. If all indices are zero, return
897
// one past the last index.
898
auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
899
unsigned I = 1;
900
for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
901
Value *V = GEPI->getOperand(I);
902
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
903
if (CI->isZero())
904
continue;
905
906
break;
907
}
908
909
return I;
910
};
911
912
// Skip through initial 'zero' indices, and find the corresponding pointer
913
// type. See if the next index is not a constant.
914
Idx = FirstNZIdx(GEPI);
915
if (Idx == GEPI->getNumOperands())
916
return false;
917
if (isa<Constant>(GEPI->getOperand(Idx)))
918
return false;
919
920
SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
921
Type *SourceElementType = GEPI->getSourceElementType();
922
// Size information about scalable vectors is not available, so we cannot
923
// deduce whether indexing at n is undefined behaviour or not. Bail out.
924
if (SourceElementType->isScalableTy())
925
return false;
926
927
Type *AllocTy = GetElementPtrInst::getIndexedType(SourceElementType, Ops);
928
if (!AllocTy || !AllocTy->isSized())
929
return false;
930
const DataLayout &DL = IC.getDataLayout();
931
uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy).getFixedValue();
932
933
// If there are more indices after the one we might replace with a zero, make
934
// sure they're all non-negative. If any of them are negative, the overall
935
// address being computed might be before the base address determined by the
936
// first non-zero index.
937
auto IsAllNonNegative = [&]() {
938
for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
939
KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI);
940
if (Known.isNonNegative())
941
continue;
942
return false;
943
}
944
945
return true;
946
};
947
948
// FIXME: If the GEP is not inbounds, and there are extra indices after the
949
// one we'll replace, those could cause the address computation to wrap
950
// (rendering the IsAllNonNegative() check below insufficient). We can do
951
// better, ignoring zero indices (and other indices we can prove small
952
// enough not to wrap).
953
if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
954
return false;
955
956
// Note that isObjectSizeLessThanOrEq will return true only if the pointer is
957
// also known to be dereferenceable.
958
return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
959
IsAllNonNegative();
960
}
961
962
// If we're indexing into an object with a variable index for the memory
963
// access, but the object has only one element, we can assume that the index
964
// will always be zero. If we replace the GEP, return it.
965
static Instruction *replaceGEPIdxWithZero(InstCombinerImpl &IC, Value *Ptr,
966
Instruction &MemI) {
967
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
968
unsigned Idx;
969
if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
970
Instruction *NewGEPI = GEPI->clone();
971
NewGEPI->setOperand(Idx,
972
ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
973
IC.InsertNewInstBefore(NewGEPI, GEPI->getIterator());
974
return NewGEPI;
975
}
976
}
977
978
return nullptr;
979
}
980
981
static bool canSimplifyNullStoreOrGEP(StoreInst &SI) {
982
if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()))
983
return false;
984
985
auto *Ptr = SI.getPointerOperand();
986
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
987
Ptr = GEPI->getOperand(0);
988
return (isa<ConstantPointerNull>(Ptr) &&
989
!NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()));
990
}
991
992
static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
993
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
994
const Value *GEPI0 = GEPI->getOperand(0);
995
if (isa<ConstantPointerNull>(GEPI0) &&
996
!NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace()))
997
return true;
998
}
999
if (isa<UndefValue>(Op) ||
1000
(isa<ConstantPointerNull>(Op) &&
1001
!NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace())))
1002
return true;
1003
return false;
1004
}
1005
1006
Instruction *InstCombinerImpl::visitLoadInst(LoadInst &LI) {
1007
Value *Op = LI.getOperand(0);
1008
if (Value *Res = simplifyLoadInst(&LI, Op, SQ.getWithInstruction(&LI)))
1009
return replaceInstUsesWith(LI, Res);
1010
1011
// Try to canonicalize the loaded type.
1012
if (Instruction *Res = combineLoadToOperationType(*this, LI))
1013
return Res;
1014
1015
if (!EnableInferAlignmentPass) {
1016
// Attempt to improve the alignment.
