Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp
35266 views
1
//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// InstructionCombining - Combine instructions to form fewer, simple
10
// instructions. This pass does not modify the CFG. This pass is where
11
// algebraic simplification happens.
12
//
13
// This pass combines things like:
14
// %Y = add i32 %X, 1
15
// %Z = add i32 %Y, 1
16
// into:
17
// %Z = add i32 %X, 2
18
//
19
// This is a simple worklist driven algorithm.
20
//
21
// This pass guarantees that the following canonicalizations are performed on
22
// the program:
23
// 1. If a binary operator has a constant operand, it is moved to the RHS
24
// 2. Bitwise operators with constant operands are always grouped so that
25
// shifts are performed first, then or's, then and's, then xor's.
26
// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27
// 4. All cmp instructions on boolean values are replaced with logical ops
28
// 5. add X, X is represented as (X*2) => (X << 1)
29
// 6. Multiplies with a power-of-two constant argument are transformed into
30
// shifts.
31
// ... etc.
32
//
33
//===----------------------------------------------------------------------===//
34
35
#include "InstCombineInternal.h"
36
#include "llvm/ADT/APInt.h"
37
#include "llvm/ADT/ArrayRef.h"
38
#include "llvm/ADT/DenseMap.h"
39
#include "llvm/ADT/SmallPtrSet.h"
40
#include "llvm/ADT/SmallVector.h"
41
#include "llvm/ADT/Statistic.h"
42
#include "llvm/Analysis/AliasAnalysis.h"
43
#include "llvm/Analysis/AssumptionCache.h"
44
#include "llvm/Analysis/BasicAliasAnalysis.h"
45
#include "llvm/Analysis/BlockFrequencyInfo.h"
46
#include "llvm/Analysis/CFG.h"
47
#include "llvm/Analysis/ConstantFolding.h"
48
#include "llvm/Analysis/GlobalsModRef.h"
49
#include "llvm/Analysis/InstructionSimplify.h"
50
#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
51
#include "llvm/Analysis/LoopInfo.h"
52
#include "llvm/Analysis/MemoryBuiltins.h"
53
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
54
#include "llvm/Analysis/ProfileSummaryInfo.h"
55
#include "llvm/Analysis/TargetFolder.h"
56
#include "llvm/Analysis/TargetLibraryInfo.h"
57
#include "llvm/Analysis/TargetTransformInfo.h"
58
#include "llvm/Analysis/Utils/Local.h"
59
#include "llvm/Analysis/ValueTracking.h"
60
#include "llvm/Analysis/VectorUtils.h"
61
#include "llvm/IR/BasicBlock.h"
62
#include "llvm/IR/CFG.h"
63
#include "llvm/IR/Constant.h"
64
#include "llvm/IR/Constants.h"
65
#include "llvm/IR/DIBuilder.h"
66
#include "llvm/IR/DataLayout.h"
67
#include "llvm/IR/DebugInfo.h"
68
#include "llvm/IR/DerivedTypes.h"
69
#include "llvm/IR/Dominators.h"
70
#include "llvm/IR/EHPersonalities.h"
71
#include "llvm/IR/Function.h"
72
#include "llvm/IR/GetElementPtrTypeIterator.h"
73
#include "llvm/IR/IRBuilder.h"
74
#include "llvm/IR/InstrTypes.h"
75
#include "llvm/IR/Instruction.h"
76
#include "llvm/IR/Instructions.h"
77
#include "llvm/IR/IntrinsicInst.h"
78
#include "llvm/IR/Intrinsics.h"
79
#include "llvm/IR/Metadata.h"
80
#include "llvm/IR/Operator.h"
81
#include "llvm/IR/PassManager.h"
82
#include "llvm/IR/PatternMatch.h"
83
#include "llvm/IR/Type.h"
84
#include "llvm/IR/Use.h"
85
#include "llvm/IR/User.h"
86
#include "llvm/IR/Value.h"
87
#include "llvm/IR/ValueHandle.h"
88
#include "llvm/InitializePasses.h"
89
#include "llvm/Support/Casting.h"
90
#include "llvm/Support/CommandLine.h"
91
#include "llvm/Support/Compiler.h"
92
#include "llvm/Support/Debug.h"
93
#include "llvm/Support/DebugCounter.h"
94
#include "llvm/Support/ErrorHandling.h"
95
#include "llvm/Support/KnownBits.h"
96
#include "llvm/Support/raw_ostream.h"
97
#include "llvm/Transforms/InstCombine/InstCombine.h"
98
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
99
#include "llvm/Transforms/Utils/Local.h"
100
#include <algorithm>
101
#include <cassert>
102
#include <cstdint>
103
#include <memory>
104
#include <optional>
105
#include <string>
106
#include <utility>
107
108
#define DEBUG_TYPE "instcombine"
109
#include "llvm/Transforms/Utils/InstructionWorklist.h"
110
#include <optional>
111
112
using namespace llvm;
113
using namespace llvm::PatternMatch;
114
115
STATISTIC(NumWorklistIterations,
116
"Number of instruction combining iterations performed");
117
STATISTIC(NumOneIteration, "Number of functions with one iteration");
118
STATISTIC(NumTwoIterations, "Number of functions with two iterations");
119
STATISTIC(NumThreeIterations, "Number of functions with three iterations");
120
STATISTIC(NumFourOrMoreIterations,
121
"Number of functions with four or more iterations");
122
123
STATISTIC(NumCombined , "Number of insts combined");
124
STATISTIC(NumConstProp, "Number of constant folds");
125
STATISTIC(NumDeadInst , "Number of dead inst eliminated");
126
STATISTIC(NumSunkInst , "Number of instructions sunk");
127
STATISTIC(NumExpand, "Number of expansions");
128
STATISTIC(NumFactor , "Number of factorizations");
129
STATISTIC(NumReassoc , "Number of reassociations");
130
DEBUG_COUNTER(VisitCounter, "instcombine-visit",
131
"Controls which instructions are visited");
132
133
static cl::opt<bool>
134
EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
135
cl::init(true));
136
137
static cl::opt<unsigned> MaxSinkNumUsers(
138
"instcombine-max-sink-users", cl::init(32),
139
cl::desc("Maximum number of undroppable users for instruction sinking"));
140
141
static cl::opt<unsigned>
142
MaxArraySize("instcombine-maxarray-size", cl::init(1024),
143
cl::desc("Maximum array size considered when doing a combine"));
144
145
// FIXME: Remove this flag when it is no longer necessary to convert
146
// llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
147
// increases variable availability at the cost of accuracy. Variables that
148
// cannot be promoted by mem2reg or SROA will be described as living in memory
149
// for their entire lifetime. However, passes like DSE and instcombine can
150
// delete stores to the alloca, leading to misleading and inaccurate debug
151
// information. This flag can be removed when those passes are fixed.
152
static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
153
cl::Hidden, cl::init(true));
154
155
std::optional<Instruction *>
156
InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) {
157
// Handle target specific intrinsics
158
if (II.getCalledFunction()->isTargetIntrinsic()) {
159
return TTI.instCombineIntrinsic(*this, II);
160
}
161
return std::nullopt;
162
}
163
164
std::optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic(
165
IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
166
bool &KnownBitsComputed) {
167
// Handle target specific intrinsics
168
if (II.getCalledFunction()->isTargetIntrinsic()) {
169
return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known,
170
KnownBitsComputed);
171
}
172
return std::nullopt;
173
}
174
175
std::optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic(
176
IntrinsicInst &II, APInt DemandedElts, APInt &PoisonElts,
177
APInt &PoisonElts2, APInt &PoisonElts3,
178
std::function<void(Instruction *, unsigned, APInt, APInt &)>
179
SimplifyAndSetOp) {
180
// Handle target specific intrinsics
181
if (II.getCalledFunction()->isTargetIntrinsic()) {
182
return TTI.simplifyDemandedVectorEltsIntrinsic(
183
*this, II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3,
184
SimplifyAndSetOp);
185
}
186
return std::nullopt;
187
}
188
189
bool InstCombiner::isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const {
190
return TTI.isValidAddrSpaceCast(FromAS, ToAS);
191
}
192
193
Value *InstCombinerImpl::EmitGEPOffset(GEPOperator *GEP, bool RewriteGEP) {
194
if (!RewriteGEP)
195
return llvm::emitGEPOffset(&Builder, DL, GEP);
196
197
IRBuilderBase::InsertPointGuard Guard(Builder);
198
auto *Inst = dyn_cast<Instruction>(GEP);
199
if (Inst)
200
Builder.SetInsertPoint(Inst);
201
202
Value *Offset = EmitGEPOffset(GEP);
203
// If a non-trivial GEP has other uses, rewrite it to avoid duplicating
204
// the offset arithmetic.
205
if (Inst && !GEP->hasOneUse() && !GEP->hasAllConstantIndices() &&
206
!GEP->getSourceElementType()->isIntegerTy(8)) {
207
replaceInstUsesWith(
208
*Inst, Builder.CreateGEP(Builder.getInt8Ty(), GEP->getPointerOperand(),
209
Offset, "", GEP->getNoWrapFlags()));
210
eraseInstFromFunction(*Inst);
211
}
212
return Offset;
213
}
214
215
/// Legal integers and common types are considered desirable. This is used to
216
/// avoid creating instructions with types that may not be supported well by the
217
/// the backend.
218
/// NOTE: This treats i8, i16 and i32 specially because they are common
219
/// types in frontend languages.
220
bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const {
221
switch (BitWidth) {
222
case 8:
223
case 16:
224
case 32:
225
return true;
226
default:
227
return DL.isLegalInteger(BitWidth);
228
}
229
}
230
231
/// Return true if it is desirable to convert an integer computation from a
232
/// given bit width to a new bit width.
233
/// We don't want to convert from a legal or desirable type (like i8) to an
234
/// illegal type or from a smaller to a larger illegal type. A width of '1'
235
/// is always treated as a desirable type because i1 is a fundamental type in
236
/// IR, and there are many specialized optimizations for i1 types.
237
/// Common/desirable widths are equally treated as legal to convert to, in
238
/// order to open up more combining opportunities.
239
bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
240
unsigned ToWidth) const {
241
bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
242
bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
243
244
// Convert to desirable widths even if they are not legal types.
245
// Only shrink types, to prevent infinite loops.
246
if (ToWidth < FromWidth && isDesirableIntType(ToWidth))
247
return true;
248
249
// If this is a legal or desiable integer from type, and the result would be
250
// an illegal type, don't do the transformation.
251
if ((FromLegal || isDesirableIntType(FromWidth)) && !ToLegal)
252
return false;
253
254
// Otherwise, if both are illegal, do not increase the size of the result. We
255
// do allow things like i160 -> i64, but not i64 -> i160.
256
if (!FromLegal && !ToLegal && ToWidth > FromWidth)
257
return false;
258
259
return true;
260
}
261
262
/// Return true if it is desirable to convert a computation from 'From' to 'To'.
263
/// We don't want to convert from a legal to an illegal type or from a smaller
264
/// to a larger illegal type. i1 is always treated as a legal type because it is
265
/// a fundamental type in IR, and there are many specialized optimizations for
266
/// i1 types.
267
bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
268
// TODO: This could be extended to allow vectors. Datalayout changes might be
269
// needed to properly support that.
270
if (!From->isIntegerTy() || !To->isIntegerTy())
271
return false;
272
273
unsigned FromWidth = From->getPrimitiveSizeInBits();
274
unsigned ToWidth = To->getPrimitiveSizeInBits();
275
return shouldChangeType(FromWidth, ToWidth);
276
}
277
278
// Return true, if No Signed Wrap should be maintained for I.
279
// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
280
// where both B and C should be ConstantInts, results in a constant that does
281
// not overflow. This function only handles the Add and Sub opcodes. For
282
// all other opcodes, the function conservatively returns false.
283
static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
284
auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
285
if (!OBO || !OBO->hasNoSignedWrap())
286
return false;
287
288
// We reason about Add and Sub Only.
289
Instruction::BinaryOps Opcode = I.getOpcode();
290
if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
291
return false;
292
293
const APInt *BVal, *CVal;
294
if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
295
return false;
296
297
bool Overflow = false;
298
if (Opcode == Instruction::Add)
299
(void)BVal->sadd_ov(*CVal, Overflow);
300
else
301
(void)BVal->ssub_ov(*CVal, Overflow);
302
303
return !Overflow;
304
}
305
306
static bool hasNoUnsignedWrap(BinaryOperator &I) {
307
auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
308
return OBO && OBO->hasNoUnsignedWrap();
309
}
310
311
static bool hasNoSignedWrap(BinaryOperator &I) {
312
auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
313
return OBO && OBO->hasNoSignedWrap();
314
}
315
316
/// Conservatively clears subclassOptionalData after a reassociation or
317
/// commutation. We preserve fast-math flags when applicable as they can be
318
/// preserved.
319
static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
320
FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
321
if (!FPMO) {
322
I.clearSubclassOptionalData();
323
return;
324
}
325
326
FastMathFlags FMF = I.getFastMathFlags();
327
I.clearSubclassOptionalData();
328
I.setFastMathFlags(FMF);
329
}
330
331
/// Combine constant operands of associative operations either before or after a
332
/// cast to eliminate one of the associative operations:
333
/// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
334
/// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
335
static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1,
336
InstCombinerImpl &IC) {
337
auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
338
if (!Cast || !Cast->hasOneUse())
339
return false;
340
341
// TODO: Enhance logic for other casts and remove this check.
342
auto CastOpcode = Cast->getOpcode();
343
if (CastOpcode != Instruction::ZExt)
344
return false;
345
346
// TODO: Enhance logic for other BinOps and remove this check.
347
if (!BinOp1->isBitwiseLogicOp())
348
return false;
349
350
auto AssocOpcode = BinOp1->getOpcode();
351
auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
352
if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
353
return false;
354
355
Constant *C1, *C2;
356
if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
357
!match(BinOp2->getOperand(1), m_Constant(C2)))
358
return false;
359
360
// TODO: This assumes a zext cast.
361
// Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
362
// to the destination type might lose bits.
363
364
// Fold the constants together in the destination type:
365
// (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
366
const DataLayout &DL = IC.getDataLayout();
367
Type *DestTy = C1->getType();
368
Constant *CastC2 = ConstantFoldCastOperand(CastOpcode, C2, DestTy, DL);
369
if (!CastC2)
370
return false;
371
Constant *FoldedC = ConstantFoldBinaryOpOperands(AssocOpcode, C1, CastC2, DL);
372
if (!FoldedC)
373
return false;
374
375
IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
376
IC.replaceOperand(*BinOp1, 1, FoldedC);
377
BinOp1->dropPoisonGeneratingFlags();
378
Cast->dropPoisonGeneratingFlags();
379
return true;
380
}
381
382
// Simplifies IntToPtr/PtrToInt RoundTrip Cast.
383
// inttoptr ( ptrtoint (x) ) --> x
384
Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) {
385
auto *IntToPtr = dyn_cast<IntToPtrInst>(Val);
386
if (IntToPtr && DL.getTypeSizeInBits(IntToPtr->getDestTy()) ==
387
DL.getTypeSizeInBits(IntToPtr->getSrcTy())) {
388
auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0));
389
Type *CastTy = IntToPtr->getDestTy();
390
if (PtrToInt &&
391
CastTy->getPointerAddressSpace() ==
392
PtrToInt->getSrcTy()->getPointerAddressSpace() &&
393
DL.getTypeSizeInBits(PtrToInt->getSrcTy()) ==
394
DL.getTypeSizeInBits(PtrToInt->getDestTy()))
395
return PtrToInt->getOperand(0);
396
}
397
return nullptr;
398
}
399
400
/// This performs a few simplifications for operators that are associative or
401
/// commutative:
402
///
403
/// Commutative operators:
404
///
405
/// 1. Order operands such that they are listed from right (least complex) to
406
/// left (most complex). This puts constants before unary operators before
407
/// binary operators.
408
///
409
/// Associative operators:
410
///
411
/// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
412
/// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
413
///
414
/// Associative and commutative operators:
415
///
416
/// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
417
/// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
418
/// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
419
/// if C1 and C2 are constants.
420
bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
421
Instruction::BinaryOps Opcode = I.getOpcode();
422
bool Changed = false;
423
424
do {
425
// Order operands such that they are listed from right (least complex) to
426
// left (most complex). This puts constants before unary operators before
427
// binary operators.
428
if (I.isCommutative() && getComplexity(I.getOperand(0)) <
429
getComplexity(I.getOperand(1)))
430
Changed = !I.swapOperands();
431
432
if (I.isCommutative()) {
433
if (auto Pair = matchSymmetricPair(I.getOperand(0), I.getOperand(1))) {
434
replaceOperand(I, 0, Pair->first);
435
replaceOperand(I, 1, Pair->second);
436
Changed = true;
437
}
438
}
439
440
BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
441
BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
442
443
if (I.isAssociative()) {
444
// Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
445
if (Op0 && Op0->getOpcode() == Opcode) {
446
Value *A = Op0->getOperand(0);
447
Value *B = Op0->getOperand(1);
448
Value *C = I.getOperand(1);
449
450
// Does "B op C" simplify?
451
if (Value *V = simplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
452
// It simplifies to V. Form "A op V".
453
replaceOperand(I, 0, A);
454
replaceOperand(I, 1, V);
455
bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
456
bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
457
458
// Conservatively clear all optional flags since they may not be
459
// preserved by the reassociation. Reset nsw/nuw based on the above
460
// analysis.
461
ClearSubclassDataAfterReassociation(I);
462
463
// Note: this is only valid because SimplifyBinOp doesn't look at
464
// the operands to Op0.
465
if (IsNUW)
466
I.setHasNoUnsignedWrap(true);
467
468
if (IsNSW)
469
I.setHasNoSignedWrap(true);
470
471
Changed = true;
472
++NumReassoc;
473
continue;
474
}
475
}
476
477
// Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
478
if (Op1 && Op1->getOpcode() == Opcode) {
479
Value *A = I.getOperand(0);
480
Value *B = Op1->getOperand(0);
481
Value *C = Op1->getOperand(1);
482
483
// Does "A op B" simplify?
484
if (Value *V = simplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
485
// It simplifies to V. Form "V op C".
486
replaceOperand(I, 0, V);
487
replaceOperand(I, 1, C);
488
// Conservatively clear the optional flags, since they may not be
489
// preserved by the reassociation.
490
ClearSubclassDataAfterReassociation(I);
491
Changed = true;
492
++NumReassoc;
493
continue;
494
}
495
}
496
}
497
498
if (I.isAssociative() && I.isCommutative()) {
499
if (simplifyAssocCastAssoc(&I, *this)) {
500
Changed = true;
501
++NumReassoc;
502
continue;
503
}
504
505
// Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
506
if (Op0 && Op0->getOpcode() == Opcode) {
507
Value *A = Op0->getOperand(0);
508
Value *B = Op0->getOperand(1);
509
Value *C = I.getOperand(1);
510
511
// Does "C op A" simplify?
512
if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
513
// It simplifies to V. Form "V op B".
514
replaceOperand(I, 0, V);
515
replaceOperand(I, 1, B);
516
// Conservatively clear the optional flags, since they may not be
517
// preserved by the reassociation.
518
ClearSubclassDataAfterReassociation(I);
519
Changed = true;
520
++NumReassoc;
521
continue;
522
}
523
}
524
525
// Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
526
if (Op1 && Op1->getOpcode() == Opcode) {
527
Value *A = I.getOperand(0);
528
Value *B = Op1->getOperand(0);
529
Value *C = Op1->getOperand(1);
530
531
// Does "C op A" simplify?
532
if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
533
// It simplifies to V. Form "B op V".
534
replaceOperand(I, 0, B);
535
replaceOperand(I, 1, V);
536
// Conservatively clear the optional flags, since they may not be
537
// preserved by the reassociation.
538
ClearSubclassDataAfterReassociation(I);
539
Changed = true;
540
++NumReassoc;
541
continue;
542
}
543
}
544
545
// Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
546
// if C1 and C2 are constants.
547
Value *A, *B;
548
Constant *C1, *C2, *CRes;
549
if (Op0 && Op1 &&
550
Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
551
match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
552
match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2)))) &&
553
(CRes = ConstantFoldBinaryOpOperands(Opcode, C1, C2, DL))) {
554
bool IsNUW = hasNoUnsignedWrap(I) &&
555
hasNoUnsignedWrap(*Op0) &&
556
hasNoUnsignedWrap(*Op1);
557
BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
558
BinaryOperator::CreateNUW(Opcode, A, B) :
559
BinaryOperator::Create(Opcode, A, B);
560
561
if (isa<FPMathOperator>(NewBO)) {
562
FastMathFlags Flags = I.getFastMathFlags() &
563
Op0->getFastMathFlags() &
564
Op1->getFastMathFlags();
565
NewBO->setFastMathFlags(Flags);
566
}
567
InsertNewInstWith(NewBO, I.getIterator());
568
NewBO->takeName(Op1);
569
replaceOperand(I, 0, NewBO);
570
replaceOperand(I, 1, CRes);
571
// Conservatively clear the optional flags, since they may not be
572
// preserved by the reassociation.
573
ClearSubclassDataAfterReassociation(I);
574
if (IsNUW)
575
I.setHasNoUnsignedWrap(true);
576
577
Changed = true;
578
continue;
579
}
580
}
581
582
// No further simplifications.
583
return Changed;
584
} while (true);
585
}
586
587
/// Return whether "X LOp (Y ROp Z)" is always equal to
588
/// "(X LOp Y) ROp (X LOp Z)".
589
static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
590
Instruction::BinaryOps ROp) {
591
// X & (Y | Z) <--> (X & Y) | (X & Z)
592
// X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
593
if (LOp == Instruction::And)
594
return ROp == Instruction::Or || ROp == Instruction::Xor;
595
596
// X | (Y & Z) <--> (X | Y) & (X | Z)
597
if (LOp == Instruction::Or)
598
return ROp == Instruction::And;
599
600
// X * (Y + Z) <--> (X * Y) + (X * Z)
601
// X * (Y - Z) <--> (X * Y) - (X * Z)
602
if (LOp == Instruction::Mul)
603
return ROp == Instruction::Add || ROp == Instruction::Sub;
604
605
return false;
606
}
607
608
/// Return whether "(X LOp Y) ROp Z" is always equal to
609
/// "(X ROp Z) LOp (Y ROp Z)".
610
static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
611
Instruction::BinaryOps ROp) {
612
if (Instruction::isCommutative(ROp))
613
return leftDistributesOverRight(ROp, LOp);
614
615
// (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
616
return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
617
618
// TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
619
// but this requires knowing that the addition does not overflow and other
620
// such subtleties.
621
}
622
623
/// This function returns identity value for given opcode, which can be used to
624
/// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
625
static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
626
if (isa<Constant>(V))
627
return nullptr;
628
629
return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
630
}
631
632
/// This function predicates factorization using distributive laws. By default,
633
/// it just returns the 'Op' inputs. But for special-cases like
634
/// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
635
/// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
636
/// allow more factorization opportunities.
637
static Instruction::BinaryOps
638
getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
639
Value *&LHS, Value *&RHS, BinaryOperator *OtherOp) {
640
assert(Op && "Expected a binary operator");
641
LHS = Op->getOperand(0);
642
RHS = Op->getOperand(1);
643
if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
644
Constant *C;
645
if (match(Op, m_Shl(m_Value(), m_ImmConstant(C)))) {
646
// X << C --> X * (1 << C)
647
RHS = ConstantFoldBinaryInstruction(
648
Instruction::Shl, ConstantInt::get(Op->getType(), 1), C);
649
assert(RHS && "Constant folding of immediate constants failed");
650
return Instruction::Mul;
651
}
652
// TODO: We can add other conversions e.g. shr => div etc.
653
}
654
if (Instruction::isBitwiseLogicOp(TopOpcode)) {
655
if (OtherOp && OtherOp->getOpcode() == Instruction::AShr &&
656
match(Op, m_LShr(m_NonNegative(), m_Value()))) {
657
// lshr nneg C, X --> ashr nneg C, X
658
return Instruction::AShr;
659
}
660
}
661
return Op->getOpcode();
662
}
663
664
/// This tries to simplify binary operations by factorizing out common terms
665
/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
666
static Value *tryFactorization(BinaryOperator &I, const SimplifyQuery &SQ,
667
InstCombiner::BuilderTy &Builder,
668
Instruction::BinaryOps InnerOpcode, Value *A,
669
Value *B, Value *C, Value *D) {
670
assert(A && B && C && D && "All values must be provided");
671
672
Value *V = nullptr;
673
Value *RetVal = nullptr;
674
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
675
Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
676
677
// Does "X op' Y" always equal "Y op' X"?
678
bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
679
680
// Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
681
if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) {
682
// Does the instruction have the form "(A op' B) op (A op' D)" or, in the
683
// commutative case, "(A op' B) op (C op' A)"?
684
if (A == C || (InnerCommutative && A == D)) {
685
if (A != C)
686
std::swap(C, D);
687
// Consider forming "A op' (B op D)".
688
// If "B op D" simplifies then it can be formed with no cost.
689
V = simplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
690
691
// If "B op D" doesn't simplify then only go on if one of the existing
692
// operations "A op' B" and "C op' D" will be zapped as no longer used.
693
if (!V && (LHS->hasOneUse() || RHS->hasOneUse()))
694
V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
695
if (V)
696
RetVal = Builder.CreateBinOp(InnerOpcode, A, V);
697
}
698
}
699
700
// Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
701
if (!RetVal && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) {
702
// Does the instruction have the form "(A op' B) op (C op' B)" or, in the
703
// commutative case, "(A op' B) op (B op' D)"?
704
if (B == D || (InnerCommutative && B == C)) {
705
if (B != D)
706
std::swap(C, D);
707
// Consider forming "(A op C) op' B".
708
// If "A op C" simplifies then it can be formed with no cost.
709
V = simplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
710
711
// If "A op C" doesn't simplify then only go on if one of the existing
712
// operations "A op' B" and "C op' D" will be zapped as no longer used.
713
if (!V && (LHS->hasOneUse() || RHS->hasOneUse()))
714
V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
715
if (V)
716
RetVal = Builder.CreateBinOp(InnerOpcode, V, B);
717
}
718
}
719
720
if (!RetVal)
721
return nullptr;
722
723
++NumFactor;
724
RetVal->takeName(&I);
725
726
// Try to add no-overflow flags to the final value.
727
if (isa<OverflowingBinaryOperator>(RetVal)) {
728
bool HasNSW = false;
729
bool HasNUW = false;
730
if (isa<OverflowingBinaryOperator>(&I)) {
731
HasNSW = I.hasNoSignedWrap();
732
HasNUW = I.hasNoUnsignedWrap();
733
}
734
if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
735
HasNSW &= LOBO->hasNoSignedWrap();
736
HasNUW &= LOBO->hasNoUnsignedWrap();
737
}
738
739
if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
740
HasNSW &= ROBO->hasNoSignedWrap();
741
HasNUW &= ROBO->hasNoUnsignedWrap();
742
}
743
744
if (TopLevelOpcode == Instruction::Add && InnerOpcode == Instruction::Mul) {
745
// We can propagate 'nsw' if we know that
746
// %Y = mul nsw i16 %X, C
747
// %Z = add nsw i16 %Y, %X
748
// =>
749
// %Z = mul nsw i16 %X, C+1
750
//
751
// iff C+1 isn't INT_MIN
752
const APInt *CInt;
753
if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
754
cast<Instruction>(RetVal)->setHasNoSignedWrap(HasNSW);
755
756
// nuw can be propagated with any constant or nuw value.
757
cast<Instruction>(RetVal)->setHasNoUnsignedWrap(HasNUW);
758
}
759
}
760
return RetVal;
761
}
762
763
// If `I` has one Const operand and the other matches `(ctpop (not x))`,
764
// replace `(ctpop (not x))` with `(sub nuw nsw BitWidth(x), (ctpop x))`.
765
// This is only useful is the new subtract can fold so we only handle the
766
// following cases:
767
// 1) (add/sub/disjoint_or C, (ctpop (not x))
768
// -> (add/sub/disjoint_or C', (ctpop x))
769
// 1) (cmp pred C, (ctpop (not x))
770
// -> (cmp pred C', (ctpop x))
771
Instruction *InstCombinerImpl::tryFoldInstWithCtpopWithNot(Instruction *I) {
772
unsigned Opc = I->getOpcode();
773
unsigned ConstIdx = 1;
774
switch (Opc) {
775
default:
776
return nullptr;
777
// (ctpop (not x)) <-> (sub nuw nsw BitWidth(x) - (ctpop x))
778
// We can fold the BitWidth(x) with add/sub/icmp as long the other operand
779
// is constant.
