Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineNegator.cpp
35266 views
1
//===- InstCombineNegator.cpp -----------------------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements sinking of negation into expression trees,
10
// as long as that can be done without increasing instruction count.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "InstCombineInternal.h"
15
#include "llvm/ADT/APInt.h"
16
#include "llvm/ADT/ArrayRef.h"
17
#include "llvm/ADT/DenseMap.h"
18
#include "llvm/ADT/STLExtras.h"
19
#include "llvm/ADT/SmallVector.h"
20
#include "llvm/ADT/Statistic.h"
21
#include "llvm/ADT/StringRef.h"
22
#include "llvm/ADT/Twine.h"
23
#include "llvm/Analysis/TargetFolder.h"
24
#include "llvm/Analysis/ValueTracking.h"
25
#include "llvm/IR/Constant.h"
26
#include "llvm/IR/Constants.h"
27
#include "llvm/IR/DebugLoc.h"
28
#include "llvm/IR/IRBuilder.h"
29
#include "llvm/IR/Instruction.h"
30
#include "llvm/IR/Instructions.h"
31
#include "llvm/IR/PatternMatch.h"
32
#include "llvm/IR/Type.h"
33
#include "llvm/IR/Use.h"
34
#include "llvm/IR/User.h"
35
#include "llvm/IR/Value.h"
36
#include "llvm/Support/Casting.h"
37
#include "llvm/Support/CommandLine.h"
38
#include "llvm/Support/Compiler.h"
39
#include "llvm/Support/DebugCounter.h"
40
#include "llvm/Support/ErrorHandling.h"
41
#include "llvm/Support/raw_ostream.h"
42
#include "llvm/Transforms/InstCombine/InstCombiner.h"
43
#include <cassert>
44
#include <cstdint>
45
#include <functional>
46
#include <type_traits>
47
#include <utility>
48
49
namespace llvm {
50
class DataLayout;
51
class LLVMContext;
52
} // namespace llvm
53
54
using namespace llvm;
55
56
#define DEBUG_TYPE "instcombine"
57
58
STATISTIC(NegatorTotalNegationsAttempted,
59
"Negator: Number of negations attempted to be sinked");
60
STATISTIC(NegatorNumTreesNegated,
61
"Negator: Number of negations successfully sinked");
62
STATISTIC(NegatorMaxDepthVisited, "Negator: Maximal traversal depth ever "
63
"reached while attempting to sink negation");
64
STATISTIC(NegatorTimesDepthLimitReached,
65
"Negator: How many times did the traversal depth limit was reached "
66
"during sinking");
67
STATISTIC(
68
NegatorNumValuesVisited,
69
"Negator: Total number of values visited during attempts to sink negation");
70
STATISTIC(NegatorNumNegationsFoundInCache,
71
"Negator: How many negations did we retrieve/reuse from cache");
72
STATISTIC(NegatorMaxTotalValuesVisited,
73
"Negator: Maximal number of values ever visited while attempting to "
74
"sink negation");
75
STATISTIC(NegatorNumInstructionsCreatedTotal,
76
"Negator: Number of new negated instructions created, total");
77
STATISTIC(NegatorMaxInstructionsCreated,
78
"Negator: Maximal number of new instructions created during negation "
79
"attempt");
80
STATISTIC(NegatorNumInstructionsNegatedSuccess,
81
"Negator: Number of new negated instructions created in successful "
82
"negation sinking attempts");
83
84
DEBUG_COUNTER(NegatorCounter, "instcombine-negator",
85
"Controls Negator transformations in InstCombine pass");
86
87
static cl::opt<bool>
88
NegatorEnabled("instcombine-negator-enabled", cl::init(true),
89
cl::desc("Should we attempt to sink negations?"));
90
91
static cl::opt<unsigned>
92
NegatorMaxDepth("instcombine-negator-max-depth",
93
cl::init(NegatorDefaultMaxDepth),
94
cl::desc("What is the maximal lookup depth when trying to "
95
"check for viability of negation sinking."));
96
97
Negator::Negator(LLVMContext &C, const DataLayout &DL, bool IsTrulyNegation_)
98
: Builder(C, TargetFolder(DL),
99
IRBuilderCallbackInserter([&](Instruction *I) {
100
++NegatorNumInstructionsCreatedTotal;
101
NewInstructions.push_back(I);
102
})),
103
IsTrulyNegation(IsTrulyNegation_) {}
104
105
#if LLVM_ENABLE_STATS
106
Negator::~Negator() {
107
NegatorMaxTotalValuesVisited.updateMax(NumValuesVisitedInThisNegator);
108
}
109
#endif
110
111
// Due to the InstCombine's worklist management, there are no guarantees that
112
// each instruction we'll encounter has been visited by InstCombine already.
