Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp
35266 views
1
//===- InstCombinePHI.cpp -------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the visitPHINode function.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "InstCombineInternal.h"
14
#include "llvm/ADT/STLExtras.h"
15
#include "llvm/ADT/SmallPtrSet.h"
16
#include "llvm/ADT/Statistic.h"
17
#include "llvm/Analysis/InstructionSimplify.h"
18
#include "llvm/Analysis/ValueTracking.h"
19
#include "llvm/IR/PatternMatch.h"
20
#include "llvm/Support/CommandLine.h"
21
#include "llvm/Transforms/InstCombine/InstCombiner.h"
22
#include "llvm/Transforms/Utils/Local.h"
23
#include <optional>
24
25
using namespace llvm;
26
using namespace llvm::PatternMatch;
27
28
#define DEBUG_TYPE "instcombine"
29
30
static cl::opt<unsigned>
31
MaxNumPhis("instcombine-max-num-phis", cl::init(512),
32
cl::desc("Maximum number phis to handle in intptr/ptrint folding"));
33
34
STATISTIC(NumPHIsOfInsertValues,
35
"Number of phi-of-insertvalue turned into insertvalue-of-phis");
36
STATISTIC(NumPHIsOfExtractValues,
37
"Number of phi-of-extractvalue turned into extractvalue-of-phi");
38
STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
39
40
/// The PHI arguments will be folded into a single operation with a PHI node
41
/// as input. The debug location of the single operation will be the merged
42
/// locations of the original PHI node arguments.
43
void InstCombinerImpl::PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN) {
44
auto *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
45
Inst->setDebugLoc(FirstInst->getDebugLoc());
46
// We do not expect a CallInst here, otherwise, N-way merging of DebugLoc
47
// will be inefficient.
48
assert(!isa<CallInst>(Inst));
49
50
for (Value *V : drop_begin(PN.incoming_values())) {
51
auto *I = cast<Instruction>(V);
52
Inst->applyMergedLocation(Inst->getDebugLoc(), I->getDebugLoc());
53
}
54
}
55
56
// Replace Integer typed PHI PN if the PHI's value is used as a pointer value.
57
// If there is an existing pointer typed PHI that produces the same value as PN,
58
// replace PN and the IntToPtr operation with it. Otherwise, synthesize a new
59
// PHI node:
60
//
61
// Case-1:
62
// bb1:
63
// int_init = PtrToInt(ptr_init)
64
// br label %bb2
65
// bb2:
66
// int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
67
// ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
68
// ptr_val2 = IntToPtr(int_val)
69
// ...
70
// use(ptr_val2)
71
// ptr_val_inc = ...
72
// inc_val_inc = PtrToInt(ptr_val_inc)
73
//
74
// ==>
75
// bb1:
76
// br label %bb2
77
// bb2:
78
// ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
79
// ...
80
// use(ptr_val)
81
// ptr_val_inc = ...
82
//
83
// Case-2:
84
// bb1:
85
// int_ptr = BitCast(ptr_ptr)
86
// int_init = Load(int_ptr)
87
// br label %bb2
88
// bb2:
89
// int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
90
// ptr_val2 = IntToPtr(int_val)
91
// ...
92
// use(ptr_val2)
93
// ptr_val_inc = ...
94
// inc_val_inc = PtrToInt(ptr_val_inc)
95
// ==>
96
// bb1:
97
// ptr_init = Load(ptr_ptr)
98
// br label %bb2
99
// bb2:
100
// ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
101
// ...
102
// use(ptr_val)
103
// ptr_val_inc = ...
104
// ...
105
//
106
bool InstCombinerImpl::foldIntegerTypedPHI(PHINode &PN) {
107
if (!PN.getType()->isIntegerTy())
108
return false;
109
if (!PN.hasOneUse())
110
return false;
111
112
auto *IntToPtr = dyn_cast<IntToPtrInst>(PN.user_back());
113
if (!IntToPtr)
114
return false;
115
116
// Check if the pointer is actually used as pointer:
117
auto HasPointerUse = [](Instruction *IIP) {
118
for (User *U : IIP->users()) {
119
Value *Ptr = nullptr;
120
if (LoadInst *LoadI = dyn_cast<LoadInst>(U)) {
121
Ptr = LoadI->getPointerOperand();
122
} else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
123
Ptr = SI->getPointerOperand();
124
} else if (GetElementPtrInst *GI = dyn_cast<GetElementPtrInst>(U)) {
125
Ptr = GI->getPointerOperand();
126
}
127
128
if (Ptr && Ptr == IIP)
129
return true;
130
}
131
return false;
132
};
133
134
if (!HasPointerUse(IntToPtr))
135
return false;
136
137
if (DL.getPointerSizeInBits(IntToPtr->getAddressSpace()) !=
138
DL.getTypeSizeInBits(IntToPtr->getOperand(0)->getType()))
139
return false;
140
141
SmallVector<Value *, 4> AvailablePtrVals;
142
for (auto Incoming : zip(PN.blocks(), PN.incoming_values())) {
143
BasicBlock *BB = std::get<0>(Incoming);
144
Value *Arg = std::get<1>(Incoming);
145
146
// First look backward:
147
if (auto *PI = dyn_cast<PtrToIntInst>(Arg)) {
148
AvailablePtrVals.emplace_back(PI->getOperand(0));
149
continue;
150
}
151
152
// Next look forward:
153
Value *ArgIntToPtr = nullptr;
154
for (User *U : Arg->users()) {
155
if (isa<IntToPtrInst>(U) && U->getType() == IntToPtr->getType() &&
156
(DT.dominates(cast<Instruction>(U), BB) ||
157
cast<Instruction>(U)->getParent() == BB)) {
158
ArgIntToPtr = U;
159
break;
160
}
161
}
162
163
if (ArgIntToPtr) {
164
AvailablePtrVals.emplace_back(ArgIntToPtr);
165
continue;
166
}
167
168
// If Arg is defined by a PHI, allow it. This will also create
169
// more opportunities iteratively.
170
if (isa<PHINode>(Arg)) {
171
AvailablePtrVals.emplace_back(Arg);
172
continue;
173
}
174
175
// For a single use integer load:
176
auto *LoadI = dyn_cast<LoadInst>(Arg);
177
if (!LoadI)
178
return false;
179
180
if (!LoadI->hasOneUse())
181
return false;
182
183
// Push the integer typed Load instruction into the available
184
// value set, and fix it up later when the pointer typed PHI
185
// is synthesized.
186
AvailablePtrVals.emplace_back(LoadI);
187
}
188
189
// Now search for a matching PHI
190
auto *BB = PN.getParent();
191
assert(AvailablePtrVals.size() == PN.getNumIncomingValues() &&
192
"Not enough available ptr typed incoming values");
193
PHINode *MatchingPtrPHI = nullptr;
194
unsigned NumPhis = 0;
195
for (PHINode &PtrPHI : BB->phis()) {
196
// FIXME: consider handling this in AggressiveInstCombine
197
if (NumPhis++ > MaxNumPhis)
198
return false;
199
if (&PtrPHI == &PN || PtrPHI.getType() != IntToPtr->getType())
200
continue;
201
if (any_of(zip(PN.blocks(), AvailablePtrVals),
202
[&](const auto &BlockAndValue) {
203
BasicBlock *BB = std::get<0>(BlockAndValue);
204
Value *V = std::get<1>(BlockAndValue);
205
return PtrPHI.getIncomingValueForBlock(BB) != V;
206
}))
207
continue;
208
MatchingPtrPHI = &PtrPHI;
209
break;
210
}
211
212
if (MatchingPtrPHI) {
213
assert(MatchingPtrPHI->getType() == IntToPtr->getType() &&
214
"Phi's Type does not match with IntToPtr");
215
// Explicitly replace the inttoptr (rather than inserting a ptrtoint) here,
216
// to make sure another transform can't undo it in the meantime.
217
replaceInstUsesWith(*IntToPtr, MatchingPtrPHI);
218
eraseInstFromFunction(*IntToPtr);
219
eraseInstFromFunction(PN);
220
return true;
221
}
222
223
// If it requires a conversion for every PHI operand, do not do it.
224
if (all_of(AvailablePtrVals, [&](Value *V) {
225
return (V->getType() != IntToPtr->getType()) || isa<IntToPtrInst>(V);
226
}))
227
return false;
228
229
// If any of the operand that requires casting is a terminator
230
// instruction, do not do it. Similarly, do not do the transform if the value
231
// is PHI in a block with no insertion point, for example, a catchswitch
232
// block, since we will not be able to insert a cast after the PHI.