1017
Align KnownAlign = getOrEnforceKnownAlignment(
1018
Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT);
1019
if (KnownAlign > LI.getAlign())
1020
LI.setAlignment(KnownAlign);
1021
}
1022
1023
// Replace GEP indices if possible.
1024
if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI))
1025
return replaceOperand(LI, 0, NewGEPI);
1026
1027
if (Instruction *Res = unpackLoadToAggregate(*this, LI))
1028
return Res;
1029
1030
// Do really simple store-to-load forwarding and load CSE, to catch cases
1031
// where there are several consecutive memory accesses to the same location,
1032
// separated by a few arithmetic operations.
1033
bool IsLoadCSE = false;
1034
BatchAAResults BatchAA(*AA);
1035
if (Value *AvailableVal = FindAvailableLoadedValue(&LI, BatchAA, &IsLoadCSE)) {
1036
if (IsLoadCSE)
1037
combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false);
1038
1039
return replaceInstUsesWith(
1040
LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(),
1041
LI.getName() + ".cast"));
1042
}
1043
1044
// None of the following transforms are legal for volatile/ordered atomic
1045
// loads. Most of them do apply for unordered atomics.
1046
if (!LI.isUnordered()) return nullptr;
1047
1048
// load(gep null, ...) -> unreachable
1049
// load null/undef -> unreachable
1050
// TODO: Consider a target hook for valid address spaces for this xforms.
1051
if (canSimplifyNullLoadOrGEP(LI, Op)) {
1052
CreateNonTerminatorUnreachable(&LI);
1053
return replaceInstUsesWith(LI, PoisonValue::get(LI.getType()));
1054
}
1055
1056
if (Op->hasOneUse()) {
1057
// Change select and PHI nodes to select values instead of addresses: this
1058
// helps alias analysis out a lot, allows many others simplifications, and
1059
// exposes redundancy in the code.
1060
//
1061
// Note that we cannot do the transformation unless we know that the
1062
// introduced loads cannot trap! Something like this is valid as long as
1063
// the condition is always false: load (select bool %C, int* null, int* %G),
1064
// but it would not be valid if we transformed it to load from null
1065
// unconditionally.
1066
//
1067
if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
1068
// load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
1069
Align Alignment = LI.getAlign();
1070
if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(),
1071
Alignment, DL, SI) &&
1072
isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(),
1073
Alignment, DL, SI)) {
1074
LoadInst *V1 =
1075
Builder.CreateLoad(LI.getType(), SI->getOperand(1),
1076
SI->getOperand(1)->getName() + ".val");
1077
LoadInst *V2 =
1078
Builder.CreateLoad(LI.getType(), SI->getOperand(2),
1079
SI->getOperand(2)->getName() + ".val");
1080
assert(LI.isUnordered() && "implied by above");
1081
V1->setAlignment(Alignment);
1082
V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1083
V2->setAlignment(Alignment);
1084
V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1085
return SelectInst::Create(SI->getCondition(), V1, V2);
1086
}
1087
1088
// load (select (cond, null, P)) -> load P
1089
if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
1090
!NullPointerIsDefined(SI->getFunction(),
1091
LI.getPointerAddressSpace()))
1092
return replaceOperand(LI, 0, SI->getOperand(2));
1093
1094
// load (select (cond, P, null)) -> load P
1095
if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
1096
!NullPointerIsDefined(SI->getFunction(),
1097
LI.getPointerAddressSpace()))
1098
return replaceOperand(LI, 0, SI->getOperand(1));
1099
}
1100
}
1101
return nullptr;
1102
}
1103
1104
/// Look for extractelement/insertvalue sequence that acts like a bitcast.
1105
///
1106
/// \returns underlying value that was "cast", or nullptr otherwise.