113
// In particular, most importantly for us, that means we have to canonicalize
114
// constants to RHS ourselves, since that is helpful sometimes.
115
std::array<Value *, 2> Negator::getSortedOperandsOfBinOp(Instruction *I) {
116
assert(I->getNumOperands() == 2 && "Only for binops!");
117
std::array<Value *, 2> Ops{I->getOperand(0), I->getOperand(1)};
118
if (I->isCommutative() && InstCombiner::getComplexity(I->getOperand(0)) <
119
InstCombiner::getComplexity(I->getOperand(1)))
120
std::swap(Ops[0], Ops[1]);
121
return Ops;
122
}
123
124
// FIXME: can this be reworked into a worklist-based algorithm while preserving
125
// the depth-first, early bailout traversal?
126
[[nodiscard]] Value *Negator::visitImpl(Value *V, bool IsNSW, unsigned Depth) {
127
// -(undef) -> undef.
128
if (match(V, m_Undef()))
129
return V;
130
131
// In i1, negation can simply be ignored.
132
if (V->getType()->isIntOrIntVectorTy(1))
133
return V;
134
135
Value *X;
136
137
// -(-(X)) -> X.
138
if (match(V, m_Neg(m_Value(X))))
139
return X;
140
141
// Integral constants can be freely negated.
142
if (match(V, m_AnyIntegralConstant()))
143
return ConstantExpr::getNeg(cast<Constant>(V),
144
/*HasNSW=*/false);
145
146
// If we have a non-instruction, then give up.
147
if (!isa<Instruction>(V))
148
return nullptr;
149
150
// If we have started with a true negation (i.e. `sub 0, %y`), then if we've
151
// got instruction that does not require recursive reasoning, we can still
152
// negate it even if it has other uses, without increasing instruction count.
153
if (!V->hasOneUse() && !IsTrulyNegation)
154
return nullptr;
155
156
auto *I = cast<Instruction>(V);
157
unsigned BitWidth = I->getType()->getScalarSizeInBits();
158
159
// We must preserve the insertion point and debug info that is set in the
160
// builder at the time this function is called.
161
InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
162
// And since we are trying to negate instruction I, that tells us about the
163
// insertion point and the debug info that we need to keep.
164
Builder.SetInsertPoint(I);
165
166
// In some cases we can give the answer without further recursion.
167
switch (I->getOpcode()) {
168
case Instruction::Add: {
169
std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
170
// `inc` is always negatible.
171
if (match(Ops[1], m_One()))
172
return Builder.CreateNot(Ops[0], I->getName() + ".neg");
173
break;
174
}
175
case Instruction::Xor:
176
// `not` is always negatible.
177
if (match(I, m_Not(m_Value(X))))
178
return Builder.CreateAdd(X, ConstantInt::get(X->getType(), 1),
179
I->getName() + ".neg");
180
break;
181
case Instruction::AShr:
182
case Instruction::LShr: {
183
// Right-shift sign bit smear is negatible.
