Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
35266 views
1
//===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains logic for simplifying instructions based on information
10
// about how they are used.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "InstCombineInternal.h"
15
#include "llvm/Analysis/ValueTracking.h"
16
#include "llvm/IR/GetElementPtrTypeIterator.h"
17
#include "llvm/IR/IntrinsicInst.h"
18
#include "llvm/IR/PatternMatch.h"
19
#include "llvm/Support/KnownBits.h"
20
#include "llvm/Transforms/InstCombine/InstCombiner.h"
21
22
using namespace llvm;
23
using namespace llvm::PatternMatch;
24
25
#define DEBUG_TYPE "instcombine"
26
27
static cl::opt<bool>
28
VerifyKnownBits("instcombine-verify-known-bits",
29
cl::desc("Verify that computeKnownBits() and "
30
"SimplifyDemandedBits() are consistent"),
31
cl::Hidden, cl::init(false));
32
33
/// Check to see if the specified operand of the specified instruction is a
34
/// constant integer. If so, check to see if there are any bits set in the
35
/// constant that are not demanded. If so, shrink the constant and return true.
36
static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
37
const APInt &Demanded) {
38
assert(I && "No instruction?");
39
assert(OpNo < I->getNumOperands() && "Operand index too large");
40
41
// The operand must be a constant integer or splat integer.
42
Value *Op = I->getOperand(OpNo);
43
const APInt *C;
44
if (!match(Op, m_APInt(C)))
45
return false;
46
47
// If there are no bits set that aren't demanded, nothing to do.
48
if (C->isSubsetOf(Demanded))
49
return false;
50
51
// This instruction is producing bits that are not demanded. Shrink the RHS.
52
I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
53
54
return true;
55
}
56
57
/// Returns the bitwidth of the given scalar or pointer type. For vector types,
58
/// returns the element type's bitwidth.
59
static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
60
if (unsigned BitWidth = Ty->getScalarSizeInBits())
61
return BitWidth;
62
63
return DL.getPointerTypeSizeInBits(Ty);
64
}
65
66
/// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
67
/// the instruction has any properties that allow us to simplify its operands.
68
bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst,
69
KnownBits &Known) {
70
APInt DemandedMask(APInt::getAllOnes(Known.getBitWidth()));
71
Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
72
0, SQ.getWithInstruction(&Inst));
73
if (!V) return false;
74
if (V == &Inst) return true;
75
replaceInstUsesWith(Inst, V);
76
return true;
77
}
78
79
/// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
80
/// the instruction has any properties that allow us to simplify its operands.
81
bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) {
82
KnownBits Known(getBitWidth(Inst.getType(), DL));
83
return SimplifyDemandedInstructionBits(Inst, Known);
84
}
85
86
/// This form of SimplifyDemandedBits simplifies the specified instruction
87
/// operand if possible, updating it in place. It returns true if it made any
88
/// change and false otherwise.
89
bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
90
const APInt &DemandedMask,
91
KnownBits &Known, unsigned Depth,
92
const SimplifyQuery &Q) {
93
Use &U = I->getOperandUse(OpNo);
94
Value *V = U.get();
95
if (isa<Constant>(V)) {
96
llvm::computeKnownBits(V, Known, Depth, Q);
97
return false;
98
}
99
100
Known.resetAll();
101
if (DemandedMask.isZero()) {
102
// Not demanding any bits from V.
103
replaceUse(U, UndefValue::get(V->getType()));
104
return true;
105
}
106
107
if (Depth == MaxAnalysisRecursionDepth)
108
return false;
109
110
Instruction *VInst = dyn_cast<Instruction>(V);
111
if (!VInst) {
112
llvm::computeKnownBits(V, Known, Depth, Q);
113
return false;
114
}
115
116
Value *NewVal;
117
if (VInst->hasOneUse()) {
118
// If the instruction has one use, we can directly simplify it.
119
NewVal = SimplifyDemandedUseBits(VInst, DemandedMask, Known, Depth, Q);
120
} else {
121
// If there are multiple uses of this instruction, then we can simplify
122
// VInst to some other value, but not modify the instruction.
123
NewVal =
124
SimplifyMultipleUseDemandedBits(VInst, DemandedMask, Known, Depth, Q);
125
}
126
if (!NewVal) return false;
127
if (Instruction* OpInst = dyn_cast<Instruction>(U))
128
salvageDebugInfo(*OpInst);
129
130
replaceUse(U, NewVal);
131
return true;
132
}
133
134
/// This function attempts to replace V with a simpler value based on the
135
/// demanded bits. When this function is called, it is known that only the bits
136
/// set in DemandedMask of the result of V are ever used downstream.
137
/// Consequently, depending on the mask and V, it may be possible to replace V
138
/// with a constant or one of its operands. In such cases, this function does
139
/// the replacement and returns true. In all other cases, it returns false after
140
/// analyzing the expression and setting KnownOne and known to be one in the
141
/// expression. Known.Zero contains all the bits that are known to be zero in
142
/// the expression. These are provided to potentially allow the caller (which
143
/// might recursively be SimplifyDemandedBits itself) to simplify the
144
/// expression.
145
/// Known.One and Known.Zero always follow the invariant that:
146
/// Known.One & Known.Zero == 0.
147
/// That is, a bit can't be both 1 and 0. The bits in Known.One and Known.Zero
148
/// are accurate even for bits not in DemandedMask. Note
149
/// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
150
/// be the same.
151
///
152
/// This returns null if it did not change anything and it permits no
153
/// simplification. This returns V itself if it did some simplification of V's
154
/// operands based on the information about what bits are demanded. This returns
155
/// some other non-null value if it found out that V is equal to another value
156
/// in the context where the specified bits are demanded, but not for all users.
157
Value *InstCombinerImpl::SimplifyDemandedUseBits(Instruction *I,
158
const APInt &DemandedMask,
159
KnownBits &Known,
160
unsigned Depth,
161
const SimplifyQuery &Q) {
162
assert(I != nullptr && "Null pointer of Value???");
163
assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
164
uint32_t BitWidth = DemandedMask.getBitWidth();
165
Type *VTy = I->getType();
166
assert(
167
(!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
168
Known.getBitWidth() == BitWidth &&
169
"Value *V, DemandedMask and Known must have same BitWidth");
170
171
KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
172
173
// Update flags after simplifying an operand based on the fact that some high
174
// order bits are not demanded.
175
auto disableWrapFlagsBasedOnUnusedHighBits = [](Instruction *I,
176
unsigned NLZ) {
177
if (NLZ > 0) {
178
// Disable the nsw and nuw flags here: We can no longer guarantee that
179
// we won't wrap after simplification. Removing the nsw/nuw flags is
180
// legal here because the top bit is not demanded.
181
I->setHasNoSignedWrap(false);
182
I->setHasNoUnsignedWrap(false);
183
}
184
return I;
185
};
186
187
// If the high-bits of an ADD/SUB/MUL are not demanded, then we do not care
188
// about the high bits of the operands.
189
auto simplifyOperandsBasedOnUnusedHighBits = [&](APInt &DemandedFromOps) {
190
unsigned NLZ = DemandedMask.countl_zero();
191
// Right fill the mask of bits for the operands to demand the most
192
// significant bit and all those below it.
193
DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
194
if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
195
SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1, Q) ||
196
ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
197
SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1, Q)) {
198
disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
199
return true;
200
}
201
return false;
202
};
203
204
switch (I->getOpcode()) {
205
default:
206
llvm::computeKnownBits(I, Known, Depth, Q);
207
break;
208
case Instruction::And: {
209
// If either the LHS or the RHS are Zero, the result is zero.
210
if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1, Q) ||
211
SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
212
Depth + 1, Q))
213
return I;
214
215
Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown,
216
Depth, Q);
217
218
// If the client is only demanding bits that we know, return the known
219
// constant.
220
if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
221
return Constant::getIntegerValue(VTy, Known.One);
222
223
// If all of the demanded bits are known 1 on one side, return the other.
224
// These bits cannot contribute to the result of the 'and'.
225
if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
226
return I->getOperand(0);
227
if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
228
return I->getOperand(1);
229
230
// If the RHS is a constant, see if we can simplify it.
231
if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
232
return I;
233
234
break;
235
}
236
case Instruction::Or: {
237
// If either the LHS or the RHS are One, the result is One.
238
if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1, Q) ||
239
SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
240
Depth + 1, Q)) {
241
// Disjoint flag may not longer hold.
242
I->dropPoisonGeneratingFlags();
243
return I;
244
}
245
246
Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown,
247
Depth, Q);
248
249
// If the client is only demanding bits that we know, return the known
250
// constant.
251
if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
252
return Constant::getIntegerValue(VTy, Known.One);
253
254
// If all of the demanded bits are known zero on one side, return the other.
255
// These bits cannot contribute to the result of the 'or'.
256
if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
257
return I->getOperand(0);
258
if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
259
return I->getOperand(1);
260
261
// If the RHS is a constant, see if we can simplify it.
262
if (ShrinkDemandedConstant(I, 1, DemandedMask))
263
return I;
264
265
// Infer disjoint flag if no common bits are set.
266
if (!cast<PossiblyDisjointInst>(I)->isDisjoint()) {
267
WithCache<const Value *> LHSCache(I->getOperand(0), LHSKnown),
268
RHSCache(I->getOperand(1), RHSKnown);
269
if (haveNoCommonBitsSet(LHSCache, RHSCache, Q)) {
270
cast<PossiblyDisjointInst>(I)->setIsDisjoint(true);
271
return I;
272
}
273
}
274
275
break;
276
}
277
case Instruction::Xor: {
278
if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1, Q) ||
279
SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1, Q))
280
return I;
281
Value *LHS, *RHS;
282
if (DemandedMask == 1 &&
283
match(I->getOperand(0), m_Intrinsic<Intrinsic::ctpop>(m_Value(LHS))) &&
284
match(I->getOperand(1), m_Intrinsic<Intrinsic::ctpop>(m_Value(RHS)))) {
285
// (ctpop(X) ^ ctpop(Y)) & 1 --> ctpop(X^Y) & 1
286
IRBuilderBase::InsertPointGuard Guard(Builder);
287
Builder.SetInsertPoint(I);
288
auto *Xor = Builder.CreateXor(LHS, RHS);
289
return Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, Xor);
290
}
291
292
Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown,
293
Depth, Q);
294
295
// If the client is only demanding bits that we know, return the known
296
// constant.
