Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
35266 views
1
//===- InstCombineVectorOps.cpp -------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements instcombine for ExtractElement, InsertElement and
10
// ShuffleVector.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "InstCombineInternal.h"
15
#include "llvm/ADT/APInt.h"
16
#include "llvm/ADT/ArrayRef.h"
17
#include "llvm/ADT/DenseMap.h"
18
#include "llvm/ADT/STLExtras.h"
19
#include "llvm/ADT/SmallBitVector.h"
20
#include "llvm/ADT/SmallVector.h"
21
#include "llvm/ADT/Statistic.h"
22
#include "llvm/Analysis/InstructionSimplify.h"
23
#include "llvm/Analysis/VectorUtils.h"
24
#include "llvm/IR/BasicBlock.h"
25
#include "llvm/IR/Constant.h"
26
#include "llvm/IR/Constants.h"
27
#include "llvm/IR/DerivedTypes.h"
28
#include "llvm/IR/InstrTypes.h"
29
#include "llvm/IR/Instruction.h"
30
#include "llvm/IR/Instructions.h"
31
#include "llvm/IR/Operator.h"
32
#include "llvm/IR/PatternMatch.h"
33
#include "llvm/IR/Type.h"
34
#include "llvm/IR/User.h"
35
#include "llvm/IR/Value.h"
36
#include "llvm/Support/Casting.h"
37
#include "llvm/Support/ErrorHandling.h"
38
#include "llvm/Transforms/InstCombine/InstCombiner.h"
39
#include <cassert>
40
#include <cstdint>
41
#include <iterator>
42
#include <utility>
43
44
#define DEBUG_TYPE "instcombine"
45
46
using namespace llvm;
47
using namespace PatternMatch;
48
49
STATISTIC(NumAggregateReconstructionsSimplified,
50
"Number of aggregate reconstructions turned into reuse of the "
51
"original aggregate");
52
53
/// Return true if the value is cheaper to scalarize than it is to leave as a
54
/// vector operation. If the extract index \p EI is a constant integer then
55
/// some operations may be cheap to scalarize.
56
///
57
/// FIXME: It's possible to create more instructions than previously existed.
58
static bool cheapToScalarize(Value *V, Value *EI) {
59
ConstantInt *CEI = dyn_cast<ConstantInt>(EI);
60
61
// If we can pick a scalar constant value out of a vector, that is free.
62
if (auto *C = dyn_cast<Constant>(V))
63
return CEI || C->getSplatValue();
64
65
if (CEI && match(V, m_Intrinsic<Intrinsic::experimental_stepvector>())) {
66
ElementCount EC = cast<VectorType>(V->getType())->getElementCount();
67
// Index needs to be lower than the minimum size of the vector, because
68
// for scalable vector, the vector size is known at run time.
69
return CEI->getValue().ult(EC.getKnownMinValue());
70
}
71
72
// An insertelement to the same constant index as our extract will simplify
73
// to the scalar inserted element. An insertelement to a different constant
74
// index is irrelevant to our extract.
75
if (match(V, m_InsertElt(m_Value(), m_Value(), m_ConstantInt())))
76
return CEI;
77
78
if (match(V, m_OneUse(m_Load(m_Value()))))
79
return true;
80
81
if (match(V, m_OneUse(m_UnOp())))
82
return true;
83
84
Value *V0, *V1;
85
if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
86
if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI))
87
return true;
88
89
CmpInst::Predicate UnusedPred;
90
if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
91
if (cheapToScalarize(V0, EI) || cheapToScalarize(V1, EI))
92
return true;
93
94
return false;
95
}
96
97
// If we have a PHI node with a vector type that is only used to feed
98
// itself and be an operand of extractelement at a constant location,
99
// try to replace the PHI of the vector type with a PHI of a scalar type.
100
Instruction *InstCombinerImpl::scalarizePHI(ExtractElementInst &EI,
101
PHINode *PN) {
102
SmallVector<Instruction *, 2> Extracts;
103
// The users we want the PHI to have are:
104
// 1) The EI ExtractElement (we already know this)
105
// 2) Possibly more ExtractElements with the same index.
106
// 3) Another operand, which will feed back into the PHI.
107
Instruction *PHIUser = nullptr;
108
for (auto *U : PN->users()) {
109
if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
110
if (EI.getIndexOperand() == EU->getIndexOperand())
111
Extracts.push_back(EU);
112
else
113
return nullptr;
114
} else if (!PHIUser) {
115
PHIUser = cast<Instruction>(U);
116
} else {
117
return nullptr;
118
}
119
}
120
121
if (!PHIUser)
122
return nullptr;
123
124
// Verify that this PHI user has one use, which is the PHI itself,
125
// and that it is a binary operation which is cheap to scalarize.
126
// otherwise return nullptr.
127
if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
128
!(isa<BinaryOperator>(PHIUser)) ||
129
!cheapToScalarize(PHIUser, EI.getIndexOperand()))
130
return nullptr;
131
132
// Create a scalar PHI node that will replace the vector PHI node
133
// just before the current PHI node.
134
PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
135
PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), PN->getIterator()));
136
// Scalarize each PHI operand.
137
for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
138
Value *PHIInVal = PN->getIncomingValue(i);
139
BasicBlock *inBB = PN->getIncomingBlock(i);
140
Value *Elt = EI.getIndexOperand();
141
// If the operand is the PHI induction variable:
142
if (PHIInVal == PHIUser) {
143
// Scalarize the binary operation. Its first operand is the
144
// scalar PHI, and the second operand is extracted from the other
145
// vector operand.
146
BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
147
unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
148
Value *Op = InsertNewInstWith(
149
ExtractElementInst::Create(B0->getOperand(opId), Elt,
150
B0->getOperand(opId)->getName() + ".Elt"),
151
B0->getIterator());
152
Value *newPHIUser = InsertNewInstWith(
153
BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
154
scalarPHI, Op, B0), B0->getIterator());
155
scalarPHI->addIncoming(newPHIUser, inBB);
156
} else {
157
// Scalarize PHI input:
158
Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
159
// Insert the new instruction into the predecessor basic block.
160
Instruction *pos = dyn_cast<Instruction>(PHIInVal);
161
BasicBlock::iterator InsertPos;
162
if (pos && !isa<PHINode>(pos)) {
163
InsertPos = ++pos->getIterator();
164
} else {
165
InsertPos = inBB->getFirstInsertionPt();
166
}
167
168
InsertNewInstWith(newEI, InsertPos);
169
170
scalarPHI->addIncoming(newEI, inBB);
171
}
172
}
173
174
for (auto *E : Extracts) {
175
replaceInstUsesWith(*E, scalarPHI);
176
// Add old extract to worklist for DCE.
177
addToWorklist(E);
178
}
179
180
return &EI;
181
}
182
183
Instruction *InstCombinerImpl::foldBitcastExtElt(ExtractElementInst &Ext) {
184
Value *X;
185
uint64_t ExtIndexC;
186
if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
187
!match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
188
return nullptr;
189
190
ElementCount NumElts =
191
cast<VectorType>(Ext.getVectorOperandType())->getElementCount();
192
Type *DestTy = Ext.getType();
193
unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
194
bool IsBigEndian = DL.isBigEndian();
195
196
// If we are casting an integer to vector and extracting a portion, that is
197
// a shift-right and truncate.
198
if (X->getType()->isIntegerTy()) {
199
assert(isa<FixedVectorType>(Ext.getVectorOperand()->getType()) &&
200
"Expected fixed vector type for bitcast from scalar integer");
201
202
// Big endian requires adjusting the extract index since MSB is at index 0.
203
// LittleEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 X to i8
204
// BigEndian: extelt (bitcast i32 X to v4i8), 0 -> trunc i32 (X >> 24) to i8
205
if (IsBigEndian)
206
ExtIndexC = NumElts.getKnownMinValue() - 1 - ExtIndexC;
207
unsigned ShiftAmountC = ExtIndexC * DestWidth;
208
if (!ShiftAmountC ||
209
(isDesirableIntType(X->getType()->getPrimitiveSizeInBits()) &&
210
Ext.getVectorOperand()->hasOneUse())) {
211
if (ShiftAmountC)
212
X = Builder.CreateLShr(X, ShiftAmountC, "extelt.offset");
213
if (DestTy->isFloatingPointTy()) {
214
Type *DstIntTy = IntegerType::getIntNTy(X->getContext(), DestWidth);
215
Value *Trunc = Builder.CreateTrunc(X, DstIntTy);
216
return new BitCastInst(Trunc, DestTy);
217
}
218
return new TruncInst(X, DestTy);
219
}
220
}
221
222
if (!X->getType()->isVectorTy())
223
return nullptr;
224
225
// If this extractelement is using a bitcast from a vector of the same number
226
// of elements, see if we can find the source element from the source vector:
227
// extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
228
auto *SrcTy = cast<VectorType>(X->getType());
229
ElementCount NumSrcElts = SrcTy->getElementCount();
230
if (NumSrcElts == NumElts)
231
if (Value *Elt = findScalarElement(X, ExtIndexC))
232
return new BitCastInst(Elt, DestTy);
233
234
assert(NumSrcElts.isScalable() == NumElts.isScalable() &&
235
"Src and Dst must be the same sort of vector type");
236
237
// If the source elements are wider than the destination, try to shift and
238
// truncate a subset of scalar bits of an insert op.
239
if (NumSrcElts.getKnownMinValue() < NumElts.getKnownMinValue()) {
240
Value *Scalar;
241
Value *Vec;
242
uint64_t InsIndexC;
243
if (!match(X, m_InsertElt(m_Value(Vec), m_Value(Scalar),
244
m_ConstantInt(InsIndexC))))
245
return nullptr;
246
247
// The extract must be from the subset of vector elements that we inserted
248
// into. Example: if we inserted element 1 of a <2 x i64> and we are
249
// extracting an i16 (narrowing ratio = 4), then this extract must be from 1
250
// of elements 4-7 of the bitcasted vector.
251
unsigned NarrowingRatio =
252
NumElts.getKnownMinValue() / NumSrcElts.getKnownMinValue();
253
254
if (ExtIndexC / NarrowingRatio != InsIndexC) {
255
// Remove insertelement, if we don't use the inserted element.
256
// extractelement (bitcast (insertelement (Vec, b)), a) ->
257
// extractelement (bitcast (Vec), a)
258
// FIXME: this should be removed to SimplifyDemandedVectorElts,
259
// once scale vectors are supported.
260
if (X->hasOneUse() && Ext.getVectorOperand()->hasOneUse()) {
261
Value *NewBC = Builder.CreateBitCast(Vec, Ext.getVectorOperandType());
262
return ExtractElementInst::Create(NewBC, Ext.getIndexOperand());
263
}
264
return nullptr;
265
}
266
267
// We are extracting part of the original scalar. How that scalar is
268
// inserted into the vector depends on the endian-ness. Example:
269
// Vector Byte Elt Index: 0 1 2 3 4 5 6 7
270
// +--+--+--+--+--+--+--+--+
271
// inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3|
272
// extelt <4 x i16> V', 3: | |S2|S3|
273
// +--+--+--+--+--+--+--+--+
274
// If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
275
// If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
276
// In this example, we must right-shift little-endian. Big-endian is just a
277
// truncate.
278
unsigned Chunk = ExtIndexC % NarrowingRatio;
279
if (IsBigEndian)
280
Chunk = NarrowingRatio - 1 - Chunk;
281
282
// Bail out if this is an FP vector to FP vector sequence. That would take
283
// more instructions than we started with unless there is no shift, and it
284
// may not be handled as well in the backend.
285
bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
286
bool NeedDestBitcast = DestTy->isFloatingPointTy();
287
if (NeedSrcBitcast && NeedDestBitcast)
288
return nullptr;
289
290
unsigned SrcWidth = SrcTy->getScalarSizeInBits();
291
unsigned ShAmt = Chunk * DestWidth;
292
293
// TODO: This limitation is more strict than necessary. We could sum the
294
// number of new instructions and subtract the number eliminated to know if
295
// we can proceed.
296
if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
297
if (NeedSrcBitcast || NeedDestBitcast)
298
return nullptr;
299
300
if (NeedSrcBitcast) {
301
Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
302
Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
303
}
304
305
if (ShAmt) {
306
// Bail out if we could end with more instructions than we started with.
307
if (!Ext.getVectorOperand()->hasOneUse())
308
return nullptr;
309
Scalar = Builder.CreateLShr(Scalar, ShAmt);
310
}
311
312
if (NeedDestBitcast) {
313
Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
314
return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
315
}
316
return new TruncInst(Scalar, DestTy);
317
}
318
319
return nullptr;
320
}
321
322
/// Find elements of V demanded by UserInstr.
323
static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
324
unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
325
326
// Conservatively assume that all elements are needed.
327
APInt UsedElts(APInt::getAllOnes(VWidth));
328
329
switch (UserInstr->getOpcode()) {
330
case Instruction::ExtractElement: {
331
ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
332
assert(EEI->getVectorOperand() == V);
333
ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
334
if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
335
UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
336
}
337
break;
338
}
339
case Instruction::ShuffleVector: {
340
ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
341
unsigned MaskNumElts =
342
cast<FixedVectorType>(UserInstr->getType())->getNumElements();
343
344
UsedElts = APInt(VWidth, 0);
345
for (unsigned i = 0; i < MaskNumElts; i++) {
346
unsigned MaskVal = Shuffle->getMaskValue(i);
347
if (MaskVal == -1u || MaskVal >= 2 * VWidth)
348
continue;
349
if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
350
UsedElts.setBit(MaskVal);
351
if (Shuffle->getOperand(1) == V &&
352
((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
353
UsedElts.setBit(MaskVal - VWidth);
354
}
355
break;
356
}
357
default:
358
break;
359
}
360
return UsedElts;
361
}
362
363
/// Find union of elements of V demanded by all its users.
364
/// If it is known by querying findDemandedEltsBySingleUser that
365
/// no user demands an element of V, then the corresponding bit
366
/// remains unset in the returned value.
367
static APInt findDemandedEltsByAllUsers(Value *V) {
368
unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements();
369
370
APInt UnionUsedElts(VWidth, 0);
371
for (const Use &U : V->uses()) {
372
if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
373
UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
374
} else {
375
UnionUsedElts = APInt::getAllOnes(VWidth);
376
break;
377
}
378
379
if (UnionUsedElts.isAllOnes())
380
break;
381
}
382
383
return UnionUsedElts;
384
}
385
386
/// Given a constant index for a extractelement or insertelement instruction,
387
/// return it with the canonical type if it isn't already canonical. We
388
/// arbitrarily pick 64 bit as our canonical type. The actual bitwidth doesn't
389
/// matter, we just want a consistent type to simplify CSE.
390
static ConstantInt *getPreferredVectorIndex(ConstantInt *IndexC) {
391
const unsigned IndexBW = IndexC->getBitWidth();
392
if (IndexBW == 64 || IndexC->getValue().getActiveBits() > 64)
393
return nullptr;
394
return ConstantInt::get(IndexC->getContext(),
395
IndexC->getValue().zextOrTrunc(64));
396
}
397
398
Instruction *InstCombinerImpl::visitExtractElementInst(ExtractElementInst &EI) {
399
Value *SrcVec = EI.getVectorOperand();
400
Value *Index = EI.getIndexOperand();
401
if (Value *V = simplifyExtractElementInst(SrcVec, Index,
402
SQ.getWithInstruction(&EI)))
403
return replaceInstUsesWith(EI, V);
404
405
// extractelt (select %x, %vec1, %vec2), %const ->
406
// select %x, %vec1[%const], %vec2[%const]
407
// TODO: Support constant folding of multiple select operands:
408
// extractelt (select %x, %vec1, %vec2), (select %x, %c1, %c2)
409
// If the extractelement will for instance try to do out of bounds accesses
410
// because of the values of %c1 and/or %c2, the sequence could be optimized
411
// early. This is currently not possible because constant folding will reach
412
// an unreachable assertion if it doesn't find a constant operand.
413
if (SelectInst *SI = dyn_cast<SelectInst>(EI.getVectorOperand()))
414
if (SI->getCondition()->getType()->isIntegerTy() &&
415
isa<Constant>(EI.getIndexOperand()))
416
if (Instruction *R = FoldOpIntoSelect(EI, SI))
417
return R;
418
419
// If extracting a specified index from the vector, see if we can recursively
420
// find a previously computed scalar that was inserted into the vector.
421
auto *IndexC = dyn_cast<ConstantInt>(Index);
422
bool HasKnownValidIndex = false;
423
if (IndexC) {
424
// Canonicalize type of constant indices to i64 to simplify CSE
425
if (auto *NewIdx = getPreferredVectorIndex(IndexC))
426
return replaceOperand(EI, 1, NewIdx);
427
428
ElementCount EC = EI.getVectorOperandType()->getElementCount();
429
unsigned NumElts = EC.getKnownMinValue();
430
HasKnownValidIndex = IndexC->getValue().ult(NumElts);
431
432
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(SrcVec)) {
433
Intrinsic::ID IID = II->getIntrinsicID();
434
// Index needs to be lower than the minimum size of the vector, because
435
// for scalable vector, the vector size is known at run time.
