Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp
35266 views
1
//===- AddressSanitizer.cpp - memory error detector -----------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file is a part of AddressSanitizer, an address basic correctness
10
// checker.
11
// Details of the algorithm:
12
// https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
13
//
14
// FIXME: This sanitizer does not yet handle scalable vectors
15
//
16
//===----------------------------------------------------------------------===//
17
18
#include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
19
#include "llvm/ADT/ArrayRef.h"
20
#include "llvm/ADT/DenseMap.h"
21
#include "llvm/ADT/DepthFirstIterator.h"
22
#include "llvm/ADT/SmallPtrSet.h"
23
#include "llvm/ADT/SmallVector.h"
24
#include "llvm/ADT/Statistic.h"
25
#include "llvm/ADT/StringExtras.h"
26
#include "llvm/ADT/StringRef.h"
27
#include "llvm/ADT/Twine.h"
28
#include "llvm/Analysis/GlobalsModRef.h"
29
#include "llvm/Analysis/MemoryBuiltins.h"
30
#include "llvm/Analysis/StackSafetyAnalysis.h"
31
#include "llvm/Analysis/TargetLibraryInfo.h"
32
#include "llvm/Analysis/ValueTracking.h"
33
#include "llvm/BinaryFormat/MachO.h"
34
#include "llvm/Demangle/Demangle.h"
35
#include "llvm/IR/Argument.h"
36
#include "llvm/IR/Attributes.h"
37
#include "llvm/IR/BasicBlock.h"
38
#include "llvm/IR/Comdat.h"
39
#include "llvm/IR/Constant.h"
40
#include "llvm/IR/Constants.h"
41
#include "llvm/IR/DIBuilder.h"
42
#include "llvm/IR/DataLayout.h"
43
#include "llvm/IR/DebugInfoMetadata.h"
44
#include "llvm/IR/DebugLoc.h"
45
#include "llvm/IR/DerivedTypes.h"
46
#include "llvm/IR/EHPersonalities.h"
47
#include "llvm/IR/Function.h"
48
#include "llvm/IR/GlobalAlias.h"
49
#include "llvm/IR/GlobalValue.h"
50
#include "llvm/IR/GlobalVariable.h"
51
#include "llvm/IR/IRBuilder.h"
52
#include "llvm/IR/InlineAsm.h"
53
#include "llvm/IR/InstVisitor.h"
54
#include "llvm/IR/InstrTypes.h"
55
#include "llvm/IR/Instruction.h"
56
#include "llvm/IR/Instructions.h"
57
#include "llvm/IR/IntrinsicInst.h"
58
#include "llvm/IR/Intrinsics.h"
59
#include "llvm/IR/LLVMContext.h"
60
#include "llvm/IR/MDBuilder.h"
61
#include "llvm/IR/Metadata.h"
62
#include "llvm/IR/Module.h"
63
#include "llvm/IR/Type.h"
64
#include "llvm/IR/Use.h"
65
#include "llvm/IR/Value.h"
66
#include "llvm/MC/MCSectionMachO.h"
67
#include "llvm/Support/Casting.h"
68
#include "llvm/Support/CommandLine.h"
69
#include "llvm/Support/Debug.h"
70
#include "llvm/Support/ErrorHandling.h"
71
#include "llvm/Support/MathExtras.h"
72
#include "llvm/Support/raw_ostream.h"
73
#include "llvm/TargetParser/Triple.h"
74
#include "llvm/Transforms/Instrumentation.h"
75
#include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
76
#include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h"
77
#include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
78
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
79
#include "llvm/Transforms/Utils/Local.h"
80
#include "llvm/Transforms/Utils/ModuleUtils.h"
81
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
82
#include <algorithm>
83
#include <cassert>
84
#include <cstddef>
85
#include <cstdint>
86
#include <iomanip>
87
#include <limits>
88
#include <sstream>
89
#include <string>
90
#include <tuple>
91
92
using namespace llvm;
93
94
#define DEBUG_TYPE "asan"
95
96
static const uint64_t kDefaultShadowScale = 3;
97
static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
98
static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
99
static const uint64_t kDynamicShadowSentinel =
100
std::numeric_limits<uint64_t>::max();
101
static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G.
102
static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL;
103
static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
104
static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44;
105
static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
106
static const uint64_t kMIPS_ShadowOffsetN32 = 1ULL << 29;
107
static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
108
static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
109
static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
110
static const uint64_t kLoongArch64_ShadowOffset64 = 1ULL << 46;
111
static const uint64_t kRISCV64_ShadowOffset64 = kDynamicShadowSentinel;
112
static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
113
static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
114
static const uint64_t kFreeBSDAArch64_ShadowOffset64 = 1ULL << 47;
115
static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000;
116
static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30;
117
static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
118
static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000;
119
static const uint64_t kPS_ShadowOffset64 = 1ULL << 40;
120
static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
121
static const uint64_t kEmscriptenShadowOffset = 0;
122
123
// The shadow memory space is dynamically allocated.
124
static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;
125
126
static const size_t kMinStackMallocSize = 1 << 6; // 64B
127
static const size_t kMaxStackMallocSize = 1 << 16; // 64K
128
static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
129
static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
130
131
const char kAsanModuleCtorName[] = "asan.module_ctor";
132
const char kAsanModuleDtorName[] = "asan.module_dtor";
133
static const uint64_t kAsanCtorAndDtorPriority = 1;
134
// On Emscripten, the system needs more than one priorities for constructors.
135
static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50;
136
const char kAsanReportErrorTemplate[] = "__asan_report_";
137
const char kAsanRegisterGlobalsName[] = "__asan_register_globals";
138
const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals";
139
const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals";
140
const char kAsanUnregisterImageGlobalsName[] =
141
"__asan_unregister_image_globals";
142
const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals";
143
const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals";
144
const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init";
145
const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init";
146
const char kAsanInitName[] = "__asan_init";
147
const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v";
148
const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp";
149
const char kAsanPtrSub[] = "__sanitizer_ptr_sub";
150
const char kAsanHandleNoReturnName[] = "__asan_handle_no_return";
151
static const int kMaxAsanStackMallocSizeClass = 10;
152
const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_";
153
const char kAsanStackMallocAlwaysNameTemplate[] =
154
"__asan_stack_malloc_always_";
155
const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_";
156
const char kAsanGenPrefix[] = "___asan_gen_";
157
const char kODRGenPrefix[] = "__odr_asan_gen_";
158
const char kSanCovGenPrefix[] = "__sancov_gen_";
159
const char kAsanSetShadowPrefix[] = "__asan_set_shadow_";
160
const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory";
161
const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory";
162
163
// ASan version script has __asan_* wildcard. Triple underscore prevents a
164
// linker (gold) warning about attempting to export a local symbol.
165
const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered";
166
167
const char kAsanOptionDetectUseAfterReturn[] =
168
"__asan_option_detect_stack_use_after_return";
169
170
const char kAsanShadowMemoryDynamicAddress[] =
171
"__asan_shadow_memory_dynamic_address";
172
173
const char kAsanAllocaPoison[] = "__asan_alloca_poison";
174
const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison";
175
176
const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared";
177
const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private";
178
const char kAMDGPUBallotName[] = "llvm.amdgcn.ballot.i64";
179
const char kAMDGPUUnreachableName[] = "llvm.amdgcn.unreachable";
180
181
// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
182
static const size_t kNumberOfAccessSizes = 5;
183
184
static const uint64_t kAllocaRzSize = 32;
185
186
// ASanAccessInfo implementation constants.
187
constexpr size_t kCompileKernelShift = 0;
188
constexpr size_t kCompileKernelMask = 0x1;
189
constexpr size_t kAccessSizeIndexShift = 1;
190
constexpr size_t kAccessSizeIndexMask = 0xf;
191
constexpr size_t kIsWriteShift = 5;
192
constexpr size_t kIsWriteMask = 0x1;
193
194
// Command-line flags.
195
196
static cl::opt<bool> ClEnableKasan(
197
"asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
198
cl::Hidden, cl::init(false));
199
200
static cl::opt<bool> ClRecover(
201
"asan-recover",
202
cl::desc("Enable recovery mode (continue-after-error)."),
203
cl::Hidden, cl::init(false));
204
205
static cl::opt<bool> ClInsertVersionCheck(
206
"asan-guard-against-version-mismatch",
207
cl::desc("Guard against compiler/runtime version mismatch."), cl::Hidden,
208
cl::init(true));
209
210
// This flag may need to be replaced with -f[no-]asan-reads.
211
static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
212
cl::desc("instrument read instructions"),
213
cl::Hidden, cl::init(true));
214
215
static cl::opt<bool> ClInstrumentWrites(
216
"asan-instrument-writes", cl::desc("instrument write instructions"),
217
cl::Hidden, cl::init(true));
218
219
static cl::opt<bool>
220
ClUseStackSafety("asan-use-stack-safety", cl::Hidden, cl::init(true),
221
cl::Hidden, cl::desc("Use Stack Safety analysis results"),
222
cl::Optional);
223
224
static cl::opt<bool> ClInstrumentAtomics(
225
"asan-instrument-atomics",
226
cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
227
cl::init(true));
228
229
static cl::opt<bool>
230
ClInstrumentByval("asan-instrument-byval",
231
cl::desc("instrument byval call arguments"), cl::Hidden,
232
cl::init(true));
233
234
static cl::opt<bool> ClAlwaysSlowPath(
235
"asan-always-slow-path",
236
cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
237
cl::init(false));
238
239
static cl::opt<bool> ClForceDynamicShadow(
240
"asan-force-dynamic-shadow",
241
cl::desc("Load shadow address into a local variable for each function"),
242
cl::Hidden, cl::init(false));
243
244
static cl::opt<bool>
245
ClWithIfunc("asan-with-ifunc",
246
cl::desc("Access dynamic shadow through an ifunc global on "
247
"platforms that support this"),
248
cl::Hidden, cl::init(true));
249
250
static cl::opt<bool> ClWithIfuncSuppressRemat(
251
"asan-with-ifunc-suppress-remat",
252
cl::desc("Suppress rematerialization of dynamic shadow address by passing "
253
"it through inline asm in prologue."),
254
cl::Hidden, cl::init(true));
255
256
// This flag limits the number of instructions to be instrumented
257
// in any given BB. Normally, this should be set to unlimited (INT_MAX),
258
// but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
259
// set it to 10000.
260
static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
261
"asan-max-ins-per-bb", cl::init(10000),
262
cl::desc("maximal number of instructions to instrument in any given BB"),
263
cl::Hidden);
264
265
// This flag may need to be replaced with -f[no]asan-stack.
266
static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
267
cl::Hidden, cl::init(true));
268
static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
269
"asan-max-inline-poisoning-size",
270
cl::desc(
271
"Inline shadow poisoning for blocks up to the given size in bytes."),
272
cl::Hidden, cl::init(64));
273
274
static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn(
275
"asan-use-after-return",
276
cl::desc("Sets the mode of detection for stack-use-after-return."),
277
cl::values(
278
clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never",
279
"Never detect stack use after return."),
280
clEnumValN(
281
AsanDetectStackUseAfterReturnMode::Runtime, "runtime",
282
"Detect stack use after return if "
283
"binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."),
284
clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always",
285
"Always detect stack use after return.")),
286
cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime));
287
288
static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
289
cl::desc("Create redzones for byval "
290
"arguments (extra copy "
291
"required)"), cl::Hidden,
292
cl::init(true));
293
294
static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
295
cl::desc("Check stack-use-after-scope"),
296
cl::Hidden, cl::init(false));
297
298
// This flag may need to be replaced with -f[no]asan-globals.
299
static cl::opt<bool> ClGlobals("asan-globals",
300
cl::desc("Handle global objects"), cl::Hidden,
301
cl::init(true));
302
303
static cl::opt<bool> ClInitializers("asan-initialization-order",
304
cl::desc("Handle C++ initializer order"),
305
cl::Hidden, cl::init(true));
306
307
static cl::opt<bool> ClInvalidPointerPairs(
308
"asan-detect-invalid-pointer-pair",
309
cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
310
cl::init(false));
311
312
static cl::opt<bool> ClInvalidPointerCmp(
313
"asan-detect-invalid-pointer-cmp",
314
cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden,
315
cl::init(false));
316
317
static cl::opt<bool> ClInvalidPointerSub(
318
"asan-detect-invalid-pointer-sub",
319
cl::desc("Instrument - operations with pointer operands"), cl::Hidden,
320
cl::init(false));
321
322
static cl::opt<unsigned> ClRealignStack(
323
"asan-realign-stack",
324
cl::desc("Realign stack to the value of this flag (power of two)"),
325
cl::Hidden, cl::init(32));
326
327
static cl::opt<int> ClInstrumentationWithCallsThreshold(
328
"asan-instrumentation-with-call-threshold",
329
cl::desc("If the function being instrumented contains more than "
330
"this number of memory accesses, use callbacks instead of "
331
"inline checks (-1 means never use callbacks)."),
332
cl::Hidden, cl::init(7000));
333
334
static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
335
"asan-memory-access-callback-prefix",
336
cl::desc("Prefix for memory access callbacks"), cl::Hidden,
337
cl::init("__asan_"));
338
339
static cl::opt<bool> ClKasanMemIntrinCallbackPrefix(
340
"asan-kernel-mem-intrinsic-prefix",
341
cl::desc("Use prefix for memory intrinsics in KASAN mode"), cl::Hidden,
342
cl::init(false));
343
344
static cl::opt<bool>
345
ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
346
cl::desc("instrument dynamic allocas"),
347
cl::Hidden, cl::init(true));
348
349
static cl::opt<bool> ClSkipPromotableAllocas(
350
"asan-skip-promotable-allocas",
351
cl::desc("Do not instrument promotable allocas"), cl::Hidden,
352
cl::init(true));
353
354
static cl::opt<AsanCtorKind> ClConstructorKind(
355
"asan-constructor-kind",
356
cl::desc("Sets the ASan constructor kind"),
357
cl::values(clEnumValN(AsanCtorKind::None, "none", "No constructors"),
358
clEnumValN(AsanCtorKind::Global, "global",
359
"Use global constructors")),
360
cl::init(AsanCtorKind::Global), cl::Hidden);
361
// These flags allow to change the shadow mapping.
362
// The shadow mapping looks like
363
// Shadow = (Mem >> scale) + offset
364
365
static cl::opt<int> ClMappingScale("asan-mapping-scale",
366
cl::desc("scale of asan shadow mapping"),
367
cl::Hidden, cl::init(0));
368
369
static cl::opt<uint64_t>
370
ClMappingOffset("asan-mapping-offset",
371
cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
372
cl::Hidden, cl::init(0));
373
374
// Optimization flags. Not user visible, used mostly for testing
375
// and benchmarking the tool.
376
377
static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
378
cl::Hidden, cl::init(true));
379
380
static cl::opt<bool> ClOptimizeCallbacks("asan-optimize-callbacks",
381
cl::desc("Optimize callbacks"),
382
cl::Hidden, cl::init(false));
383
384
static cl::opt<bool> ClOptSameTemp(
385
"asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
386
cl::Hidden, cl::init(true));
387
388
static cl::opt<bool> ClOptGlobals("asan-opt-globals",
389
cl::desc("Don't instrument scalar globals"),
390
cl::Hidden, cl::init(true));
391
392
static cl::opt<bool> ClOptStack(
393
"asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
394
cl::Hidden, cl::init(false));
395
396
static cl::opt<bool> ClDynamicAllocaStack(
397
"asan-stack-dynamic-alloca",
398
cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
399
cl::init(true));
400
401
static cl::opt<uint32_t> ClForceExperiment(
402
"asan-force-experiment",
403
cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
404
cl::init(0));
405
406
static cl::opt<bool>
407
ClUsePrivateAlias("asan-use-private-alias",
408
cl::desc("Use private aliases for global variables"),
409
cl::Hidden, cl::init(true));
410
411
static cl::opt<bool>
412
ClUseOdrIndicator("asan-use-odr-indicator",
413
cl::desc("Use odr indicators to improve ODR reporting"),
414
cl::Hidden, cl::init(true));
415
416
static cl::opt<bool>
417
ClUseGlobalsGC("asan-globals-live-support",
418
cl::desc("Use linker features to support dead "
419
"code stripping of globals"),
420
cl::Hidden, cl::init(true));
421
422
// This is on by default even though there is a bug in gold:
423
// https://sourceware.org/bugzilla/show_bug.cgi?id=19002
424
static cl::opt<bool>
425
ClWithComdat("asan-with-comdat",
426
cl::desc("Place ASan constructors in comdat sections"),
427
cl::Hidden, cl::init(true));
428
429
static cl::opt<AsanDtorKind> ClOverrideDestructorKind(
430
"asan-destructor-kind",
431
cl::desc("Sets the ASan destructor kind. The default is to use the value "
432
"provided to the pass constructor"),
433
cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"),
434
clEnumValN(AsanDtorKind::Global, "global",
435
"Use global destructors")),
436
cl::init(AsanDtorKind::Invalid), cl::Hidden);
437
438
// Debug flags.
439
440
static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
441
cl::init(0));
442
443
static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
444
cl::Hidden, cl::init(0));
445
446
static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
447
cl::desc("Debug func"));
448
449
static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
450
cl::Hidden, cl::init(-1));
451
452
static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
453
cl::Hidden, cl::init(-1));
454
455
STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
456
STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
457
STATISTIC(NumOptimizedAccessesToGlobalVar,
458
"Number of optimized accesses to global vars");
459
STATISTIC(NumOptimizedAccessesToStackVar,
460
"Number of optimized accesses to stack vars");
461
462
namespace {
463
464
/// This struct defines the shadow mapping using the rule:
465
/// shadow = (mem >> Scale) ADD-or-OR Offset.