233
if (any_of(AvailablePtrVals, [&](Value *V) {
234
if (V->getType() == IntToPtr->getType())
235
return false;
236
auto *Inst = dyn_cast<Instruction>(V);
237
if (!Inst)
238
return false;
239
if (Inst->isTerminator())
240
return true;
241
auto *BB = Inst->getParent();
242
if (isa<PHINode>(Inst) && BB->getFirstInsertionPt() == BB->end())
243
return true;
244
return false;
245
}))
246
return false;
247
248
PHINode *NewPtrPHI = PHINode::Create(
249
IntToPtr->getType(), PN.getNumIncomingValues(), PN.getName() + ".ptr");
250
251
InsertNewInstBefore(NewPtrPHI, PN.getIterator());
252
SmallDenseMap<Value *, Instruction *> Casts;
253
for (auto Incoming : zip(PN.blocks(), AvailablePtrVals)) {
254
auto *IncomingBB = std::get<0>(Incoming);
255
auto *IncomingVal = std::get<1>(Incoming);
256
257
if (IncomingVal->getType() == IntToPtr->getType()) {
258
NewPtrPHI->addIncoming(IncomingVal, IncomingBB);
259
continue;
260
}
261
262
#ifndef NDEBUG
263
LoadInst *LoadI = dyn_cast<LoadInst>(IncomingVal);
264
assert((isa<PHINode>(IncomingVal) ||
265
IncomingVal->getType()->isPointerTy() ||
266
(LoadI && LoadI->hasOneUse())) &&
267
"Can not replace LoadInst with multiple uses");
268
#endif
269
// Need to insert a BitCast.
270
// For an integer Load instruction with a single use, the load + IntToPtr
271
// cast will be simplified into a pointer load:
272
// %v = load i64, i64* %a.ip, align 8
273
// %v.cast = inttoptr i64 %v to float **
274
// ==>
275
// %v.ptrp = bitcast i64 * %a.ip to float **
276
// %v.cast = load float *, float ** %v.ptrp, align 8
277
Instruction *&CI = Casts[IncomingVal];
278
if (!CI) {
279
CI = CastInst::CreateBitOrPointerCast(IncomingVal, IntToPtr->getType(),
280
IncomingVal->getName() + ".ptr");
281
if (auto *IncomingI = dyn_cast<Instruction>(IncomingVal)) {
282
BasicBlock::iterator InsertPos(IncomingI);
283
InsertPos++;
284
BasicBlock *BB = IncomingI->getParent();
285
if (isa<PHINode>(IncomingI))
286
InsertPos = BB->getFirstInsertionPt();
287
assert(InsertPos != BB->end() && "should have checked above");
288
InsertNewInstBefore(CI, InsertPos);
289
} else {
290
auto *InsertBB = &IncomingBB->getParent()->getEntryBlock();
291
InsertNewInstBefore(CI, InsertBB->getFirstInsertionPt());
292
}
293
}
294
NewPtrPHI->addIncoming(CI, IncomingBB);
295
}
296
297
// Explicitly replace the inttoptr (rather than inserting a ptrtoint) here,
298
// to make sure another transform can't undo it in the meantime.
299
replaceInstUsesWith(*IntToPtr, NewPtrPHI);
300
eraseInstFromFunction(*IntToPtr);
301
eraseInstFromFunction(PN);
302
return true;
303
}
304
305
// Remove RoundTrip IntToPtr/PtrToInt Cast on PHI-Operand and
306
// fold Phi-operand to bitcast.
307
Instruction *InstCombinerImpl::foldPHIArgIntToPtrToPHI(PHINode &PN) {
308
// convert ptr2int ( phi[ int2ptr(ptr2int(x))] ) --> ptr2int ( phi [ x ] )
309
// Make sure all uses of phi are ptr2int.
310
if (!all_of(PN.users(), [](User *U) { return isa<PtrToIntInst>(U); }))
311
return nullptr;
312
313
// Iterating over all operands to check presence of target pointers for
314
// optimization.
315
bool OperandWithRoundTripCast = false;
316
for (unsigned OpNum = 0; OpNum != PN.getNumIncomingValues(); ++OpNum) {
317
if (auto *NewOp =
318
simplifyIntToPtrRoundTripCast(PN.getIncomingValue(OpNum))) {
319
replaceOperand(PN, OpNum, NewOp);
320
OperandWithRoundTripCast = true;
321
}
322
}
323
if (!OperandWithRoundTripCast)
324
return nullptr;
325
return &PN;
326
}
327
328
/// If we have something like phi [insertvalue(a,b,0), insertvalue(c,d,0)],
329
/// turn this into a phi[a,c] and phi[b,d] and a single insertvalue.
330
Instruction *
331
InstCombinerImpl::foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN) {
332
auto *FirstIVI = cast<InsertValueInst>(PN.getIncomingValue(0));
333
334
// Scan to see if all operands are `insertvalue`'s with the same indices,
335
// and all have a single use.
336
for (Value *V : drop_begin(PN.incoming_values())) {
337
auto *I = dyn_cast<InsertValueInst>(V);
338
if (!I || !I->hasOneUser() || I->getIndices() != FirstIVI->getIndices())
339
return nullptr;
340
}
341
342
// For each operand of an `insertvalue`
343
std::array<PHINode *, 2> NewOperands;
344
for (int OpIdx : {0, 1}) {
345
auto *&NewOperand = NewOperands[OpIdx];
346
// Create a new PHI node to receive the values the operand has in each
347
// incoming basic block.
348
NewOperand = PHINode::Create(
349
FirstIVI->getOperand(OpIdx)->getType(), PN.getNumIncomingValues(),
350
FirstIVI->getOperand(OpIdx)->getName() + ".pn");
351
// And populate each operand's PHI with said values.
352
for (auto Incoming : zip(PN.blocks(), PN.incoming_values()))
353
NewOperand->addIncoming(
354
cast<InsertValueInst>(std::get<1>(Incoming))->getOperand(OpIdx),
355
std::get<0>(Incoming));
356
InsertNewInstBefore(NewOperand, PN.getIterator());
357
}
358
359
// And finally, create `insertvalue` over the newly-formed PHI nodes.
360
auto *NewIVI = InsertValueInst::Create(NewOperands[0], NewOperands[1],
361
FirstIVI->getIndices(), PN.getName());
362
363
PHIArgMergedDebugLoc(NewIVI, PN);
364
++NumPHIsOfInsertValues;
365
return NewIVI;
366
}
367
368
/// If we have something like phi [extractvalue(a,0), extractvalue(b,0)],
369
/// turn this into a phi[a,b] and a single extractvalue.
370
Instruction *
371
InstCombinerImpl::foldPHIArgExtractValueInstructionIntoPHI(PHINode &PN) {
372
auto *FirstEVI = cast<ExtractValueInst>(PN.getIncomingValue(0));
373
374
// Scan to see if all operands are `extractvalue`'s with the same indices,
375
// and all have a single use.
376
for (Value *V : drop_begin(PN.incoming_values())) {
377
auto *I = dyn_cast<ExtractValueInst>(V);
378
if (!I || !I->hasOneUser() || I->getIndices() != FirstEVI->getIndices() ||
379
I->getAggregateOperand()->getType() !=
380
FirstEVI->getAggregateOperand()->getType())
381
return nullptr;
382
}
383
384
// Create a new PHI node to receive the values the aggregate operand has
385
// in each incoming basic block.
386
auto *NewAggregateOperand = PHINode::Create(
387
FirstEVI->getAggregateOperand()->getType(), PN.getNumIncomingValues(),
388
FirstEVI->getAggregateOperand()->getName() + ".pn");
389
// And populate the PHI with said values.
390
for (auto Incoming : zip(PN.blocks(), PN.incoming_values()))
391
NewAggregateOperand->addIncoming(
392
cast<ExtractValueInst>(std::get<1>(Incoming))->getAggregateOperand(),
393
std::get<0>(Incoming));
394
InsertNewInstBefore(NewAggregateOperand, PN.getIterator());
395
396
// And finally, create `extractvalue` over the newly-formed PHI nodes.
397
auto *NewEVI = ExtractValueInst::Create(NewAggregateOperand,
398
FirstEVI->getIndices(), PN.getName());
399
400
PHIArgMergedDebugLoc(NewEVI, PN);
401
++NumPHIsOfExtractValues;
402
return NewEVI;
403
}
404
405
/// If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the
406
/// adds all have a single user, turn this into a phi and a single binop.
407
Instruction *InstCombinerImpl::foldPHIArgBinOpIntoPHI(PHINode &PN) {
408
Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
409
assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
410
unsigned Opc = FirstInst->getOpcode();
411
Value *LHSVal = FirstInst->getOperand(0);
412
Value *RHSVal = FirstInst->getOperand(1);
413
414
Type *LHSType = LHSVal->getType();
415
Type *RHSType = RHSVal->getType();
416
417
// Scan to see if all operands are the same opcode, and all have one user.