436
if (IID == Intrinsic::experimental_stepvector &&
437
IndexC->getValue().ult(NumElts)) {
438
Type *Ty = EI.getType();
439
unsigned BitWidth = Ty->getIntegerBitWidth();
440
Value *Idx;
441
// Return index when its value does not exceed the allowed limit
442
// for the element type of the vector, otherwise return undefined.
443
if (IndexC->getValue().getActiveBits() <= BitWidth)
444
Idx = ConstantInt::get(Ty, IndexC->getValue().zextOrTrunc(BitWidth));
445
else
446
Idx = PoisonValue::get(Ty);
447
return replaceInstUsesWith(EI, Idx);
448
}
449
}
450
451
// InstSimplify should handle cases where the index is invalid.
452
// For fixed-length vector, it's invalid to extract out-of-range element.
453
if (!EC.isScalable() && IndexC->getValue().uge(NumElts))
454
return nullptr;
455
456
if (Instruction *I = foldBitcastExtElt(EI))
457
return I;
458
459
// If there's a vector PHI feeding a scalar use through this extractelement
460
// instruction, try to scalarize the PHI.
461
if (auto *Phi = dyn_cast<PHINode>(SrcVec))
462
if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
463
return ScalarPHI;
464
}
465
466
// TODO come up with a n-ary matcher that subsumes both unary and
467
// binary matchers.
468
UnaryOperator *UO;
469
if (match(SrcVec, m_UnOp(UO)) && cheapToScalarize(SrcVec, Index)) {
470
// extelt (unop X), Index --> unop (extelt X, Index)
471
Value *X = UO->getOperand(0);
472
Value *E = Builder.CreateExtractElement(X, Index);
473
return UnaryOperator::CreateWithCopiedFlags(UO->getOpcode(), E, UO);
474
}
475
476
// If the binop is not speculatable, we cannot hoist the extractelement if
477
// it may make the operand poison.
478
BinaryOperator *BO;
479
if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, Index) &&
480
(HasKnownValidIndex || isSafeToSpeculativelyExecute(BO))) {
481
// extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
482
Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
483
Value *E0 = Builder.CreateExtractElement(X, Index);
484
Value *E1 = Builder.CreateExtractElement(Y, Index);
485
return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
486
}
487
488
Value *X, *Y;
489
CmpInst::Predicate Pred;
490
if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
491
cheapToScalarize(SrcVec, Index)) {
492
// extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
493
Value *E0 = Builder.CreateExtractElement(X, Index);
494
Value *E1 = Builder.CreateExtractElement(Y, Index);
495
CmpInst *SrcCmpInst = cast<CmpInst>(SrcVec);
496
return CmpInst::CreateWithCopiedFlags(SrcCmpInst->getOpcode(), Pred, E0, E1,
497
SrcCmpInst);
498
}
499
500
if (auto *I = dyn_cast<Instruction>(SrcVec)) {
501
if (auto *IE = dyn_cast<InsertElementInst>(I)) {
502
// instsimplify already handled the case where the indices are constants
503
// and equal by value, if both are constants, they must not be the same
504
// value, extract from the pre-inserted value instead.
505
if (isa<Constant>(IE->getOperand(2)) && IndexC)
506
return replaceOperand(EI, 0, IE->getOperand(0));
507
} else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
508
auto *VecType = cast<VectorType>(GEP->getType());
509
ElementCount EC = VecType->getElementCount();
510
uint64_t IdxVal = IndexC ? IndexC->getZExtValue() : 0;
511
if (IndexC && IdxVal < EC.getKnownMinValue() && GEP->hasOneUse()) {
512
// Find out why we have a vector result - these are a few examples:
513
// 1. We have a scalar pointer and a vector of indices, or
514
// 2. We have a vector of pointers and a scalar index, or
515
// 3. We have a vector of pointers and a vector of indices, etc.
516
// Here we only consider combining when there is exactly one vector
517
// operand, since the optimization is less obviously a win due to
518
// needing more than one extractelements.
519
520
unsigned VectorOps =
521
llvm::count_if(GEP->operands(), [](const Value *V) {
522
return isa<VectorType>(V->getType());
523
});
524
if (VectorOps == 1) {
525
Value *NewPtr = GEP->getPointerOperand();
526
if (isa<VectorType>(NewPtr->getType()))
527
NewPtr = Builder.CreateExtractElement(NewPtr, IndexC);
528
529
SmallVector<Value *> NewOps;
530
for (unsigned I = 1; I != GEP->getNumOperands(); ++I) {
531
Value *Op = GEP->getOperand(I);
532
if (isa<VectorType>(Op->getType()))
533
NewOps.push_back(Builder.CreateExtractElement(Op, IndexC));
534
else
535
NewOps.push_back(Op);
536
}
537
538
GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
539
GEP->getSourceElementType(), NewPtr, NewOps);
540
NewGEP->setIsInBounds(GEP->isInBounds());
541
return NewGEP;
542
}
543
}
544
} else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
545
// If this is extracting an element from a shufflevector, figure out where
546
// it came from and extract from the appropriate input element instead.
547
// Restrict the following transformation to fixed-length vector.
548
if (isa<FixedVectorType>(SVI->getType()) && isa<ConstantInt>(Index)) {
549
int SrcIdx =
550
SVI->getMaskValue(cast<ConstantInt>(Index)->getZExtValue());
551
Value *Src;
552
unsigned LHSWidth = cast<FixedVectorType>(SVI->getOperand(0)->getType())
553
->getNumElements();
554
555
if (SrcIdx < 0)
556
return replaceInstUsesWith(EI, PoisonValue::get(EI.getType()));
557
if (SrcIdx < (int)LHSWidth)
558
Src = SVI->getOperand(0);
559
else {
560
SrcIdx -= LHSWidth;
561
Src = SVI->getOperand(1);
562
}
563
Type *Int64Ty = Type::getInt64Ty(EI.getContext());
564
return ExtractElementInst::Create(
565
Src, ConstantInt::get(Int64Ty, SrcIdx, false));
566
}
567
} else if (auto *CI = dyn_cast<CastInst>(I)) {
568
// Canonicalize extractelement(cast) -> cast(extractelement).
569
// Bitcasts can change the number of vector elements, and they cost
570
// nothing.
571
if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
572
Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
573
return CastInst::Create(CI->getOpcode(), EE, EI.getType());
574
}
575
}
576
}
577
578
// Run demanded elements after other transforms as this can drop flags on
579
// binops. If there's two paths to the same final result, we prefer the
580
// one which doesn't force us to drop flags.
581
if (IndexC) {
582
ElementCount EC = EI.getVectorOperandType()->getElementCount();
583
unsigned NumElts = EC.getKnownMinValue();
584
// This instruction only demands the single element from the input vector.
585
// Skip for scalable type, the number of elements is unknown at
586
// compile-time.
587
if (!EC.isScalable() && NumElts != 1) {
588
// If the input vector has a single use, simplify it based on this use
589
// property.
590
if (SrcVec->hasOneUse()) {
591
APInt PoisonElts(NumElts, 0);
592
APInt DemandedElts(NumElts, 0);
593
DemandedElts.setBit(IndexC->getZExtValue());
594
if (Value *V =
595
SimplifyDemandedVectorElts(SrcVec, DemandedElts, PoisonElts))
596
return replaceOperand(EI, 0, V);
597
} else {
598
// If the input vector has multiple uses, simplify it based on a union
599
// of all elements used.
600
APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
601
if (!DemandedElts.isAllOnes()) {
602
APInt PoisonElts(NumElts, 0);
603
if (Value *V = SimplifyDemandedVectorElts(
604
SrcVec, DemandedElts, PoisonElts, 0 /* Depth */,
605
true /* AllowMultipleUsers */)) {
606
if (V != SrcVec) {
607
Worklist.addValue(SrcVec);
608
SrcVec->replaceAllUsesWith(V);
609
return &EI;
610
}
611
}
612
}
613
}
614
}
615
}
616
return nullptr;
617
}
618
619
/// If V is a shuffle of values that ONLY returns elements from either LHS or
620
/// RHS, return the shuffle mask and true. Otherwise, return false.
621
static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
622
SmallVectorImpl<int> &Mask) {
623
assert(LHS->getType() == RHS->getType() &&
624
"Invalid CollectSingleShuffleElements");
625
unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
626
627
if (match(V, m_Poison())) {
628
Mask.assign(NumElts, -1);
629
return true;
630
}
631
632
if (V == LHS) {
633
for (unsigned i = 0; i != NumElts; ++i)
634
Mask.push_back(i);
635
return true;
636
}
637
638
if (V == RHS) {
639
for (unsigned i = 0; i != NumElts; ++i)
640
Mask.push_back(i + NumElts);
641
return true;
642
}
643
644
if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
645
// If this is an insert of an extract from some other vector, include it.
646
Value *VecOp = IEI->getOperand(0);
647
Value *ScalarOp = IEI->getOperand(1);
648
Value *IdxOp = IEI->getOperand(2);
649
650
if (!isa<ConstantInt>(IdxOp))
651
return false;
652
unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
653
654
if (isa<PoisonValue>(ScalarOp)) { // inserting poison into vector.
655
// We can handle this if the vector we are inserting into is
656
// transitively ok.
657
if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
658
// If so, update the mask to reflect the inserted poison.
659
Mask[InsertedIdx] = -1;
660
return true;
661
}
662
} else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
663
if (isa<ConstantInt>(EI->getOperand(1))) {
664
unsigned ExtractedIdx =
665
cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
666
unsigned NumLHSElts =
667
cast<FixedVectorType>(LHS->getType())->getNumElements();
668
669
// This must be extracting from either LHS or RHS.
670
if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
671
// We can handle this if the vector we are inserting into is
672
// transitively ok.
673
if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
674
// If so, update the mask to reflect the inserted value.
675
if (EI->getOperand(0) == LHS) {
676
Mask[InsertedIdx % NumElts] = ExtractedIdx;
677
} else {
678
assert(EI->getOperand(0) == RHS);
679
Mask[InsertedIdx % NumElts] = ExtractedIdx + NumLHSElts;
680
}
681
return true;
682
}
683
}
684
}
685
}
686
}
687
688
return false;
689
}
690
691
/// If we have insertion into a vector that is wider than the vector that we
692
/// are extracting from, try to widen the source vector to allow a single
693
/// shufflevector to replace one or more insert/extract pairs.
694
static bool replaceExtractElements(InsertElementInst *InsElt,
695
ExtractElementInst *ExtElt,
696
InstCombinerImpl &IC) {
697
auto *InsVecType = cast<FixedVectorType>(InsElt->getType());
698
auto *ExtVecType = cast<FixedVectorType>(ExtElt->getVectorOperandType());
699
unsigned NumInsElts = InsVecType->getNumElements();
700
unsigned NumExtElts = ExtVecType->getNumElements();
701
702
// The inserted-to vector must be wider than the extracted-from vector.
703
if (InsVecType->getElementType() != ExtVecType->getElementType() ||
704
NumExtElts >= NumInsElts)
705
return false;
706
707
// Create a shuffle mask to widen the extended-from vector using poison
708
// values. The mask selects all of the values of the original vector followed
709
// by as many poison values as needed to create a vector of the same length
710
// as the inserted-to vector.
711
SmallVector<int, 16> ExtendMask;
712
for (unsigned i = 0; i < NumExtElts; ++i)
713
ExtendMask.push_back(i);
714
for (unsigned i = NumExtElts; i < NumInsElts; ++i)
715
ExtendMask.push_back(-1);
716
717
Value *ExtVecOp = ExtElt->getVectorOperand();
718
auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
719
BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
720
? ExtVecOpInst->getParent()
721
: ExtElt->getParent();
722
723
// TODO: This restriction matches the basic block check below when creating
724
// new extractelement instructions. If that limitation is removed, this one
725
// could also be removed. But for now, we just bail out to ensure that we
726
// will replace the extractelement instruction that is feeding our
727
// insertelement instruction. This allows the insertelement to then be
728
// replaced by a shufflevector. If the insertelement is not replaced, we can
729
// induce infinite looping because there's an optimization for extractelement
730
// that will delete our widening shuffle. This would trigger another attempt
731
// here to create that shuffle, and we spin forever.
732
if (InsertionBlock != InsElt->getParent())
733
return false;
734
735
// TODO: This restriction matches the check in visitInsertElementInst() and
736
// prevents an infinite loop caused by not turning the extract/insert pair
737
// into a shuffle. We really should not need either check, but we're lacking
738
// folds for shufflevectors because we're afraid to generate shuffle masks
739
// that the backend can't handle.
740
if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
741
return false;
742
743
auto *WideVec = new ShuffleVectorInst(ExtVecOp, ExtendMask);
744
745
// Insert the new shuffle after the vector operand of the extract is defined
746
// (as long as it's not a PHI) or at the start of the basic block of the
747
// extract, so any subsequent extracts in the same basic block can use it.
748
// TODO: Insert before the earliest ExtractElementInst that is replaced.
749
if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
750
WideVec->insertAfter(ExtVecOpInst);
751
else
752
IC.InsertNewInstWith(WideVec, ExtElt->getParent()->getFirstInsertionPt());
753
754
// Replace extracts from the original narrow vector with extracts from the new
755
// wide vector.
756
for (User *U : ExtVecOp->users()) {
757
ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
758
if (!OldExt || OldExt->getParent() != WideVec->getParent())
759
continue;
760
auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
761
IC.InsertNewInstWith(NewExt, OldExt->getIterator());
762
IC.replaceInstUsesWith(*OldExt, NewExt);
763
// Add the old extracts to the worklist for DCE. We can't remove the
764
// extracts directly, because they may still be used by the calling code.
765
IC.addToWorklist(OldExt);
766
}
767
768
return true;
769
}
770
771
/// We are building a shuffle to create V, which is a sequence of insertelement,
772
/// extractelement pairs. If PermittedRHS is set, then we must either use it or
773
/// not rely on the second vector source. Return a std::pair containing the
774
/// left and right vectors of the proposed shuffle (or 0), and set the Mask
775
/// parameter as required.
776
///
777
/// Note: we intentionally don't try to fold earlier shuffles since they have
778
/// often been chosen carefully to be efficiently implementable on the target.
779
using ShuffleOps = std::pair<Value *, Value *>;
780
781
static ShuffleOps collectShuffleElements(Value *V, SmallVectorImpl<int> &Mask,
782
Value *PermittedRHS,
783
InstCombinerImpl &IC, bool &Rerun) {
784
assert(V->getType()->isVectorTy() && "Invalid shuffle!");
785
unsigned NumElts = cast<FixedVectorType>(V->getType())->getNumElements();
786
787
if (match(V, m_Poison())) {
788
Mask.assign(NumElts, -1);
789
return std::make_pair(
790
PermittedRHS ? PoisonValue::get(PermittedRHS->getType()) : V, nullptr);
791
}
792
793
if (isa<ConstantAggregateZero>(V)) {
794
Mask.assign(NumElts, 0);
795
return std::make_pair(V, nullptr);
796
}
797
798
if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
799
// If this is an insert of an extract from some other vector, include it.
800
Value *VecOp = IEI->getOperand(0);
801
Value *ScalarOp = IEI->getOperand(1);
802
Value *IdxOp = IEI->getOperand(2);
803
804
if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
805
if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
806
unsigned ExtractedIdx =
807
cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
808
unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
809
810
// Either the extracted from or inserted into vector must be RHSVec,
811
// otherwise we'd end up with a shuffle of three inputs.
812
if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
813
Value *RHS = EI->getOperand(0);
814
ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC, Rerun);
815
assert(LR.second == nullptr || LR.second == RHS);
816
817
if (LR.first->getType() != RHS->getType()) {
818
// Although we are giving up for now, see if we can create extracts
819
// that match the inserts for another round of combining.
820
if (replaceExtractElements(IEI, EI, IC))
821
Rerun = true;
822
823
// We tried our best, but we can't find anything compatible with RHS
824
// further up the chain. Return a trivial shuffle.
825
for (unsigned i = 0; i < NumElts; ++i)
826
Mask[i] = i;
827
return std::make_pair(V, nullptr);
828
}
829
830
unsigned NumLHSElts =
831
cast<FixedVectorType>(RHS->getType())->getNumElements();
832
Mask[InsertedIdx % NumElts] = NumLHSElts + ExtractedIdx;
833
return std::make_pair(LR.first, RHS);
834
}
835
836
if (VecOp == PermittedRHS) {
837
// We've gone as far as we can: anything on the other side of the
838
// extractelement will already have been converted into a shuffle.
839
unsigned NumLHSElts =
840
cast<FixedVectorType>(EI->getOperand(0)->getType())
841
->getNumElements();
842
for (unsigned i = 0; i != NumElts; ++i)
843
Mask.push_back(i == InsertedIdx ? ExtractedIdx : NumLHSElts + i);
844
return std::make_pair(EI->getOperand(0), PermittedRHS);
845
}
846
847
// If this insertelement is a chain that comes from exactly these two
848
// vectors, return the vector and the effective shuffle.