466
/// If InGlobal is true, then
467
/// extern char __asan_shadow[];
468
/// shadow = (mem >> Scale) + &__asan_shadow
469
struct ShadowMapping {
470
int Scale;
471
uint64_t Offset;
472
bool OrShadowOffset;
473
bool InGlobal;
474
};
475
476
} // end anonymous namespace
477
478
static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize,
479
bool IsKasan) {
480
bool IsAndroid = TargetTriple.isAndroid();
481
bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS() ||
482
TargetTriple.isDriverKit();
483
bool IsMacOS = TargetTriple.isMacOSX();
484
bool IsFreeBSD = TargetTriple.isOSFreeBSD();
485
bool IsNetBSD = TargetTriple.isOSNetBSD();
486
bool IsPS = TargetTriple.isPS();
487
bool IsLinux = TargetTriple.isOSLinux();
488
bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 ||
489
TargetTriple.getArch() == Triple::ppc64le;
490
bool IsSystemZ = TargetTriple.getArch() == Triple::systemz;
491
bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
492
bool IsMIPSN32ABI = TargetTriple.getEnvironment() == Triple::GNUABIN32;
493
bool IsMIPS32 = TargetTriple.isMIPS32();
494
bool IsMIPS64 = TargetTriple.isMIPS64();
495
bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb();
496
bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 ||
497
TargetTriple.getArch() == Triple::aarch64_be;
498
bool IsLoongArch64 = TargetTriple.isLoongArch64();
499
bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64;
500
bool IsWindows = TargetTriple.isOSWindows();
501
bool IsFuchsia = TargetTriple.isOSFuchsia();
502
bool IsEmscripten = TargetTriple.isOSEmscripten();
503
bool IsAMDGPU = TargetTriple.isAMDGPU();
504
505
ShadowMapping Mapping;
506
507
Mapping.Scale = kDefaultShadowScale;
508
if (ClMappingScale.getNumOccurrences() > 0) {
509
Mapping.Scale = ClMappingScale;
510
}
511
512
if (LongSize == 32) {
513
if (IsAndroid)
514
Mapping.Offset = kDynamicShadowSentinel;
515
else if (IsMIPSN32ABI)
516
Mapping.Offset = kMIPS_ShadowOffsetN32;
517
else if (IsMIPS32)
518
Mapping.Offset = kMIPS32_ShadowOffset32;
519
else if (IsFreeBSD)
520
Mapping.Offset = kFreeBSD_ShadowOffset32;
521
else if (IsNetBSD)
522
Mapping.Offset = kNetBSD_ShadowOffset32;
523
else if (IsIOS)
524
Mapping.Offset = kDynamicShadowSentinel;
525
else if (IsWindows)
526
Mapping.Offset = kWindowsShadowOffset32;
527
else if (IsEmscripten)
528
Mapping.Offset = kEmscriptenShadowOffset;
529
else
530
Mapping.Offset = kDefaultShadowOffset32;
531
} else { // LongSize == 64
532
// Fuchsia is always PIE, which means that the beginning of the address
533
// space is always available.
534
if (IsFuchsia)
535
Mapping.Offset = 0;
536
else if (IsPPC64)
537
Mapping.Offset = kPPC64_ShadowOffset64;
538
else if (IsSystemZ)
539
Mapping.Offset = kSystemZ_ShadowOffset64;
540
else if (IsFreeBSD && IsAArch64)
541
Mapping.Offset = kFreeBSDAArch64_ShadowOffset64;
542
else if (IsFreeBSD && !IsMIPS64) {
543
if (IsKasan)
544
Mapping.Offset = kFreeBSDKasan_ShadowOffset64;
545
else
546
Mapping.Offset = kFreeBSD_ShadowOffset64;
547
} else if (IsNetBSD) {
548
if (IsKasan)
549
Mapping.Offset = kNetBSDKasan_ShadowOffset64;
550
else
551
Mapping.Offset = kNetBSD_ShadowOffset64;
552
} else if (IsPS)
553
Mapping.Offset = kPS_ShadowOffset64;
554
else if (IsLinux && IsX86_64) {
555
if (IsKasan)
556
Mapping.Offset = kLinuxKasan_ShadowOffset64;
557
else
558
Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
559
(kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
560
} else if (IsWindows && IsX86_64) {
561
Mapping.Offset = kWindowsShadowOffset64;
562
} else if (IsMIPS64)
563
Mapping.Offset = kMIPS64_ShadowOffset64;
564
else if (IsIOS)
565
Mapping.Offset = kDynamicShadowSentinel;
566
else if (IsMacOS && IsAArch64)
567
Mapping.Offset = kDynamicShadowSentinel;
568
else if (IsAArch64)
569
Mapping.Offset = kAArch64_ShadowOffset64;
570
else if (IsLoongArch64)
571
Mapping.Offset = kLoongArch64_ShadowOffset64;
572
else if (IsRISCV64)
573
Mapping.Offset = kRISCV64_ShadowOffset64;
574
else if (IsAMDGPU)
575
Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
576
(kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
577
else
578
Mapping.Offset = kDefaultShadowOffset64;
579
}
580
581
if (ClForceDynamicShadow) {
582
Mapping.Offset = kDynamicShadowSentinel;
583
}
584
585
if (ClMappingOffset.getNumOccurrences() > 0) {
586
Mapping.Offset = ClMappingOffset;
587
}
588
589
// OR-ing shadow offset if more efficient (at least on x86) if the offset
590
// is a power of two, but on ppc64 and loongarch64 we have to use add since
591
// the shadow offset is not necessarily 1/8-th of the address space. On
592
// SystemZ, we could OR the constant in a single instruction, but it's more
593
// efficient to load it once and use indexed addressing.
594
Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS &&
595
!IsRISCV64 && !IsLoongArch64 &&
596
!(Mapping.Offset & (Mapping.Offset - 1)) &&
597
Mapping.Offset != kDynamicShadowSentinel;
598
bool IsAndroidWithIfuncSupport =
599
IsAndroid && !TargetTriple.isAndroidVersionLT(21);
600
Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb;
601
602
return Mapping;
603
}
604
605
namespace llvm {
606
void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize,
607
bool IsKasan, uint64_t *ShadowBase,
608
int *MappingScale, bool *OrShadowOffset) {
609
auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan);
610
*ShadowBase = Mapping.Offset;
611
*MappingScale = Mapping.Scale;
612
*OrShadowOffset = Mapping.OrShadowOffset;
613
}
614
615
ASanAccessInfo::ASanAccessInfo(int32_t Packed)
616
: Packed(Packed),
617
AccessSizeIndex((Packed >> kAccessSizeIndexShift) & kAccessSizeIndexMask),
618
IsWrite((Packed >> kIsWriteShift) & kIsWriteMask),
619
CompileKernel((Packed >> kCompileKernelShift) & kCompileKernelMask) {}
620
621
ASanAccessInfo::ASanAccessInfo(bool IsWrite, bool CompileKernel,
622
uint8_t AccessSizeIndex)
623
: Packed((IsWrite << kIsWriteShift) +
624
(CompileKernel << kCompileKernelShift) +
625
(AccessSizeIndex << kAccessSizeIndexShift)),
626
AccessSizeIndex(AccessSizeIndex), IsWrite(IsWrite),
627
CompileKernel(CompileKernel) {}
628
629
} // namespace llvm
630
631
static uint64_t getRedzoneSizeForScale(int MappingScale) {
632
// Redzone used for stack and globals is at least 32 bytes.
633
// For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
634
return std::max(32U, 1U << MappingScale);
635
}
636
637
static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) {
638
if (TargetTriple.isOSEmscripten()) {
639
return kAsanEmscriptenCtorAndDtorPriority;
640
} else {
641
return kAsanCtorAndDtorPriority;
642
}
643
}
644
645
namespace {
646
/// Helper RAII class to post-process inserted asan runtime calls during a
647
/// pass on a single Function. Upon end of scope, detects and applies the
648
/// required funclet OpBundle.
649
class RuntimeCallInserter {
650
Function *OwnerFn = nullptr;
651
bool TrackInsertedCalls = false;
652
SmallVector<CallInst *> InsertedCalls;
653
654
public:
655
RuntimeCallInserter(Function &Fn) : OwnerFn(&Fn) {
656
if (Fn.hasPersonalityFn()) {
657
auto Personality = classifyEHPersonality(Fn.getPersonalityFn());
658
if (isScopedEHPersonality(Personality))
659
TrackInsertedCalls = true;
660
}
661
}
662
663
~RuntimeCallInserter() {
664
if (InsertedCalls.empty())
665
return;
666
assert(TrackInsertedCalls && "Calls were wrongly tracked");
667
668
DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(*OwnerFn);
669
for (CallInst *CI : InsertedCalls) {
670
BasicBlock *BB = CI->getParent();
671
assert(BB && "Instruction doesn't belong to a BasicBlock");
672
assert(BB->getParent() == OwnerFn &&
673
"Instruction doesn't belong to the expected Function!");
674
675
ColorVector &Colors = BlockColors[BB];
676
// funclet opbundles are only valid in monochromatic BBs.
677
// Note that unreachable BBs are seen as colorless by colorEHFunclets()
678
// and will be DCE'ed later.
679
if (Colors.empty())
680
continue;
681
if (Colors.size() != 1) {
682
OwnerFn->getContext().emitError(
683
"Instruction's BasicBlock is not monochromatic");
684
continue;
685
}
686
687
BasicBlock *Color = Colors.front();
688
Instruction *EHPad = Color->getFirstNonPHI();
689
690
if (EHPad && EHPad->isEHPad()) {
691
// Replace CI with a clone with an added funclet OperandBundle
692
OperandBundleDef OB("funclet", EHPad);
693
auto *NewCall =
694
CallBase::addOperandBundle(CI, LLVMContext::OB_funclet, OB, CI);
695
NewCall->copyMetadata(*CI);
696
CI->replaceAllUsesWith(NewCall);
697
CI->eraseFromParent();
698
}
699
}
700
}
701
702
CallInst *createRuntimeCall(IRBuilder<> &IRB, FunctionCallee Callee,
703
ArrayRef<Value *> Args = {},
704
const Twine &Name = "") {
705
assert(IRB.GetInsertBlock()->getParent() == OwnerFn);
706
707
CallInst *Inst = IRB.CreateCall(Callee, Args, Name, nullptr);
708
if (TrackInsertedCalls)
709
InsertedCalls.push_back(Inst);
710
return Inst;
711
}
712
};
713
714
/// AddressSanitizer: instrument the code in module to find memory bugs.
715
struct AddressSanitizer {
716
AddressSanitizer(Module &M, const StackSafetyGlobalInfo *SSGI,
717
int InstrumentationWithCallsThreshold,
718
uint32_t MaxInlinePoisoningSize, bool CompileKernel = false,
719
bool Recover = false, bool UseAfterScope = false,
720
AsanDetectStackUseAfterReturnMode UseAfterReturn =
721
AsanDetectStackUseAfterReturnMode::Runtime)
722
: CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
723
: CompileKernel),
724
Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
725
UseAfterScope(UseAfterScope || ClUseAfterScope),
726
UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn
727
: UseAfterReturn),
728
SSGI(SSGI),
729
InstrumentationWithCallsThreshold(
730
ClInstrumentationWithCallsThreshold.getNumOccurrences() > 0
731
? ClInstrumentationWithCallsThreshold
732
: InstrumentationWithCallsThreshold),
733
MaxInlinePoisoningSize(ClMaxInlinePoisoningSize.getNumOccurrences() > 0
734
? ClMaxInlinePoisoningSize
735
: MaxInlinePoisoningSize) {
736
C = &(M.getContext());
737
DL = &M.getDataLayout();
738
LongSize = M.getDataLayout().getPointerSizeInBits();
739
IntptrTy = Type::getIntNTy(*C, LongSize);
740
PtrTy = PointerType::getUnqual(*C);
741
Int32Ty = Type::getInt32Ty(*C);
742
TargetTriple = Triple(M.getTargetTriple());
743
744
Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
745
746
assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid);
747
}
748
749
TypeSize getAllocaSizeInBytes(const AllocaInst &AI) const {
750
return *AI.getAllocationSize(AI.getDataLayout());
751
}
752
753
/// Check if we want (and can) handle this alloca.
754
bool isInterestingAlloca(const AllocaInst &AI);
755
756
bool ignoreAccess(Instruction *Inst, Value *Ptr);
757
void getInterestingMemoryOperands(
758
Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting);
759
760
void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
761
InterestingMemoryOperand &O, bool UseCalls,
762
const DataLayout &DL, RuntimeCallInserter &RTCI);
763
void instrumentPointerComparisonOrSubtraction(Instruction *I,
764
RuntimeCallInserter &RTCI);
765
void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
766
Value *Addr, MaybeAlign Alignment,
767
uint32_t TypeStoreSize, bool IsWrite,
768
Value *SizeArgument, bool UseCalls, uint32_t Exp,
769
RuntimeCallInserter &RTCI);
770
Instruction *instrumentAMDGPUAddress(Instruction *OrigIns,
771
Instruction *InsertBefore, Value *Addr,
772
uint32_t TypeStoreSize, bool IsWrite,
773
Value *SizeArgument);
774
Instruction *genAMDGPUReportBlock(IRBuilder<> &IRB, Value *Cond,
775
bool Recover);
776
void instrumentUnusualSizeOrAlignment(Instruction *I,
777
Instruction *InsertBefore, Value *Addr,
778
TypeSize TypeStoreSize, bool IsWrite,
779
Value *SizeArgument, bool UseCalls,
780
uint32_t Exp,
781
RuntimeCallInserter &RTCI);
782
void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, const DataLayout &DL,
783
Type *IntptrTy, Value *Mask, Value *EVL,
784
Value *Stride, Instruction *I, Value *Addr,
785
MaybeAlign Alignment, unsigned Granularity,
786
Type *OpType, bool IsWrite,
787
Value *SizeArgument, bool UseCalls,
788
uint32_t Exp, RuntimeCallInserter &RTCI);
789
Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
790
Value *ShadowValue, uint32_t TypeStoreSize);
791
Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
792
bool IsWrite, size_t AccessSizeIndex,
793
Value *SizeArgument, uint32_t Exp,
794
RuntimeCallInserter &RTCI);
795
void instrumentMemIntrinsic(MemIntrinsic *MI, RuntimeCallInserter &RTCI);
796
Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
797
bool suppressInstrumentationSiteForDebug(int &Instrumented);
798
bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI);
799
bool maybeInsertAsanInitAtFunctionEntry(Function &F);
800
bool maybeInsertDynamicShadowAtFunctionEntry(Function &F);
801
void markEscapedLocalAllocas(Function &F);
802
803
private:
804
friend struct FunctionStackPoisoner;
805
806
void initializeCallbacks(Module &M, const TargetLibraryInfo *TLI);
807
808
bool LooksLikeCodeInBug11395(Instruction *I);
809
bool GlobalIsLinkerInitialized(GlobalVariable *G);
810
bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
811
TypeSize TypeStoreSize) const;
812
813
/// Helper to cleanup per-function state.
814
struct FunctionStateRAII {
815
AddressSanitizer *Pass;
816
817
FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
818
assert(Pass->ProcessedAllocas.empty() &&
819
"last pass forgot to clear cache");
820
assert(!Pass->LocalDynamicShadow);
821
}
822
823
~FunctionStateRAII() {
824
Pass->LocalDynamicShadow = nullptr;
825
Pass->ProcessedAllocas.clear();
826
}
827
};
828
829
LLVMContext *C;
830
const DataLayout *DL;
831
Triple TargetTriple;
832
int LongSize;
833
bool CompileKernel;
834
bool Recover;
835
bool UseAfterScope;
836
AsanDetectStackUseAfterReturnMode UseAfterReturn;
837
Type *IntptrTy;
838
Type *Int32Ty;
839
PointerType *PtrTy;
840
ShadowMapping Mapping;
841
FunctionCallee AsanHandleNoReturnFunc;
842
FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction;
843
Constant *AsanShadowGlobal;
844
845
// These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
846
FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes];
847
FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
848
849
// These arrays is indexed by AccessIsWrite and Experiment.
850
FunctionCallee AsanErrorCallbackSized[2][2];
851
FunctionCallee AsanMemoryAccessCallbackSized[2][2];
852
853
FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset;
854
Value *LocalDynamicShadow = nullptr;
855
const StackSafetyGlobalInfo *SSGI;
856
DenseMap<const AllocaInst *, bool> ProcessedAllocas;
857
858
FunctionCallee AMDGPUAddressShared;
859
FunctionCallee AMDGPUAddressPrivate;
860
int InstrumentationWithCallsThreshold;
861
uint32_t MaxInlinePoisoningSize;
862
};
863
864
class ModuleAddressSanitizer {
865
public:
866
ModuleAddressSanitizer(Module &M, bool InsertVersionCheck,
867
bool CompileKernel = false, bool Recover = false,
868
bool UseGlobalsGC = true, bool UseOdrIndicator = true,
869
AsanDtorKind DestructorKind = AsanDtorKind::Global,
870
AsanCtorKind ConstructorKind = AsanCtorKind::Global)
871
: CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
872
: CompileKernel),
873
InsertVersionCheck(ClInsertVersionCheck.getNumOccurrences() > 0
874
? ClInsertVersionCheck
875
: InsertVersionCheck),
876
Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
877
UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel),
878
// Enable aliases as they should have no downside with ODR indicators.