297
if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
298
return Constant::getIntegerValue(VTy, Known.One);
299
300
// If all of the demanded bits are known zero on one side, return the other.
301
// These bits cannot contribute to the result of the 'xor'.
302
if (DemandedMask.isSubsetOf(RHSKnown.Zero))
303
return I->getOperand(0);
304
if (DemandedMask.isSubsetOf(LHSKnown.Zero))
305
return I->getOperand(1);
306
307
// If all of the demanded bits are known to be zero on one side or the
308
// other, turn this into an *inclusive* or.
309
// e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
310
if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
311
Instruction *Or =
312
BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1));
313
if (DemandedMask.isAllOnes())
314
cast<PossiblyDisjointInst>(Or)->setIsDisjoint(true);
315
Or->takeName(I);
316
return InsertNewInstWith(Or, I->getIterator());
317
}
318
319
// If all of the demanded bits on one side are known, and all of the set
320
// bits on that side are also known to be set on the other side, turn this
321
// into an AND, as we know the bits will be cleared.
322
// e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
323
if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
324
RHSKnown.One.isSubsetOf(LHSKnown.One)) {
325
Constant *AndC = Constant::getIntegerValue(VTy,
326
~RHSKnown.One & DemandedMask);
327
Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
328
return InsertNewInstWith(And, I->getIterator());
329
}
330
331
// If the RHS is a constant, see if we can change it. Don't alter a -1
332
// constant because that's a canonical 'not' op, and that is better for
333
// combining, SCEV, and codegen.
334
const APInt *C;
335
if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnes()) {
336
if ((*C | ~DemandedMask).isAllOnes()) {
337
// Force bits to 1 to create a 'not' op.
338
I->setOperand(1, ConstantInt::getAllOnesValue(VTy));
339
return I;
340
}
341
// If we can't turn this into a 'not', try to shrink the constant.
342
if (ShrinkDemandedConstant(I, 1, DemandedMask))
343
return I;
344
}
345
346
// If our LHS is an 'and' and if it has one use, and if any of the bits we
347
// are flipping are known to be set, then the xor is just resetting those
348
// bits to zero. We can just knock out bits from the 'and' and the 'xor',
349
// simplifying both of them.
350
if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) {
351
ConstantInt *AndRHS, *XorRHS;
352
if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
353
match(I->getOperand(1), m_ConstantInt(XorRHS)) &&
354
match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) &&
355
(LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
356
APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
357
358
Constant *AndC = ConstantInt::get(VTy, NewMask & AndRHS->getValue());
359
Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
360
InsertNewInstWith(NewAnd, I->getIterator());
361
362
Constant *XorC = ConstantInt::get(VTy, NewMask & XorRHS->getValue());
363
Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
364
return InsertNewInstWith(NewXor, I->getIterator());
365
}
366
}
367
break;
368
}
369
case Instruction::Select: {
370
if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1, Q) ||
371
SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1, Q))
372
return I;
373
374
// If the operands are constants, see if we can simplify them.
375
// This is similar to ShrinkDemandedConstant, but for a select we want to
376
// try to keep the selected constants the same as icmp value constants, if
377
// we can. This helps not break apart (or helps put back together)
378
// canonical patterns like min and max.
379
auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo,
380
const APInt &DemandedMask) {
381
const APInt *SelC;
382
if (!match(I->getOperand(OpNo), m_APInt(SelC)))
383
return false;
384
385
// Get the constant out of the ICmp, if there is one.
386
// Only try this when exactly 1 operand is a constant (if both operands
387
// are constant, the icmp should eventually simplify). Otherwise, we may
388
// invert the transform that reduces set bits and infinite-loop.
389
Value *X;
390
const APInt *CmpC;
391
ICmpInst::Predicate Pred;
392
if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) ||
393
isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth())
394
return ShrinkDemandedConstant(I, OpNo, DemandedMask);
395
396
// If the constant is already the same as the ICmp, leave it as-is.
397
if (*CmpC == *SelC)
398
return false;
399
// If the constants are not already the same, but can be with the demand
400
// mask, use the constant value from the ICmp.
401
if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) {
402
I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC));
403
return true;
404
}
405
return ShrinkDemandedConstant(I, OpNo, DemandedMask);
406
};
407
if (CanonicalizeSelectConstant(I, 1, DemandedMask) ||
408
CanonicalizeSelectConstant(I, 2, DemandedMask))
409
return I;
410
411
// Only known if known in both the LHS and RHS.
412
adjustKnownBitsForSelectArm(LHSKnown, I->getOperand(0), I->getOperand(1),
413
/*Invert=*/false, Depth, Q);
414
adjustKnownBitsForSelectArm(RHSKnown, I->getOperand(0), I->getOperand(2),
415
/*Invert=*/true, Depth, Q);
416
Known = LHSKnown.intersectWith(RHSKnown);
417
break;
418
}
419
case Instruction::Trunc: {
420
// If we do not demand the high bits of a right-shifted and truncated value,
421
// then we may be able to truncate it before the shift.
422
Value *X;
423
const APInt *C;
424
if (match(I->getOperand(0), m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) {
425
// The shift amount must be valid (not poison) in the narrow type, and
426
// it must not be greater than the high bits demanded of the result.
427
if (C->ult(VTy->getScalarSizeInBits()) &&
428
C->ule(DemandedMask.countl_zero())) {
429
// trunc (lshr X, C) --> lshr (trunc X), C
430
IRBuilderBase::InsertPointGuard Guard(Builder);
431
Builder.SetInsertPoint(I);
432
Value *Trunc = Builder.CreateTrunc(X, VTy);
433
return Builder.CreateLShr(Trunc, C->getZExtValue());
434
}
435
}
436
}
437
[[fallthrough]];
438
case Instruction::ZExt: {
439
unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
440
441
APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
442
KnownBits InputKnown(SrcBitWidth);
443
if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1,
444
Q)) {
445
// For zext nneg, we may have dropped the instruction which made the
446
// input non-negative.
447
I->dropPoisonGeneratingFlags();
448
return I;
449
}
450
assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?");
451
if (I->getOpcode() == Instruction::ZExt && I->hasNonNeg() &&
452
!InputKnown.isNegative())
453
InputKnown.makeNonNegative();
454
Known = InputKnown.zextOrTrunc(BitWidth);
455
456
break;
457
}
458
case Instruction::SExt: {
459
// Compute the bits in the result that are not present in the input.
460
unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
461
462
APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
463
464
// If any of the sign extended bits are demanded, we know that the sign
465
// bit is demanded.
466
if (DemandedMask.getActiveBits() > SrcBitWidth)
467
InputDemandedBits.setBit(SrcBitWidth-1);
468
469
KnownBits InputKnown(SrcBitWidth);
470
if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1, Q))
471
return I;
472
473
// If the input sign bit is known zero, or if the NewBits are not demanded
474
// convert this into a zero extension.
475
if (InputKnown.isNonNegative() ||
476
DemandedMask.getActiveBits() <= SrcBitWidth) {
477
// Convert to ZExt cast.
478
CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy);
479
NewCast->takeName(I);
480
return InsertNewInstWith(NewCast, I->getIterator());
481
}
482
483
// If the sign bit of the input is known set or clear, then we know the
484
// top bits of the result.
485
Known = InputKnown.sext(BitWidth);
486
break;
487
}
488
case Instruction::Add: {
489
if ((DemandedMask & 1) == 0) {
490
// If we do not need the low bit, try to convert bool math to logic:
491
// add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN
492
Value *X, *Y;
493
if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))),
494
m_OneUse(m_SExt(m_Value(Y))))) &&
495
X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) {
496
// Truth table for inputs and output signbits:
497
// X:0 | X:1
498
// ----------
499
// Y:0 | 0 | 0 |
500
// Y:1 | -1 | 0 |
501
// ----------
502
IRBuilderBase::InsertPointGuard Guard(Builder);
503
Builder.SetInsertPoint(I);
504
Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y);
505
return Builder.CreateSExt(AndNot, VTy);
506
}
507
508
// add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN
509
if (match(I, m_Add(m_SExt(m_Value(X)), m_SExt(m_Value(Y)))) &&
510
X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
511
(I->getOperand(0)->hasOneUse() || I->getOperand(1)->hasOneUse())) {
512
513
// Truth table for inputs and output signbits:
514
// X:0 | X:1
515
// -----------
516
// Y:0 | -1 | -1 |
517
// Y:1 | -1 | 0 |
518
// -----------
519
IRBuilderBase::InsertPointGuard Guard(Builder);
520
Builder.SetInsertPoint(I);
521
Value *Or = Builder.CreateOr(X, Y);
522
return Builder.CreateSExt(Or, VTy);
523
}
524
}
525
526
// Right fill the mask of bits for the operands to demand the most
527
// significant bit and all those below it.
528
unsigned NLZ = DemandedMask.countl_zero();
529
APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
530
if (ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
531
SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1, Q))
532
return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
533
534
// If low order bits are not demanded and known to be zero in one operand,
535
// then we don't need to demand them from the other operand, since they
536
// can't cause overflow into any bits that are demanded in the result.
537
unsigned NTZ = (~DemandedMask & RHSKnown.Zero).countr_one();
538
APInt DemandedFromLHS = DemandedFromOps;
539
DemandedFromLHS.clearLowBits(NTZ);
540
if (ShrinkDemandedConstant(I, 0, DemandedFromLHS) ||
541
SimplifyDemandedBits(I, 0, DemandedFromLHS, LHSKnown, Depth + 1, Q))
542
return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
543
544
// If we are known to be adding zeros to every bit below
545
// the highest demanded bit, we just return the other side.
546
if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
547
return I->getOperand(0);
548
if (DemandedFromOps.isSubsetOf(LHSKnown.Zero))
549
return I->getOperand(1);
550
551
// (add X, C) --> (xor X, C) IFF C is equal to the top bit of the DemandMask
552
{
553
const APInt *C;
554
if (match(I->getOperand(1), m_APInt(C)) &&
555
C->isOneBitSet(DemandedMask.getActiveBits() - 1)) {
556
IRBuilderBase::InsertPointGuard Guard(Builder);
557
Builder.SetInsertPoint(I);
558
return Builder.CreateXor(I->getOperand(0), ConstantInt::get(VTy, *C));
559
}
560
}
561
562
// Otherwise just compute the known bits of the result.