780
case Instruction::Sub:
781
ConstIdx = 0;
782
break;
783
case Instruction::ICmp:
784
// Signed predicates aren't correct in some edge cases like for i2 types, as
785
// well since (ctpop x) is known [0, log2(BitWidth(x))] almost all signed
786
// comparisons against it are simplfied to unsigned.
787
if (cast<ICmpInst>(I)->isSigned())
788
return nullptr;
789
break;
790
case Instruction::Or:
791
if (!match(I, m_DisjointOr(m_Value(), m_Value())))
792
return nullptr;
793
[[fallthrough]];
794
case Instruction::Add:
795
break;
796
}
797
798
Value *Op;
799
// Find ctpop.
800
if (!match(I->getOperand(1 - ConstIdx),
801
m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(Op)))))
802
return nullptr;
803
804
Constant *C;
805
// Check other operand is ImmConstant.
806
if (!match(I->getOperand(ConstIdx), m_ImmConstant(C)))
807
return nullptr;
808
809
Type *Ty = Op->getType();
810
Constant *BitWidthC = ConstantInt::get(Ty, Ty->getScalarSizeInBits());
811
// Need extra check for icmp. Note if this check is true, it generally means
812
// the icmp will simplify to true/false.
813
if (Opc == Instruction::ICmp && !cast<ICmpInst>(I)->isEquality()) {
814
Constant *Cmp =
815
ConstantFoldCompareInstOperands(ICmpInst::ICMP_UGT, C, BitWidthC, DL);
816
if (!Cmp || !Cmp->isZeroValue())
817
return nullptr;
818
}
819
820
// Check we can invert `(not x)` for free.
821
bool Consumes = false;
822
if (!isFreeToInvert(Op, Op->hasOneUse(), Consumes) || !Consumes)
823
return nullptr;
824
Value *NotOp = getFreelyInverted(Op, Op->hasOneUse(), &Builder);
825
assert(NotOp != nullptr &&
826
"Desync between isFreeToInvert and getFreelyInverted");
827
828
Value *CtpopOfNotOp = Builder.CreateIntrinsic(Ty, Intrinsic::ctpop, NotOp);
829
830
Value *R = nullptr;
831
832
// Do the transformation here to avoid potentially introducing an infinite
833
// loop.
834
switch (Opc) {
835
case Instruction::Sub:
836
R = Builder.CreateAdd(CtpopOfNotOp, ConstantExpr::getSub(C, BitWidthC));
837
break;
838
case Instruction::Or:
839
case Instruction::Add:
840
R = Builder.CreateSub(ConstantExpr::getAdd(C, BitWidthC), CtpopOfNotOp);
841
break;
842
case Instruction::ICmp:
843
R = Builder.CreateICmp(cast<ICmpInst>(I)->getSwappedPredicate(),
844
CtpopOfNotOp, ConstantExpr::getSub(BitWidthC, C));
845
break;
846
default:
847
llvm_unreachable("Unhandled Opcode");
848
}
849
assert(R != nullptr);
850
return replaceInstUsesWith(*I, R);
851
}
852
853
// (Binop1 (Binop2 (logic_shift X, C), C1), (logic_shift Y, C))
854
// IFF
855
// 1) the logic_shifts match
856
// 2) either both binops are binops and one is `and` or
857
// BinOp1 is `and`
858
// (logic_shift (inv_logic_shift C1, C), C) == C1 or
859
//
860
// -> (logic_shift (Binop1 (Binop2 X, inv_logic_shift(C1, C)), Y), C)
861
//
862
// (Binop1 (Binop2 (logic_shift X, Amt), Mask), (logic_shift Y, Amt))
863
// IFF
864
// 1) the logic_shifts match
865
// 2) BinOp1 == BinOp2 (if BinOp == `add`, then also requires `shl`).
866
//
867
// -> (BinOp (logic_shift (BinOp X, Y)), Mask)
868
//
869
// (Binop1 (Binop2 (arithmetic_shift X, Amt), Mask), (arithmetic_shift Y, Amt))
870
// IFF
871
// 1) Binop1 is bitwise logical operator `and`, `or` or `xor`
872
// 2) Binop2 is `not`
873
//
874
// -> (arithmetic_shift Binop1((not X), Y), Amt)
875
876
Instruction *InstCombinerImpl::foldBinOpShiftWithShift(BinaryOperator &I) {
877
const DataLayout &DL = I.getDataLayout();
878
auto IsValidBinOpc = [](unsigned Opc) {
879
switch (Opc) {
880
default:
881
return false;
882
case Instruction::And:
883
case Instruction::Or:
884
case Instruction::Xor:
885
case Instruction::Add:
886
// Skip Sub as we only match constant masks which will canonicalize to use
887
// add.
888
return true;
889
}
890
};
891
892
// Check if we can distribute binop arbitrarily. `add` + `lshr` has extra
893
// constraints.
894
auto IsCompletelyDistributable = [](unsigned BinOpc1, unsigned BinOpc2,
895
unsigned ShOpc) {
896
assert(ShOpc != Instruction::AShr);
897
return (BinOpc1 != Instruction::Add && BinOpc2 != Instruction::Add) ||
898
ShOpc == Instruction::Shl;
899
};
900
901
auto GetInvShift = [](unsigned ShOpc) {
902
assert(ShOpc != Instruction::AShr);
903
return ShOpc == Instruction::LShr ? Instruction::Shl : Instruction::LShr;
904
};
905
906
auto CanDistributeBinops = [&](unsigned BinOpc1, unsigned BinOpc2,
907
unsigned ShOpc, Constant *CMask,
908
Constant *CShift) {
909
// If the BinOp1 is `and` we don't need to check the mask.
910
if (BinOpc1 == Instruction::And)
911
return true;
912
913
// For all other possible transfers we need complete distributable
914
// binop/shift (anything but `add` + `lshr`).
915
if (!IsCompletelyDistributable(BinOpc1, BinOpc2, ShOpc))
916
return false;
917
918
// If BinOp2 is `and`, any mask works (this only really helps for non-splat
919
// vecs, otherwise the mask will be simplified and the following check will
920
// handle it).
921
if (BinOpc2 == Instruction::And)
922
return true;
923
924
// Otherwise, need mask that meets the below requirement.
925
// (logic_shift (inv_logic_shift Mask, ShAmt), ShAmt) == Mask
926
Constant *MaskInvShift =
927
ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL);
928
return ConstantFoldBinaryOpOperands(ShOpc, MaskInvShift, CShift, DL) ==
929
CMask;
930
};
931
932
auto MatchBinOp = [&](unsigned ShOpnum) -> Instruction * {
933
Constant *CMask, *CShift;
934
Value *X, *Y, *ShiftedX, *Mask, *Shift;
935
if (!match(I.getOperand(ShOpnum),
936
m_OneUse(m_Shift(m_Value(Y), m_Value(Shift)))))
937
return nullptr;
938
if (!match(I.getOperand(1 - ShOpnum),
939
m_BinOp(m_Value(ShiftedX), m_Value(Mask))))
940
return nullptr;
941
942
if (!match(ShiftedX, m_OneUse(m_Shift(m_Value(X), m_Specific(Shift)))))
943
return nullptr;
944
945
// Make sure we are matching instruction shifts and not ConstantExpr
946
auto *IY = dyn_cast<Instruction>(I.getOperand(ShOpnum));
947
auto *IX = dyn_cast<Instruction>(ShiftedX);
948
if (!IY || !IX)
949
return nullptr;
950
951
// LHS and RHS need same shift opcode
952
unsigned ShOpc = IY->getOpcode();
953
if (ShOpc != IX->getOpcode())
954
return nullptr;
955
956
// Make sure binop is real instruction and not ConstantExpr
957
auto *BO2 = dyn_cast<Instruction>(I.getOperand(1 - ShOpnum));
958
if (!BO2)
959
return nullptr;
960
961
unsigned BinOpc = BO2->getOpcode();
962
// Make sure we have valid binops.
963
if (!IsValidBinOpc(I.getOpcode()) || !IsValidBinOpc(BinOpc))
964
return nullptr;
965
966
if (ShOpc == Instruction::AShr) {
967
if (Instruction::isBitwiseLogicOp(I.getOpcode()) &&
968
BinOpc == Instruction::Xor && match(Mask, m_AllOnes())) {
969
Value *NotX = Builder.CreateNot(X);
970
Value *NewBinOp = Builder.CreateBinOp(I.getOpcode(), Y, NotX);
971
return BinaryOperator::Create(
972
static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp, Shift);
973
}
974
975
return nullptr;
976
}
977
978
// If BinOp1 == BinOp2 and it's bitwise or shl with add, then just
979
// distribute to drop the shift irrelevant of constants.
980
if (BinOpc == I.getOpcode() &&
981
IsCompletelyDistributable(I.getOpcode(), BinOpc, ShOpc)) {
982
Value *NewBinOp2 = Builder.CreateBinOp(I.getOpcode(), X, Y);
983
Value *NewBinOp1 = Builder.CreateBinOp(
984
static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp2, Shift);
985
return BinaryOperator::Create(I.getOpcode(), NewBinOp1, Mask);
986
}
987
988
// Otherwise we can only distribute by constant shifting the mask, so
989
// ensure we have constants.
990
if (!match(Shift, m_ImmConstant(CShift)))
991
return nullptr;
992
if (!match(Mask, m_ImmConstant(CMask)))
993
return nullptr;
994
995
// Check if we can distribute the binops.
996
if (!CanDistributeBinops(I.getOpcode(), BinOpc, ShOpc, CMask, CShift))
997
return nullptr;
998
999
Constant *NewCMask =
1000
ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL);
1001
Value *NewBinOp2 = Builder.CreateBinOp(
1002
static_cast<Instruction::BinaryOps>(BinOpc), X, NewCMask);
1003
Value *NewBinOp1 = Builder.CreateBinOp(I.getOpcode(), Y, NewBinOp2);
1004
return BinaryOperator::Create(static_cast<Instruction::BinaryOps>(ShOpc),
1005
NewBinOp1, CShift);
1006
};
1007
1008
if (Instruction *R = MatchBinOp(0))
1009
return R;
1010
return MatchBinOp(1);
1011
}
1012
1013
// (Binop (zext C), (select C, T, F))
1014
// -> (select C, (binop 1, T), (binop 0, F))
1015
//
1016
// (Binop (sext C), (select C, T, F))
1017
// -> (select C, (binop -1, T), (binop 0, F))
1018
//
1019
// Attempt to simplify binary operations into a select with folded args, when
1020
// one operand of the binop is a select instruction and the other operand is a
1021
// zext/sext extension, whose value is the select condition.
1022
Instruction *
1023
InstCombinerImpl::foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I) {
1024
// TODO: this simplification may be extended to any speculatable instruction,
1025
// not just binops, and would possibly be handled better in FoldOpIntoSelect.
1026
Instruction::BinaryOps Opc = I.getOpcode();
1027
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1028
Value *A, *CondVal, *TrueVal, *FalseVal;
1029
Value *CastOp;
1030
1031
auto MatchSelectAndCast = [&](Value *CastOp, Value *SelectOp) {
1032
return match(CastOp, m_ZExtOrSExt(m_Value(A))) &&
1033
A->getType()->getScalarSizeInBits() == 1 &&
1034
match(SelectOp, m_Select(m_Value(CondVal), m_Value(TrueVal),
1035
m_Value(FalseVal)));
1036
};
1037
1038
// Make sure one side of the binop is a select instruction, and the other is a
1039
// zero/sign extension operating on a i1.
1040
if (MatchSelectAndCast(LHS, RHS))
1041
CastOp = LHS;
1042
else if (MatchSelectAndCast(RHS, LHS))
1043
CastOp = RHS;
1044
else
1045
return nullptr;
1046
1047
auto NewFoldedConst = [&](bool IsTrueArm, Value *V) {
1048
bool IsCastOpRHS = (CastOp == RHS);
1049
bool IsZExt = isa<ZExtInst>(CastOp);
1050
Constant *C;
1051
1052
if (IsTrueArm) {
1053
C = Constant::getNullValue(V->getType());
1054
} else if (IsZExt) {
1055
unsigned BitWidth = V->getType()->getScalarSizeInBits();
1056
C = Constant::getIntegerValue(V->getType(), APInt(BitWidth, 1));
1057
} else {
1058
C = Constant::getAllOnesValue(V->getType());
1059
}
1060
1061
return IsCastOpRHS ? Builder.CreateBinOp(Opc, V, C)
1062
: Builder.CreateBinOp(Opc, C, V);
1063
};
1064
1065
// If the value used in the zext/sext is the select condition, or the negated
1066
// of the select condition, the binop can be simplified.
1067
if (CondVal == A) {
1068
Value *NewTrueVal = NewFoldedConst(false, TrueVal);
1069
return SelectInst::Create(CondVal, NewTrueVal,
1070
NewFoldedConst(true, FalseVal));
1071
}
1072
1073
if (match(A, m_Not(m_Specific(CondVal)))) {
1074
Value *NewTrueVal = NewFoldedConst(true, TrueVal);
1075
return SelectInst::Create(CondVal, NewTrueVal,
1076
NewFoldedConst(false, FalseVal));
1077
}
1078
1079
return nullptr;
1080
}
1081
1082
Value *InstCombinerImpl::tryFactorizationFolds(BinaryOperator &I) {
1083
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1084
BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
1085
BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
1086
Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
1087
Value *A, *B, *C, *D;
1088
Instruction::BinaryOps LHSOpcode, RHSOpcode;
1089
1090
if (Op0)
1091
LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B, Op1);
1092
if (Op1)
1093
RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D, Op0);
1094
1095
// The instruction has the form "(A op' B) op (C op' D)". Try to factorize
1096
// a common term.
1097
if (Op0 && Op1 && LHSOpcode == RHSOpcode)
1098
if (Value *V = tryFactorization(I, SQ, Builder, LHSOpcode, A, B, C, D))
1099
return V;
1100
1101
// The instruction has the form "(A op' B) op (C)". Try to factorize common
1102
// term.
1103
if (Op0)
1104
if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
1105
if (Value *V =
1106
tryFactorization(I, SQ, Builder, LHSOpcode, A, B, RHS, Ident))
1107
return V;
1108
1109
// The instruction has the form "(B) op (C op' D)". Try to factorize common
1110
// term.
1111
if (Op1)
1112
if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
1113
if (Value *V =
1114
tryFactorization(I, SQ, Builder, RHSOpcode, LHS, Ident, C, D))
1115
return V;
1116
1117
return nullptr;
1118
}
1119
1120
/// This tries to simplify binary operations which some other binary operation
1121
/// distributes over either by factorizing out common terms
1122
/// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
1123
/// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
1124
/// Returns the simplified value, or null if it didn't simplify.
1125
Value *InstCombinerImpl::foldUsingDistributiveLaws(BinaryOperator &I) {
1126
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1127
BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
1128
BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
1129
Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
1130
1131
// Factorization.
1132
if (Value *R = tryFactorizationFolds(I))
1133
return R;
1134
1135
// Expansion.
1136
if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
1137
// The instruction has the form "(A op' B) op C". See if expanding it out
1138
// to "(A op C) op' (B op C)" results in simplifications.
1139
Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
1140
Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
1141
1142
// Disable the use of undef because it's not safe to distribute undef.
1143
auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
1144
Value *L = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
1145
Value *R = simplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
1146
1147
// Do "A op C" and "B op C" both simplify?
1148
if (L && R) {
1149
// They do! Return "L op' R".
1150
++NumExpand;
1151
C = Builder.CreateBinOp(InnerOpcode, L, R);
1152
C->takeName(&I);
1153
return C;
1154
}
1155
1156
// Does "A op C" simplify to the identity value for the inner opcode?
1157
if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
1158
// They do! Return "B op C".
1159
++NumExpand;
1160
C = Builder.CreateBinOp(TopLevelOpcode, B, C);
1161
C->takeName(&I);
1162
return C;
1163
}
1164
1165
// Does "B op C" simplify to the identity value for the inner opcode?
1166
if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
1167
// They do! Return "A op C".
1168
++NumExpand;
1169
C = Builder.CreateBinOp(TopLevelOpcode, A, C);
1170
C->takeName(&I);
1171
return C;
1172
}
1173
}
1174
1175
if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
1176
// The instruction has the form "A op (B op' C)". See if expanding it out
1177
// to "(A op B) op' (A op C)" results in simplifications.
1178
Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
1179
Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
1180
1181
// Disable the use of undef because it's not safe to distribute undef.
1182
auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
1183
Value *L = simplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
1184
Value *R = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
1185
1186
// Do "A op B" and "A op C" both simplify?
1187
if (L && R) {
1188
// They do! Return "L op' R".
1189
++NumExpand;
1190
A = Builder.CreateBinOp(InnerOpcode, L, R);
1191
A->takeName(&I);
1192
return A;
1193
}
1194
1195
// Does "A op B" simplify to the identity value for the inner opcode?
1196
if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
1197
// They do! Return "A op C".
1198
++NumExpand;
1199
A = Builder.CreateBinOp(TopLevelOpcode, A, C);
1200
A->takeName(&I);
1201
return A;
1202
}
1203
1204
// Does "A op C" simplify to the identity value for the inner opcode?
1205
if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
1206
// They do! Return "A op B".
1207
++NumExpand;
1208
A = Builder.CreateBinOp(TopLevelOpcode, A, B);
1209
A->takeName(&I);
1210
return A;
1211
}
1212
}
1213
1214
return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
1215
}
1216
1217
static std::optional<std::pair<Value *, Value *>>
1218
matchSymmetricPhiNodesPair(PHINode *LHS, PHINode *RHS) {
1219
if (LHS->getParent() != RHS->getParent())
1220
return std::nullopt;
1221
1222
if (LHS->getNumIncomingValues() < 2)
1223
return std::nullopt;
1224
1225
if (!equal(LHS->blocks(), RHS->blocks()))
1226
return std::nullopt;
1227
1228
Value *L0 = LHS->getIncomingValue(0);
1229
Value *R0 = RHS->getIncomingValue(0);
1230
1231
for (unsigned I = 1, E = LHS->getNumIncomingValues(); I != E; ++I) {
1232
Value *L1 = LHS->getIncomingValue(I);
1233
Value *R1 = RHS->getIncomingValue(I);
1234
1235
if ((L0 == L1 && R0 == R1) || (L0 == R1 && R0 == L1))
1236
continue;
1237
1238
return std::nullopt;
1239
}
1240
1241
return std::optional(std::pair(L0, R0));
1242
}
1243
1244
std::optional<std::pair<Value *, Value *>>
1245
InstCombinerImpl::matchSymmetricPair(Value *LHS, Value *RHS) {
1246
Instruction *LHSInst = dyn_cast<Instruction>(LHS);
1247
Instruction *RHSInst = dyn_cast<Instruction>(RHS);
1248
if (!LHSInst || !RHSInst || LHSInst->getOpcode() != RHSInst->getOpcode())
1249
return std::nullopt;
1250
switch (LHSInst->getOpcode()) {
1251
case Instruction::PHI:
1252
return matchSymmetricPhiNodesPair(cast<PHINode>(LHS), cast<PHINode>(RHS));
1253
case Instruction::Select: {
1254
Value *Cond = LHSInst->getOperand(0);
1255
Value *TrueVal = LHSInst->getOperand(1);
1256
Value *FalseVal = LHSInst->getOperand(2);
1257
if (Cond == RHSInst->getOperand(0) && TrueVal == RHSInst->getOperand(2) &&
1258
FalseVal == RHSInst->getOperand(1))
1259
return std::pair(TrueVal, FalseVal);
1260
return std::nullopt;
1261
}
1262
case Instruction::Call: {
1263
// Match min(a, b) and max(a, b)
1264
MinMaxIntrinsic *LHSMinMax = dyn_cast<MinMaxIntrinsic>(LHSInst);
1265
MinMaxIntrinsic *RHSMinMax = dyn_cast<MinMaxIntrinsic>(RHSInst);
1266
if (LHSMinMax && RHSMinMax &&
1267
LHSMinMax->getPredicate() ==
1268
ICmpInst::getSwappedPredicate(RHSMinMax->getPredicate()) &&
1269
((LHSMinMax->getLHS() == RHSMinMax->getLHS() &&
1270
LHSMinMax->getRHS() == RHSMinMax->getRHS()) ||
1271
(LHSMinMax->getLHS() == RHSMinMax->getRHS() &&
1272
LHSMinMax->getRHS() == RHSMinMax->getLHS())))
1273
return std::pair(LHSMinMax->getLHS(), LHSMinMax->getRHS());
1274
return std::nullopt;
1275
}
1276
default:
1277
return std::nullopt;
1278
}
1279
}
1280
1281
Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
1282
Value *LHS,
1283
Value *RHS) {
1284
Value *A, *B, *C, *D, *E, *F;
1285
bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
1286
bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
1287
if (!LHSIsSelect && !RHSIsSelect)
1288
return nullptr;
1289
1290
FastMathFlags FMF;
1291
BuilderTy::FastMathFlagGuard Guard(Builder);
1292
if (isa<FPMathOperator>(&I)) {
1293
FMF = I.getFastMathFlags();
1294
Builder.setFastMathFlags(FMF);
1295
}
1296
1297
Instruction::BinaryOps Opcode = I.getOpcode();
1298
SimplifyQuery Q = SQ.getWithInstruction(&I);
1299
1300
Value *Cond, *True = nullptr, *False = nullptr;
1301
1302
// Special-case for add/negate combination. Replace the zero in the negation
1303
// with the trailing add operand:
1304
// (Cond ? TVal : -N) + Z --> Cond ? True : (Z - N)
1305
// (Cond ? -N : FVal) + Z --> Cond ? (Z - N) : False
1306
auto foldAddNegate = [&](Value *TVal, Value *FVal, Value *Z) -> Value * {
1307
// We need an 'add' and exactly 1 arm of the select to have been simplified.
1308
if (Opcode != Instruction::Add || (!True && !False) || (True && False))
1309
return nullptr;
1310
1311
Value *N;
1312
if (True && match(FVal, m_Neg(m_Value(N)))) {
1313
Value *Sub = Builder.CreateSub(Z, N);
1314
return Builder.CreateSelect(Cond, True, Sub, I.getName());
1315
}
1316
if (False && match(TVal, m_Neg(m_Value(N)))) {
1317
Value *Sub = Builder.CreateSub(Z, N);
1318
return Builder.CreateSelect(Cond, Sub, False, I.getName());
1319
}
1320
return nullptr;
1321
};
1322
1323
if (LHSIsSelect && RHSIsSelect && A == D) {
1324
// (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
1325
Cond = A;
1326
True = simplifyBinOp(Opcode, B, E, FMF, Q);
1327
False = simplifyBinOp(Opcode, C, F, FMF, Q);
1328
1329
if (LHS->hasOneUse() && RHS->hasOneUse()) {
1330
if (False && !True)
1331
True = Builder.CreateBinOp(Opcode, B, E);
1332
else if (True && !False)
1333
False = Builder.CreateBinOp(Opcode, C, F);
1334
}
1335
} else if (LHSIsSelect && LHS->hasOneUse()) {
1336
// (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
1337
Cond = A;
1338
True = simplifyBinOp(Opcode, B, RHS, FMF, Q);
1339
False = simplifyBinOp(Opcode, C, RHS, FMF, Q);
1340
if (Value *NewSel = foldAddNegate(B, C, RHS))
1341
return NewSel;
1342
} else if (RHSIsSelect && RHS->hasOneUse()) {
1343
// X op (D ? E : F) -> D ? (X op E) : (X op F)
1344
Cond = D;
1345
True = simplifyBinOp(Opcode, LHS, E, FMF, Q);
1346
False = simplifyBinOp(Opcode, LHS, F, FMF, Q);
1347
if (Value *NewSel = foldAddNegate(E, F, LHS))
1348
return NewSel;
1349
}
1350
1351
if (!True || !False)
1352
return nullptr;
1353
1354
Value *SI = Builder.CreateSelect(Cond, True, False);
1355
SI->takeName(&I);
1356
return SI;
1357
}
1358
1359
/// Freely adapt every user of V as-if V was changed to !V.
1360
/// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
1361
void InstCombinerImpl::freelyInvertAllUsersOf(Value *I, Value *IgnoredUser) {
1362
assert(!isa<Constant>(I) && "Shouldn't invert users of constant");
1363
for (User *U : make_early_inc_range(I->users())) {
1364
if (U == IgnoredUser)
1365
continue; // Don't consider this user.
1366
switch (cast<Instruction>(U)->getOpcode()) {
1367
case Instruction::Select: {
1368
auto *SI = cast<SelectInst>(U);
1369
SI->swapValues();
1370
SI->swapProfMetadata();
1371
break;
1372
}
1373
case Instruction::Br: {
1374
BranchInst *BI = cast<BranchInst>(U);
1375
BI->swapSuccessors(); // swaps prof metadata too
1376
if (BPI)
1377
BPI->swapSuccEdgesProbabilities(BI->getParent());
1378
break;
1379
}
1380
case Instruction::Xor:
1381
replaceInstUsesWith(cast<Instruction>(*U), I);
1382
// Add to worklist for DCE.
1383
addToWorklist(cast<Instruction>(U));
1384
break;
1385
default:
1386
llvm_unreachable("Got unexpected user - out of sync with "
1387
"canFreelyInvertAllUsersOf() ?");
1388
}
1389
}
1390
}
1391
1392
/// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
1393
/// constant zero (which is the 'negate' form).
1394
Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
1395
Value *NegV;
1396
if (match(V, m_Neg(m_Value(NegV))))
1397
return NegV;
1398
1399
// Constants can be considered to be negated values if they can be folded.
1400
if (ConstantInt *C = dyn_cast<ConstantInt>(V))
1401
return ConstantExpr::getNeg(C);
1402
1403
if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
1404
if (C->getType()->getElementType()->isIntegerTy())
1405
return ConstantExpr::getNeg(C);
1406
1407
if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
1408
for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1409
Constant *Elt = CV->getAggregateElement(i);
1410
if (!Elt)
1411
return nullptr;
1412
1413
if (isa<UndefValue>(Elt))
1414
continue;
1415
1416
if (!isa<ConstantInt>(Elt))
1417
return nullptr;
1418
}
1419
return ConstantExpr::getNeg(CV);
1420
}
1421
1422
// Negate integer vector splats.
1423
if (auto *CV = dyn_cast<Constant>(V))
1424
if (CV->getType()->isVectorTy() &&
1425
CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
1426
return ConstantExpr::getNeg(CV);
1427
1428
return nullptr;
1429
}
1430
1431
// Try to fold:
1432
// 1) (fp_binop ({s|u}itofp x), ({s|u}itofp y))
1433
// -> ({s|u}itofp (int_binop x, y))
1434
// 2) (fp_binop ({s|u}itofp x), FpC)
1435
// -> ({s|u}itofp (int_binop x, (fpto{s|u}i FpC)))
1436
//
1437
// Assuming the sign of the cast for x/y is `OpsFromSigned`.
1438
Instruction *InstCombinerImpl::foldFBinOpOfIntCastsFromSign(
1439
BinaryOperator &BO, bool OpsFromSigned, std::array<Value *, 2> IntOps,
1440
Constant *Op1FpC, SmallVectorImpl<WithCache<const Value *>> &OpsKnown) {
1441
1442
Type *FPTy = BO.getType();
1443
Type *IntTy = IntOps[0]->getType();
1444
1445
unsigned IntSz = IntTy->getScalarSizeInBits();
1446
// This is the maximum number of inuse bits by the integer where the int -> fp
1447
// casts are exact.
1448
unsigned MaxRepresentableBits =
1449
APFloat::semanticsPrecision(FPTy->getScalarType()->getFltSemantics());
1450
1451
// Preserve known number of leading bits. This can allow us to trivial nsw/nuw
1452
// checks later on.
1453
unsigned NumUsedLeadingBits[2] = {IntSz, IntSz};
1454
1455
// NB: This only comes up if OpsFromSigned is true, so there is no need to
1456
// cache if between calls to `foldFBinOpOfIntCastsFromSign`.
1457
auto IsNonZero = [&](unsigned OpNo) -> bool {
1458
if (OpsKnown[OpNo].hasKnownBits() &&
1459
OpsKnown[OpNo].getKnownBits(SQ).isNonZero())
1460
return true;
1461
return isKnownNonZero(IntOps[OpNo], SQ);
1462
};
1463
1464
auto IsNonNeg = [&](unsigned OpNo) -> bool {
1465
// NB: This matches the impl in ValueTracking, we just try to use cached
1466
// knownbits here. If we ever start supporting WithCache for
1467
// `isKnownNonNegative`, change this to an explicit call.