184
const APInt *Op1Val;
185
if (match(I->getOperand(1), m_APInt(Op1Val)) && *Op1Val == BitWidth - 1) {
186
Value *BO = I->getOpcode() == Instruction::AShr
187
? Builder.CreateLShr(I->getOperand(0), I->getOperand(1))
188
: Builder.CreateAShr(I->getOperand(0), I->getOperand(1));
189
if (auto *NewInstr = dyn_cast<Instruction>(BO)) {
190
NewInstr->copyIRFlags(I);
191
NewInstr->setName(I->getName() + ".neg");
192
}
193
return BO;
194
}
195
// While we could negate exact arithmetic shift:
196
// ashr exact %x, C --> sdiv exact i8 %x, -1<<C
197
// iff C != 0 and C u< bitwidth(%x), we don't want to,
198
// because division is *THAT* much worse than a shift.
199
break;
200
}
201
case Instruction::SExt:
202
case Instruction::ZExt:
203
// `*ext` of i1 is always negatible
204
if (I->getOperand(0)->getType()->isIntOrIntVectorTy(1))
205
return I->getOpcode() == Instruction::SExt
206
? Builder.CreateZExt(I->getOperand(0), I->getType(),
207
I->getName() + ".neg")
208
: Builder.CreateSExt(I->getOperand(0), I->getType(),
209
I->getName() + ".neg");
210
break;
211
case Instruction::Select: {
212
// If both arms of the select are constants, we don't need to recurse.
213
// Therefore, this transform is not limited by uses.
214
auto *Sel = cast<SelectInst>(I);
215
Constant *TrueC, *FalseC;
216
if (match(Sel->getTrueValue(), m_ImmConstant(TrueC)) &&
217
match(Sel->getFalseValue(), m_ImmConstant(FalseC))) {
218
Constant *NegTrueC = ConstantExpr::getNeg(TrueC);
219
Constant *NegFalseC = ConstantExpr::getNeg(FalseC);
220
return Builder.CreateSelect(Sel->getCondition(), NegTrueC, NegFalseC,
221
I->getName() + ".neg", /*MDFrom=*/I);
222
}
223
break;
224
}
225
case Instruction::Call:
226
if (auto *CI = dyn_cast<CmpIntrinsic>(I); CI && CI->hasOneUse())
227
return Builder.CreateIntrinsic(CI->getType(), CI->getIntrinsicID(),
228
{CI->getRHS(), CI->getLHS()});
229
break;
230
default:
231
break; // Other instructions require recursive reasoning.
232
}
233
234
if (I->getOpcode() == Instruction::Sub &&
235
(I->hasOneUse() || match(I->getOperand(0), m_ImmConstant()))) {
236
// `sub` is always negatible.
237
// However, only do this either if the old `sub` doesn't stick around, or
238
// it was subtracting from a constant. Otherwise, this isn't profitable.
239
return Builder.CreateSub(I->getOperand(1), I->getOperand(0),
240
I->getName() + ".neg", /* HasNUW */ false,
241
IsNSW && I->hasNoSignedWrap());
242
}
243
244
// Some other cases, while still don't require recursion,
245
// are restricted to the one-use case.
246
if (!V->hasOneUse())
247
return nullptr;
248
249
switch (I->getOpcode()) {
250
case Instruction::ZExt: {
251
// Negation of zext of signbit is signbit splat:
252
// 0 - (zext (i8 X u>> 7) to iN) --> sext (i8 X s>> 7) to iN
253
Value *SrcOp = I->getOperand(0);
254
unsigned SrcWidth = SrcOp->getType()->getScalarSizeInBits();
255
const APInt &FullShift = APInt(SrcWidth, SrcWidth - 1);
256
if (IsTrulyNegation &&
257
match(SrcOp, m_LShr(m_Value(X), m_SpecificIntAllowPoison(FullShift)))) {
258
Value *Ashr = Builder.CreateAShr(X, FullShift);
259
return Builder.CreateSExt(Ashr, I->getType());
260
}
261
break;
262
}
263
case Instruction::And: {
264
Constant *ShAmt;
265
// sub(y,and(lshr(x,C),1)) --> add(ashr(shl(x,(BW-1)-C),BW-1),y)
266
if (match(I, m_And(m_OneUse(m_TruncOrSelf(
267
m_LShr(m_Value(X), m_ImmConstant(ShAmt)))),
268
m_One()))) {
269
unsigned BW = X->getType()->getScalarSizeInBits();
270
Constant *BWMinusOne = ConstantInt::get(X->getType(), BW - 1);
271
Value *R = Builder.CreateShl(X, Builder.CreateSub(BWMinusOne, ShAmt));
272
R = Builder.CreateAShr(R, BWMinusOne);
273
return Builder.CreateTruncOrBitCast(R, I->getType());
274
}
275
break;
276
}
277
case Instruction::SDiv:
278
// `sdiv` is negatible if divisor is not undef/INT_MIN/1.