849
if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
850
collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
851
Mask))
852
return std::make_pair(EI->getOperand(0), PermittedRHS);
853
}
854
}
855
}
856
857
// Otherwise, we can't do anything fancy. Return an identity vector.
858
for (unsigned i = 0; i != NumElts; ++i)
859
Mask.push_back(i);
860
return std::make_pair(V, nullptr);
861
}
862
863
/// Look for chain of insertvalue's that fully define an aggregate, and trace
864
/// back the values inserted, see if they are all were extractvalue'd from
865
/// the same source aggregate from the exact same element indexes.
866
/// If they were, just reuse the source aggregate.
867
/// This potentially deals with PHI indirections.
868
Instruction *InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse(
869
InsertValueInst &OrigIVI) {
870
Type *AggTy = OrigIVI.getType();
871
unsigned NumAggElts;
872
switch (AggTy->getTypeID()) {
873
case Type::StructTyID:
874
NumAggElts = AggTy->getStructNumElements();
875
break;
876
case Type::ArrayTyID:
877
NumAggElts = AggTy->getArrayNumElements();
878
break;
879
default:
880
llvm_unreachable("Unhandled aggregate type?");
881
}
882
883
// Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able
884
// to handle clang C++ exception struct (which is hardcoded as {i8*, i32}),
885
// FIXME: any interesting patterns to be caught with larger limit?
886
assert(NumAggElts > 0 && "Aggregate should have elements.");
887
if (NumAggElts > 2)
888
return nullptr;
889
890
static constexpr auto NotFound = std::nullopt;
891
static constexpr auto FoundMismatch = nullptr;
892
893
// Try to find a value of each element of an aggregate.
894
// FIXME: deal with more complex, not one-dimensional, aggregate types
895
SmallVector<std::optional<Instruction *>, 2> AggElts(NumAggElts, NotFound);
896
897
// Do we know values for each element of the aggregate?
898
auto KnowAllElts = [&AggElts]() {
899
return !llvm::is_contained(AggElts, NotFound);
900
};
901
902
int Depth = 0;
903
904
// Arbitrary `insertvalue` visitation depth limit. Let's be okay with
905
// every element being overwritten twice, which should never happen.
906
static const int DepthLimit = 2 * NumAggElts;
907
908
// Recurse up the chain of `insertvalue` aggregate operands until either we've
909
// reconstructed full initializer or can't visit any more `insertvalue`'s.
910
for (InsertValueInst *CurrIVI = &OrigIVI;
911
Depth < DepthLimit && CurrIVI && !KnowAllElts();
912
CurrIVI = dyn_cast<InsertValueInst>(CurrIVI->getAggregateOperand()),
913
++Depth) {
914
auto *InsertedValue =
915
dyn_cast<Instruction>(CurrIVI->getInsertedValueOperand());
916
if (!InsertedValue)
917
return nullptr; // Inserted value must be produced by an instruction.
918
919
ArrayRef<unsigned int> Indices = CurrIVI->getIndices();
920
921
// Don't bother with more than single-level aggregates.
922
if (Indices.size() != 1)
923
return nullptr; // FIXME: deal with more complex aggregates?
924
925
// Now, we may have already previously recorded the value for this element
926
// of an aggregate. If we did, that means the CurrIVI will later be
927
// overwritten with the already-recorded value. But if not, let's record it!
928
std::optional<Instruction *> &Elt = AggElts[Indices.front()];
929
Elt = Elt.value_or(InsertedValue);
930
931
// FIXME: should we handle chain-terminating undef base operand?
932
}
933
934
// Was that sufficient to deduce the full initializer for the aggregate?
935
if (!KnowAllElts())
936
return nullptr; // Give up then.
937
938
// We now want to find the source[s] of the aggregate elements we've found.
939
// And with "source" we mean the original aggregate[s] from which
940
// the inserted elements were extracted. This may require PHI translation.
941
942
enum class AggregateDescription {
943
/// When analyzing the value that was inserted into an aggregate, we did
944
/// not manage to find defining `extractvalue` instruction to analyze.
945
NotFound,
946
/// When analyzing the value that was inserted into an aggregate, we did
947
/// manage to find defining `extractvalue` instruction[s], and everything
948
/// matched perfectly - aggregate type, element insertion/extraction index.
949
Found,
950
/// When analyzing the value that was inserted into an aggregate, we did
951
/// manage to find defining `extractvalue` instruction, but there was
952
/// a mismatch: either the source type from which the extraction was didn't
953
/// match the aggregate type into which the insertion was,
954
/// or the extraction/insertion channels mismatched,
955
/// or different elements had different source aggregates.
956
FoundMismatch
957
};
958
auto Describe = [](std::optional<Value *> SourceAggregate) {
959
if (SourceAggregate == NotFound)
960
return AggregateDescription::NotFound;
961
if (*SourceAggregate == FoundMismatch)
962
return AggregateDescription::FoundMismatch;
963
return AggregateDescription::Found;
964
};
965
966
// Given the value \p Elt that was being inserted into element \p EltIdx of an
967
// aggregate AggTy, see if \p Elt was originally defined by an
968
// appropriate extractvalue (same element index, same aggregate type).
969
// If found, return the source aggregate from which the extraction was.
970
// If \p PredBB is provided, does PHI translation of an \p Elt first.
971
auto FindSourceAggregate =
972
[&](Instruction *Elt, unsigned EltIdx, std::optional<BasicBlock *> UseBB,
973
std::optional<BasicBlock *> PredBB) -> std::optional<Value *> {
974
// For now(?), only deal with, at most, a single level of PHI indirection.
975
if (UseBB && PredBB)
976
Elt = dyn_cast<Instruction>(Elt->DoPHITranslation(*UseBB, *PredBB));
977
// FIXME: deal with multiple levels of PHI indirection?
978
979
// Did we find an extraction?
980
auto *EVI = dyn_cast_or_null<ExtractValueInst>(Elt);
981
if (!EVI)
982
return NotFound;
983
984
Value *SourceAggregate = EVI->getAggregateOperand();
985
986
// Is the extraction from the same type into which the insertion was?
987
if (SourceAggregate->getType() != AggTy)
988
return FoundMismatch;
989
// And the element index doesn't change between extraction and insertion?
990
if (EVI->getNumIndices() != 1 || EltIdx != EVI->getIndices().front())
991
return FoundMismatch;
992
993
return SourceAggregate; // AggregateDescription::Found
994
};
995
996
// Given elements AggElts that were constructing an aggregate OrigIVI,
997
// see if we can find appropriate source aggregate for each of the elements,
998
// and see it's the same aggregate for each element. If so, return it.
999
auto FindCommonSourceAggregate =
1000
[&](std::optional<BasicBlock *> UseBB,
1001
std::optional<BasicBlock *> PredBB) -> std::optional<Value *> {
1002
std::optional<Value *> SourceAggregate;
1003
1004
for (auto I : enumerate(AggElts)) {
1005
assert(Describe(SourceAggregate) != AggregateDescription::FoundMismatch &&
1006
"We don't store nullptr in SourceAggregate!");
1007
assert((Describe(SourceAggregate) == AggregateDescription::Found) ==
1008
(I.index() != 0) &&
1009
"SourceAggregate should be valid after the first element,");
1010
1011
// For this element, is there a plausible source aggregate?
1012
// FIXME: we could special-case undef element, IFF we know that in the
1013
// source aggregate said element isn't poison.
1014
std::optional<Value *> SourceAggregateForElement =
1015
FindSourceAggregate(*I.value(), I.index(), UseBB, PredBB);
1016
1017
// Okay, what have we found? Does that correlate with previous findings?
1018
1019
// Regardless of whether or not we have previously found source
1020
// aggregate for previous elements (if any), if we didn't find one for
1021
// this element, passthrough whatever we have just found.
1022
if (Describe(SourceAggregateForElement) != AggregateDescription::Found)
1023
return SourceAggregateForElement;
1024
1025
// Okay, we have found source aggregate for this element.
1026
// Let's see what we already know from previous elements, if any.
1027
switch (Describe(SourceAggregate)) {
1028
case AggregateDescription::NotFound:
1029
// This is apparently the first element that we have examined.
1030
SourceAggregate = SourceAggregateForElement; // Record the aggregate!
1031
continue; // Great, now look at next element.
1032
case AggregateDescription::Found:
1033
// We have previously already successfully examined other elements.
1034
// Is this the same source aggregate we've found for other elements?
1035
if (*SourceAggregateForElement != *SourceAggregate)
1036
return FoundMismatch;
1037
continue; // Still the same aggregate, look at next element.
1038
case AggregateDescription::FoundMismatch:
1039
llvm_unreachable("Can't happen. We would have early-exited then.");
1040
};
1041
}
1042
1043
assert(Describe(SourceAggregate) == AggregateDescription::Found &&
1044
"Must be a valid Value");
1045
return *SourceAggregate;
1046
};
1047
1048
std::optional<Value *> SourceAggregate;
1049
1050
// Can we find the source aggregate without looking at predecessors?
1051
SourceAggregate = FindCommonSourceAggregate(/*UseBB=*/std::nullopt,
1052
/*PredBB=*/std::nullopt);
1053
if (Describe(SourceAggregate) != AggregateDescription::NotFound) {
1054
if (Describe(SourceAggregate) == AggregateDescription::FoundMismatch)
1055
return nullptr; // Conflicting source aggregates!
1056
++NumAggregateReconstructionsSimplified;
1057
return replaceInstUsesWith(OrigIVI, *SourceAggregate);
1058
}
1059
1060
// Okay, apparently we need to look at predecessors.
1061
1062
// We should be smart about picking the "use" basic block, which will be the
1063
// merge point for aggregate, where we'll insert the final PHI that will be
1064
// used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice.
1065
// We should look in which blocks each of the AggElts is being defined,
1066
// they all should be defined in the same basic block.
1067
BasicBlock *UseBB = nullptr;
1068
1069
for (const std::optional<Instruction *> &I : AggElts) {
1070
BasicBlock *BB = (*I)->getParent();
1071
// If it's the first instruction we've encountered, record the basic block.
1072
if (!UseBB) {
1073
UseBB = BB;
1074
continue;
1075
}
1076
// Otherwise, this must be the same basic block we've seen previously.
1077
if (UseBB != BB)
1078
return nullptr;
1079
}
1080
1081
// If *all* of the elements are basic-block-independent, meaning they are
1082
// either function arguments, or constant expressions, then if we didn't
1083
// handle them without predecessor-aware handling, we won't handle them now.
1084
if (!UseBB)
1085
return nullptr;
1086
1087
// If we didn't manage to find source aggregate without looking at
1088
// predecessors, and there are no predecessors to look at, then we're done.
1089
if (pred_empty(UseBB))
1090
return nullptr;
1091
1092
// Arbitrary predecessor count limit.
1093
static const int PredCountLimit = 64;
1094
1095
// Cache the (non-uniqified!) list of predecessors in a vector,
1096
// checking the limit at the same time for efficiency.
1097
SmallVector<BasicBlock *, 4> Preds; // May have duplicates!
1098
for (BasicBlock *Pred : predecessors(UseBB)) {
1099
// Don't bother if there are too many predecessors.
1100
if (Preds.size() >= PredCountLimit) // FIXME: only count duplicates once?
1101
return nullptr;
1102
Preds.emplace_back(Pred);
1103
}
1104
1105
// For each predecessor, what is the source aggregate,
1106
// from which all the elements were originally extracted from?
1107
// Note that we want for the map to have stable iteration order!
1108
SmallDenseMap<BasicBlock *, Value *, 4> SourceAggregates;
1109
for (BasicBlock *Pred : Preds) {
1110
std::pair<decltype(SourceAggregates)::iterator, bool> IV =
1111
SourceAggregates.insert({Pred, nullptr});
1112
// Did we already evaluate this predecessor?
1113
if (!IV.second)
1114
continue;
1115
1116
// Let's hope that when coming from predecessor Pred, all elements of the
1117
// aggregate produced by OrigIVI must have been originally extracted from
1118
// the same aggregate. Is that so? Can we find said original aggregate?
1119
SourceAggregate = FindCommonSourceAggregate(UseBB, Pred);
1120
if (Describe(SourceAggregate) != AggregateDescription::Found)
1121
return nullptr; // Give up.
1122
IV.first->second = *SourceAggregate;
1123
}
1124
1125
// All good! Now we just need to thread the source aggregates here.
1126
// Note that we have to insert the new PHI here, ourselves, because we can't
1127
// rely on InstCombinerImpl::run() inserting it into the right basic block.
1128
// Note that the same block can be a predecessor more than once,
1129
// and we need to preserve that invariant for the PHI node.
1130
BuilderTy::InsertPointGuard Guard(Builder);
1131
Builder.SetInsertPoint(UseBB, UseBB->getFirstNonPHIIt());
1132
auto *PHI =
1133
Builder.CreatePHI(AggTy, Preds.size(), OrigIVI.getName() + ".merged");
1134
for (BasicBlock *Pred : Preds)
1135
PHI->addIncoming(SourceAggregates[Pred], Pred);
1136
1137
++NumAggregateReconstructionsSimplified;
1138
return replaceInstUsesWith(OrigIVI, PHI);
1139
}
1140
1141
/// Try to find redundant insertvalue instructions, like the following ones:
1142
/// %0 = insertvalue { i8, i32 } undef, i8 %x, 0
1143
/// %1 = insertvalue { i8, i32 } %0, i8 %y, 0
1144
/// Here the second instruction inserts values at the same indices, as the
1145
/// first one, making the first one redundant.
1146
/// It should be transformed to:
1147
/// %0 = insertvalue { i8, i32 } undef, i8 %y, 0
1148
Instruction *InstCombinerImpl::visitInsertValueInst(InsertValueInst &I) {
1149
if (Value *V = simplifyInsertValueInst(
1150
I.getAggregateOperand(), I.getInsertedValueOperand(), I.getIndices(),
1151
SQ.getWithInstruction(&I)))
1152
return replaceInstUsesWith(I, V);
1153
1154
bool IsRedundant = false;
1155
ArrayRef<unsigned int> FirstIndices = I.getIndices();
1156
1157
// If there is a chain of insertvalue instructions (each of them except the
1158
// last one has only one use and it's another insertvalue insn from this
1159
// chain), check if any of the 'children' uses the same indices as the first
1160
// instruction. In this case, the first one is redundant.
1161
Value *V = &I;
1162
unsigned Depth = 0;
1163
while (V->hasOneUse() && Depth < 10) {
1164
User *U = V->user_back();
1165
auto UserInsInst = dyn_cast<InsertValueInst>(U);
1166
if (!UserInsInst || U->getOperand(0) != V)
1167
break;
1168
if (UserInsInst->getIndices() == FirstIndices) {
1169
IsRedundant = true;
1170
break;
1171
}
1172
V = UserInsInst;
1173
Depth++;
1174
}
1175
1176
if (IsRedundant)
1177
return replaceInstUsesWith(I, I.getOperand(0));
1178
1179
if (Instruction *NewI = foldAggregateConstructionIntoAggregateReuse(I))
1180
return NewI;
1181
1182
return nullptr;
1183
}
1184
1185
static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
1186
// Can not analyze scalable type, the number of elements is not a compile-time
1187
// constant.
1188
if (isa<ScalableVectorType>(Shuf.getOperand(0)->getType()))
1189
return false;
1190
1191
int MaskSize = Shuf.getShuffleMask().size();
1192
int VecSize =
1193
cast<FixedVectorType>(Shuf.getOperand(0)->getType())->getNumElements();
1194
1195
// A vector select does not change the size of the operands.
1196
if (MaskSize != VecSize)
1197
return false;
1198
1199
// Each mask element must be undefined or choose a vector element from one of
1200
// the source operands without crossing vector lanes.
1201
for (int i = 0; i != MaskSize; ++i) {
1202
int Elt = Shuf.getMaskValue(i);
1203
if (Elt != -1 && Elt != i && Elt != i + VecSize)
1204
return false;
1205
}
1206
1207
return true;
1208
}
1209
1210
/// Turn a chain of inserts that splats a value into an insert + shuffle:
1211
/// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
1212
/// shufflevector(insertelt(X, %k, 0), poison, zero)
1213
static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
1214
// We are interested in the last insert in a chain. So if this insert has a
1215
// single user and that user is an insert, bail.
1216
if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
1217
return nullptr;
1218
1219
VectorType *VecTy = InsElt.getType();
1220
// Can not handle scalable type, the number of elements is not a compile-time
1221
// constant.
1222
if (isa<ScalableVectorType>(VecTy))
1223
return nullptr;
1224
unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1225
1226
// Do not try to do this for a one-element vector, since that's a nop,
1227
// and will cause an inf-loop.
1228
if (NumElements == 1)
1229
return nullptr;
1230
1231
Value *SplatVal = InsElt.getOperand(1);
1232
InsertElementInst *CurrIE = &InsElt;
1233
SmallBitVector ElementPresent(NumElements, false);
1234
InsertElementInst *FirstIE = nullptr;
1235
1236
// Walk the chain backwards, keeping track of which indices we inserted into,
1237
// until we hit something that isn't an insert of the splatted value.