879
UsePrivateAlias(ClUsePrivateAlias.getNumOccurrences() > 0
880
? ClUsePrivateAlias
881
: UseOdrIndicator),
882
UseOdrIndicator(ClUseOdrIndicator.getNumOccurrences() > 0
883
? ClUseOdrIndicator
884
: UseOdrIndicator),
885
// Not a typo: ClWithComdat is almost completely pointless without
886
// ClUseGlobalsGC (because then it only works on modules without
887
// globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
888
// and both suffer from gold PR19002 for which UseGlobalsGC constructor
889
// argument is designed as workaround. Therefore, disable both
890
// ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
891
// do globals-gc.
892
UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel),
893
DestructorKind(DestructorKind),
894
ConstructorKind(ClConstructorKind.getNumOccurrences() > 0
895
? ClConstructorKind
896
: ConstructorKind) {
897
C = &(M.getContext());
898
int LongSize = M.getDataLayout().getPointerSizeInBits();
899
IntptrTy = Type::getIntNTy(*C, LongSize);
900
PtrTy = PointerType::getUnqual(*C);
901
TargetTriple = Triple(M.getTargetTriple());
902
Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
903
904
if (ClOverrideDestructorKind != AsanDtorKind::Invalid)
905
this->DestructorKind = ClOverrideDestructorKind;
906
assert(this->DestructorKind != AsanDtorKind::Invalid);
907
}
908
909
bool instrumentModule(Module &);
910
911
private:
912
void initializeCallbacks(Module &M);
913
914
void instrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat);
915
void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
916
ArrayRef<GlobalVariable *> ExtendedGlobals,
917
ArrayRef<Constant *> MetadataInitializers);
918
void instrumentGlobalsELF(IRBuilder<> &IRB, Module &M,
919
ArrayRef<GlobalVariable *> ExtendedGlobals,
920
ArrayRef<Constant *> MetadataInitializers,
921
const std::string &UniqueModuleId);
922
void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
923
ArrayRef<GlobalVariable *> ExtendedGlobals,
924
ArrayRef<Constant *> MetadataInitializers);
925
void
926
InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
927
ArrayRef<GlobalVariable *> ExtendedGlobals,
928
ArrayRef<Constant *> MetadataInitializers);
929
930
GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
931
StringRef OriginalName);
932
void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
933
StringRef InternalSuffix);
934
Instruction *CreateAsanModuleDtor(Module &M);
935
936
const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const;
937
bool shouldInstrumentGlobal(GlobalVariable *G) const;
938
bool ShouldUseMachOGlobalsSection() const;
939
StringRef getGlobalMetadataSection() const;
940
void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
941
void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
942
uint64_t getMinRedzoneSizeForGlobal() const {
943
return getRedzoneSizeForScale(Mapping.Scale);
944
}
945
uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const;
946
int GetAsanVersion(const Module &M) const;
947
948
bool CompileKernel;
949
bool InsertVersionCheck;
950
bool Recover;
951
bool UseGlobalsGC;
952
bool UsePrivateAlias;
953
bool UseOdrIndicator;
954
bool UseCtorComdat;
955
AsanDtorKind DestructorKind;
956
AsanCtorKind ConstructorKind;
957
Type *IntptrTy;
958
PointerType *PtrTy;
959
LLVMContext *C;
960
Triple TargetTriple;
961
ShadowMapping Mapping;
962
FunctionCallee AsanPoisonGlobals;
963
FunctionCallee AsanUnpoisonGlobals;
964
FunctionCallee AsanRegisterGlobals;
965
FunctionCallee AsanUnregisterGlobals;
966
FunctionCallee AsanRegisterImageGlobals;
967
FunctionCallee AsanUnregisterImageGlobals;
968
FunctionCallee AsanRegisterElfGlobals;
969
FunctionCallee AsanUnregisterElfGlobals;
970
971
Function *AsanCtorFunction = nullptr;
972
Function *AsanDtorFunction = nullptr;
973
};
974
975
// Stack poisoning does not play well with exception handling.
976
// When an exception is thrown, we essentially bypass the code
977
// that unpoisones the stack. This is why the run-time library has
978
// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
979
// stack in the interceptor. This however does not work inside the
980
// actual function which catches the exception. Most likely because the
981
// compiler hoists the load of the shadow value somewhere too high.
982
// This causes asan to report a non-existing bug on 453.povray.
983
// It sounds like an LLVM bug.
984
struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
985
Function &F;
986
AddressSanitizer &ASan;
987
RuntimeCallInserter &RTCI;
988
DIBuilder DIB;
989
LLVMContext *C;
990
Type *IntptrTy;
991
Type *IntptrPtrTy;
992
ShadowMapping Mapping;
993
994
SmallVector<AllocaInst *, 16> AllocaVec;
995
SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
996
SmallVector<Instruction *, 8> RetVec;
997
998
FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
999
AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
1000
FunctionCallee AsanSetShadowFunc[0x100] = {};
1001
FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc;
1002
FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc;
1003
1004
// Stores a place and arguments of poisoning/unpoisoning call for alloca.
1005
struct AllocaPoisonCall {
1006
IntrinsicInst *InsBefore;
1007
AllocaInst *AI;
1008
uint64_t Size;
1009
bool DoPoison;
1010
};
1011
SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
1012
SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
1013
bool HasUntracedLifetimeIntrinsic = false;
1014
1015
SmallVector<AllocaInst *, 1> DynamicAllocaVec;
1016
SmallVector<IntrinsicInst *, 1> StackRestoreVec;
1017
AllocaInst *DynamicAllocaLayout = nullptr;
1018
IntrinsicInst *LocalEscapeCall = nullptr;
1019
1020
bool HasInlineAsm = false;
1021
bool HasReturnsTwiceCall = false;
1022
bool PoisonStack;
1023
1024
FunctionStackPoisoner(Function &F, AddressSanitizer &ASan,
1025
RuntimeCallInserter &RTCI)
1026
: F(F), ASan(ASan), RTCI(RTCI),
1027
DIB(*F.getParent(), /*AllowUnresolved*/ false), C(ASan.C),
1028
IntptrTy(ASan.IntptrTy), IntptrPtrTy(PointerType::get(IntptrTy, 0)),
1029
Mapping(ASan.Mapping),
1030
PoisonStack(ClStack &&
1031
!Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {}
1032
1033
bool runOnFunction() {
1034
if (!PoisonStack)
1035
return false;
1036
1037
if (ClRedzoneByvalArgs)
1038
copyArgsPassedByValToAllocas();
1039
1040
// Collect alloca, ret, lifetime instructions etc.
1041
for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
1042
1043
if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
1044
1045
initializeCallbacks(*F.getParent());
1046
1047
if (HasUntracedLifetimeIntrinsic) {
1048
// If there are lifetime intrinsics which couldn't be traced back to an
1049
// alloca, we may not know exactly when a variable enters scope, and
1050
// therefore should "fail safe" by not poisoning them.
1051
StaticAllocaPoisonCallVec.clear();
1052
DynamicAllocaPoisonCallVec.clear();
1053
}
1054
1055
processDynamicAllocas();
1056
processStaticAllocas();
1057
1058
if (ClDebugStack) {
1059
LLVM_DEBUG(dbgs() << F);
1060
}
1061
return true;
1062
}
1063
1064
// Arguments marked with the "byval" attribute are implicitly copied without
1065
// using an alloca instruction. To produce redzones for those arguments, we
1066
// copy them a second time into memory allocated with an alloca instruction.
1067
void copyArgsPassedByValToAllocas();
1068
1069
// Finds all Alloca instructions and puts
1070
// poisoned red zones around all of them.
1071
// Then unpoison everything back before the function returns.
1072
void processStaticAllocas();
1073
void processDynamicAllocas();
1074
1075
void createDynamicAllocasInitStorage();
1076
1077
// ----------------------- Visitors.
1078
/// Collect all Ret instructions, or the musttail call instruction if it
1079
/// precedes the return instruction.
1080
void visitReturnInst(ReturnInst &RI) {
1081
if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall())
1082
RetVec.push_back(CI);
1083
else
1084
RetVec.push_back(&RI);
1085
}
1086
1087
/// Collect all Resume instructions.
1088
void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
1089
1090
/// Collect all CatchReturnInst instructions.
1091
void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
1092
1093
void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
1094
Value *SavedStack) {
1095
IRBuilder<> IRB(InstBefore);
1096
Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
1097
// When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
1098
// need to adjust extracted SP to compute the address of the most recent
1099
// alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
1100
// this purpose.
1101
if (!isa<ReturnInst>(InstBefore)) {
1102
Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
1103
InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
1104
{IntptrTy});
1105
1106
Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
1107
1108
DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
1109
DynamicAreaOffset);
1110
}
1111
1112
RTCI.createRuntimeCall(
1113
IRB, AsanAllocasUnpoisonFunc,
1114
{IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr});
1115
}
1116
1117
// Unpoison dynamic allocas redzones.
1118
void unpoisonDynamicAllocas() {
1119
for (Instruction *Ret : RetVec)
1120
unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
1121
1122
for (Instruction *StackRestoreInst : StackRestoreVec)
1123
unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
1124
StackRestoreInst->getOperand(0));
1125
}
1126
1127
// Deploy and poison redzones around dynamic alloca call. To do this, we
1128
// should replace this call with another one with changed parameters and
1129
// replace all its uses with new address, so
1130
// addr = alloca type, old_size, align
1131
// is replaced by
1132
// new_size = (old_size + additional_size) * sizeof(type)
1133
// tmp = alloca i8, new_size, max(align, 32)
1134
// addr = tmp + 32 (first 32 bytes are for the left redzone).
1135
// Additional_size is added to make new memory allocation contain not only
1136
// requested memory, but also left, partial and right redzones.
1137
void handleDynamicAllocaCall(AllocaInst *AI);
1138
1139
/// Collect Alloca instructions we want (and can) handle.
1140
void visitAllocaInst(AllocaInst &AI) {
1141
// FIXME: Handle scalable vectors instead of ignoring them.
1142
const Type *AllocaType = AI.getAllocatedType();
1143
const auto *STy = dyn_cast<StructType>(AllocaType);
1144
if (!ASan.isInterestingAlloca(AI) || isa<ScalableVectorType>(AllocaType) ||
1145
(STy && STy->containsHomogeneousScalableVectorTypes())) {
1146
if (AI.isStaticAlloca()) {
1147
// Skip over allocas that are present *before* the first instrumented
1148
// alloca, we don't want to move those around.
1149
if (AllocaVec.empty())
1150
return;
1151
1152
StaticAllocasToMoveUp.push_back(&AI);
1153
}
1154
return;
1155
}
1156
1157
if (!AI.isStaticAlloca())
1158
DynamicAllocaVec.push_back(&AI);
1159
else
1160
AllocaVec.push_back(&AI);
1161
}
1162
1163
/// Collect lifetime intrinsic calls to check for use-after-scope
1164
/// errors.
1165
void visitIntrinsicInst(IntrinsicInst &II) {
1166
Intrinsic::ID ID = II.getIntrinsicID();
1167
if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
1168
if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
1169
if (!ASan.UseAfterScope)
1170
return;
1171
if (!II.isLifetimeStartOrEnd())
1172
return;
1173
// Found lifetime intrinsic, add ASan instrumentation if necessary.
1174
auto *Size = cast<ConstantInt>(II.getArgOperand(0));
1175
// If size argument is undefined, don't do anything.
1176
if (Size->isMinusOne()) return;
1177
// Check that size doesn't saturate uint64_t and can
1178
// be stored in IntptrTy.
1179
const uint64_t SizeValue = Size->getValue().getLimitedValue();
1180
if (SizeValue == ~0ULL ||
1181
!ConstantInt::isValueValidForType(IntptrTy, SizeValue))
1182
return;
1183
// Find alloca instruction that corresponds to llvm.lifetime argument.
1184
// Currently we can only handle lifetime markers pointing to the
1185
// beginning of the alloca.
1186
AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true);
1187
if (!AI) {
1188
HasUntracedLifetimeIntrinsic = true;
1189
return;
1190
}
1191
// We're interested only in allocas we can handle.
1192
if (!ASan.isInterestingAlloca(*AI))
1193
return;
1194
bool DoPoison = (ID == Intrinsic::lifetime_end);
1195
AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
1196
if (AI->isStaticAlloca())
1197
StaticAllocaPoisonCallVec.push_back(APC);
1198
else if (ClInstrumentDynamicAllocas)
1199
DynamicAllocaPoisonCallVec.push_back(APC);
1200
}
1201
1202
void visitCallBase(CallBase &CB) {
1203
if (CallInst *CI = dyn_cast<CallInst>(&CB)) {
1204
HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow;
1205
HasReturnsTwiceCall |= CI->canReturnTwice();
1206
}
1207
}
1208
1209
// ---------------------- Helpers.
1210
void initializeCallbacks(Module &M);
1211
1212
// Copies bytes from ShadowBytes into shadow memory for indexes where
1213
// ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
1214
// ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
1215
void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1216
IRBuilder<> &IRB, Value *ShadowBase);
1217
void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1218
size_t Begin, size_t End, IRBuilder<> &IRB,
1219
Value *ShadowBase);
1220
void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
1221
ArrayRef<uint8_t> ShadowBytes, size_t Begin,
1222
size_t End, IRBuilder<> &IRB, Value *ShadowBase);
1223
1224
void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
1225
1226
Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
1227
bool Dynamic);
1228
PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
1229
Instruction *ThenTerm, Value *ValueIfFalse);
1230
};
1231
1232
} // end anonymous namespace
1233
1234
void AddressSanitizerPass::printPipeline(
1235
raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1236
static_cast<PassInfoMixin<AddressSanitizerPass> *>(this)->printPipeline(
1237
OS, MapClassName2PassName);
1238
OS << '<';
1239
if (Options.CompileKernel)
1240
OS << "kernel";
1241
OS << '>';
1242
}
1243
1244
AddressSanitizerPass::AddressSanitizerPass(
1245
const AddressSanitizerOptions &Options, bool UseGlobalGC,
1246
bool UseOdrIndicator, AsanDtorKind DestructorKind,
1247
AsanCtorKind ConstructorKind)
1248
: Options(Options), UseGlobalGC(UseGlobalGC),
1249
UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind),
1250
ConstructorKind(ConstructorKind) {}
1251
1252
PreservedAnalyses AddressSanitizerPass::run(Module &M,
1253
ModuleAnalysisManager &MAM) {
1254
ModuleAddressSanitizer ModuleSanitizer(
1255
M, Options.InsertVersionCheck, Options.CompileKernel, Options.Recover,
1256
UseGlobalGC, UseOdrIndicator, DestructorKind, ConstructorKind);
1257
bool Modified = false;
1258
auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1259
const StackSafetyGlobalInfo *const SSGI =
1260
ClUseStackSafety ? &MAM.getResult<StackSafetyGlobalAnalysis>(M) : nullptr;
1261
for (Function &F : M) {
1262
AddressSanitizer FunctionSanitizer(
1263
M, SSGI, Options.InstrumentationWithCallsThreshold,
1264
Options.MaxInlinePoisoningSize, Options.CompileKernel, Options.Recover,
1265
Options.UseAfterScope, Options.UseAfterReturn);
1266
const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
1267
Modified |= FunctionSanitizer.instrumentFunction(F, &TLI);
1268
}
1269
Modified |= ModuleSanitizer.instrumentModule(M);
1270
if (!Modified)
1271
return PreservedAnalyses::all();
1272
1273
PreservedAnalyses PA = PreservedAnalyses::none();
1274
// GlobalsAA is considered stateless and does not get invalidated unless
1275
// explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers
1276
// make changes that require GlobalsAA to be invalidated.
1277
PA.abandon<GlobalsAA>();
1278
return PA;
1279
}
1280
1281
static size_t TypeStoreSizeToSizeIndex(uint32_t TypeSize) {
1282
size_t Res = llvm::countr_zero(TypeSize / 8);
1283
assert(Res < kNumberOfAccessSizes);
1284
return Res;
1285
}
1286
1287
/// Check if \p G has been created by a trusted compiler pass.
1288
static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
1289
// Do not instrument @llvm.global_ctors, @llvm.used, etc.
1290
if (G->getName().starts_with("llvm.") ||
1291
// Do not instrument gcov counter arrays.
1292
G->getName().starts_with("__llvm_gcov_ctr") ||
1293
// Do not instrument rtti proxy symbols for function sanitizer.
1294
G->getName().starts_with("__llvm_rtti_proxy"))
1295
return true;
1296
1297
// Do not instrument asan globals.
1298
if (G->getName().starts_with(kAsanGenPrefix) ||
1299
G->getName().starts_with(kSanCovGenPrefix) ||
1300
G->getName().starts_with(kODRGenPrefix))
1301
return true;
1302
1303
return false;
1304
}
1305
1306
static bool isUnsupportedAMDGPUAddrspace(Value *Addr) {
1307
Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
1308
unsigned int AddrSpace = PtrTy->getPointerAddressSpace();
1309
if (AddrSpace == 3 || AddrSpace == 5)
1310
return true;
1311
return false;
1312
}
1313
1314
Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
1315
// Shadow >> scale
1316
Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
1317
if (Mapping.Offset == 0) return Shadow;
1318
// (Shadow >> scale) | offset
1319
Value *ShadowBase;
1320
if (LocalDynamicShadow)
1321
ShadowBase = LocalDynamicShadow;
1322
else
1323
ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
1324
if (Mapping.OrShadowOffset)
1325
return IRB.CreateOr(Shadow, ShadowBase);
1326
else
1327
return IRB.CreateAdd(Shadow, ShadowBase);
1328
}
1329
1330
// Instrument memset/memmove/memcpy
1331
void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI,
1332
RuntimeCallInserter &RTCI) {
1333
InstrumentationIRBuilder IRB(MI);
1334
if (isa<MemTransferInst>(MI)) {
1335
RTCI.createRuntimeCall(
1336
IRB, isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
1337
{IRB.CreateAddrSpaceCast(MI->getOperand(0), PtrTy),
1338
IRB.CreateAddrSpaceCast(MI->getOperand(1), PtrTy),
1339
IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1340
} else if (isa<MemSetInst>(MI)) {
1341
RTCI.createRuntimeCall(
1342
IRB, AsanMemset,
1343
{IRB.CreateAddrSpaceCast(MI->getOperand(0), PtrTy),
1344
IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
1345
IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1346
}
1347
MI->eraseFromParent();
1348
}
1349
1350
/// Check if we want (and can) handle this alloca.