1107
///
1108
/// For example, if we have:
1109
///
1110
/// %E0 = extractelement <2 x double> %U, i32 0
1111
/// %V0 = insertvalue [2 x double] undef, double %E0, 0
1112
/// %E1 = extractelement <2 x double> %U, i32 1
1113
/// %V1 = insertvalue [2 x double] %V0, double %E1, 1
1114
///
1115
/// and the layout of a <2 x double> is isomorphic to a [2 x double],
1116
/// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
1117
/// Note that %U may contain non-undef values where %V1 has undef.
1118
static Value *likeBitCastFromVector(InstCombinerImpl &IC, Value *V) {
1119
Value *U = nullptr;
1120
while (auto *IV = dyn_cast<InsertValueInst>(V)) {
1121
auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
1122
if (!E)
1123
return nullptr;
1124
auto *W = E->getVectorOperand();
1125
if (!U)
1126
U = W;
1127
else if (U != W)
1128
return nullptr;
1129
auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
1130
if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
1131
return nullptr;
1132
V = IV->getAggregateOperand();
1133
}
1134
if (!match(V, m_Undef()) || !U)
1135
return nullptr;
1136
1137
auto *UT = cast<VectorType>(U->getType());
1138
auto *VT = V->getType();
1139
// Check that types UT and VT are bitwise isomorphic.
1140
const auto &DL = IC.getDataLayout();
1141
if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
1142
return nullptr;
1143
}
1144
if (auto *AT = dyn_cast<ArrayType>(VT)) {
1145
if (AT->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
1146
return nullptr;
1147
} else {
1148
auto *ST = cast<StructType>(VT);
1149
if (ST->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
1150
return nullptr;
1151
for (const auto *EltT : ST->elements()) {
1152
if (EltT != UT->getElementType())
1153
return nullptr;
1154
}
1155
}
1156
return U;
1157
}
1158
1159
/// Combine stores to match the type of value being stored.
1160
///
1161
/// The core idea here is that the memory does not have any intrinsic type and
1162
/// where we can we should match the type of a store to the type of value being
1163
/// stored.
1164
///
1165
/// However, this routine must never change the width of a store or the number of
1166
/// stores as that would introduce a semantic change. This combine is expected to
1167
/// be a semantic no-op which just allows stores to more closely model the types
1168
/// of their incoming values.
1169
///
1170
/// Currently, we also refuse to change the precise type used for an atomic or
1171
/// volatile store. This is debatable, and might be reasonable to change later.
1172
/// However, it is risky in case some backend or other part of LLVM is relying
1173
/// on the exact type stored to select appropriate atomic operations.
1174
///
1175
/// \returns true if the store was successfully combined away. This indicates
1176
/// the caller must erase the store instruction. We have to let the caller erase
1177
/// the store instruction as otherwise there is no way to signal whether it was
1178
/// combined or not: IC.EraseInstFromFunction returns a null pointer.
1179
static bool combineStoreToValueType(InstCombinerImpl &IC, StoreInst &SI) {
1180
// FIXME: We could probably with some care handle both volatile and ordered
1181
// atomic stores here but it isn't clear that this is important.
1182
if (!SI.isUnordered())
1183
return false;
1184
1185
// swifterror values can't be bitcasted.
1186
if (SI.getPointerOperand()->isSwiftError())
1187
return false;
1188
1189
Value *V = SI.getValueOperand();
1190
1191
// Fold away bit casts of the stored value by storing the original type.
1192
if (auto *BC = dyn_cast<BitCastInst>(V)) {
1193
assert(!BC->getType()->isX86_AMXTy() &&
1194
"store to x86_amx* should not happen!");
1195
V = BC->getOperand(0);
1196
// Don't transform when the type is x86_amx, it makes the pass that lower
1197
// x86_amx type happy.
1198
if (V->getType()->isX86_AMXTy())
1199
return false;
1200
if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
1201
combineStoreToNewValue(IC, SI, V);
1202
return true;
1203
}
1204
}
1205
1206
if (Value *U = likeBitCastFromVector(IC, V))
1207
if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
1208
combineStoreToNewValue(IC, SI, U);
1209
return true;
1210
}
1211
1212
// FIXME: We should also canonicalize stores of vectors when their elements
1213
// are cast to other types.