418
for (Value *V : drop_begin(PN.incoming_values())) {
419
Instruction *I = dyn_cast<Instruction>(V);
420
if (!I || I->getOpcode() != Opc || !I->hasOneUser() ||
421
// Verify type of the LHS matches so we don't fold cmp's of different
422
// types.
423
I->getOperand(0)->getType() != LHSType ||
424
I->getOperand(1)->getType() != RHSType)
425
return nullptr;
426
427
// If they are CmpInst instructions, check their predicates
428
if (CmpInst *CI = dyn_cast<CmpInst>(I))
429
if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
430
return nullptr;
431
432
// Keep track of which operand needs a phi node.
433
if (I->getOperand(0) != LHSVal) LHSVal = nullptr;
434
if (I->getOperand(1) != RHSVal) RHSVal = nullptr;
435
}
436
437
// If both LHS and RHS would need a PHI, don't do this transformation,
438
// because it would increase the number of PHIs entering the block,
439
// which leads to higher register pressure. This is especially
440
// bad when the PHIs are in the header of a loop.
441
if (!LHSVal && !RHSVal)
442
return nullptr;
443
444
// Otherwise, this is safe to transform!
445
446
Value *InLHS = FirstInst->getOperand(0);
447
Value *InRHS = FirstInst->getOperand(1);
448
PHINode *NewLHS = nullptr, *NewRHS = nullptr;
449
if (!LHSVal) {
450
NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
451
FirstInst->getOperand(0)->getName() + ".pn");
452
NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
453
InsertNewInstBefore(NewLHS, PN.getIterator());
454
LHSVal = NewLHS;
455
}
456
457
if (!RHSVal) {
458
NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
459
FirstInst->getOperand(1)->getName() + ".pn");
460
NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
461
InsertNewInstBefore(NewRHS, PN.getIterator());
462
RHSVal = NewRHS;
463
}
464
465
// Add all operands to the new PHIs.
466
if (NewLHS || NewRHS) {
467
for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
468
BasicBlock *InBB = std::get<0>(Incoming);
469
Value *InVal = std::get<1>(Incoming);
470
Instruction *InInst = cast<Instruction>(InVal);
471
if (NewLHS) {
472
Value *NewInLHS = InInst->getOperand(0);
473
NewLHS->addIncoming(NewInLHS, InBB);
474
}
475
if (NewRHS) {
476
Value *NewInRHS = InInst->getOperand(1);
477
NewRHS->addIncoming(NewInRHS, InBB);
478
}
479
}
480
}
481
482
if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) {
483
CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
484
LHSVal, RHSVal);
485
PHIArgMergedDebugLoc(NewCI, PN);
486
return NewCI;
487
}
488
489
BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
490
BinaryOperator *NewBinOp =
491
BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
492
493
NewBinOp->copyIRFlags(PN.getIncomingValue(0));
494
495
for (Value *V : drop_begin(PN.incoming_values()))
496
NewBinOp->andIRFlags(V);
497
498
PHIArgMergedDebugLoc(NewBinOp, PN);
499
return NewBinOp;
500
}
501
502
Instruction *InstCombinerImpl::foldPHIArgGEPIntoPHI(PHINode &PN) {
503
GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
504
505
SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
506
FirstInst->op_end());
507
// This is true if all GEP bases are allocas and if all indices into them are
508
// constants.
509
bool AllBasePointersAreAllocas = true;
510
511
// We don't want to replace this phi if the replacement would require
512
// more than one phi, which leads to higher register pressure. This is
513
// especially bad when the PHIs are in the header of a loop.
514
bool NeededPhi = false;
515
516
// Remember flags of the first phi-operand getelementptr.
517
GEPNoWrapFlags NW = FirstInst->getNoWrapFlags();
518
519
// Scan to see if all operands are the same opcode, and all have one user.
520
for (Value *V : drop_begin(PN.incoming_values())) {
521
GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V);
522
if (!GEP || !GEP->hasOneUser() ||
523
GEP->getSourceElementType() != FirstInst->getSourceElementType() ||
524
GEP->getNumOperands() != FirstInst->getNumOperands())
525
return nullptr;
526
527
NW &= GEP->getNoWrapFlags();
528
529
// Keep track of whether or not all GEPs are of alloca pointers.
530
if (AllBasePointersAreAllocas &&
531
(!isa<AllocaInst>(GEP->getOperand(0)) ||
532
!GEP->hasAllConstantIndices()))
533
AllBasePointersAreAllocas = false;
534
535
// Compare the operand lists.
536
for (unsigned Op = 0, E = FirstInst->getNumOperands(); Op != E; ++Op) {
537
if (FirstInst->getOperand(Op) == GEP->getOperand(Op))
538
continue;
539
540
// Don't merge two GEPs when two operands differ (introducing phi nodes)
541
// if one of the PHIs has a constant for the index. The index may be
542
// substantially cheaper to compute for the constants, so making it a
543
// variable index could pessimize the path. This also handles the case
544
// for struct indices, which must always be constant.
545
if (isa<ConstantInt>(FirstInst->getOperand(Op)) ||
546
isa<ConstantInt>(GEP->getOperand(Op)))
547
return nullptr;
548
549
if (FirstInst->getOperand(Op)->getType() !=
550
GEP->getOperand(Op)->getType())
551
return nullptr;
552
553
// If we already needed a PHI for an earlier operand, and another operand
554
// also requires a PHI, we'd be introducing more PHIs than we're
555
// eliminating, which increases register pressure on entry to the PHI's
556
// block.
557
if (NeededPhi)
558
return nullptr;
559
560
FixedOperands[Op] = nullptr; // Needs a PHI.
561
NeededPhi = true;
562
}
563
}
564
565
// If all of the base pointers of the PHI'd GEPs are from allocas, don't
566
// bother doing this transformation. At best, this will just save a bit of
567
// offset calculation, but all the predecessors will have to materialize the
568
// stack address into a register anyway. We'd actually rather *clone* the
569
// load up into the predecessors so that we have a load of a gep of an alloca,
570
// which can usually all be folded into the load.
571
if (AllBasePointersAreAllocas)
572
return nullptr;
573
574
// Otherwise, this is safe to transform. Insert PHI nodes for each operand
575
// that is variable.
576
SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
577
578
bool HasAnyPHIs = false;
579
for (unsigned I = 0, E = FixedOperands.size(); I != E; ++I) {
580
if (FixedOperands[I])
581
continue; // operand doesn't need a phi.
582
Value *FirstOp = FirstInst->getOperand(I);
583
PHINode *NewPN =
584
PHINode::Create(FirstOp->getType(), E, FirstOp->getName() + ".pn");
585
InsertNewInstBefore(NewPN, PN.getIterator());
586
587
NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
588
OperandPhis[I] = NewPN;
589
FixedOperands[I] = NewPN;
590
HasAnyPHIs = true;
591
}
592
593
// Add all operands to the new PHIs.
594
if (HasAnyPHIs) {
595
for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
596
BasicBlock *InBB = std::get<0>(Incoming);
597
Value *InVal = std::get<1>(Incoming);
598
GetElementPtrInst *InGEP = cast<GetElementPtrInst>(InVal);
599
600
for (unsigned Op = 0, E = OperandPhis.size(); Op != E; ++Op)
601
if (PHINode *OpPhi = OperandPhis[Op])
602
OpPhi->addIncoming(InGEP->getOperand(Op), InBB);
603
}
604
}
605
606
Value *Base = FixedOperands[0];
607
GetElementPtrInst *NewGEP =
608
GetElementPtrInst::Create(FirstInst->getSourceElementType(), Base,
609
ArrayRef(FixedOperands).slice(1), NW);
610
PHIArgMergedDebugLoc(NewGEP, PN);
611
return NewGEP;
612
}
613
614
/// Return true if we know that it is safe to sink the load out of the block
615
/// that defines it. This means that it must be obvious the value of the load is
616
/// not changed from the point of the load to the end of the block it is in.
617
///
618
/// Finally, it is safe, but not profitable, to sink a load targeting a
619
/// non-address-taken alloca. Doing so will cause us to not promote the alloca
620
/// to a register.
621
static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
622
BasicBlock::iterator BBI = L->getIterator(), E = L->getParent()->end();
623
624
for (++BBI; BBI != E; ++BBI)
625
if (BBI->mayWriteToMemory()) {
626
// Calls that only access inaccessible memory do not block sinking the
627
// load.
628
if (auto *CB = dyn_cast<CallBase>(BBI))
629
if (CB->onlyAccessesInaccessibleMemory())
630
continue;
631
return false;
632
}
633
634
// Check for non-address taken alloca. If not address-taken already, it isn't
635
// profitable to do this xform.