1351
bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
1352
auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
1353
1354
if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
1355
return PreviouslySeenAllocaInfo->getSecond();
1356
1357
bool IsInteresting =
1358
(AI.getAllocatedType()->isSized() &&
1359
// alloca() may be called with 0 size, ignore it.
1360
((!AI.isStaticAlloca()) || !getAllocaSizeInBytes(AI).isZero()) &&
1361
// We are only interested in allocas not promotable to registers.
1362
// Promotable allocas are common under -O0.
1363
(!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
1364
// inalloca allocas are not treated as static, and we don't want
1365
// dynamic alloca instrumentation for them as well.
1366
!AI.isUsedWithInAlloca() &&
1367
// swifterror allocas are register promoted by ISel
1368
!AI.isSwiftError() &&
1369
// safe allocas are not interesting
1370
!(SSGI && SSGI->isSafe(AI)));
1371
1372
ProcessedAllocas[&AI] = IsInteresting;
1373
return IsInteresting;
1374
}
1375
1376
bool AddressSanitizer::ignoreAccess(Instruction *Inst, Value *Ptr) {
1377
// Instrument accesses from different address spaces only for AMDGPU.
1378
Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1379
if (PtrTy->getPointerAddressSpace() != 0 &&
1380
!(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr)))
1381
return true;
1382
1383
// Ignore swifterror addresses.
1384
// swifterror memory addresses are mem2reg promoted by instruction
1385
// selection. As such they cannot have regular uses like an instrumentation
1386
// function and it makes no sense to track them as memory.
1387
if (Ptr->isSwiftError())
1388
return true;
1389
1390
// Treat memory accesses to promotable allocas as non-interesting since they
1391
// will not cause memory violations. This greatly speeds up the instrumented
1392
// executable at -O0.
1393
if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr))
1394
if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI))
1395
return true;
1396
1397
if (SSGI != nullptr && SSGI->stackAccessIsSafe(*Inst) &&
1398
findAllocaForValue(Ptr))
1399
return true;
1400
1401
return false;
1402
}
1403
1404
void AddressSanitizer::getInterestingMemoryOperands(
1405
Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) {
1406
// Do not instrument the load fetching the dynamic shadow address.
1407
if (LocalDynamicShadow == I)
1408
return;
1409
1410
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1411
if (!ClInstrumentReads || ignoreAccess(I, LI->getPointerOperand()))
1412
return;
1413
Interesting.emplace_back(I, LI->getPointerOperandIndex(), false,
1414
LI->getType(), LI->getAlign());
1415
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1416
if (!ClInstrumentWrites || ignoreAccess(I, SI->getPointerOperand()))
1417
return;
1418
Interesting.emplace_back(I, SI->getPointerOperandIndex(), true,
1419
SI->getValueOperand()->getType(), SI->getAlign());
1420
} else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
1421
if (!ClInstrumentAtomics || ignoreAccess(I, RMW->getPointerOperand()))
1422
return;
1423
Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true,
1424
RMW->getValOperand()->getType(), std::nullopt);
1425
} else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
1426
if (!ClInstrumentAtomics || ignoreAccess(I, XCHG->getPointerOperand()))
1427
return;
1428
Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true,
1429
XCHG->getCompareOperand()->getType(),
1430
std::nullopt);
1431
} else if (auto CI = dyn_cast<CallInst>(I)) {
1432
switch (CI->getIntrinsicID()) {
1433
case Intrinsic::masked_load:
1434
case Intrinsic::masked_store:
1435
case Intrinsic::masked_gather:
1436
case Intrinsic::masked_scatter: {
1437
bool IsWrite = CI->getType()->isVoidTy();
1438
// Masked store has an initial operand for the value.
1439
unsigned OpOffset = IsWrite ? 1 : 0;
1440
if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1441
return;
1442
1443
auto BasePtr = CI->getOperand(OpOffset);
1444
if (ignoreAccess(I, BasePtr))
1445
return;
1446
Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType();
1447
MaybeAlign Alignment = Align(1);
1448
// Otherwise no alignment guarantees. We probably got Undef.
1449
if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
1450
Alignment = Op->getMaybeAlignValue();
1451
Value *Mask = CI->getOperand(2 + OpOffset);
1452
Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask);
1453
break;
1454
}
1455
case Intrinsic::masked_expandload:
1456
case Intrinsic::masked_compressstore: {
1457
bool IsWrite = CI->getIntrinsicID() == Intrinsic::masked_compressstore;
1458
unsigned OpOffset = IsWrite ? 1 : 0;
1459
if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1460
return;
1461
auto BasePtr = CI->getOperand(OpOffset);
1462
if (ignoreAccess(I, BasePtr))
1463
return;
1464
MaybeAlign Alignment = BasePtr->getPointerAlignment(*DL);
1465
Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType();
1466
1467
IRBuilder IB(I);
1468
Value *Mask = CI->getOperand(1 + OpOffset);
1469
// Use the popcount of Mask as the effective vector length.
1470
Type *ExtTy = VectorType::get(IntptrTy, cast<VectorType>(Ty));
1471
Value *ExtMask = IB.CreateZExt(Mask, ExtTy);
1472
Value *EVL = IB.CreateAddReduce(ExtMask);
1473
Value *TrueMask = ConstantInt::get(Mask->getType(), 1);
1474
Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, TrueMask,
1475
EVL);
1476
break;
1477
}
1478
case Intrinsic::vp_load:
1479
case Intrinsic::vp_store:
1480
case Intrinsic::experimental_vp_strided_load:
1481
case Intrinsic::experimental_vp_strided_store: {
1482
auto *VPI = cast<VPIntrinsic>(CI);
1483
unsigned IID = CI->getIntrinsicID();
1484
bool IsWrite = CI->getType()->isVoidTy();
1485
if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1486
return;
1487
unsigned PtrOpNo = *VPI->getMemoryPointerParamPos(IID);
1488
Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType();
1489
MaybeAlign Alignment = VPI->getOperand(PtrOpNo)->getPointerAlignment(*DL);
1490
Value *Stride = nullptr;
1491
if (IID == Intrinsic::experimental_vp_strided_store ||
1492
IID == Intrinsic::experimental_vp_strided_load) {
1493
Stride = VPI->getOperand(PtrOpNo + 1);
1494
// Use the pointer alignment as the element alignment if the stride is a
1495
// mutiple of the pointer alignment. Otherwise, the element alignment
1496
// should be Align(1).
1497
unsigned PointerAlign = Alignment.valueOrOne().value();
1498
if (!isa<ConstantInt>(Stride) ||
1499
cast<ConstantInt>(Stride)->getZExtValue() % PointerAlign != 0)
1500
Alignment = Align(1);
1501
}
1502
Interesting.emplace_back(I, PtrOpNo, IsWrite, Ty, Alignment,
1503
VPI->getMaskParam(), VPI->getVectorLengthParam(),
1504
Stride);
1505
break;
1506
}
1507
case Intrinsic::vp_gather:
1508
case Intrinsic::vp_scatter: {
1509
auto *VPI = cast<VPIntrinsic>(CI);
1510
unsigned IID = CI->getIntrinsicID();
1511
bool IsWrite = IID == Intrinsic::vp_scatter;
1512
if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1513
return;
1514
unsigned PtrOpNo = *VPI->getMemoryPointerParamPos(IID);
1515
Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType();
1516
MaybeAlign Alignment = VPI->getPointerAlignment();
1517
Interesting.emplace_back(I, PtrOpNo, IsWrite, Ty, Alignment,
1518
VPI->getMaskParam(),
1519
VPI->getVectorLengthParam());
1520
break;
1521
}
1522
default:
1523
for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ArgNo++) {
1524
if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) ||
1525
ignoreAccess(I, CI->getArgOperand(ArgNo)))
1526
continue;
1527
Type *Ty = CI->getParamByValType(ArgNo);
1528
Interesting.emplace_back(I, ArgNo, false, Ty, Align(1));
1529
}
1530
}
1531
}
1532
}
1533
1534
static bool isPointerOperand(Value *V) {
1535
return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
1536
}
1537
1538
// This is a rough heuristic; it may cause both false positives and
1539
// false negatives. The proper implementation requires cooperation with
1540
// the frontend.
1541
static bool isInterestingPointerComparison(Instruction *I) {
1542
if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
1543
if (!Cmp->isRelational())
1544
return false;
1545
} else {
1546
return false;
1547
}
1548
return isPointerOperand(I->getOperand(0)) &&
1549
isPointerOperand(I->getOperand(1));
1550
}
1551
1552
// This is a rough heuristic; it may cause both false positives and
1553
// false negatives. The proper implementation requires cooperation with
1554
// the frontend.
1555
static bool isInterestingPointerSubtraction(Instruction *I) {
1556
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1557
if (BO->getOpcode() != Instruction::Sub)
1558
return false;
1559
} else {
1560
return false;
1561
}
1562
return isPointerOperand(I->getOperand(0)) &&
1563
isPointerOperand(I->getOperand(1));
1564
}
1565
1566
bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
1567
// If a global variable does not have dynamic initialization we don't
1568
// have to instrument it. However, if a global does not have initializer
1569
// at all, we assume it has dynamic initializer (in other TU).
1570
if (!G->hasInitializer())
1571
return false;
1572
1573
if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().IsDynInit)
1574
return false;
1575
1576
return true;
1577
}
1578
1579
void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1580
Instruction *I, RuntimeCallInserter &RTCI) {
1581
IRBuilder<> IRB(I);
1582
FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
1583
Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
1584
for (Value *&i : Param) {
1585
if (i->getType()->isPointerTy())
1586
i = IRB.CreatePointerCast(i, IntptrTy);
1587
}
1588
RTCI.createRuntimeCall(IRB, F, Param);
1589
}
1590
1591
static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
1592
Instruction *InsertBefore, Value *Addr,
1593
MaybeAlign Alignment, unsigned Granularity,
1594
TypeSize TypeStoreSize, bool IsWrite,
1595
Value *SizeArgument, bool UseCalls,
1596
uint32_t Exp, RuntimeCallInserter &RTCI) {
1597
// Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1598
// if the data is properly aligned.
1599
if (!TypeStoreSize.isScalable()) {
1600
const auto FixedSize = TypeStoreSize.getFixedValue();
1601
switch (FixedSize) {
1602
case 8:
1603
case 16:
1604
case 32:
1605
case 64:
1606
case 128:
1607
if (!Alignment || *Alignment >= Granularity ||
1608
*Alignment >= FixedSize / 8)
1609
return Pass->instrumentAddress(I, InsertBefore, Addr, Alignment,
1610
FixedSize, IsWrite, nullptr, UseCalls,
1611
Exp, RTCI);
1612
}
1613
}
1614
Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeStoreSize,
1615
IsWrite, nullptr, UseCalls, Exp, RTCI);
1616
}
1617
1618
void AddressSanitizer::instrumentMaskedLoadOrStore(
1619
AddressSanitizer *Pass, const DataLayout &DL, Type *IntptrTy, Value *Mask,
1620
Value *EVL, Value *Stride, Instruction *I, Value *Addr,
1621
MaybeAlign Alignment, unsigned Granularity, Type *OpType, bool IsWrite,
1622
Value *SizeArgument, bool UseCalls, uint32_t Exp,
1623
RuntimeCallInserter &RTCI) {
1624
auto *VTy = cast<VectorType>(OpType);
1625
TypeSize ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
1626
auto Zero = ConstantInt::get(IntptrTy, 0);
1627
1628
IRBuilder IB(I);
1629
Instruction *LoopInsertBefore = I;
1630
if (EVL) {
1631
// The end argument of SplitBlockAndInsertForLane is assumed bigger
1632
// than zero, so we should check whether EVL is zero here.
1633
Type *EVLType = EVL->getType();
1634
Value *IsEVLZero = IB.CreateICmpNE(EVL, ConstantInt::get(EVLType, 0));
1635
LoopInsertBefore = SplitBlockAndInsertIfThen(IsEVLZero, I, false);
1636
IB.SetInsertPoint(LoopInsertBefore);
1637
// Cast EVL to IntptrTy.
1638
EVL = IB.CreateZExtOrTrunc(EVL, IntptrTy);
1639
// To avoid undefined behavior for extracting with out of range index, use
1640
// the minimum of evl and element count as trip count.
1641
Value *EC = IB.CreateElementCount(IntptrTy, VTy->getElementCount());
1642
EVL = IB.CreateBinaryIntrinsic(Intrinsic::umin, EVL, EC);
1643
} else {
1644
EVL = IB.CreateElementCount(IntptrTy, VTy->getElementCount());
1645
}
1646
1647
// Cast Stride to IntptrTy.
1648
if (Stride)
1649
Stride = IB.CreateZExtOrTrunc(Stride, IntptrTy);
1650
1651
SplitBlockAndInsertForEachLane(EVL, LoopInsertBefore,
1652
[&](IRBuilderBase &IRB, Value *Index) {
1653
Value *MaskElem = IRB.CreateExtractElement(Mask, Index);
1654
if (auto *MaskElemC = dyn_cast<ConstantInt>(MaskElem)) {
1655
if (MaskElemC->isZero())
1656
// No check
1657
return;
1658
// Unconditional check
1659
} else {
1660
// Conditional check
1661
Instruction *ThenTerm = SplitBlockAndInsertIfThen(
1662
MaskElem, &*IRB.GetInsertPoint(), false);
1663
IRB.SetInsertPoint(ThenTerm);
1664
}
1665
1666
Value *InstrumentedAddress;
1667
if (isa<VectorType>(Addr->getType())) {
1668
assert(
1669
cast<VectorType>(Addr->getType())->getElementType()->isPointerTy() &&
1670
"Expected vector of pointer.");
1671
InstrumentedAddress = IRB.CreateExtractElement(Addr, Index);
1672
} else if (Stride) {
1673
Index = IRB.CreateMul(Index, Stride);
1674
InstrumentedAddress = IRB.CreatePtrAdd(Addr, Index);
1675
} else {
1676
InstrumentedAddress = IRB.CreateGEP(VTy, Addr, {Zero, Index});
1677
}
1678
doInstrumentAddress(Pass, I, &*IRB.GetInsertPoint(), InstrumentedAddress,
1679
Alignment, Granularity, ElemTypeSize, IsWrite,
1680
SizeArgument, UseCalls, Exp, RTCI);
1681
});
1682
}
1683
1684
void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
1685
InterestingMemoryOperand &O, bool UseCalls,
1686
const DataLayout &DL,
1687
RuntimeCallInserter &RTCI) {
1688
Value *Addr = O.getPtr();
1689
1690
// Optimization experiments.
1691
// The experiments can be used to evaluate potential optimizations that remove
1692
// instrumentation (assess false negatives). Instead of completely removing
1693
// some instrumentation, you set Exp to a non-zero value (mask of optimization
1694
// experiments that want to remove instrumentation of this instruction).
1695
// If Exp is non-zero, this pass will emit special calls into runtime
1696
// (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1697
// make runtime terminate the program in a special way (with a different
1698
// exit status). Then you run the new compiler on a buggy corpus, collect
1699
// the special terminations (ideally, you don't see them at all -- no false
1700
// negatives) and make the decision on the optimization.
1701
uint32_t Exp = ClForceExperiment;
1702
1703
if (ClOpt && ClOptGlobals) {
1704
// If initialization order checking is disabled, a simple access to a
1705
// dynamically initialized global is always valid.
1706
GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr));
1707
if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
1708
isSafeAccess(ObjSizeVis, Addr, O.TypeStoreSize)) {
1709
NumOptimizedAccessesToGlobalVar++;
1710
return;
1711
}
1712
}
1713
1714
if (ClOpt && ClOptStack) {
1715
// A direct inbounds access to a stack variable is always valid.
1716
if (isa<AllocaInst>(getUnderlyingObject(Addr)) &&
1717
isSafeAccess(ObjSizeVis, Addr, O.TypeStoreSize)) {
1718
NumOptimizedAccessesToStackVar++;
1719
return;
1720
}
1721
}
1722
1723
if (O.IsWrite)
1724
NumInstrumentedWrites++;
1725
else
1726
NumInstrumentedReads++;
1727
1728
unsigned Granularity = 1 << Mapping.Scale;
1729
if (O.MaybeMask) {
1730
instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.MaybeEVL,
1731
O.MaybeStride, O.getInsn(), Addr, O.Alignment,
1732
Granularity, O.OpType, O.IsWrite, nullptr,
1733
UseCalls, Exp, RTCI);
1734
} else {
1735
doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment,
1736
Granularity, O.TypeStoreSize, O.IsWrite, nullptr,
1737
UseCalls, Exp, RTCI);
1738
}
1739
}
1740
1741
Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
1742
Value *Addr, bool IsWrite,
1743
size_t AccessSizeIndex,
1744
Value *SizeArgument,
1745
uint32_t Exp,
1746
RuntimeCallInserter &RTCI) {
1747
InstrumentationIRBuilder IRB(InsertBefore);
1748
Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
1749
CallInst *Call = nullptr;
1750
if (SizeArgument) {
1751
if (Exp == 0)
1752
Call = RTCI.createRuntimeCall(IRB, AsanErrorCallbackSized[IsWrite][0],
1753
{Addr, SizeArgument});
1754
else
1755
Call = RTCI.createRuntimeCall(IRB, AsanErrorCallbackSized[IsWrite][1],
1756
{Addr, SizeArgument, ExpVal});
1757
} else {
1758
if (Exp == 0)
1759
Call = RTCI.createRuntimeCall(
1760
IRB, AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
1761
else
1762
Call = RTCI.createRuntimeCall(
1763
IRB, AsanErrorCallback[IsWrite][1][AccessSizeIndex], {Addr, ExpVal});
1764
}
1765
1766
Call->setCannotMerge();
1767
return Call;
1768
}
1769
1770
Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
1771
Value *ShadowValue,
1772
uint32_t TypeStoreSize) {
1773
size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
1774
// Addr & (Granularity - 1)
1775
Value *LastAccessedByte =
1776
IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
1777
// (Addr & (Granularity - 1)) + size - 1
1778
if (TypeStoreSize / 8 > 1)
1779
LastAccessedByte = IRB.CreateAdd(
1780
LastAccessedByte, ConstantInt::get(IntptrTy, TypeStoreSize / 8 - 1));
1781
// (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1782
LastAccessedByte =
1783
IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
1784
// ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1785
return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
1786
}
1787
1788
Instruction *AddressSanitizer::instrumentAMDGPUAddress(
1789
Instruction *OrigIns, Instruction *InsertBefore, Value *Addr,
1790
uint32_t TypeStoreSize, bool IsWrite, Value *SizeArgument) {
1791
// Do not instrument unsupported addrspaces.