279
// While this is normally not behind a use-check,
280
// let's consider division to be special since it's costly.
281
if (auto *Op1C = dyn_cast<Constant>(I->getOperand(1))) {
282
if (!Op1C->containsUndefOrPoisonElement() &&
283
Op1C->isNotMinSignedValue() && Op1C->isNotOneValue()) {
284
Value *BO =
285
Builder.CreateSDiv(I->getOperand(0), ConstantExpr::getNeg(Op1C),
286
I->getName() + ".neg");
287
if (auto *NewInstr = dyn_cast<Instruction>(BO))
288
NewInstr->setIsExact(I->isExact());
289
return BO;
290
}
291
}
292
break;
293
}
294
295
// Rest of the logic is recursive, so if it's time to give up then it's time.
296
if (Depth > NegatorMaxDepth) {
297
LLVM_DEBUG(dbgs() << "Negator: reached maximal allowed traversal depth in "
298
<< *V << ". Giving up.\n");
299
++NegatorTimesDepthLimitReached;
300
return nullptr;
301
}
302
303
switch (I->getOpcode()) {
304
case Instruction::Freeze: {
305
// `freeze` is negatible if its operand is negatible.
306
Value *NegOp = negate(I->getOperand(0), IsNSW, Depth + 1);
307
if (!NegOp) // Early return.
308
return nullptr;
309
return Builder.CreateFreeze(NegOp, I->getName() + ".neg");
310
}
311
case Instruction::PHI: {
312
// `phi` is negatible if all the incoming values are negatible.
313
auto *PHI = cast<PHINode>(I);
314
SmallVector<Value *, 4> NegatedIncomingValues(PHI->getNumOperands());
315
for (auto I : zip(PHI->incoming_values(), NegatedIncomingValues)) {
316
if (!(std::get<1>(I) =
317
negate(std::get<0>(I), IsNSW, Depth + 1))) // Early return.
318
return nullptr;
319
}
320
// All incoming values are indeed negatible. Create negated PHI node.
321
PHINode *NegatedPHI = Builder.CreatePHI(
322
PHI->getType(), PHI->getNumOperands(), PHI->getName() + ".neg");
323
for (auto I : zip(NegatedIncomingValues, PHI->blocks()))
324
NegatedPHI->addIncoming(std::get<0>(I), std::get<1>(I));
325
return NegatedPHI;
326
}
327
case Instruction::Select: {
328
if (isKnownNegation(I->getOperand(1), I->getOperand(2), /*NeedNSW=*/false,
329
/*AllowPoison=*/false)) {
330
// Of one hand of select is known to be negation of another hand,
331
// just swap the hands around.
332
auto *NewSelect = cast<SelectInst>(I->clone());
333
// Just swap the operands of the select.
334
NewSelect->swapValues();
335
// Don't swap prof metadata, we didn't change the branch behavior.