636
if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
637
bool IsAddressTaken = false;
638
for (User *U : AI->users()) {
639
if (isa<LoadInst>(U)) continue;
640
if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
641
// If storing TO the alloca, then the address isn't taken.
642
if (SI->getOperand(1) == AI) continue;
643
}
644
IsAddressTaken = true;
645
break;
646
}
647
648
if (!IsAddressTaken && AI->isStaticAlloca())
649
return false;
650
}
651
652
// If this load is a load from a GEP with a constant offset from an alloca,
653
// then we don't want to sink it. In its present form, it will be
654
// load [constant stack offset]. Sinking it will cause us to have to
655
// materialize the stack addresses in each predecessor in a register only to
656
// do a shared load from register in the successor.
657
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
658
if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
659
if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
660
return false;
661
662
return true;
663
}
664
665
Instruction *InstCombinerImpl::foldPHIArgLoadIntoPHI(PHINode &PN) {
666
LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
667
668
// Can't forward swifterror through a phi.
669
if (FirstLI->getOperand(0)->isSwiftError())
670
return nullptr;
671
672
// FIXME: This is overconservative; this transform is allowed in some cases
673
// for atomic operations.
674
if (FirstLI->isAtomic())
675
return nullptr;
676
677
// When processing loads, we need to propagate two bits of information to the
678
// sunk load: whether it is volatile, and what its alignment is.
679
bool IsVolatile = FirstLI->isVolatile();
680
Align LoadAlignment = FirstLI->getAlign();
681
const unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
682
683
// We can't sink the load if the loaded value could be modified between the
684
// load and the PHI.
685
if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
686
!isSafeAndProfitableToSinkLoad(FirstLI))
687
return nullptr;
688
689
// If the PHI is of volatile loads and the load block has multiple
690
// successors, sinking it would remove a load of the volatile value from
691
// the path through the other successor.
692
if (IsVolatile &&
693
FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
694
return nullptr;
695
696
for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
697
BasicBlock *InBB = std::get<0>(Incoming);
698
Value *InVal = std::get<1>(Incoming);
699
LoadInst *LI = dyn_cast<LoadInst>(InVal);
700
if (!LI || !LI->hasOneUser() || LI->isAtomic())
701
return nullptr;
702
703
// Make sure all arguments are the same type of operation.
704
if (LI->isVolatile() != IsVolatile ||
705
LI->getPointerAddressSpace() != LoadAddrSpace)
706
return nullptr;
707
708
// Can't forward swifterror through a phi.
709
if (LI->getOperand(0)->isSwiftError())
710
return nullptr;
711
712
// We can't sink the load if the loaded value could be modified between
713
// the load and the PHI.
714
if (LI->getParent() != InBB || !isSafeAndProfitableToSinkLoad(LI))
715
return nullptr;
716
717
LoadAlignment = std::min(LoadAlignment, LI->getAlign());
718
719
// If the PHI is of volatile loads and the load block has multiple
720
// successors, sinking it would remove a load of the volatile value from
721
// the path through the other successor.
722
if (IsVolatile && LI->getParent()->getTerminator()->getNumSuccessors() != 1)
723
return nullptr;
724
}
725
726
// Okay, they are all the same operation. Create a new PHI node of the
727
// correct type, and PHI together all of the LHS's of the instructions.
728
PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
729
PN.getNumIncomingValues(),
730
PN.getName()+".in");
731
732
Value *InVal = FirstLI->getOperand(0);
733
NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
734
LoadInst *NewLI =
735
new LoadInst(FirstLI->getType(), NewPN, "", IsVolatile, LoadAlignment);
736
737
unsigned KnownIDs[] = {
738
LLVMContext::MD_tbaa,
739
LLVMContext::MD_range,
740
LLVMContext::MD_invariant_load,
741
LLVMContext::MD_alias_scope,
742
LLVMContext::MD_noalias,
743
LLVMContext::MD_nonnull,
744
LLVMContext::MD_align,
745
LLVMContext::MD_dereferenceable,
746
LLVMContext::MD_dereferenceable_or_null,
747
LLVMContext::MD_access_group,
748
LLVMContext::MD_noundef,
749
};
750
751
for (unsigned ID : KnownIDs)
752
NewLI->setMetadata(ID, FirstLI->getMetadata(ID));
753
754
// Add all operands to the new PHI and combine TBAA metadata.
755
for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
756
BasicBlock *BB = std::get<0>(Incoming);
757
Value *V = std::get<1>(Incoming);
758
LoadInst *LI = cast<LoadInst>(V);
759
combineMetadata(NewLI, LI, KnownIDs, true);
760
Value *NewInVal = LI->getOperand(0);
761
if (NewInVal != InVal)
762
InVal = nullptr;
763
NewPN->addIncoming(NewInVal, BB);
764
}
765
766
if (InVal) {
767
// The new PHI unions all of the same values together. This is really
768
// common, so we handle it intelligently here for compile-time speed.
769
NewLI->setOperand(0, InVal);
770
delete NewPN;
771
} else {
772
InsertNewInstBefore(NewPN, PN.getIterator());
773
}
774
775
// If this was a volatile load that we are merging, make sure to loop through
776
// and mark all the input loads as non-volatile. If we don't do this, we will
777
// insert a new volatile load and the old ones will not be deletable.
778
if (IsVolatile)
779
for (Value *IncValue : PN.incoming_values())
780
cast<LoadInst>(IncValue)->setVolatile(false);
781
782
PHIArgMergedDebugLoc(NewLI, PN);
783
return NewLI;
784
}
785
786
/// TODO: This function could handle other cast types, but then it might
787
/// require special-casing a cast from the 'i1' type. See the comment in
788
/// FoldPHIArgOpIntoPHI() about pessimizing illegal integer types.
789
Instruction *InstCombinerImpl::foldPHIArgZextsIntoPHI(PHINode &Phi) {
790
// We cannot create a new instruction after the PHI if the terminator is an
791
// EHPad because there is no valid insertion point.
792
if (Instruction *TI = Phi.getParent()->getTerminator())
793
if (TI->isEHPad())
794
return nullptr;
795
796
// Early exit for the common case of a phi with two operands. These are
797
// handled elsewhere. See the comment below where we check the count of zexts
798
// and constants for more details.
799
unsigned NumIncomingValues = Phi.getNumIncomingValues();
800
if (NumIncomingValues < 3)
801
return nullptr;
802
803
// Find the narrower type specified by the first zext.
804
Type *NarrowType = nullptr;
805
for (Value *V : Phi.incoming_values()) {
806
if (auto *Zext = dyn_cast<ZExtInst>(V)) {
807
NarrowType = Zext->getSrcTy();
808
break;
809
}
810
}
811
if (!NarrowType)
812
return nullptr;
813
814
// Walk the phi operands checking that we only have zexts or constants that
815
// we can shrink for free. Store the new operands for the new phi.
816
SmallVector<Value *, 4> NewIncoming;
817
unsigned NumZexts = 0;
818
unsigned NumConsts = 0;
819
for (Value *V : Phi.incoming_values()) {
820
if (auto *Zext = dyn_cast<ZExtInst>(V)) {
821
// All zexts must be identical and have one user.
822
if (Zext->getSrcTy() != NarrowType || !Zext->hasOneUser())
823
return nullptr;
824
NewIncoming.push_back(Zext->getOperand(0));
825
NumZexts++;
826
} else if (auto *C = dyn_cast<Constant>(V)) {
827
// Make sure that constants can fit in the new type.
828
Constant *Trunc = getLosslessUnsignedTrunc(C, NarrowType);
829
if (!Trunc)
830
return nullptr;
831
NewIncoming.push_back(Trunc);
832
NumConsts++;
833
} else {
834
// If it's not a cast or a constant, bail out.
835
return nullptr;
836
}
837
}
838
839
// The more common cases of a phi with no constant operands or just one
840
// variable operand are handled by FoldPHIArgOpIntoPHI() and foldOpIntoPhi()
841
// respectively. foldOpIntoPhi() wants to do the opposite transform that is
842
// performed here. It tries to replicate a cast in the phi operand's basic
843
// block to expose other folding opportunities. Thus, InstCombine will
844
// infinite loop without this check.
845
if (NumConsts == 0 || NumZexts < 2)
846
return nullptr;
847
848
// All incoming values are zexts or constants that are safe to truncate.
849
// Create a new phi node of the narrow type, phi together all of the new
850
// operands, and zext the result back to the original type.