563
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
564
bool NUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
565
Known = KnownBits::computeForAddSub(true, NSW, NUW, LHSKnown, RHSKnown);
566
break;
567
}
568
case Instruction::Sub: {
569
// Right fill the mask of bits for the operands to demand the most
570
// significant bit and all those below it.
571
unsigned NLZ = DemandedMask.countl_zero();
572
APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
573
if (ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
574
SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1, Q))
575
return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
576
577
// If low order bits are not demanded and are known to be zero in RHS,
578
// then we don't need to demand them from LHS, since they can't cause a
579
// borrow from any bits that are demanded in the result.
580
unsigned NTZ = (~DemandedMask & RHSKnown.Zero).countr_one();
581
APInt DemandedFromLHS = DemandedFromOps;
582
DemandedFromLHS.clearLowBits(NTZ);
583
if (ShrinkDemandedConstant(I, 0, DemandedFromLHS) ||
584
SimplifyDemandedBits(I, 0, DemandedFromLHS, LHSKnown, Depth + 1, Q))
585
return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ);
586
587
// If we are known to be subtracting zeros from every bit below
588
// the highest demanded bit, we just return the other side.
589
if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
590
return I->getOperand(0);
591
// We can't do this with the LHS for subtraction, unless we are only
592
// demanding the LSB.
593
if (DemandedFromOps.isOne() && DemandedFromOps.isSubsetOf(LHSKnown.Zero))
594
return I->getOperand(1);
595
596
// Otherwise just compute the known bits of the result.
597
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
598
bool NUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
599
Known = KnownBits::computeForAddSub(false, NSW, NUW, LHSKnown, RHSKnown);
600
break;
601
}
602
case Instruction::Mul: {
603
APInt DemandedFromOps;
604
if (simplifyOperandsBasedOnUnusedHighBits(DemandedFromOps))
605
return I;
606
607
if (DemandedMask.isPowerOf2()) {
608
// The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
609
// If we demand exactly one bit N and we have "X * (C' << N)" where C' is
610
// odd (has LSB set), then the left-shifted low bit of X is the answer.
611
unsigned CTZ = DemandedMask.countr_zero();
612
const APInt *C;
613
if (match(I->getOperand(1), m_APInt(C)) && C->countr_zero() == CTZ) {
614
Constant *ShiftC = ConstantInt::get(VTy, CTZ);
615
Instruction *Shl = BinaryOperator::CreateShl(I->getOperand(0), ShiftC);
616
return InsertNewInstWith(Shl, I->getIterator());
617
}
618
}
619
// For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
620
// X * X is odd iff X is odd.
621
// 'Quadratic Reciprocity': X * X -> 0 for bit[1]
622
if (I->getOperand(0) == I->getOperand(1) && DemandedMask.ult(4)) {
623
Constant *One = ConstantInt::get(VTy, 1);
624
Instruction *And1 = BinaryOperator::CreateAnd(I->getOperand(0), One);
625
return InsertNewInstWith(And1, I->getIterator());
626
}
627
628
llvm::computeKnownBits(I, Known, Depth, Q);
629
break;
630
}
631
case Instruction::Shl: {
632
const APInt *SA;
633
if (match(I->getOperand(1), m_APInt(SA))) {
634
const APInt *ShrAmt;
635
if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
636
if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
637
if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
638
DemandedMask, Known))
639
return R;
640
641
// Do not simplify if shl is part of funnel-shift pattern
642
if (I->hasOneUse()) {
643
auto *Inst = dyn_cast<Instruction>(I->user_back());
644
if (Inst && Inst->getOpcode() == BinaryOperator::Or) {
645
if (auto Opt = convertOrOfShiftsToFunnelShift(*Inst)) {
646
auto [IID, FShiftArgs] = *Opt;
647
if ((IID == Intrinsic::fshl || IID == Intrinsic::fshr) &&
648
FShiftArgs[0] == FShiftArgs[1]) {
649
llvm::computeKnownBits(I, Known, Depth, Q);
650
break;
651
}
652
}
653
}
654
}
655
656
// We only want bits that already match the signbit then we don't
657
// need to shift.
658
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth - 1);
659
if (DemandedMask.countr_zero() >= ShiftAmt) {
660
if (I->hasNoSignedWrap()) {
661
unsigned NumHiDemandedBits = BitWidth - DemandedMask.countr_zero();
662
unsigned SignBits =
663
ComputeNumSignBits(I->getOperand(0), Depth + 1, Q.CxtI);
664
if (SignBits > ShiftAmt && SignBits - ShiftAmt >= NumHiDemandedBits)
665
return I->getOperand(0);
666
}
667
668
// If we can pre-shift a right-shifted constant to the left without
669
// losing any high bits and we don't demand the low bits, then eliminate
670
// the left-shift:
671
// (C >> X) << LeftShiftAmtC --> (C << LeftShiftAmtC) >> X
672
Value *X;
673
Constant *C;
674
if (match(I->getOperand(0), m_LShr(m_ImmConstant(C), m_Value(X)))) {
675
Constant *LeftShiftAmtC = ConstantInt::get(VTy, ShiftAmt);
676
Constant *NewC = ConstantFoldBinaryOpOperands(Instruction::Shl, C,
677
LeftShiftAmtC, DL);
678
if (ConstantFoldBinaryOpOperands(Instruction::LShr, NewC,
679
LeftShiftAmtC, DL) == C) {
680
Instruction *Lshr = BinaryOperator::CreateLShr(NewC, X);
681
return InsertNewInstWith(Lshr, I->getIterator());
682
}
683
}
684
}
685
686
APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
687
688
// If the shift is NUW/NSW, then it does demand the high bits.
689
ShlOperator *IOp = cast<ShlOperator>(I);
690
if (IOp->hasNoSignedWrap())
691
DemandedMaskIn.setHighBits(ShiftAmt+1);
692
else if (IOp->hasNoUnsignedWrap())
693
DemandedMaskIn.setHighBits(ShiftAmt);
694
695
if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1, Q))
696
return I;
697
698
Known = KnownBits::shl(Known,
699
KnownBits::makeConstant(APInt(BitWidth, ShiftAmt)),
700
/* NUW */ IOp->hasNoUnsignedWrap(),
701
/* NSW */ IOp->hasNoSignedWrap());
702
} else {
703
// This is a variable shift, so we can't shift the demand mask by a known
704
// amount. But if we are not demanding high bits, then we are not
705
// demanding those bits from the pre-shifted operand either.
706
if (unsigned CTLZ = DemandedMask.countl_zero()) {
707
APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ));
708
if (SimplifyDemandedBits(I, 0, DemandedFromOp, Known, Depth + 1, Q)) {
709
// We can't guarantee that nsw/nuw hold after simplifying the operand.
710
I->dropPoisonGeneratingFlags();
711
return I;
712
}
713
}
714
llvm::computeKnownBits(I, Known, Depth, Q);
715
}
716
break;
717
}
718
case Instruction::LShr: {
719
const APInt *SA;
720
if (match(I->getOperand(1), m_APInt(SA))) {
721
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
722
723
// Do not simplify if lshr is part of funnel-shift pattern
724
if (I->hasOneUse()) {
725
auto *Inst = dyn_cast<Instruction>(I->user_back());
726
if (Inst && Inst->getOpcode() == BinaryOperator::Or) {
727
if (auto Opt = convertOrOfShiftsToFunnelShift(*Inst)) {
728
auto [IID, FShiftArgs] = *Opt;
729
if ((IID == Intrinsic::fshl || IID == Intrinsic::fshr) &&
730
FShiftArgs[0] == FShiftArgs[1]) {
731
llvm::computeKnownBits(I, Known, Depth, Q);
732
break;
733
}
734
}
735
}
736
}
737
738
// If we are just demanding the shifted sign bit and below, then this can
739
// be treated as an ASHR in disguise.
740
if (DemandedMask.countl_zero() >= ShiftAmt) {
741
// If we only want bits that already match the signbit then we don't
742
// need to shift.
743
unsigned NumHiDemandedBits = BitWidth - DemandedMask.countr_zero();
744
unsigned SignBits =
745
ComputeNumSignBits(I->getOperand(0), Depth + 1, Q.CxtI);
746
if (SignBits >= NumHiDemandedBits)
747
return I->getOperand(0);
748
749
// If we can pre-shift a left-shifted constant to the right without
750
// losing any low bits (we already know we don't demand the high bits),
751
// then eliminate the right-shift:
752
// (C << X) >> RightShiftAmtC --> (C >> RightShiftAmtC) << X
753
Value *X;
754
Constant *C;
755
if (match(I->getOperand(0), m_Shl(m_ImmConstant(C), m_Value(X)))) {
756
Constant *RightShiftAmtC = ConstantInt::get(VTy, ShiftAmt);
757
Constant *NewC = ConstantFoldBinaryOpOperands(Instruction::LShr, C,
758
RightShiftAmtC, DL);
759
if (ConstantFoldBinaryOpOperands(Instruction::Shl, NewC,
760
RightShiftAmtC, DL) == C) {
761
Instruction *Shl = BinaryOperator::CreateShl(NewC, X);
762
return InsertNewInstWith(Shl, I->getIterator());
763
}
764
}
765
}
766
767
// Unsigned shift right.
768
APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
769
if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1, Q)) {
770
// exact flag may not longer hold.
771
I->dropPoisonGeneratingFlags();
772
return I;
773
}
774
Known.Zero.lshrInPlace(ShiftAmt);
775
Known.One.lshrInPlace(ShiftAmt);
776
if (ShiftAmt)
777
Known.Zero.setHighBits(ShiftAmt); // high bits known zero.
778
} else {
779
llvm::computeKnownBits(I, Known, Depth, Q);
780
}
781
break;
782
}
783
case Instruction::AShr: {
784
unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, Q.CxtI);
785
786
// If we only want bits that already match the signbit then we don't need
787
// to shift.
788
unsigned NumHiDemandedBits = BitWidth - DemandedMask.countr_zero();
789
if (SignBits >= NumHiDemandedBits)
790
return I->getOperand(0);
791
792
// If this is an arithmetic shift right and only the low-bit is set, we can
793
// always convert this into a logical shr, even if the shift amount is
794
// variable. The low bit of the shift cannot be an input sign bit unless
795
// the shift amount is >= the size of the datatype, which is undefined.