336
NewSelect->setName(I->getName() + ".neg");
337
// Poison-generating flags should be dropped
338
Value *TV = NewSelect->getTrueValue();
339
Value *FV = NewSelect->getFalseValue();
340
if (match(TV, m_Neg(m_Specific(FV))))
341
cast<Instruction>(TV)->dropPoisonGeneratingFlags();
342
else if (match(FV, m_Neg(m_Specific(TV))))
343
cast<Instruction>(FV)->dropPoisonGeneratingFlags();
344
else {
345
cast<Instruction>(TV)->dropPoisonGeneratingFlags();
346
cast<Instruction>(FV)->dropPoisonGeneratingFlags();
347
}
348
Builder.Insert(NewSelect);
349
return NewSelect;
350
}
351
// `select` is negatible if both hands of `select` are negatible.
352
Value *NegOp1 = negate(I->getOperand(1), IsNSW, Depth + 1);
353
if (!NegOp1) // Early return.
354
return nullptr;
355
Value *NegOp2 = negate(I->getOperand(2), IsNSW, Depth + 1);
356
if (!NegOp2)
357
return nullptr;
358
// Do preserve the metadata!
359
return Builder.CreateSelect(I->getOperand(0), NegOp1, NegOp2,
360
I->getName() + ".neg", /*MDFrom=*/I);
361
}
362
case Instruction::ShuffleVector: {
363
// `shufflevector` is negatible if both operands are negatible.
364
auto *Shuf = cast<ShuffleVectorInst>(I);
365
Value *NegOp0 = negate(I->getOperand(0), IsNSW, Depth + 1);
366
if (!NegOp0) // Early return.
367
return nullptr;
368
Value *NegOp1 = negate(I->getOperand(1), IsNSW, Depth + 1);
369
if (!NegOp1)
370
return nullptr;
371
return Builder.CreateShuffleVector(NegOp0, NegOp1, Shuf->getShuffleMask(),
372
I->getName() + ".neg");
373
}
374
case Instruction::ExtractElement: {
375
// `extractelement` is negatible if source operand is negatible.
376
auto *EEI = cast<ExtractElementInst>(I);
377
Value *NegVector = negate(EEI->getVectorOperand(), IsNSW, Depth + 1);
378
if (!NegVector) // Early return.
379
return nullptr;
380
return Builder.CreateExtractElement(NegVector, EEI->getIndexOperand(),
381
I->getName() + ".neg");
382
}
383
case Instruction::InsertElement: {
384
// `insertelement` is negatible if both the source vector and
385
// element-to-be-inserted are negatible.
386
auto *IEI = cast<InsertElementInst>(I);
387
Value *NegVector = negate(IEI->getOperand(0), IsNSW, Depth + 1);
388
if (!NegVector) // Early return.
389
return nullptr;
390
Value *NegNewElt = negate(IEI->getOperand(1), IsNSW, Depth + 1);
391
if (!NegNewElt) // Early return.
392
return nullptr;
393
return Builder.CreateInsertElement(NegVector, NegNewElt, IEI->getOperand(2),
394
I->getName() + ".neg");
395
}
396
case Instruction::Trunc: {
397
// `trunc` is negatible if its operand is negatible.
398
Value *NegOp = negate(I->getOperand(0), /* IsNSW */ false, Depth + 1);
399
if (!NegOp) // Early return.
400
return nullptr;
401
return Builder.CreateTrunc(NegOp, I->getType(), I->getName() + ".neg");
402
}
403
case Instruction::Shl: {
404
// `shl` is negatible if the first operand is negatible.
405
IsNSW &= I->hasNoSignedWrap();
406
if (Value *NegOp0 = negate(I->getOperand(0), IsNSW, Depth + 1))
407
return Builder.CreateShl(NegOp0, I->getOperand(1), I->getName() + ".neg",
408
/* HasNUW */ false, IsNSW);
409
// Otherwise, `shl %x, C` can be interpreted as `mul %x, 1<<C`.