1792
if (isUnsupportedAMDGPUAddrspace(Addr))
1793
return nullptr;
1794
Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
1795
// Follow host instrumentation for global and constant addresses.
1796
if (PtrTy->getPointerAddressSpace() != 0)
1797
return InsertBefore;
1798
// Instrument generic addresses in supported addressspaces.
1799
IRBuilder<> IRB(InsertBefore);
1800
Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {Addr});
1801
Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {Addr});
1802
Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate);
1803
Value *Cmp = IRB.CreateNot(IsSharedOrPrivate);
1804
Value *AddrSpaceZeroLanding =
1805
SplitBlockAndInsertIfThen(Cmp, InsertBefore, false);
1806
InsertBefore = cast<Instruction>(AddrSpaceZeroLanding);
1807
return InsertBefore;
1808
}
1809
1810
Instruction *AddressSanitizer::genAMDGPUReportBlock(IRBuilder<> &IRB,
1811
Value *Cond, bool Recover) {
1812
Module &M = *IRB.GetInsertBlock()->getModule();
1813
Value *ReportCond = Cond;
1814
if (!Recover) {
1815
auto Ballot = M.getOrInsertFunction(kAMDGPUBallotName, IRB.getInt64Ty(),
1816
IRB.getInt1Ty());
1817
ReportCond = IRB.CreateIsNotNull(IRB.CreateCall(Ballot, {Cond}));
1818
}
1819
1820
auto *Trm =
1821
SplitBlockAndInsertIfThen(ReportCond, &*IRB.GetInsertPoint(), false,
1822
MDBuilder(*C).createUnlikelyBranchWeights());
1823
Trm->getParent()->setName("asan.report");
1824
1825
if (Recover)
1826
return Trm;
1827
1828
Trm = SplitBlockAndInsertIfThen(Cond, Trm, false);
1829
IRB.SetInsertPoint(Trm);
1830
return IRB.CreateCall(
1831
M.getOrInsertFunction(kAMDGPUUnreachableName, IRB.getVoidTy()), {});
1832
}
1833
1834
void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
1835
Instruction *InsertBefore, Value *Addr,
1836
MaybeAlign Alignment,
1837
uint32_t TypeStoreSize, bool IsWrite,
1838
Value *SizeArgument, bool UseCalls,
1839
uint32_t Exp,
1840
RuntimeCallInserter &RTCI) {
1841
if (TargetTriple.isAMDGPU()) {
1842
InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr,
1843
TypeStoreSize, IsWrite, SizeArgument);
1844
if (!InsertBefore)
1845
return;
1846
}
1847
1848
InstrumentationIRBuilder IRB(InsertBefore);
1849
size_t AccessSizeIndex = TypeStoreSizeToSizeIndex(TypeStoreSize);
1850
const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex);
1851
1852
if (UseCalls && ClOptimizeCallbacks) {
1853
const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex);
1854
Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1855
IRB.CreateCall(
1856
Intrinsic::getDeclaration(M, Intrinsic::asan_check_memaccess),
1857
{IRB.CreatePointerCast(Addr, PtrTy),
1858
ConstantInt::get(Int32Ty, AccessInfo.Packed)});
1859
return;
1860
}
1861
1862
Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1863
if (UseCalls) {
1864
if (Exp == 0)
1865
RTCI.createRuntimeCall(
1866
IRB, AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], AddrLong);
1867
else
1868
RTCI.createRuntimeCall(
1869
IRB, AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
1870
{AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1871
return;
1872
}
1873
1874
Type *ShadowTy =
1875
IntegerType::get(*C, std::max(8U, TypeStoreSize >> Mapping.Scale));
1876
Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
1877
Value *ShadowPtr = memToShadow(AddrLong, IRB);
1878
const uint64_t ShadowAlign =
1879
std::max<uint64_t>(Alignment.valueOrOne().value() >> Mapping.Scale, 1);
1880
Value *ShadowValue = IRB.CreateAlignedLoad(
1881
ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy), Align(ShadowAlign));
1882
1883
Value *Cmp = IRB.CreateIsNotNull(ShadowValue);
1884
size_t Granularity = 1ULL << Mapping.Scale;
1885
Instruction *CrashTerm = nullptr;
1886
1887
bool GenSlowPath = (ClAlwaysSlowPath || (TypeStoreSize < 8 * Granularity));
1888
1889
if (TargetTriple.isAMDGCN()) {
1890
if (GenSlowPath) {
1891
auto *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeStoreSize);
1892
Cmp = IRB.CreateAnd(Cmp, Cmp2);
1893
}
1894
CrashTerm = genAMDGPUReportBlock(IRB, Cmp, Recover);
1895
} else if (GenSlowPath) {
1896
// We use branch weights for the slow path check, to indicate that the slow
1897
// path is rarely taken. This seems to be the case for SPEC benchmarks.
1898
Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1899
Cmp, InsertBefore, false, MDBuilder(*C).createUnlikelyBranchWeights());
1900
assert(cast<BranchInst>(CheckTerm)->isUnconditional());
1901
BasicBlock *NextBB = CheckTerm->getSuccessor(0);
1902
IRB.SetInsertPoint(CheckTerm);
1903
Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeStoreSize);
1904
if (Recover) {
1905
CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
1906
} else {
1907
BasicBlock *CrashBlock =
1908
BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
1909
CrashTerm = new UnreachableInst(*C, CrashBlock);
1910
BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
1911
ReplaceInstWithInst(CheckTerm, NewTerm);
1912
}
1913
} else {
1914
CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
1915
}
1916
1917
Instruction *Crash = generateCrashCode(
1918
CrashTerm, AddrLong, IsWrite, AccessSizeIndex, SizeArgument, Exp, RTCI);
1919
if (OrigIns->getDebugLoc())
1920
Crash->setDebugLoc(OrigIns->getDebugLoc());
1921
}
1922
1923
// Instrument unusual size or unusual alignment.
1924
// We can not do it with a single check, so we do 1-byte check for the first
1925
// and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1926
// to report the actual access size.
1927
void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1928
Instruction *I, Instruction *InsertBefore, Value *Addr,
1929
TypeSize TypeStoreSize, bool IsWrite, Value *SizeArgument, bool UseCalls,
1930
uint32_t Exp, RuntimeCallInserter &RTCI) {
1931
InstrumentationIRBuilder IRB(InsertBefore);
1932
Value *NumBits = IRB.CreateTypeSize(IntptrTy, TypeStoreSize);
1933
Value *Size = IRB.CreateLShr(NumBits, ConstantInt::get(IntptrTy, 3));
1934
1935
Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1936
if (UseCalls) {
1937
if (Exp == 0)
1938
RTCI.createRuntimeCall(IRB, AsanMemoryAccessCallbackSized[IsWrite][0],
1939
{AddrLong, Size});
1940
else
1941
RTCI.createRuntimeCall(
1942
IRB, AsanMemoryAccessCallbackSized[IsWrite][1],
1943
{AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1944
} else {
1945
Value *SizeMinusOne = IRB.CreateSub(Size, ConstantInt::get(IntptrTy, 1));
1946
Value *LastByte = IRB.CreateIntToPtr(
1947
IRB.CreateAdd(AddrLong, SizeMinusOne),
1948
Addr->getType());
1949
instrumentAddress(I, InsertBefore, Addr, {}, 8, IsWrite, Size, false, Exp,
1950
RTCI);
1951
instrumentAddress(I, InsertBefore, LastByte, {}, 8, IsWrite, Size, false,
1952
Exp, RTCI);
1953
}
1954
}
1955
1956
void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit,
1957
GlobalValue *ModuleName) {
1958
// Set up the arguments to our poison/unpoison functions.
1959
IRBuilder<> IRB(&GlobalInit.front(),
1960
GlobalInit.front().getFirstInsertionPt());
1961
1962
// Add a call to poison all external globals before the given function starts.
1963
Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
1964
IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
1965
1966
// Add calls to unpoison all globals before each return instruction.
1967
for (auto &BB : GlobalInit)
1968
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1969
CallInst::Create(AsanUnpoisonGlobals, "", RI->getIterator());
1970
}
1971
1972
void ModuleAddressSanitizer::createInitializerPoisonCalls(
1973
Module &M, GlobalValue *ModuleName) {
1974
GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1975
if (!GV)
1976
return;
1977
1978
ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
1979
if (!CA)
1980
return;
1981
1982
for (Use &OP : CA->operands()) {
1983
if (isa<ConstantAggregateZero>(OP)) continue;
1984
ConstantStruct *CS = cast<ConstantStruct>(OP);
1985
1986
// Must have a function or null ptr.
1987
if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
1988
if (F->getName() == kAsanModuleCtorName) continue;
1989
auto *Priority = cast<ConstantInt>(CS->getOperand(0));
1990
// Don't instrument CTORs that will run before asan.module_ctor.
1991
if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple))
1992
continue;
1993
poisonOneInitializer(*F, ModuleName);
1994
}
1995
}
1996
}
1997
1998
const GlobalVariable *
1999
ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const {
2000
// In case this function should be expanded to include rules that do not just
2001
// apply when CompileKernel is true, either guard all existing rules with an
2002
// 'if (CompileKernel) { ... }' or be absolutely sure that all these rules
2003
// should also apply to user space.
2004
assert(CompileKernel && "Only expecting to be called when compiling kernel");
2005
2006
const Constant *C = GA.getAliasee();
2007
2008
// When compiling the kernel, globals that are aliased by symbols prefixed
2009
// by "__" are special and cannot be padded with a redzone.
2010
if (GA.getName().starts_with("__"))
2011
return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases());
2012
2013
return nullptr;
2014
}
2015
2016
bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const {
2017
Type *Ty = G->getValueType();
2018
LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
2019
2020
if (G->hasSanitizerMetadata() && G->getSanitizerMetadata().NoAddress)
2021
return false;
2022
if (!Ty->isSized()) return false;
2023
if (!G->hasInitializer()) return false;
2024
// Globals in address space 1 and 4 are supported for AMDGPU.
2025
if (G->getAddressSpace() &&
2026
!(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G)))
2027
return false;
2028
if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
2029
// Two problems with thread-locals:
2030
// - The address of the main thread's copy can't be computed at link-time.
2031
// - Need to poison all copies, not just the main thread's one.
2032
if (G->isThreadLocal()) return false;
2033
// For now, just ignore this Global if the alignment is large.
2034
if (G->getAlign() && *G->getAlign() > getMinRedzoneSizeForGlobal()) return false;
2035
2036
// For non-COFF targets, only instrument globals known to be defined by this
2037
// TU.
2038
// FIXME: We can instrument comdat globals on ELF if we are using the
2039
// GC-friendly metadata scheme.
2040
if (!TargetTriple.isOSBinFormatCOFF()) {
2041
if (!G->hasExactDefinition() || G->hasComdat())
2042
return false;
2043
} else {
2044
// On COFF, don't instrument non-ODR linkages.
2045
if (G->isInterposable())
2046
return false;
2047
// If the global has AvailableExternally linkage, then it is not in this
2048
// module, which means it does not need to be instrumented.
2049
if (G->hasAvailableExternallyLinkage())
2050
return false;
2051
}
2052
2053
// If a comdat is present, it must have a selection kind that implies ODR
2054
// semantics: no duplicates, any, or exact match.
2055
if (Comdat *C = G->getComdat()) {
2056
switch (C->getSelectionKind()) {
2057
case Comdat::Any:
2058
case Comdat::ExactMatch:
2059
case Comdat::NoDeduplicate:
2060
break;
2061
case Comdat::Largest:
2062
case Comdat::SameSize:
2063
return false;
2064
}
2065
}
2066
2067
if (G->hasSection()) {
2068
// The kernel uses explicit sections for mostly special global variables
2069
// that we should not instrument. E.g. the kernel may rely on their layout
2070
// without redzones, or remove them at link time ("discard.*"), etc.
2071
if (CompileKernel)
2072
return false;
2073
2074
StringRef Section = G->getSection();
2075
2076
// Globals from llvm.metadata aren't emitted, do not instrument them.
2077
if (Section == "llvm.metadata") return false;
2078
// Do not instrument globals from special LLVM sections.
2079
if (Section.contains("__llvm") || Section.contains("__LLVM"))
2080
return false;
2081
2082
// Do not instrument function pointers to initialization and termination
2083
// routines: dynamic linker will not properly handle redzones.
2084
if (Section.starts_with(".preinit_array") ||
2085
Section.starts_with(".init_array") ||
2086
Section.starts_with(".fini_array")) {
2087
return false;
2088
}
2089
2090
// Do not instrument user-defined sections (with names resembling
2091
// valid C identifiers)
2092
if (TargetTriple.isOSBinFormatELF()) {
2093
if (llvm::all_of(Section,
2094
[](char c) { return llvm::isAlnum(c) || c == '_'; }))
2095
return false;
2096
}
2097
2098
// On COFF, if the section name contains '$', it is highly likely that the
2099
// user is using section sorting to create an array of globals similar to
2100
// the way initialization callbacks are registered in .init_array and
2101
// .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
2102
// to such globals is counterproductive, because the intent is that they
2103
// will form an array, and out-of-bounds accesses are expected.
2104
// See https://github.com/google/sanitizers/issues/305
2105
// and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
2106
if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) {
2107
LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
2108
<< *G << "\n");
2109
return false;
2110
}
2111
2112
if (TargetTriple.isOSBinFormatMachO()) {
2113
StringRef ParsedSegment, ParsedSection;
2114
unsigned TAA = 0, StubSize = 0;
2115
bool TAAParsed;
2116
cantFail(MCSectionMachO::ParseSectionSpecifier(
2117
Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize));
2118
2119
// Ignore the globals from the __OBJC section. The ObjC runtime assumes
2120
// those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
2121
// them.
2122
if (ParsedSegment == "__OBJC" ||
2123
(ParsedSegment == "__DATA" && ParsedSection.starts_with("__objc_"))) {
2124
LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
2125
return false;
2126
}
2127
// See https://github.com/google/sanitizers/issues/32
2128
// Constant CFString instances are compiled in the following way:
2129
// -- the string buffer is emitted into
2130
// __TEXT,__cstring,cstring_literals
2131
// -- the constant NSConstantString structure referencing that buffer
2132
// is placed into __DATA,__cfstring
2133
// Therefore there's no point in placing redzones into __DATA,__cfstring.
2134
// Moreover, it causes the linker to crash on OS X 10.7
2135
if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
2136
LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
2137
return false;
2138
}
2139
// The linker merges the contents of cstring_literals and removes the
2140
// trailing zeroes.
2141
if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
2142
LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
2143
return false;
2144
}
2145
}
2146
}
2147
2148
if (CompileKernel) {
2149
// Globals that prefixed by "__" are special and cannot be padded with a
2150
// redzone.
2151
if (G->getName().starts_with("__"))
2152
return false;
2153
}
2154
2155
return true;
2156
}
2157
2158
// On Mach-O platforms, we emit global metadata in a separate section of the
2159
// binary in order to allow the linker to properly dead strip. This is only
2160
// supported on recent versions of ld64.
2161
bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
2162
if (!TargetTriple.isOSBinFormatMachO())
2163
return false;
2164
2165
if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
2166
return true;
2167
if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
2168
return true;
2169
if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
2170
return true;
2171
if (TargetTriple.isDriverKit())
2172
return true;
2173
if (TargetTriple.isXROS())
2174
return true;
2175
2176
return false;
2177
}
2178
2179
StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const {
2180
switch (TargetTriple.getObjectFormat()) {
2181
case Triple::COFF: return ".ASAN$GL";
2182
case Triple::ELF: return "asan_globals";
2183
case Triple::MachO: return "__DATA,__asan_globals,regular";
2184
case Triple::Wasm:
2185
case Triple::GOFF:
2186
case Triple::SPIRV:
2187
case Triple::XCOFF:
2188
case Triple::DXContainer:
2189
report_fatal_error(
2190
"ModuleAddressSanitizer not implemented for object file format");
2191
case Triple::UnknownObjectFormat:
2192
break;
2193
}
2194
llvm_unreachable("unsupported object format");
2195
}
2196
2197
void ModuleAddressSanitizer::initializeCallbacks(Module &M) {
2198
IRBuilder<> IRB(*C);
2199
2200
// Declare our poisoning and unpoisoning functions.