796
if (DemandedMask.isOne()) {
797
// Perform the logical shift right.
798
Instruction *NewVal = BinaryOperator::CreateLShr(
799
I->getOperand(0), I->getOperand(1), I->getName());
800
return InsertNewInstWith(NewVal, I->getIterator());
801
}
802
803
const APInt *SA;
804
if (match(I->getOperand(1), m_APInt(SA))) {
805
uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
806
807
// Signed shift right.
808
APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
809
// If any of the bits being shifted in are demanded, then we should set
810
// the sign bit as demanded.
811
bool ShiftedInBitsDemanded = DemandedMask.countl_zero() < ShiftAmt;
812
if (ShiftedInBitsDemanded)
813
DemandedMaskIn.setSignBit();
814
if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1, Q)) {
815
// exact flag may not longer hold.
816
I->dropPoisonGeneratingFlags();
817
return I;
818
}
819
820
// If the input sign bit is known to be zero, or if none of the shifted in
821
// bits are demanded, turn this into an unsigned shift right.
822
if (Known.Zero[BitWidth - 1] || !ShiftedInBitsDemanded) {
823
BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
824
I->getOperand(1));
825
LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
826
LShr->takeName(I);
827
return InsertNewInstWith(LShr, I->getIterator());
828
}
829
830
Known = KnownBits::ashr(
831
Known, KnownBits::makeConstant(APInt(BitWidth, ShiftAmt)),
832
ShiftAmt != 0, I->isExact());
833
} else {
834
llvm::computeKnownBits(I, Known, Depth, Q);
835
}
836
break;
837
}
838
case Instruction::UDiv: {
839
// UDiv doesn't demand low bits that are zero in the divisor.
840
const APInt *SA;
841
if (match(I->getOperand(1), m_APInt(SA))) {
842
// TODO: Take the demanded mask of the result into account.
843
unsigned RHSTrailingZeros = SA->countr_zero();
844
APInt DemandedMaskIn =
845
APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
846
if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1, Q)) {
847
// We can't guarantee that "exact" is still true after changing the
848
// the dividend.
849
I->dropPoisonGeneratingFlags();
850
return I;
851
}
852
853
Known = KnownBits::udiv(LHSKnown, KnownBits::makeConstant(*SA),
854
cast<BinaryOperator>(I)->isExact());
855
} else {
856
llvm::computeKnownBits(I, Known, Depth, Q);
857
}
858
break;
859
}
860
case Instruction::SRem: {
861
const APInt *Rem;
862
if (match(I->getOperand(1), m_APInt(Rem))) {
863
// X % -1 demands all the bits because we don't want to introduce
864
// INT_MIN % -1 (== undef) by accident.
865
if (Rem->isAllOnes())
866
break;
867
APInt RA = Rem->abs();
868
if (RA.isPowerOf2()) {
869
if (DemandedMask.ult(RA)) // srem won't affect demanded bits
870
return I->getOperand(0);
871
872
APInt LowBits = RA - 1;
873
APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
874
if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1, Q))
875
return I;
876
877
// The low bits of LHS are unchanged by the srem.
878
Known.Zero = LHSKnown.Zero & LowBits;
879
Known.One = LHSKnown.One & LowBits;
880
881
// If LHS is non-negative or has all low bits zero, then the upper bits
882
// are all zero.
883
if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
884
Known.Zero |= ~LowBits;
885
886
// If LHS is negative and not all low bits are zero, then the upper bits
887
// are all one.
888
if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
889
Known.One |= ~LowBits;
890
891
break;
892
}
893
}
894
895
llvm::computeKnownBits(I, Known, Depth, Q);
896
break;
897
}
898
case Instruction::Call: {
899
bool KnownBitsComputed = false;
900
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
901
switch (II->getIntrinsicID()) {
902
case Intrinsic::abs: {
903
if (DemandedMask == 1)
904
return II->getArgOperand(0);
905
break;
906
}
907
case Intrinsic::ctpop: {
908
// Checking if the number of clear bits is odd (parity)? If the type has
909
// an even number of bits, that's the same as checking if the number of
910
// set bits is odd, so we can eliminate the 'not' op.
911
Value *X;
912
if (DemandedMask == 1 && VTy->getScalarSizeInBits() % 2 == 0 &&
913
match(II->getArgOperand(0), m_Not(m_Value(X)))) {
914
Function *Ctpop = Intrinsic::getDeclaration(
915
II->getModule(), Intrinsic::ctpop, VTy);
916
return InsertNewInstWith(CallInst::Create(Ctpop, {X}), I->getIterator());
917
}
918
break;
919
}
920
case Intrinsic::bswap: {
921
// If the only bits demanded come from one byte of the bswap result,
922
// just shift the input byte into position to eliminate the bswap.
923
unsigned NLZ = DemandedMask.countl_zero();
924
unsigned NTZ = DemandedMask.countr_zero();
925
926
// Round NTZ down to the next byte. If we have 11 trailing zeros, then
927
// we need all the bits down to bit 8. Likewise, round NLZ. If we
928
// have 14 leading zeros, round to 8.
929
NLZ = alignDown(NLZ, 8);
930
NTZ = alignDown(NTZ, 8);
931
// If we need exactly one byte, we can do this transformation.
932
if (BitWidth - NLZ - NTZ == 8) {
933
// Replace this with either a left or right shift to get the byte into
934
// the right place.
935
Instruction *NewVal;
936
if (NLZ > NTZ)
937
NewVal = BinaryOperator::CreateLShr(
938
II->getArgOperand(0), ConstantInt::get(VTy, NLZ - NTZ));
939
else
940
NewVal = BinaryOperator::CreateShl(
941
II->getArgOperand(0), ConstantInt::get(VTy, NTZ - NLZ));
942
NewVal->takeName(I);
943
return InsertNewInstWith(NewVal, I->getIterator());
944
}
945
break;
946
}
947
case Intrinsic::ptrmask: {
948
unsigned MaskWidth = I->getOperand(1)->getType()->getScalarSizeInBits();
949
RHSKnown = KnownBits(MaskWidth);
950
// If either the LHS or the RHS are Zero, the result is zero.
951
if (SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1, Q) ||
952
SimplifyDemandedBits(
953
I, 1, (DemandedMask & ~LHSKnown.Zero).zextOrTrunc(MaskWidth),
954
RHSKnown, Depth + 1, Q))
955
return I;
956
957
// TODO: Should be 1-extend
958
RHSKnown = RHSKnown.anyextOrTrunc(BitWidth);
959
960
Known = LHSKnown & RHSKnown;
961
KnownBitsComputed = true;
962
963
// If the client is only demanding bits we know to be zero, return
964
// `llvm.ptrmask(p, 0)`. We can't return `null` here due to pointer
965
// provenance, but making the mask zero will be easily optimizable in
966
// the backend.
967
if (DemandedMask.isSubsetOf(Known.Zero) &&
968
!match(I->getOperand(1), m_Zero()))
969
return replaceOperand(
970
*I, 1, Constant::getNullValue(I->getOperand(1)->getType()));
971
972
// Mask in demanded space does nothing.
973
// NOTE: We may have attributes associated with the return value of the
974
// llvm.ptrmask intrinsic that will be lost when we just return the
975
// operand. We should try to preserve them.
976
if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
977
return I->getOperand(0);
978
979
// If the RHS is a constant, see if we can simplify it.
980
if (ShrinkDemandedConstant(
981
I, 1, (DemandedMask & ~LHSKnown.Zero).zextOrTrunc(MaskWidth)))
982
return I;
983
984
// Combine:
985
// (ptrmask (getelementptr i8, ptr p, imm i), imm mask)
986
// -> (ptrmask (getelementptr i8, ptr p, imm (i & mask)), imm mask)
987
// where only the low bits known to be zero in the pointer are changed
988
Value *InnerPtr;
989
uint64_t GEPIndex;
990
uint64_t PtrMaskImmediate;
991
if (match(I, m_Intrinsic<Intrinsic::ptrmask>(
992
m_PtrAdd(m_Value(InnerPtr), m_ConstantInt(GEPIndex)),
993
m_ConstantInt(PtrMaskImmediate)))) {
994
995
LHSKnown = computeKnownBits(InnerPtr, Depth + 1, I);
996
if (!LHSKnown.isZero()) {
997
const unsigned trailingZeros = LHSKnown.countMinTrailingZeros();
998
uint64_t PointerAlignBits = (uint64_t(1) << trailingZeros) - 1;
999
1000
uint64_t HighBitsGEPIndex = GEPIndex & ~PointerAlignBits;
1001
uint64_t MaskedLowBitsGEPIndex =
1002
GEPIndex & PointerAlignBits & PtrMaskImmediate;
1003
1004
uint64_t MaskedGEPIndex = HighBitsGEPIndex | MaskedLowBitsGEPIndex;
1005
1006
if (MaskedGEPIndex != GEPIndex) {
1007
auto *GEP = cast<GEPOperator>(II->getArgOperand(0));
1008
Builder.SetInsertPoint(I);
1009
Type *GEPIndexType =
1010
DL.getIndexType(GEP->getPointerOperand()->getType());
1011
Value *MaskedGEP = Builder.CreateGEP(
1012
GEP->getSourceElementType(), InnerPtr,
1013
ConstantInt::get(GEPIndexType, MaskedGEPIndex),
1014
GEP->getName(), GEP->isInBounds());
1015
1016
replaceOperand(*I, 0, MaskedGEP);
1017
return I;
1018
}
1019
}
1020
}
1021
1022
break;
1023
}
1024
1025
case Intrinsic::fshr:
1026
case Intrinsic::fshl: {
1027
const APInt *SA;
1028
if (!match(I->getOperand(2), m_APInt(SA)))
1029
break;
1030
1031
// Normalize to funnel shift left. APInt shifts of BitWidth are well-
1032
// defined, so no need to special-case zero shifts here.
1033
uint64_t ShiftAmt = SA->urem(BitWidth);
1034
if (II->getIntrinsicID() == Intrinsic::fshr)
1035
ShiftAmt = BitWidth - ShiftAmt;
1036
1037
APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt));
1038
APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt));
1039
if (I->getOperand(0) != I->getOperand(1)) {
1040
if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown,
1041
Depth + 1, Q) ||
1042
SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1,
1043
Q))
1044
return I;
1045
} else { // fshl is a rotate
1046
// Avoid converting rotate into funnel shift.