410
Constant *Op1C;
411
if (!match(I->getOperand(1), m_ImmConstant(Op1C)) || !IsTrulyNegation)
412
return nullptr;
413
return Builder.CreateMul(
414
I->getOperand(0),
415
Builder.CreateShl(Constant::getAllOnesValue(Op1C->getType()), Op1C),
416
I->getName() + ".neg", /* HasNUW */ false, IsNSW);
417
}
418
case Instruction::Or: {
419
if (!cast<PossiblyDisjointInst>(I)->isDisjoint())
420
return nullptr; // Don't know how to handle `or` in general.
421
std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
422
// `or`/`add` are interchangeable when operands have no common bits set.
423
// `inc` is always negatible.
424
if (match(Ops[1], m_One()))
425
return Builder.CreateNot(Ops[0], I->getName() + ".neg");
426
// Else, just defer to Instruction::Add handling.
427
[[fallthrough]];
428
}
429
case Instruction::Add: {
430
// `add` is negatible if both of its operands are negatible.
431
SmallVector<Value *, 2> NegatedOps, NonNegatedOps;
432
for (Value *Op : I->operands()) {
433
// Can we sink the negation into this operand?
434
if (Value *NegOp = negate(Op, /* IsNSW */ false, Depth + 1)) {
435
NegatedOps.emplace_back(NegOp); // Successfully negated operand!
436
continue;
437
}
438
// Failed to sink negation into this operand. IFF we started from negation
439
// and we manage to sink negation into one operand, we can still do this.
440
if (!IsTrulyNegation)
441
return nullptr;
442
NonNegatedOps.emplace_back(Op); // Just record which operand that was.
443
}
444
assert((NegatedOps.size() + NonNegatedOps.size()) == 2 &&
445
"Internal consistency check failed.");
446
// Did we manage to sink negation into both of the operands?
447
if (NegatedOps.size() == 2) // Then we get to keep the `add`!
448
return Builder.CreateAdd(NegatedOps[0], NegatedOps[1],
449
I->getName() + ".neg");
450
assert(IsTrulyNegation && "We should have early-exited then.");
451
// Completely failed to sink negation?
452
if (NonNegatedOps.size() == 2)
453
return nullptr;
454
// 0-(a+b) --> (-a)-b
455
return Builder.CreateSub(NegatedOps[0], NonNegatedOps[0],
456
I->getName() + ".neg");
457
}
458
case Instruction::Xor: {
459
std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
460
// `xor` is negatible if one of its operands is invertible.
461
// FIXME: InstCombineInverter? But how to connect Inverter and Negator?
462
if (auto *C = dyn_cast<Constant>(Ops[1])) {
463
if (IsTrulyNegation) {
464
Value *Xor = Builder.CreateXor(Ops[0], ConstantExpr::getNot(C));
465
return Builder.CreateAdd(Xor, ConstantInt::get(Xor->getType(), 1),
466
I->getName() + ".neg");
467
}
468
}
469
return nullptr;
470
}
471
case Instruction::Mul: {
472
std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
473
// `mul` is negatible if one of its operands is negatible.
474
Value *NegatedOp, *OtherOp;
475
// First try the second operand, in case it's a constant it will be best to
476
// just invert it instead of sinking the `neg` deeper.
477
if (Value *NegOp1 = negate(Ops[1], /* IsNSW */ false, Depth + 1)) {
478
NegatedOp = NegOp1;
479
OtherOp = Ops[0];
480
} else if (Value *NegOp0 = negate(Ops[0], /* IsNSW */ false, Depth + 1)) {
481
NegatedOp = NegOp0;
482
OtherOp = Ops[1];
483
} else
484
// Can't negate either of them.
485
return nullptr;
486
return Builder.CreateMul(NegatedOp, OtherOp, I->getName() + ".neg",
487
/* HasNUW */ false, IsNSW && I->hasNoSignedWrap());
488
}
489
default:
490
return nullptr; // Don't know, likely not negatible for free.