1468
return OpsKnown[OpNo].getKnownBits(SQ).isNonNegative();
1469
};
1470
1471
// Check if we know for certain that ({s|u}itofp op) is exact.
1472
auto IsValidPromotion = [&](unsigned OpNo) -> bool {
1473
// Can we treat this operand as the desired sign?
1474
if (OpsFromSigned != isa<SIToFPInst>(BO.getOperand(OpNo)) &&
1475
!IsNonNeg(OpNo))
1476
return false;
1477
1478
// If fp precision >= bitwidth(op) then its exact.
1479
// NB: This is slightly conservative for `sitofp`. For signed conversion, we
1480
// can handle `MaxRepresentableBits == IntSz - 1` as the sign bit will be
1481
// handled specially. We can't, however, increase the bound arbitrarily for
1482
// `sitofp` as for larger sizes, it won't sign extend.
1483
if (MaxRepresentableBits < IntSz) {
1484
// Otherwise if its signed cast check that fp precisions >= bitwidth(op) -
1485
// numSignBits(op).
1486
// TODO: If we add support for `WithCache` in `ComputeNumSignBits`, change
1487
// `IntOps[OpNo]` arguments to `KnownOps[OpNo]`.
1488
if (OpsFromSigned)
1489
NumUsedLeadingBits[OpNo] = IntSz - ComputeNumSignBits(IntOps[OpNo]);
1490
// Finally for unsigned check that fp precision >= bitwidth(op) -
1491
// numLeadingZeros(op).
1492
else {
1493
NumUsedLeadingBits[OpNo] =
1494
IntSz - OpsKnown[OpNo].getKnownBits(SQ).countMinLeadingZeros();
1495
}
1496
}
1497
// NB: We could also check if op is known to be a power of 2 or zero (which
1498
// will always be representable). Its unlikely, however, that is we are
1499
// unable to bound op in any way we will be able to pass the overflow checks
1500
// later on.
1501
1502
if (MaxRepresentableBits < NumUsedLeadingBits[OpNo])
1503
return false;
1504
// Signed + Mul also requires that op is non-zero to avoid -0 cases.
1505
return !OpsFromSigned || BO.getOpcode() != Instruction::FMul ||
1506
IsNonZero(OpNo);
1507
};
1508
1509
// If we have a constant rhs, see if we can losslessly convert it to an int.
1510
if (Op1FpC != nullptr) {
1511
// Signed + Mul req non-zero
1512
if (OpsFromSigned && BO.getOpcode() == Instruction::FMul &&
1513
!match(Op1FpC, m_NonZeroFP()))
1514
return nullptr;
1515
1516
Constant *Op1IntC = ConstantFoldCastOperand(
1517
OpsFromSigned ? Instruction::FPToSI : Instruction::FPToUI, Op1FpC,
1518
IntTy, DL);
1519
if (Op1IntC == nullptr)
1520
return nullptr;
1521
if (ConstantFoldCastOperand(OpsFromSigned ? Instruction::SIToFP
1522
: Instruction::UIToFP,
1523
Op1IntC, FPTy, DL) != Op1FpC)
1524
return nullptr;
1525
1526
// First try to keep sign of cast the same.
1527
IntOps[1] = Op1IntC;
1528
}
1529
1530
// Ensure lhs/rhs integer types match.
1531
if (IntTy != IntOps[1]->getType())
1532
return nullptr;
1533
1534
if (Op1FpC == nullptr) {
1535
if (!IsValidPromotion(1))
1536
return nullptr;
1537
}
1538
if (!IsValidPromotion(0))
1539
return nullptr;
1540
1541
// Final we check if the integer version of the binop will not overflow.
1542
BinaryOperator::BinaryOps IntOpc;
1543
// Because of the precision check, we can often rule out overflows.
1544
bool NeedsOverflowCheck = true;
1545
// Try to conservatively rule out overflow based on the already done precision
1546
// checks.
1547
unsigned OverflowMaxOutputBits = OpsFromSigned ? 2 : 1;
1548
unsigned OverflowMaxCurBits =
1549
std::max(NumUsedLeadingBits[0], NumUsedLeadingBits[1]);
1550
bool OutputSigned = OpsFromSigned;
1551
switch (BO.getOpcode()) {
1552
case Instruction::FAdd:
1553
IntOpc = Instruction::Add;
1554
OverflowMaxOutputBits += OverflowMaxCurBits;
1555
break;
1556
case Instruction::FSub:
1557
IntOpc = Instruction::Sub;
1558
OverflowMaxOutputBits += OverflowMaxCurBits;
1559
break;
1560
case Instruction::FMul:
1561
IntOpc = Instruction::Mul;
1562
OverflowMaxOutputBits += OverflowMaxCurBits * 2;
1563
break;
1564
default:
1565
llvm_unreachable("Unsupported binop");
1566
}
1567
// The precision check may have already ruled out overflow.
1568
if (OverflowMaxOutputBits < IntSz) {
1569
NeedsOverflowCheck = false;
1570
// We can bound unsigned overflow from sub to in range signed value (this is
1571
// what allows us to avoid the overflow check for sub).
1572
if (IntOpc == Instruction::Sub)
1573
OutputSigned = true;
1574
}
1575
1576
// Precision check did not rule out overflow, so need to check.
1577
// TODO: If we add support for `WithCache` in `willNotOverflow`, change
1578
// `IntOps[...]` arguments to `KnownOps[...]`.
1579
if (NeedsOverflowCheck &&
1580
!willNotOverflow(IntOpc, IntOps[0], IntOps[1], BO, OutputSigned))
1581
return nullptr;
1582
1583
Value *IntBinOp = Builder.CreateBinOp(IntOpc, IntOps[0], IntOps[1]);
1584
if (auto *IntBO = dyn_cast<BinaryOperator>(IntBinOp)) {
1585
IntBO->setHasNoSignedWrap(OutputSigned);
1586
IntBO->setHasNoUnsignedWrap(!OutputSigned);
1587
}
1588
if (OutputSigned)
1589
return new SIToFPInst(IntBinOp, FPTy);
1590
return new UIToFPInst(IntBinOp, FPTy);
1591
}
1592
1593
// Try to fold:
1594
// 1) (fp_binop ({s|u}itofp x), ({s|u}itofp y))
1595
// -> ({s|u}itofp (int_binop x, y))
1596
// 2) (fp_binop ({s|u}itofp x), FpC)
1597
// -> ({s|u}itofp (int_binop x, (fpto{s|u}i FpC)))
1598
Instruction *InstCombinerImpl::foldFBinOpOfIntCasts(BinaryOperator &BO) {
1599
std::array<Value *, 2> IntOps = {nullptr, nullptr};
1600
Constant *Op1FpC = nullptr;
1601
// Check for:
1602
// 1) (binop ({s|u}itofp x), ({s|u}itofp y))
1603
// 2) (binop ({s|u}itofp x), FpC)
1604
if (!match(BO.getOperand(0), m_SIToFP(m_Value(IntOps[0]))) &&
1605
!match(BO.getOperand(0), m_UIToFP(m_Value(IntOps[0]))))
1606
return nullptr;
1607
1608
if (!match(BO.getOperand(1), m_Constant(Op1FpC)) &&
1609
!match(BO.getOperand(1), m_SIToFP(m_Value(IntOps[1]))) &&
1610
!match(BO.getOperand(1), m_UIToFP(m_Value(IntOps[1]))))
1611
return nullptr;
1612
1613
// Cache KnownBits a bit to potentially save some analysis.
1614
SmallVector<WithCache<const Value *>, 2> OpsKnown = {IntOps[0], IntOps[1]};
1615
1616
// Try treating x/y as coming from both `uitofp` and `sitofp`. There are
1617
// different constraints depending on the sign of the cast.
1618
// NB: `(uitofp nneg X)` == `(sitofp nneg X)`.
1619
if (Instruction *R = foldFBinOpOfIntCastsFromSign(BO, /*OpsFromSigned=*/false,
1620
IntOps, Op1FpC, OpsKnown))
1621
return R;
1622
return foldFBinOpOfIntCastsFromSign(BO, /*OpsFromSigned=*/true, IntOps,
1623
Op1FpC, OpsKnown);
1624
}
1625
1626
/// A binop with a constant operand and a sign-extended boolean operand may be
1627
/// converted into a select of constants by applying the binary operation to
1628
/// the constant with the two possible values of the extended boolean (0 or -1).
1629
Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) {
1630
// TODO: Handle non-commutative binop (constant is operand 0).
1631
// TODO: Handle zext.
1632
// TODO: Peek through 'not' of cast.
1633
Value *BO0 = BO.getOperand(0);
1634
Value *BO1 = BO.getOperand(1);
1635
Value *X;
1636
Constant *C;
1637
if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) ||
1638
!X->getType()->isIntOrIntVectorTy(1))
1639
return nullptr;
1640
1641
// bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C)
1642
Constant *Ones = ConstantInt::getAllOnesValue(BO.getType());
1643
Constant *Zero = ConstantInt::getNullValue(BO.getType());
1644
Value *TVal = Builder.CreateBinOp(BO.getOpcode(), Ones, C);
1645
Value *FVal = Builder.CreateBinOp(BO.getOpcode(), Zero, C);
1646
return SelectInst::Create(X, TVal, FVal);
1647
}
1648
1649
static Constant *constantFoldOperationIntoSelectOperand(Instruction &I,
1650
SelectInst *SI,
1651
bool IsTrueArm) {
1652
SmallVector<Constant *> ConstOps;
1653
for (Value *Op : I.operands()) {
1654
CmpInst::Predicate Pred;
1655
Constant *C = nullptr;
1656
if (Op == SI) {
1657
C = dyn_cast<Constant>(IsTrueArm ? SI->getTrueValue()
1658
: SI->getFalseValue());
1659
} else if (match(SI->getCondition(),
1660
m_ICmp(Pred, m_Specific(Op), m_Constant(C))) &&
1661
Pred == (IsTrueArm ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
1662
isGuaranteedNotToBeUndefOrPoison(C)) {
1663
// Pass
1664
} else {
1665
C = dyn_cast<Constant>(Op);
1666
}
1667
if (C == nullptr)
1668
return nullptr;
1669
1670
ConstOps.push_back(C);
1671
}
1672
1673
return ConstantFoldInstOperands(&I, ConstOps, I.getDataLayout());
1674
}
1675
1676
static Value *foldOperationIntoSelectOperand(Instruction &I, SelectInst *SI,
1677
Value *NewOp, InstCombiner &IC) {
1678
Instruction *Clone = I.clone();
1679
Clone->replaceUsesOfWith(SI, NewOp);
1680
Clone->dropUBImplyingAttrsAndMetadata();
1681
IC.InsertNewInstBefore(Clone, SI->getIterator());
1682
return Clone;
1683
}
1684
1685
Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1686
bool FoldWithMultiUse) {
1687
// Don't modify shared select instructions unless set FoldWithMultiUse
1688
if (!SI->hasOneUse() && !FoldWithMultiUse)
1689
return nullptr;
1690
1691
Value *TV = SI->getTrueValue();
1692
Value *FV = SI->getFalseValue();
1693
if (!(isa<Constant>(TV) || isa<Constant>(FV)))
1694
return nullptr;
1695
1696
// Bool selects with constant operands can be folded to logical ops.
1697
if (SI->getType()->isIntOrIntVectorTy(1))
1698
return nullptr;
1699
1700
// Test if a FCmpInst instruction is used exclusively by a select as
1701
// part of a minimum or maximum operation. If so, refrain from doing
1702
// any other folding. This helps out other analyses which understand
1703
// non-obfuscated minimum and maximum idioms. And in this case, at
1704
// least one of the comparison operands has at least one user besides
1705
// the compare (the select), which would often largely negate the
1706
// benefit of folding anyway.
1707
if (auto *CI = dyn_cast<FCmpInst>(SI->getCondition())) {
1708
if (CI->hasOneUse()) {
1709
Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1710
if ((TV == Op0 && FV == Op1) || (FV == Op0 && TV == Op1))
1711
return nullptr;
1712
}
1713
}
1714
1715
// Make sure that one of the select arms constant folds successfully.
1716
Value *NewTV = constantFoldOperationIntoSelectOperand(Op, SI, /*IsTrueArm*/ true);
1717
Value *NewFV = constantFoldOperationIntoSelectOperand(Op, SI, /*IsTrueArm*/ false);
1718
if (!NewTV && !NewFV)
1719
return nullptr;
1720
1721
// Create an instruction for the arm that did not fold.
1722
if (!NewTV)
1723
NewTV = foldOperationIntoSelectOperand(Op, SI, TV, *this);
1724
if (!NewFV)
1725
NewFV = foldOperationIntoSelectOperand(Op, SI, FV, *this);
1726
return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1727
}
1728
1729
static Value *simplifyInstructionWithPHI(Instruction &I, PHINode *PN,
1730
Value *InValue, BasicBlock *InBB,
1731
const DataLayout &DL,
1732
const SimplifyQuery SQ) {
1733
// NB: It is a precondition of this transform that the operands be
1734
// phi translatable! This is usually trivially satisfied by limiting it
1735
// to constant ops, and for selects we do a more sophisticated check.
1736
SmallVector<Value *> Ops;
1737
for (Value *Op : I.operands()) {
1738
if (Op == PN)
1739
Ops.push_back(InValue);
1740
else
1741
Ops.push_back(Op->DoPHITranslation(PN->getParent(), InBB));
1742
}
1743
1744
// Don't consider the simplification successful if we get back a constant
1745
// expression. That's just an instruction in hiding.
1746
// Also reject the case where we simplify back to the phi node. We wouldn't
1747
// be able to remove it in that case.
1748
Value *NewVal = simplifyInstructionWithOperands(
1749
&I, Ops, SQ.getWithInstruction(InBB->getTerminator()));
1750
if (NewVal && NewVal != PN && !match(NewVal, m_ConstantExpr()))
1751
return NewVal;
1752
1753
// Check if incoming PHI value can be replaced with constant
1754
// based on implied condition.
1755
BranchInst *TerminatorBI = dyn_cast<BranchInst>(InBB->getTerminator());
1756
const ICmpInst *ICmp = dyn_cast<ICmpInst>(&I);
1757
if (TerminatorBI && TerminatorBI->isConditional() &&
1758
TerminatorBI->getSuccessor(0) != TerminatorBI->getSuccessor(1) && ICmp) {
1759
bool LHSIsTrue = TerminatorBI->getSuccessor(0) == PN->getParent();
1760
std::optional<bool> ImpliedCond =
1761
isImpliedCondition(TerminatorBI->getCondition(), ICmp->getPredicate(),
1762
Ops[0], Ops[1], DL, LHSIsTrue);
1763
if (ImpliedCond)
1764
return ConstantInt::getBool(I.getType(), ImpliedCond.value());
1765
}
1766
1767
return nullptr;
1768
}
1769
1770
Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) {
1771
unsigned NumPHIValues = PN->getNumIncomingValues();
1772
if (NumPHIValues == 0)
1773
return nullptr;
1774
1775
// We normally only transform phis with a single use. However, if a PHI has
1776
// multiple uses and they are all the same operation, we can fold *all* of the
1777
// uses into the PHI.
1778
if (!PN->hasOneUse()) {
1779
// Walk the use list for the instruction, comparing them to I.
1780
for (User *U : PN->users()) {
1781
Instruction *UI = cast<Instruction>(U);
1782
if (UI != &I && !I.isIdenticalTo(UI))
1783
return nullptr;
1784
}
1785
// Otherwise, we can replace *all* users with the new PHI we form.
1786
}
1787
1788
// Check to see whether the instruction can be folded into each phi operand.
1789
// If there is one operand that does not fold, remember the BB it is in.
1790
// If there is more than one or if *it* is a PHI, bail out.
1791
SmallVector<Value *> NewPhiValues;
1792
BasicBlock *NonSimplifiedBB = nullptr;
1793
Value *NonSimplifiedInVal = nullptr;
1794
for (unsigned i = 0; i != NumPHIValues; ++i) {
1795
Value *InVal = PN->getIncomingValue(i);
1796
BasicBlock *InBB = PN->getIncomingBlock(i);
1797
1798
if (auto *NewVal = simplifyInstructionWithPHI(I, PN, InVal, InBB, DL, SQ)) {
1799
NewPhiValues.push_back(NewVal);
1800
continue;
1801
}
1802
1803
if (NonSimplifiedBB) return nullptr; // More than one non-simplified value.
1804
1805
NonSimplifiedBB = InBB;
1806
NonSimplifiedInVal = InVal;
1807
NewPhiValues.push_back(nullptr);
1808
1809
// If the InVal is an invoke at the end of the pred block, then we can't
1810
// insert a computation after it without breaking the edge.
1811
if (isa<InvokeInst>(InVal))
1812
if (cast<Instruction>(InVal)->getParent() == NonSimplifiedBB)
1813
return nullptr;
1814
1815
// If the incoming non-constant value is reachable from the phis block,
1816
// we'll push the operation across a loop backedge. This could result in
1817
// an infinite combine loop, and is generally non-profitable (especially
1818
// if the operation was originally outside the loop).
1819
if (isPotentiallyReachable(PN->getParent(), NonSimplifiedBB, nullptr, &DT,
1820
LI))
1821
return nullptr;
1822
}
1823
1824
// If there is exactly one non-simplified value, we can insert a copy of the
1825
// operation in that block. However, if this is a critical edge, we would be
1826
// inserting the computation on some other paths (e.g. inside a loop). Only
1827
// do this if the pred block is unconditionally branching into the phi block.
1828
// Also, make sure that the pred block is not dead code.
1829
if (NonSimplifiedBB != nullptr) {
1830
BranchInst *BI = dyn_cast<BranchInst>(NonSimplifiedBB->getTerminator());
1831
if (!BI || !BI->isUnconditional() ||
1832
!DT.isReachableFromEntry(NonSimplifiedBB))
1833
return nullptr;
1834
}
1835
1836
// Okay, we can do the transformation: create the new PHI node.
1837
PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1838
InsertNewInstBefore(NewPN, PN->getIterator());
1839
NewPN->takeName(PN);
1840
NewPN->setDebugLoc(PN->getDebugLoc());
1841
1842
// If we are going to have to insert a new computation, do so right before the
1843
// predecessor's terminator.
1844
Instruction *Clone = nullptr;
1845
if (NonSimplifiedBB) {
1846
Clone = I.clone();
1847
for (Use &U : Clone->operands()) {
1848
if (U == PN)
1849
U = NonSimplifiedInVal;
1850
else
1851
U = U->DoPHITranslation(PN->getParent(), NonSimplifiedBB);
1852
}
1853
InsertNewInstBefore(Clone, NonSimplifiedBB->getTerminator()->getIterator());
1854
}
1855
1856
for (unsigned i = 0; i != NumPHIValues; ++i) {
1857
if (NewPhiValues[i])
1858
NewPN->addIncoming(NewPhiValues[i], PN->getIncomingBlock(i));
1859
else
1860
NewPN->addIncoming(Clone, PN->getIncomingBlock(i));
1861
}
1862
1863
for (User *U : make_early_inc_range(PN->users())) {
1864
Instruction *User = cast<Instruction>(U);
1865
if (User == &I) continue;
1866
replaceInstUsesWith(*User, NewPN);
1867
eraseInstFromFunction(*User);
1868
}
1869
1870
replaceAllDbgUsesWith(const_cast<PHINode &>(*PN),
1871
const_cast<PHINode &>(*NewPN),
1872
const_cast<PHINode &>(*PN), DT);
1873
return replaceInstUsesWith(I, NewPN);
1874
}
1875
1876
Instruction *InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator &BO) {
1877
// TODO: This should be similar to the incoming values check in foldOpIntoPhi:
1878
// we are guarding against replicating the binop in >1 predecessor.
1879
// This could miss matching a phi with 2 constant incoming values.
1880
auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0));
1881
auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1));
1882
if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() ||
1883
Phi0->getNumOperands() != Phi1->getNumOperands())
1884
return nullptr;
1885
1886
// TODO: Remove the restriction for binop being in the same block as the phis.
1887
if (BO.getParent() != Phi0->getParent() ||
1888
BO.getParent() != Phi1->getParent())
1889
return nullptr;
1890
1891
// Fold if there is at least one specific constant value in phi0 or phi1's
1892
// incoming values that comes from the same block and this specific constant
1893
// value can be used to do optimization for specific binary operator.
1894
// For example:
1895
// %phi0 = phi i32 [0, %bb0], [%i, %bb1]
1896
// %phi1 = phi i32 [%j, %bb0], [0, %bb1]
1897
// %add = add i32 %phi0, %phi1
1898
// ==>
1899
// %add = phi i32 [%j, %bb0], [%i, %bb1]
1900
Constant *C = ConstantExpr::getBinOpIdentity(BO.getOpcode(), BO.getType(),
1901
/*AllowRHSConstant*/ false);
1902
if (C) {
1903
SmallVector<Value *, 4> NewIncomingValues;
1904
auto CanFoldIncomingValuePair = [&](std::tuple<Use &, Use &> T) {
1905
auto &Phi0Use = std::get<0>(T);
1906
auto &Phi1Use = std::get<1>(T);
1907
if (Phi0->getIncomingBlock(Phi0Use) != Phi1->getIncomingBlock(Phi1Use))
1908
return false;
1909
Value *Phi0UseV = Phi0Use.get();
1910
Value *Phi1UseV = Phi1Use.get();
1911
if (Phi0UseV == C)
1912
NewIncomingValues.push_back(Phi1UseV);
1913
else if (Phi1UseV == C)
1914
NewIncomingValues.push_back(Phi0UseV);
1915
else
1916
return false;
1917
return true;
1918
};
1919
1920
if (all_of(zip(Phi0->operands(), Phi1->operands()),
1921
CanFoldIncomingValuePair)) {
1922
PHINode *NewPhi =
1923
PHINode::Create(Phi0->getType(), Phi0->getNumOperands());
1924
assert(NewIncomingValues.size() == Phi0->getNumOperands() &&
1925
"The number of collected incoming values should equal the number "
1926
"of the original PHINode operands!");
1927
for (unsigned I = 0; I < Phi0->getNumOperands(); I++)
1928
NewPhi->addIncoming(NewIncomingValues[I], Phi0->getIncomingBlock(I));
1929
return NewPhi;
1930
}
1931
}
1932
1933
if (Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2)
1934
return nullptr;
1935
1936
// Match a pair of incoming constants for one of the predecessor blocks.
1937
BasicBlock *ConstBB, *OtherBB;
1938
Constant *C0, *C1;
1939
if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) {
1940
ConstBB = Phi0->getIncomingBlock(0);
1941
OtherBB = Phi0->getIncomingBlock(1);
1942
} else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) {
1943
ConstBB = Phi0->getIncomingBlock(1);
1944
OtherBB = Phi0->getIncomingBlock(0);
1945
} else {
1946
return nullptr;
1947
}
1948
if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1)))
1949
return nullptr;
1950
1951
// The block that we are hoisting to must reach here unconditionally.
1952
// Otherwise, we could be speculatively executing an expensive or
1953
// non-speculative op.
1954
auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator());
1955
if (!PredBlockBranch || PredBlockBranch->isConditional() ||
1956
!DT.isReachableFromEntry(OtherBB))
1957
return nullptr;
1958
1959
// TODO: This check could be tightened to only apply to binops (div/rem) that
1960
// are not safe to speculatively execute. But that could allow hoisting
1961
// potentially expensive instructions (fdiv for example).
1962
for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter)
1963
if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter))
1964
return nullptr;
1965
1966
// Fold constants for the predecessor block with constant incoming values.
1967
Constant *NewC = ConstantFoldBinaryOpOperands(BO.getOpcode(), C0, C1, DL);
1968
if (!NewC)
1969
return nullptr;
1970
1971
// Make a new binop in the predecessor block with the non-constant incoming
1972
// values.
1973
Builder.SetInsertPoint(PredBlockBranch);
1974
Value *NewBO = Builder.CreateBinOp(BO.getOpcode(),
1975
Phi0->getIncomingValueForBlock(OtherBB),
1976
Phi1->getIncomingValueForBlock(OtherBB));
1977
if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO))
1978
NotFoldedNewBO->copyIRFlags(&BO);
1979
1980
// Replace the binop with a phi of the new values. The old phis are dead.
1981
PHINode *NewPhi = PHINode::Create(BO.getType(), 2);
1982
NewPhi->addIncoming(NewBO, OtherBB);
1983
NewPhi->addIncoming(NewC, ConstBB);
1984
return NewPhi;
1985
}
1986
1987
Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1988
if (!isa<Constant>(I.getOperand(1)))
1989
return nullptr;
1990
1991
if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1992
if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1993
return NewSel;
1994
} else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1995
if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1996
return NewPhi;
1997
}
1998
return nullptr;
1999
}
2000
2001
static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
2002
// If this GEP has only 0 indices, it is the same pointer as
2003
// Src. If Src is not a trivial GEP too, don't combine
2004
// the indices.
2005
if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
2006
!Src.hasOneUse())
2007
return false;
2008
return true;
2009
}
2010
2011
Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) {
2012
if (!isa<VectorType>(Inst.getType()))
2013
return nullptr;
2014
2015
BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
2016
Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
2017
assert(cast<VectorType>(LHS->getType())->getElementCount() ==
2018
cast<VectorType>(Inst.getType())->getElementCount());
2019
assert(cast<VectorType>(RHS->getType())->getElementCount() ==
2020
cast<VectorType>(Inst.getType())->getElementCount());
2021
2022
// If both operands of the binop are vector concatenations, then perform the
2023
// narrow binop on each pair of the source operands followed by concatenation
2024
// of the results.
2025
Value *L0, *L1, *R0, *R1;
2026
ArrayRef<int> Mask;
2027
if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
2028
match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
2029
LHS->hasOneUse() && RHS->hasOneUse() &&
2030
cast<ShuffleVectorInst>(LHS)->isConcat() &&
2031
cast<ShuffleVectorInst>(RHS)->isConcat()) {
2032
// This transform does not have the speculative execution constraint as
2033
// below because the shuffle is a concatenation. The new binops are
2034
// operating on exactly the same elements as the existing binop.
2035
// TODO: We could ease the mask requirement to allow different undef lanes,
2036
// but that requires an analysis of the binop-with-undef output value.
2037
Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
2038
if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
2039
BO->copyIRFlags(&Inst);
2040
Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
2041
if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
2042
BO->copyIRFlags(&Inst);
2043
return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
2044
}
2045
2046
auto createBinOpReverse = [&](Value *X, Value *Y) {
2047
Value *V = Builder.CreateBinOp(Opcode, X, Y, Inst.getName());
2048
if (auto *BO = dyn_cast<BinaryOperator>(V))
2049
BO->copyIRFlags(&Inst);
2050
Module *M = Inst.getModule();
2051
Function *F =
2052
Intrinsic::getDeclaration(M, Intrinsic::vector_reverse, V->getType());
2053
return CallInst::Create(F, V);
2054
};
2055
2056
// NOTE: Reverse shuffles don't require the speculative execution protection
2057
// below because they don't affect which lanes take part in the computation.
2058
2059
Value *V1, *V2;
2060
if (match(LHS, m_VecReverse(m_Value(V1)))) {
2061
// Op(rev(V1), rev(V2)) -> rev(Op(V1, V2))
2062
if (match(RHS, m_VecReverse(m_Value(V2))) &&
2063
(LHS->hasOneUse() || RHS->hasOneUse() ||
2064
(LHS == RHS && LHS->hasNUses(2))))
2065
return createBinOpReverse(V1, V2);
2066
2067
// Op(rev(V1), RHSSplat)) -> rev(Op(V1, RHSSplat))
2068
if (LHS->hasOneUse() && isSplatValue(RHS))
2069
return createBinOpReverse(V1, RHS);
2070
}
2071
// Op(LHSSplat, rev(V2)) -> rev(Op(LHSSplat, V2))
2072
else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2)))))
2073
return createBinOpReverse(LHS, V2);
2074
2075
// It may not be safe to reorder shuffles and things like div, urem, etc.
2076
// because we may trap when executing those ops on unknown vector elements.
2077
// See PR20059.
2078
if (!isSafeToSpeculativelyExecute(&Inst))
2079
return nullptr;
2080
2081
auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
2082
Value *XY = Builder.CreateBinOp(Opcode, X, Y);
2083
if (auto *BO = dyn_cast<BinaryOperator>(XY))
2084
BO->copyIRFlags(&Inst);
2085
return new ShuffleVectorInst(XY, M);
2086
};
2087
2088
// If both arguments of the binary operation are shuffles that use the same
2089
// mask and shuffle within a single vector, move the shuffle after the binop.