2201
AsanPoisonGlobals =
2202
M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy);
2203
AsanUnpoisonGlobals =
2204
M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy());
2205
2206
// Declare functions that register/unregister globals.
2207
AsanRegisterGlobals = M.getOrInsertFunction(
2208
kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2209
AsanUnregisterGlobals = M.getOrInsertFunction(
2210
kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2211
2212
// Declare the functions that find globals in a shared object and then invoke
2213
// the (un)register function on them.
2214
AsanRegisterImageGlobals = M.getOrInsertFunction(
2215
kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
2216
AsanUnregisterImageGlobals = M.getOrInsertFunction(
2217
kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
2218
2219
AsanRegisterElfGlobals =
2220
M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
2221
IntptrTy, IntptrTy, IntptrTy);
2222
AsanUnregisterElfGlobals =
2223
M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
2224
IntptrTy, IntptrTy, IntptrTy);
2225
}
2226
2227
// Put the metadata and the instrumented global in the same group. This ensures
2228
// that the metadata is discarded if the instrumented global is discarded.
2229
void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
2230
GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
2231
Module &M = *G->getParent();
2232
Comdat *C = G->getComdat();
2233
if (!C) {
2234
if (!G->hasName()) {
2235
// If G is unnamed, it must be internal. Give it an artificial name
2236
// so we can put it in a comdat.
2237
assert(G->hasLocalLinkage());
2238
G->setName(Twine(kAsanGenPrefix) + "_anon_global");
2239
}
2240
2241
if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
2242
std::string Name = std::string(G->getName());
2243
Name += InternalSuffix;
2244
C = M.getOrInsertComdat(Name);
2245
} else {
2246
C = M.getOrInsertComdat(G->getName());
2247
}
2248
2249
// Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
2250
// linkage to internal linkage so that a symbol table entry is emitted. This
2251
// is necessary in order to create the comdat group.
2252
if (TargetTriple.isOSBinFormatCOFF()) {
2253
C->setSelectionKind(Comdat::NoDeduplicate);
2254
if (G->hasPrivateLinkage())
2255
G->setLinkage(GlobalValue::InternalLinkage);
2256
}
2257
G->setComdat(C);
2258
}
2259
2260
assert(G->hasComdat());
2261
Metadata->setComdat(G->getComdat());
2262
}
2263
2264
// Create a separate metadata global and put it in the appropriate ASan
2265
// global registration section.
2266
GlobalVariable *
2267
ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer,
2268
StringRef OriginalName) {
2269
auto Linkage = TargetTriple.isOSBinFormatMachO()
2270
? GlobalVariable::InternalLinkage
2271
: GlobalVariable::PrivateLinkage;
2272
GlobalVariable *Metadata = new GlobalVariable(
2273
M, Initializer->getType(), false, Linkage, Initializer,
2274
Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
2275
Metadata->setSection(getGlobalMetadataSection());
2276
// Place metadata in a large section for x86-64 ELF binaries to mitigate
2277
// relocation pressure.
2278
setGlobalVariableLargeSection(TargetTriple, *Metadata);
2279
return Metadata;
2280
}
2281
2282
Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) {
2283
AsanDtorFunction = Function::createWithDefaultAttr(
2284
FunctionType::get(Type::getVoidTy(*C), false),
2285
GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M);
2286
AsanDtorFunction->addFnAttr(Attribute::NoUnwind);
2287
// Ensure Dtor cannot be discarded, even if in a comdat.
2288
appendToUsed(M, {AsanDtorFunction});
2289
BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
2290
2291
return ReturnInst::Create(*C, AsanDtorBB);
2292
}
2293
2294
void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
2295
IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2296
ArrayRef<Constant *> MetadataInitializers) {
2297
assert(ExtendedGlobals.size() == MetadataInitializers.size());
2298
auto &DL = M.getDataLayout();
2299
2300
SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2301
for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2302
Constant *Initializer = MetadataInitializers[i];
2303
GlobalVariable *G = ExtendedGlobals[i];
2304
GlobalVariable *Metadata =
2305
CreateMetadataGlobal(M, Initializer, G->getName());
2306
MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2307
Metadata->setMetadata(LLVMContext::MD_associated, MD);
2308
MetadataGlobals[i] = Metadata;
2309
2310
// The MSVC linker always inserts padding when linking incrementally. We
2311
// cope with that by aligning each struct to its size, which must be a power
2312
// of two.
2313
unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
2314
assert(isPowerOf2_32(SizeOfGlobalStruct) &&
2315
"global metadata will not be padded appropriately");
2316
Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct));
2317
2318
SetComdatForGlobalMetadata(G, Metadata, "");
2319
}
2320
2321
// Update llvm.compiler.used, adding the new metadata globals. This is
2322
// needed so that during LTO these variables stay alive.
2323
if (!MetadataGlobals.empty())
2324
appendToCompilerUsed(M, MetadataGlobals);
2325
}
2326
2327
void ModuleAddressSanitizer::instrumentGlobalsELF(
2328
IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2329
ArrayRef<Constant *> MetadataInitializers,
2330
const std::string &UniqueModuleId) {
2331
assert(ExtendedGlobals.size() == MetadataInitializers.size());
2332
2333
// Putting globals in a comdat changes the semantic and potentially cause
2334
// false negative odr violations at link time. If odr indicators are used, we
2335
// keep the comdat sections, as link time odr violations will be dectected on
2336
// the odr indicator symbols.
2337
bool UseComdatForGlobalsGC = UseOdrIndicator && !UniqueModuleId.empty();
2338
2339
SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2340
for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2341
GlobalVariable *G = ExtendedGlobals[i];
2342
GlobalVariable *Metadata =
2343
CreateMetadataGlobal(M, MetadataInitializers[i], G->getName());
2344
MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2345
Metadata->setMetadata(LLVMContext::MD_associated, MD);
2346
MetadataGlobals[i] = Metadata;
2347
2348
if (UseComdatForGlobalsGC)
2349
SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
2350
}
2351
2352
// Update llvm.compiler.used, adding the new metadata globals. This is
2353
// needed so that during LTO these variables stay alive.
2354
if (!MetadataGlobals.empty())
2355
appendToCompilerUsed(M, MetadataGlobals);
2356
2357
// RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2358
// to look up the loaded image that contains it. Second, we can store in it
2359
// whether registration has already occurred, to prevent duplicate
2360
// registration.
2361
//
2362
// Common linkage ensures that there is only one global per shared library.
2363
GlobalVariable *RegisteredFlag = new GlobalVariable(
2364
M, IntptrTy, false, GlobalVariable::CommonLinkage,
2365
ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2366
RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2367
2368
// Create start and stop symbols.
2369
GlobalVariable *StartELFMetadata = new GlobalVariable(
2370
M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2371
"__start_" + getGlobalMetadataSection());
2372
StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2373
GlobalVariable *StopELFMetadata = new GlobalVariable(
2374
M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2375
"__stop_" + getGlobalMetadataSection());
2376
StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2377
2378
// Create a call to register the globals with the runtime.
2379
if (ConstructorKind == AsanCtorKind::Global)
2380
IRB.CreateCall(AsanRegisterElfGlobals,
2381
{IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2382
IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2383
IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2384
2385
// We also need to unregister globals at the end, e.g., when a shared library
2386
// gets closed.
2387
if (DestructorKind != AsanDtorKind::None && !MetadataGlobals.empty()) {
2388
IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2389
IrbDtor.CreateCall(AsanUnregisterElfGlobals,
2390
{IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2391
IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2392
IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2393
}
2394
}
2395
2396
void ModuleAddressSanitizer::InstrumentGlobalsMachO(
2397
IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2398
ArrayRef<Constant *> MetadataInitializers) {
2399
assert(ExtendedGlobals.size() == MetadataInitializers.size());
2400
2401
// On recent Mach-O platforms, use a structure which binds the liveness of
2402
// the global variable to the metadata struct. Keep the list of "Liveness" GV
2403
// created to be added to llvm.compiler.used
2404
StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
2405
SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
2406
2407
for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2408
Constant *Initializer = MetadataInitializers[i];
2409
GlobalVariable *G = ExtendedGlobals[i];
2410
GlobalVariable *Metadata =
2411
CreateMetadataGlobal(M, Initializer, G->getName());
2412
2413
// On recent Mach-O platforms, we emit the global metadata in a way that
2414
// allows the linker to properly strip dead globals.
2415
auto LivenessBinder =
2416
ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
2417
ConstantExpr::getPointerCast(Metadata, IntptrTy));
2418
GlobalVariable *Liveness = new GlobalVariable(
2419
M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
2420
Twine("__asan_binder_") + G->getName());
2421
Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
2422
LivenessGlobals[i] = Liveness;
2423
}
2424
2425
// Update llvm.compiler.used, adding the new liveness globals. This is
2426
// needed so that during LTO these variables stay alive. The alternative
2427
// would be to have the linker handling the LTO symbols, but libLTO
2428
// current API does not expose access to the section for each symbol.
2429
if (!LivenessGlobals.empty())
2430
appendToCompilerUsed(M, LivenessGlobals);
2431
2432
// RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2433
// to look up the loaded image that contains it. Second, we can store in it
2434
// whether registration has already occurred, to prevent duplicate
2435
// registration.
2436
//
2437
// common linkage ensures that there is only one global per shared library.
2438
GlobalVariable *RegisteredFlag = new GlobalVariable(
2439
M, IntptrTy, false, GlobalVariable::CommonLinkage,
2440
ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2441
RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2442
2443
if (ConstructorKind == AsanCtorKind::Global)
2444
IRB.CreateCall(AsanRegisterImageGlobals,
2445
{IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2446
2447
// We also need to unregister globals at the end, e.g., when a shared library
2448
// gets closed.
2449
if (DestructorKind != AsanDtorKind::None) {
2450
IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2451
IrbDtor.CreateCall(AsanUnregisterImageGlobals,
2452
{IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2453
}
2454
}
2455
2456
void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
2457
IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2458
ArrayRef<Constant *> MetadataInitializers) {
2459
assert(ExtendedGlobals.size() == MetadataInitializers.size());
2460
unsigned N = ExtendedGlobals.size();
2461
assert(N > 0);
2462
2463
// On platforms that don't have a custom metadata section, we emit an array
2464
// of global metadata structures.
2465
ArrayType *ArrayOfGlobalStructTy =
2466
ArrayType::get(MetadataInitializers[0]->getType(), N);
2467
auto AllGlobals = new GlobalVariable(
2468
M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
2469
ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
2470
if (Mapping.Scale > 3)
2471
AllGlobals->setAlignment(Align(1ULL << Mapping.Scale));
2472
2473
if (ConstructorKind == AsanCtorKind::Global)
2474
IRB.CreateCall(AsanRegisterGlobals,
2475
{IRB.CreatePointerCast(AllGlobals, IntptrTy),
2476
ConstantInt::get(IntptrTy, N)});
2477
2478
// We also need to unregister globals at the end, e.g., when a shared library
2479
// gets closed.
2480
if (DestructorKind != AsanDtorKind::None) {
2481
IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2482
IrbDtor.CreateCall(AsanUnregisterGlobals,
2483
{IRB.CreatePointerCast(AllGlobals, IntptrTy),
2484
ConstantInt::get(IntptrTy, N)});
2485
}
2486
}
2487
2488
// This function replaces all global variables with new variables that have
2489
// trailing redzones. It also creates a function that poisons
2490
// redzones and inserts this function into llvm.global_ctors.
2491
// Sets *CtorComdat to true if the global registration code emitted into the
2492
// asan constructor is comdat-compatible.
2493
void ModuleAddressSanitizer::instrumentGlobals(IRBuilder<> &IRB, Module &M,
2494
bool *CtorComdat) {
2495
// Build set of globals that are aliased by some GA, where
2496
// getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable.
2497
SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions;
2498
if (CompileKernel) {
2499
for (auto &GA : M.aliases()) {
2500
if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA))
2501
AliasedGlobalExclusions.insert(GV);
2502
}
2503
}
2504
2505
SmallVector<GlobalVariable *, 16> GlobalsToChange;
2506
for (auto &G : M.globals()) {
2507
if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G))
2508
GlobalsToChange.push_back(&G);
2509
}
2510
2511
size_t n = GlobalsToChange.size();
2512
auto &DL = M.getDataLayout();
2513
2514
// A global is described by a structure
2515
// size_t beg;
2516
// size_t size;
2517
// size_t size_with_redzone;
2518
// const char *name;
2519
// const char *module_name;
2520
// size_t has_dynamic_init;
2521
// size_t padding_for_windows_msvc_incremental_link;
2522
// size_t odr_indicator;
2523
// We initialize an array of such structures and pass it to a run-time call.
2524
StructType *GlobalStructTy =
2525
StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
2526
IntptrTy, IntptrTy, IntptrTy);
2527
SmallVector<GlobalVariable *, 16> NewGlobals(n);
2528
SmallVector<Constant *, 16> Initializers(n);
2529
2530
bool HasDynamicallyInitializedGlobals = false;
2531
2532
// We shouldn't merge same module names, as this string serves as unique
2533
// module ID in runtime.
2534
GlobalVariable *ModuleName =
2535
n != 0
2536
? createPrivateGlobalForString(M, M.getModuleIdentifier(),
2537
/*AllowMerging*/ false, kAsanGenPrefix)
2538
: nullptr;
2539
2540
for (size_t i = 0; i < n; i++) {
2541
GlobalVariable *G = GlobalsToChange[i];
2542
2543
GlobalValue::SanitizerMetadata MD;
2544
if (G->hasSanitizerMetadata())
2545
MD = G->getSanitizerMetadata();
2546
2547
// The runtime library tries demangling symbol names in the descriptor but
2548
// functionality like __cxa_demangle may be unavailable (e.g.
2549
// -static-libstdc++). So we demangle the symbol names here.
2550
std::string NameForGlobal = G->getName().str();
2551
GlobalVariable *Name =
2552
createPrivateGlobalForString(M, llvm::demangle(NameForGlobal),
2553
/*AllowMerging*/ true, kAsanGenPrefix);
2554
2555
Type *Ty = G->getValueType();
2556
const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
2557
const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes);
2558
Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
2559
2560
StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
2561
Constant *NewInitializer = ConstantStruct::get(
2562
NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));
2563
2564
// Create a new global variable with enough space for a redzone.
2565
GlobalValue::LinkageTypes Linkage = G->getLinkage();
2566
if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
2567
Linkage = GlobalValue::InternalLinkage;
2568
GlobalVariable *NewGlobal = new GlobalVariable(
2569
M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G,
2570
G->getThreadLocalMode(), G->getAddressSpace());
2571
NewGlobal->copyAttributesFrom(G);
2572
NewGlobal->setComdat(G->getComdat());
2573
NewGlobal->setAlignment(Align(getMinRedzoneSizeForGlobal()));
2574
// Don't fold globals with redzones. ODR violation detector and redzone
2575
// poisoning implicitly creates a dependence on the global's address, so it
2576
// is no longer valid for it to be marked unnamed_addr.
2577
NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
2578
2579
// Move null-terminated C strings to "__asan_cstring" section on Darwin.
2580
if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
2581
G->isConstant()) {
2582
auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
2583
if (Seq && Seq->isCString())
2584
NewGlobal->setSection("__TEXT,__asan_cstring,regular");
2585
}
2586
2587
// Transfer the debug info and type metadata. The payload starts at offset
2588
// zero so we can copy the metadata over as is.
2589
NewGlobal->copyMetadata(G, 0);
2590
2591
Value *Indices2[2];
2592
Indices2[0] = IRB.getInt32(0);
2593
Indices2[1] = IRB.getInt32(0);
2594
2595
G->replaceAllUsesWith(
2596
ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
2597
NewGlobal->takeName(G);
2598
G->eraseFromParent();
2599
NewGlobals[i] = NewGlobal;
2600
2601
Constant *ODRIndicator = ConstantPointerNull::get(PtrTy);
2602
GlobalValue *InstrumentedGlobal = NewGlobal;
2603
2604
bool CanUsePrivateAliases =
2605
TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
2606
TargetTriple.isOSBinFormatWasm();
2607
if (CanUsePrivateAliases && UsePrivateAlias) {
2608
// Create local alias for NewGlobal to avoid crash on ODR between
2609
// instrumented and non-instrumented libraries.
2610
InstrumentedGlobal =
2611
GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal);
2612
}
2613
2614
// ODR should not happen for local linkage.
2615
if (NewGlobal->hasLocalLinkage()) {
2616
ODRIndicator =
2617
ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), PtrTy);
2618
} else if (UseOdrIndicator) {
2619
// With local aliases, we need to provide another externally visible
2620
// symbol __odr_asan_XXX to detect ODR violation.
2621
auto *ODRIndicatorSym =
2622
new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
2623
Constant::getNullValue(IRB.getInt8Ty()),
2624
kODRGenPrefix + NameForGlobal, nullptr,
2625
NewGlobal->getThreadLocalMode());
2626
2627
// Set meaningful attributes for indicator symbol.
2628
ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
2629
ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
2630
ODRIndicatorSym->setAlignment(Align(1));
2631
ODRIndicator = ODRIndicatorSym;
2632
}
2633
2634
Constant *Initializer = ConstantStruct::get(
2635
GlobalStructTy,
2636
ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
2637
ConstantInt::get(IntptrTy, SizeInBytes),
2638
ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
2639
ConstantExpr::getPointerCast(Name, IntptrTy),
2640
ConstantExpr::getPointerCast(ModuleName, IntptrTy),
2641
ConstantInt::get(IntptrTy, MD.IsDynInit),
2642
Constant::getNullValue(IntptrTy),
2643
ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));
2644
2645
if (ClInitializers && MD.IsDynInit)
2646
HasDynamicallyInitializedGlobals = true;
2647
2648
LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
2649
2650
Initializers[i] = Initializer;
2651
}
2652
2653
// Add instrumented globals to llvm.compiler.used list to avoid LTO from
2654
// ConstantMerge'ing them.