1238
while (CurrIE) {
1239
auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
1240
if (!Idx || CurrIE->getOperand(1) != SplatVal)
1241
return nullptr;
1242
1243
auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
1244
// Check none of the intermediate steps have any additional uses, except
1245
// for the root insertelement instruction, which can be re-used, if it
1246
// inserts at position 0.
1247
if (CurrIE != &InsElt &&
1248
(!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
1249
return nullptr;
1250
1251
ElementPresent[Idx->getZExtValue()] = true;
1252
FirstIE = CurrIE;
1253
CurrIE = NextIE;
1254
}
1255
1256
// If this is just a single insertelement (not a sequence), we are done.
1257
if (FirstIE == &InsElt)
1258
return nullptr;
1259
1260
// If we are not inserting into a poison vector, make sure we've seen an
1261
// insert into every element.
1262
// TODO: If the base vector is not undef, it might be better to create a splat
1263
// and then a select-shuffle (blend) with the base vector.
1264
if (!match(FirstIE->getOperand(0), m_Poison()))
1265
if (!ElementPresent.all())
1266
return nullptr;
1267
1268
// Create the insert + shuffle.
1269
Type *Int64Ty = Type::getInt64Ty(InsElt.getContext());
1270
PoisonValue *PoisonVec = PoisonValue::get(VecTy);
1271
Constant *Zero = ConstantInt::get(Int64Ty, 0);
1272
if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
1273
FirstIE = InsertElementInst::Create(PoisonVec, SplatVal, Zero, "",
1274
InsElt.getIterator());
1275
1276
// Splat from element 0, but replace absent elements with poison in the mask.
1277
SmallVector<int, 16> Mask(NumElements, 0);
1278
for (unsigned i = 0; i != NumElements; ++i)
1279
if (!ElementPresent[i])
1280
Mask[i] = -1;
1281
1282
return new ShuffleVectorInst(FirstIE, Mask);
1283
}
1284
1285
/// Try to fold an insert element into an existing splat shuffle by changing
1286
/// the shuffle's mask to include the index of this insert element.
1287
static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
1288
// Check if the vector operand of this insert is a canonical splat shuffle.
1289
auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
1290
if (!Shuf || !Shuf->isZeroEltSplat())
1291
return nullptr;
1292
1293
// Bail out early if shuffle is scalable type. The number of elements in
1294
// shuffle mask is unknown at compile-time.
1295
if (isa<ScalableVectorType>(Shuf->getType()))
1296
return nullptr;
1297
1298
// Check for a constant insertion index.
1299
uint64_t IdxC;
1300
if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
1301
return nullptr;
1302
1303
// Check if the splat shuffle's input is the same as this insert's scalar op.
1304
Value *X = InsElt.getOperand(1);
1305
Value *Op0 = Shuf->getOperand(0);
1306
if (!match(Op0, m_InsertElt(m_Undef(), m_Specific(X), m_ZeroInt())))
1307
return nullptr;
1308
1309
// Replace the shuffle mask element at the index of this insert with a zero.
1310
// For example:
1311
// inselt (shuf (inselt undef, X, 0), _, <0,undef,0,undef>), X, 1
1312
// --> shuf (inselt undef, X, 0), poison, <0,0,0,undef>
1313
unsigned NumMaskElts =
1314
cast<FixedVectorType>(Shuf->getType())->getNumElements();
1315
SmallVector<int, 16> NewMask(NumMaskElts);
1316
for (unsigned i = 0; i != NumMaskElts; ++i)
1317
NewMask[i] = i == IdxC ? 0 : Shuf->getMaskValue(i);
1318
1319
return new ShuffleVectorInst(Op0, NewMask);
1320
}
1321
1322
/// Try to fold an extract+insert element into an existing identity shuffle by
1323
/// changing the shuffle's mask to include the index of this insert element.
1324
static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
1325
// Check if the vector operand of this insert is an identity shuffle.
1326
auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
1327
if (!Shuf || !match(Shuf->getOperand(1), m_Poison()) ||
1328
!(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
1329
return nullptr;
1330
1331
// Bail out early if shuffle is scalable type. The number of elements in
1332
// shuffle mask is unknown at compile-time.
1333
if (isa<ScalableVectorType>(Shuf->getType()))
1334
return nullptr;
1335
1336
// Check for a constant insertion index.
1337
uint64_t IdxC;
1338
if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
1339
return nullptr;
1340
1341
// Check if this insert's scalar op is extracted from the identity shuffle's
1342
// input vector.
1343
Value *Scalar = InsElt.getOperand(1);
1344
Value *X = Shuf->getOperand(0);
1345
if (!match(Scalar, m_ExtractElt(m_Specific(X), m_SpecificInt(IdxC))))
1346
return nullptr;
1347
1348
// Replace the shuffle mask element at the index of this extract+insert with
1349
// that same index value.
1350
// For example:
1351
// inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
1352
unsigned NumMaskElts =
1353
cast<FixedVectorType>(Shuf->getType())->getNumElements();
1354
SmallVector<int, 16> NewMask(NumMaskElts);
1355
ArrayRef<int> OldMask = Shuf->getShuffleMask();
1356
for (unsigned i = 0; i != NumMaskElts; ++i) {
1357
if (i != IdxC) {
1358
// All mask elements besides the inserted element remain the same.
1359
NewMask[i] = OldMask[i];
1360
} else if (OldMask[i] == (int)IdxC) {
1361
// If the mask element was already set, there's nothing to do
1362
// (demanded elements analysis may unset it later).
1363
return nullptr;
1364
} else {
1365
assert(OldMask[i] == PoisonMaskElem &&
1366
"Unexpected shuffle mask element for identity shuffle");
1367
NewMask[i] = IdxC;
1368
}
1369
}
1370
1371
return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
1372
}
1373
1374
/// If we have an insertelement instruction feeding into another insertelement
1375
/// and the 2nd is inserting a constant into the vector, canonicalize that
1376
/// constant insertion before the insertion of a variable:
1377
///
1378
/// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
1379
/// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
1380
///
1381
/// This has the potential of eliminating the 2nd insertelement instruction
1382
/// via constant folding of the scalar constant into a vector constant.
1383
static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
1384
InstCombiner::BuilderTy &Builder) {
1385
auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
1386
if (!InsElt1 || !InsElt1->hasOneUse())
1387
return nullptr;
1388
1389
Value *X, *Y;
1390
Constant *ScalarC;
1391
ConstantInt *IdxC1, *IdxC2;
1392
if (match(InsElt1->getOperand(0), m_Value(X)) &&
1393
match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
1394
match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
1395
match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
1396
match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
1397
Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
1398
return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
1399
}
1400
1401
return nullptr;
1402
}
1403
1404
/// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
1405
/// --> shufflevector X, CVec', Mask'
1406
static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
1407
auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
1408
// Bail out if the parent has more than one use. In that case, we'd be
1409
// replacing the insertelt with a shuffle, and that's not a clear win.
1410
if (!Inst || !Inst->hasOneUse())
1411
return nullptr;
1412
if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
1413
// The shuffle must have a constant vector operand. The insertelt must have
1414
// a constant scalar being inserted at a constant position in the vector.
1415
Constant *ShufConstVec, *InsEltScalar;
1416
uint64_t InsEltIndex;
1417
if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
1418
!match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
1419
!match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
1420
return nullptr;
1421
1422
// Adding an element to an arbitrary shuffle could be expensive, but a
1423
// shuffle that selects elements from vectors without crossing lanes is
1424
// assumed cheap.
1425
// If we're just adding a constant into that shuffle, it will still be
1426
// cheap.
1427
if (!isShuffleEquivalentToSelect(*Shuf))
1428
return nullptr;
1429
1430
// From the above 'select' check, we know that the mask has the same number
1431
// of elements as the vector input operands. We also know that each constant
1432
// input element is used in its lane and can not be used more than once by
1433
// the shuffle. Therefore, replace the constant in the shuffle's constant
1434
// vector with the insertelt constant. Replace the constant in the shuffle's
1435
// mask vector with the insertelt index plus the length of the vector
1436
// (because the constant vector operand of a shuffle is always the 2nd
1437
// operand).
1438
ArrayRef<int> Mask = Shuf->getShuffleMask();
1439
unsigned NumElts = Mask.size();
1440
SmallVector<Constant *, 16> NewShufElts(NumElts);
1441
SmallVector<int, 16> NewMaskElts(NumElts);
1442
for (unsigned I = 0; I != NumElts; ++I) {
1443
if (I == InsEltIndex) {
1444
NewShufElts[I] = InsEltScalar;
1445
NewMaskElts[I] = InsEltIndex + NumElts;
1446
} else {
1447
// Copy over the existing values.
1448
NewShufElts[I] = ShufConstVec->getAggregateElement(I);
1449
NewMaskElts[I] = Mask[I];
1450
}
1451
1452
// Bail if we failed to find an element.
1453
if (!NewShufElts[I])
1454
return nullptr;
1455
}
1456
1457
// Create new operands for a shuffle that includes the constant of the
1458
// original insertelt. The old shuffle will be dead now.
1459
return new ShuffleVectorInst(Shuf->getOperand(0),
1460
ConstantVector::get(NewShufElts), NewMaskElts);
1461
} else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
1462
// Transform sequences of insertelements ops with constant data/indexes into
1463
// a single shuffle op.
1464
// Can not handle scalable type, the number of elements needed to create
1465
// shuffle mask is not a compile-time constant.
1466
if (isa<ScalableVectorType>(InsElt.getType()))
1467
return nullptr;
1468
unsigned NumElts =
1469
cast<FixedVectorType>(InsElt.getType())->getNumElements();
1470
1471
uint64_t InsertIdx[2];
1472
Constant *Val[2];
1473
if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
1474
!match(InsElt.getOperand(1), m_Constant(Val[0])) ||
1475
!match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
1476
!match(IEI->getOperand(1), m_Constant(Val[1])))
1477
return nullptr;
1478
SmallVector<Constant *, 16> Values(NumElts);
1479
SmallVector<int, 16> Mask(NumElts);
1480
auto ValI = std::begin(Val);
1481
// Generate new constant vector and mask.
1482
// We have 2 values/masks from the insertelements instructions. Insert them
1483
// into new value/mask vectors.
1484
for (uint64_t I : InsertIdx) {
1485
if (!Values[I]) {
1486
Values[I] = *ValI;
1487
Mask[I] = NumElts + I;
1488
}
1489
++ValI;
1490
}
1491
// Remaining values are filled with 'poison' values.
1492
for (unsigned I = 0; I < NumElts; ++I) {
1493
if (!Values[I]) {
1494
Values[I] = PoisonValue::get(InsElt.getType()->getElementType());
1495
Mask[I] = I;
1496
}
1497
}
1498
// Create new operands for a shuffle that includes the constant of the
1499
// original insertelt.
1500
return new ShuffleVectorInst(IEI->getOperand(0),
1501
ConstantVector::get(Values), Mask);
1502
}
1503
return nullptr;
1504
}
1505
1506
/// If both the base vector and the inserted element are extended from the same
1507
/// type, do the insert element in the narrow source type followed by extend.
1508
/// TODO: This can be extended to include other cast opcodes, but particularly
1509
/// if we create a wider insertelement, make sure codegen is not harmed.
1510
static Instruction *narrowInsElt(InsertElementInst &InsElt,
1511
InstCombiner::BuilderTy &Builder) {
1512
// We are creating a vector extend. If the original vector extend has another
1513
// use, that would mean we end up with 2 vector extends, so avoid that.
1514
// TODO: We could ease the use-clause to "if at least one op has one use"
1515
// (assuming that the source types match - see next TODO comment).
1516
Value *Vec = InsElt.getOperand(0);
1517
if (!Vec->hasOneUse())
1518
return nullptr;
1519
1520
Value *Scalar = InsElt.getOperand(1);
1521
Value *X, *Y;
1522
CastInst::CastOps CastOpcode;
1523
if (match(Vec, m_FPExt(m_Value(X))) && match(Scalar, m_FPExt(m_Value(Y))))
1524
CastOpcode = Instruction::FPExt;
1525
else if (match(Vec, m_SExt(m_Value(X))) && match(Scalar, m_SExt(m_Value(Y))))
1526
CastOpcode = Instruction::SExt;
1527
else if (match(Vec, m_ZExt(m_Value(X))) && match(Scalar, m_ZExt(m_Value(Y))))
1528
CastOpcode = Instruction::ZExt;
1529
else
1530
return nullptr;
1531
1532
// TODO: We can allow mismatched types by creating an intermediate cast.
1533
if (X->getType()->getScalarType() != Y->getType())
1534
return nullptr;
1535
1536
// inselt (ext X), (ext Y), Index --> ext (inselt X, Y, Index)
1537
Value *NewInsElt = Builder.CreateInsertElement(X, Y, InsElt.getOperand(2));
1538
return CastInst::Create(CastOpcode, NewInsElt, InsElt.getType());
1539
}
1540
1541
/// If we are inserting 2 halves of a value into adjacent elements of a vector,
1542
/// try to convert to a single insert with appropriate bitcasts.
1543
static Instruction *foldTruncInsEltPair(InsertElementInst &InsElt,
1544
bool IsBigEndian,
1545
InstCombiner::BuilderTy &Builder) {
1546
Value *VecOp = InsElt.getOperand(0);
1547
Value *ScalarOp = InsElt.getOperand(1);
1548
Value *IndexOp = InsElt.getOperand(2);
1549
1550
// Pattern depends on endian because we expect lower index is inserted first.
1551
// Big endian:
1552
// inselt (inselt BaseVec, (trunc (lshr X, BW/2), Index0), (trunc X), Index1
1553
// Little endian:
1554
// inselt (inselt BaseVec, (trunc X), Index0), (trunc (lshr X, BW/2)), Index1
1555
// Note: It is not safe to do this transform with an arbitrary base vector
1556
// because the bitcast of that vector to fewer/larger elements could
1557
// allow poison to spill into an element that was not poison before.
1558
// TODO: Detect smaller fractions of the scalar.
1559
// TODO: One-use checks are conservative.
1560
auto *VTy = dyn_cast<FixedVectorType>(InsElt.getType());
1561
Value *Scalar0, *BaseVec;
1562
uint64_t Index0, Index1;
1563
if (!VTy || (VTy->getNumElements() & 1) ||
1564
!match(IndexOp, m_ConstantInt(Index1)) ||
1565
!match(VecOp, m_InsertElt(m_Value(BaseVec), m_Value(Scalar0),
1566
m_ConstantInt(Index0))) ||
1567
!match(BaseVec, m_Undef()))
1568
return nullptr;
1569
1570
// The first insert must be to the index one less than this one, and
1571
// the first insert must be to an even index.
1572
if (Index0 + 1 != Index1 || Index0 & 1)
1573
return nullptr;
1574
1575
// For big endian, the high half of the value should be inserted first.
1576
// For little endian, the low half of the value should be inserted first.
1577
Value *X;
1578
uint64_t ShAmt;
1579
if (IsBigEndian) {
1580
if (!match(ScalarOp, m_Trunc(m_Value(X))) ||
1581
!match(Scalar0, m_Trunc(m_LShr(m_Specific(X), m_ConstantInt(ShAmt)))))
1582
return nullptr;
1583
} else {
1584
if (!match(Scalar0, m_Trunc(m_Value(X))) ||
1585
!match(ScalarOp, m_Trunc(m_LShr(m_Specific(X), m_ConstantInt(ShAmt)))))
1586
return nullptr;
1587
}
1588
1589
Type *SrcTy = X->getType();
1590
unsigned ScalarWidth = SrcTy->getScalarSizeInBits();
1591
unsigned VecEltWidth = VTy->getScalarSizeInBits();
1592
if (ScalarWidth != VecEltWidth * 2 || ShAmt != VecEltWidth)
1593
return nullptr;
1594
1595
// Bitcast the base vector to a vector type with the source element type.
1596
Type *CastTy = FixedVectorType::get(SrcTy, VTy->getNumElements() / 2);
1597
Value *CastBaseVec = Builder.CreateBitCast(BaseVec, CastTy);
1598
1599
// Scale the insert index for a vector with half as many elements.