851
PHINode *NewPhi = PHINode::Create(NarrowType, NumIncomingValues,
852
Phi.getName() + ".shrunk");
853
for (unsigned I = 0; I != NumIncomingValues; ++I)
854
NewPhi->addIncoming(NewIncoming[I], Phi.getIncomingBlock(I));
855
856
InsertNewInstBefore(NewPhi, Phi.getIterator());
857
return CastInst::CreateZExtOrBitCast(NewPhi, Phi.getType());
858
}
859
860
/// If all operands to a PHI node are the same "unary" operator and they all are
861
/// only used by the PHI, PHI together their inputs, and do the operation once,
862
/// to the result of the PHI.
863
Instruction *InstCombinerImpl::foldPHIArgOpIntoPHI(PHINode &PN) {
864
// We cannot create a new instruction after the PHI if the terminator is an
865
// EHPad because there is no valid insertion point.
866
if (Instruction *TI = PN.getParent()->getTerminator())
867
if (TI->isEHPad())
868
return nullptr;
869
870
Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
871
872
if (isa<GetElementPtrInst>(FirstInst))
873
return foldPHIArgGEPIntoPHI(PN);
874
if (isa<LoadInst>(FirstInst))
875
return foldPHIArgLoadIntoPHI(PN);
876
if (isa<InsertValueInst>(FirstInst))
877
return foldPHIArgInsertValueInstructionIntoPHI(PN);
878
if (isa<ExtractValueInst>(FirstInst))
879
return foldPHIArgExtractValueInstructionIntoPHI(PN);
880
881
// Scan the instruction, looking for input operations that can be folded away.
882
// If all input operands to the phi are the same instruction (e.g. a cast from
883
// the same type or "+42") we can pull the operation through the PHI, reducing
884
// code size and simplifying code.
885
Constant *ConstantOp = nullptr;
886
Type *CastSrcTy = nullptr;
887
888
if (isa<CastInst>(FirstInst)) {
889
CastSrcTy = FirstInst->getOperand(0)->getType();
890
891
// Be careful about transforming integer PHIs. We don't want to pessimize
892
// the code by turning an i32 into an i1293.
893
if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
894
if (!shouldChangeType(PN.getType(), CastSrcTy))
895
return nullptr;
896
}
897
} else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
898
// Can fold binop, compare or shift here if the RHS is a constant,
899
// otherwise call FoldPHIArgBinOpIntoPHI.
900
ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
901
if (!ConstantOp)
902
return foldPHIArgBinOpIntoPHI(PN);
903
} else {
904
return nullptr; // Cannot fold this operation.
905
}
906
907
// Check to see if all arguments are the same operation.
908
for (Value *V : drop_begin(PN.incoming_values())) {
909
Instruction *I = dyn_cast<Instruction>(V);
910
if (!I || !I->hasOneUser() || !I->isSameOperationAs(FirstInst))
911
return nullptr;
912
if (CastSrcTy) {
913
if (I->getOperand(0)->getType() != CastSrcTy)
914
return nullptr; // Cast operation must match.
915
} else if (I->getOperand(1) != ConstantOp) {
916
return nullptr;
917
}
918
}
919
920
// Okay, they are all the same operation. Create a new PHI node of the
921
// correct type, and PHI together all of the LHS's of the instructions.
922
PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
923
PN.getNumIncomingValues(),
924
PN.getName()+".in");
925
926
Value *InVal = FirstInst->getOperand(0);
927
NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
928
929
// Add all operands to the new PHI.
930
for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
931
BasicBlock *BB = std::get<0>(Incoming);
932
Value *V = std::get<1>(Incoming);
933
Value *NewInVal = cast<Instruction>(V)->getOperand(0);
934
if (NewInVal != InVal)
935
InVal = nullptr;
936
NewPN->addIncoming(NewInVal, BB);
937
}
938
939
Value *PhiVal;
940
if (InVal) {
941
// The new PHI unions all of the same values together. This is really
942
// common, so we handle it intelligently here for compile-time speed.
943
PhiVal = InVal;
944
delete NewPN;
945
} else {
946
InsertNewInstBefore(NewPN, PN.getIterator());
947
PhiVal = NewPN;
948
}
949
950
// Insert and return the new operation.
951
if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) {
952
CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal,
953
PN.getType());
954
PHIArgMergedDebugLoc(NewCI, PN);
955
return NewCI;
956
}
957
958
if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
959
BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
960
BinOp->copyIRFlags(PN.getIncomingValue(0));
961
962
for (Value *V : drop_begin(PN.incoming_values()))
963
BinOp->andIRFlags(V);
964
965
PHIArgMergedDebugLoc(BinOp, PN);
966
return BinOp;
967
}
968
969
CmpInst *CIOp = cast<CmpInst>(FirstInst);
970
CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
971
PhiVal, ConstantOp);
972
PHIArgMergedDebugLoc(NewCI, PN);
973
return NewCI;
974
}
975
976
/// Return true if this PHI node is only used by a PHI node cycle that is dead.
977
static bool isDeadPHICycle(PHINode *PN,
978
SmallPtrSetImpl<PHINode *> &PotentiallyDeadPHIs) {
979
if (PN->use_empty()) return true;
980
if (!PN->hasOneUse()) return false;
981
982
// Remember this node, and if we find the cycle, return.
983
if (!PotentiallyDeadPHIs.insert(PN).second)
984
return true;
985
986
// Don't scan crazily complex things.
987
if (PotentiallyDeadPHIs.size() == 16)
988
return false;
989
990
if (PHINode *PU = dyn_cast<PHINode>(PN->user_back()))
991
return isDeadPHICycle(PU, PotentiallyDeadPHIs);
992
993
return false;
994
}
995
996
/// Return true if this phi node is always equal to NonPhiInVal.
997
/// This happens with mutually cyclic phi nodes like:
998
/// z = some value; x = phi (y, z); y = phi (x, z)
999
static bool PHIsEqualValue(PHINode *PN, Value *&NonPhiInVal,
1000
SmallPtrSetImpl<PHINode *> &ValueEqualPHIs) {
1001
// See if we already saw this PHI node.
1002
if (!ValueEqualPHIs.insert(PN).second)
1003
return true;
1004
1005
// Don't scan crazily complex things.
1006
if (ValueEqualPHIs.size() == 16)
1007
return false;
1008
1009
// Scan the operands to see if they are either phi nodes or are equal to
1010
// the value.
1011
for (Value *Op : PN->incoming_values()) {
1012
if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
1013
if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs)) {
1014
if (NonPhiInVal)
1015
return false;
1016
NonPhiInVal = OpPN;
1017
}
1018
} else if (Op != NonPhiInVal)
1019
return false;
1020
}
1021
1022
return true;
1023
}
1024
1025
/// Return an existing non-zero constant if this phi node has one, otherwise
1026
/// return constant 1.
1027
static ConstantInt *getAnyNonZeroConstInt(PHINode &PN) {
1028
assert(isa<IntegerType>(PN.getType()) && "Expect only integer type phi");
1029
for (Value *V : PN.operands())
1030
if (auto *ConstVA = dyn_cast<ConstantInt>(V))
1031
if (!ConstVA->isZero())
1032
return ConstVA;
1033
return ConstantInt::get(cast<IntegerType>(PN.getType()), 1);
1034
}
1035
1036
namespace {
1037
struct PHIUsageRecord {
1038
unsigned PHIId; // The ID # of the PHI (something determinstic to sort on)
1039
unsigned Shift; // The amount shifted.
1040
Instruction *Inst; // The trunc instruction.
1041
1042
PHIUsageRecord(unsigned Pn, unsigned Sh, Instruction *User)
1043
: PHIId(Pn), Shift(Sh), Inst(User) {}
1044
1045
bool operator<(const PHIUsageRecord &RHS) const {
1046
if (PHIId < RHS.PHIId) return true;
1047
if (PHIId > RHS.PHIId) return false;
1048
if (Shift < RHS.Shift) return true;
1049
if (Shift > RHS.Shift) return false;
1050
return Inst->getType()->getPrimitiveSizeInBits() <
1051
RHS.Inst->getType()->getPrimitiveSizeInBits();
1052
}
1053
};
1054
1055
struct LoweredPHIRecord {
1056
PHINode *PN; // The PHI that was lowered.
1057
unsigned Shift; // The amount shifted.
1058
unsigned Width; // The width extracted.
1059
1060
LoweredPHIRecord(PHINode *Phi, unsigned Sh, Type *Ty)
1061
: PN(Phi), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
1062
1063
// Ctor form used by DenseMap.