1047
// Only simplify if one operand is constant.
1048
LHSKnown = computeKnownBits(I->getOperand(0), Depth + 1, I);
1049
if (DemandedMaskLHS.isSubsetOf(LHSKnown.Zero | LHSKnown.One) &&
1050
!match(I->getOperand(0), m_SpecificInt(LHSKnown.One))) {
1051
replaceOperand(*I, 0, Constant::getIntegerValue(VTy, LHSKnown.One));
1052
return I;
1053
}
1054
1055
RHSKnown = computeKnownBits(I->getOperand(1), Depth + 1, I);
1056
if (DemandedMaskRHS.isSubsetOf(RHSKnown.Zero | RHSKnown.One) &&
1057
!match(I->getOperand(1), m_SpecificInt(RHSKnown.One))) {
1058
replaceOperand(*I, 1, Constant::getIntegerValue(VTy, RHSKnown.One));
1059
return I;
1060
}
1061
}
1062
1063
Known.Zero = LHSKnown.Zero.shl(ShiftAmt) |
1064
RHSKnown.Zero.lshr(BitWidth - ShiftAmt);
1065
Known.One = LHSKnown.One.shl(ShiftAmt) |
1066
RHSKnown.One.lshr(BitWidth - ShiftAmt);
1067
KnownBitsComputed = true;
1068
break;
1069
}
1070
case Intrinsic::umax: {
1071
// UMax(A, C) == A if ...
1072
// The lowest non-zero bit of DemandMask is higher than the highest
1073
// non-zero bit of C.
1074
const APInt *C;
1075
unsigned CTZ = DemandedMask.countr_zero();
1076
if (match(II->getArgOperand(1), m_APInt(C)) &&
1077
CTZ >= C->getActiveBits())
1078
return II->getArgOperand(0);
1079
break;
1080
}
1081
case Intrinsic::umin: {
1082
// UMin(A, C) == A if ...
1083
// The lowest non-zero bit of DemandMask is higher than the highest
1084
// non-one bit of C.
1085
// This comes from using DeMorgans on the above umax example.
1086
const APInt *C;
1087
unsigned CTZ = DemandedMask.countr_zero();
1088
if (match(II->getArgOperand(1), m_APInt(C)) &&
1089
CTZ >= C->getBitWidth() - C->countl_one())
1090
return II->getArgOperand(0);
1091
break;
1092
}
1093
default: {
1094
// Handle target specific intrinsics
1095
std::optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic(
1096
*II, DemandedMask, Known, KnownBitsComputed);
1097
if (V)
1098
return *V;
1099
break;
1100
}
1101
}
1102
}
1103
1104
if (!KnownBitsComputed)
1105
llvm::computeKnownBits(I, Known, Depth, Q);
1106
break;
1107
}
1108
}
1109
1110
if (I->getType()->isPointerTy()) {
1111
Align Alignment = I->getPointerAlignment(DL);
1112
Known.Zero.setLowBits(Log2(Alignment));
1113
}
1114
1115
// If the client is only demanding bits that we know, return the known
1116
// constant. We can't directly simplify pointers as a constant because of
1117
// pointer provenance.
1118
// TODO: We could return `(inttoptr const)` for pointers.
1119
if (!I->getType()->isPointerTy() &&
1120
DemandedMask.isSubsetOf(Known.Zero | Known.One))
1121
return Constant::getIntegerValue(VTy, Known.One);
1122
1123
if (VerifyKnownBits) {
1124
KnownBits ReferenceKnown = llvm::computeKnownBits(I, Depth, Q);
1125
if (Known != ReferenceKnown) {
1126
errs() << "Mismatched known bits for " << *I << " in "
1127
<< I->getFunction()->getName() << "\n";
1128
errs() << "computeKnownBits(): " << ReferenceKnown << "\n";
1129
errs() << "SimplifyDemandedBits(): " << Known << "\n";
1130
std::abort();
1131
}
1132
}
1133
1134
return nullptr;
1135
}
1136
1137
/// Helper routine of SimplifyDemandedUseBits. It computes Known
1138
/// bits. It also tries to handle simplifications that can be done based on
1139
/// DemandedMask, but without modifying the Instruction.
1140
Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits(
1141
Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth,
1142
const SimplifyQuery &Q) {
1143
unsigned BitWidth = DemandedMask.getBitWidth();
1144
Type *ITy = I->getType();
1145
1146
KnownBits LHSKnown(BitWidth);
1147
KnownBits RHSKnown(BitWidth);
1148
1149
// Despite the fact that we can't simplify this instruction in all User's
1150
// context, we can at least compute the known bits, and we can
1151
// do simplifications that apply to *just* the one user if we know that
1152
// this instruction has a simpler value in that context.
1153
switch (I->getOpcode()) {
1154
case Instruction::And: {
1155
llvm::computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, Q);
1156
llvm::computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, Q);
1157
Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown,
1158
Depth, Q);
1159
computeKnownBitsFromContext(I, Known, Depth, Q);
1160
1161
// If the client is only demanding bits that we know, return the known
1162
// constant.
1163
if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
1164
return Constant::getIntegerValue(ITy, Known.One);
1165
1166
// If all of the demanded bits are known 1 on one side, return the other.
1167
// These bits cannot contribute to the result of the 'and' in this context.
1168
if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
1169
return I->getOperand(0);
1170
if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
1171
return I->getOperand(1);
1172
1173
break;
1174
}
1175
case Instruction::Or: {
1176
llvm::computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, Q);
1177
llvm::computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, Q);
1178
Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown,
1179
Depth, Q);
1180
computeKnownBitsFromContext(I, Known, Depth, Q);
1181
1182
// If the client is only demanding bits that we know, return the known
1183
// constant.
1184
if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
1185
return Constant::getIntegerValue(ITy, Known.One);
1186
1187
// We can simplify (X|Y) -> X or Y in the user's context if we know that
1188
// only bits from X or Y are demanded.
1189
// If all of the demanded bits are known zero on one side, return the other.
1190
// These bits cannot contribute to the result of the 'or' in this context.
1191
if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
1192
return I->getOperand(0);
1193
if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
1194
return I->getOperand(1);
1195
1196
break;
1197
}
1198
case Instruction::Xor: {
1199
llvm::computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, Q);
1200
llvm::computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, Q);
1201
Known = analyzeKnownBitsFromAndXorOr(cast<Operator>(I), LHSKnown, RHSKnown,
1202
Depth, Q);
1203
computeKnownBitsFromContext(I, Known, Depth, Q);
1204
1205
// If the client is only demanding bits that we know, return the known
1206
// constant.
1207
if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
1208
return Constant::getIntegerValue(ITy, Known.One);
1209
1210
// We can simplify (X^Y) -> X or Y in the user's context if we know that
1211
// only bits from X or Y are demanded.
1212
// If all of the demanded bits are known zero on one side, return the other.
1213
if (DemandedMask.isSubsetOf(RHSKnown.Zero))
1214
return I->getOperand(0);
1215
if (DemandedMask.isSubsetOf(LHSKnown.Zero))
1216
return I->getOperand(1);
1217
1218
break;
1219
}
1220
case Instruction::Add: {
1221
unsigned NLZ = DemandedMask.countl_zero();
1222
APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
1223
1224
// If an operand adds zeros to every bit below the highest demanded bit,
1225
// that operand doesn't change the result. Return the other side.
1226
llvm::computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, Q);
1227
if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
1228
return I->getOperand(0);
1229
1230
llvm::computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, Q);
1231
if (DemandedFromOps.isSubsetOf(LHSKnown.Zero))
1232
return I->getOperand(1);
1233
1234
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1235
bool NUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
1236
Known =
1237
KnownBits::computeForAddSub(/*Add=*/true, NSW, NUW, LHSKnown, RHSKnown);
1238
computeKnownBitsFromContext(I, Known, Depth, Q);
1239
break;
1240
}
1241
case Instruction::Sub: {
1242
unsigned NLZ = DemandedMask.countl_zero();
1243
APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ);
1244
1245
// If an operand subtracts zeros from every bit below the highest demanded
1246
// bit, that operand doesn't change the result. Return the other side.
1247
llvm::computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, Q);
1248
if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
1249
return I->getOperand(0);
1250
1251
bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1252
bool NUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
1253
llvm::computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, Q);
1254
Known = KnownBits::computeForAddSub(/*Add=*/false, NSW, NUW, LHSKnown,
1255
RHSKnown);
1256
computeKnownBitsFromContext(I, Known, Depth, Q);
1257
break;
1258
}
1259
case Instruction::AShr: {
1260
// Compute the Known bits to simplify things downstream.
1261
llvm::computeKnownBits(I, Known, Depth, Q);
1262
1263
// If this user is only demanding bits that we know, return the known
1264
// constant.
1265
if (DemandedMask.isSubsetOf(Known.Zero | Known.One))
1266
return Constant::getIntegerValue(ITy, Known.One);
1267
1268
// If the right shift operand 0 is a result of a left shift by the same
1269
// amount, this is probably a zero/sign extension, which may be unnecessary,
1270
// if we do not demand any of the new sign bits. So, return the original
1271
// operand instead.
1272
const APInt *ShiftRC;
1273
const APInt *ShiftLC;
1274
Value *X;
1275
unsigned BitWidth = DemandedMask.getBitWidth();
1276
if (match(I,
1277
m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) &&
1278
ShiftLC == ShiftRC && ShiftLC->ult(BitWidth) &&
1279
DemandedMask.isSubsetOf(APInt::getLowBitsSet(
1280
BitWidth, BitWidth - ShiftRC->getZExtValue()))) {
1281
return X;
1282
}
1283
1284
break;
1285
}
1286
default:
1287
// Compute the Known bits to simplify things downstream.
1288
llvm::computeKnownBits(I, Known, Depth, Q);
1289
1290
// If this user is only demanding bits that we know, return the known
1291
// constant.
1292
if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
1293
return Constant::getIntegerValue(ITy, Known.One);
1294
1295
break;
1296
}
1297
1298
return nullptr;
1299
}
1300
1301
/// Helper routine of SimplifyDemandedUseBits. It tries to simplify
1302
/// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
1303
/// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
1304
/// of "C2-C1".