491
}
492
493
llvm_unreachable("Can't get here. We always return from switch.");
494
}
495
496
[[nodiscard]] Value *Negator::negate(Value *V, bool IsNSW, unsigned Depth) {
497
NegatorMaxDepthVisited.updateMax(Depth);
498
++NegatorNumValuesVisited;
499
500
#if LLVM_ENABLE_STATS
501
++NumValuesVisitedInThisNegator;
502
#endif
503
504
#ifndef NDEBUG
505
// We can't ever have a Value with such an address.
506
Value *Placeholder = reinterpret_cast<Value *>(static_cast<uintptr_t>(-1));
507
#endif
508
509
// Did we already try to negate this value?
510
auto NegationsCacheIterator = NegationsCache.find(V);
511
if (NegationsCacheIterator != NegationsCache.end()) {
512
++NegatorNumNegationsFoundInCache;
513
Value *NegatedV = NegationsCacheIterator->second;
514
assert(NegatedV != Placeholder && "Encountered a cycle during negation.");
515
return NegatedV;
516
}
517
518
#ifndef NDEBUG
519
// We did not find a cached result for negation of V. While there,
520
// let's temporairly cache a placeholder value, with the idea that if later
521
// during negation we fetch it from cache, we'll know we're in a cycle.
522
NegationsCache[V] = Placeholder;
523
#endif
524
525
// No luck. Try negating it for real.
526
Value *NegatedV = visitImpl(V, IsNSW, Depth);
527
// And cache the (real) result for the future.
528
NegationsCache[V] = NegatedV;
529
530
return NegatedV;
531
}
532
533
[[nodiscard]] std::optional<Negator::Result> Negator::run(Value *Root,
534
bool IsNSW) {
535
Value *Negated = negate(Root, IsNSW, /*Depth=*/0);
536
if (!Negated) {
537
// We must cleanup newly-inserted instructions, to avoid any potential
538
// endless combine looping.
539
for (Instruction *I : llvm::reverse(NewInstructions))
540
I->eraseFromParent();
541
return std::nullopt;
542
}
543
return std::make_pair(ArrayRef<Instruction *>(NewInstructions), Negated);
544
}
545
546
[[nodiscard]] Value *Negator::Negate(bool LHSIsZero, bool IsNSW, Value *Root,
547
InstCombinerImpl &IC) {
548
++NegatorTotalNegationsAttempted;
549
LLVM_DEBUG(dbgs() << "Negator: attempting to sink negation into " << *Root
550
<< "\n");
551
552
if (!NegatorEnabled || !DebugCounter::shouldExecute(NegatorCounter))
553
return nullptr;
554
555
Negator N(Root->getContext(), IC.getDataLayout(), LHSIsZero);
556
std::optional<Result> Res = N.run(Root, IsNSW);
557
if (!Res) { // Negation failed.
558
LLVM_DEBUG(dbgs() << "Negator: failed to sink negation into " << *Root
559
<< "\n");
560
return nullptr;
561
}
562
563
LLVM_DEBUG(dbgs() << "Negator: successfully sunk negation into " << *Root
564
<< "\n NEW: " << *Res->second << "\n");
565
++NegatorNumTreesNegated;
566
567
// We must temporarily unset the 'current' insertion point and DebugLoc of the
568
// InstCombine's IRBuilder so that it won't interfere with the ones we have
569
// already specified when producing negated instructions.
570
InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
571
IC.Builder.ClearInsertionPoint();
572
IC.Builder.SetCurrentDebugLocation(DebugLoc());
573
574
// And finally, we must add newly-created instructions into the InstCombine's
575
// worklist (in a proper order!) so it can attempt to combine them.
576
LLVM_DEBUG(dbgs() << "Negator: Propagating " << Res->first.size()
577
<< " instrs to InstCombine\n");
578
NegatorMaxInstructionsCreated.updateMax(Res->first.size());
579
NegatorNumInstructionsNegatedSuccess += Res->first.size();
580
581
// They are in def-use order, so nothing fancy, just insert them in order.
582
for (Instruction *I : Res->first)
583
IC.Builder.Insert(I, I->getName());
584
585
// And return the new root.
586
return Res->second;
587
}
588
589