1064
LoweredPHIRecord(PHINode *Phi, unsigned Sh) : PN(Phi), Shift(Sh), Width(0) {}
1065
};
1066
} // namespace
1067
1068
namespace llvm {
1069
template<>
1070
struct DenseMapInfo<LoweredPHIRecord> {
1071
static inline LoweredPHIRecord getEmptyKey() {
1072
return LoweredPHIRecord(nullptr, 0);
1073
}
1074
static inline LoweredPHIRecord getTombstoneKey() {
1075
return LoweredPHIRecord(nullptr, 1);
1076
}
1077
static unsigned getHashValue(const LoweredPHIRecord &Val) {
1078
return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
1079
(Val.Width>>3);
1080
}
1081
static bool isEqual(const LoweredPHIRecord &LHS,
1082
const LoweredPHIRecord &RHS) {
1083
return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
1084
LHS.Width == RHS.Width;
1085
}
1086
};
1087
} // namespace llvm
1088
1089
1090
/// This is an integer PHI and we know that it has an illegal type: see if it is
1091
/// only used by trunc or trunc(lshr) operations. If so, we split the PHI into
1092
/// the various pieces being extracted. This sort of thing is introduced when
1093
/// SROA promotes an aggregate to large integer values.
1094
///
1095
/// TODO: The user of the trunc may be an bitcast to float/double/vector or an
1096
/// inttoptr. We should produce new PHIs in the right type.
1097
///
1098
Instruction *InstCombinerImpl::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
1099
// PHIUsers - Keep track of all of the truncated values extracted from a set
1100
// of PHIs, along with their offset. These are the things we want to rewrite.
1101
SmallVector<PHIUsageRecord, 16> PHIUsers;
1102
1103
// PHIs are often mutually cyclic, so we keep track of a whole set of PHI
1104
// nodes which are extracted from. PHIsToSlice is a set we use to avoid
1105
// revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
1106
// check the uses of (to ensure they are all extracts).
1107
SmallVector<PHINode*, 8> PHIsToSlice;
1108
SmallPtrSet<PHINode*, 8> PHIsInspected;
1109
1110
PHIsToSlice.push_back(&FirstPhi);
1111
PHIsInspected.insert(&FirstPhi);
1112
1113
for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
1114
PHINode *PN = PHIsToSlice[PHIId];
1115
1116
// Scan the input list of the PHI. If any input is an invoke, and if the
1117
// input is defined in the predecessor, then we won't be split the critical
1118
// edge which is required to insert a truncate. Because of this, we have to
1119
// bail out.
1120
for (auto Incoming : zip(PN->blocks(), PN->incoming_values())) {
1121
BasicBlock *BB = std::get<0>(Incoming);
1122
Value *V = std::get<1>(Incoming);
1123
InvokeInst *II = dyn_cast<InvokeInst>(V);
1124
if (!II)
1125
continue;
1126
if (II->getParent() != BB)
1127
continue;
1128
1129
// If we have a phi, and if it's directly in the predecessor, then we have
1130
// a critical edge where we need to put the truncate. Since we can't
1131
// split the edge in instcombine, we have to bail out.
1132
return nullptr;
1133
}
1134
1135
// If the incoming value is a PHI node before a catchswitch, we cannot
1136
// extract the value within that BB because we cannot insert any non-PHI
1137
// instructions in the BB.
1138
for (auto *Pred : PN->blocks())
1139
if (Pred->getFirstInsertionPt() == Pred->end())
1140
return nullptr;
1141
1142
for (User *U : PN->users()) {
1143
Instruction *UserI = cast<Instruction>(U);
1144
1145
// If the user is a PHI, inspect its uses recursively.
1146
if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) {
1147
if (PHIsInspected.insert(UserPN).second)
1148
PHIsToSlice.push_back(UserPN);
1149
continue;
1150
}
1151
1152
// Truncates are always ok.
1153
if (isa<TruncInst>(UserI)) {
1154
PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI));
1155
continue;
1156
}
1157
1158
// Otherwise it must be a lshr which can only be used by one trunc.
1159
if (UserI->getOpcode() != Instruction::LShr ||
1160
!UserI->hasOneUse() || !isa<TruncInst>(UserI->user_back()) ||
1161
!isa<ConstantInt>(UserI->getOperand(1)))
1162
return nullptr;
1163
1164
// Bail on out of range shifts.
1165
unsigned SizeInBits = UserI->getType()->getScalarSizeInBits();
1166
if (cast<ConstantInt>(UserI->getOperand(1))->getValue().uge(SizeInBits))
1167
return nullptr;
1168
1169
unsigned Shift = cast<ConstantInt>(UserI->getOperand(1))->getZExtValue();
1170
PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back()));
1171
}
1172
}
1173
1174
// If we have no users, they must be all self uses, just nuke the PHI.
1175
if (PHIUsers.empty())
1176
return replaceInstUsesWith(FirstPhi, PoisonValue::get(FirstPhi.getType()));
1177
1178
// If this phi node is transformable, create new PHIs for all the pieces
1179
// extracted out of it. First, sort the users by their offset and size.
1180
array_pod_sort(PHIUsers.begin(), PHIUsers.end());
1181
1182
LLVM_DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n';
1183
for (unsigned I = 1; I != PHIsToSlice.size(); ++I) dbgs()
1184
<< "AND USER PHI #" << I << ": " << *PHIsToSlice[I] << '\n');
1185
1186
// PredValues - This is a temporary used when rewriting PHI nodes. It is
1187
// hoisted out here to avoid construction/destruction thrashing.
1188
DenseMap<BasicBlock*, Value*> PredValues;
1189
1190
// ExtractedVals - Each new PHI we introduce is saved here so we don't
1191
// introduce redundant PHIs.
1192
DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
1193
1194
for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
1195
unsigned PHIId = PHIUsers[UserI].PHIId;
1196
PHINode *PN = PHIsToSlice[PHIId];
1197
unsigned Offset = PHIUsers[UserI].Shift;
1198
Type *Ty = PHIUsers[UserI].Inst->getType();
1199
1200
PHINode *EltPHI;
1201
1202
// If we've already lowered a user like this, reuse the previously lowered
1203
// value.
1204
if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) {
1205
1206
// Otherwise, Create the new PHI node for this user.
1207
EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
1208
PN->getName() + ".off" + Twine(Offset),
1209
PN->getIterator());
1210
assert(EltPHI->getType() != PN->getType() &&
1211
"Truncate didn't shrink phi?");
1212
1213
for (auto Incoming : zip(PN->blocks(), PN->incoming_values())) {
1214
BasicBlock *Pred = std::get<0>(Incoming);
1215
Value *InVal = std::get<1>(Incoming);
1216
Value *&PredVal = PredValues[Pred];
1217
1218
// If we already have a value for this predecessor, reuse it.
1219
if (PredVal) {
1220
EltPHI->addIncoming(PredVal, Pred);
1221
continue;
1222
}
1223
1224
// Handle the PHI self-reuse case.
1225
if (InVal == PN) {
1226
PredVal = EltPHI;
1227
EltPHI->addIncoming(PredVal, Pred);
1228
continue;
1229
}
1230
1231
if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
1232
// If the incoming value was a PHI, and if it was one of the PHIs we
1233
// already rewrote it, just use the lowered value.
1234
if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
1235
PredVal = Res;
1236
EltPHI->addIncoming(PredVal, Pred);
1237
continue;
1238
}
1239
}
1240
1241
// Otherwise, do an extract in the predecessor.
1242
Builder.SetInsertPoint(Pred->getTerminator());
1243
Value *Res = InVal;
1244
if (Offset)
1245
Res = Builder.CreateLShr(
1246
Res, ConstantInt::get(InVal->getType(), Offset), "extract");
1247
Res = Builder.CreateTrunc(Res, Ty, "extract.t");
1248
PredVal = Res;
1249
EltPHI->addIncoming(Res, Pred);
1250
1251
// If the incoming value was a PHI, and if it was one of the PHIs we are
1252
// rewriting, we will ultimately delete the code we inserted. This
1253
// means we need to revisit that PHI to make sure we extract out the
1254
// needed piece.
1255
if (PHINode *OldInVal = dyn_cast<PHINode>(InVal))
1256
if (PHIsInspected.count(OldInVal)) {
1257
unsigned RefPHIId =
1258
find(PHIsToSlice, OldInVal) - PHIsToSlice.begin();
1259
PHIUsers.push_back(
1260
PHIUsageRecord(RefPHIId, Offset, cast<Instruction>(Res)));
1261
++UserE;
1262
}
1263
}
1264
PredValues.clear();
1265
1266
LLVM_DEBUG(dbgs() << " Made element PHI for offset " << Offset << ": "
1267
<< *EltPHI << '\n');
1268
ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
1269
}
1270
1271
// Replace the use of this piece with the PHI node.
1272
replaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
1273
}
1274
1275
// Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
1276
// with poison.
1277
Value *Poison = PoisonValue::get(FirstPhi.getType());
1278
for (PHINode *PHI : drop_begin(PHIsToSlice))
1279
replaceInstUsesWith(*PHI, Poison);
1280
return replaceInstUsesWith(FirstPhi, Poison);
1281
}
1282
1283
static Value *simplifyUsingControlFlow(InstCombiner &Self, PHINode &PN,
1284
const DominatorTree &DT) {
1285
// Simplify the following patterns:
1286
// if (cond)
1287
// / \
1288
// ... ...