1214
return false;
1215
}
1216
1217
static bool unpackStoreToAggregate(InstCombinerImpl &IC, StoreInst &SI) {
1218
// FIXME: We could probably with some care handle both volatile and atomic
1219
// stores here but it isn't clear that this is important.
1220
if (!SI.isSimple())
1221
return false;
1222
1223
Value *V = SI.getValueOperand();
1224
Type *T = V->getType();
1225
1226
if (!T->isAggregateType())
1227
return false;
1228
1229
if (auto *ST = dyn_cast<StructType>(T)) {
1230
// If the struct only have one element, we unpack.
1231
unsigned Count = ST->getNumElements();
1232
if (Count == 1) {
1233
V = IC.Builder.CreateExtractValue(V, 0);
1234
combineStoreToNewValue(IC, SI, V);
1235
return true;
1236
}
1237
1238
// We don't want to break loads with padding here as we'd loose
1239
// the knowledge that padding exists for the rest of the pipeline.
1240
const DataLayout &DL = IC.getDataLayout();
1241
auto *SL = DL.getStructLayout(ST);
1242
1243
// Don't unpack for structure with scalable vector.
1244
if (SL->getSizeInBits().isScalable())
1245
return false;
1246
1247
if (SL->hasPadding())
1248
return false;
1249
1250
const auto Align = SI.getAlign();
1251
1252
SmallString<16> EltName = V->getName();
1253
EltName += ".elt";
1254
auto *Addr = SI.getPointerOperand();
1255
SmallString<16> AddrName = Addr->getName();
1256
AddrName += ".repack";
1257
1258
auto *IdxType = Type::getInt32Ty(ST->getContext());
1259
auto *Zero = ConstantInt::get(IdxType, 0);
1260
for (unsigned i = 0; i < Count; i++) {
1261
Value *Indices[2] = {
1262
Zero,
1263
ConstantInt::get(IdxType, i),
1264
};
1265
auto *Ptr =
1266
IC.Builder.CreateInBoundsGEP(ST, Addr, ArrayRef(Indices), AddrName);
1267
auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1268
auto EltAlign = commonAlignment(Align, SL->getElementOffset(i));
1269
llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1270
NS->setAAMetadata(SI.getAAMetadata());
1271
}
1272
1273
return true;
1274
}
1275
1276
if (auto *AT = dyn_cast<ArrayType>(T)) {
1277
// If the array only have one element, we unpack.
1278
auto NumElements = AT->getNumElements();
1279
if (NumElements == 1) {
1280
V = IC.Builder.CreateExtractValue(V, 0);
1281
combineStoreToNewValue(IC, SI, V);
1282
return true;
1283
}
1284
1285
// Bail out if the array is too large. Ideally we would like to optimize
1286
// arrays of arbitrary size but this has a terrible impact on compile time.
1287
// The threshold here is chosen arbitrarily, maybe needs a little bit of
1288
// tuning.
1289
if (NumElements > IC.MaxArraySizeForCombine)
1290
return false;
1291
1292
const DataLayout &DL = IC.getDataLayout();
1293
TypeSize EltSize = DL.getTypeAllocSize(AT->getElementType());
1294
const auto Align = SI.getAlign();
1295
1296
SmallString<16> EltName = V->getName();
1297
EltName += ".elt";
1298
auto *Addr = SI.getPointerOperand();
1299
SmallString<16> AddrName = Addr->getName();
1300
AddrName += ".repack";
1301
1302
auto *IdxType = Type::getInt64Ty(T->getContext());
1303
auto *Zero = ConstantInt::get(IdxType, 0);
1304
1305
TypeSize Offset = TypeSize::getZero();
1306
for (uint64_t i = 0; i < NumElements; i++) {
1307
Value *Indices[2] = {
1308
Zero,
1309
ConstantInt::get(IdxType, i),
1310
};
1311
auto *Ptr =
1312
IC.Builder.CreateInBoundsGEP(AT, Addr, ArrayRef(Indices), AddrName);
1313
auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1314
auto EltAlign = commonAlignment(Align, Offset.getKnownMinValue());
1315
Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1316
NS->setAAMetadata(SI.getAAMetadata());
1317
Offset += EltSize;
1318
}
1319
1320
return true;
1321
}
1322
1323
return false;
1324
}
1325
1326
/// equivalentAddressValues - Test if A and B will obviously have the same
1327
/// value. This includes recognizing that %t0 and %t1 will have the same
1328
/// value in code like this:
1329
/// %t0 = getelementptr \@a, 0, 3
1330
/// store i32 0, i32* %t0
1331
/// %t1 = getelementptr \@a, 0, 3
1332
/// %t2 = load i32* %t1
1333
///
1334
static bool equivalentAddressValues(Value *A, Value *B) {
1335
// Test if the values are trivially equivalent.