1600
// bitcast (inselt (bitcast BaseVec), X, NewIndex)
1601
uint64_t NewIndex = IsBigEndian ? Index1 / 2 : Index0 / 2;
1602
Value *NewInsert = Builder.CreateInsertElement(CastBaseVec, X, NewIndex);
1603
return new BitCastInst(NewInsert, VTy);
1604
}
1605
1606
Instruction *InstCombinerImpl::visitInsertElementInst(InsertElementInst &IE) {
1607
Value *VecOp = IE.getOperand(0);
1608
Value *ScalarOp = IE.getOperand(1);
1609
Value *IdxOp = IE.getOperand(2);
1610
1611
if (auto *V = simplifyInsertElementInst(
1612
VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
1613
return replaceInstUsesWith(IE, V);
1614
1615
// Canonicalize type of constant indices to i64 to simplify CSE
1616
if (auto *IndexC = dyn_cast<ConstantInt>(IdxOp)) {
1617
if (auto *NewIdx = getPreferredVectorIndex(IndexC))
1618
return replaceOperand(IE, 2, NewIdx);
1619
1620
Value *BaseVec, *OtherScalar;
1621
uint64_t OtherIndexVal;
1622
if (match(VecOp, m_OneUse(m_InsertElt(m_Value(BaseVec),
1623
m_Value(OtherScalar),
1624
m_ConstantInt(OtherIndexVal)))) &&
1625
!isa<Constant>(OtherScalar) && OtherIndexVal > IndexC->getZExtValue()) {
1626
Value *NewIns = Builder.CreateInsertElement(BaseVec, ScalarOp, IdxOp);
1627
return InsertElementInst::Create(NewIns, OtherScalar,
1628
Builder.getInt64(OtherIndexVal));
1629
}
1630
}
1631
1632
// If the scalar is bitcast and inserted into undef, do the insert in the
1633
// source type followed by bitcast.
1634
// TODO: Generalize for insert into any constant, not just undef?
1635
Value *ScalarSrc;
1636
if (match(VecOp, m_Undef()) &&
1637
match(ScalarOp, m_OneUse(m_BitCast(m_Value(ScalarSrc)))) &&
1638
(ScalarSrc->getType()->isIntegerTy() ||
1639
ScalarSrc->getType()->isFloatingPointTy())) {
1640
// inselt undef, (bitcast ScalarSrc), IdxOp -->
1641
// bitcast (inselt undef, ScalarSrc, IdxOp)
1642
Type *ScalarTy = ScalarSrc->getType();
1643
Type *VecTy = VectorType::get(ScalarTy, IE.getType()->getElementCount());
1644
Constant *NewUndef = isa<PoisonValue>(VecOp) ? PoisonValue::get(VecTy)
1645
: UndefValue::get(VecTy);
1646
Value *NewInsElt = Builder.CreateInsertElement(NewUndef, ScalarSrc, IdxOp);
1647
return new BitCastInst(NewInsElt, IE.getType());
1648
}
1649
1650
// If the vector and scalar are both bitcast from the same element type, do
1651
// the insert in that source type followed by bitcast.
1652
Value *VecSrc;
1653
if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
1654
match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
1655
(VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
1656
VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
1657
cast<VectorType>(VecSrc->getType())->getElementType() ==
1658
ScalarSrc->getType()) {
1659
// inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
1660
// bitcast (inselt VecSrc, ScalarSrc, IdxOp)
1661
Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
1662
return new BitCastInst(NewInsElt, IE.getType());
1663
}
1664
1665
// If the inserted element was extracted from some other fixed-length vector
1666
// and both indexes are valid constants, try to turn this into a shuffle.
1667
// Can not handle scalable vector type, the number of elements needed to
1668
// create shuffle mask is not a compile-time constant.
1669
uint64_t InsertedIdx, ExtractedIdx;
1670
Value *ExtVecOp;
1671
if (isa<FixedVectorType>(IE.getType()) &&
1672
match(IdxOp, m_ConstantInt(InsertedIdx)) &&
1673
match(ScalarOp,
1674
m_ExtractElt(m_Value(ExtVecOp), m_ConstantInt(ExtractedIdx))) &&
1675
isa<FixedVectorType>(ExtVecOp->getType()) &&
1676
ExtractedIdx <
1677
cast<FixedVectorType>(ExtVecOp->getType())->getNumElements()) {
1678
// TODO: Looking at the user(s) to determine if this insert is a
1679
// fold-to-shuffle opportunity does not match the usual instcombine
1680
// constraints. We should decide if the transform is worthy based only
1681
// on this instruction and its operands, but that may not work currently.
1682
//
1683
// Here, we are trying to avoid creating shuffles before reaching
1684
// the end of a chain of extract-insert pairs. This is complicated because
1685
// we do not generally form arbitrary shuffle masks in instcombine
1686
// (because those may codegen poorly), but collectShuffleElements() does
1687
// exactly that.
1688
//
1689
// The rules for determining what is an acceptable target-independent
1690
// shuffle mask are fuzzy because they evolve based on the backend's
1691
// capabilities and real-world impact.
1692
auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
1693
if (!Insert.hasOneUse())
1694
return true;
1695
auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
1696
if (!InsertUser)
1697
return true;
1698
return false;
1699
};
1700
1701
// Try to form a shuffle from a chain of extract-insert ops.
1702
if (isShuffleRootCandidate(IE)) {
1703
bool Rerun = true;
1704
while (Rerun) {
1705
Rerun = false;
1706
1707
SmallVector<int, 16> Mask;
1708
ShuffleOps LR =
1709
collectShuffleElements(&IE, Mask, nullptr, *this, Rerun);
1710
1711
// The proposed shuffle may be trivial, in which case we shouldn't
1712
// perform the combine.
1713
if (LR.first != &IE && LR.second != &IE) {
1714
// We now have a shuffle of LHS, RHS, Mask.
1715
if (LR.second == nullptr)
1716
LR.second = PoisonValue::get(LR.first->getType());
1717
return new ShuffleVectorInst(LR.first, LR.second, Mask);
1718
}
1719
}
1720
}
1721
}
1722
1723
if (auto VecTy = dyn_cast<FixedVectorType>(VecOp->getType())) {
1724
unsigned VWidth = VecTy->getNumElements();
1725
APInt PoisonElts(VWidth, 0);
1726
APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
1727
if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask,
1728
PoisonElts)) {
1729
if (V != &IE)
1730
return replaceInstUsesWith(IE, V);
1731
return &IE;
1732
}
1733
}
1734
1735
if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
1736
return Shuf;
1737
1738
if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
1739
return NewInsElt;
1740
1741
if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
1742
return Broadcast;
1743
1744
if (Instruction *Splat = foldInsEltIntoSplat(IE))
1745
return Splat;
1746
1747
if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
1748
return IdentityShuf;
1749
1750
if (Instruction *Ext = narrowInsElt(IE, Builder))
1751
return Ext;
1752
1753
if (Instruction *Ext = foldTruncInsEltPair(IE, DL.isBigEndian(), Builder))
1754
return Ext;
1755
1756
return nullptr;
1757
}
1758
1759
/// Return true if we can evaluate the specified expression tree if the vector
1760
/// elements were shuffled in a different order.
1761
static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
1762
unsigned Depth = 5) {
1763
// We can always reorder the elements of a constant.
1764
if (isa<Constant>(V))
1765
return true;
1766
1767
// We won't reorder vector arguments. No IPO here.
1768
Instruction *I = dyn_cast<Instruction>(V);
1769
if (!I) return false;
1770
1771
// Two users may expect different orders of the elements. Don't try it.
1772
if (!I->hasOneUse())
1773
return false;
1774
1775
if (Depth == 0) return false;
1776
1777
switch (I->getOpcode()) {
1778
case Instruction::UDiv:
1779
case Instruction::SDiv:
1780
case Instruction::URem:
1781
case Instruction::SRem:
1782
// Propagating an undefined shuffle mask element to integer div/rem is not
1783
// allowed because those opcodes can create immediate undefined behavior
1784
// from an undefined element in an operand.
1785
if (llvm::is_contained(Mask, -1))
1786
return false;
1787
[[fallthrough]];
1788
case Instruction::Add:
1789
case Instruction::FAdd:
1790
case Instruction::Sub:
1791
case Instruction::FSub:
1792
case Instruction::Mul:
1793
case Instruction::FMul:
1794
case Instruction::FDiv:
1795
case Instruction::FRem:
1796
case Instruction::Shl:
1797
case Instruction::LShr:
1798
case Instruction::AShr:
1799
case Instruction::And:
1800
case Instruction::Or:
1801
case Instruction::Xor:
1802
case Instruction::ICmp:
1803
case Instruction::FCmp:
1804
case Instruction::Trunc:
1805
case Instruction::ZExt:
1806
case Instruction::SExt:
1807
case Instruction::FPToUI:
1808
case Instruction::FPToSI:
1809
case Instruction::UIToFP:
1810
case Instruction::SIToFP:
1811
case Instruction::FPTrunc:
1812
case Instruction::FPExt:
1813
case Instruction::GetElementPtr: {
1814
// Bail out if we would create longer vector ops. We could allow creating
1815
// longer vector ops, but that may result in more expensive codegen.
1816
Type *ITy = I->getType();
1817
if (ITy->isVectorTy() &&
1818
Mask.size() > cast<FixedVectorType>(ITy)->getNumElements())
1819
return false;
1820
for (Value *Operand : I->operands()) {
1821
if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1822
return false;
1823
}
1824
return true;
1825
}
1826
case Instruction::InsertElement: {
1827
ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1828
if (!CI) return false;
1829
int ElementNumber = CI->getLimitedValue();
1830
1831
// Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1832
// can't put an element into multiple indices.
1833
bool SeenOnce = false;
1834
for (int I : Mask) {
1835
if (I == ElementNumber) {
1836
if (SeenOnce)
1837
return false;
1838
SeenOnce = true;
1839
}
1840
}
1841
return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1842
}
1843
}
1844
return false;
1845
}
1846
1847
/// Rebuild a new instruction just like 'I' but with the new operands given.
1848
/// In the event of type mismatch, the type of the operands is correct.
1849
static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps,
1850
IRBuilderBase &Builder) {
1851
Builder.SetInsertPoint(I);
1852
switch (I->getOpcode()) {
1853
case Instruction::Add:
1854
case Instruction::FAdd:
1855
case Instruction::Sub:
1856
case Instruction::FSub:
1857
case Instruction::Mul:
1858
case Instruction::FMul:
1859
case Instruction::UDiv:
1860
case Instruction::SDiv:
1861
case Instruction::FDiv:
1862
case Instruction::URem:
1863
case Instruction::SRem:
1864
case Instruction::FRem:
1865
case Instruction::Shl:
1866
case Instruction::LShr:
1867
case Instruction::AShr:
1868
case Instruction::And:
1869
case Instruction::Or:
1870
case Instruction::Xor: {
1871
BinaryOperator *BO = cast<BinaryOperator>(I);
1872
assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1873
Value *New = Builder.CreateBinOp(cast<BinaryOperator>(I)->getOpcode(),
1874
NewOps[0], NewOps[1]);
1875
if (auto *NewI = dyn_cast<Instruction>(New)) {
1876
if (isa<OverflowingBinaryOperator>(BO)) {
1877
NewI->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1878
NewI->setHasNoSignedWrap(BO->hasNoSignedWrap());
1879
}
1880
if (isa<PossiblyExactOperator>(BO)) {
1881
NewI->setIsExact(BO->isExact());
1882
}
1883
if (isa<FPMathOperator>(BO))
1884
NewI->copyFastMathFlags(I);
1885
}
1886
return New;
1887
}
1888
case Instruction::ICmp:
1889
assert(NewOps.size() == 2 && "icmp with #ops != 2");
1890
return Builder.CreateICmp(cast<ICmpInst>(I)->getPredicate(), NewOps[0],
1891
NewOps[1]);
1892
case Instruction::FCmp:
1893
assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1894
return Builder.CreateFCmp(cast<FCmpInst>(I)->getPredicate(), NewOps[0],
1895
NewOps[1]);
1896
case Instruction::Trunc:
1897
case Instruction::ZExt:
1898
case Instruction::SExt:
1899
case Instruction::FPToUI:
1900
case Instruction::FPToSI:
1901
case Instruction::UIToFP:
1902
case Instruction::SIToFP:
1903
case Instruction::FPTrunc:
1904
case Instruction::FPExt: {
1905
// It's possible that the mask has a different number of elements from
1906
// the original cast. We recompute the destination type to match the mask.
1907
Type *DestTy = VectorType::get(
1908
I->getType()->getScalarType(),
1909
cast<VectorType>(NewOps[0]->getType())->getElementCount());
1910
assert(NewOps.size() == 1 && "cast with #ops != 1");
1911
return Builder.CreateCast(cast<CastInst>(I)->getOpcode(), NewOps[0],
1912
DestTy);
1913
}
1914
case Instruction::GetElementPtr: {
1915
Value *Ptr = NewOps[0];
1916
ArrayRef<Value*> Idx = NewOps.slice(1);
1917
return Builder.CreateGEP(cast<GEPOperator>(I)->getSourceElementType(),
1918
Ptr, Idx, "",
1919
cast<GEPOperator>(I)->isInBounds());
1920
}
1921
}
1922
llvm_unreachable("failed to rebuild vector instructions");
1923
}
1924
1925
static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask,
1926
IRBuilderBase &Builder) {
1927
// Mask.size() does not need to be equal to the number of vector elements.
1928
1929
assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1930
Type *EltTy = V->getType()->getScalarType();
1931
1932
if (isa<PoisonValue>(V))
1933
return PoisonValue::get(FixedVectorType::get(EltTy, Mask.size()));
1934
1935
if (match(V, m_Undef()))
1936
return UndefValue::get(FixedVectorType::get(EltTy, Mask.size()));
1937
1938
if (isa<ConstantAggregateZero>(V))
1939
return ConstantAggregateZero::get(FixedVectorType::get(EltTy, Mask.size()));
1940
1941
if (Constant *C = dyn_cast<Constant>(V))
1942
return ConstantExpr::getShuffleVector(C, PoisonValue::get(C->getType()),
1943
Mask);
1944
1945
Instruction *I = cast<Instruction>(V);
1946
switch (I->getOpcode()) {
1947
case Instruction::Add:
1948
case Instruction::FAdd:
1949
case Instruction::Sub:
1950
case Instruction::FSub:
1951
case Instruction::Mul:
1952
case Instruction::FMul:
1953
case Instruction::UDiv:
1954
case Instruction::SDiv:
1955
case Instruction::FDiv:
1956
case Instruction::URem:
1957
case Instruction::SRem:
1958
case Instruction::FRem:
1959
case Instruction::Shl:
1960
case Instruction::LShr:
1961
case Instruction::AShr:
1962
case Instruction::And:
1963
case Instruction::Or:
1964
case Instruction::Xor:
1965
case Instruction::ICmp:
1966
case Instruction::FCmp:
1967
case Instruction::Trunc:
1968
case Instruction::ZExt:
1969
case Instruction::SExt:
1970
case Instruction::FPToUI:
1971
case Instruction::FPToSI:
1972
case Instruction::UIToFP:
1973
case Instruction::SIToFP:
1974
case Instruction::FPTrunc:
1975
case Instruction::FPExt:
1976
case Instruction::Select:
1977
case Instruction::GetElementPtr: {
1978
SmallVector<Value*, 8> NewOps;
1979
bool NeedsRebuild =
1980
(Mask.size() !=
1981
cast<FixedVectorType>(I->getType())->getNumElements());
1982
for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1983
Value *V;
1984
// Recursively call evaluateInDifferentElementOrder on vector arguments
1985
// as well. E.g. GetElementPtr may have scalar operands even if the
1986
// return value is a vector, so we need to examine the operand type.
1987
if (I->getOperand(i)->getType()->isVectorTy())
1988
V = evaluateInDifferentElementOrder(I->getOperand(i), Mask, Builder);
1989
else
1990
V = I->getOperand(i);
1991
NewOps.push_back(V);
1992
NeedsRebuild |= (V != I->getOperand(i));
1993
}
1994
if (NeedsRebuild)
1995
return buildNew(I, NewOps, Builder);
1996
return I;
1997
}
1998
case Instruction::InsertElement: {
1999
int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
2000
2001
// The insertelement was inserting at Element. Figure out which element
2002
// that becomes after shuffling. The answer is guaranteed to be unique
2003
// by CanEvaluateShuffled.
2004
bool Found = false;
2005
int Index = 0;
2006
for (int e = Mask.size(); Index != e; ++Index) {
2007
if (Mask[Index] == Element) {
2008
Found = true;
2009
break;
2010
}
2011
}
2012
2013
// If element is not in Mask, no need to handle the operand 1 (element to
2014
// be inserted). Just evaluate values in operand 0 according to Mask.
2015
if (!Found)
2016
return evaluateInDifferentElementOrder(I->getOperand(0), Mask, Builder);
2017
2018
Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask,
2019
Builder);
2020
Builder.SetInsertPoint(I);
2021
return Builder.CreateInsertElement(V, I->getOperand(1), Index);
2022
}
2023
}
2024
llvm_unreachable("failed to reorder elements of vector instruction!");
2025
}
2026
2027
// Returns true if the shuffle is extracting a contiguous range of values from
2028
// LHS, for example:
2029
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
2030
// Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
2031
// Shuffles to: |EE|FF|GG|HH|
2032
// +--+--+--+--+
2033
static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
2034
ArrayRef<int> Mask) {
2035
unsigned LHSElems =
2036
cast<FixedVectorType>(SVI.getOperand(0)->getType())->getNumElements();
2037
unsigned MaskElems = Mask.size();
2038
unsigned BegIdx = Mask.front();
2039
unsigned EndIdx = Mask.back();
2040
if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
2041
return false;
2042
for (unsigned I = 0; I != MaskElems; ++I)
2043
if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
2044
return false;
2045
return true;
2046
}
2047
2048
/// These are the ingredients in an alternate form binary operator as described
2049
/// below.