2090
if (match(LHS, m_Shuffle(m_Value(V1), m_Poison(), m_Mask(Mask))) &&
2091
match(RHS, m_Shuffle(m_Value(V2), m_Poison(), m_SpecificMask(Mask))) &&
2092
V1->getType() == V2->getType() &&
2093
(LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
2094
// Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
2095
return createBinOpShuffle(V1, V2, Mask);
2096
}
2097
2098
// If both arguments of a commutative binop are select-shuffles that use the
2099
// same mask with commuted operands, the shuffles are unnecessary.
2100
if (Inst.isCommutative() &&
2101
match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
2102
match(RHS,
2103
m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
2104
auto *LShuf = cast<ShuffleVectorInst>(LHS);
2105
auto *RShuf = cast<ShuffleVectorInst>(RHS);
2106
// TODO: Allow shuffles that contain undefs in the mask?
2107
// That is legal, but it reduces undef knowledge.
2108
// TODO: Allow arbitrary shuffles by shuffling after binop?
2109
// That might be legal, but we have to deal with poison.
2110
if (LShuf->isSelect() &&
2111
!is_contained(LShuf->getShuffleMask(), PoisonMaskElem) &&
2112
RShuf->isSelect() &&
2113
!is_contained(RShuf->getShuffleMask(), PoisonMaskElem)) {
2114
// Example:
2115
// LHS = shuffle V1, V2, <0, 5, 6, 3>
2116
// RHS = shuffle V2, V1, <0, 5, 6, 3>
2117
// LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
2118
Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
2119
NewBO->copyIRFlags(&Inst);
2120
return NewBO;
2121
}
2122
}
2123
2124
// If one argument is a shuffle within one vector and the other is a constant,
2125
// try moving the shuffle after the binary operation. This canonicalization
2126
// intends to move shuffles closer to other shuffles and binops closer to
2127
// other binops, so they can be folded. It may also enable demanded elements
2128
// transforms.
2129
Constant *C;
2130
auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType());
2131
if (InstVTy &&
2132
match(&Inst, m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Poison(),
2133
m_Mask(Mask))),
2134
m_ImmConstant(C))) &&
2135
cast<FixedVectorType>(V1->getType())->getNumElements() <=
2136
InstVTy->getNumElements()) {
2137
assert(InstVTy->getScalarType() == V1->getType()->getScalarType() &&
2138
"Shuffle should not change scalar type");
2139
2140
// Find constant NewC that has property:
2141
// shuffle(NewC, ShMask) = C
2142
// If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
2143
// reorder is not possible. A 1-to-1 mapping is not required. Example:
2144
// ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
2145
bool ConstOp1 = isa<Constant>(RHS);
2146
ArrayRef<int> ShMask = Mask;
2147
unsigned SrcVecNumElts =
2148
cast<FixedVectorType>(V1->getType())->getNumElements();
2149
PoisonValue *PoisonScalar = PoisonValue::get(C->getType()->getScalarType());
2150
SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, PoisonScalar);
2151
bool MayChange = true;
2152
unsigned NumElts = InstVTy->getNumElements();
2153
for (unsigned I = 0; I < NumElts; ++I) {
2154
Constant *CElt = C->getAggregateElement(I);
2155
if (ShMask[I] >= 0) {
2156
assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
2157
Constant *NewCElt = NewVecC[ShMask[I]];
2158
// Bail out if:
2159
// 1. The constant vector contains a constant expression.
2160
// 2. The shuffle needs an element of the constant vector that can't
2161
// be mapped to a new constant vector.
2162
// 3. This is a widening shuffle that copies elements of V1 into the
2163
// extended elements (extending with poison is allowed).
2164
if (!CElt || (!isa<PoisonValue>(NewCElt) && NewCElt != CElt) ||
2165
I >= SrcVecNumElts) {
2166
MayChange = false;
2167
break;
2168
}
2169
NewVecC[ShMask[I]] = CElt;
2170
}
2171
// If this is a widening shuffle, we must be able to extend with poison
2172
// elements. If the original binop does not produce a poison in the high
2173
// lanes, then this transform is not safe.
2174
// Similarly for poison lanes due to the shuffle mask, we can only
2175
// transform binops that preserve poison.
2176
// TODO: We could shuffle those non-poison constant values into the
2177
// result by using a constant vector (rather than an poison vector)
2178
// as operand 1 of the new binop, but that might be too aggressive
2179
// for target-independent shuffle creation.
2180
if (I >= SrcVecNumElts || ShMask[I] < 0) {
2181
Constant *MaybePoison =
2182
ConstOp1
2183
? ConstantFoldBinaryOpOperands(Opcode, PoisonScalar, CElt, DL)
2184
: ConstantFoldBinaryOpOperands(Opcode, CElt, PoisonScalar, DL);
2185
if (!MaybePoison || !isa<PoisonValue>(MaybePoison)) {
2186
MayChange = false;
2187
break;
2188
}
2189
}
2190
}
2191
if (MayChange) {
2192
Constant *NewC = ConstantVector::get(NewVecC);
2193
// It may not be safe to execute a binop on a vector with poison elements
2194
// because the entire instruction can be folded to undef or create poison
2195
// that did not exist in the original code.
2196
// TODO: The shift case should not be necessary.
2197
if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
2198
NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
2199
2200
// Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
2201
// Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
2202
Value *NewLHS = ConstOp1 ? V1 : NewC;
2203
Value *NewRHS = ConstOp1 ? NewC : V1;
2204
return createBinOpShuffle(NewLHS, NewRHS, Mask);
2205
}
2206
}
2207
2208
// Try to reassociate to sink a splat shuffle after a binary operation.
2209
if (Inst.isAssociative() && Inst.isCommutative()) {
2210
// Canonicalize shuffle operand as LHS.
2211
if (isa<ShuffleVectorInst>(RHS))
2212
std::swap(LHS, RHS);
2213
2214
Value *X;
2215
ArrayRef<int> MaskC;
2216
int SplatIndex;
2217
Value *Y, *OtherOp;
2218
if (!match(LHS,
2219
m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
2220
!match(MaskC, m_SplatOrPoisonMask(SplatIndex)) ||
2221
X->getType() != Inst.getType() ||
2222
!match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp)))))
2223
return nullptr;
2224
2225
// FIXME: This may not be safe if the analysis allows undef elements. By
2226
// moving 'Y' before the splat shuffle, we are implicitly assuming
2227
// that it is not undef/poison at the splat index.
2228
if (isSplatValue(OtherOp, SplatIndex)) {
2229
std::swap(Y, OtherOp);
2230
} else if (!isSplatValue(Y, SplatIndex)) {
2231
return nullptr;
2232
}
2233
2234
// X and Y are splatted values, so perform the binary operation on those
2235
// values followed by a splat followed by the 2nd binary operation:
2236
// bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
2237
Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
2238
SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
2239
Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
2240
Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
2241
2242
// Intersect FMF on both new binops. Other (poison-generating) flags are
2243
// dropped to be safe.
2244
if (isa<FPMathOperator>(R)) {
2245
R->copyFastMathFlags(&Inst);
2246
R->andIRFlags(RHS);
2247
}
2248
if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
2249
NewInstBO->copyIRFlags(R);
2250
return R;
2251
}
2252
2253
return nullptr;
2254
}
2255
2256
/// Try to narrow the width of a binop if at least 1 operand is an extend of
2257
/// of a value. This requires a potentially expensive known bits check to make
2258
/// sure the narrow op does not overflow.
2259
Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
2260
// We need at least one extended operand.
2261
Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
2262
2263
// If this is a sub, we swap the operands since we always want an extension
2264
// on the RHS. The LHS can be an extension or a constant.
2265
if (BO.getOpcode() == Instruction::Sub)
2266
std::swap(Op0, Op1);
2267
2268
Value *X;
2269
bool IsSext = match(Op0, m_SExt(m_Value(X)));
2270
if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
2271
return nullptr;
2272
2273
// If both operands are the same extension from the same source type and we
2274
// can eliminate at least one (hasOneUse), this might work.
2275
CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
2276
Value *Y;
2277
if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
2278
cast<Operator>(Op1)->getOpcode() == CastOpc &&
2279
(Op0->hasOneUse() || Op1->hasOneUse()))) {
2280
// If that did not match, see if we have a suitable constant operand.
2281
// Truncating and extending must produce the same constant.
2282
Constant *WideC;
2283
if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
2284
return nullptr;
2285
Constant *NarrowC = getLosslessTrunc(WideC, X->getType(), CastOpc);
2286
if (!NarrowC)
2287
return nullptr;
2288
Y = NarrowC;
2289
}
2290
2291
// Swap back now that we found our operands.
2292
if (BO.getOpcode() == Instruction::Sub)
2293
std::swap(X, Y);
2294
2295
// Both operands have narrow versions. Last step: the math must not overflow
2296
// in the narrow width.
2297
if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
2298
return nullptr;
2299
2300
// bo (ext X), (ext Y) --> ext (bo X, Y)
2301
// bo (ext X), C --> ext (bo X, C')
2302
Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
2303
if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
2304
if (IsSext)
2305
NewBinOp->setHasNoSignedWrap();
2306
else
2307
NewBinOp->setHasNoUnsignedWrap();
2308
}
2309
return CastInst::Create(CastOpc, NarrowBO, BO.getType());
2310
}
2311
2312
static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
2313
return GEP1.isInBounds() && GEP2.isInBounds();
2314
}
2315
2316
/// Thread a GEP operation with constant indices through the constant true/false
2317
/// arms of a select.
2318
static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
2319
InstCombiner::BuilderTy &Builder) {
2320
if (!GEP.hasAllConstantIndices())
2321
return nullptr;
2322
2323
Instruction *Sel;
2324
Value *Cond;
2325
Constant *TrueC, *FalseC;
2326
if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
2327
!match(Sel,
2328
m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
2329
return nullptr;
2330
2331
// gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
2332
// Propagate 'inbounds' and metadata from existing instructions.
2333
// Note: using IRBuilder to create the constants for efficiency.
2334
SmallVector<Value *, 4> IndexC(GEP.indices());
2335
GEPNoWrapFlags NW = GEP.getNoWrapFlags();
2336
Type *Ty = GEP.getSourceElementType();
2337
Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC, "", NW);
2338
Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC, "", NW);
2339
return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
2340
}
2341
2342
// Canonicalization:
2343
// gep T, (gep i8, base, C1), (Index + C2) into
2344
// gep T, (gep i8, base, C1 + C2 * sizeof(T)), Index
2345
static Instruction *canonicalizeGEPOfConstGEPI8(GetElementPtrInst &GEP,
2346
GEPOperator *Src,
2347
InstCombinerImpl &IC) {
2348
if (GEP.getNumIndices() != 1)
2349
return nullptr;
2350
auto &DL = IC.getDataLayout();
2351
Value *Base;
2352
const APInt *C1;
2353
if (!match(Src, m_PtrAdd(m_Value(Base), m_APInt(C1))))
2354
return nullptr;
2355
Value *VarIndex;
2356
const APInt *C2;
2357
Type *PtrTy = Src->getType()->getScalarType();
2358
unsigned IndexSizeInBits = DL.getIndexTypeSizeInBits(PtrTy);
2359
if (!match(GEP.getOperand(1), m_AddLike(m_Value(VarIndex), m_APInt(C2))))
2360
return nullptr;
2361
if (C1->getBitWidth() != IndexSizeInBits ||
2362
C2->getBitWidth() != IndexSizeInBits)
2363
return nullptr;
2364
Type *BaseType = GEP.getSourceElementType();
2365
if (isa<ScalableVectorType>(BaseType))
2366
return nullptr;
2367
APInt TypeSize(IndexSizeInBits, DL.getTypeAllocSize(BaseType));
2368
APInt NewOffset = TypeSize * *C2 + *C1;
2369
if (NewOffset.isZero() ||
2370
(Src->hasOneUse() && GEP.getOperand(1)->hasOneUse())) {
2371
Value *GEPConst =
2372
IC.Builder.CreatePtrAdd(Base, IC.Builder.getInt(NewOffset));
2373
return GetElementPtrInst::Create(BaseType, GEPConst, VarIndex);
2374
}
2375
2376
return nullptr;
2377
}
2378
2379
Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP,
2380
GEPOperator *Src) {
2381
// Combine Indices - If the source pointer to this getelementptr instruction
2382
// is a getelementptr instruction with matching element type, combine the
2383
// indices of the two getelementptr instructions into a single instruction.
2384
if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
2385
return nullptr;
2386
2387
if (auto *I = canonicalizeGEPOfConstGEPI8(GEP, Src, *this))
2388
return I;
2389
2390
// For constant GEPs, use a more general offset-based folding approach.
2391
Type *PtrTy = Src->getType()->getScalarType();
2392
if (GEP.hasAllConstantIndices() &&
2393
(Src->hasOneUse() || Src->hasAllConstantIndices())) {
2394
// Split Src into a variable part and a constant suffix.
2395
gep_type_iterator GTI = gep_type_begin(*Src);
2396
Type *BaseType = GTI.getIndexedType();
2397
bool IsFirstType = true;
2398
unsigned NumVarIndices = 0;
2399
for (auto Pair : enumerate(Src->indices())) {
2400
if (!isa<ConstantInt>(Pair.value())) {
2401
BaseType = GTI.getIndexedType();
2402
IsFirstType = false;
2403
NumVarIndices = Pair.index() + 1;
2404
}
2405
++GTI;
2406
}
2407
2408
// Determine the offset for the constant suffix of Src.
2409
APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), 0);
2410
if (NumVarIndices != Src->getNumIndices()) {
2411
// FIXME: getIndexedOffsetInType() does not handled scalable vectors.
2412
if (BaseType->isScalableTy())
2413
return nullptr;
2414
2415
SmallVector<Value *> ConstantIndices;
2416
if (!IsFirstType)
2417
ConstantIndices.push_back(
2418
Constant::getNullValue(Type::getInt32Ty(GEP.getContext())));
2419
append_range(ConstantIndices, drop_begin(Src->indices(), NumVarIndices));
2420
Offset += DL.getIndexedOffsetInType(BaseType, ConstantIndices);
2421
}
2422
2423
// Add the offset for GEP (which is fully constant).
2424
if (!GEP.accumulateConstantOffset(DL, Offset))
2425
return nullptr;
2426
2427
APInt OffsetOld = Offset;
2428
// Convert the total offset back into indices.
2429
SmallVector<APInt> ConstIndices =
2430
DL.getGEPIndicesForOffset(BaseType, Offset);
2431
if (!Offset.isZero() || (!IsFirstType && !ConstIndices[0].isZero())) {
2432
// If both GEP are constant-indexed, and cannot be merged in either way,
2433
// convert them to a GEP of i8.
2434
if (Src->hasAllConstantIndices())
2435
return replaceInstUsesWith(
2436
GEP, Builder.CreateGEP(
2437
Builder.getInt8Ty(), Src->getOperand(0),
2438
Builder.getInt(OffsetOld), "",
2439
isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))));
2440
return nullptr;
2441
}
2442
2443
bool IsInBounds = isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP));
2444
SmallVector<Value *> Indices;
2445
append_range(Indices, drop_end(Src->indices(),
2446
Src->getNumIndices() - NumVarIndices));
2447
for (const APInt &Idx : drop_begin(ConstIndices, !IsFirstType)) {
2448
Indices.push_back(ConstantInt::get(GEP.getContext(), Idx));
2449
// Even if the total offset is inbounds, we may end up representing it
2450
// by first performing a larger negative offset, and then a smaller
2451
// positive one. The large negative offset might go out of bounds. Only
2452
// preserve inbounds if all signs are the same.
2453
IsInBounds &= Idx.isNonNegative() == ConstIndices[0].isNonNegative();
2454
}
2455
2456
return replaceInstUsesWith(
2457
GEP, Builder.CreateGEP(Src->getSourceElementType(), Src->getOperand(0),
2458
Indices, "", IsInBounds));
2459
}
2460
2461
if (Src->getResultElementType() != GEP.getSourceElementType())
2462
return nullptr;
2463
2464
SmallVector<Value*, 8> Indices;
2465
2466
// Find out whether the last index in the source GEP is a sequential idx.
2467
bool EndsWithSequential = false;
2468
for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2469
I != E; ++I)
2470
EndsWithSequential = I.isSequential();
2471
2472
// Can we combine the two pointer arithmetics offsets?
2473
if (EndsWithSequential) {
2474
// Replace: gep (gep %P, long B), long A, ...
2475
// With: T = long A+B; gep %P, T, ...
2476
Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2477
Value *GO1 = GEP.getOperand(1);
2478
2479
// If they aren't the same type, then the input hasn't been processed
2480
// by the loop above yet (which canonicalizes sequential index types to
2481
// intptr_t). Just avoid transforming this until the input has been
2482
// normalized.
2483
if (SO1->getType() != GO1->getType())
2484
return nullptr;
2485
2486
Value *Sum =
2487
simplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2488
// Only do the combine when we are sure the cost after the
2489
// merge is never more than that before the merge.
2490
if (Sum == nullptr)
2491
return nullptr;
2492
2493
// Update the GEP in place if possible.
2494
if (Src->getNumOperands() == 2) {
2495
GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
2496
replaceOperand(GEP, 0, Src->getOperand(0));
2497
replaceOperand(GEP, 1, Sum);
2498
return &GEP;
2499
}
2500
Indices.append(Src->op_begin()+1, Src->op_end()-1);
2501
Indices.push_back(Sum);
2502
Indices.append(GEP.op_begin()+2, GEP.op_end());
2503
} else if (isa<Constant>(*GEP.idx_begin()) &&
2504
cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2505
Src->getNumOperands() != 1) {
2506
// Otherwise we can do the fold if the first index of the GEP is a zero
2507
Indices.append(Src->op_begin()+1, Src->op_end());
2508
Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2509
}
2510
2511
if (!Indices.empty())
2512
return replaceInstUsesWith(
2513
GEP, Builder.CreateGEP(
2514
Src->getSourceElementType(), Src->getOperand(0), Indices, "",
2515
isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))));
2516
2517
return nullptr;
2518
}
2519
2520
Value *InstCombiner::getFreelyInvertedImpl(Value *V, bool WillInvertAllUses,
2521
BuilderTy *Builder,
2522
bool &DoesConsume, unsigned Depth) {
2523
static Value *const NonNull = reinterpret_cast<Value *>(uintptr_t(1));
2524
// ~(~(X)) -> X.
2525
Value *A, *B;
2526
if (match(V, m_Not(m_Value(A)))) {
2527
DoesConsume = true;
2528
return A;
2529
}
2530
2531
Constant *C;
2532
// Constants can be considered to be not'ed values.
2533
if (match(V, m_ImmConstant(C)))
2534
return ConstantExpr::getNot(C);
2535
2536
if (Depth++ >= MaxAnalysisRecursionDepth)
2537
return nullptr;
2538
2539
// The rest of the cases require that we invert all uses so don't bother
2540
// doing the analysis if we know we can't use the result.
2541
if (!WillInvertAllUses)
2542
return nullptr;
2543
2544
// Compares can be inverted if all of their uses are being modified to use
2545
// the ~V.
2546
if (auto *I = dyn_cast<CmpInst>(V)) {
2547
if (Builder != nullptr)
2548
return Builder->CreateCmp(I->getInversePredicate(), I->getOperand(0),
2549
I->getOperand(1));
2550
return NonNull;
2551
}
2552
2553
// If `V` is of the form `A + B` then `-1 - V` can be folded into
2554
// `(-1 - B) - A` if we are willing to invert all of the uses.
2555
if (match(V, m_Add(m_Value(A), m_Value(B)))) {
2556
if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2557
DoesConsume, Depth))
2558
return Builder ? Builder->CreateSub(BV, A) : NonNull;
2559
if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2560
DoesConsume, Depth))
2561
return Builder ? Builder->CreateSub(AV, B) : NonNull;
2562
return nullptr;
2563
}
2564
2565
// If `V` is of the form `A ^ ~B` then `~(A ^ ~B)` can be folded
2566
// into `A ^ B` if we are willing to invert all of the uses.
2567
if (match(V, m_Xor(m_Value(A), m_Value(B)))) {
2568
if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2569
DoesConsume, Depth))
2570
return Builder ? Builder->CreateXor(A, BV) : NonNull;
2571
if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2572
DoesConsume, Depth))
2573
return Builder ? Builder->CreateXor(AV, B) : NonNull;
2574
return nullptr;
2575
}
2576
2577
// If `V` is of the form `B - A` then `-1 - V` can be folded into
2578
// `A + (-1 - B)` if we are willing to invert all of the uses.
2579
if (match(V, m_Sub(m_Value(A), m_Value(B)))) {
2580
if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2581
DoesConsume, Depth))
2582
return Builder ? Builder->CreateAdd(AV, B) : NonNull;
2583
return nullptr;
2584
}
2585
2586
// If `V` is of the form `(~A) s>> B` then `~((~A) s>> B)` can be folded
2587
// into `A s>> B` if we are willing to invert all of the uses.
2588
if (match(V, m_AShr(m_Value(A), m_Value(B)))) {
2589
if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2590
DoesConsume, Depth))
2591
return Builder ? Builder->CreateAShr(AV, B) : NonNull;
2592
return nullptr;
2593
}
2594
2595
Value *Cond;
2596
// LogicOps are special in that we canonicalize them at the cost of an
2597
// instruction.
2598
bool IsSelect = match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))) &&
2599
!shouldAvoidAbsorbingNotIntoSelect(*cast<SelectInst>(V));
2600
// Selects/min/max with invertible operands are freely invertible
2601
if (IsSelect || match(V, m_MaxOrMin(m_Value(A), m_Value(B)))) {
2602
bool LocalDoesConsume = DoesConsume;
2603
if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder*/ nullptr,
2604
LocalDoesConsume, Depth))
2605
return nullptr;
2606
if (Value *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2607
LocalDoesConsume, Depth)) {
2608
DoesConsume = LocalDoesConsume;
2609
if (Builder != nullptr) {
2610
Value *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2611
DoesConsume, Depth);
2612
assert(NotB != nullptr &&
2613
"Unable to build inverted value for known freely invertable op");
2614
if (auto *II = dyn_cast<IntrinsicInst>(V))
2615
return Builder->CreateBinaryIntrinsic(
2616
getInverseMinMaxIntrinsic(II->getIntrinsicID()), NotA, NotB);
2617
return Builder->CreateSelect(Cond, NotA, NotB);
2618
}
2619
return NonNull;
2620
}
2621
}
2622
2623
if (PHINode *PN = dyn_cast<PHINode>(V)) {
2624
bool LocalDoesConsume = DoesConsume;
2625
SmallVector<std::pair<Value *, BasicBlock *>, 8> IncomingValues;
2626
for (Use &U : PN->operands()) {
2627
BasicBlock *IncomingBlock = PN->getIncomingBlock(U);
2628
Value *NewIncomingVal = getFreelyInvertedImpl(
2629
U.get(), /*WillInvertAllUses=*/false,
2630
/*Builder=*/nullptr, LocalDoesConsume, MaxAnalysisRecursionDepth - 1);
2631
if (NewIncomingVal == nullptr)
2632
return nullptr;
2633
// Make sure that we can safely erase the original PHI node.
2634
if (NewIncomingVal == V)
2635
return nullptr;
2636
if (Builder != nullptr)
2637
IncomingValues.emplace_back(NewIncomingVal, IncomingBlock);
2638
}
2639
2640
DoesConsume = LocalDoesConsume;
2641
if (Builder != nullptr) {
2642
IRBuilderBase::InsertPointGuard Guard(*Builder);
2643
Builder->SetInsertPoint(PN);
2644
PHINode *NewPN =
2645
Builder->CreatePHI(PN->getType(), PN->getNumIncomingValues());
2646
for (auto [Val, Pred] : IncomingValues)
2647
NewPN->addIncoming(Val, Pred);
2648
return NewPN;
2649
}
2650
return NonNull;
2651
}
2652
2653
if (match(V, m_SExtLike(m_Value(A)))) {
2654
if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2655
DoesConsume, Depth))
2656
return Builder ? Builder->CreateSExt(AV, V->getType()) : NonNull;
2657
return nullptr;
2658
}
2659
2660
if (match(V, m_Trunc(m_Value(A)))) {
2661
if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2662
DoesConsume, Depth))
2663
return Builder ? Builder->CreateTrunc(AV, V->getType()) : NonNull;
2664
return nullptr;
2665
}
2666
2667
// De Morgan's Laws:
2668
// (~(A | B)) -> (~A & ~B)
2669
// (~(A & B)) -> (~A | ~B)
2670
auto TryInvertAndOrUsingDeMorgan = [&](Instruction::BinaryOps Opcode,
2671
bool IsLogical, Value *A,
2672
Value *B) -> Value * {
2673
bool LocalDoesConsume = DoesConsume;
2674
if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder=*/nullptr,
2675
LocalDoesConsume, Depth))
2676
return nullptr;
2677
if (auto *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
2678
LocalDoesConsume, Depth)) {
2679
auto *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
2680
LocalDoesConsume, Depth);
2681
DoesConsume = LocalDoesConsume;
2682
if (IsLogical)
2683
return Builder ? Builder->CreateLogicalOp(Opcode, NotA, NotB) : NonNull;
2684
return Builder ? Builder->CreateBinOp(Opcode, NotA, NotB) : NonNull;
2685
}
2686
2687
return nullptr;
2688
};
2689
2690
if (match(V, m_Or(m_Value(A), m_Value(B))))
2691
return TryInvertAndOrUsingDeMorgan(Instruction::And, /*IsLogical=*/false, A,
2692
B);
2693
2694
if (match(V, m_And(m_Value(A), m_Value(B))))
2695
return TryInvertAndOrUsingDeMorgan(Instruction::Or, /*IsLogical=*/false, A,
2696
B);
2697
2698
if (match(V, m_LogicalOr(m_Value(A), m_Value(B))))
2699
return TryInvertAndOrUsingDeMorgan(Instruction::And, /*IsLogical=*/true, A,
2700
B);
2701
2702
if (match(V, m_LogicalAnd(m_Value(A), m_Value(B))))
2703
return TryInvertAndOrUsingDeMorgan(Instruction::Or, /*IsLogical=*/true, A,
2704
B);
2705
2706
return nullptr;
2707
}
2708
2709
Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2710
Value *PtrOp = GEP.getOperand(0);
2711
SmallVector<Value *, 8> Indices(GEP.indices());
2712
Type *GEPType = GEP.getType();
2713
Type *GEPEltType = GEP.getSourceElementType();
2714
if (Value *V =
2715
simplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.getNoWrapFlags(),
2716
SQ.getWithInstruction(&GEP)))
2717
return replaceInstUsesWith(GEP, V);
2718
2719
// For vector geps, use the generic demanded vector support.
2720
// Skip if GEP return type is scalable. The number of elements is unknown at
2721
// compile-time.
2722
if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
2723
auto VWidth = GEPFVTy->getNumElements();
2724
APInt PoisonElts(VWidth, 0);
2725
APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
2726
if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
2727
PoisonElts)) {
2728
if (V != &GEP)
2729
return replaceInstUsesWith(GEP, V);
2730
return &GEP;
2731
}
2732
2733
// TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
2734
// possible (decide on canonical form for pointer broadcast), 3) exploit
2735
// undef elements to decrease demanded bits
2736
}
2737
2738
// Eliminate unneeded casts for indices, and replace indices which displace
2739
// by multiples of a zero size type with zero.
2740
bool MadeChange = false;
2741
2742
// Index width may not be the same width as pointer width.
2743
// Data layout chooses the right type based on supported integer types.
2744
Type *NewScalarIndexTy =
2745
DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
2746
2747
gep_type_iterator GTI = gep_type_begin(GEP);
2748
for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
2749
++I, ++GTI) {
2750
// Skip indices into struct types.
2751
if (GTI.isStruct())
2752
continue;
2753
2754
Type *IndexTy = (*I)->getType();
2755
Type *NewIndexType =
2756
IndexTy->isVectorTy()
2757
? VectorType::get(NewScalarIndexTy,
2758
cast<VectorType>(IndexTy)->getElementCount())
2759
: NewScalarIndexTy;
2760
2761
// If the element type has zero size then any index over it is equivalent
2762
// to an index of zero, so replace it with zero if it is not zero already.
2763
Type *EltTy = GTI.getIndexedType();
2764
if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
2765
if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
2766
*I = Constant::getNullValue(NewIndexType);
2767
MadeChange = true;
2768
}
2769
2770
if (IndexTy != NewIndexType) {
2771
// If we are using a wider index than needed for this platform, shrink
2772
// it to what we need. If narrower, sign-extend it to what we need.