1289
// \ /
1290
// phi [true] [false]
1291
// and
1292
// switch (cond)
1293
// case v1: / \ case v2:
1294
// ... ...
1295
// \ /
1296
// phi [v1] [v2]
1297
// Make sure all inputs are constants.
1298
if (!all_of(PN.operands(), [](Value *V) { return isa<ConstantInt>(V); }))
1299
return nullptr;
1300
1301
BasicBlock *BB = PN.getParent();
1302
// Do not bother with unreachable instructions.
1303
if (!DT.isReachableFromEntry(BB))
1304
return nullptr;
1305
1306
// Determine which value the condition of the idom has for which successor.
1307
LLVMContext &Context = PN.getContext();
1308
auto *IDom = DT.getNode(BB)->getIDom()->getBlock();
1309
Value *Cond;
1310
SmallDenseMap<ConstantInt *, BasicBlock *, 8> SuccForValue;
1311
SmallDenseMap<BasicBlock *, unsigned, 8> SuccCount;
1312
auto AddSucc = [&](ConstantInt *C, BasicBlock *Succ) {
1313
SuccForValue[C] = Succ;
1314
++SuccCount[Succ];
1315
};
1316
if (auto *BI = dyn_cast<BranchInst>(IDom->getTerminator())) {
1317
if (BI->isUnconditional())
1318
return nullptr;
1319
1320
Cond = BI->getCondition();
1321
AddSucc(ConstantInt::getTrue(Context), BI->getSuccessor(0));
1322
AddSucc(ConstantInt::getFalse(Context), BI->getSuccessor(1));
1323
} else if (auto *SI = dyn_cast<SwitchInst>(IDom->getTerminator())) {
1324
Cond = SI->getCondition();
1325
++SuccCount[SI->getDefaultDest()];
1326
for (auto Case : SI->cases())
1327
AddSucc(Case.getCaseValue(), Case.getCaseSuccessor());
1328
} else {
1329
return nullptr;
1330
}
1331
1332
if (Cond->getType() != PN.getType())
1333
return nullptr;
1334
1335
// Check that edges outgoing from the idom's terminators dominate respective
1336
// inputs of the Phi.
1337
std::optional<bool> Invert;
1338
for (auto Pair : zip(PN.incoming_values(), PN.blocks())) {
1339
auto *Input = cast<ConstantInt>(std::get<0>(Pair));
1340
BasicBlock *Pred = std::get<1>(Pair);
1341
auto IsCorrectInput = [&](ConstantInt *Input) {
1342
// The input needs to be dominated by the corresponding edge of the idom.
1343
// This edge cannot be a multi-edge, as that would imply that multiple
1344
// different condition values follow the same edge.
1345
auto It = SuccForValue.find(Input);
1346
return It != SuccForValue.end() && SuccCount[It->second] == 1 &&
1347
DT.dominates(BasicBlockEdge(IDom, It->second),
1348
BasicBlockEdge(Pred, BB));
1349
};
1350
1351
// Depending on the constant, the condition may need to be inverted.
1352
bool NeedsInvert;
1353
if (IsCorrectInput(Input))
1354
NeedsInvert = false;
1355
else if (IsCorrectInput(cast<ConstantInt>(ConstantExpr::getNot(Input))))
1356
NeedsInvert = true;
1357
else
1358
return nullptr;
1359
1360
// Make sure the inversion requirement is always the same.
1361
if (Invert && *Invert != NeedsInvert)
1362
return nullptr;
1363
1364
Invert = NeedsInvert;
1365
}
1366
1367
if (!*Invert)
1368
return Cond;
1369
1370
// This Phi is actually opposite to branching condition of IDom. We invert
1371
// the condition that will potentially open up some opportunities for
1372
// sinking.
1373
auto InsertPt = BB->getFirstInsertionPt();
1374
if (InsertPt != BB->end()) {
1375
Self.Builder.SetInsertPoint(&*BB, InsertPt);
1376
return Self.Builder.CreateNot(Cond);
1377
}
1378
1379
return nullptr;
1380
}
1381
1382
// Fold iv = phi(start, iv.next = iv2.next op start)
1383
// where iv2 = phi(iv2.start, iv2.next = iv2 + iv2.step)
1384
// and iv2.start op start = start
1385
// to iv = iv2 op start
1386
static Value *foldDependentIVs(PHINode &PN, IRBuilderBase &Builder) {
1387
BasicBlock *BB = PN.getParent();
1388
if (PN.getNumIncomingValues() != 2)
1389
return nullptr;
1390
1391
Value *Start;
1392
Instruction *IvNext;
1393
BinaryOperator *Iv2Next;
1394
auto MatchOuterIV = [&](Value *V1, Value *V2) {
1395
if (match(V2, m_c_BinOp(m_Specific(V1), m_BinOp(Iv2Next))) ||
1396
match(V2, m_GEP(m_Specific(V1), m_BinOp(Iv2Next)))) {
1397
Start = V1;
1398
IvNext = cast<Instruction>(V2);
1399
return true;
1400
}
1401
return false;
1402
};
1403
1404
if (!MatchOuterIV(PN.getIncomingValue(0), PN.getIncomingValue(1)) &&
1405
!MatchOuterIV(PN.getIncomingValue(1), PN.getIncomingValue(0)))
1406
return nullptr;
1407
1408
PHINode *Iv2;
1409
Value *Iv2Start, *Iv2Step;
1410
if (!matchSimpleRecurrence(Iv2Next, Iv2, Iv2Start, Iv2Step) ||
1411
Iv2->getParent() != BB)
1412
return nullptr;
1413
1414
auto *BO = dyn_cast<BinaryOperator>(IvNext);
1415
Constant *Identity =
1416
BO ? ConstantExpr::getBinOpIdentity(BO->getOpcode(), Iv2Start->getType())
1417
: Constant::getNullValue(Iv2Start->getType());
1418
if (Iv2Start != Identity)
1419
return nullptr;
1420
1421
Builder.SetInsertPoint(&*BB, BB->getFirstInsertionPt());
1422
if (!BO) {
1423
auto *GEP = cast<GEPOperator>(IvNext);
1424
return Builder.CreateGEP(GEP->getSourceElementType(), Start, Iv2, "",
1425
cast<GEPOperator>(IvNext)->getNoWrapFlags());
1426
}
1427
1428
assert(BO->isCommutative() && "Must be commutative");
1429
Value *Res = Builder.CreateBinOp(BO->getOpcode(), Iv2, Start);
1430
cast<Instruction>(Res)->copyIRFlags(BO);
1431
return Res;
1432
}
1433
1434
// PHINode simplification
1435
//
1436
Instruction *InstCombinerImpl::visitPHINode(PHINode &PN) {
1437
if (Value *V = simplifyInstruction(&PN, SQ.getWithInstruction(&PN)))
1438
return replaceInstUsesWith(PN, V);
1439
1440
if (Instruction *Result = foldPHIArgZextsIntoPHI(PN))
1441
return Result;
1442
1443
if (Instruction *Result = foldPHIArgIntToPtrToPHI(PN))
1444
return Result;
1445
1446
// If all PHI operands are the same operation, pull them through the PHI,
1447
// reducing code size.
1448
auto *Inst0 = dyn_cast<Instruction>(PN.getIncomingValue(0));
1449
auto *Inst1 = dyn_cast<Instruction>(PN.getIncomingValue(1));
1450
if (Inst0 && Inst1 && Inst0->getOpcode() == Inst1->getOpcode() &&
1451
Inst0->hasOneUser())
1452
if (Instruction *Result = foldPHIArgOpIntoPHI(PN))
1453
return Result;
1454
1455
// If the incoming values are pointer casts of the same original value,
1456
// replace the phi with a single cast iff we can insert a non-PHI instruction.
1457
if (PN.getType()->isPointerTy() &&
1458
PN.getParent()->getFirstInsertionPt() != PN.getParent()->end()) {
1459
Value *IV0 = PN.getIncomingValue(0);
1460
Value *IV0Stripped = IV0->stripPointerCasts();
1461
// Set to keep track of values known to be equal to IV0Stripped after
1462
// stripping pointer casts.
1463
SmallPtrSet<Value *, 4> CheckedIVs;
1464
CheckedIVs.insert(IV0);
1465
if (IV0 != IV0Stripped &&
1466
all_of(PN.incoming_values(), [&CheckedIVs, IV0Stripped](Value *IV) {
1467
return !CheckedIVs.insert(IV).second ||
1468
IV0Stripped == IV->stripPointerCasts();
1469
})) {
1470
return CastInst::CreatePointerCast(IV0Stripped, PN.getType());
1471
}
1472
}
1473
1474
// If this is a trivial cycle in the PHI node graph, remove it. Basically, if
1475
// this PHI only has a single use (a PHI), and if that PHI only has one use (a
1476
// PHI)... break the cycle.