1305
///
1306
/// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
1307
/// ..., bn}, without considering the specific value X is holding.
1308
/// This transformation is legal iff one of following conditions is hold:
1309
/// 1) All the bit in S are 0, in this case E1 == E2.
1310
/// 2) We don't care those bits in S, per the input DemandedMask.
1311
/// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
1312
/// rest bits.
1313
///
1314
/// Currently we only test condition 2).
1315
///
1316
/// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
1317
/// not successful.
1318
Value *InstCombinerImpl::simplifyShrShlDemandedBits(
1319
Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
1320
const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) {
1321
if (!ShlOp1 || !ShrOp1)
1322
return nullptr; // No-op.
1323
1324
Value *VarX = Shr->getOperand(0);
1325
Type *Ty = VarX->getType();
1326
unsigned BitWidth = Ty->getScalarSizeInBits();
1327
if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
1328
return nullptr; // Undef.
1329
1330
unsigned ShlAmt = ShlOp1.getZExtValue();
1331
unsigned ShrAmt = ShrOp1.getZExtValue();
1332
1333
Known.One.clearAllBits();
1334
Known.Zero.setLowBits(ShlAmt - 1);
1335
Known.Zero &= DemandedMask;
1336
1337
APInt BitMask1(APInt::getAllOnes(BitWidth));
1338
APInt BitMask2(APInt::getAllOnes(BitWidth));
1339
1340
bool isLshr = (Shr->getOpcode() == Instruction::LShr);
1341
BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
1342
(BitMask1.ashr(ShrAmt) << ShlAmt);
1343
1344
if (ShrAmt <= ShlAmt) {
1345
BitMask2 <<= (ShlAmt - ShrAmt);
1346
} else {
1347
BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
1348
BitMask2.ashr(ShrAmt - ShlAmt);
1349
}
1350
1351
// Check if condition-2 (see the comment to this function) is satified.
1352
if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
1353
if (ShrAmt == ShlAmt)
1354
return VarX;
1355
1356
if (!Shr->hasOneUse())
1357
return nullptr;
1358
1359
BinaryOperator *New;
1360
if (ShrAmt < ShlAmt) {
1361
Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
1362
New = BinaryOperator::CreateShl(VarX, Amt);
1363
BinaryOperator *Orig = cast<BinaryOperator>(Shl);
1364
New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
1365
New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
1366
} else {
1367
Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
1368
New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
1369
BinaryOperator::CreateAShr(VarX, Amt);
1370
if (cast<BinaryOperator>(Shr)->isExact())
1371
New->setIsExact(true);
1372
}
1373
1374
return InsertNewInstWith(New, Shl->getIterator());
1375
}
1376
1377
return nullptr;
1378
}
1379
1380
/// The specified value produces a vector with any number of elements.
1381
/// This method analyzes which elements of the operand are poison and
1382
/// returns that information in PoisonElts.
1383
///
1384
/// DemandedElts contains the set of elements that are actually used by the
1385
/// caller, and by default (AllowMultipleUsers equals false) the value is
1386
/// simplified only if it has a single caller. If AllowMultipleUsers is set
1387
/// to true, DemandedElts refers to the union of sets of elements that are
1388
/// used by all callers.
1389
///
1390
/// If the information about demanded elements can be used to simplify the
1391
/// operation, the operation is simplified, then the resultant value is
1392
/// returned. This returns null if no change was made.
1393
Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V,
1394
APInt DemandedElts,
1395
APInt &PoisonElts,
1396
unsigned Depth,
1397
bool AllowMultipleUsers) {
1398
// Cannot analyze scalable type. The number of vector elements is not a
1399
// compile-time constant.
1400
if (isa<ScalableVectorType>(V->getType()))
1401
return nullptr;
1402
1403
unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
1404
APInt EltMask(APInt::getAllOnes(VWidth));
1405
assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
1406
1407
if (match(V, m_Poison())) {
1408
// If the entire vector is poison, just return this info.
1409
PoisonElts = EltMask;
1410
return nullptr;
1411
}
1412
1413
if (DemandedElts.isZero()) { // If nothing is demanded, provide poison.
1414
PoisonElts = EltMask;
1415
return PoisonValue::get(V->getType());
1416
}
1417
1418
PoisonElts = 0;
1419
1420
if (auto *C = dyn_cast<Constant>(V)) {
1421
// Check if this is identity. If so, return 0 since we are not simplifying
1422
// anything.
1423
if (DemandedElts.isAllOnes())
1424
return nullptr;
1425
1426
Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1427
Constant *Poison = PoisonValue::get(EltTy);
1428
SmallVector<Constant*, 16> Elts;
1429
for (unsigned i = 0; i != VWidth; ++i) {
1430
if (!DemandedElts[i]) { // If not demanded, set to poison.
1431
Elts.push_back(Poison);
1432
PoisonElts.setBit(i);
1433
continue;
1434
}
1435
1436
Constant *Elt = C->getAggregateElement(i);
1437
if (!Elt) return nullptr;
1438
1439
Elts.push_back(Elt);
1440
if (isa<PoisonValue>(Elt)) // Already poison.
1441
PoisonElts.setBit(i);
1442
}
1443
1444
// If we changed the constant, return it.
1445
Constant *NewCV = ConstantVector::get(Elts);
1446
return NewCV != C ? NewCV : nullptr;
1447
}
1448
1449
// Limit search depth.
1450
if (Depth == 10)
1451
return nullptr;
1452
1453
if (!AllowMultipleUsers) {
1454
// If multiple users are using the root value, proceed with
1455
// simplification conservatively assuming that all elements
1456
// are needed.
1457
if (!V->hasOneUse()) {
1458
// Quit if we find multiple users of a non-root value though.
1459
// They'll be handled when it's their turn to be visited by
1460
// the main instcombine process.
1461
if (Depth != 0)
1462
// TODO: Just compute the PoisonElts information recursively.
1463
return nullptr;
1464
1465
// Conservatively assume that all elements are needed.
1466
DemandedElts = EltMask;
1467
}
1468
}
1469
1470
Instruction *I = dyn_cast<Instruction>(V);
1471
if (!I) return nullptr; // Only analyze instructions.
1472
1473
bool MadeChange = false;
1474
auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
1475
APInt Demanded, APInt &Undef) {
1476
auto *II = dyn_cast<IntrinsicInst>(Inst);
1477
Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
1478
if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
1479
replaceOperand(*Inst, OpNum, V);
1480
MadeChange = true;
1481
}
1482
};
1483
1484
APInt PoisonElts2(VWidth, 0);
1485
APInt PoisonElts3(VWidth, 0);
1486
switch (I->getOpcode()) {
1487
default: break;
1488
1489
case Instruction::GetElementPtr: {
1490
// The LangRef requires that struct geps have all constant indices. As
1491
// such, we can't convert any operand to partial undef.
1492
auto mayIndexStructType = [](GetElementPtrInst &GEP) {
1493
for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP);
1494
I != E; I++)
1495
if (I.isStruct())
1496
return true;
1497
return false;
1498
};
1499
if (mayIndexStructType(cast<GetElementPtrInst>(*I)))
1500
break;
1501
1502
// Conservatively track the demanded elements back through any vector
1503
// operands we may have. We know there must be at least one, or we
1504
// wouldn't have a vector result to get here. Note that we intentionally
1505
// merge the undef bits here since gepping with either an poison base or
1506
// index results in poison.
1507
for (unsigned i = 0; i < I->getNumOperands(); i++) {
1508
if (i == 0 ? match(I->getOperand(i), m_Undef())
1509
: match(I->getOperand(i), m_Poison())) {
1510
// If the entire vector is undefined, just return this info.
1511
PoisonElts = EltMask;
1512
return nullptr;
1513
}
1514
if (I->getOperand(i)->getType()->isVectorTy()) {
1515
APInt PoisonEltsOp(VWidth, 0);
1516
simplifyAndSetOp(I, i, DemandedElts, PoisonEltsOp);
1517
// gep(x, undef) is not undef, so skip considering idx ops here
1518
// Note that we could propagate poison, but we can't distinguish between
1519
// undef & poison bits ATM
1520
if (i == 0)
1521
PoisonElts |= PoisonEltsOp;
1522
}
1523
}
1524
1525
break;
1526
}
1527
case Instruction::InsertElement: {
1528
// If this is a variable index, we don't know which element it overwrites.
1529
// demand exactly the same input as we produce.
1530
ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1531
if (!Idx) {
1532
// Note that we can't propagate undef elt info, because we don't know
1533
// which elt is getting updated.
1534
simplifyAndSetOp(I, 0, DemandedElts, PoisonElts2);
1535
break;
1536
}
1537
1538
// The element inserted overwrites whatever was there, so the input demanded
1539
// set is simpler than the output set.
1540
unsigned IdxNo = Idx->getZExtValue();
1541
APInt PreInsertDemandedElts = DemandedElts;
1542
if (IdxNo < VWidth)
1543
PreInsertDemandedElts.clearBit(IdxNo);
1544
1545
// If we only demand the element that is being inserted and that element
1546
// was extracted from the same index in another vector with the same type,
1547
// replace this insert with that other vector.
1548
// Note: This is attempted before the call to simplifyAndSetOp because that
1549
// may change PoisonElts to a value that does not match with Vec.
1550
Value *Vec;
1551
if (PreInsertDemandedElts == 0 &&
1552
match(I->getOperand(1),
1553
m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) &&
1554
Vec->getType() == I->getType()) {
1555
return Vec;
1556
}
1557
1558
simplifyAndSetOp(I, 0, PreInsertDemandedElts, PoisonElts);
1559
1560
// If this is inserting an element that isn't demanded, remove this
1561
// insertelement.
1562
if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1563
Worklist.push(I);
1564
return I->getOperand(0);
1565
}
1566
1567
// The inserted element is defined.
1568
PoisonElts.clearBit(IdxNo);
1569
break;
1570
}
1571
case Instruction::ShuffleVector: {
1572
auto *Shuffle = cast<ShuffleVectorInst>(I);
1573
assert(Shuffle->getOperand(0)->getType() ==
1574
Shuffle->getOperand(1)->getType() &&
1575
"Expected shuffle operands to have same type");
1576
unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType())
1577
->getNumElements();
1578
// Handle trivial case of a splat. Only check the first element of LHS
1579
// operand.