2773
// This explicit cast can make subsequent optimizations more obvious.
2774
*I = Builder.CreateIntCast(*I, NewIndexType, true);
2775
MadeChange = true;
2776
}
2777
}
2778
if (MadeChange)
2779
return &GEP;
2780
2781
// Canonicalize constant GEPs to i8 type.
2782
if (!GEPEltType->isIntegerTy(8) && GEP.hasAllConstantIndices()) {
2783
APInt Offset(DL.getIndexTypeSizeInBits(GEPType), 0);
2784
if (GEP.accumulateConstantOffset(DL, Offset))
2785
return replaceInstUsesWith(
2786
GEP, Builder.CreatePtrAdd(PtrOp, Builder.getInt(Offset), "",
2787
GEP.getNoWrapFlags()));
2788
}
2789
2790
// Canonicalize
2791
// - scalable GEPs to an explicit offset using the llvm.vscale intrinsic.
2792
// This has better support in BasicAA.
2793
// - gep i32 p, mul(O, C) -> gep i8, p, mul(O, C*4) to fold the two
2794
// multiplies together.
2795
if (GEPEltType->isScalableTy() ||
2796
(!GEPEltType->isIntegerTy(8) && GEP.getNumIndices() == 1 &&
2797
match(GEP.getOperand(1),
2798
m_OneUse(m_CombineOr(m_Mul(m_Value(), m_ConstantInt()),
2799
m_Shl(m_Value(), m_ConstantInt())))))) {
2800
Value *Offset = EmitGEPOffset(cast<GEPOperator>(&GEP));
2801
return replaceInstUsesWith(
2802
GEP, Builder.CreatePtrAdd(PtrOp, Offset, "", GEP.getNoWrapFlags()));
2803
}
2804
2805
// Check to see if the inputs to the PHI node are getelementptr instructions.
2806
if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
2807
auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
2808
if (!Op1)
2809
return nullptr;
2810
2811
// Don't fold a GEP into itself through a PHI node. This can only happen
2812
// through the back-edge of a loop. Folding a GEP into itself means that
2813
// the value of the previous iteration needs to be stored in the meantime,
2814
// thus requiring an additional register variable to be live, but not
2815
// actually achieving anything (the GEP still needs to be executed once per
2816
// loop iteration).
2817
if (Op1 == &GEP)
2818
return nullptr;
2819
2820
int DI = -1;
2821
2822
for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
2823
auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
2824
if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() ||
2825
Op1->getSourceElementType() != Op2->getSourceElementType())
2826
return nullptr;
2827
2828
// As for Op1 above, don't try to fold a GEP into itself.
2829
if (Op2 == &GEP)
2830
return nullptr;
2831
2832
// Keep track of the type as we walk the GEP.
2833
Type *CurTy = nullptr;
2834
2835
for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
2836
if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
2837
return nullptr;
2838
2839
if (Op1->getOperand(J) != Op2->getOperand(J)) {
2840
if (DI == -1) {
2841
// We have not seen any differences yet in the GEPs feeding the
2842
// PHI yet, so we record this one if it is allowed to be a
2843
// variable.
2844
2845
// The first two arguments can vary for any GEP, the rest have to be
2846
// static for struct slots
2847
if (J > 1) {
2848
assert(CurTy && "No current type?");
2849
if (CurTy->isStructTy())
2850
return nullptr;
2851
}
2852
2853
DI = J;
2854
} else {
2855
// The GEP is different by more than one input. While this could be
2856
// extended to support GEPs that vary by more than one variable it
2857
// doesn't make sense since it greatly increases the complexity and
2858
// would result in an R+R+R addressing mode which no backend
2859
// directly supports and would need to be broken into several
2860
// simpler instructions anyway.
2861
return nullptr;
2862
}
2863
}
2864
2865
// Sink down a layer of the type for the next iteration.
2866
if (J > 0) {
2867
if (J == 1) {
2868
CurTy = Op1->getSourceElementType();
2869
} else {
2870
CurTy =
2871
GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
2872
}
2873
}
2874
}
2875
}
2876
2877
// If not all GEPs are identical we'll have to create a new PHI node.
2878
// Check that the old PHI node has only one use so that it will get
2879
// removed.
2880
if (DI != -1 && !PN->hasOneUse())
2881
return nullptr;
2882
2883
auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
2884
if (DI == -1) {
2885
// All the GEPs feeding the PHI are identical. Clone one down into our
2886
// BB so that it can be merged with the current GEP.
2887
} else {
2888
// All the GEPs feeding the PHI differ at a single offset. Clone a GEP
2889
// into the current block so it can be merged, and create a new PHI to
2890
// set that index.
2891
PHINode *NewPN;
2892
{
2893
IRBuilderBase::InsertPointGuard Guard(Builder);
2894
Builder.SetInsertPoint(PN);
2895
NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
2896
PN->getNumOperands());
2897
}
2898
2899
for (auto &I : PN->operands())
2900
NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
2901
PN->getIncomingBlock(I));
2902
2903
NewGEP->setOperand(DI, NewPN);
2904
}
2905
2906
NewGEP->insertBefore(*GEP.getParent(), GEP.getParent()->getFirstInsertionPt());
2907
return replaceOperand(GEP, 0, NewGEP);
2908
}
2909
2910
if (auto *Src = dyn_cast<GEPOperator>(PtrOp))
2911
if (Instruction *I = visitGEPOfGEP(GEP, Src))
2912
return I;
2913
2914
if (GEP.getNumIndices() == 1) {
2915
unsigned AS = GEP.getPointerAddressSpace();
2916
if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2917
DL.getIndexSizeInBits(AS)) {
2918
uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedValue();
2919
2920
if (TyAllocSize == 1) {
2921
// Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y),
2922
// but only if the result pointer is only used as if it were an integer,
2923
// or both point to the same underlying object (otherwise provenance is
2924
// not necessarily retained).
2925
Value *X = GEP.getPointerOperand();
2926
Value *Y;
2927
if (match(GEP.getOperand(1),
2928
m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) &&
2929
GEPType == Y->getType()) {
2930
bool HasSameUnderlyingObject =
2931
getUnderlyingObject(X) == getUnderlyingObject(Y);
2932
bool Changed = false;
2933
GEP.replaceUsesWithIf(Y, [&](Use &U) {
2934
bool ShouldReplace = HasSameUnderlyingObject ||
2935
isa<ICmpInst>(U.getUser()) ||
2936
isa<PtrToIntInst>(U.getUser());
2937
Changed |= ShouldReplace;
2938
return ShouldReplace;
2939
});
2940
return Changed ? &GEP : nullptr;
2941
}
2942
} else if (auto *ExactIns =
2943
dyn_cast<PossiblyExactOperator>(GEP.getOperand(1))) {
2944
// Canonicalize (gep T* X, V / sizeof(T)) to (gep i8* X, V)
2945
Value *V;
2946
if (ExactIns->isExact()) {
2947
if ((has_single_bit(TyAllocSize) &&
2948
match(GEP.getOperand(1),
2949
m_Shr(m_Value(V),
2950
m_SpecificInt(countr_zero(TyAllocSize))))) ||
2951
match(GEP.getOperand(1),
2952
m_IDiv(m_Value(V), m_SpecificInt(TyAllocSize)))) {
2953
return GetElementPtrInst::Create(Builder.getInt8Ty(),
2954
GEP.getPointerOperand(), V,
2955
GEP.getNoWrapFlags());
2956
}
2957
}
2958
if (ExactIns->isExact() && ExactIns->hasOneUse()) {
2959
// Try to canonicalize non-i8 element type to i8 if the index is an
2960
// exact instruction. If the index is an exact instruction (div/shr)
2961
// with a constant RHS, we can fold the non-i8 element scale into the
2962
// div/shr (similiar to the mul case, just inverted).
2963
const APInt *C;
2964
std::optional<APInt> NewC;
2965
if (has_single_bit(TyAllocSize) &&
2966
match(ExactIns, m_Shr(m_Value(V), m_APInt(C))) &&
2967
C->uge(countr_zero(TyAllocSize)))
2968
NewC = *C - countr_zero(TyAllocSize);
2969
else if (match(ExactIns, m_UDiv(m_Value(V), m_APInt(C)))) {
2970
APInt Quot;
2971
uint64_t Rem;
2972
APInt::udivrem(*C, TyAllocSize, Quot, Rem);
2973
if (Rem == 0)
2974
NewC = Quot;
2975
} else if (match(ExactIns, m_SDiv(m_Value(V), m_APInt(C)))) {
2976
APInt Quot;
2977
int64_t Rem;
2978
APInt::sdivrem(*C, TyAllocSize, Quot, Rem);
2979
// For sdiv we need to make sure we arent creating INT_MIN / -1.
2980
if (!Quot.isAllOnes() && Rem == 0)
2981
NewC = Quot;
2982
}
2983
2984
if (NewC.has_value()) {
2985
Value *NewOp = Builder.CreateBinOp(
2986
static_cast<Instruction::BinaryOps>(ExactIns->getOpcode()), V,
2987
ConstantInt::get(V->getType(), *NewC));
2988
cast<BinaryOperator>(NewOp)->setIsExact();
2989
return GetElementPtrInst::Create(Builder.getInt8Ty(),
2990
GEP.getPointerOperand(), NewOp,
2991
GEP.getNoWrapFlags());
2992
}
2993
}
2994
}
2995
}
2996
}
2997
// We do not handle pointer-vector geps here.
2998
if (GEPType->isVectorTy())
2999
return nullptr;
3000
3001
if (GEP.getNumIndices() == 1) {
3002
// We can only preserve inbounds if the original gep is inbounds, the add
3003
// is nsw, and the add operands are non-negative.
3004
auto CanPreserveInBounds = [&](bool AddIsNSW, Value *Idx1, Value *Idx2) {
3005
SimplifyQuery Q = SQ.getWithInstruction(&GEP);
3006
return GEP.isInBounds() && AddIsNSW && isKnownNonNegative(Idx1, Q) &&
3007
isKnownNonNegative(Idx2, Q);
3008
};
3009
3010
// Try to replace ADD + GEP with GEP + GEP.
3011
Value *Idx1, *Idx2;
3012
if (match(GEP.getOperand(1),
3013
m_OneUse(m_Add(m_Value(Idx1), m_Value(Idx2))))) {
3014
// %idx = add i64 %idx1, %idx2
3015
// %gep = getelementptr i32, ptr %ptr, i64 %idx
3016
// as:
3017
// %newptr = getelementptr i32, ptr %ptr, i64 %idx1
3018
// %newgep = getelementptr i32, ptr %newptr, i64 %idx2
3019
bool IsInBounds = CanPreserveInBounds(
3020
cast<OverflowingBinaryOperator>(GEP.getOperand(1))->hasNoSignedWrap(),
3021
Idx1, Idx2);
3022
auto *NewPtr =
3023
Builder.CreateGEP(GEP.getSourceElementType(), GEP.getPointerOperand(),
3024
Idx1, "", IsInBounds);
3025
return replaceInstUsesWith(
3026
GEP, Builder.CreateGEP(GEP.getSourceElementType(), NewPtr, Idx2, "",
3027
IsInBounds));
3028
}
3029
ConstantInt *C;
3030
if (match(GEP.getOperand(1), m_OneUse(m_SExtLike(m_OneUse(m_NSWAdd(
3031
m_Value(Idx1), m_ConstantInt(C))))))) {
3032
// %add = add nsw i32 %idx1, idx2
3033
// %sidx = sext i32 %add to i64
3034
// %gep = getelementptr i32, ptr %ptr, i64 %sidx
3035
// as:
3036
// %newptr = getelementptr i32, ptr %ptr, i32 %idx1
3037
// %newgep = getelementptr i32, ptr %newptr, i32 idx2
3038
bool IsInBounds = CanPreserveInBounds(
3039
/*IsNSW=*/true, Idx1, C);
3040
auto *NewPtr = Builder.CreateGEP(
3041
GEP.getSourceElementType(), GEP.getPointerOperand(),
3042
Builder.CreateSExt(Idx1, GEP.getOperand(1)->getType()), "",
3043
IsInBounds);
3044
return replaceInstUsesWith(
3045
GEP,
3046
Builder.CreateGEP(GEP.getSourceElementType(), NewPtr,
3047
Builder.CreateSExt(C, GEP.getOperand(1)->getType()),
3048
"", IsInBounds));
3049
}
3050
}
3051
3052
if (!GEP.isInBounds()) {
3053
unsigned IdxWidth =
3054
DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
3055
APInt BasePtrOffset(IdxWidth, 0);
3056
Value *UnderlyingPtrOp =
3057
PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
3058
BasePtrOffset);
3059
bool CanBeNull, CanBeFreed;
3060
uint64_t DerefBytes = UnderlyingPtrOp->getPointerDereferenceableBytes(
3061
DL, CanBeNull, CanBeFreed);
3062
if (!CanBeNull && !CanBeFreed && DerefBytes != 0) {
3063
if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
3064
BasePtrOffset.isNonNegative()) {
3065
APInt AllocSize(IdxWidth, DerefBytes);
3066
if (BasePtrOffset.ule(AllocSize)) {
3067
return GetElementPtrInst::CreateInBounds(
3068
GEP.getSourceElementType(), PtrOp, Indices, GEP.getName());
3069
}
3070
}
3071
}
3072
}
3073
3074
if (Instruction *R = foldSelectGEP(GEP, Builder))
3075
return R;
3076
3077
return nullptr;
3078
}
3079
3080
static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI,
3081
Instruction *AI) {
3082
if (isa<ConstantPointerNull>(V))
3083
return true;
3084
if (auto *LI = dyn_cast<LoadInst>(V))
3085
return isa<GlobalVariable>(LI->getPointerOperand());
3086
// Two distinct allocations will never be equal.
3087
return isAllocLikeFn(V, &TLI) && V != AI;
3088
}
3089
3090
/// Given a call CB which uses an address UsedV, return true if we can prove the
3091
/// call's only possible effect is storing to V.
3092
static bool isRemovableWrite(CallBase &CB, Value *UsedV,
3093
const TargetLibraryInfo &TLI) {
3094
if (!CB.use_empty())
3095
// TODO: add recursion if returned attribute is present
3096
return false;
3097
3098
if (CB.isTerminator())
3099
// TODO: remove implementation restriction
3100
return false;
3101
3102
if (!CB.willReturn() || !CB.doesNotThrow())
3103
return false;
3104
3105
// If the only possible side effect of the call is writing to the alloca,
3106
// and the result isn't used, we can safely remove any reads implied by the
3107
// call including those which might read the alloca itself.
3108
std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI);
3109
return Dest && Dest->Ptr == UsedV;
3110
}
3111
3112
static bool isAllocSiteRemovable(Instruction *AI,
3113
SmallVectorImpl<WeakTrackingVH> &Users,
3114
const TargetLibraryInfo &TLI) {
3115
SmallVector<Instruction*, 4> Worklist;
3116
const std::optional<StringRef> Family = getAllocationFamily(AI, &TLI);
3117
Worklist.push_back(AI);
3118
3119
do {
3120
Instruction *PI = Worklist.pop_back_val();
3121
for (User *U : PI->users()) {
3122
Instruction *I = cast<Instruction>(U);
3123
switch (I->getOpcode()) {
3124
default:
3125
// Give up the moment we see something we can't handle.
3126
return false;
3127
3128
case Instruction::AddrSpaceCast:
3129
case Instruction::BitCast:
3130
case Instruction::GetElementPtr:
3131
Users.emplace_back(I);
3132
Worklist.push_back(I);
3133
continue;
3134
3135
case Instruction::ICmp: {
3136
ICmpInst *ICI = cast<ICmpInst>(I);
3137
// We can fold eq/ne comparisons with null to false/true, respectively.
3138
// We also fold comparisons in some conditions provided the alloc has
3139
// not escaped (see isNeverEqualToUnescapedAlloc).
3140
if (!ICI->isEquality())
3141
return false;
3142
unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
3143
if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
3144
return false;
3145
3146
// Do not fold compares to aligned_alloc calls, as they may have to
3147
// return null in case the required alignment cannot be satisfied,
3148
// unless we can prove that both alignment and size are valid.
3149
auto AlignmentAndSizeKnownValid = [](CallBase *CB) {
3150
// Check if alignment and size of a call to aligned_alloc is valid,
3151
// that is alignment is a power-of-2 and the size is a multiple of the
3152
// alignment.
3153
const APInt *Alignment;
3154
const APInt *Size;
3155
return match(CB->getArgOperand(0), m_APInt(Alignment)) &&
3156
match(CB->getArgOperand(1), m_APInt(Size)) &&
3157
Alignment->isPowerOf2() && Size->urem(*Alignment).isZero();
3158
};
3159
auto *CB = dyn_cast<CallBase>(AI);
3160
LibFunc TheLibFunc;
3161
if (CB && TLI.getLibFunc(*CB->getCalledFunction(), TheLibFunc) &&
3162
TLI.has(TheLibFunc) && TheLibFunc == LibFunc_aligned_alloc &&
3163
!AlignmentAndSizeKnownValid(CB))
3164
return false;
3165
Users.emplace_back(I);
3166
continue;
3167
}
3168
3169
case Instruction::Call:
3170
// Ignore no-op and store intrinsics.
3171
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
3172
switch (II->getIntrinsicID()) {
3173
default:
3174
return false;
3175
3176
case Intrinsic::memmove:
3177
case Intrinsic::memcpy:
3178
case Intrinsic::memset: {
3179
MemIntrinsic *MI = cast<MemIntrinsic>(II);
3180
if (MI->isVolatile() || MI->getRawDest() != PI)
3181
return false;
3182
[[fallthrough]];
3183
}
3184
case Intrinsic::assume:
3185
case Intrinsic::invariant_start:
3186
case Intrinsic::invariant_end:
3187
case Intrinsic::lifetime_start:
3188
case Intrinsic::lifetime_end:
3189
case Intrinsic::objectsize:
3190
Users.emplace_back(I);
3191
continue;
3192
case Intrinsic::launder_invariant_group:
3193
case Intrinsic::strip_invariant_group:
3194
Users.emplace_back(I);
3195
Worklist.push_back(I);
3196
continue;
3197
}
3198
}
3199
3200
if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) {
3201
Users.emplace_back(I);
3202
continue;
3203
}
3204
3205
if (getFreedOperand(cast<CallBase>(I), &TLI) == PI &&
3206
getAllocationFamily(I, &TLI) == Family) {
3207
assert(Family);
3208
Users.emplace_back(I);
3209
continue;
3210
}
3211
3212
if (getReallocatedOperand(cast<CallBase>(I)) == PI &&
3213
getAllocationFamily(I, &TLI) == Family) {
3214
assert(Family);
3215
Users.emplace_back(I);
3216
Worklist.push_back(I);
3217
continue;
3218
}
3219
3220
return false;
3221
3222
case Instruction::Store: {
3223
StoreInst *SI = cast<StoreInst>(I);
3224
if (SI->isVolatile() || SI->getPointerOperand() != PI)
3225
return false;
3226
Users.emplace_back(I);
3227
continue;
3228
}
3229
}
3230
llvm_unreachable("missing a return?");
3231
}
3232
} while (!Worklist.empty());
3233
return true;
3234
}
3235
3236
Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) {
3237
assert(isa<AllocaInst>(MI) || isRemovableAlloc(&cast<CallBase>(MI), &TLI));
3238
3239
// If we have a malloc call which is only used in any amount of comparisons to
3240
// null and free calls, delete the calls and replace the comparisons with true
3241
// or false as appropriate.
3242
3243
// This is based on the principle that we can substitute our own allocation
3244
// function (which will never return null) rather than knowledge of the
3245
// specific function being called. In some sense this can change the permitted
3246
// outputs of a program (when we convert a malloc to an alloca, the fact that
3247
// the allocation is now on the stack is potentially visible, for example),
3248
// but we believe in a permissible manner.
3249
SmallVector<WeakTrackingVH, 64> Users;
3250
3251
// If we are removing an alloca with a dbg.declare, insert dbg.value calls
3252
// before each store.
3253
SmallVector<DbgVariableIntrinsic *, 8> DVIs;
3254
SmallVector<DbgVariableRecord *, 8> DVRs;
3255
std::unique_ptr<DIBuilder> DIB;
3256
if (isa<AllocaInst>(MI)) {
3257
findDbgUsers(DVIs, &MI, &DVRs);
3258
DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
3259
}
3260
3261
if (isAllocSiteRemovable(&MI, Users, TLI)) {
3262
for (unsigned i = 0, e = Users.size(); i != e; ++i) {
3263
// Lowering all @llvm.objectsize calls first because they may
3264
// use a bitcast/GEP of the alloca we are removing.
3265
if (!Users[i])
3266
continue;
3267
3268
Instruction *I = cast<Instruction>(&*Users[i]);
3269
3270
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
3271
if (II->getIntrinsicID() == Intrinsic::objectsize) {
3272
SmallVector<Instruction *> InsertedInstructions;
3273
Value *Result = lowerObjectSizeCall(
3274
II, DL, &TLI, AA, /*MustSucceed=*/true, &InsertedInstructions);
3275
for (Instruction *Inserted : InsertedInstructions)
3276
Worklist.add(Inserted);
3277
replaceInstUsesWith(*I, Result);
3278
eraseInstFromFunction(*I);
3279
Users[i] = nullptr; // Skip examining in the next loop.
3280
}
3281
}
3282
}
3283
for (unsigned i = 0, e = Users.size(); i != e; ++i) {
3284
if (!Users[i])
3285
continue;
3286
3287
Instruction *I = cast<Instruction>(&*Users[i]);
3288
3289
if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
3290
replaceInstUsesWith(*C,
3291
ConstantInt::get(Type::getInt1Ty(C->getContext()),
3292
C->isFalseWhenEqual()));
3293
} else if (auto *SI = dyn_cast<StoreInst>(I)) {
3294
for (auto *DVI : DVIs)
3295
if (DVI->isAddressOfVariable())
3296
ConvertDebugDeclareToDebugValue(DVI, SI, *DIB);
3297
for (auto *DVR : DVRs)
3298
if (DVR->isAddressOfVariable())
3299
ConvertDebugDeclareToDebugValue(DVR, SI, *DIB);
3300
} else {
3301
// Casts, GEP, or anything else: we're about to delete this instruction,
3302
// so it can not have any valid uses.
3303
replaceInstUsesWith(*I, PoisonValue::get(I->getType()));
3304
}
3305
eraseInstFromFunction(*I);
3306
}
3307
3308
if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
3309
// Replace invoke with a NOP intrinsic to maintain the original CFG
3310
Module *M = II->getModule();
3311
Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
3312
InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
3313
std::nullopt, "", II->getParent());
3314
}
3315
3316
// Remove debug intrinsics which describe the value contained within the
3317
// alloca. In addition to removing dbg.{declare,addr} which simply point to
3318
// the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
3319
//
3320
// ```
3321
// define void @foo(i32 %0) {
3322
// %a = alloca i32 ; Deleted.
3323
// store i32 %0, i32* %a
3324
// dbg.value(i32 %0, "arg0") ; Not deleted.
3325
// dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted.
3326
// call void @trivially_inlinable_no_op(i32* %a)
3327
// ret void
3328
// }
3329
// ```
3330
//
3331
// This may not be required if we stop describing the contents of allocas
3332
// using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
3333
// the LowerDbgDeclare utility.
3334
//
3335
// If there is a dead store to `%a` in @trivially_inlinable_no_op, the
3336
// "arg0" dbg.value may be stale after the call. However, failing to remove
3337
// the DW_OP_deref dbg.value causes large gaps in location coverage.
3338
//
3339
// FIXME: the Assignment Tracking project has now likely made this
3340
// redundant (and it's sometimes harmful).
3341
for (auto *DVI : DVIs)
3342
if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
3343
DVI->eraseFromParent();
3344
for (auto *DVR : DVRs)
3345
if (DVR->isAddressOfVariable() || DVR->getExpression()->startsWithDeref())
3346
DVR->eraseFromParent();
3347
3348
return eraseInstFromFunction(MI);
3349
}
3350
return nullptr;
3351
}
3352
3353
/// Move the call to free before a NULL test.
3354
///
3355
/// Check if this free is accessed after its argument has been test
3356
/// against NULL (property 0).
3357
/// If yes, it is legal to move this call in its predecessor block.
3358
///
3359
/// The move is performed only if the block containing the call to free
3360
/// will be removed, i.e.:
3361
/// 1. it has only one predecessor P, and P has two successors
3362
/// 2. it contains the call, noops, and an unconditional branch
3363
/// 3. its successor is the same as its predecessor's successor
3364
///
3365
/// The profitability is out-of concern here and this function should
3366
/// be called only if the caller knows this transformation would be
3367
/// profitable (e.g., for code size).
3368
static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
3369
const DataLayout &DL) {
3370
Value *Op = FI.getArgOperand(0);
3371
BasicBlock *FreeInstrBB = FI.getParent();
3372
BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
3373
3374
// Validate part of constraint #1: Only one predecessor
3375
// FIXME: We can extend the number of predecessor, but in that case, we
3376
// would duplicate the call to free in each predecessor and it may
3377
// not be profitable even for code size.
3378
if (!PredBB)
3379
return nullptr;
3380
3381
// Validate constraint #2: Does this block contains only the call to
3382
// free, noops, and an unconditional branch?
3383
BasicBlock *SuccBB;
3384
Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
3385
if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
3386
return nullptr;
3387
3388
// If there are only 2 instructions in the block, at this point,
3389
// this is the call to free and unconditional.
3390
// If there are more than 2 instructions, check that they are noops
3391
// i.e., they won't hurt the performance of the generated code.
3392
if (FreeInstrBB->size() != 2) {
3393
for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
3394
if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
3395
continue;
3396
auto *Cast = dyn_cast<CastInst>(&Inst);
3397
if (!Cast || !Cast->isNoopCast(DL))
3398
return nullptr;
3399
}
3400
}
3401
// Validate the rest of constraint #1 by matching on the pred branch.
3402
Instruction *TI = PredBB->getTerminator();
3403
BasicBlock *TrueBB, *FalseBB;
3404
ICmpInst::Predicate Pred;
3405
if (!match(TI, m_Br(m_ICmp(Pred,
3406
m_CombineOr(m_Specific(Op),
3407
m_Specific(Op->stripPointerCasts())),
3408
m_Zero()),
3409
TrueBB, FalseBB)))
3410
return nullptr;
3411
if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
3412
return nullptr;
3413
3414
// Validate constraint #3: Ensure the null case just falls through.
3415
if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
3416
return nullptr;
3417
assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
3418
"Broken CFG: missing edge from predecessor to successor");
3419
3420
// At this point, we know that everything in FreeInstrBB can be moved
3421
// before TI.
3422
for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) {
3423
if (&Instr == FreeInstrBBTerminator)
3424
break;
3425
Instr.moveBeforePreserving(TI);
3426
}
3427
assert(FreeInstrBB->size() == 1 &&
3428
"Only the branch instruction should remain");
3429
3430
// Now that we've moved the call to free before the NULL check, we have to
3431
// remove any attributes on its parameter that imply it's non-null, because
3432
// those attributes might have only been valid because of the NULL check, and
3433
// we can get miscompiles if we keep them. This is conservative if non-null is
3434
// also implied by something other than the NULL check, but it's guaranteed to
3435
// be correct, and the conservativeness won't matter in practice, since the
3436
// attributes are irrelevant for the call to free itself and the pointer
3437
// shouldn't be used after the call.
3438
AttributeList Attrs = FI.getAttributes();
3439
Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull);
3440
Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable);
3441
if (Dereferenceable.isValid()) {
3442
uint64_t Bytes = Dereferenceable.getDereferenceableBytes();
3443
Attrs = Attrs.removeParamAttribute(FI.getContext(), 0,
3444
Attribute::Dereferenceable);
3445
Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes);
3446
}
3447
FI.setAttributes(Attrs);
3448
3449
return &FI;
3450
}
3451
3452
Instruction *InstCombinerImpl::visitFree(CallInst &FI, Value *Op) {
3453
// free undef -> unreachable.
3454
if (isa<UndefValue>(Op)) {
3455
// Leave a marker since we can't modify the CFG here.
3456
CreateNonTerminatorUnreachable(&FI);
3457
return eraseInstFromFunction(FI);
3458
}
3459
3460
// If we have 'free null' delete the instruction. This can happen in stl code
3461
// when lots of inlining happens.
3462
if (isa<ConstantPointerNull>(Op))
3463
return eraseInstFromFunction(FI);
3464
3465
// If we had free(realloc(...)) with no intervening uses, then eliminate the
3466
// realloc() entirely.