1336
if (A == B) return true;
1337
1338
// Test if the values come form identical arithmetic instructions.
1339
// This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1340
// its only used to compare two uses within the same basic block, which
1341
// means that they'll always either have the same value or one of them
1342
// will have an undefined value.
1343
if (isa<BinaryOperator>(A) ||
1344
isa<CastInst>(A) ||
1345
isa<PHINode>(A) ||
1346
isa<GetElementPtrInst>(A))
1347
if (Instruction *BI = dyn_cast<Instruction>(B))
1348
if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1349
return true;
1350
1351
// Otherwise they may not be equivalent.
1352
return false;
1353
}
1354
1355
Instruction *InstCombinerImpl::visitStoreInst(StoreInst &SI) {
1356
Value *Val = SI.getOperand(0);
1357
Value *Ptr = SI.getOperand(1);
1358
1359
// Try to canonicalize the stored type.
1360
if (combineStoreToValueType(*this, SI))
1361
return eraseInstFromFunction(SI);
1362
1363
if (!EnableInferAlignmentPass) {
1364
// Attempt to improve the alignment.
1365
const Align KnownAlign = getOrEnforceKnownAlignment(
1366
Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT);
1367
if (KnownAlign > SI.getAlign())
1368
SI.setAlignment(KnownAlign);
1369
}
1370
1371
// Try to canonicalize the stored type.
1372
if (unpackStoreToAggregate(*this, SI))
1373
return eraseInstFromFunction(SI);
1374
1375
// Replace GEP indices if possible.
1376
if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI))
1377
return replaceOperand(SI, 1, NewGEPI);
1378
1379
// Don't hack volatile/ordered stores.
1380
// FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1381
if (!SI.isUnordered()) return nullptr;
1382
1383
// If the RHS is an alloca with a single use, zapify the store, making the
1384
// alloca dead.
1385
if (Ptr->hasOneUse()) {
1386
if (isa<AllocaInst>(Ptr))
1387
return eraseInstFromFunction(SI);
1388
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1389
if (isa<AllocaInst>(GEP->getOperand(0))) {
1390
if (GEP->getOperand(0)->hasOneUse())
1391
return eraseInstFromFunction(SI);
1392
}
1393
}
1394
}
1395
1396
// If we have a store to a location which is known constant, we can conclude
1397
// that the store must be storing the constant value (else the memory
1398
// wouldn't be constant), and this must be a noop.
1399
if (!isModSet(AA->getModRefInfoMask(Ptr)))
1400
return eraseInstFromFunction(SI);
1401
1402
// Do really simple DSE, to catch cases where there are several consecutive
1403
// stores to the same location, separated by a few arithmetic operations. This
1404
// situation often occurs with bitfield accesses.
1405
BasicBlock::iterator BBI(SI);
1406
for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1407
--ScanInsts) {
1408
--BBI;
1409
// Don't count debug info directives, lest they affect codegen,
1410
// and we skip pointer-to-pointer bitcasts, which are NOPs.
1411
if (BBI->isDebugOrPseudoInst()) {
1412
ScanInsts++;
1413
continue;
1414
}
1415
1416
if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1417
// Prev store isn't volatile, and stores to the same location?