1580
if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) &&
1581
DemandedElts.isAllOnes()) {
1582
if (!isa<PoisonValue>(I->getOperand(1))) {
1583
I->setOperand(1, PoisonValue::get(I->getOperand(1)->getType()));
1584
MadeChange = true;
1585
}
1586
APInt LeftDemanded(OpWidth, 1);
1587
APInt LHSPoisonElts(OpWidth, 0);
1588
simplifyAndSetOp(I, 0, LeftDemanded, LHSPoisonElts);
1589
if (LHSPoisonElts[0])
1590
PoisonElts = EltMask;
1591
else
1592
PoisonElts.clearAllBits();
1593
break;
1594
}
1595
1596
APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0);
1597
for (unsigned i = 0; i < VWidth; i++) {
1598
if (DemandedElts[i]) {
1599
unsigned MaskVal = Shuffle->getMaskValue(i);
1600
if (MaskVal != -1u) {
1601
assert(MaskVal < OpWidth * 2 &&
1602
"shufflevector mask index out of range!");
1603
if (MaskVal < OpWidth)
1604
LeftDemanded.setBit(MaskVal);
1605
else
1606
RightDemanded.setBit(MaskVal - OpWidth);
1607
}
1608
}
1609
}
1610
1611
APInt LHSPoisonElts(OpWidth, 0);
1612
simplifyAndSetOp(I, 0, LeftDemanded, LHSPoisonElts);
1613
1614
APInt RHSPoisonElts(OpWidth, 0);
1615
simplifyAndSetOp(I, 1, RightDemanded, RHSPoisonElts);
1616
1617
// If this shuffle does not change the vector length and the elements
1618
// demanded by this shuffle are an identity mask, then this shuffle is
1619
// unnecessary.
1620
//
1621
// We are assuming canonical form for the mask, so the source vector is
1622
// operand 0 and operand 1 is not used.
1623
//
1624
// Note that if an element is demanded and this shuffle mask is undefined
1625
// for that element, then the shuffle is not considered an identity
1626
// operation. The shuffle prevents poison from the operand vector from
1627
// leaking to the result by replacing poison with an undefined value.
1628
if (VWidth == OpWidth) {
1629
bool IsIdentityShuffle = true;
1630
for (unsigned i = 0; i < VWidth; i++) {
1631
unsigned MaskVal = Shuffle->getMaskValue(i);
1632
if (DemandedElts[i] && i != MaskVal) {
1633
IsIdentityShuffle = false;
1634
break;
1635
}
1636
}
1637
if (IsIdentityShuffle)
1638
return Shuffle->getOperand(0);
1639
}
1640
1641
bool NewPoisonElts = false;
1642
unsigned LHSIdx = -1u, LHSValIdx = -1u;
1643
unsigned RHSIdx = -1u, RHSValIdx = -1u;
1644
bool LHSUniform = true;
1645
bool RHSUniform = true;
1646
for (unsigned i = 0; i < VWidth; i++) {
1647
unsigned MaskVal = Shuffle->getMaskValue(i);
1648
if (MaskVal == -1u) {
1649
PoisonElts.setBit(i);
1650
} else if (!DemandedElts[i]) {
1651
NewPoisonElts = true;
1652
PoisonElts.setBit(i);
1653
} else if (MaskVal < OpWidth) {
1654
if (LHSPoisonElts[MaskVal]) {
1655
NewPoisonElts = true;
1656
PoisonElts.setBit(i);
1657
} else {
1658
LHSIdx = LHSIdx == -1u ? i : OpWidth;
1659
LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth;
1660
LHSUniform = LHSUniform && (MaskVal == i);
1661
}
1662
} else {
1663
if (RHSPoisonElts[MaskVal - OpWidth]) {
1664
NewPoisonElts = true;
1665
PoisonElts.setBit(i);
1666
} else {
1667
RHSIdx = RHSIdx == -1u ? i : OpWidth;
1668
RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth;
1669
RHSUniform = RHSUniform && (MaskVal - OpWidth == i);
1670
}
1671
}
1672
}
1673
1674
// Try to transform shuffle with constant vector and single element from
1675
// this constant vector to single insertelement instruction.
1676
// shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1677
// insertelement V, C[ci], ci-n
1678
if (OpWidth ==
1679
cast<FixedVectorType>(Shuffle->getType())->getNumElements()) {
1680
Value *Op = nullptr;
1681
Constant *Value = nullptr;
1682
unsigned Idx = -1u;
1683
1684
// Find constant vector with the single element in shuffle (LHS or RHS).
1685
if (LHSIdx < OpWidth && RHSUniform) {
1686
if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1687
Op = Shuffle->getOperand(1);
1688
Value = CV->getOperand(LHSValIdx);
1689
Idx = LHSIdx;
1690
}
1691
}
1692
if (RHSIdx < OpWidth && LHSUniform) {
1693
if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1694
Op = Shuffle->getOperand(0);
1695
Value = CV->getOperand(RHSValIdx);
1696
Idx = RHSIdx;
1697
}
1698
}
1699
// Found constant vector with single element - convert to insertelement.
1700
if (Op && Value) {
1701
Instruction *New = InsertElementInst::Create(
1702
Op, Value, ConstantInt::get(Type::getInt64Ty(I->getContext()), Idx),
1703
Shuffle->getName());
1704
InsertNewInstWith(New, Shuffle->getIterator());
1705
return New;
1706
}
1707
}
1708
if (NewPoisonElts) {
1709
// Add additional discovered undefs.
1710
SmallVector<int, 16> Elts;
1711
for (unsigned i = 0; i < VWidth; ++i) {
1712
if (PoisonElts[i])
1713
Elts.push_back(PoisonMaskElem);
1714
else
1715
Elts.push_back(Shuffle->getMaskValue(i));
1716
}
1717
Shuffle->setShuffleMask(Elts);
1718
MadeChange = true;
1719
}
1720
break;
1721
}
1722
case Instruction::Select: {
1723
// If this is a vector select, try to transform the select condition based
1724
// on the current demanded elements.
1725
SelectInst *Sel = cast<SelectInst>(I);
1726
if (Sel->getCondition()->getType()->isVectorTy()) {
1727
// TODO: We are not doing anything with PoisonElts based on this call.
1728
// It is overwritten below based on the other select operands. If an
1729
// element of the select condition is known undef, then we are free to
1730
// choose the output value from either arm of the select. If we know that
1731
// one of those values is undef, then the output can be undef.
1732
simplifyAndSetOp(I, 0, DemandedElts, PoisonElts);
1733
}
1734
1735
// Next, see if we can transform the arms of the select.
1736
APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
1737
if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
1738
for (unsigned i = 0; i < VWidth; i++) {
1739
// isNullValue() always returns false when called on a ConstantExpr.
1740
// Skip constant expressions to avoid propagating incorrect information.
1741
Constant *CElt = CV->getAggregateElement(i);
1742
if (isa<ConstantExpr>(CElt))
1743
continue;
1744
// TODO: If a select condition element is undef, we can demand from
1745
// either side. If one side is known undef, choosing that side would
1746
// propagate undef.
1747
if (CElt->isNullValue())
1748
DemandedLHS.clearBit(i);
1749
else
1750
DemandedRHS.clearBit(i);
1751
}
1752
}
1753
1754
simplifyAndSetOp(I, 1, DemandedLHS, PoisonElts2);
1755
simplifyAndSetOp(I, 2, DemandedRHS, PoisonElts3);
1756
1757
// Output elements are undefined if the element from each arm is undefined.
1758
// TODO: This can be improved. See comment in select condition handling.
1759
PoisonElts = PoisonElts2 & PoisonElts3;
1760
break;
1761
}
1762
case Instruction::BitCast: {
1763
// Vector->vector casts only.
1764
VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1765
if (!VTy) break;
1766
unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements();
1767
APInt InputDemandedElts(InVWidth, 0);
1768
PoisonElts2 = APInt(InVWidth, 0);
1769
unsigned Ratio;
1770
1771
if (VWidth == InVWidth) {
1772
// If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1773
// elements as are demanded of us.
1774
Ratio = 1;
1775
InputDemandedElts = DemandedElts;
1776
} else if ((VWidth % InVWidth) == 0) {
1777
// If the number of elements in the output is a multiple of the number of
1778
// elements in the input then an input element is live if any of the
1779
// corresponding output elements are live.
1780
Ratio = VWidth / InVWidth;
1781
for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1782
if (DemandedElts[OutIdx])
1783
InputDemandedElts.setBit(OutIdx / Ratio);
1784
} else if ((InVWidth % VWidth) == 0) {
1785
// If the number of elements in the input is a multiple of the number of
1786
// elements in the output then an input element is live if the
1787
// corresponding output element is live.
1788
Ratio = InVWidth / VWidth;
1789
for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1790
if (DemandedElts[InIdx / Ratio])
1791
InputDemandedElts.setBit(InIdx);
1792
} else {
1793
// Unsupported so far.
1794
break;
1795
}
1796
1797
simplifyAndSetOp(I, 0, InputDemandedElts, PoisonElts2);
1798
1799
if (VWidth == InVWidth) {
1800
PoisonElts = PoisonElts2;
1801
} else if ((VWidth % InVWidth) == 0) {
1802
// If the number of elements in the output is a multiple of the number of
1803
// elements in the input then an output element is undef if the
1804
// corresponding input element is undef.
1805
for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1806
if (PoisonElts2[OutIdx / Ratio])
1807
PoisonElts.setBit(OutIdx);
1808
} else if ((InVWidth % VWidth) == 0) {
1809
// If the number of elements in the input is a multiple of the number of
1810
// elements in the output then an output element is undef if all of the
1811
// corresponding input elements are undef.
1812
for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1813
APInt SubUndef = PoisonElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1814
if (SubUndef.popcount() == Ratio)
1815
PoisonElts.setBit(OutIdx);
1816
}
1817
} else {
1818
llvm_unreachable("Unimp");
1819
}
1820
break;
1821
}
1822
case Instruction::FPTrunc:
1823
case Instruction::FPExt:
1824
simplifyAndSetOp(I, 0, DemandedElts, PoisonElts);
1825
break;
1826
1827
case Instruction::Call: {
1828
IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1829
if (!II) break;
1830
switch (II->getIntrinsicID()) {
1831
case Intrinsic::masked_gather: // fallthrough
1832
case Intrinsic::masked_load: {
1833
// Subtlety: If we load from a pointer, the pointer must be valid
1834
// regardless of whether the element is demanded. Doing otherwise risks
1835
// segfaults which didn't exist in the original program.