2050
struct BinopElts {
2051
BinaryOperator::BinaryOps Opcode;
2052
Value *Op0;
2053
Value *Op1;
2054
BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
2055
Value *V0 = nullptr, Value *V1 = nullptr) :
2056
Opcode(Opc), Op0(V0), Op1(V1) {}
2057
operator bool() const { return Opcode != 0; }
2058
};
2059
2060
/// Binops may be transformed into binops with different opcodes and operands.
2061
/// Reverse the usual canonicalization to enable folds with the non-canonical
2062
/// form of the binop. If a transform is possible, return the elements of the
2063
/// new binop. If not, return invalid elements.
2064
static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
2065
Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
2066
Type *Ty = BO->getType();
2067
switch (BO->getOpcode()) {
2068
case Instruction::Shl: {
2069
// shl X, C --> mul X, (1 << C)
2070
Constant *C;
2071
if (match(BO1, m_ImmConstant(C))) {
2072
Constant *ShlOne = ConstantFoldBinaryOpOperands(
2073
Instruction::Shl, ConstantInt::get(Ty, 1), C, DL);
2074
assert(ShlOne && "Constant folding of immediate constants failed");
2075
return {Instruction::Mul, BO0, ShlOne};
2076
}
2077
break;
2078
}
2079
case Instruction::Or: {
2080
// or disjoin X, C --> add X, C
2081
if (cast<PossiblyDisjointInst>(BO)->isDisjoint())
2082
return {Instruction::Add, BO0, BO1};
2083
break;
2084
}
2085
case Instruction::Sub:
2086
// sub 0, X --> mul X, -1
2087
if (match(BO0, m_ZeroInt()))
2088
return {Instruction::Mul, BO1, ConstantInt::getAllOnesValue(Ty)};
2089
break;
2090
default:
2091
break;
2092
}
2093
return {};
2094
}
2095
2096
/// A select shuffle of a select shuffle with a shared operand can be reduced
2097
/// to a single select shuffle. This is an obvious improvement in IR, and the
2098
/// backend is expected to lower select shuffles efficiently.
2099
static Instruction *foldSelectShuffleOfSelectShuffle(ShuffleVectorInst &Shuf) {
2100
assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
2101
2102
Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2103
SmallVector<int, 16> Mask;
2104
Shuf.getShuffleMask(Mask);
2105
unsigned NumElts = Mask.size();
2106
2107
// Canonicalize a select shuffle with common operand as Op1.
2108
auto *ShufOp = dyn_cast<ShuffleVectorInst>(Op0);
2109
if (ShufOp && ShufOp->isSelect() &&
2110
(ShufOp->getOperand(0) == Op1 || ShufOp->getOperand(1) == Op1)) {
2111
std::swap(Op0, Op1);
2112
ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
2113
}
2114
2115
ShufOp = dyn_cast<ShuffleVectorInst>(Op1);
2116
if (!ShufOp || !ShufOp->isSelect() ||
2117
(ShufOp->getOperand(0) != Op0 && ShufOp->getOperand(1) != Op0))
2118
return nullptr;
2119
2120
Value *X = ShufOp->getOperand(0), *Y = ShufOp->getOperand(1);
2121
SmallVector<int, 16> Mask1;
2122
ShufOp->getShuffleMask(Mask1);
2123
assert(Mask1.size() == NumElts && "Vector size changed with select shuffle");
2124
2125
// Canonicalize common operand (Op0) as X (first operand of first shuffle).
2126
if (Y == Op0) {
2127
std::swap(X, Y);
2128
ShuffleVectorInst::commuteShuffleMask(Mask1, NumElts);
2129
}
2130
2131
// If the mask chooses from X (operand 0), it stays the same.
2132
// If the mask chooses from the earlier shuffle, the other mask value is
2133
// transferred to the combined select shuffle:
2134
// shuf X, (shuf X, Y, M1), M --> shuf X, Y, M'
2135
SmallVector<int, 16> NewMask(NumElts);
2136
for (unsigned i = 0; i != NumElts; ++i)
2137
NewMask[i] = Mask[i] < (signed)NumElts ? Mask[i] : Mask1[i];
2138
2139
// A select mask with undef elements might look like an identity mask.
2140
assert((ShuffleVectorInst::isSelectMask(NewMask, NumElts) ||
2141
ShuffleVectorInst::isIdentityMask(NewMask, NumElts)) &&
2142
"Unexpected shuffle mask");
2143
return new ShuffleVectorInst(X, Y, NewMask);
2144
}
2145
2146
static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf,
2147
const SimplifyQuery &SQ) {
2148
assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
2149
2150
// Are we shuffling together some value and that same value after it has been
2151
// modified by a binop with a constant?
2152
Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2153
Constant *C;
2154
bool Op0IsBinop;
2155
if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
2156
Op0IsBinop = true;
2157
else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
2158
Op0IsBinop = false;
2159
else
2160
return nullptr;
2161
2162
// The identity constant for a binop leaves a variable operand unchanged. For
2163
// a vector, this is a splat of something like 0, -1, or 1.
2164
// If there's no identity constant for this binop, we're done.
2165
auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
2166
BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
2167
Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
2168
if (!IdC)
2169
return nullptr;
2170
2171
Value *X = Op0IsBinop ? Op1 : Op0;
2172
2173
// Prevent folding in the case the non-binop operand might have NaN values.
2174
// If X can have NaN elements then we have that the floating point math
2175
// operation in the transformed code may not preserve the exact NaN
2176
// bit-pattern -- e.g. `fadd sNaN, 0.0 -> qNaN`.
2177
// This makes the transformation incorrect since the original program would
2178
// have preserved the exact NaN bit-pattern.
2179
// Avoid the folding if X can have NaN elements.
2180
if (Shuf.getType()->getElementType()->isFloatingPointTy() &&
2181
!isKnownNeverNaN(X, 0, SQ))
2182
return nullptr;
2183
2184
// Shuffle identity constants into the lanes that return the original value.
2185
// Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
2186
// Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
2187
// The existing binop constant vector remains in the same operand position.
2188
ArrayRef<int> Mask = Shuf.getShuffleMask();
2189
Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
2190
ConstantExpr::getShuffleVector(IdC, C, Mask);
2191
2192
bool MightCreatePoisonOrUB =
2193
is_contained(Mask, PoisonMaskElem) &&
2194
(Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
2195
if (MightCreatePoisonOrUB)
2196
NewC = InstCombiner::getSafeVectorConstantForBinop(BOpcode, NewC, true);
2197
2198
// shuf (bop X, C), X, M --> bop X, C'
2199
// shuf X, (bop X, C), M --> bop X, C'
2200
Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
2201
NewBO->copyIRFlags(BO);
2202
2203
// An undef shuffle mask element may propagate as an undef constant element in
2204
// the new binop. That would produce poison where the original code might not.
2205
// If we already made a safe constant, then there's no danger.
2206
if (is_contained(Mask, PoisonMaskElem) && !MightCreatePoisonOrUB)
2207
NewBO->dropPoisonGeneratingFlags();
2208
return NewBO;
2209
}
2210
2211
/// If we have an insert of a scalar to a non-zero element of an undefined
2212
/// vector and then shuffle that value, that's the same as inserting to the zero
2213
/// element and shuffling. Splatting from the zero element is recognized as the
2214
/// canonical form of splat.
2215
static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
2216
InstCombiner::BuilderTy &Builder) {
2217
Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2218
ArrayRef<int> Mask = Shuf.getShuffleMask();
2219
Value *X;
2220
uint64_t IndexC;
2221
2222
// Match a shuffle that is a splat to a non-zero element.
2223
if (!match(Op0, m_OneUse(m_InsertElt(m_Poison(), m_Value(X),
2224
m_ConstantInt(IndexC)))) ||
2225
!match(Op1, m_Poison()) || match(Mask, m_ZeroMask()) || IndexC == 0)
2226
return nullptr;
2227
2228
// Insert into element 0 of a poison vector.
2229
PoisonValue *PoisonVec = PoisonValue::get(Shuf.getType());
2230
Value *NewIns = Builder.CreateInsertElement(PoisonVec, X, (uint64_t)0);
2231
2232
// Splat from element 0. Any mask element that is poison remains poison.
2233
// For example:
2234
// shuf (inselt poison, X, 2), _, <2,2,undef>
2235
// --> shuf (inselt poison, X, 0), poison, <0,0,undef>
2236
unsigned NumMaskElts =
2237
cast<FixedVectorType>(Shuf.getType())->getNumElements();
2238
SmallVector<int, 16> NewMask(NumMaskElts, 0);
2239
for (unsigned i = 0; i != NumMaskElts; ++i)
2240
if (Mask[i] == PoisonMaskElem)
2241
NewMask[i] = Mask[i];
2242
2243
return new ShuffleVectorInst(NewIns, NewMask);
2244
}
2245
2246
/// Try to fold shuffles that are the equivalent of a vector select.
2247
Instruction *InstCombinerImpl::foldSelectShuffle(ShuffleVectorInst &Shuf) {
2248
if (!Shuf.isSelect())
2249
return nullptr;
2250
2251
// Canonicalize to choose from operand 0 first unless operand 1 is undefined.
2252
// Commuting undef to operand 0 conflicts with another canonicalization.
2253
unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
2254
if (!match(Shuf.getOperand(1), m_Undef()) &&
2255
Shuf.getMaskValue(0) >= (int)NumElts) {
2256
// TODO: Can we assert that both operands of a shuffle-select are not undef
2257
// (otherwise, it would have been folded by instsimplify?
2258
Shuf.commute();
2259
return &Shuf;
2260
}
2261
2262
if (Instruction *I = foldSelectShuffleOfSelectShuffle(Shuf))
2263
return I;
2264
2265
if (Instruction *I = foldSelectShuffleWith1Binop(
2266
Shuf, getSimplifyQuery().getWithInstruction(&Shuf)))
2267
return I;
2268
2269
BinaryOperator *B0, *B1;
2270
if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
2271
!match(Shuf.getOperand(1), m_BinOp(B1)))
2272
return nullptr;
2273
2274
// If one operand is "0 - X", allow that to be viewed as "X * -1"
2275
// (ConstantsAreOp1) by getAlternateBinop below. If the neg is not paired
2276
// with a multiply, we will exit because C0/C1 will not be set.
2277
Value *X, *Y;
2278
Constant *C0 = nullptr, *C1 = nullptr;
2279
bool ConstantsAreOp1;
2280
if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
2281
match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
2282
ConstantsAreOp1 = false;
2283
else if (match(B0, m_CombineOr(m_BinOp(m_Value(X), m_Constant(C0)),
2284
m_Neg(m_Value(X)))) &&
2285
match(B1, m_CombineOr(m_BinOp(m_Value(Y), m_Constant(C1)),
2286
m_Neg(m_Value(Y)))))
2287
ConstantsAreOp1 = true;
2288
else
2289
return nullptr;
2290
2291
// We need matching binops to fold the lanes together.
2292
BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
2293
BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
2294
bool DropNSW = false;
2295
if (ConstantsAreOp1 && Opc0 != Opc1) {
2296
// TODO: We drop "nsw" if shift is converted into multiply because it may
2297
// not be correct when the shift amount is BitWidth - 1. We could examine
2298
// each vector element to determine if it is safe to keep that flag.
2299
if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
2300
DropNSW = true;
2301
if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
2302
assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
2303
Opc0 = AltB0.Opcode;
2304
C0 = cast<Constant>(AltB0.Op1);
2305
} else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
2306
assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
2307
Opc1 = AltB1.Opcode;
2308
C1 = cast<Constant>(AltB1.Op1);
2309
}
2310
}
2311
2312
if (Opc0 != Opc1 || !C0 || !C1)
2313
return nullptr;
2314
2315
// The opcodes must be the same. Use a new name to make that clear.
2316
BinaryOperator::BinaryOps BOpc = Opc0;
2317
2318
// Select the constant elements needed for the single binop.
2319
ArrayRef<int> Mask = Shuf.getShuffleMask();
2320
Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
2321
2322
// We are moving a binop after a shuffle. When a shuffle has an undefined
2323
// mask element, the result is undefined, but it is not poison or undefined
2324
// behavior. That is not necessarily true for div/rem/shift.
2325
bool MightCreatePoisonOrUB =
2326
is_contained(Mask, PoisonMaskElem) &&
2327
(Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
2328
if (MightCreatePoisonOrUB)
2329
NewC = InstCombiner::getSafeVectorConstantForBinop(BOpc, NewC,
2330
ConstantsAreOp1);
2331
2332
Value *V;
2333
if (X == Y) {
2334
// Remove a binop and the shuffle by rearranging the constant:
2335
// shuffle (op V, C0), (op V, C1), M --> op V, C'
2336
// shuffle (op C0, V), (op C1, V), M --> op C', V
2337
V = X;
2338
} else {
2339
// If there are 2 different variable operands, we must create a new shuffle
2340
// (select) first, so check uses to ensure that we don't end up with more
2341
// instructions than we started with.
2342
if (!B0->hasOneUse() && !B1->hasOneUse())
2343
return nullptr;
2344
2345
// If we use the original shuffle mask and op1 is *variable*, we would be
2346
// putting an undef into operand 1 of div/rem/shift. This is either UB or
2347
// poison. We do not have to guard against UB when *constants* are op1
2348
// because safe constants guarantee that we do not overflow sdiv/srem (and
2349
// there's no danger for other opcodes).
2350
// TODO: To allow this case, create a new shuffle mask with no undefs.
2351
if (MightCreatePoisonOrUB && !ConstantsAreOp1)
2352
return nullptr;
2353
2354
// Note: In general, we do not create new shuffles in InstCombine because we
2355
// do not know if a target can lower an arbitrary shuffle optimally. In this
2356
// case, the shuffle uses the existing mask, so there is no additional risk.
2357
2358
// Select the variable vectors first, then perform the binop:
2359
// shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
2360
// shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
2361
V = Builder.CreateShuffleVector(X, Y, Mask);
2362
}
2363
2364
Value *NewBO = ConstantsAreOp1 ? Builder.CreateBinOp(BOpc, V, NewC) :
2365
Builder.CreateBinOp(BOpc, NewC, V);
2366
2367
// Flags are intersected from the 2 source binops. But there are 2 exceptions:
2368
// 1. If we changed an opcode, poison conditions might have changed.
2369
// 2. If the shuffle had undef mask elements, the new binop might have undefs
2370
// where the original code did not. But if we already made a safe constant,
2371
// then there's no danger.
2372
if (auto *NewI = dyn_cast<Instruction>(NewBO)) {
2373
NewI->copyIRFlags(B0);
2374
NewI->andIRFlags(B1);
2375
if (DropNSW)
2376
NewI->setHasNoSignedWrap(false);
2377
if (is_contained(Mask, PoisonMaskElem) && !MightCreatePoisonOrUB)
2378
NewI->dropPoisonGeneratingFlags();
2379
}
2380
return replaceInstUsesWith(Shuf, NewBO);
2381
}
2382
2383
/// Convert a narrowing shuffle of a bitcasted vector into a vector truncate.
2384
/// Example (little endian):
2385
/// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8>
2386
static Instruction *foldTruncShuffle(ShuffleVectorInst &Shuf,
2387
bool IsBigEndian) {
2388
// This must be a bitcasted shuffle of 1 vector integer operand.
2389
Type *DestType = Shuf.getType();
2390
Value *X;
2391
if (!match(Shuf.getOperand(0), m_BitCast(m_Value(X))) ||
2392
!match(Shuf.getOperand(1), m_Poison()) || !DestType->isIntOrIntVectorTy())
2393
return nullptr;
2394
2395
// The source type must have the same number of elements as the shuffle,
2396
// and the source element type must be larger than the shuffle element type.
2397
Type *SrcType = X->getType();
2398
if (!SrcType->isVectorTy() || !SrcType->isIntOrIntVectorTy() ||
2399
cast<FixedVectorType>(SrcType)->getNumElements() !=
2400
cast<FixedVectorType>(DestType)->getNumElements() ||
2401
SrcType->getScalarSizeInBits() % DestType->getScalarSizeInBits() != 0)
2402
return nullptr;
2403
2404
assert(Shuf.changesLength() && !Shuf.increasesLength() &&
2405
"Expected a shuffle that decreases length");
2406
2407
// Last, check that the mask chooses the correct low bits for each narrow
2408
// element in the result.