3467
CallInst *CI = dyn_cast<CallInst>(Op);
3468
if (CI && CI->hasOneUse())
3469
if (Value *ReallocatedOp = getReallocatedOperand(CI))
3470
return eraseInstFromFunction(*replaceInstUsesWith(*CI, ReallocatedOp));
3471
3472
// If we optimize for code size, try to move the call to free before the null
3473
// test so that simplify cfg can remove the empty block and dead code
3474
// elimination the branch. I.e., helps to turn something like:
3475
// if (foo) free(foo);
3476
// into
3477
// free(foo);
3478
//
3479
// Note that we can only do this for 'free' and not for any flavor of
3480
// 'operator delete'; there is no 'operator delete' symbol for which we are
3481
// permitted to invent a call, even if we're passing in a null pointer.
3482
if (MinimizeSize) {
3483
LibFunc Func;
3484
if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
3485
if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
3486
return I;
3487
}
3488
3489
return nullptr;
3490
}
3491
3492
Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) {
3493
Value *RetVal = RI.getReturnValue();
3494
if (!RetVal || !AttributeFuncs::isNoFPClassCompatibleType(RetVal->getType()))
3495
return nullptr;
3496
3497
Function *F = RI.getFunction();
3498
FPClassTest ReturnClass = F->getAttributes().getRetNoFPClass();
3499
if (ReturnClass == fcNone)
3500
return nullptr;
3501
3502
KnownFPClass KnownClass;
3503
Value *Simplified =
3504
SimplifyDemandedUseFPClass(RetVal, ~ReturnClass, KnownClass, 0, &RI);
3505
if (!Simplified)
3506
return nullptr;
3507
3508
return ReturnInst::Create(RI.getContext(), Simplified);
3509
}
3510
3511
// WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()!
3512
bool InstCombinerImpl::removeInstructionsBeforeUnreachable(Instruction &I) {
3513
// Try to remove the previous instruction if it must lead to unreachable.
3514
// This includes instructions like stores and "llvm.assume" that may not get
3515
// removed by simple dead code elimination.
3516
bool Changed = false;
3517
while (Instruction *Prev = I.getPrevNonDebugInstruction()) {
3518
// While we theoretically can erase EH, that would result in a block that
3519
// used to start with an EH no longer starting with EH, which is invalid.
3520
// To make it valid, we'd need to fixup predecessors to no longer refer to
3521
// this block, but that changes CFG, which is not allowed in InstCombine.
3522
if (Prev->isEHPad())
3523
break; // Can not drop any more instructions. We're done here.
3524
3525
if (!isGuaranteedToTransferExecutionToSuccessor(Prev))
3526
break; // Can not drop any more instructions. We're done here.
3527
// Otherwise, this instruction can be freely erased,
3528
// even if it is not side-effect free.
3529
3530
// A value may still have uses before we process it here (for example, in
3531
// another unreachable block), so convert those to poison.
3532
replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType()));
3533
eraseInstFromFunction(*Prev);
3534
Changed = true;
3535
}
3536
return Changed;
3537
}
3538
3539
Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) {
3540
removeInstructionsBeforeUnreachable(I);
3541
return nullptr;
3542
}
3543
3544
Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) {
3545
assert(BI.isUnconditional() && "Only for unconditional branches.");
3546
3547
// If this store is the second-to-last instruction in the basic block
3548
// (excluding debug info and bitcasts of pointers) and if the block ends with
3549
// an unconditional branch, try to move the store to the successor block.
3550
3551
auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
3552
auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
3553
return BBI->isDebugOrPseudoInst() ||
3554
(isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
3555
};
3556
3557
BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
3558
do {
3559
if (BBI != FirstInstr)
3560
--BBI;
3561
} while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
3562
3563
return dyn_cast<StoreInst>(BBI);
3564
};
3565
3566
if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
3567
if (mergeStoreIntoSuccessor(*SI))
3568
return &BI;
3569
3570
return nullptr;
3571
}
3572
3573
void InstCombinerImpl::addDeadEdge(BasicBlock *From, BasicBlock *To,
3574
SmallVectorImpl<BasicBlock *> &Worklist) {
3575
if (!DeadEdges.insert({From, To}).second)
3576
return;
3577
3578
// Replace phi node operands in successor with poison.
3579
for (PHINode &PN : To->phis())
3580
for (Use &U : PN.incoming_values())
3581
if (PN.getIncomingBlock(U) == From && !isa<PoisonValue>(U)) {
3582
replaceUse(U, PoisonValue::get(PN.getType()));
3583
addToWorklist(&PN);
3584
MadeIRChange = true;
3585
}
3586
3587
Worklist.push_back(To);
3588
}
3589
3590
// Under the assumption that I is unreachable, remove it and following
3591
// instructions. Changes are reported directly to MadeIRChange.
3592
void InstCombinerImpl::handleUnreachableFrom(
3593
Instruction *I, SmallVectorImpl<BasicBlock *> &Worklist) {
3594
BasicBlock *BB = I->getParent();
3595
for (Instruction &Inst : make_early_inc_range(
3596
make_range(std::next(BB->getTerminator()->getReverseIterator()),
3597
std::next(I->getReverseIterator())))) {
3598
if (!Inst.use_empty() && !Inst.getType()->isTokenTy()) {
3599
replaceInstUsesWith(Inst, PoisonValue::get(Inst.getType()));
3600
MadeIRChange = true;
3601
}
3602
if (Inst.isEHPad() || Inst.getType()->isTokenTy())
3603
continue;
3604
// RemoveDIs: erase debug-info on this instruction manually.
3605
Inst.dropDbgRecords();
3606
eraseInstFromFunction(Inst);
3607
MadeIRChange = true;
3608
}
3609
3610
SmallVector<Value *> Changed;
3611
if (handleUnreachableTerminator(BB->getTerminator(), Changed)) {
3612
MadeIRChange = true;
3613
for (Value *V : Changed)
3614
addToWorklist(cast<Instruction>(V));
3615
}
3616
3617
// Handle potentially dead successors.
3618
for (BasicBlock *Succ : successors(BB))
3619
addDeadEdge(BB, Succ, Worklist);
3620
}
3621
3622
void InstCombinerImpl::handlePotentiallyDeadBlocks(
3623
SmallVectorImpl<BasicBlock *> &Worklist) {
3624
while (!Worklist.empty()) {
3625
BasicBlock *BB = Worklist.pop_back_val();
3626
if (!all_of(predecessors(BB), [&](BasicBlock *Pred) {
3627
return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred);
3628
}))
3629
continue;
3630
3631
handleUnreachableFrom(&BB->front(), Worklist);
3632
}
3633
}
3634
3635
void InstCombinerImpl::handlePotentiallyDeadSuccessors(BasicBlock *BB,
3636
BasicBlock *LiveSucc) {
3637
SmallVector<BasicBlock *> Worklist;
3638
for (BasicBlock *Succ : successors(BB)) {
3639
// The live successor isn't dead.
3640
if (Succ == LiveSucc)
3641
continue;
3642
3643
addDeadEdge(BB, Succ, Worklist);
3644
}
3645
3646
handlePotentiallyDeadBlocks(Worklist);
3647
}
3648
3649
Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) {
3650
if (BI.isUnconditional())
3651
return visitUnconditionalBranchInst(BI);
3652
3653
// Change br (not X), label True, label False to: br X, label False, True
3654
Value *Cond = BI.getCondition();
3655
Value *X;
3656
if (match(Cond, m_Not(m_Value(X))) && !isa<Constant>(X)) {
3657
// Swap Destinations and condition...
3658
BI.swapSuccessors();
3659
if (BPI)
3660
BPI->swapSuccEdgesProbabilities(BI.getParent());
3661
return replaceOperand(BI, 0, X);
3662
}
3663
3664
// Canonicalize logical-and-with-invert as logical-or-with-invert.
3665
// This is done by inverting the condition and swapping successors:
3666
// br (X && !Y), T, F --> br !(X && !Y), F, T --> br (!X || Y), F, T
3667
Value *Y;
3668
if (isa<SelectInst>(Cond) &&
3669
match(Cond,
3670
m_OneUse(m_LogicalAnd(m_Value(X), m_OneUse(m_Not(m_Value(Y))))))) {
3671
Value *NotX = Builder.CreateNot(X, "not." + X->getName());
3672
Value *Or = Builder.CreateLogicalOr(NotX, Y);
3673
BI.swapSuccessors();
3674
if (BPI)
3675
BPI->swapSuccEdgesProbabilities(BI.getParent());
3676
return replaceOperand(BI, 0, Or);
3677
}
3678
3679
// If the condition is irrelevant, remove the use so that other
3680
// transforms on the condition become more effective.
3681
if (!isa<ConstantInt>(Cond) && BI.getSuccessor(0) == BI.getSuccessor(1))
3682
return replaceOperand(BI, 0, ConstantInt::getFalse(Cond->getType()));
3683
3684
// Canonicalize, for example, fcmp_one -> fcmp_oeq.
3685
CmpInst::Predicate Pred;
3686
if (match(Cond, m_OneUse(m_FCmp(Pred, m_Value(), m_Value()))) &&
3687
!isCanonicalPredicate(Pred)) {
3688
// Swap destinations and condition.
3689
auto *Cmp = cast<CmpInst>(Cond);
3690
Cmp->setPredicate(CmpInst::getInversePredicate(Pred));
3691
BI.swapSuccessors();
3692
if (BPI)
3693
BPI->swapSuccEdgesProbabilities(BI.getParent());
3694
Worklist.push(Cmp);
3695
return &BI;
3696
}
3697
3698
if (isa<UndefValue>(Cond)) {
3699
handlePotentiallyDeadSuccessors(BI.getParent(), /*LiveSucc*/ nullptr);
3700
return nullptr;
3701
}
3702
if (auto *CI = dyn_cast<ConstantInt>(Cond)) {
3703
handlePotentiallyDeadSuccessors(BI.getParent(),
3704
BI.getSuccessor(!CI->getZExtValue()));
3705
return nullptr;
3706
}
3707
3708
DC.registerBranch(&BI);
3709
return nullptr;
3710
}
3711
3712
// Replaces (switch (select cond, X, C)/(select cond, C, X)) with (switch X) if
3713
// we can prove that both (switch C) and (switch X) go to the default when cond
3714
// is false/true.
3715
static Value *simplifySwitchOnSelectUsingRanges(SwitchInst &SI,
3716
SelectInst *Select,
3717
bool IsTrueArm) {
3718
unsigned CstOpIdx = IsTrueArm ? 1 : 2;
3719
auto *C = dyn_cast<ConstantInt>(Select->getOperand(CstOpIdx));
3720
if (!C)
3721
return nullptr;
3722
3723
BasicBlock *CstBB = SI.findCaseValue(C)->getCaseSuccessor();
3724
if (CstBB != SI.getDefaultDest())
3725
return nullptr;
3726
Value *X = Select->getOperand(3 - CstOpIdx);
3727
ICmpInst::Predicate Pred;
3728
const APInt *RHSC;
3729
if (!match(Select->getCondition(),
3730
m_ICmp(Pred, m_Specific(X), m_APInt(RHSC))))
3731
return nullptr;
3732
if (IsTrueArm)
3733
Pred = ICmpInst::getInversePredicate(Pred);
3734
3735
// See whether we can replace the select with X
3736
ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *RHSC);
3737
for (auto Case : SI.cases())
3738
if (!CR.contains(Case.getCaseValue()->getValue()))
3739
return nullptr;
3740
3741
return X;
3742
}
3743
3744
Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) {
3745
Value *Cond = SI.getCondition();
3746
Value *Op0;
3747
ConstantInt *AddRHS;
3748
if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
3749
// Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
3750
for (auto Case : SI.cases()) {
3751
Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
3752
assert(isa<ConstantInt>(NewCase) &&
3753
"Result of expression should be constant");
3754
Case.setValue(cast<ConstantInt>(NewCase));
3755
}
3756
return replaceOperand(SI, 0, Op0);
3757
}
3758
3759
ConstantInt *SubLHS;
3760
if (match(Cond, m_Sub(m_ConstantInt(SubLHS), m_Value(Op0)))) {
3761
// Change 'switch (1-X) case 1:' into 'switch (X) case 0'.
3762
for (auto Case : SI.cases()) {
3763
Constant *NewCase = ConstantExpr::getSub(SubLHS, Case.getCaseValue());
3764
assert(isa<ConstantInt>(NewCase) &&
3765
"Result of expression should be constant");
3766
Case.setValue(cast<ConstantInt>(NewCase));
3767
}
3768
return replaceOperand(SI, 0, Op0);
3769
}
3770
3771
uint64_t ShiftAmt;
3772
if (match(Cond, m_Shl(m_Value(Op0), m_ConstantInt(ShiftAmt))) &&
3773
ShiftAmt < Op0->getType()->getScalarSizeInBits() &&
3774
all_of(SI.cases(), [&](const auto &Case) {
3775
return Case.getCaseValue()->getValue().countr_zero() >= ShiftAmt;
3776
})) {
3777
// Change 'switch (X << 2) case 4:' into 'switch (X) case 1:'.
3778
OverflowingBinaryOperator *Shl = cast<OverflowingBinaryOperator>(Cond);
3779
if (Shl->hasNoUnsignedWrap() || Shl->hasNoSignedWrap() ||
3780
Shl->hasOneUse()) {
3781
Value *NewCond = Op0;
3782
if (!Shl->hasNoUnsignedWrap() && !Shl->hasNoSignedWrap()) {
3783
// If the shift may wrap, we need to mask off the shifted bits.
3784
unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
3785
NewCond = Builder.CreateAnd(
3786
Op0, APInt::getLowBitsSet(BitWidth, BitWidth - ShiftAmt));
3787
}
3788
for (auto Case : SI.cases()) {
3789
const APInt &CaseVal = Case.getCaseValue()->getValue();
3790
APInt ShiftedCase = Shl->hasNoSignedWrap() ? CaseVal.ashr(ShiftAmt)
3791
: CaseVal.lshr(ShiftAmt);
3792
Case.setValue(ConstantInt::get(SI.getContext(), ShiftedCase));
3793
}
3794
return replaceOperand(SI, 0, NewCond);
3795
}
3796
}
3797
3798
// Fold switch(zext/sext(X)) into switch(X) if possible.
3799
if (match(Cond, m_ZExtOrSExt(m_Value(Op0)))) {
3800
bool IsZExt = isa<ZExtInst>(Cond);
3801
Type *SrcTy = Op0->getType();
3802
unsigned NewWidth = SrcTy->getScalarSizeInBits();
3803
3804
if (all_of(SI.cases(), [&](const auto &Case) {
3805
const APInt &CaseVal = Case.getCaseValue()->getValue();
3806
return IsZExt ? CaseVal.isIntN(NewWidth)
3807
: CaseVal.isSignedIntN(NewWidth);
3808
})) {
3809
for (auto &Case : SI.cases()) {
3810
APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
3811
Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
3812
}
3813
return replaceOperand(SI, 0, Op0);
3814
}
3815
}
3816
3817
// Fold switch(select cond, X, Y) into switch(X/Y) if possible
3818
if (auto *Select = dyn_cast<SelectInst>(Cond)) {
3819
if (Value *V =
3820
simplifySwitchOnSelectUsingRanges(SI, Select, /*IsTrueArm=*/true))
3821
return replaceOperand(SI, 0, V);
3822
if (Value *V =
3823
simplifySwitchOnSelectUsingRanges(SI, Select, /*IsTrueArm=*/false))
3824
return replaceOperand(SI, 0, V);
3825
}
3826
3827
KnownBits Known = computeKnownBits(Cond, 0, &SI);
3828
unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
3829
unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
3830
3831
// Compute the number of leading bits we can ignore.
3832
// TODO: A better way to determine this would use ComputeNumSignBits().
3833
for (const auto &C : SI.cases()) {
3834
LeadingKnownZeros =
3835
std::min(LeadingKnownZeros, C.getCaseValue()->getValue().countl_zero());
3836
LeadingKnownOnes =
3837
std::min(LeadingKnownOnes, C.getCaseValue()->getValue().countl_one());
3838
}
3839
3840
unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
3841
3842
// Shrink the condition operand if the new type is smaller than the old type.
3843
// But do not shrink to a non-standard type, because backend can't generate
3844
// good code for that yet.
3845
// TODO: We can make it aggressive again after fixing PR39569.
3846
if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
3847
shouldChangeType(Known.getBitWidth(), NewWidth)) {
3848
IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
3849
Builder.SetInsertPoint(&SI);
3850
Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
3851
3852
for (auto Case : SI.cases()) {
3853
APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
3854
Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
3855
}
3856
return replaceOperand(SI, 0, NewCond);
3857
}
3858
3859
if (isa<UndefValue>(Cond)) {
3860
handlePotentiallyDeadSuccessors(SI.getParent(), /*LiveSucc*/ nullptr);
3861
return nullptr;
3862
}
3863
if (auto *CI = dyn_cast<ConstantInt>(Cond)) {
3864
handlePotentiallyDeadSuccessors(SI.getParent(),
3865
SI.findCaseValue(CI)->getCaseSuccessor());
3866
return nullptr;
3867
}
3868
3869
return nullptr;
3870
}
3871
3872
Instruction *
3873
InstCombinerImpl::foldExtractOfOverflowIntrinsic(ExtractValueInst &EV) {
3874
auto *WO = dyn_cast<WithOverflowInst>(EV.getAggregateOperand());
3875
if (!WO)
3876
return nullptr;
3877
3878
Intrinsic::ID OvID = WO->getIntrinsicID();
3879
const APInt *C = nullptr;
3880
if (match(WO->getRHS(), m_APIntAllowPoison(C))) {
3881
if (*EV.idx_begin() == 0 && (OvID == Intrinsic::smul_with_overflow ||
3882
OvID == Intrinsic::umul_with_overflow)) {
3883
// extractvalue (any_mul_with_overflow X, -1), 0 --> -X
3884
if (C->isAllOnes())
3885
return BinaryOperator::CreateNeg(WO->getLHS());
3886
// extractvalue (any_mul_with_overflow X, 2^n), 0 --> X << n
3887
if (C->isPowerOf2()) {
3888
return BinaryOperator::CreateShl(
3889
WO->getLHS(),
3890
ConstantInt::get(WO->getLHS()->getType(), C->logBase2()));
3891
}
3892
}
3893
}
3894
3895
// We're extracting from an overflow intrinsic. See if we're the only user.
3896
// That allows us to simplify multiple result intrinsics to simpler things
3897
// that just get one value.
3898
if (!WO->hasOneUse())
3899
return nullptr;
3900
3901
// Check if we're grabbing only the result of a 'with overflow' intrinsic
3902
// and replace it with a traditional binary instruction.
3903
if (*EV.idx_begin() == 0) {
3904
Instruction::BinaryOps BinOp = WO->getBinaryOp();
3905
Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
3906
// Replace the old instruction's uses with poison.
3907
replaceInstUsesWith(*WO, PoisonValue::get(WO->getType()));
3908
eraseInstFromFunction(*WO);
3909
return BinaryOperator::Create(BinOp, LHS, RHS);
3910
}
3911
3912
assert(*EV.idx_begin() == 1 && "Unexpected extract index for overflow inst");
3913
3914
// (usub LHS, RHS) overflows when LHS is unsigned-less-than RHS.
3915
if (OvID == Intrinsic::usub_with_overflow)
3916
return new ICmpInst(ICmpInst::ICMP_ULT, WO->getLHS(), WO->getRHS());
3917
3918
// smul with i1 types overflows when both sides are set: -1 * -1 == +1, but
3919
// +1 is not possible because we assume signed values.
3920
if (OvID == Intrinsic::smul_with_overflow &&
3921
WO->getLHS()->getType()->isIntOrIntVectorTy(1))
3922
return BinaryOperator::CreateAnd(WO->getLHS(), WO->getRHS());
3923
3924
// extractvalue (umul_with_overflow X, X), 1 -> X u> 2^(N/2)-1
3925
if (OvID == Intrinsic::umul_with_overflow && WO->getLHS() == WO->getRHS()) {
3926
unsigned BitWidth = WO->getLHS()->getType()->getScalarSizeInBits();
3927
// Only handle even bitwidths for performance reasons.
3928
if (BitWidth % 2 == 0)
3929
return new ICmpInst(
3930
ICmpInst::ICMP_UGT, WO->getLHS(),
3931
ConstantInt::get(WO->getLHS()->getType(),
3932
APInt::getLowBitsSet(BitWidth, BitWidth / 2)));
3933
}
3934
3935
// If only the overflow result is used, and the right hand side is a
3936
// constant (or constant splat), we can remove the intrinsic by directly
3937
// checking for overflow.
3938
if (C) {
3939
// Compute the no-wrap range for LHS given RHS=C, then construct an
3940
// equivalent icmp, potentially using an offset.
3941
ConstantRange NWR = ConstantRange::makeExactNoWrapRegion(
3942
WO->getBinaryOp(), *C, WO->getNoWrapKind());
3943
3944
CmpInst::Predicate Pred;
3945
APInt NewRHSC, Offset;
3946
NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
3947
auto *OpTy = WO->getRHS()->getType();
3948
auto *NewLHS = WO->getLHS();
3949
if (Offset != 0)
3950
NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset));
3951
return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS,
3952
ConstantInt::get(OpTy, NewRHSC));
3953
}
3954
3955
return nullptr;
3956
}
3957
3958
Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) {
3959
Value *Agg = EV.getAggregateOperand();
3960
3961
if (!EV.hasIndices())
3962
return replaceInstUsesWith(EV, Agg);
3963
3964
if (Value *V = simplifyExtractValueInst(Agg, EV.getIndices(),
3965
SQ.getWithInstruction(&EV)))
3966
return replaceInstUsesWith(EV, V);
3967
3968
if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
3969
// We're extracting from an insertvalue instruction, compare the indices
3970
const unsigned *exti, *exte, *insi, *inse;
3971
for (exti = EV.idx_begin(), insi = IV->idx_begin(),
3972
exte = EV.idx_end(), inse = IV->idx_end();
3973
exti != exte && insi != inse;
3974
++exti, ++insi) {
3975
if (*insi != *exti)
3976
// The insert and extract both reference distinctly different elements.
3977
// This means the extract is not influenced by the insert, and we can
3978
// replace the aggregate operand of the extract with the aggregate
3979
// operand of the insert. i.e., replace
3980
// %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3981
// %E = extractvalue { i32, { i32 } } %I, 0
3982
// with
3983
// %E = extractvalue { i32, { i32 } } %A, 0
3984
return ExtractValueInst::Create(IV->getAggregateOperand(),
3985
EV.getIndices());
3986
}
3987
if (exti == exte && insi == inse)
3988
// Both iterators are at the end: Index lists are identical. Replace
3989
// %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3990
// %C = extractvalue { i32, { i32 } } %B, 1, 0
3991
// with "i32 42"
3992
return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
3993
if (exti == exte) {
3994
// The extract list is a prefix of the insert list. i.e. replace
3995
// %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3996
// %E = extractvalue { i32, { i32 } } %I, 1
3997
// with
3998
// %X = extractvalue { i32, { i32 } } %A, 1
3999
// %E = insertvalue { i32 } %X, i32 42, 0
4000
// by switching the order of the insert and extract (though the
4001
// insertvalue should be left in, since it may have other uses).
4002
Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
4003
EV.getIndices());
4004
return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
4005
ArrayRef(insi, inse));
4006
}
4007
if (insi == inse)
4008
// The insert list is a prefix of the extract list
4009
// We can simply remove the common indices from the extract and make it
4010
// operate on the inserted value instead of the insertvalue result.
4011
// i.e., replace
4012
// %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
4013
// %E = extractvalue { i32, { i32 } } %I, 1, 0
4014
// with
4015
// %E extractvalue { i32 } { i32 42 }, 0
4016
return ExtractValueInst::Create(IV->getInsertedValueOperand(),
4017
ArrayRef(exti, exte));
4018
}
4019
4020
if (Instruction *R = foldExtractOfOverflowIntrinsic(EV))
4021
return R;
4022
4023
if (LoadInst *L = dyn_cast<LoadInst>(Agg)) {
4024
// Bail out if the aggregate contains scalable vector type
4025
if (auto *STy = dyn_cast<StructType>(Agg->getType());
4026
STy && STy->containsScalableVectorType())
4027
return nullptr;
4028
4029
// If the (non-volatile) load only has one use, we can rewrite this to a
4030
// load from a GEP. This reduces the size of the load. If a load is used
4031
// only by extractvalue instructions then this either must have been
4032
// optimized before, or it is a struct with padding, in which case we
4033
// don't want to do the transformation as it loses padding knowledge.
4034
if (L->isSimple() && L->hasOneUse()) {
4035
// extractvalue has integer indices, getelementptr has Value*s. Convert.
4036
SmallVector<Value*, 4> Indices;
4037
// Prefix an i32 0 since we need the first element.
4038
Indices.push_back(Builder.getInt32(0));
4039
for (unsigned Idx : EV.indices())
4040
Indices.push_back(Builder.getInt32(Idx));
4041
4042
// We need to insert these at the location of the old load, not at that of
4043
// the extractvalue.
4044
Builder.SetInsertPoint(L);
4045
Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
4046
L->getPointerOperand(), Indices);
4047
Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
4048
// Whatever aliasing information we had for the orignal load must also
4049
// hold for the smaller load, so propagate the annotations.
4050
NL->setAAMetadata(L->getAAMetadata());
4051
// Returning the load directly will cause the main loop to insert it in
4052
// the wrong spot, so use replaceInstUsesWith().
4053
return replaceInstUsesWith(EV, NL);
4054
}
4055
}
4056
4057
if (auto *PN = dyn_cast<PHINode>(Agg))
4058
if (Instruction *Res = foldOpIntoPhi(EV, PN))
4059
return Res;
4060
4061
// Canonicalize extract (select Cond, TV, FV)
4062
// -> select cond, (extract TV), (extract FV)
4063
if (auto *SI = dyn_cast<SelectInst>(Agg))
4064
if (Instruction *R = FoldOpIntoSelect(EV, SI, /*FoldWithMultiUse=*/true))
4065
return R;
4066
4067
// We could simplify extracts from other values. Note that nested extracts may
4068
// already be simplified implicitly by the above: extract (extract (insert) )
4069
// will be translated into extract ( insert ( extract ) ) first and then just
4070
// the value inserted, if appropriate. Similarly for extracts from single-use
4071
// loads: extract (extract (load)) will be translated to extract (load (gep))
4072
// and if again single-use then via load (gep (gep)) to load (gep).
4073
// However, double extracts from e.g. function arguments or return values
4074
// aren't handled yet.
4075
return nullptr;
4076
}
4077
4078
/// Return 'true' if the given typeinfo will match anything.
4079
static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
4080
switch (Personality) {
4081
case EHPersonality::GNU_C:
4082
case EHPersonality::GNU_C_SjLj:
4083
case EHPersonality::Rust:
4084
// The GCC C EH and Rust personality only exists to support cleanups, so
4085
// it's not clear what the semantics of catch clauses are.
4086
return false;
4087
case EHPersonality::Unknown:
4088
return false;
4089
case EHPersonality::GNU_Ada:
4090
// While __gnat_all_others_value will match any Ada exception, it doesn't
4091
// match foreign exceptions (or didn't, before gcc-4.7).
4092
return false;
4093
case EHPersonality::GNU_CXX:
4094
case EHPersonality::GNU_CXX_SjLj:
4095
case EHPersonality::GNU_ObjC:
4096
case EHPersonality::MSVC_X86SEH:
4097
case EHPersonality::MSVC_TableSEH:
4098
case EHPersonality::MSVC_CXX:
4099
case EHPersonality::CoreCLR:
4100
case EHPersonality::Wasm_CXX:
4101
case EHPersonality::XL_CXX:
4102
case EHPersonality::ZOS_CXX:
4103
return TypeInfo->isNullValue();
4104
}
4105
llvm_unreachable("invalid enum");
4106
}
4107
4108
static bool shorter_filter(const Value *LHS, const Value *RHS) {
4109
return
4110
cast<ArrayType>(LHS->getType())->getNumElements()
4111
<
4112
cast<ArrayType>(RHS->getType())->getNumElements();
4113
}
4114
4115
Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) {
4116
// The logic here should be correct for any real-world personality function.
4117
// However if that turns out not to be true, the offending logic can always
4118
// be conditioned on the personality function, like the catch-all logic is.
4119
EHPersonality Personality =
4120
classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
4121
4122
// Simplify the list of clauses, eg by removing repeated catch clauses
4123
// (these are often created by inlining).
4124
bool MakeNewInstruction = false; // If true, recreate using the following:
4125
SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
4126
bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
4127
4128
SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
4129
for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
4130
bool isLastClause = i + 1 == e;
4131
if (LI.isCatch(i)) {
4132
// A catch clause.