1836
APInt DemandedPtrs(APInt::getAllOnes(VWidth)),
1837
DemandedPassThrough(DemandedElts);
1838
if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2)))
1839
for (unsigned i = 0; i < VWidth; i++) {
1840
Constant *CElt = CV->getAggregateElement(i);
1841
if (CElt->isNullValue())
1842
DemandedPtrs.clearBit(i);
1843
else if (CElt->isAllOnesValue())
1844
DemandedPassThrough.clearBit(i);
1845
}
1846
if (II->getIntrinsicID() == Intrinsic::masked_gather)
1847
simplifyAndSetOp(II, 0, DemandedPtrs, PoisonElts2);
1848
simplifyAndSetOp(II, 3, DemandedPassThrough, PoisonElts3);
1849
1850
// Output elements are undefined if the element from both sources are.
1851
// TODO: can strengthen via mask as well.
1852
PoisonElts = PoisonElts2 & PoisonElts3;
1853
break;
1854
}
1855
default: {
1856
// Handle target specific intrinsics
1857
std::optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic(
1858
*II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3,
1859
simplifyAndSetOp);
1860
if (V)
1861
return *V;
1862
break;
1863
}
1864
} // switch on IntrinsicID
1865
break;
1866
} // case Call
1867
} // switch on Opcode
1868
1869
// TODO: We bail completely on integer div/rem and shifts because they have
1870
// UB/poison potential, but that should be refined.
1871
BinaryOperator *BO;
1872
if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
1873
Value *X = BO->getOperand(0);
1874
Value *Y = BO->getOperand(1);
1875
1876
// Look for an equivalent binop except that one operand has been shuffled.
1877
// If the demand for this binop only includes elements that are the same as
1878
// the other binop, then we may be able to replace this binop with a use of
1879
// the earlier one.
1880
//
1881
// Example:
1882
// %other_bo = bo (shuf X, {0}), Y
1883
// %this_extracted_bo = extelt (bo X, Y), 0
1884
// -->
1885
// %other_bo = bo (shuf X, {0}), Y
1886
// %this_extracted_bo = extelt %other_bo, 0
1887
//
1888
// TODO: Handle demand of an arbitrary single element or more than one
1889
// element instead of just element 0.
1890
// TODO: Unlike general demanded elements transforms, this should be safe
1891
// for any (div/rem/shift) opcode too.
1892
if (DemandedElts == 1 && !X->hasOneUse() && !Y->hasOneUse() &&
1893
BO->hasOneUse() ) {
1894
1895
auto findShufBO = [&](bool MatchShufAsOp0) -> User * {
1896
// Try to use shuffle-of-operand in place of an operand:
1897
// bo X, Y --> bo (shuf X), Y
1898
// bo X, Y --> bo X, (shuf Y)
1899
BinaryOperator::BinaryOps Opcode = BO->getOpcode();
1900
Value *ShufOp = MatchShufAsOp0 ? X : Y;
1901
Value *OtherOp = MatchShufAsOp0 ? Y : X;
1902
for (User *U : OtherOp->users()) {
1903
ArrayRef<int> Mask;
1904
auto Shuf = m_Shuffle(m_Specific(ShufOp), m_Value(), m_Mask(Mask));
1905
if (BO->isCommutative()
1906
? match(U, m_c_BinOp(Opcode, Shuf, m_Specific(OtherOp)))
1907
: MatchShufAsOp0
1908
? match(U, m_BinOp(Opcode, Shuf, m_Specific(OtherOp)))
1909
: match(U, m_BinOp(Opcode, m_Specific(OtherOp), Shuf)))
1910
if (match(Mask, m_ZeroMask()) && Mask[0] != PoisonMaskElem)
1911
if (DT.dominates(U, I))
1912
return U;
1913
}
1914
return nullptr;
1915
};
1916
1917
if (User *ShufBO = findShufBO(/* MatchShufAsOp0 */ true))
1918
return ShufBO;
1919
if (User *ShufBO = findShufBO(/* MatchShufAsOp0 */ false))
1920
return ShufBO;
1921
}
1922
1923
simplifyAndSetOp(I, 0, DemandedElts, PoisonElts);
1924
simplifyAndSetOp(I, 1, DemandedElts, PoisonElts2);
1925
1926
// Output elements are undefined if both are undefined. Consider things
1927
// like undef & 0. The result is known zero, not undef.
1928
PoisonElts &= PoisonElts2;
1929
}
1930
1931
// If we've proven all of the lanes poison, return a poison value.
1932
// TODO: Intersect w/demanded lanes
1933
if (PoisonElts.isAllOnes())
1934
return PoisonValue::get(I->getType());
1935
1936
return MadeChange ? I : nullptr;
1937
}
1938
1939
/// For floating-point classes that resolve to a single bit pattern, return that
1940
/// value.
1941
static Constant *getFPClassConstant(Type *Ty, FPClassTest Mask) {
1942
switch (Mask) {
1943
case fcPosZero:
1944
return ConstantFP::getZero(Ty);
1945
case fcNegZero:
1946
return ConstantFP::getZero(Ty, true);
1947
case fcPosInf:
1948
return ConstantFP::getInfinity(Ty);
1949
case fcNegInf:
1950
return ConstantFP::getInfinity(Ty, true);
1951
case fcNone:
1952
return PoisonValue::get(Ty);
1953
default:
1954
return nullptr;
1955
}
1956
}
1957
1958
Value *InstCombinerImpl::SimplifyDemandedUseFPClass(
1959
Value *V, const FPClassTest DemandedMask, KnownFPClass &Known,
1960
unsigned Depth, Instruction *CxtI) {
1961
assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1962
Type *VTy = V->getType();
1963
1964
assert(Known == KnownFPClass() && "expected uninitialized state");
1965
1966
if (DemandedMask == fcNone)
1967
return isa<UndefValue>(V) ? nullptr : PoisonValue::get(VTy);
1968
1969
if (Depth == MaxAnalysisRecursionDepth)
1970
return nullptr;
1971
1972
Instruction *I = dyn_cast<Instruction>(V);
1973
if (!I) {
1974
// Handle constants and arguments
1975
Known = computeKnownFPClass(V, fcAllFlags, CxtI, Depth + 1);
1976
Value *FoldedToConst =
1977
getFPClassConstant(VTy, DemandedMask & Known.KnownFPClasses);
1978
return FoldedToConst == V ? nullptr : FoldedToConst;
1979
}
1980
1981
if (!I->hasOneUse())
1982
return nullptr;
1983
1984
// TODO: Should account for nofpclass/FastMathFlags on current instruction
1985
switch (I->getOpcode()) {
1986
case Instruction::FNeg: {
1987
if (SimplifyDemandedFPClass(I, 0, llvm::fneg(DemandedMask), Known,
1988
Depth + 1))
1989
return I;
1990
Known.fneg();
1991
break;
1992
}
1993
case Instruction::Call: {
1994
CallInst *CI = cast<CallInst>(I);
1995
switch (CI->getIntrinsicID()) {
1996
case Intrinsic::fabs:
1997
if (SimplifyDemandedFPClass(I, 0, llvm::inverse_fabs(DemandedMask), Known,
1998
Depth + 1))
1999
return I;
2000
Known.fabs();
2001
break;
2002
case Intrinsic::arithmetic_fence:
2003
if (SimplifyDemandedFPClass(I, 0, DemandedMask, Known, Depth + 1))
2004
return I;
2005
break;
2006
case Intrinsic::copysign: {
2007
// Flip on more potentially demanded classes
2008
const FPClassTest DemandedMaskAnySign = llvm::unknown_sign(DemandedMask);
2009
if (SimplifyDemandedFPClass(I, 0, DemandedMaskAnySign, Known, Depth + 1))
2010
return I;
2011
2012
if ((DemandedMask & fcPositive) == fcNone) {
2013
// Roundabout way of replacing with fneg(fabs)
2014
I->setOperand(1, ConstantFP::get(VTy, -1.0));
2015
return I;
2016
}
2017
2018
if ((DemandedMask & fcNegative) == fcNone) {
2019
// Roundabout way of replacing with fabs
2020
I->setOperand(1, ConstantFP::getZero(VTy));
2021
return I;
2022
}
2023
2024
KnownFPClass KnownSign =
2025
computeKnownFPClass(I->getOperand(1), fcAllFlags, CxtI, Depth + 1);
2026
Known.copysign(KnownSign);
2027
break;
2028
}
2029
default:
2030
Known = computeKnownFPClass(I, ~DemandedMask, CxtI, Depth + 1);
2031
break;
2032
}
2033
2034
break;
2035
}
2036
case Instruction::Select: {
2037
KnownFPClass KnownLHS, KnownRHS;
2038
if (SimplifyDemandedFPClass(I, 2, DemandedMask, KnownRHS, Depth + 1) ||
2039
SimplifyDemandedFPClass(I, 1, DemandedMask, KnownLHS, Depth + 1))
2040
return I;
2041
2042
if (KnownLHS.isKnownNever(DemandedMask))
2043
return I->getOperand(2);
2044
if (KnownRHS.isKnownNever(DemandedMask))
2045
return I->getOperand(1);
2046
2047
// TODO: Recognize clamping patterns
2048
Known = KnownLHS | KnownRHS;
2049
break;
2050
}
2051
default:
2052
Known = computeKnownFPClass(I, ~DemandedMask, CxtI, Depth + 1);
2053
break;
2054
}
2055
2056
return getFPClassConstant(VTy, DemandedMask & Known.KnownFPClasses);
2057
}
2058
2059
bool InstCombinerImpl::SimplifyDemandedFPClass(Instruction *I, unsigned OpNo,
2060
FPClassTest DemandedMask,
2061
KnownFPClass &Known,
2062
unsigned Depth) {
2063
Use &U = I->getOperandUse(OpNo);
2064
Value *NewVal =
2065
SimplifyDemandedUseFPClass(U.get(), DemandedMask, Known, Depth, I);
2066
if (!NewVal)
2067
return false;
2068
if (Instruction *OpInst = dyn_cast<Instruction>(U))
2069
salvageDebugInfo(*OpInst);
2070
2071
replaceUse(U, NewVal);
2072
return true;
2073
}
2074
2075