1418
if (PrevSI->isUnordered() &&
1419
equivalentAddressValues(PrevSI->getOperand(1), SI.getOperand(1)) &&
1420
PrevSI->getValueOperand()->getType() ==
1421
SI.getValueOperand()->getType()) {
1422
++NumDeadStore;
1423
// Manually add back the original store to the worklist now, so it will
1424
// be processed after the operands of the removed store, as this may
1425
// expose additional DSE opportunities.
1426
Worklist.push(&SI);
1427
eraseInstFromFunction(*PrevSI);
1428
return nullptr;
1429
}
1430
break;
1431
}
1432
1433
// If this is a load, we have to stop. However, if the loaded value is from
1434
// the pointer we're loading and is producing the pointer we're storing,
1435
// then *this* store is dead (X = load P; store X -> P).
1436
if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1437
if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1438
assert(SI.isUnordered() && "can't eliminate ordering operation");
1439
return eraseInstFromFunction(SI);
1440
}
1441
1442
// Otherwise, this is a load from some other location. Stores before it
1443
// may not be dead.
1444
break;
1445
}
1446
1447
// Don't skip over loads, throws or things that can modify memory.
1448
if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
1449
break;
1450
}
1451
1452
// store X, null -> turns into 'unreachable' in SimplifyCFG
1453
// store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
1454
if (canSimplifyNullStoreOrGEP(SI)) {
1455
if (!isa<PoisonValue>(Val))
1456
return replaceOperand(SI, 0, PoisonValue::get(Val->getType()));
1457
return nullptr; // Do not modify these!
1458
}
1459
1460
// This is a non-terminator unreachable marker. Don't remove it.
1461
if (isa<UndefValue>(Ptr)) {
1462
// Remove guaranteed-to-transfer instructions before the marker.
1463
if (removeInstructionsBeforeUnreachable(SI))
1464
return &SI;
1465
1466
// Remove all instructions after the marker and handle dead blocks this
1467
// implies.
1468
SmallVector<BasicBlock *> Worklist;
1469
handleUnreachableFrom(SI.getNextNode(), Worklist);
1470
handlePotentiallyDeadBlocks(Worklist);
1471
return nullptr;
1472
}
1473
1474
// store undef, Ptr -> noop
1475
// FIXME: This is technically incorrect because it might overwrite a poison
1476
// value. Change to PoisonValue once #52930 is resolved.
1477
if (isa<UndefValue>(Val))
1478
return eraseInstFromFunction(SI);
1479
1480
return nullptr;
1481
}
1482
1483
/// Try to transform:
1484
/// if () { *P = v1; } else { *P = v2 }
1485
/// or:
1486
/// *P = v1; if () { *P = v2; }
1487
/// into a phi node with a store in the successor.
1488
bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst &SI) {
1489
if (!SI.isUnordered())
1490
return false; // This code has not been audited for volatile/ordered case.
1491
1492
// Check if the successor block has exactly 2 incoming edges.
1493
BasicBlock *StoreBB = SI.getParent();
1494
BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1495
if (!DestBB->hasNPredecessors(2))
1496
return false;
1497
1498
// Capture the other block (the block that doesn't contain our store).
1499
pred_iterator PredIter = pred_begin(DestBB);
1500
if (*PredIter == StoreBB)
1501
++PredIter;
1502
BasicBlock *OtherBB = *PredIter;
1503
1504
// Bail out if all of the relevant blocks aren't distinct. This can happen,
1505
// for example, if SI is in an infinite loop.
1506
if (StoreBB == DestBB || OtherBB == DestBB)
1507
return false;
1508
1509
// Verify that the other block ends in a branch and is not otherwise empty.