1477
if (PN.hasOneUse()) {
1478
if (foldIntegerTypedPHI(PN))
1479
return nullptr;
1480
1481
Instruction *PHIUser = cast<Instruction>(PN.user_back());
1482
if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
1483
SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
1484
PotentiallyDeadPHIs.insert(&PN);
1485
if (isDeadPHICycle(PU, PotentiallyDeadPHIs))
1486
return replaceInstUsesWith(PN, PoisonValue::get(PN.getType()));
1487
}
1488
1489
// If this phi has a single use, and if that use just computes a value for
1490
// the next iteration of a loop, delete the phi. This occurs with unused
1491
// induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
1492
// common case here is good because the only other things that catch this
1493
// are induction variable analysis (sometimes) and ADCE, which is only run
1494
// late.
1495
if (PHIUser->hasOneUse() &&
1496
(isa<BinaryOperator>(PHIUser) || isa<UnaryOperator>(PHIUser) ||
1497
isa<GetElementPtrInst>(PHIUser)) &&
1498
PHIUser->user_back() == &PN) {
1499
return replaceInstUsesWith(PN, PoisonValue::get(PN.getType()));
1500
}
1501
}
1502
1503
// When a PHI is used only to be compared with zero, it is safe to replace
1504
// an incoming value proved as known nonzero with any non-zero constant.
1505
// For example, in the code below, the incoming value %v can be replaced
1506
// with any non-zero constant based on the fact that the PHI is only used to
1507
// be compared with zero and %v is a known non-zero value:
1508
// %v = select %cond, 1, 2
1509
// %p = phi [%v, BB] ...
1510
// icmp eq, %p, 0
1511
// FIXME: To be simple, handle only integer type for now.
1512
// This handles a small number of uses to keep the complexity down, and an
1513
// icmp(or(phi)) can equally be replaced with any non-zero constant as the
1514
// "or" will only add bits.
1515
if (!PN.hasNUsesOrMore(3)) {
1516
SmallVector<Instruction *> DropPoisonFlags;
1517
bool AllUsesOfPhiEndsInCmp = all_of(PN.users(), [&](User *U) {
1518
auto *CmpInst = dyn_cast<ICmpInst>(U);
1519
if (!CmpInst) {
1520
// This is always correct as OR only add bits and we are checking
1521
// against 0.
1522
if (U->hasOneUse() && match(U, m_c_Or(m_Specific(&PN), m_Value()))) {
1523
DropPoisonFlags.push_back(cast<Instruction>(U));
1524
CmpInst = dyn_cast<ICmpInst>(U->user_back());
1525
}
1526
}
1527
if (!CmpInst || !isa<IntegerType>(PN.getType()) ||
1528
!CmpInst->isEquality() || !match(CmpInst->getOperand(1), m_Zero())) {
1529
return false;
1530
}
1531
return true;
1532
});
1533
// All uses of PHI results in a compare with zero.
1534
if (AllUsesOfPhiEndsInCmp) {
1535
ConstantInt *NonZeroConst = nullptr;
1536
bool MadeChange = false;
1537
for (unsigned I = 0, E = PN.getNumIncomingValues(); I != E; ++I) {
1538
Instruction *CtxI = PN.getIncomingBlock(I)->getTerminator();
1539
Value *VA = PN.getIncomingValue(I);
1540
if (isKnownNonZero(VA, getSimplifyQuery().getWithInstruction(CtxI))) {
1541
if (!NonZeroConst)
1542
NonZeroConst = getAnyNonZeroConstInt(PN);
1543
if (NonZeroConst != VA) {
1544
replaceOperand(PN, I, NonZeroConst);
1545
// The "disjoint" flag may no longer hold after the transform.
1546
for (Instruction *I : DropPoisonFlags)
1547
I->dropPoisonGeneratingFlags();
1548
MadeChange = true;
1549
}
1550
}
1551
}
1552
if (MadeChange)
1553
return &PN;
1554
}
1555
}
1556
1557
// We sometimes end up with phi cycles that non-obviously end up being the
1558
// same value, for example:
1559
// z = some value; x = phi (y, z); y = phi (x, z)
1560
// where the phi nodes don't necessarily need to be in the same block. Do a
1561
// quick check to see if the PHI node only contains a single non-phi value, if
1562
// so, scan to see if the phi cycle is actually equal to that value. If the
1563
// phi has no non-phi values then allow the "NonPhiInVal" to be set later if
1564
// one of the phis itself does not have a single input.
1565
{
1566
unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues();
1567
// Scan for the first non-phi operand.
1568
while (InValNo != NumIncomingVals &&
1569
isa<PHINode>(PN.getIncomingValue(InValNo)))
1570
++InValNo;
1571
1572
Value *NonPhiInVal =
1573
InValNo != NumIncomingVals ? PN.getIncomingValue(InValNo) : nullptr;
1574
1575
// Scan the rest of the operands to see if there are any conflicts, if so
1576
// there is no need to recursively scan other phis.
1577
if (NonPhiInVal)
1578
for (++InValNo; InValNo != NumIncomingVals; ++InValNo) {
1579
Value *OpVal = PN.getIncomingValue(InValNo);
1580
if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
1581
break;
1582
}
1583
1584
// If we scanned over all operands, then we have one unique value plus
1585
// phi values. Scan PHI nodes to see if they all merge in each other or
1586
// the value.
1587
if (InValNo == NumIncomingVals) {
1588
SmallPtrSet<PHINode *, 16> ValueEqualPHIs;
1589
if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
1590
return replaceInstUsesWith(PN, NonPhiInVal);
1591
}
1592
}
1593
1594
// If there are multiple PHIs, sort their operands so that they all list
1595
// the blocks in the same order. This will help identical PHIs be eliminated
1596
// by other passes. Other passes shouldn't depend on this for correctness
1597
// however.
1598
auto Res = PredOrder.try_emplace(PN.getParent());
1599
if (!Res.second) {
1600
const auto &Preds = Res.first->second;
1601
for (unsigned I = 0, E = PN.getNumIncomingValues(); I != E; ++I) {
1602
BasicBlock *BBA = PN.getIncomingBlock(I);
1603
BasicBlock *BBB = Preds[I];
1604
if (BBA != BBB) {
1605
Value *VA = PN.getIncomingValue(I);
1606
unsigned J = PN.getBasicBlockIndex(BBB);
1607
Value *VB = PN.getIncomingValue(J);
1608
PN.setIncomingBlock(I, BBB);
1609
PN.setIncomingValue(I, VB);
1610
PN.setIncomingBlock(J, BBA);
1611
PN.setIncomingValue(J, VA);
1612
// NOTE: Instcombine normally would want us to "return &PN" if we
1613
// modified any of the operands of an instruction. However, since we
1614
// aren't adding or removing uses (just rearranging them) we don't do
1615
// this in this case.
1616
}
1617
}
1618
} else {
1619
// Remember the block order of the first encountered phi node.
1620
append_range(Res.first->second, PN.blocks());
1621
}
1622
1623
// Is there an identical PHI node in this basic block?
1624
for (PHINode &IdenticalPN : PN.getParent()->phis()) {
1625
// Ignore the PHI node itself.
1626
if (&IdenticalPN == &PN)
1627
continue;
1628
// Note that even though we've just canonicalized this PHI, due to the
1629
// worklist visitation order, there are no guarantess that *every* PHI
1630
// has been canonicalized, so we can't just compare operands ranges.
1631
if (!PN.isIdenticalToWhenDefined(&IdenticalPN))
1632
continue;
1633
// Just use that PHI instead then.
1634
++NumPHICSEs;
1635
return replaceInstUsesWith(PN, &IdenticalPN);
1636
}
1637
1638
// If this is an integer PHI and we know that it has an illegal type, see if
1639
// it is only used by trunc or trunc(lshr) operations. If so, we split the
1640
// PHI into the various pieces being extracted. This sort of thing is
1641
// introduced when SROA promotes an aggregate to a single large integer type.
1642
if (PN.getType()->isIntegerTy() &&
1643
!DL.isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
1644
if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
1645
return Res;
1646
1647
// Ultimately, try to replace this Phi with a dominating condition.
1648
if (auto *V = simplifyUsingControlFlow(*this, PN, DT))
1649
return replaceInstUsesWith(PN, V);
1650
1651
if (Value *Res = foldDependentIVs(PN, Builder))
1652
return replaceInstUsesWith(PN, Res);
1653
1654
return nullptr;
1655
}
1656
1657