4133
Constant *CatchClause = LI.getClause(i);
4134
Constant *TypeInfo = CatchClause->stripPointerCasts();
4135
4136
// If we already saw this clause, there is no point in having a second
4137
// copy of it.
4138
if (AlreadyCaught.insert(TypeInfo).second) {
4139
// This catch clause was not already seen.
4140
NewClauses.push_back(CatchClause);
4141
} else {
4142
// Repeated catch clause - drop the redundant copy.
4143
MakeNewInstruction = true;
4144
}
4145
4146
// If this is a catch-all then there is no point in keeping any following
4147
// clauses or marking the landingpad as having a cleanup.
4148
if (isCatchAll(Personality, TypeInfo)) {
4149
if (!isLastClause)
4150
MakeNewInstruction = true;
4151
CleanupFlag = false;
4152
break;
4153
}
4154
} else {
4155
// A filter clause. If any of the filter elements were already caught
4156
// then they can be dropped from the filter. It is tempting to try to
4157
// exploit the filter further by saying that any typeinfo that does not
4158
// occur in the filter can't be caught later (and thus can be dropped).
4159
// However this would be wrong, since typeinfos can match without being
4160
// equal (for example if one represents a C++ class, and the other some
4161
// class derived from it).
4162
assert(LI.isFilter(i) && "Unsupported landingpad clause!");
4163
Constant *FilterClause = LI.getClause(i);
4164
ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
4165
unsigned NumTypeInfos = FilterType->getNumElements();
4166
4167
// An empty filter catches everything, so there is no point in keeping any
4168
// following clauses or marking the landingpad as having a cleanup. By
4169
// dealing with this case here the following code is made a bit simpler.
4170
if (!NumTypeInfos) {
4171
NewClauses.push_back(FilterClause);
4172
if (!isLastClause)
4173
MakeNewInstruction = true;
4174
CleanupFlag = false;
4175
break;
4176
}
4177
4178
bool MakeNewFilter = false; // If true, make a new filter.
4179
SmallVector<Constant *, 16> NewFilterElts; // New elements.
4180
if (isa<ConstantAggregateZero>(FilterClause)) {
4181
// Not an empty filter - it contains at least one null typeinfo.
4182
assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
4183
Constant *TypeInfo =
4184
Constant::getNullValue(FilterType->getElementType());
4185
// If this typeinfo is a catch-all then the filter can never match.
4186
if (isCatchAll(Personality, TypeInfo)) {
4187
// Throw the filter away.
4188
MakeNewInstruction = true;
4189
continue;
4190
}
4191
4192
// There is no point in having multiple copies of this typeinfo, so
4193
// discard all but the first copy if there is more than one.
4194
NewFilterElts.push_back(TypeInfo);
4195
if (NumTypeInfos > 1)
4196
MakeNewFilter = true;
4197
} else {
4198
ConstantArray *Filter = cast<ConstantArray>(FilterClause);
4199
SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
4200
NewFilterElts.reserve(NumTypeInfos);
4201
4202
// Remove any filter elements that were already caught or that already
4203
// occurred in the filter. While there, see if any of the elements are
4204
// catch-alls. If so, the filter can be discarded.
4205
bool SawCatchAll = false;
4206
for (unsigned j = 0; j != NumTypeInfos; ++j) {
4207
Constant *Elt = Filter->getOperand(j);
4208
Constant *TypeInfo = Elt->stripPointerCasts();
4209
if (isCatchAll(Personality, TypeInfo)) {
4210
// This element is a catch-all. Bail out, noting this fact.
4211
SawCatchAll = true;
4212
break;
4213
}
4214
4215
// Even if we've seen a type in a catch clause, we don't want to
4216
// remove it from the filter. An unexpected type handler may be
4217
// set up for a call site which throws an exception of the same
4218
// type caught. In order for the exception thrown by the unexpected
4219
// handler to propagate correctly, the filter must be correctly
4220
// described for the call site.
4221
//
4222
// Example:
4223
//
4224
// void unexpected() { throw 1;}
4225
// void foo() throw (int) {
4226
// std::set_unexpected(unexpected);
4227
// try {
4228
// throw 2.0;
4229
// } catch (int i) {}
4230
// }
4231
4232
// There is no point in having multiple copies of the same typeinfo in
4233
// a filter, so only add it if we didn't already.
4234
if (SeenInFilter.insert(TypeInfo).second)
4235
NewFilterElts.push_back(cast<Constant>(Elt));
4236
}
4237
// A filter containing a catch-all cannot match anything by definition.
4238
if (SawCatchAll) {
4239
// Throw the filter away.
4240
MakeNewInstruction = true;
4241
continue;
4242
}
4243
4244
// If we dropped something from the filter, make a new one.
4245
if (NewFilterElts.size() < NumTypeInfos)
4246
MakeNewFilter = true;
4247
}
4248
if (MakeNewFilter) {
4249
FilterType = ArrayType::get(FilterType->getElementType(),
4250
NewFilterElts.size());
4251
FilterClause = ConstantArray::get(FilterType, NewFilterElts);
4252
MakeNewInstruction = true;
4253
}
4254
4255
NewClauses.push_back(FilterClause);
4256
4257
// If the new filter is empty then it will catch everything so there is
4258
// no point in keeping any following clauses or marking the landingpad
4259
// as having a cleanup. The case of the original filter being empty was
4260
// already handled above.
4261
if (MakeNewFilter && !NewFilterElts.size()) {
4262
assert(MakeNewInstruction && "New filter but not a new instruction!");
4263
CleanupFlag = false;
4264
break;
4265
}
4266
}
4267
}
4268
4269
// If several filters occur in a row then reorder them so that the shortest
4270
// filters come first (those with the smallest number of elements). This is
4271
// advantageous because shorter filters are more likely to match, speeding up
4272
// unwinding, but mostly because it increases the effectiveness of the other
4273
// filter optimizations below.
4274
for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
4275
unsigned j;
4276
// Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
4277
for (j = i; j != e; ++j)
4278
if (!isa<ArrayType>(NewClauses[j]->getType()))
4279
break;
4280
4281
// Check whether the filters are already sorted by length. We need to know
4282
// if sorting them is actually going to do anything so that we only make a
4283
// new landingpad instruction if it does.
4284
for (unsigned k = i; k + 1 < j; ++k)
4285
if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
4286
// Not sorted, so sort the filters now. Doing an unstable sort would be
4287
// correct too but reordering filters pointlessly might confuse users.
4288
std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
4289
shorter_filter);
4290
MakeNewInstruction = true;
4291
break;
4292
}
4293
4294
// Look for the next batch of filters.
4295
i = j + 1;
4296
}
4297
4298
// If typeinfos matched if and only if equal, then the elements of a filter L
4299
// that occurs later than a filter F could be replaced by the intersection of
4300
// the elements of F and L. In reality two typeinfos can match without being
4301
// equal (for example if one represents a C++ class, and the other some class
4302
// derived from it) so it would be wrong to perform this transform in general.
4303
// However the transform is correct and useful if F is a subset of L. In that
4304
// case L can be replaced by F, and thus removed altogether since repeating a
4305
// filter is pointless. So here we look at all pairs of filters F and L where
4306
// L follows F in the list of clauses, and remove L if every element of F is
4307
// an element of L. This can occur when inlining C++ functions with exception
4308
// specifications.
4309
for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
4310
// Examine each filter in turn.
4311
Value *Filter = NewClauses[i];
4312
ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
4313
if (!FTy)
4314
// Not a filter - skip it.
4315
continue;
4316
unsigned FElts = FTy->getNumElements();
4317
// Examine each filter following this one. Doing this backwards means that
4318
// we don't have to worry about filters disappearing under us when removed.
4319
for (unsigned j = NewClauses.size() - 1; j != i; --j) {
4320
Value *LFilter = NewClauses[j];
4321
ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
4322
if (!LTy)
4323
// Not a filter - skip it.
4324
continue;
4325
// If Filter is a subset of LFilter, i.e. every element of Filter is also
4326
// an element of LFilter, then discard LFilter.
4327
SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
4328
// If Filter is empty then it is a subset of LFilter.
4329
if (!FElts) {
4330
// Discard LFilter.
4331
NewClauses.erase(J);
4332
MakeNewInstruction = true;
4333
// Move on to the next filter.
4334
continue;
4335
}
4336
unsigned LElts = LTy->getNumElements();
4337
// If Filter is longer than LFilter then it cannot be a subset of it.
4338
if (FElts > LElts)
4339
// Move on to the next filter.
4340
continue;
4341
// At this point we know that LFilter has at least one element.
4342
if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
4343
// Filter is a subset of LFilter iff Filter contains only zeros (as we
4344
// already know that Filter is not longer than LFilter).
4345
if (isa<ConstantAggregateZero>(Filter)) {
4346
assert(FElts <= LElts && "Should have handled this case earlier!");
4347
// Discard LFilter.
4348
NewClauses.erase(J);
4349
MakeNewInstruction = true;
4350
}
4351
// Move on to the next filter.
4352
continue;
4353
}
4354
ConstantArray *LArray = cast<ConstantArray>(LFilter);
4355
if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
4356
// Since Filter is non-empty and contains only zeros, it is a subset of
4357
// LFilter iff LFilter contains a zero.
4358
assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
4359
for (unsigned l = 0; l != LElts; ++l)
4360
if (LArray->getOperand(l)->isNullValue()) {
4361
// LFilter contains a zero - discard it.
4362
NewClauses.erase(J);
4363
MakeNewInstruction = true;
4364
break;
4365
}
4366
// Move on to the next filter.
4367
continue;
4368
}
4369
// At this point we know that both filters are ConstantArrays. Loop over
4370
// operands to see whether every element of Filter is also an element of
4371
// LFilter. Since filters tend to be short this is probably faster than
4372
// using a method that scales nicely.
4373
ConstantArray *FArray = cast<ConstantArray>(Filter);
4374
bool AllFound = true;
4375
for (unsigned f = 0; f != FElts; ++f) {
4376
Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
4377
AllFound = false;
4378
for (unsigned l = 0; l != LElts; ++l) {
4379
Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
4380
if (LTypeInfo == FTypeInfo) {
4381
AllFound = true;
4382
break;
4383
}
4384
}
4385
if (!AllFound)
4386
break;
4387
}
4388
if (AllFound) {
4389
// Discard LFilter.
4390
NewClauses.erase(J);
4391
MakeNewInstruction = true;
4392
}
4393
// Move on to the next filter.
4394
}
4395
}
4396
4397
// If we changed any of the clauses, replace the old landingpad instruction
4398
// with a new one.
4399
if (MakeNewInstruction) {
4400
LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
4401
NewClauses.size());
4402
for (Constant *C : NewClauses)
4403
NLI->addClause(C);
4404
// A landing pad with no clauses must have the cleanup flag set. It is
4405
// theoretically possible, though highly unlikely, that we eliminated all
4406
// clauses. If so, force the cleanup flag to true.
4407
if (NewClauses.empty())
4408
CleanupFlag = true;
4409
NLI->setCleanup(CleanupFlag);
4410
return NLI;
4411
}
4412
4413
// Even if none of the clauses changed, we may nonetheless have understood
4414
// that the cleanup flag is pointless. Clear it if so.
4415
if (LI.isCleanup() != CleanupFlag) {
4416
assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
4417
LI.setCleanup(CleanupFlag);
4418
return &LI;
4419
}
4420
4421
return nullptr;
4422
}
4423
4424
Value *
4425
InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) {
4426
// Try to push freeze through instructions that propagate but don't produce
4427
// poison as far as possible. If an operand of freeze follows three
4428
// conditions 1) one-use, 2) does not produce poison, and 3) has all but one
4429
// guaranteed-non-poison operands then push the freeze through to the one
4430
// operand that is not guaranteed non-poison. The actual transform is as
4431
// follows.
4432
// Op1 = ... ; Op1 can be posion
4433
// Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have
4434
// ; single guaranteed-non-poison operands
4435
// ... = Freeze(Op0)
4436
// =>
4437
// Op1 = ...
4438
// Op1.fr = Freeze(Op1)
4439
// ... = Inst(Op1.fr, NonPoisonOps...)
4440
auto *OrigOp = OrigFI.getOperand(0);
4441
auto *OrigOpInst = dyn_cast<Instruction>(OrigOp);
4442
4443
// While we could change the other users of OrigOp to use freeze(OrigOp), that
4444
// potentially reduces their optimization potential, so let's only do this iff
4445
// the OrigOp is only used by the freeze.
4446
if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp))
4447
return nullptr;
4448
4449
// We can't push the freeze through an instruction which can itself create
4450
// poison. If the only source of new poison is flags, we can simply
4451
// strip them (since we know the only use is the freeze and nothing can
4452
// benefit from them.)
4453
if (canCreateUndefOrPoison(cast<Operator>(OrigOp),
4454
/*ConsiderFlagsAndMetadata*/ false))
4455
return nullptr;
4456
4457
// If operand is guaranteed not to be poison, there is no need to add freeze
4458
// to the operand. So we first find the operand that is not guaranteed to be
4459
// poison.
4460
Use *MaybePoisonOperand = nullptr;
4461
for (Use &U : OrigOpInst->operands()) {
4462
if (isa<MetadataAsValue>(U.get()) ||
4463
isGuaranteedNotToBeUndefOrPoison(U.get()))
4464
continue;
4465
if (!MaybePoisonOperand)
4466
MaybePoisonOperand = &U;
4467
else
4468
return nullptr;
4469
}
4470
4471
OrigOpInst->dropPoisonGeneratingAnnotations();
4472
4473
// If all operands are guaranteed to be non-poison, we can drop freeze.
4474
if (!MaybePoisonOperand)
4475
return OrigOp;
4476
4477
Builder.SetInsertPoint(OrigOpInst);
4478
auto *FrozenMaybePoisonOperand = Builder.CreateFreeze(
4479
MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr");
4480
4481
replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand);
4482
return OrigOp;
4483
}
4484
4485
Instruction *InstCombinerImpl::foldFreezeIntoRecurrence(FreezeInst &FI,
4486
PHINode *PN) {
4487
// Detect whether this is a recurrence with a start value and some number of
4488
// backedge values. We'll check whether we can push the freeze through the
4489
// backedge values (possibly dropping poison flags along the way) until we
4490
// reach the phi again. In that case, we can move the freeze to the start
4491
// value.
4492
Use *StartU = nullptr;
4493
SmallVector<Value *> Worklist;
4494
for (Use &U : PN->incoming_values()) {
4495
if (DT.dominates(PN->getParent(), PN->getIncomingBlock(U))) {
4496
// Add backedge value to worklist.
4497
Worklist.push_back(U.get());
4498
continue;
4499
}
4500
4501
// Don't bother handling multiple start values.
4502
if (StartU)
4503
return nullptr;
4504
StartU = &U;
4505
}
4506
4507
if (!StartU || Worklist.empty())
4508
return nullptr; // Not a recurrence.
4509
4510
Value *StartV = StartU->get();
4511
BasicBlock *StartBB = PN->getIncomingBlock(*StartU);
4512
bool StartNeedsFreeze = !isGuaranteedNotToBeUndefOrPoison(StartV);
4513
// We can't insert freeze if the start value is the result of the
4514
// terminator (e.g. an invoke).
4515
if (StartNeedsFreeze && StartBB->getTerminator() == StartV)
4516
return nullptr;
4517
4518
SmallPtrSet<Value *, 32> Visited;
4519
SmallVector<Instruction *> DropFlags;
4520
while (!Worklist.empty()) {
4521
Value *V = Worklist.pop_back_val();
4522
if (!Visited.insert(V).second)
4523
continue;
4524
4525
if (Visited.size() > 32)
4526
return nullptr; // Limit the total number of values we inspect.
4527
4528
// Assume that PN is non-poison, because it will be after the transform.
4529
if (V == PN || isGuaranteedNotToBeUndefOrPoison(V))
4530
continue;
4531
4532
Instruction *I = dyn_cast<Instruction>(V);
4533
if (!I || canCreateUndefOrPoison(cast<Operator>(I),
4534
/*ConsiderFlagsAndMetadata*/ false))
4535
return nullptr;
4536
4537
DropFlags.push_back(I);
4538
append_range(Worklist, I->operands());
4539
}
4540
4541
for (Instruction *I : DropFlags)
4542
I->dropPoisonGeneratingAnnotations();
4543
4544
if (StartNeedsFreeze) {
4545
Builder.SetInsertPoint(StartBB->getTerminator());
4546
Value *FrozenStartV = Builder.CreateFreeze(StartV,
4547
StartV->getName() + ".fr");
4548
replaceUse(*StartU, FrozenStartV);
4549
}
4550
return replaceInstUsesWith(FI, PN);
4551
}
4552
4553
bool InstCombinerImpl::freezeOtherUses(FreezeInst &FI) {
4554
Value *Op = FI.getOperand(0);
4555
4556
if (isa<Constant>(Op) || Op->hasOneUse())
4557
return false;
4558
4559
// Move the freeze directly after the definition of its operand, so that
4560
// it dominates the maximum number of uses. Note that it may not dominate
4561
// *all* uses if the operand is an invoke/callbr and the use is in a phi on
4562
// the normal/default destination. This is why the domination check in the
4563
// replacement below is still necessary.
4564
BasicBlock::iterator MoveBefore;
4565
if (isa<Argument>(Op)) {
4566
MoveBefore =
4567
FI.getFunction()->getEntryBlock().getFirstNonPHIOrDbgOrAlloca();
4568
} else {
4569
auto MoveBeforeOpt = cast<Instruction>(Op)->getInsertionPointAfterDef();
4570
if (!MoveBeforeOpt)
4571
return false;
4572
MoveBefore = *MoveBeforeOpt;
4573
}
4574
4575
// Don't move to the position of a debug intrinsic.
4576
if (isa<DbgInfoIntrinsic>(MoveBefore))
4577
MoveBefore = MoveBefore->getNextNonDebugInstruction()->getIterator();
4578
// Re-point iterator to come after any debug-info records, if we're
4579
// running in "RemoveDIs" mode
4580
MoveBefore.setHeadBit(false);
4581
4582
bool Changed = false;
4583
if (&FI != &*MoveBefore) {
4584
FI.moveBefore(*MoveBefore->getParent(), MoveBefore);
4585
Changed = true;
4586
}
4587
4588
Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool {
4589
bool Dominates = DT.dominates(&FI, U);
4590
Changed |= Dominates;
4591
return Dominates;
4592
});
4593
4594
return Changed;
4595
}
4596
4597
// Check if any direct or bitcast user of this value is a shuffle instruction.
4598
static bool isUsedWithinShuffleVector(Value *V) {
4599
for (auto *U : V->users()) {
4600
if (isa<ShuffleVectorInst>(U))
4601
return true;
4602
else if (match(U, m_BitCast(m_Specific(V))) && isUsedWithinShuffleVector(U))
4603
return true;
4604
}
4605
return false;
4606
}
4607
4608
Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) {
4609
Value *Op0 = I.getOperand(0);
4610
4611
if (Value *V = simplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
4612
return replaceInstUsesWith(I, V);
4613
4614
// freeze (phi const, x) --> phi const, (freeze x)
4615
if (auto *PN = dyn_cast<PHINode>(Op0)) {
4616
if (Instruction *NV = foldOpIntoPhi(I, PN))
4617
return NV;
4618
if (Instruction *NV = foldFreezeIntoRecurrence(I, PN))
4619
return NV;
4620
}
4621
4622
if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I))
4623
return replaceInstUsesWith(I, NI);
4624
4625
// If I is freeze(undef), check its uses and fold it to a fixed constant.
4626
// - or: pick -1
4627
// - select's condition: if the true value is constant, choose it by making
4628
// the condition true.
4629
// - default: pick 0
4630
//
4631
// Note that this transform is intentionally done here rather than
4632
// via an analysis in InstSimplify or at individual user sites. That is
4633
// because we must produce the same value for all uses of the freeze -
4634
// it's the reason "freeze" exists!
4635
//
4636
// TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid
4637
// duplicating logic for binops at least.
4638
auto getUndefReplacement = [&I](Type *Ty) {
4639
Constant *BestValue = nullptr;
4640
Constant *NullValue = Constant::getNullValue(Ty);
4641
for (const auto *U : I.users()) {
4642
Constant *C = NullValue;
4643
if (match(U, m_Or(m_Value(), m_Value())))
4644
C = ConstantInt::getAllOnesValue(Ty);
4645
else if (match(U, m_Select(m_Specific(&I), m_Constant(), m_Value())))
4646
C = ConstantInt::getTrue(Ty);
4647
4648
if (!BestValue)
4649
BestValue = C;
4650
else if (BestValue != C)
4651
BestValue = NullValue;
4652
}
4653
assert(BestValue && "Must have at least one use");
4654
return BestValue;
4655
};
4656
4657
if (match(Op0, m_Undef())) {
4658
// Don't fold freeze(undef/poison) if it's used as a vector operand in
4659
// a shuffle. This may improve codegen for shuffles that allow
4660
// unspecified inputs.
4661
if (isUsedWithinShuffleVector(&I))
4662
return nullptr;
4663
return replaceInstUsesWith(I, getUndefReplacement(I.getType()));
4664
}
4665
4666
Constant *C;
4667
if (match(Op0, m_Constant(C)) && C->containsUndefOrPoisonElement()) {
4668
Constant *ReplaceC = getUndefReplacement(I.getType()->getScalarType());
4669
return replaceInstUsesWith(I, Constant::replaceUndefsWith(C, ReplaceC));
4670
}
4671
4672
// Replace uses of Op with freeze(Op).
4673
if (freezeOtherUses(I))
4674
return &I;
4675
4676
return nullptr;
4677
}
4678
4679
/// Check for case where the call writes to an otherwise dead alloca. This
4680
/// shows up for unused out-params in idiomatic C/C++ code. Note that this
4681
/// helper *only* analyzes the write; doesn't check any other legality aspect.
4682
static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) {
4683
auto *CB = dyn_cast<CallBase>(I);
4684
if (!CB)
4685
// TODO: handle e.g. store to alloca here - only worth doing if we extend
4686
// to allow reload along used path as described below. Otherwise, this
4687
// is simply a store to a dead allocation which will be removed.
4688
return false;
4689
std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI);
4690
if (!Dest)
4691
return false;
4692
auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr));
4693
if (!AI)
4694
// TODO: allow malloc?
4695
return false;
4696
// TODO: allow memory access dominated by move point? Note that since AI
4697
// could have a reference to itself captured by the call, we would need to
4698
// account for cycles in doing so.
4699
SmallVector<const User *> AllocaUsers;
4700
SmallPtrSet<const User *, 4> Visited;
4701
auto pushUsers = [&](const Instruction &I) {
4702
for (const User *U : I.users()) {
4703
if (Visited.insert(U).second)
4704
AllocaUsers.push_back(U);
4705
}
4706
};
4707
pushUsers(*AI);
4708
while (!AllocaUsers.empty()) {
4709
auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val());
4710
if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) ||
4711
isa<AddrSpaceCastInst>(UserI)) {
4712
pushUsers(*UserI);
4713
continue;
4714
}
4715
if (UserI == CB)
4716
continue;
4717
// TODO: support lifetime.start/end here
4718
return false;
4719
}
4720
return true;
4721
}
4722
4723
/// Try to move the specified instruction from its current block into the
4724
/// beginning of DestBlock, which can only happen if it's safe to move the
4725
/// instruction past all of the instructions between it and the end of its
4726
/// block.
4727
bool InstCombinerImpl::tryToSinkInstruction(Instruction *I,
4728
BasicBlock *DestBlock) {
4729
BasicBlock *SrcBlock = I->getParent();
4730
4731
// Cannot move control-flow-involving, volatile loads, vaarg, etc.
4732
if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() ||
4733
I->isTerminator())
4734
return false;
4735
4736
// Do not sink static or dynamic alloca instructions. Static allocas must
4737
// remain in the entry block, and dynamic allocas must not be sunk in between
4738
// a stacksave / stackrestore pair, which would incorrectly shorten its
4739
// lifetime.
4740
if (isa<AllocaInst>(I))
4741
return false;
4742
4743
// Do not sink into catchswitch blocks.
4744
if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
4745
return false;
4746
4747
// Do not sink convergent call instructions.
4748
if (auto *CI = dyn_cast<CallInst>(I)) {
4749
if (CI->isConvergent())
4750
return false;
4751
}
4752
4753
// Unless we can prove that the memory write isn't visibile except on the
4754
// path we're sinking to, we must bail.
4755
if (I->mayWriteToMemory()) {
4756
if (!SoleWriteToDeadLocal(I, TLI))
4757
return false;
4758
}
4759
4760
// We can only sink load instructions if there is nothing between the load and
4761
// the end of block that could change the value.
4762
if (I->mayReadFromMemory()) {
4763
// We don't want to do any sophisticated alias analysis, so we only check
4764
// the instructions after I in I's parent block if we try to sink to its
4765
// successor block.
4766
if (DestBlock->getUniquePredecessor() != I->getParent())
4767
return false;
4768
for (BasicBlock::iterator Scan = std::next(I->getIterator()),
4769
E = I->getParent()->end();
4770
Scan != E; ++Scan)
4771
if (Scan->mayWriteToMemory())
4772
return false;
4773
}
4774
4775
I->dropDroppableUses([&](const Use *U) {
4776
auto *I = dyn_cast<Instruction>(U->getUser());
4777
if (I && I->getParent() != DestBlock) {
4778
Worklist.add(I);
4779
return true;
4780
}
4781
return false;
4782
});
4783
/// FIXME: We could remove droppable uses that are not dominated by
4784
/// the new position.
4785
4786
BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
4787
I->moveBefore(*DestBlock, InsertPos);
4788
++NumSunkInst;
4789
4790
// Also sink all related debug uses from the source basic block. Otherwise we
4791
// get debug use before the def. Attempt to salvage debug uses first, to
4792
// maximise the range variables have location for. If we cannot salvage, then
4793
// mark the location undef: we know it was supposed to receive a new location
4794
// here, but that computation has been sunk.
4795
SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
4796
SmallVector<DbgVariableRecord *, 2> DbgVariableRecords;
4797
findDbgUsers(DbgUsers, I, &DbgVariableRecords);
4798
if (!DbgUsers.empty())
4799
tryToSinkInstructionDbgValues(I, InsertPos, SrcBlock, DestBlock, DbgUsers);
4800
if (!DbgVariableRecords.empty())
4801
tryToSinkInstructionDbgVariableRecords(I, InsertPos, SrcBlock, DestBlock,
4802
DbgVariableRecords);
4803
4804
// PS: there are numerous flaws with this behaviour, not least that right now
4805
// assignments can be re-ordered past other assignments to the same variable
4806
// if they use different Values. Creating more undef assignements can never be
4807
// undone. And salvaging all users outside of this block can un-necessarily
4808
// alter the lifetime of the live-value that the variable refers to.
4809
// Some of these things can be resolved by tolerating debug use-before-defs in
4810
// LLVM-IR, however it depends on the instruction-referencing CodeGen backend
4811
// being used for more architectures.
4812
4813
return true;
4814
}
4815
4816
void InstCombinerImpl::tryToSinkInstructionDbgValues(
4817
Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock,
4818
BasicBlock *DestBlock, SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers) {
4819
// For all debug values in the destination block, the sunk instruction
4820
// will still be available, so they do not need to be dropped.
4821
SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSalvage;
4822
for (auto &DbgUser : DbgUsers)
4823
if (DbgUser->getParent() != DestBlock)
4824
DbgUsersToSalvage.push_back(DbgUser);
4825
4826
// Process the sinking DbgUsersToSalvage in reverse order, as we only want
4827
// to clone the last appearing debug intrinsic for each given variable.
4828
SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink;
4829
for (DbgVariableIntrinsic *DVI : DbgUsersToSalvage)
4830
if (DVI->getParent() == SrcBlock)
4831
DbgUsersToSink.push_back(DVI);
4832
llvm::sort(DbgUsersToSink,
4833
[](auto *A, auto *B) { return B->comesBefore(A); });
4834
4835
SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
4836
SmallSet<DebugVariable, 4> SunkVariables;
4837
for (auto *User : DbgUsersToSink) {
4838
// A dbg.declare instruction should not be cloned, since there can only be
4839
// one per variable fragment. It should be left in the original place
4840
// because the sunk instruction is not an alloca (otherwise we could not be
4841
// here).