2655
SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList;
2656
for (size_t i = 0; i < n; i++) {
2657
GlobalVariable *G = NewGlobals[i];
2658
if (G->getName().empty()) continue;
2659
GlobalsToAddToUsedList.push_back(G);
2660
}
2661
appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList));
2662
2663
if (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) {
2664
// Use COMDAT and register globals even if n == 0 to ensure that (a) the
2665
// linkage unit will only have one module constructor, and (b) the register
2666
// function will be called. The module destructor is not created when n ==
2667
// 0.
2668
*CtorComdat = true;
2669
instrumentGlobalsELF(IRB, M, NewGlobals, Initializers,
2670
getUniqueModuleId(&M));
2671
} else if (n == 0) {
2672
// When UseGlobalsGC is false, COMDAT can still be used if n == 0, because
2673
// all compile units will have identical module constructor/destructor.
2674
*CtorComdat = TargetTriple.isOSBinFormatELF();
2675
} else {
2676
*CtorComdat = false;
2677
if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
2678
InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
2679
} else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
2680
InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
2681
} else {
2682
InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
2683
}
2684
}
2685
2686
// Create calls for poisoning before initializers run and unpoisoning after.
2687
if (HasDynamicallyInitializedGlobals)
2688
createInitializerPoisonCalls(M, ModuleName);
2689
2690
LLVM_DEBUG(dbgs() << M);
2691
}
2692
2693
uint64_t
2694
ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const {
2695
constexpr uint64_t kMaxRZ = 1 << 18;
2696
const uint64_t MinRZ = getMinRedzoneSizeForGlobal();
2697
2698
uint64_t RZ = 0;
2699
if (SizeInBytes <= MinRZ / 2) {
2700
// Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is
2701
// at least 32 bytes, optimize when SizeInBytes is less than or equal to
2702
// half of MinRZ.
2703
RZ = MinRZ - SizeInBytes;
2704
} else {
2705
// Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes.
2706
RZ = std::clamp((SizeInBytes / MinRZ / 4) * MinRZ, MinRZ, kMaxRZ);
2707
2708
// Round up to multiple of MinRZ.
2709
if (SizeInBytes % MinRZ)
2710
RZ += MinRZ - (SizeInBytes % MinRZ);
2711
}
2712
2713
assert((RZ + SizeInBytes) % MinRZ == 0);
2714
2715
return RZ;
2716
}
2717
2718
int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const {
2719
int LongSize = M.getDataLayout().getPointerSizeInBits();
2720
bool isAndroid = Triple(M.getTargetTriple()).isAndroid();
2721
int Version = 8;
2722
// 32-bit Android is one version ahead because of the switch to dynamic
2723
// shadow.
2724
Version += (LongSize == 32 && isAndroid);
2725
return Version;
2726
}
2727
2728
bool ModuleAddressSanitizer::instrumentModule(Module &M) {
2729
initializeCallbacks(M);
2730
2731
// Create a module constructor. A destructor is created lazily because not all
2732
// platforms, and not all modules need it.
2733
if (ConstructorKind == AsanCtorKind::Global) {
2734
if (CompileKernel) {
2735
// The kernel always builds with its own runtime, and therefore does not
2736
// need the init and version check calls.
2737
AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName);
2738
} else {
2739
std::string AsanVersion = std::to_string(GetAsanVersion(M));
2740
std::string VersionCheckName =
2741
InsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : "";
2742
std::tie(AsanCtorFunction, std::ignore) =
2743
createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName,
2744
kAsanInitName, /*InitArgTypes=*/{},
2745
/*InitArgs=*/{}, VersionCheckName);
2746
}
2747
}
2748
2749
bool CtorComdat = true;
2750
if (ClGlobals) {
2751
assert(AsanCtorFunction || ConstructorKind == AsanCtorKind::None);
2752
if (AsanCtorFunction) {
2753
IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
2754
instrumentGlobals(IRB, M, &CtorComdat);
2755
} else {
2756
IRBuilder<> IRB(*C);
2757
instrumentGlobals(IRB, M, &CtorComdat);
2758
}
2759
}
2760
2761
const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple);
2762
2763
// Put the constructor and destructor in comdat if both
2764
// (1) global instrumentation is not TU-specific
2765
// (2) target is ELF.
2766
if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
2767
if (AsanCtorFunction) {
2768
AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
2769
appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction);
2770
}
2771
if (AsanDtorFunction) {
2772
AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
2773
appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction);
2774
}
2775
} else {
2776
if (AsanCtorFunction)
2777
appendToGlobalCtors(M, AsanCtorFunction, Priority);
2778
if (AsanDtorFunction)
2779
appendToGlobalDtors(M, AsanDtorFunction, Priority);
2780
}
2781
2782
return true;
2783
}
2784
2785
void AddressSanitizer::initializeCallbacks(Module &M, const TargetLibraryInfo *TLI) {
2786
IRBuilder<> IRB(*C);
2787
// Create __asan_report* callbacks.
2788
// IsWrite, TypeSize and Exp are encoded in the function name.
2789
for (int Exp = 0; Exp < 2; Exp++) {
2790
for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
2791
const std::string TypeStr = AccessIsWrite ? "store" : "load";
2792
const std::string ExpStr = Exp ? "exp_" : "";
2793
const std::string EndingStr = Recover ? "_noabort" : "";
2794
2795
SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
2796
SmallVector<Type *, 2> Args1{1, IntptrTy};
2797
AttributeList AL2;
2798
AttributeList AL1;
2799
if (Exp) {
2800
Type *ExpType = Type::getInt32Ty(*C);
2801
Args2.push_back(ExpType);
2802
Args1.push_back(ExpType);
2803
if (auto AK = TLI->getExtAttrForI32Param(false)) {
2804
AL2 = AL2.addParamAttribute(*C, 2, AK);
2805
AL1 = AL1.addParamAttribute(*C, 1, AK);
2806
}
2807
}
2808
AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2809
kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr,
2810
FunctionType::get(IRB.getVoidTy(), Args2, false), AL2);
2811
2812
AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2813
ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
2814
FunctionType::get(IRB.getVoidTy(), Args2, false), AL2);
2815
2816
for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
2817
AccessSizeIndex++) {
2818
const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
2819
AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2820
M.getOrInsertFunction(
2821
kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
2822
FunctionType::get(IRB.getVoidTy(), Args1, false), AL1);
2823
2824
AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2825
M.getOrInsertFunction(
2826
ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
2827
FunctionType::get(IRB.getVoidTy(), Args1, false), AL1);
2828
}
2829
}
2830
}
2831
2832
const std::string MemIntrinCallbackPrefix =
2833
(CompileKernel && !ClKasanMemIntrinCallbackPrefix)
2834
? std::string("")
2835
: ClMemoryAccessCallbackPrefix;
2836
AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
2837
PtrTy, PtrTy, PtrTy, IntptrTy);
2838
AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", PtrTy,
2839
PtrTy, PtrTy, IntptrTy);
2840
AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
2841
TLI->getAttrList(C, {1}, /*Signed=*/false),
2842
PtrTy, PtrTy, IRB.getInt32Ty(), IntptrTy);
2843
2844
AsanHandleNoReturnFunc =
2845
M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy());
2846
2847
AsanPtrCmpFunction =
2848
M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy);
2849
AsanPtrSubFunction =
2850
M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy);
2851
if (Mapping.InGlobal)
2852
AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow",
2853
ArrayType::get(IRB.getInt8Ty(), 0));
2854
2855
AMDGPUAddressShared =
2856
M.getOrInsertFunction(kAMDGPUAddressSharedName, IRB.getInt1Ty(), PtrTy);
2857
AMDGPUAddressPrivate =
2858
M.getOrInsertFunction(kAMDGPUAddressPrivateName, IRB.getInt1Ty(), PtrTy);
2859
}
2860
2861
bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
2862
// For each NSObject descendant having a +load method, this method is invoked
2863
// by the ObjC runtime before any of the static constructors is called.
2864
// Therefore we need to instrument such methods with a call to __asan_init
2865
// at the beginning in order to initialize our runtime before any access to
2866
// the shadow memory.
2867
// We cannot just ignore these methods, because they may call other
2868
// instrumented functions.
2869
if (F.getName().contains(" load]")) {
2870
FunctionCallee AsanInitFunction =
2871
declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
2872
IRBuilder<> IRB(&F.front(), F.front().begin());
2873
IRB.CreateCall(AsanInitFunction, {});
2874
return true;
2875
}
2876
return false;
2877
}
2878
2879
bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
2880
// Generate code only when dynamic addressing is needed.
2881
if (Mapping.Offset != kDynamicShadowSentinel)
2882
return false;
2883
2884
IRBuilder<> IRB(&F.front().front());
2885
if (Mapping.InGlobal) {
2886
if (ClWithIfuncSuppressRemat) {
2887
// An empty inline asm with input reg == output reg.
2888
// An opaque pointer-to-int cast, basically.
2889
InlineAsm *Asm = InlineAsm::get(
2890
FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false),
2891
StringRef(""), StringRef("=r,0"),
2892
/*hasSideEffects=*/false);
2893
LocalDynamicShadow =
2894
IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow");
2895
} else {
2896
LocalDynamicShadow =
2897
IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow");
2898
}
2899
} else {
2900
Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
2901
kAsanShadowMemoryDynamicAddress, IntptrTy);
2902
LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
2903
}
2904
return true;
2905
}
2906
2907
void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
2908
// Find the one possible call to llvm.localescape and pre-mark allocas passed
2909
// to it as uninteresting. This assumes we haven't started processing allocas
2910
// yet. This check is done up front because iterating the use list in
2911
// isInterestingAlloca would be algorithmically slower.
2912
assert(ProcessedAllocas.empty() && "must process localescape before allocas");
2913
2914
// Try to get the declaration of llvm.localescape. If it's not in the module,
2915
// we can exit early.
2916
if (!F.getParent()->getFunction("llvm.localescape")) return;
2917
2918
// Look for a call to llvm.localescape call in the entry block. It can't be in
2919
// any other block.
2920
for (Instruction &I : F.getEntryBlock()) {
2921
IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
2922
if (II && II->getIntrinsicID() == Intrinsic::localescape) {
2923
// We found a call. Mark all the allocas passed in as uninteresting.
2924
for (Value *Arg : II->args()) {
2925
AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
2926
assert(AI && AI->isStaticAlloca() &&
2927
"non-static alloca arg to localescape");
2928
ProcessedAllocas[AI] = false;
2929
}
2930
break;
2931
}
2932
}
2933
}
2934
2935
bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) {
2936
bool ShouldInstrument =
2937
ClDebugMin < 0 || ClDebugMax < 0 ||
2938
(Instrumented >= ClDebugMin && Instrumented <= ClDebugMax);
2939
Instrumented++;
2940
return !ShouldInstrument;
2941
}
2942
2943
bool AddressSanitizer::instrumentFunction(Function &F,
2944
const TargetLibraryInfo *TLI) {
2945
if (F.empty())
2946
return false;
2947
if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
2948
if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
2949
if (F.getName().starts_with("__asan_")) return false;
2950
if (F.isPresplitCoroutine())
2951
return false;
2952
2953
bool FunctionModified = false;
2954
2955
// If needed, insert __asan_init before checking for SanitizeAddress attr.
2956
// This function needs to be called even if the function body is not
2957
// instrumented.
2958
if (maybeInsertAsanInitAtFunctionEntry(F))
2959
FunctionModified = true;
2960
2961
// Leave if the function doesn't need instrumentation.
2962
if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
2963
2964
if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation))
2965
return FunctionModified;
2966
2967
LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
2968
2969
initializeCallbacks(*F.getParent(), TLI);
2970
2971
FunctionStateRAII CleanupObj(this);
2972
2973
RuntimeCallInserter RTCI(F);
2974
2975
FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F);
2976
2977
// We can't instrument allocas used with llvm.localescape. Only static allocas
2978
// can be passed to that intrinsic.
2979
markEscapedLocalAllocas(F);
2980
2981
// We want to instrument every address only once per basic block (unless there
2982
// are calls between uses).
2983
SmallPtrSet<Value *, 16> TempsToInstrument;
2984
SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument;
2985
SmallVector<MemIntrinsic *, 16> IntrinToInstrument;
2986
SmallVector<Instruction *, 8> NoReturnCalls;
2987
SmallVector<BasicBlock *, 16> AllBlocks;
2988
SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
2989
2990
// Fill the set of memory operations to instrument.
2991
for (auto &BB : F) {
2992
AllBlocks.push_back(&BB);
2993
TempsToInstrument.clear();
2994
int NumInsnsPerBB = 0;
2995
for (auto &Inst : BB) {
2996
if (LooksLikeCodeInBug11395(&Inst)) return false;
2997
// Skip instructions inserted by another instrumentation.
2998
if (Inst.hasMetadata(LLVMContext::MD_nosanitize))
2999
continue;
3000
SmallVector<InterestingMemoryOperand, 1> InterestingOperands;
3001
getInterestingMemoryOperands(&Inst, InterestingOperands);
3002
3003
if (!InterestingOperands.empty()) {
3004
for (auto &Operand : InterestingOperands) {
3005
if (ClOpt && ClOptSameTemp) {
3006
Value *Ptr = Operand.getPtr();
3007
// If we have a mask, skip instrumentation if we've already
3008
// instrumented the full object. But don't add to TempsToInstrument
3009
// because we might get another load/store with a different mask.
3010
if (Operand.MaybeMask) {
3011
if (TempsToInstrument.count(Ptr))
3012
continue; // We've seen this (whole) temp in the current BB.
3013
} else {
3014
if (!TempsToInstrument.insert(Ptr).second)
3015
continue; // We've seen this temp in the current BB.
3016
}
3017
}
3018
OperandsToInstrument.push_back(Operand);
3019
NumInsnsPerBB++;
3020
}
3021
} else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) &&
3022
isInterestingPointerComparison(&Inst)) ||
3023
((ClInvalidPointerPairs || ClInvalidPointerSub) &&
3024
isInterestingPointerSubtraction(&Inst))) {
3025
PointerComparisonsOrSubtracts.push_back(&Inst);
3026
} else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) {
3027
// ok, take it.
3028
IntrinToInstrument.push_back(MI);
3029
NumInsnsPerBB++;
3030
} else {
3031
if (auto *CB = dyn_cast<CallBase>(&Inst)) {
3032
// A call inside BB.
3033
TempsToInstrument.clear();
3034
if (CB->doesNotReturn())
3035
NoReturnCalls.push_back(CB);
3036
}
3037
if (CallInst *CI = dyn_cast<CallInst>(&Inst))
3038
maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
3039
}
3040
if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
3041
}
3042
}
3043
3044
bool UseCalls = (InstrumentationWithCallsThreshold >= 0 &&
3045
OperandsToInstrument.size() + IntrinToInstrument.size() >
3046
(unsigned)InstrumentationWithCallsThreshold);
3047
const DataLayout &DL = F.getDataLayout();
3048
ObjectSizeOpts ObjSizeOpts;
3049
ObjSizeOpts.RoundToAlign = true;
3050
ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts);
3051
3052
// Instrument.
3053
int NumInstrumented = 0;
3054
for (auto &Operand : OperandsToInstrument) {
3055
if (!suppressInstrumentationSiteForDebug(NumInstrumented))
3056
instrumentMop(ObjSizeVis, Operand, UseCalls,
3057
F.getDataLayout(), RTCI);
3058
FunctionModified = true;
3059
}
3060
for (auto *Inst : IntrinToInstrument) {
3061
if (!suppressInstrumentationSiteForDebug(NumInstrumented))
3062
instrumentMemIntrinsic(Inst, RTCI);
3063
FunctionModified = true;
3064
}
3065
3066
FunctionStackPoisoner FSP(F, *this, RTCI);
3067
bool ChangedStack = FSP.runOnFunction();
3068
3069
// We must unpoison the stack before NoReturn calls (throw, _exit, etc).
3070
// See e.g. https://github.com/google/sanitizers/issues/37
3071
for (auto *CI : NoReturnCalls) {
3072
IRBuilder<> IRB(CI);
3073
RTCI.createRuntimeCall(IRB, AsanHandleNoReturnFunc, {});
3074
}
3075
3076
for (auto *Inst : PointerComparisonsOrSubtracts) {
3077
instrumentPointerComparisonOrSubtraction(Inst, RTCI);
3078
FunctionModified = true;
3079
}
3080
3081
if (ChangedStack || !NoReturnCalls.empty())
3082
FunctionModified = true;
3083
3084
LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
3085
<< F << "\n");
3086
3087
return FunctionModified;
3088
}
3089
3090
// Workaround for bug 11395: we don't want to instrument stack in functions
3091
// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
3092
// FIXME: remove once the bug 11395 is fixed.
3093
bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
3094
if (LongSize != 32) return false;
3095
CallInst *CI = dyn_cast<CallInst>(I);
3096
if (!CI || !CI->isInlineAsm()) return false;
3097
if (CI->arg_size() <= 5)
3098
return false;
3099
// We have inline assembly with quite a few arguments.