1510
BasicBlock::iterator BBI(OtherBB->getTerminator());
1511
BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1512
if (!OtherBr || BBI == OtherBB->begin())
1513
return false;
1514
1515
auto OtherStoreIsMergeable = [&](StoreInst *OtherStore) -> bool {
1516
if (!OtherStore ||
1517
OtherStore->getPointerOperand() != SI.getPointerOperand())
1518
return false;
1519
1520
auto *SIVTy = SI.getValueOperand()->getType();
1521
auto *OSVTy = OtherStore->getValueOperand()->getType();
1522
return CastInst::isBitOrNoopPointerCastable(OSVTy, SIVTy, DL) &&
1523
SI.hasSameSpecialState(OtherStore);
1524
};
1525
1526
// If the other block ends in an unconditional branch, check for the 'if then
1527
// else' case. There is an instruction before the branch.
1528
StoreInst *OtherStore = nullptr;
1529
if (OtherBr->isUnconditional()) {
1530
--BBI;
1531
// Skip over debugging info and pseudo probes.
1532
while (BBI->isDebugOrPseudoInst()) {
1533
if (BBI==OtherBB->begin())
1534
return false;
1535
--BBI;
1536
}
1537
// If this isn't a store, isn't a store to the same location, or is not the
1538
// right kind of store, bail out.
1539
OtherStore = dyn_cast<StoreInst>(BBI);
1540
if (!OtherStoreIsMergeable(OtherStore))
1541
return false;
1542
} else {
1543
// Otherwise, the other block ended with a conditional branch. If one of the
1544
// destinations is StoreBB, then we have the if/then case.
1545
if (OtherBr->getSuccessor(0) != StoreBB &&
1546
OtherBr->getSuccessor(1) != StoreBB)
1547
return false;
1548
1549
// Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1550
// if/then triangle. See if there is a store to the same ptr as SI that
1551
// lives in OtherBB.
1552
for (;; --BBI) {
1553
// Check to see if we find the matching store.
1554
OtherStore = dyn_cast<StoreInst>(BBI);
1555
if (OtherStoreIsMergeable(OtherStore))
1556
break;
1557
1558
// If we find something that may be using or overwriting the stored
1559
// value, or if we run out of instructions, we can't do the transform.
1560
if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
1561
BBI->mayWriteToMemory() || BBI == OtherBB->begin())
1562
return false;
1563
}
1564
1565
// In order to eliminate the store in OtherBr, we have to make sure nothing
1566
// reads or overwrites the stored value in StoreBB.
1567
for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1568
// FIXME: This should really be AA driven.
1569
if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory())
1570
return false;
1571
}
1572
}
1573
1574
// Insert a PHI node now if we need it.
1575
Value *MergedVal = OtherStore->getValueOperand();
1576
// The debug locations of the original instructions might differ. Merge them.
1577
DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(),
1578
OtherStore->getDebugLoc());
1579
if (MergedVal != SI.getValueOperand()) {
1580
PHINode *PN =
1581
PHINode::Create(SI.getValueOperand()->getType(), 2, "storemerge");
1582
PN->addIncoming(SI.getValueOperand(), SI.getParent());
1583
Builder.SetInsertPoint(OtherStore);
1584
PN->addIncoming(Builder.CreateBitOrPointerCast(MergedVal, PN->getType()),
1585
OtherBB);
1586
MergedVal = InsertNewInstBefore(PN, DestBB->begin());
1587
PN->setDebugLoc(MergedLoc);
1588
}
1589
1590
// Advance to a place where it is safe to insert the new store and insert it.
1591
BBI = DestBB->getFirstInsertionPt();
1592
StoreInst *NewSI =
1593
new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(),
1594
SI.getOrdering(), SI.getSyncScopeID());
1595
InsertNewInstBefore(NewSI, BBI);
1596
NewSI->setDebugLoc(MergedLoc);
1597
NewSI->mergeDIAssignID({&SI, OtherStore});
1598
1599
// If the two stores had AA tags, merge them.
1600
AAMDNodes AATags = SI.getAAMetadata();
1601
if (AATags)
1602
NewSI->setAAMetadata(AATags.merge(OtherStore->getAAMetadata()));
1603
1604
// Nuke the old stores.
1605
eraseInstFromFunction(SI);
1606
eraseInstFromFunction(*OtherStore);
1607
return true;
1608
}
1609
1610