4842
if (isa<DbgDeclareInst>(User))
4843
continue;
4844
4845
DebugVariable DbgUserVariable =
4846
DebugVariable(User->getVariable(), User->getExpression(),
4847
User->getDebugLoc()->getInlinedAt());
4848
4849
if (!SunkVariables.insert(DbgUserVariable).second)
4850
continue;
4851
4852
// Leave dbg.assign intrinsics in their original positions and there should
4853
// be no need to insert a clone.
4854
if (isa<DbgAssignIntrinsic>(User))
4855
continue;
4856
4857
DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
4858
if (isa<DbgDeclareInst>(User) && isa<CastInst>(I))
4859
DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0));
4860
LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
4861
}
4862
4863
// Perform salvaging without the clones, then sink the clones.
4864
if (!DIIClones.empty()) {
4865
salvageDebugInfoForDbgValues(*I, DbgUsersToSalvage, {});
4866
// The clones are in reverse order of original appearance, reverse again to
4867
// maintain the original order.
4868
for (auto &DIIClone : llvm::reverse(DIIClones)) {
4869
DIIClone->insertBefore(&*InsertPos);
4870
LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
4871
}
4872
}
4873
}
4874
4875
void InstCombinerImpl::tryToSinkInstructionDbgVariableRecords(
4876
Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock,
4877
BasicBlock *DestBlock,
4878
SmallVectorImpl<DbgVariableRecord *> &DbgVariableRecords) {
4879
// Implementation of tryToSinkInstructionDbgValues, but for the
4880
// DbgVariableRecord of variable assignments rather than dbg.values.
4881
4882
// Fetch all DbgVariableRecords not already in the destination.
4883
SmallVector<DbgVariableRecord *, 2> DbgVariableRecordsToSalvage;
4884
for (auto &DVR : DbgVariableRecords)
4885
if (DVR->getParent() != DestBlock)
4886
DbgVariableRecordsToSalvage.push_back(DVR);
4887
4888
// Fetch a second collection, of DbgVariableRecords in the source block that
4889
// we're going to sink.
4890
SmallVector<DbgVariableRecord *> DbgVariableRecordsToSink;
4891
for (DbgVariableRecord *DVR : DbgVariableRecordsToSalvage)
4892
if (DVR->getParent() == SrcBlock)
4893
DbgVariableRecordsToSink.push_back(DVR);
4894
4895
// Sort DbgVariableRecords according to their position in the block. This is a
4896
// partial order: DbgVariableRecords attached to different instructions will
4897
// be ordered by the instruction order, but DbgVariableRecords attached to the
4898
// same instruction won't have an order.
4899
auto Order = [](DbgVariableRecord *A, DbgVariableRecord *B) -> bool {
4900
return B->getInstruction()->comesBefore(A->getInstruction());
4901
};
4902
llvm::stable_sort(DbgVariableRecordsToSink, Order);
4903
4904
// If there are two assignments to the same variable attached to the same
4905
// instruction, the ordering between the two assignments is important. Scan
4906
// for this (rare) case and establish which is the last assignment.
4907
using InstVarPair = std::pair<const Instruction *, DebugVariable>;
4908
SmallDenseMap<InstVarPair, DbgVariableRecord *> FilterOutMap;
4909
if (DbgVariableRecordsToSink.size() > 1) {
4910
SmallDenseMap<InstVarPair, unsigned> CountMap;
4911
// Count how many assignments to each variable there is per instruction.
4912
for (DbgVariableRecord *DVR : DbgVariableRecordsToSink) {
4913
DebugVariable DbgUserVariable =
4914
DebugVariable(DVR->getVariable(), DVR->getExpression(),
4915
DVR->getDebugLoc()->getInlinedAt());
4916
CountMap[std::make_pair(DVR->getInstruction(), DbgUserVariable)] += 1;
4917
}
4918
4919
// If there are any instructions with two assignments, add them to the
4920
// FilterOutMap to record that they need extra filtering.
4921
SmallPtrSet<const Instruction *, 4> DupSet;
4922
for (auto It : CountMap) {
4923
if (It.second > 1) {
4924
FilterOutMap[It.first] = nullptr;
4925
DupSet.insert(It.first.first);
4926
}
4927
}
4928
4929
// For all instruction/variable pairs needing extra filtering, find the
4930
// latest assignment.
4931
for (const Instruction *Inst : DupSet) {
4932
for (DbgVariableRecord &DVR :
4933
llvm::reverse(filterDbgVars(Inst->getDbgRecordRange()))) {
4934
DebugVariable DbgUserVariable =
4935
DebugVariable(DVR.getVariable(), DVR.getExpression(),
4936
DVR.getDebugLoc()->getInlinedAt());
4937
auto FilterIt =
4938
FilterOutMap.find(std::make_pair(Inst, DbgUserVariable));
4939
if (FilterIt == FilterOutMap.end())
4940
continue;
4941
if (FilterIt->second != nullptr)
4942
continue;
4943
FilterIt->second = &DVR;
4944
}
4945
}
4946
}
4947
4948
// Perform cloning of the DbgVariableRecords that we plan on sinking, filter
4949
// out any duplicate assignments identified above.
4950
SmallVector<DbgVariableRecord *, 2> DVRClones;
4951
SmallSet<DebugVariable, 4> SunkVariables;
4952
for (DbgVariableRecord *DVR : DbgVariableRecordsToSink) {
4953
if (DVR->Type == DbgVariableRecord::LocationType::Declare)
4954
continue;
4955
4956
DebugVariable DbgUserVariable =
4957
DebugVariable(DVR->getVariable(), DVR->getExpression(),
4958
DVR->getDebugLoc()->getInlinedAt());
4959
4960
// For any variable where there were multiple assignments in the same place,
4961
// ignore all but the last assignment.
4962
if (!FilterOutMap.empty()) {
4963
InstVarPair IVP = std::make_pair(DVR->getInstruction(), DbgUserVariable);
4964
auto It = FilterOutMap.find(IVP);
4965
4966
// Filter out.
4967
if (It != FilterOutMap.end() && It->second != DVR)
4968
continue;
4969
}
4970
4971
if (!SunkVariables.insert(DbgUserVariable).second)
4972
continue;
4973
4974
if (DVR->isDbgAssign())
4975
continue;
4976
4977
DVRClones.emplace_back(DVR->clone());
4978
LLVM_DEBUG(dbgs() << "CLONE: " << *DVRClones.back() << '\n');
4979
}
4980
4981
// Perform salvaging without the clones, then sink the clones.
4982
if (DVRClones.empty())
4983
return;
4984
4985
salvageDebugInfoForDbgValues(*I, {}, DbgVariableRecordsToSalvage);
4986
4987
// The clones are in reverse order of original appearance. Assert that the
4988
// head bit is set on the iterator as we _should_ have received it via
4989
// getFirstInsertionPt. Inserting like this will reverse the clone order as
4990
// we'll repeatedly insert at the head, such as:
4991
// DVR-3 (third insertion goes here)
4992
// DVR-2 (second insertion goes here)
4993
// DVR-1 (first insertion goes here)
4994
// Any-Prior-DVRs
4995
// InsertPtInst
4996
assert(InsertPos.getHeadBit());
4997
for (DbgVariableRecord *DVRClone : DVRClones) {
4998
InsertPos->getParent()->insertDbgRecordBefore(DVRClone, InsertPos);
4999
LLVM_DEBUG(dbgs() << "SINK: " << *DVRClone << '\n');
5000
}
5001
}
5002
5003
bool InstCombinerImpl::run() {
5004
while (!Worklist.isEmpty()) {
5005
// Walk deferred instructions in reverse order, and push them to the
5006
// worklist, which means they'll end up popped from the worklist in-order.
5007
while (Instruction *I = Worklist.popDeferred()) {
5008
// Check to see if we can DCE the instruction. We do this already here to
5009
// reduce the number of uses and thus allow other folds to trigger.
5010
// Note that eraseInstFromFunction() may push additional instructions on
5011
// the deferred worklist, so this will DCE whole instruction chains.
5012
if (isInstructionTriviallyDead(I, &TLI)) {
5013
eraseInstFromFunction(*I);
5014
++NumDeadInst;
5015
continue;
5016
}
5017
5018
Worklist.push(I);
5019
}
5020
5021
Instruction *I = Worklist.removeOne();
5022
if (I == nullptr) continue; // skip null values.
5023
5024
// Check to see if we can DCE the instruction.
5025
if (isInstructionTriviallyDead(I, &TLI)) {
5026
eraseInstFromFunction(*I);
5027
++NumDeadInst;
5028
continue;
5029
}
5030
5031
if (!DebugCounter::shouldExecute(VisitCounter))
5032
continue;
5033
5034
// See if we can trivially sink this instruction to its user if we can
5035
// prove that the successor is not executed more frequently than our block.
5036
// Return the UserBlock if successful.
5037
auto getOptionalSinkBlockForInst =
5038
[this](Instruction *I) -> std::optional<BasicBlock *> {
5039
if (!EnableCodeSinking)
5040
return std::nullopt;
5041
5042
BasicBlock *BB = I->getParent();
5043
BasicBlock *UserParent = nullptr;
5044
unsigned NumUsers = 0;
5045
5046
for (Use &U : I->uses()) {
5047
User *User = U.getUser();
5048
if (User->isDroppable())
5049
continue;
5050
if (NumUsers > MaxSinkNumUsers)
5051
return std::nullopt;
5052
5053
Instruction *UserInst = cast<Instruction>(User);
5054
// Special handling for Phi nodes - get the block the use occurs in.
5055
BasicBlock *UserBB = UserInst->getParent();
5056
if (PHINode *PN = dyn_cast<PHINode>(UserInst))
5057
UserBB = PN->getIncomingBlock(U);
5058
// Bail out if we have uses in different blocks. We don't do any
5059
// sophisticated analysis (i.e finding NearestCommonDominator of these
5060
// use blocks).
5061
if (UserParent && UserParent != UserBB)
5062
return std::nullopt;
5063
UserParent = UserBB;
5064
5065
// Make sure these checks are done only once, naturally we do the checks
5066
// the first time we get the userparent, this will save compile time.
5067
if (NumUsers == 0) {
5068
// Try sinking to another block. If that block is unreachable, then do
5069
// not bother. SimplifyCFG should handle it.
5070
if (UserParent == BB || !DT.isReachableFromEntry(UserParent))
5071
return std::nullopt;
5072
5073
auto *Term = UserParent->getTerminator();
5074
// See if the user is one of our successors that has only one
5075
// predecessor, so that we don't have to split the critical edge.
5076
// Another option where we can sink is a block that ends with a
5077
// terminator that does not pass control to other block (such as
5078
// return or unreachable or resume). In this case:
5079
// - I dominates the User (by SSA form);
5080
// - the User will be executed at most once.
5081
// So sinking I down to User is always profitable or neutral.
5082
if (UserParent->getUniquePredecessor() != BB && !succ_empty(Term))
5083
return std::nullopt;
5084
5085
assert(DT.dominates(BB, UserParent) && "Dominance relation broken?");
5086
}
5087
5088
NumUsers++;
5089
}
5090
5091
// No user or only has droppable users.
5092
if (!UserParent)
5093
return std::nullopt;
5094
5095
return UserParent;
5096
};
5097
5098
auto OptBB = getOptionalSinkBlockForInst(I);
5099
if (OptBB) {
5100
auto *UserParent = *OptBB;
5101
// Okay, the CFG is simple enough, try to sink this instruction.
5102
if (tryToSinkInstruction(I, UserParent)) {
5103
LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
5104
MadeIRChange = true;
5105
// We'll add uses of the sunk instruction below, but since
5106
// sinking can expose opportunities for it's *operands* add
5107
// them to the worklist
5108
for (Use &U : I->operands())
5109
if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
5110
Worklist.push(OpI);
5111
}
5112
}
5113
5114
// Now that we have an instruction, try combining it to simplify it.
5115
Builder.SetInsertPoint(I);
5116
Builder.CollectMetadataToCopy(
5117
I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
5118
5119
#ifndef NDEBUG
5120
std::string OrigI;
5121
#endif
5122
LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS););
5123
LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
5124
5125
if (Instruction *Result = visit(*I)) {
5126
++NumCombined;
5127
// Should we replace the old instruction with a new one?
5128
if (Result != I) {
5129
LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
5130
<< " New = " << *Result << '\n');
5131
5132
Result->copyMetadata(*I,
5133
{LLVMContext::MD_dbg, LLVMContext::MD_annotation});
5134
// Everything uses the new instruction now.
5135
I->replaceAllUsesWith(Result);
5136
5137
// Move the name to the new instruction first.
5138
Result->takeName(I);
5139
5140
// Insert the new instruction into the basic block...
5141
BasicBlock *InstParent = I->getParent();
5142
BasicBlock::iterator InsertPos = I->getIterator();
5143
5144
// Are we replace a PHI with something that isn't a PHI, or vice versa?
5145
if (isa<PHINode>(Result) != isa<PHINode>(I)) {
5146
// We need to fix up the insertion point.
5147
if (isa<PHINode>(I)) // PHI -> Non-PHI
5148
InsertPos = InstParent->getFirstInsertionPt();
5149
else // Non-PHI -> PHI
5150
InsertPos = InstParent->getFirstNonPHIIt();
5151
}
5152
5153
Result->insertInto(InstParent, InsertPos);
5154
5155
// Push the new instruction and any users onto the worklist.
5156
Worklist.pushUsersToWorkList(*Result);
5157
Worklist.push(Result);
5158
5159
eraseInstFromFunction(*I);
5160
} else {
5161
LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
5162
<< " New = " << *I << '\n');
5163
5164
// If the instruction was modified, it's possible that it is now dead.
5165
// if so, remove it.
5166
if (isInstructionTriviallyDead(I, &TLI)) {
5167
eraseInstFromFunction(*I);
5168
} else {
5169
Worklist.pushUsersToWorkList(*I);
5170
Worklist.push(I);
5171
}
5172
}
5173
MadeIRChange = true;
5174
}
5175
}
5176
5177
Worklist.zap();
5178
return MadeIRChange;
5179
}
5180
5181
// Track the scopes used by !alias.scope and !noalias. In a function, a
5182
// @llvm.experimental.noalias.scope.decl is only useful if that scope is used
5183
// by both sets. If not, the declaration of the scope can be safely omitted.
5184
// The MDNode of the scope can be omitted as well for the instructions that are
5185
// part of this function. We do not do that at this point, as this might become
5186
// too time consuming to do.
5187
class AliasScopeTracker {
5188
SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists;
5189
SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists;
5190
5191
public:
5192
void analyse(Instruction *I) {
5193
// This seems to be faster than checking 'mayReadOrWriteMemory()'.
5194
if (!I->hasMetadataOtherThanDebugLoc())
5195
return;
5196
5197
auto Track = [](Metadata *ScopeList, auto &Container) {
5198
const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
5199
if (!MDScopeList || !Container.insert(MDScopeList).second)
5200
return;
5201
for (const auto &MDOperand : MDScopeList->operands())
5202
if (auto *MDScope = dyn_cast<MDNode>(MDOperand))
5203
Container.insert(MDScope);
5204
};
5205
5206
Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
5207
Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
5208
}
5209
5210
bool isNoAliasScopeDeclDead(Instruction *Inst) {
5211
NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst);
5212
if (!Decl)
5213
return false;
5214
5215
assert(Decl->use_empty() &&
5216
"llvm.experimental.noalias.scope.decl in use ?");
5217
const MDNode *MDSL = Decl->getScopeList();
5218
assert(MDSL->getNumOperands() == 1 &&
5219
"llvm.experimental.noalias.scope should refer to a single scope");
5220
auto &MDOperand = MDSL->getOperand(0);
5221
if (auto *MD = dyn_cast<MDNode>(MDOperand))
5222
return !UsedAliasScopesAndLists.contains(MD) ||
5223
!UsedNoAliasScopesAndLists.contains(MD);
5224
5225
// Not an MDNode ? throw away.
5226
return true;
5227
}
5228
};
5229
5230
/// Populate the IC worklist from a function, by walking it in reverse
5231
/// post-order and adding all reachable code to the worklist.
5232
///
5233
/// This has a couple of tricks to make the code faster and more powerful. In
5234
/// particular, we constant fold and DCE instructions as we go, to avoid adding
5235
/// them to the worklist (this significantly speeds up instcombine on code where
5236
/// many instructions are dead or constant). Additionally, if we find a branch
5237
/// whose condition is a known constant, we only visit the reachable successors.
5238
bool InstCombinerImpl::prepareWorklist(
5239
Function &F, ReversePostOrderTraversal<BasicBlock *> &RPOT) {
5240
bool MadeIRChange = false;
5241
SmallPtrSet<BasicBlock *, 32> LiveBlocks;
5242
SmallVector<Instruction *, 128> InstrsForInstructionWorklist;
5243
DenseMap<Constant *, Constant *> FoldedConstants;
5244
AliasScopeTracker SeenAliasScopes;
5245
5246
auto HandleOnlyLiveSuccessor = [&](BasicBlock *BB, BasicBlock *LiveSucc) {
5247
for (BasicBlock *Succ : successors(BB))
5248
if (Succ != LiveSucc && DeadEdges.insert({BB, Succ}).second)
5249
for (PHINode &PN : Succ->phis())
5250
for (Use &U : PN.incoming_values())
5251
if (PN.getIncomingBlock(U) == BB && !isa<PoisonValue>(U)) {
5252
U.set(PoisonValue::get(PN.getType()));
5253
MadeIRChange = true;
5254
}
5255
};
5256
5257
for (BasicBlock *BB : RPOT) {
5258
if (!BB->isEntryBlock() && all_of(predecessors(BB), [&](BasicBlock *Pred) {
5259
return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred);
5260
})) {
5261
HandleOnlyLiveSuccessor(BB, nullptr);
5262
continue;
5263
}
5264
LiveBlocks.insert(BB);
5265
5266
for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
5267
// ConstantProp instruction if trivially constant.
5268
if (!Inst.use_empty() &&
5269
(Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0))))
5270
if (Constant *C = ConstantFoldInstruction(&Inst, DL, &TLI)) {
5271
LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst
5272
<< '\n');
5273
Inst.replaceAllUsesWith(C);
5274
++NumConstProp;
5275
if (isInstructionTriviallyDead(&Inst, &TLI))
5276
Inst.eraseFromParent();
5277
MadeIRChange = true;
5278
continue;
5279
}
5280
5281
// See if we can constant fold its operands.
5282
for (Use &U : Inst.operands()) {
5283
if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
5284
continue;
5285
5286
auto *C = cast<Constant>(U);
5287
Constant *&FoldRes = FoldedConstants[C];
5288
if (!FoldRes)
5289
FoldRes = ConstantFoldConstant(C, DL, &TLI);
5290
5291
if (FoldRes != C) {
5292
LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst
5293
<< "\n Old = " << *C
5294
<< "\n New = " << *FoldRes << '\n');
5295
U = FoldRes;
5296
MadeIRChange = true;
5297
}
5298
}
5299
5300
// Skip processing debug and pseudo intrinsics in InstCombine. Processing
5301
// these call instructions consumes non-trivial amount of time and
5302
// provides no value for the optimization.
5303
if (!Inst.isDebugOrPseudoInst()) {
5304
InstrsForInstructionWorklist.push_back(&Inst);
5305
SeenAliasScopes.analyse(&Inst);
5306
}
5307
}
5308
5309
// If this is a branch or switch on a constant, mark only the single
5310
// live successor. Otherwise assume all successors are live.
5311
Instruction *TI = BB->getTerminator();
5312
if (BranchInst *BI = dyn_cast<BranchInst>(TI); BI && BI->isConditional()) {
5313
if (isa<UndefValue>(BI->getCondition())) {
5314
// Branch on undef is UB.
5315
HandleOnlyLiveSuccessor(BB, nullptr);
5316
continue;
5317
}
5318
if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
5319
bool CondVal = Cond->getZExtValue();
5320
HandleOnlyLiveSuccessor(BB, BI->getSuccessor(!CondVal));
5321
continue;
5322
}
5323
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
5324
if (isa<UndefValue>(SI->getCondition())) {
5325
// Switch on undef is UB.
5326
HandleOnlyLiveSuccessor(BB, nullptr);
5327
continue;
5328
}
5329
if (auto *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
5330
HandleOnlyLiveSuccessor(BB,
5331
SI->findCaseValue(Cond)->getCaseSuccessor());
5332
continue;
5333
}
5334
}
5335
}
5336
5337
// Remove instructions inside unreachable blocks. This prevents the
5338
// instcombine code from having to deal with some bad special cases, and
5339
// reduces use counts of instructions.
5340
for (BasicBlock &BB : F) {
5341
if (LiveBlocks.count(&BB))
5342
continue;
5343
5344
unsigned NumDeadInstInBB;
5345
unsigned NumDeadDbgInstInBB;
5346
std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
5347
removeAllNonTerminatorAndEHPadInstructions(&BB);
5348
5349
MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
5350
NumDeadInst += NumDeadInstInBB;
5351
}
5352
5353
// Once we've found all of the instructions to add to instcombine's worklist,
5354
// add them in reverse order. This way instcombine will visit from the top
5355
// of the function down. This jives well with the way that it adds all uses
5356
// of instructions to the worklist after doing a transformation, thus avoiding
5357
// some N^2 behavior in pathological cases.
5358
Worklist.reserve(InstrsForInstructionWorklist.size());
5359
for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) {
5360
// DCE instruction if trivially dead. As we iterate in reverse program
5361
// order here, we will clean up whole chains of dead instructions.
5362
if (isInstructionTriviallyDead(Inst, &TLI) ||
5363
SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) {
5364
++NumDeadInst;
5365
LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
5366
salvageDebugInfo(*Inst);
5367
Inst->eraseFromParent();
5368
MadeIRChange = true;
5369
continue;
5370
}
5371
5372
Worklist.push(Inst);
5373
}
5374
5375
return MadeIRChange;
5376
}
5377
5378
static bool combineInstructionsOverFunction(
5379
Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA,
5380
AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
5381
DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
5382
BranchProbabilityInfo *BPI, ProfileSummaryInfo *PSI, LoopInfo *LI,
5383
const InstCombineOptions &Opts) {
5384
auto &DL = F.getDataLayout();
5385
5386
/// Builder - This is an IRBuilder that automatically inserts new
5387
/// instructions into the worklist when they are created.
5388
IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
5389
F.getContext(), TargetFolder(DL),
5390
IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
5391
Worklist.add(I);
5392
if (auto *Assume = dyn_cast<AssumeInst>(I))
5393
AC.registerAssumption(Assume);
5394
}));
5395
5396
ReversePostOrderTraversal<BasicBlock *> RPOT(&F.front());
5397
5398
// Lower dbg.declare intrinsics otherwise their value may be clobbered
5399
// by instcombiner.
5400
bool MadeIRChange = false;
5401
if (ShouldLowerDbgDeclare)
5402
MadeIRChange = LowerDbgDeclare(F);
5403
5404
// Iterate while there is work to do.
5405
unsigned Iteration = 0;
5406
while (true) {
5407
++Iteration;
5408
5409
if (Iteration > Opts.MaxIterations && !Opts.VerifyFixpoint) {
5410
LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << Opts.MaxIterations
5411
<< " on " << F.getName()
5412
<< " reached; stopping without verifying fixpoint\n");
5413
break;
5414
}
5415
5416
++NumWorklistIterations;
5417
LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
5418
<< F.getName() << "\n");
5419
5420
InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT,
5421
ORE, BFI, BPI, PSI, DL, LI);
5422
IC.MaxArraySizeForCombine = MaxArraySize;
5423
bool MadeChangeInThisIteration = IC.prepareWorklist(F, RPOT);
5424
MadeChangeInThisIteration |= IC.run();
5425
if (!MadeChangeInThisIteration)
5426
break;
5427
5428
MadeIRChange = true;
5429
if (Iteration > Opts.MaxIterations) {
5430
report_fatal_error(
5431
"Instruction Combining did not reach a fixpoint after " +
5432
Twine(Opts.MaxIterations) + " iterations",
5433
/*GenCrashDiag=*/false);
5434
}
5435
}
5436
5437
if (Iteration == 1)
5438
++NumOneIteration;
5439
else if (Iteration == 2)
5440
++NumTwoIterations;
5441
else if (Iteration == 3)
5442
++NumThreeIterations;
5443
else
5444
++NumFourOrMoreIterations;
5445
5446
return MadeIRChange;
5447
}
5448
5449
InstCombinePass::InstCombinePass(InstCombineOptions Opts) : Options(Opts) {}
5450
5451
void InstCombinePass::printPipeline(
5452
raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
5453
static_cast<PassInfoMixin<InstCombinePass> *>(this)->printPipeline(
5454
OS, MapClassName2PassName);
5455
OS << '<';
5456
OS << "max-iterations=" << Options.MaxIterations << ";";
5457
OS << (Options.UseLoopInfo ? "" : "no-") << "use-loop-info;";
5458
OS << (Options.VerifyFixpoint ? "" : "no-") << "verify-fixpoint";
5459
OS << '>';
5460
}
5461
5462
PreservedAnalyses InstCombinePass::run(Function &F,
5463
FunctionAnalysisManager &AM) {
5464
auto &AC = AM.getResult<AssumptionAnalysis>(F);
5465
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
5466
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
5467
auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
5468
auto &TTI = AM.getResult<TargetIRAnalysis>(F);
5469
5470
// TODO: Only use LoopInfo when the option is set. This requires that the
5471
// callers in the pass pipeline explicitly set the option.
5472
auto *LI = AM.getCachedResult<LoopAnalysis>(F);
5473
if (!LI && Options.UseLoopInfo)
5474
LI = &AM.getResult<LoopAnalysis>(F);
5475
5476
auto *AA = &AM.getResult<AAManager>(F);
5477
auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
5478
ProfileSummaryInfo *PSI =
5479
MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
5480
auto *BFI = (PSI && PSI->hasProfileSummary()) ?
5481
&AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
5482
auto *BPI = AM.getCachedResult<BranchProbabilityAnalysis>(F);
5483
5484
if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
5485
BFI, BPI, PSI, LI, Options))
5486
// No changes, all analyses are preserved.
5487
return PreservedAnalyses::all();
5488
5489
// Mark all the analyses that instcombine updates as preserved.
5490
PreservedAnalyses PA;
5491
PA.preserveSet<CFGAnalyses>();
5492
return PA;
5493
}
5494
5495
void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
5496
AU.setPreservesCFG();
5497
AU.addRequired<AAResultsWrapperPass>();
5498
AU.addRequired<AssumptionCacheTracker>();
5499
AU.addRequired<TargetLibraryInfoWrapperPass>();
5500
AU.addRequired<TargetTransformInfoWrapperPass>();
5501
AU.addRequired<DominatorTreeWrapperPass>();
5502
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
5503
AU.addPreserved<DominatorTreeWrapperPass>();
5504
AU.addPreserved<AAResultsWrapperPass>();
5505
AU.addPreserved<BasicAAWrapperPass>();
5506
AU.addPreserved<GlobalsAAWrapperPass>();
5507
AU.addRequired<ProfileSummaryInfoWrapperPass>();
5508
LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
5509
}
5510
5511
bool InstructionCombiningPass::runOnFunction(Function &F) {
5512
if (skipFunction(F))
5513
return false;
5514
5515
// Required analyses.
5516
auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
5517
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
5518
auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
5519
auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
5520
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5521
auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
5522
5523
// Optional analyses.
5524
auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
5525
auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
5526
ProfileSummaryInfo *PSI =
5527
&getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
5528
BlockFrequencyInfo *BFI =
5529
(PSI && PSI->hasProfileSummary()) ?
5530
&getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
5531
nullptr;
5532
BranchProbabilityInfo *BPI = nullptr;
5533
if (auto *WrapperPass =
5534
getAnalysisIfAvailable<BranchProbabilityInfoWrapperPass>())
5535
BPI = &WrapperPass->getBPI();
5536
5537
return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
5538
BFI, BPI, PSI, LI,
5539
InstCombineOptions());
5540
}
5541
5542
char InstructionCombiningPass::ID = 0;
5543
5544
InstructionCombiningPass::InstructionCombiningPass() : FunctionPass(ID) {
5545
initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
5546
}
5547
5548
INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
5549
"Combine redundant instructions", false, false)
5550
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
5551
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
5552
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5553
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5554
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
5555
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
5556
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
5557
INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
5558
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
5559
INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
5560
"Combine redundant instructions", false, false)
5561
5562
// Initialization Routines
5563
void llvm::initializeInstCombine(PassRegistry &Registry) {
5564
initializeInstructionCombiningPassPass(Registry);
5565
}
5566
5567
FunctionPass *llvm::createInstructionCombiningPass() {
5568
return new InstructionCombiningPass();
5569
}
5570
5571