2409
uint64_t TruncRatio =
2410
SrcType->getScalarSizeInBits() / DestType->getScalarSizeInBits();
2411
ArrayRef<int> Mask = Shuf.getShuffleMask();
2412
for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
2413
if (Mask[i] == PoisonMaskElem)
2414
continue;
2415
uint64_t LSBIndex = IsBigEndian ? (i + 1) * TruncRatio - 1 : i * TruncRatio;
2416
assert(LSBIndex <= INT32_MAX && "Overflowed 32-bits");
2417
if (Mask[i] != (int)LSBIndex)
2418
return nullptr;
2419
}
2420
2421
return new TruncInst(X, DestType);
2422
}
2423
2424
/// Match a shuffle-select-shuffle pattern where the shuffles are widening and
2425
/// narrowing (concatenating with poison and extracting back to the original
2426
/// length). This allows replacing the wide select with a narrow select.
2427
static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
2428
InstCombiner::BuilderTy &Builder) {
2429
// This must be a narrowing identity shuffle. It extracts the 1st N elements
2430
// of the 1st vector operand of a shuffle.
2431
if (!match(Shuf.getOperand(1), m_Poison()) || !Shuf.isIdentityWithExtract())
2432
return nullptr;
2433
2434
// The vector being shuffled must be a vector select that we can eliminate.
2435
// TODO: The one-use requirement could be eased if X and/or Y are constants.
2436
Value *Cond, *X, *Y;
2437
if (!match(Shuf.getOperand(0),
2438
m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
2439
return nullptr;
2440
2441
// We need a narrow condition value. It must be extended with poison elements
2442
// and have the same number of elements as this shuffle.
2443
unsigned NarrowNumElts =
2444
cast<FixedVectorType>(Shuf.getType())->getNumElements();
2445
Value *NarrowCond;
2446
if (!match(Cond, m_OneUse(m_Shuffle(m_Value(NarrowCond), m_Poison()))) ||
2447
cast<FixedVectorType>(NarrowCond->getType())->getNumElements() !=
2448
NarrowNumElts ||
2449
!cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
2450
return nullptr;
2451
2452
// shuf (sel (shuf NarrowCond, poison, WideMask), X, Y), poison, NarrowMask)
2453
// -->
2454
// sel NarrowCond, (shuf X, poison, NarrowMask), (shuf Y, poison, NarrowMask)
2455
Value *NarrowX = Builder.CreateShuffleVector(X, Shuf.getShuffleMask());
2456
Value *NarrowY = Builder.CreateShuffleVector(Y, Shuf.getShuffleMask());
2457
return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
2458
}
2459
2460
/// Canonicalize FP negate/abs after shuffle.
2461
static Instruction *foldShuffleOfUnaryOps(ShuffleVectorInst &Shuf,
2462
InstCombiner::BuilderTy &Builder) {
2463
auto *S0 = dyn_cast<Instruction>(Shuf.getOperand(0));
2464
Value *X;
2465
if (!S0 || !match(S0, m_CombineOr(m_FNeg(m_Value(X)), m_FAbs(m_Value(X)))))
2466
return nullptr;
2467
2468
bool IsFNeg = S0->getOpcode() == Instruction::FNeg;
2469
2470
// Match 1-input (unary) shuffle.
2471
// shuffle (fneg/fabs X), Mask --> fneg/fabs (shuffle X, Mask)
2472
if (S0->hasOneUse() && match(Shuf.getOperand(1), m_Poison())) {
2473
Value *NewShuf = Builder.CreateShuffleVector(X, Shuf.getShuffleMask());
2474
if (IsFNeg)
2475
return UnaryOperator::CreateFNegFMF(NewShuf, S0);
2476
2477
Function *FAbs = Intrinsic::getDeclaration(Shuf.getModule(),
2478
Intrinsic::fabs, Shuf.getType());
2479
CallInst *NewF = CallInst::Create(FAbs, {NewShuf});
2480
NewF->setFastMathFlags(S0->getFastMathFlags());
2481
return NewF;
2482
}
2483
2484
// Match 2-input (binary) shuffle.
2485
auto *S1 = dyn_cast<Instruction>(Shuf.getOperand(1));
2486
Value *Y;
2487
if (!S1 || !match(S1, m_CombineOr(m_FNeg(m_Value(Y)), m_FAbs(m_Value(Y)))) ||
2488
S0->getOpcode() != S1->getOpcode() ||
2489
(!S0->hasOneUse() && !S1->hasOneUse()))
2490
return nullptr;
2491
2492
// shuf (fneg/fabs X), (fneg/fabs Y), Mask --> fneg/fabs (shuf X, Y, Mask)
2493
Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask());
2494
Instruction *NewF;
2495
if (IsFNeg) {
2496
NewF = UnaryOperator::CreateFNeg(NewShuf);
2497
} else {
2498
Function *FAbs = Intrinsic::getDeclaration(Shuf.getModule(),
2499
Intrinsic::fabs, Shuf.getType());
2500
NewF = CallInst::Create(FAbs, {NewShuf});
2501
}
2502
NewF->copyIRFlags(S0);
2503
NewF->andIRFlags(S1);
2504
return NewF;
2505
}
2506
2507
/// Canonicalize casts after shuffle.
2508
static Instruction *foldCastShuffle(ShuffleVectorInst &Shuf,
2509
InstCombiner::BuilderTy &Builder) {
2510
// Do we have 2 matching cast operands?
2511
auto *Cast0 = dyn_cast<CastInst>(Shuf.getOperand(0));
2512
auto *Cast1 = dyn_cast<CastInst>(Shuf.getOperand(1));
2513
if (!Cast0 || !Cast1 || Cast0->getOpcode() != Cast1->getOpcode() ||
2514
Cast0->getSrcTy() != Cast1->getSrcTy())
2515
return nullptr;
2516
2517
// TODO: Allow other opcodes? That would require easing the type restrictions
2518
// below here.
2519
CastInst::CastOps CastOpcode = Cast0->getOpcode();
2520
switch (CastOpcode) {
2521
case Instruction::FPToSI:
2522
case Instruction::FPToUI:
2523
case Instruction::SIToFP:
2524
case Instruction::UIToFP:
2525
break;
2526
default:
2527
return nullptr;
2528
}
2529
2530
VectorType *ShufTy = Shuf.getType();
2531
VectorType *ShufOpTy = cast<VectorType>(Shuf.getOperand(0)->getType());
2532
VectorType *CastSrcTy = cast<VectorType>(Cast0->getSrcTy());
2533
2534
// TODO: Allow length-increasing shuffles?
2535
if (ShufTy->getElementCount().getKnownMinValue() >
2536
ShufOpTy->getElementCount().getKnownMinValue())
2537
return nullptr;
2538
2539
// TODO: Allow element-size-decreasing casts (ex: fptosi float to i8)?
2540
assert(isa<FixedVectorType>(CastSrcTy) && isa<FixedVectorType>(ShufOpTy) &&
2541
"Expected fixed vector operands for casts and binary shuffle");
2542
if (CastSrcTy->getPrimitiveSizeInBits() > ShufOpTy->getPrimitiveSizeInBits())
2543
return nullptr;
2544
2545
// At least one of the operands must have only one use (the shuffle).
2546
if (!Cast0->hasOneUse() && !Cast1->hasOneUse())
2547
return nullptr;
2548
2549
// shuffle (cast X), (cast Y), Mask --> cast (shuffle X, Y, Mask)
2550
Value *X = Cast0->getOperand(0);
2551
Value *Y = Cast1->getOperand(0);
2552
Value *NewShuf = Builder.CreateShuffleVector(X, Y, Shuf.getShuffleMask());
2553
return CastInst::Create(CastOpcode, NewShuf, ShufTy);
2554
}
2555
2556
/// Try to fold an extract subvector operation.
2557
static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
2558
Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
2559
if (!Shuf.isIdentityWithExtract() || !match(Op1, m_Poison()))
2560
return nullptr;
2561
2562
// Check if we are extracting all bits of an inserted scalar:
2563
// extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type
2564
Value *X;
2565
if (match(Op0, m_BitCast(m_InsertElt(m_Value(), m_Value(X), m_Zero()))) &&
2566
X->getType()->getPrimitiveSizeInBits() ==
2567
Shuf.getType()->getPrimitiveSizeInBits())
2568
return new BitCastInst(X, Shuf.getType());
2569
2570
// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
2571
Value *Y;
2572
ArrayRef<int> Mask;
2573
if (!match(Op0, m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask))))
2574
return nullptr;
2575
2576
// Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
2577
// then combining may result in worse codegen.
2578
if (!Op0->hasOneUse())
2579
return nullptr;
2580
2581
// We are extracting a subvector from a shuffle. Remove excess elements from
2582
// the 1st shuffle mask to eliminate the extract.
2583
//
2584
// This transform is conservatively limited to identity extracts because we do
2585
// not allow arbitrary shuffle mask creation as a target-independent transform
2586
// (because we can't guarantee that will lower efficiently).
2587
//
2588
// If the extracting shuffle has an poison mask element, it transfers to the
2589
// new shuffle mask. Otherwise, copy the original mask element. Example:
2590
// shuf (shuf X, Y, <C0, C1, C2, poison, C4>), poison, <0, poison, 2, 3> -->
2591
// shuf X, Y, <C0, poison, C2, poison>
2592
unsigned NumElts = cast<FixedVectorType>(Shuf.getType())->getNumElements();
2593
SmallVector<int, 16> NewMask(NumElts);
2594
assert(NumElts < Mask.size() &&
2595
"Identity with extract must have less elements than its inputs");
2596
2597
for (unsigned i = 0; i != NumElts; ++i) {
2598
int ExtractMaskElt = Shuf.getMaskValue(i);
2599
int MaskElt = Mask[i];
2600
NewMask[i] = ExtractMaskElt == PoisonMaskElem ? ExtractMaskElt : MaskElt;
2601
}
2602
return new ShuffleVectorInst(X, Y, NewMask);
2603
}
2604
2605
/// Try to replace a shuffle with an insertelement or try to replace a shuffle
2606
/// operand with the operand of an insertelement.
2607
static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf,
2608
InstCombinerImpl &IC) {
2609
Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
2610
SmallVector<int, 16> Mask;
2611
Shuf.getShuffleMask(Mask);
2612
2613
int NumElts = Mask.size();
2614
int InpNumElts = cast<FixedVectorType>(V0->getType())->getNumElements();
2615
2616
// This is a specialization of a fold in SimplifyDemandedVectorElts. We may
2617
// not be able to handle it there if the insertelement has >1 use.
2618
// If the shuffle has an insertelement operand but does not choose the
2619
// inserted scalar element from that value, then we can replace that shuffle
2620
// operand with the source vector of the insertelement.
2621
Value *X;
2622
uint64_t IdxC;
2623
if (match(V0, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
2624
// shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask
2625
if (!is_contained(Mask, (int)IdxC))
2626
return IC.replaceOperand(Shuf, 0, X);
2627
}
2628
if (match(V1, m_InsertElt(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
2629
// Offset the index constant by the vector width because we are checking for
2630
// accesses to the 2nd vector input of the shuffle.
2631
IdxC += InpNumElts;
2632
// shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask
2633
if (!is_contained(Mask, (int)IdxC))
2634
return IC.replaceOperand(Shuf, 1, X);
2635
}
2636
// For the rest of the transform, the shuffle must not change vector sizes.
2637
// TODO: This restriction could be removed if the insert has only one use
2638
// (because the transform would require a new length-changing shuffle).
2639
if (NumElts != InpNumElts)
2640
return nullptr;
2641
2642
// shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
2643
auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
2644
// We need an insertelement with a constant index.
2645
if (!match(V0, m_InsertElt(m_Value(), m_Value(Scalar),
2646
m_ConstantInt(IndexC))))
2647
return false;
2648
2649
// Test the shuffle mask to see if it splices the inserted scalar into the
2650
// operand 1 vector of the shuffle.
2651
int NewInsIndex = -1;
2652
for (int i = 0; i != NumElts; ++i) {
2653
// Ignore undef mask elements.
2654
if (Mask[i] == -1)
2655
continue;
2656
2657
// The shuffle takes elements of operand 1 without lane changes.
2658
if (Mask[i] == NumElts + i)
2659
continue;
2660
2661
// The shuffle must choose the inserted scalar exactly once.
2662
if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
2663
return false;
2664
2665
// The shuffle is placing the inserted scalar into element i.
2666
NewInsIndex = i;
2667
}
2668
2669
assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
2670
2671
// Index is updated to the potentially translated insertion lane.
2672
IndexC = ConstantInt::get(IndexC->getIntegerType(), NewInsIndex);
2673
return true;
2674
};
2675
2676
// If the shuffle is unnecessary, insert the scalar operand directly into
2677
// operand 1 of the shuffle. Example:
2678
// shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
2679
Value *Scalar;
2680
ConstantInt *IndexC;
2681
if (isShufflingScalarIntoOp1(Scalar, IndexC))
2682
return InsertElementInst::Create(V1, Scalar, IndexC);
2683
2684
// Try again after commuting shuffle. Example:
2685
// shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
2686
// shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
2687
std::swap(V0, V1);
2688
ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
2689
if (isShufflingScalarIntoOp1(Scalar, IndexC))
2690
return InsertElementInst::Create(V1, Scalar, IndexC);
2691
2692
return nullptr;
2693
}
2694
2695
static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
2696
// Match the operands as identity with padding (also known as concatenation
2697
// with undef) shuffles of the same source type. The backend is expected to
2698
// recreate these concatenations from a shuffle of narrow operands.
2699
auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
2700
auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
2701
if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
2702
!Shuffle1 || !Shuffle1->isIdentityWithPadding())
2703
return nullptr;
2704
2705
// We limit this transform to power-of-2 types because we expect that the
2706
// backend can convert the simplified IR patterns to identical nodes as the
2707
// original IR.
2708
// TODO: If we can verify the same behavior for arbitrary types, the
2709
// power-of-2 checks can be removed.
2710
Value *X = Shuffle0->getOperand(0);
2711
Value *Y = Shuffle1->getOperand(0);
2712
if (X->getType() != Y->getType() ||
2713
!isPowerOf2_32(cast<FixedVectorType>(Shuf.getType())->getNumElements()) ||
2714
!isPowerOf2_32(
2715
cast<FixedVectorType>(Shuffle0->getType())->getNumElements()) ||
2716
!isPowerOf2_32(cast<FixedVectorType>(X->getType())->getNumElements()) ||
2717
match(X, m_Undef()) || match(Y, m_Undef()))
2718
return nullptr;
2719
assert(match(Shuffle0->getOperand(1), m_Undef()) &&
2720
match(Shuffle1->getOperand(1), m_Undef()) &&
2721
"Unexpected operand for identity shuffle");
2722
2723
// This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
2724
// operands directly by adjusting the shuffle mask to account for the narrower
2725
// types:
2726
// shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
2727
int NarrowElts = cast<FixedVectorType>(X->getType())->getNumElements();
2728
int WideElts = cast<FixedVectorType>(Shuffle0->getType())->getNumElements();
2729
assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
2730
2731
ArrayRef<int> Mask = Shuf.getShuffleMask();
2732
SmallVector<int, 16> NewMask(Mask.size(), -1);
2733
for (int i = 0, e = Mask.size(); i != e; ++i) {
2734
if (Mask[i] == -1)
2735
continue;
2736
2737
// If this shuffle is choosing an undef element from 1 of the sources, that
2738
// element is undef.
2739
if (Mask[i] < WideElts) {
2740
if (Shuffle0->getMaskValue(Mask[i]) == -1)
2741
continue;
2742
} else {
2743
if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
2744
continue;
2745
}
2746
2747
// If this shuffle is choosing from the 1st narrow op, the mask element is
2748
// the same. If this shuffle is choosing from the 2nd narrow op, the mask
2749
// element is offset down to adjust for the narrow vector widths.
2750
if (Mask[i] < WideElts) {
2751
assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
2752
NewMask[i] = Mask[i];
2753
} else {
2754
assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
2755
NewMask[i] = Mask[i] - (WideElts - NarrowElts);
2756
}
2757
}
2758
return new ShuffleVectorInst(X, Y, NewMask);
2759
}
2760
2761
// Splatting the first element of the result of a BinOp, where any of the
2762
// BinOp's operands are the result of a first element splat can be simplified to
2763
// splatting the first element of the result of the BinOp
2764
Instruction *InstCombinerImpl::simplifyBinOpSplats(ShuffleVectorInst &SVI) {
2765
if (!match(SVI.getOperand(1), m_Poison()) ||
2766
!match(SVI.getShuffleMask(), m_ZeroMask()) ||
2767
!SVI.getOperand(0)->hasOneUse())
2768
return nullptr;
2769
2770
Value *Op0 = SVI.getOperand(0);
2771
Value *X, *Y;
2772
if (!match(Op0, m_BinOp(m_Shuffle(m_Value(X), m_Poison(), m_ZeroMask()),
2773
m_Value(Y))) &&
2774
!match(Op0, m_BinOp(m_Value(X),
2775
m_Shuffle(m_Value(Y), m_Poison(), m_ZeroMask()))))
2776
return nullptr;
2777
if (X->getType() != Y->getType())
2778
return nullptr;
2779
2780
auto *BinOp = cast<BinaryOperator>(Op0);
2781
if (!isSafeToSpeculativelyExecute(BinOp))
2782
return nullptr;
2783
2784
Value *NewBO = Builder.CreateBinOp(BinOp->getOpcode(), X, Y);
2785
if (auto NewBOI = dyn_cast<Instruction>(NewBO))
2786
NewBOI->copyIRFlags(BinOp);
2787
2788
return new ShuffleVectorInst(NewBO, SVI.getShuffleMask());
2789
}
2790
2791
Instruction *InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
2792
Value *LHS = SVI.getOperand(0);
2793
Value *RHS = SVI.getOperand(1);
2794
SimplifyQuery ShufQuery = SQ.getWithInstruction(&SVI);
2795
if (auto *V = simplifyShuffleVectorInst(LHS, RHS, SVI.getShuffleMask(),
2796
SVI.getType(), ShufQuery))
2797
return replaceInstUsesWith(SVI, V);
2798
2799
if (Instruction *I = simplifyBinOpSplats(SVI))
2800
return I;
2801
2802
// Canonicalize splat shuffle to use poison RHS. Handle this explicitly in
2803
// order to support scalable vectors.
2804
if (match(SVI.getShuffleMask(), m_ZeroMask()) && !isa<PoisonValue>(RHS))
2805
return replaceOperand(SVI, 1, PoisonValue::get(RHS->getType()));
2806
2807
if (isa<ScalableVectorType>(LHS->getType()))
2808
return nullptr;
2809
2810
unsigned VWidth = cast<FixedVectorType>(SVI.getType())->getNumElements();
2811
unsigned LHSWidth = cast<FixedVectorType>(LHS->getType())->getNumElements();
2812
2813
// shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask)
2814
//
2815
// if X and Y are of the same (vector) type, and the element size is not
2816
// changed by the bitcasts, we can distribute the bitcasts through the
2817
// shuffle, hopefully reducing the number of instructions. We make sure that
2818
// at least one bitcast only has one use, so we don't *increase* the number of
2819
// instructions here.
2820
Value *X, *Y;
2821
if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_BitCast(m_Value(Y))) &&
2822
X->getType()->isVectorTy() && X->getType() == Y->getType() &&
2823
X->getType()->getScalarSizeInBits() ==
2824
SVI.getType()->getScalarSizeInBits() &&
2825
(LHS->hasOneUse() || RHS->hasOneUse())) {
2826
Value *V = Builder.CreateShuffleVector(X, Y, SVI.getShuffleMask(),
2827
SVI.getName() + ".uncasted");
2828
return new BitCastInst(V, SVI.getType());
2829
}
2830
2831
ArrayRef<int> Mask = SVI.getShuffleMask();
2832
2833
// Peek through a bitcasted shuffle operand by scaling the mask. If the
2834
// simulated shuffle can simplify, then this shuffle is unnecessary:
2835
// shuf (bitcast X), undef, Mask --> bitcast X'
2836
// TODO: This could be extended to allow length-changing shuffles.
2837
// The transform might also be obsoleted if we allowed canonicalization
2838
// of bitcasted shuffles.
2839
if (match(LHS, m_BitCast(m_Value(X))) && match(RHS, m_Undef()) &&
2840
X->getType()->isVectorTy() && VWidth == LHSWidth) {
2841
// Try to create a scaled mask constant.
2842
auto *XType = cast<FixedVectorType>(X->getType());
2843
unsigned XNumElts = XType->getNumElements();
2844
SmallVector<int, 16> ScaledMask;
2845
if (scaleShuffleMaskElts(XNumElts, Mask, ScaledMask)) {
2846
// If the shuffled source vector simplifies, cast that value to this
2847
// shuffle's type.
2848
if (auto *V = simplifyShuffleVectorInst(X, UndefValue::get(XType),
2849
ScaledMask, XType, ShufQuery))
2850
return BitCastInst::Create(Instruction::BitCast, V, SVI.getType());
2851
}
2852
}
2853
2854
// shuffle x, x, mask --> shuffle x, undef, mask'
2855
if (LHS == RHS) {
2856
assert(!match(RHS, m_Undef()) &&
2857
"Shuffle with 2 undef ops not simplified?");
2858
return new ShuffleVectorInst(LHS, createUnaryMask(Mask, LHSWidth));
2859
}
2860
2861
// shuffle undef, x, mask --> shuffle x, undef, mask'
2862
if (match(LHS, m_Undef())) {
2863
SVI.commute();
2864
return &SVI;
2865
}
2866
2867
if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
2868
return I;
2869
2870
if (Instruction *I = foldSelectShuffle(SVI))
2871
return I;
2872
2873
if (Instruction *I = foldTruncShuffle(SVI, DL.isBigEndian()))
2874
return I;
2875
2876
if (Instruction *I = narrowVectorSelect(SVI, Builder))
2877
return I;
2878
2879
if (Instruction *I = foldShuffleOfUnaryOps(SVI, Builder))
2880
return I;
2881
2882
if (Instruction *I = foldCastShuffle(SVI, Builder))
2883
return I;
2884
2885
APInt PoisonElts(VWidth, 0);
2886
APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
2887
if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, PoisonElts)) {
2888
if (V != &SVI)
2889
return replaceInstUsesWith(SVI, V);
2890
return &SVI;
2891
}
2892
2893
if (Instruction *I = foldIdentityExtractShuffle(SVI))
2894
return I;
2895
2896
// These transforms have the potential to lose undef knowledge, so they are
2897
// intentionally placed after SimplifyDemandedVectorElts().
2898
if (Instruction *I = foldShuffleWithInsert(SVI, *this))
2899
return I;
2900
if (Instruction *I = foldIdentityPaddedShuffles(SVI))
2901
return I;
2902
2903
if (match(RHS, m_Poison()) && canEvaluateShuffled(LHS, Mask)) {
2904
Value *V = evaluateInDifferentElementOrder(LHS, Mask, Builder);
2905
return replaceInstUsesWith(SVI, V);
2906
}
2907
2908
// SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
2909
// a non-vector type. We can instead bitcast the original vector followed by
2910
// an extract of the desired element:
2911
//
2912
// %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
2913
// <4 x i32> <i32 0, i32 1, i32 2, i32 3>
2914
// %1 = bitcast <4 x i8> %sroa to i32
2915
// Becomes:
2916
// %bc = bitcast <16 x i8> %in to <4 x i32>
2917
// %ext = extractelement <4 x i32> %bc, i32 0
2918
//
2919
// If the shuffle is extracting a contiguous range of values from the input
2920
// vector then each use which is a bitcast of the extracted size can be
2921
// replaced. This will work if the vector types are compatible, and the begin
2922
// index is aligned to a value in the casted vector type. If the begin index
2923
// isn't aligned then we can shuffle the original vector (keeping the same
2924
// vector type) before extracting.
2925
//
2926
// This code will bail out if the target type is fundamentally incompatible
2927
// with vectors of the source type.
2928
//
2929
// Example of <16 x i8>, target type i32:
2930
// Index range [4,8): v-----------v Will work.
2931
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
2932
// <16 x i8>: | | | | | | | | | | | | | | | | |
2933
// <4 x i32>: | | | | |
2934
// +-----------+-----------+-----------+-----------+
2935
// Index range [6,10): ^-----------^ Needs an extra shuffle.
2936
// Target type i40: ^--------------^ Won't work, bail.
2937
bool MadeChange = false;
2938
if (isShuffleExtractingFromLHS(SVI, Mask)) {
2939
Value *V = LHS;
2940
unsigned MaskElems = Mask.size();
2941
auto *SrcTy = cast<FixedVectorType>(V->getType());
2942
unsigned VecBitWidth = SrcTy->getPrimitiveSizeInBits().getFixedValue();
2943
unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
2944
assert(SrcElemBitWidth && "vector elements must have a bitwidth");
2945
unsigned SrcNumElems = SrcTy->getNumElements();
2946
SmallVector<BitCastInst *, 8> BCs;
2947
DenseMap<Type *, Value *> NewBCs;
2948
for (User *U : SVI.users())
2949
if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
2950
if (!BC->use_empty())
2951
// Only visit bitcasts that weren't previously handled.
2952
BCs.push_back(BC);
2953
for (BitCastInst *BC : BCs) {
2954
unsigned BegIdx = Mask.front();
2955
Type *TgtTy = BC->getDestTy();
2956
unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
2957
if (!TgtElemBitWidth)
2958
continue;
2959
unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
2960
bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
2961
bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
2962
if (!VecBitWidthsEqual)
2963
continue;
2964
if (!VectorType::isValidElementType(TgtTy))
2965
continue;
2966
auto *CastSrcTy = FixedVectorType::get(TgtTy, TgtNumElems);
2967
if (!BegIsAligned) {
2968
// Shuffle the input so [0,NumElements) contains the output, and
2969
// [NumElems,SrcNumElems) is undef.
2970
SmallVector<int, 16> ShuffleMask(SrcNumElems, -1);
2971
for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
2972
ShuffleMask[I] = Idx;
2973
V = Builder.CreateShuffleVector(V, ShuffleMask,
2974
SVI.getName() + ".extract");
2975
BegIdx = 0;
2976
}
2977
unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
2978
assert(SrcElemsPerTgtElem);
2979
BegIdx /= SrcElemsPerTgtElem;
2980
bool BCAlreadyExists = NewBCs.contains(CastSrcTy);
2981
auto *NewBC =
2982
BCAlreadyExists
2983
? NewBCs[CastSrcTy]
2984
: Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
2985
if (!BCAlreadyExists)
2986
NewBCs[CastSrcTy] = NewBC;
2987
auto *Ext = Builder.CreateExtractElement(NewBC, BegIdx,
2988
SVI.getName() + ".extract");
2989
// The shufflevector isn't being replaced: the bitcast that used it
2990
// is. InstCombine will visit the newly-created instructions.
2991
replaceInstUsesWith(*BC, Ext);
2992
MadeChange = true;
2993
}
2994
}
2995
2996
// If the LHS is a shufflevector itself, see if we can combine it with this
2997
// one without producing an unusual shuffle.
2998
// Cases that might be simplified:
2999
// 1.
3000
// x1=shuffle(v1,v2,mask1)
3001
// x=shuffle(x1,undef,mask)
3002
// ==>
3003
// x=shuffle(v1,undef,newMask)
3004
// newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
3005
// 2.
3006
// x1=shuffle(v1,undef,mask1)
3007
// x=shuffle(x1,x2,mask)
3008
// where v1.size() == mask1.size()
3009
// ==>
3010
// x=shuffle(v1,x2,newMask)
3011
// newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
3012
// 3.
3013
// x2=shuffle(v2,undef,mask2)
3014
// x=shuffle(x1,x2,mask)
3015
// where v2.size() == mask2.size()
3016
// ==>
3017
// x=shuffle(x1,v2,newMask)
3018
// newMask[i] = (mask[i] < x1.size())
3019
// ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
3020
// 4.
3021
// x1=shuffle(v1,undef,mask1)
3022
// x2=shuffle(v2,undef,mask2)
3023
// x=shuffle(x1,x2,mask)
3024
// where v1.size() == v2.size()
3025
// ==>
3026
// x=shuffle(v1,v2,newMask)
3027
// newMask[i] = (mask[i] < x1.size())
3028
// ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
3029
//
3030
// Here we are really conservative:
3031
// we are absolutely afraid of producing a shuffle mask not in the input
3032
// program, because the code gen may not be smart enough to turn a merged
3033
// shuffle into two specific shuffles: it may produce worse code. As such,
3034
// we only merge two shuffles if the result is either a splat or one of the
3035
// input shuffle masks. In this case, merging the shuffles just removes
3036
// one instruction, which we know is safe. This is good for things like
3037
// turning: (splat(splat)) -> splat, or
3038
// merge(V[0..n], V[n+1..2n]) -> V[0..2n]
3039
ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
3040
ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
3041
if (LHSShuffle)
3042
if (!match(LHSShuffle->getOperand(1), m_Poison()) &&
3043
!match(RHS, m_Poison()))
3044
LHSShuffle = nullptr;
3045
if (RHSShuffle)
3046
if (!match(RHSShuffle->getOperand(1), m_Poison()))
3047
RHSShuffle = nullptr;
3048
if (!LHSShuffle && !RHSShuffle)
3049
return MadeChange ? &SVI : nullptr;
3050
3051
Value* LHSOp0 = nullptr;
3052
Value* LHSOp1 = nullptr;
3053
Value* RHSOp0 = nullptr;
3054
unsigned LHSOp0Width = 0;
3055
unsigned RHSOp0Width = 0;
3056
if (LHSShuffle) {
3057
LHSOp0 = LHSShuffle->getOperand(0);
3058
LHSOp1 = LHSShuffle->getOperand(1);
3059
LHSOp0Width = cast<FixedVectorType>(LHSOp0->getType())->getNumElements();
3060
}
3061
if (RHSShuffle) {
3062
RHSOp0 = RHSShuffle->getOperand(0);
3063
RHSOp0Width = cast<FixedVectorType>(RHSOp0->getType())->getNumElements();
3064
}
3065
Value* newLHS = LHS;
3066
Value* newRHS = RHS;
3067
if (LHSShuffle) {
3068
// case 1
3069
if (match(RHS, m_Poison())) {
3070
newLHS = LHSOp0;
3071
newRHS = LHSOp1;
3072
}
3073
// case 2 or 4
3074
else if (LHSOp0Width == LHSWidth) {
3075
newLHS = LHSOp0;
3076
}
3077
}
3078
// case 3 or 4
3079
if (RHSShuffle && RHSOp0Width == LHSWidth) {
3080
newRHS = RHSOp0;
3081
}
3082
// case 4
3083
if (LHSOp0 == RHSOp0) {
3084
newLHS = LHSOp0;
3085
newRHS = nullptr;
3086
}
3087
3088
if (newLHS == LHS && newRHS == RHS)
3089
return MadeChange ? &SVI : nullptr;
3090
3091
ArrayRef<int> LHSMask;
3092
ArrayRef<int> RHSMask;
3093
if (newLHS != LHS)
3094
LHSMask = LHSShuffle->getShuffleMask();
3095
if (RHSShuffle && newRHS != RHS)
3096
RHSMask = RHSShuffle->getShuffleMask();
3097
3098
unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
3099
SmallVector<int, 16> newMask;
3100
bool isSplat = true;
3101
int SplatElt = -1;
3102
// Create a new mask for the new ShuffleVectorInst so that the new
3103
// ShuffleVectorInst is equivalent to the original one.
3104
for (unsigned i = 0; i < VWidth; ++i) {
3105
int eltMask;
3106
if (Mask[i] < 0) {
3107
// This element is a poison value.
3108
eltMask = -1;
3109
} else if (Mask[i] < (int)LHSWidth) {
3110
// This element is from left hand side vector operand.
3111
//
3112
// If LHS is going to be replaced (case 1, 2, or 4), calculate the
3113
// new mask value for the element.
3114
if (newLHS != LHS) {
3115
eltMask = LHSMask[Mask[i]];
3116
// If the value selected is an poison value, explicitly specify it
3117
// with a -1 mask value.
3118
if (eltMask >= (int)LHSOp0Width && isa<PoisonValue>(LHSOp1))
3119
eltMask = -1;
3120
} else
3121
eltMask = Mask[i];
3122
} else {
3123
// This element is from right hand side vector operand
3124
//
3125
// If the value selected is a poison value, explicitly specify it
3126
// with a -1 mask value. (case 1)
3127
if (match(RHS, m_Poison()))
3128
eltMask = -1;
3129
// If RHS is going to be replaced (case 3 or 4), calculate the
3130
// new mask value for the element.
3131
else if (newRHS != RHS) {
3132
eltMask = RHSMask[Mask[i]-LHSWidth];
3133
// If the value selected is an poison value, explicitly specify it
3134
// with a -1 mask value.
3135
if (eltMask >= (int)RHSOp0Width) {
3136
assert(match(RHSShuffle->getOperand(1), m_Poison()) &&
3137
"should have been check above");
3138
eltMask = -1;
3139
}
3140
} else
3141
eltMask = Mask[i]-LHSWidth;
3142
3143
// If LHS's width is changed, shift the mask value accordingly.
3144
// If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
3145
// references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
3146
// If newRHS == newLHS, we want to remap any references from newRHS to
3147
// newLHS so that we can properly identify splats that may occur due to
3148
// obfuscation across the two vectors.
3149
if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
3150
eltMask += newLHSWidth;
3151
}
3152
3153
// Check if this could still be a splat.
3154
if (eltMask >= 0) {
3155
if (SplatElt >= 0 && SplatElt != eltMask)
3156
isSplat = false;
3157
SplatElt = eltMask;
3158
}
3159
3160
newMask.push_back(eltMask);
3161
}
3162
3163
// If the result mask is equal to one of the original shuffle masks,
3164
// or is a splat, do the replacement.
3165
if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
3166
if (!newRHS)
3167
newRHS = PoisonValue::get(newLHS->getType());
3168
return new ShuffleVectorInst(newLHS, newRHS, newMask);
3169
}
3170
3171
return MadeChange ? &SVI : nullptr;
3172
}
3173
3174