3100
return true;
3101
}
3102
3103
void FunctionStackPoisoner::initializeCallbacks(Module &M) {
3104
IRBuilder<> IRB(*C);
3105
if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always ||
3106
ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) {
3107
const char *MallocNameTemplate =
3108
ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always
3109
? kAsanStackMallocAlwaysNameTemplate
3110
: kAsanStackMallocNameTemplate;
3111
for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) {
3112
std::string Suffix = itostr(Index);
3113
AsanStackMallocFunc[Index] = M.getOrInsertFunction(
3114
MallocNameTemplate + Suffix, IntptrTy, IntptrTy);
3115
AsanStackFreeFunc[Index] =
3116
M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
3117
IRB.getVoidTy(), IntptrTy, IntptrTy);
3118
}
3119
}
3120
if (ASan.UseAfterScope) {
3121
AsanPoisonStackMemoryFunc = M.getOrInsertFunction(
3122
kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
3123
AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction(
3124
kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
3125
}
3126
3127
for (size_t Val : {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0xf1, 0xf2,
3128
0xf3, 0xf5, 0xf8}) {
3129
std::ostringstream Name;
3130
Name << kAsanSetShadowPrefix;
3131
Name << std::setw(2) << std::setfill('0') << std::hex << Val;
3132
AsanSetShadowFunc[Val] =
3133
M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy);
3134
}
3135
3136
AsanAllocaPoisonFunc = M.getOrInsertFunction(
3137
kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
3138
AsanAllocasUnpoisonFunc = M.getOrInsertFunction(
3139
kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
3140
}
3141
3142
void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
3143
ArrayRef<uint8_t> ShadowBytes,
3144
size_t Begin, size_t End,
3145
IRBuilder<> &IRB,
3146
Value *ShadowBase) {
3147
if (Begin >= End)
3148
return;
3149
3150
const size_t LargestStoreSizeInBytes =
3151
std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
3152
3153
const bool IsLittleEndian = F.getDataLayout().isLittleEndian();
3154
3155
// Poison given range in shadow using larges store size with out leading and
3156
// trailing zeros in ShadowMask. Zeros never change, so they need neither
3157
// poisoning nor up-poisoning. Still we don't mind if some of them get into a
3158
// middle of a store.
3159
for (size_t i = Begin; i < End;) {
3160
if (!ShadowMask[i]) {
3161
assert(!ShadowBytes[i]);
3162
++i;
3163
continue;
3164
}
3165
3166
size_t StoreSizeInBytes = LargestStoreSizeInBytes;
3167
// Fit store size into the range.
3168
while (StoreSizeInBytes > End - i)
3169
StoreSizeInBytes /= 2;
3170
3171
// Minimize store size by trimming trailing zeros.
3172
for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
3173
while (j <= StoreSizeInBytes / 2)
3174
StoreSizeInBytes /= 2;
3175
}
3176
3177
uint64_t Val = 0;
3178
for (size_t j = 0; j < StoreSizeInBytes; j++) {
3179
if (IsLittleEndian)
3180
Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
3181
else
3182
Val = (Val << 8) | ShadowBytes[i + j];
3183
}
3184
3185
Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
3186
Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
3187
IRB.CreateAlignedStore(
3188
Poison, IRB.CreateIntToPtr(Ptr, PointerType::getUnqual(Poison->getContext())),
3189
Align(1));
3190
3191
i += StoreSizeInBytes;
3192
}
3193
}
3194
3195
void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
3196
ArrayRef<uint8_t> ShadowBytes,
3197
IRBuilder<> &IRB, Value *ShadowBase) {
3198
copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
3199
}
3200
3201
void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
3202
ArrayRef<uint8_t> ShadowBytes,
3203
size_t Begin, size_t End,
3204
IRBuilder<> &IRB, Value *ShadowBase) {
3205
assert(ShadowMask.size() == ShadowBytes.size());
3206
size_t Done = Begin;
3207
for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
3208
if (!ShadowMask[i]) {
3209
assert(!ShadowBytes[i]);
3210
continue;
3211
}
3212
uint8_t Val = ShadowBytes[i];
3213
if (!AsanSetShadowFunc[Val])
3214
continue;
3215
3216
// Skip same values.
3217
for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
3218
}
3219
3220
if (j - i >= ASan.MaxInlinePoisoningSize) {
3221
copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
3222
RTCI.createRuntimeCall(
3223
IRB, AsanSetShadowFunc[Val],
3224
{IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
3225
ConstantInt::get(IntptrTy, j - i)});
3226
Done = j;
3227
}
3228
}
3229
3230
copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
3231
}
3232
3233
// Fake stack allocator (asan_fake_stack.h) has 11 size classes
3234
// for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
3235
static int StackMallocSizeClass(uint64_t LocalStackSize) {
3236
assert(LocalStackSize <= kMaxStackMallocSize);
3237
uint64_t MaxSize = kMinStackMallocSize;
3238
for (int i = 0;; i++, MaxSize *= 2)
3239
if (LocalStackSize <= MaxSize) return i;
3240
llvm_unreachable("impossible LocalStackSize");
3241
}
3242
3243
void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
3244
Instruction *CopyInsertPoint = &F.front().front();
3245
if (CopyInsertPoint == ASan.LocalDynamicShadow) {
3246
// Insert after the dynamic shadow location is determined
3247
CopyInsertPoint = CopyInsertPoint->getNextNode();
3248
assert(CopyInsertPoint);
3249
}
3250
IRBuilder<> IRB(CopyInsertPoint);
3251
const DataLayout &DL = F.getDataLayout();
3252
for (Argument &Arg : F.args()) {
3253
if (Arg.hasByValAttr()) {
3254
Type *Ty = Arg.getParamByValType();
3255
const Align Alignment =
3256
DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty);
3257
3258
AllocaInst *AI = IRB.CreateAlloca(
3259
Ty, nullptr,
3260
(Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) +
3261
".byval");
3262
AI->setAlignment(Alignment);
3263
Arg.replaceAllUsesWith(AI);
3264
3265
uint64_t AllocSize = DL.getTypeAllocSize(Ty);
3266
IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize);
3267
}
3268
}
3269
}
3270
3271
PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
3272
Value *ValueIfTrue,
3273
Instruction *ThenTerm,
3274
Value *ValueIfFalse) {
3275
PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
3276
BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
3277
PHI->addIncoming(ValueIfFalse, CondBlock);
3278
BasicBlock *ThenBlock = ThenTerm->getParent();
3279
PHI->addIncoming(ValueIfTrue, ThenBlock);
3280
return PHI;
3281
}
3282
3283
Value *FunctionStackPoisoner::createAllocaForLayout(
3284
IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
3285
AllocaInst *Alloca;
3286
if (Dynamic) {
3287
Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
3288
ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
3289
"MyAlloca");
3290
} else {
3291
Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
3292
nullptr, "MyAlloca");
3293
assert(Alloca->isStaticAlloca());
3294
}
3295
assert((ClRealignStack & (ClRealignStack - 1)) == 0);
3296
uint64_t FrameAlignment = std::max(L.FrameAlignment, uint64_t(ClRealignStack));
3297
Alloca->setAlignment(Align(FrameAlignment));
3298
return IRB.CreatePointerCast(Alloca, IntptrTy);
3299
}
3300
3301
void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
3302
BasicBlock &FirstBB = *F.begin();
3303
IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
3304
DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
3305
IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
3306
DynamicAllocaLayout->setAlignment(Align(32));
3307
}
3308
3309
void FunctionStackPoisoner::processDynamicAllocas() {
3310
if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
3311
assert(DynamicAllocaPoisonCallVec.empty());
3312
return;
3313
}
3314
3315
// Insert poison calls for lifetime intrinsics for dynamic allocas.
3316
for (const auto &APC : DynamicAllocaPoisonCallVec) {
3317
assert(APC.InsBefore);
3318
assert(APC.AI);
3319
assert(ASan.isInterestingAlloca(*APC.AI));
3320
assert(!APC.AI->isStaticAlloca());
3321
3322
IRBuilder<> IRB(APC.InsBefore);
3323
poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
3324
// Dynamic allocas will be unpoisoned unconditionally below in
3325
// unpoisonDynamicAllocas.
3326
// Flag that we need unpoison static allocas.
3327
}
3328
3329
// Handle dynamic allocas.
3330
createDynamicAllocasInitStorage();
3331
for (auto &AI : DynamicAllocaVec)
3332
handleDynamicAllocaCall(AI);
3333
unpoisonDynamicAllocas();
3334
}
3335
3336
/// Collect instructions in the entry block after \p InsBefore which initialize
3337
/// permanent storage for a function argument. These instructions must remain in
3338
/// the entry block so that uninitialized values do not appear in backtraces. An
3339
/// added benefit is that this conserves spill slots. This does not move stores
3340
/// before instrumented / "interesting" allocas.
3341
static void findStoresToUninstrumentedArgAllocas(
3342
AddressSanitizer &ASan, Instruction &InsBefore,
3343
SmallVectorImpl<Instruction *> &InitInsts) {
3344
Instruction *Start = InsBefore.getNextNonDebugInstruction();
3345
for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) {
3346
// Argument initialization looks like:
3347
// 1) store <Argument>, <Alloca> OR
3348
// 2) <CastArgument> = cast <Argument> to ...
3349
// store <CastArgument> to <Alloca>
3350
// Do not consider any other kind of instruction.
3351
//
3352
// Note: This covers all known cases, but may not be exhaustive. An
3353
// alternative to pattern-matching stores is to DFS over all Argument uses:
3354
// this might be more general, but is probably much more complicated.
3355
if (isa<AllocaInst>(It) || isa<CastInst>(It))
3356
continue;
3357
if (auto *Store = dyn_cast<StoreInst>(It)) {
3358
// The store destination must be an alloca that isn't interesting for
3359
// ASan to instrument. These are moved up before InsBefore, and they're
3360
// not interesting because allocas for arguments can be mem2reg'd.
3361
auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand());
3362
if (!Alloca || ASan.isInterestingAlloca(*Alloca))
3363
continue;
3364
3365
Value *Val = Store->getValueOperand();
3366
bool IsDirectArgInit = isa<Argument>(Val);
3367
bool IsArgInitViaCast =
3368
isa<CastInst>(Val) &&
3369
isa<Argument>(cast<CastInst>(Val)->getOperand(0)) &&
3370
// Check that the cast appears directly before the store. Otherwise
3371
// moving the cast before InsBefore may break the IR.
3372
Val == It->getPrevNonDebugInstruction();
3373
bool IsArgInit = IsDirectArgInit || IsArgInitViaCast;
3374
if (!IsArgInit)
3375
continue;
3376
3377
if (IsArgInitViaCast)
3378
InitInsts.push_back(cast<Instruction>(Val));
3379
InitInsts.push_back(Store);
3380
continue;
3381
}
3382
3383
// Do not reorder past unknown instructions: argument initialization should
3384
// only involve casts and stores.
3385
return;
3386
}
3387
}
3388
3389
void FunctionStackPoisoner::processStaticAllocas() {
3390
if (AllocaVec.empty()) {
3391
assert(StaticAllocaPoisonCallVec.empty());
3392
return;
3393
}
3394
3395
int StackMallocIdx = -1;
3396
DebugLoc EntryDebugLocation;
3397
if (auto SP = F.getSubprogram())
3398
EntryDebugLocation =
3399
DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP);
3400
3401
Instruction *InsBefore = AllocaVec[0];
3402
IRBuilder<> IRB(InsBefore);
3403
3404
// Make sure non-instrumented allocas stay in the entry block. Otherwise,
3405
// debug info is broken, because only entry-block allocas are treated as
3406
// regular stack slots.
3407
auto InsBeforeB = InsBefore->getParent();
3408
assert(InsBeforeB == &F.getEntryBlock());
3409
for (auto *AI : StaticAllocasToMoveUp)
3410
if (AI->getParent() == InsBeforeB)
3411
AI->moveBefore(InsBefore);
3412
3413
// Move stores of arguments into entry-block allocas as well. This prevents
3414
// extra stack slots from being generated (to house the argument values until
3415
// they can be stored into the allocas). This also prevents uninitialized
3416
// values from being shown in backtraces.
3417
SmallVector<Instruction *, 8> ArgInitInsts;
3418
findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts);
3419
for (Instruction *ArgInitInst : ArgInitInsts)
3420
ArgInitInst->moveBefore(InsBefore);
3421
3422
// If we have a call to llvm.localescape, keep it in the entry block.
3423
if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
3424
3425
SmallVector<ASanStackVariableDescription, 16> SVD;
3426
SVD.reserve(AllocaVec.size());
3427
for (AllocaInst *AI : AllocaVec) {
3428
ASanStackVariableDescription D = {AI->getName().data(),
3429
ASan.getAllocaSizeInBytes(*AI),
3430
0,
3431
AI->getAlign().value(),
3432
AI,
3433
0,
3434
0};
3435
SVD.push_back(D);
3436
}
3437
3438
// Minimal header size (left redzone) is 4 pointers,
3439
// i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
3440
uint64_t Granularity = 1ULL << Mapping.Scale;
3441
uint64_t MinHeaderSize = std::max((uint64_t)ASan.LongSize / 2, Granularity);
3442
const ASanStackFrameLayout &L =
3443
ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize);
3444
3445
// Build AllocaToSVDMap for ASanStackVariableDescription lookup.
3446
DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
3447
for (auto &Desc : SVD)
3448
AllocaToSVDMap[Desc.AI] = &Desc;
3449
3450
// Update SVD with information from lifetime intrinsics.
3451
for (const auto &APC : StaticAllocaPoisonCallVec) {
3452
assert(APC.InsBefore);
3453
assert(APC.AI);
3454
assert(ASan.isInterestingAlloca(*APC.AI));
3455
assert(APC.AI->isStaticAlloca());
3456
3457
ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3458
Desc.LifetimeSize = Desc.Size;
3459
if (const DILocation *FnLoc = EntryDebugLocation.get()) {
3460
if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
3461
if (LifetimeLoc->getFile() == FnLoc->getFile())
3462
if (unsigned Line = LifetimeLoc->getLine())
3463
Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
3464
}
3465
}
3466
}
3467
3468
auto DescriptionString = ComputeASanStackFrameDescription(SVD);
3469
LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
3470
uint64_t LocalStackSize = L.FrameSize;
3471
bool DoStackMalloc =
3472
ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never &&
3473
!ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize;
3474
bool DoDynamicAlloca = ClDynamicAllocaStack;
3475
// Don't do dynamic alloca or stack malloc if:
3476
// 1) There is inline asm: too often it makes assumptions on which registers
3477
// are available.
3478
// 2) There is a returns_twice call (typically setjmp), which is
3479
// optimization-hostile, and doesn't play well with introduced indirect
3480
// register-relative calculation of local variable addresses.
3481
DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall;
3482
DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall;
3483
3484
Value *StaticAlloca =
3485
DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
3486
3487
Value *FakeStack;
3488
Value *LocalStackBase;
3489
Value *LocalStackBaseAlloca;
3490
uint8_t DIExprFlags = DIExpression::ApplyOffset;
3491
3492
if (DoStackMalloc) {
3493
LocalStackBaseAlloca =
3494
IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base");
3495
if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) {
3496
// void *FakeStack = __asan_option_detect_stack_use_after_return
3497
// ? __asan_stack_malloc_N(LocalStackSize)
3498
// : nullptr;
3499
// void *LocalStackBase = (FakeStack) ? FakeStack :
3500
// alloca(LocalStackSize);
3501
Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
3502
kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
3503
Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE(
3504
IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn),
3505
Constant::getNullValue(IRB.getInt32Ty()));
3506
Instruction *Term =
3507
SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
3508
IRBuilder<> IRBIf(Term);
3509
StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3510
assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
3511
Value *FakeStackValue =
3512
RTCI.createRuntimeCall(IRBIf, AsanStackMallocFunc[StackMallocIdx],
3513
ConstantInt::get(IntptrTy, LocalStackSize));
3514
IRB.SetInsertPoint(InsBefore);
3515
FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
3516
ConstantInt::get(IntptrTy, 0));
3517
} else {
3518
// assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always)
3519
// void *FakeStack = __asan_stack_malloc_N(LocalStackSize);
3520
// void *LocalStackBase = (FakeStack) ? FakeStack :
3521
// alloca(LocalStackSize);
3522
StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3523
FakeStack =
3524
RTCI.createRuntimeCall(IRB, AsanStackMallocFunc[StackMallocIdx],
3525
ConstantInt::get(IntptrTy, LocalStackSize));
3526
}
3527
Value *NoFakeStack =
3528
IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
3529
Instruction *Term =
3530
SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
3531
IRBuilder<> IRBIf(Term);
3532
Value *AllocaValue =
3533
DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
3534
3535
IRB.SetInsertPoint(InsBefore);
3536
LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
3537
IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca);
3538
DIExprFlags |= DIExpression::DerefBefore;
3539
} else {
3540
// void *FakeStack = nullptr;
3541
// void *LocalStackBase = alloca(LocalStackSize);
3542
FakeStack = ConstantInt::get(IntptrTy, 0);
3543
LocalStackBase =
3544
DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
3545
LocalStackBaseAlloca = LocalStackBase;
3546
}
3547
3548
// It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the
3549
// dbg.declare address opereand, but passing a `ptrtoint` seems to confuse
3550
// later passes and can result in dropped variable coverage in debug info.
3551
Value *LocalStackBaseAllocaPtr =
3552
isa<PtrToIntInst>(LocalStackBaseAlloca)
3553
? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand()
3554
: LocalStackBaseAlloca;
3555
assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) &&
3556
"Variable descriptions relative to ASan stack base will be dropped");
3557
3558
// Replace Alloca instructions with base+offset.
3559
for (const auto &Desc : SVD) {
3560
AllocaInst *AI = Desc.AI;
3561
replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags,
3562
Desc.Offset);
3563
Value *NewAllocaPtr = IRB.CreateIntToPtr(
3564
IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
3565
AI->getType());
3566
AI->replaceAllUsesWith(NewAllocaPtr);
3567
}
3568
3569
// The left-most redzone has enough space for at least 4 pointers.
3570
// Write the Magic value to redzone[0].
3571
Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
3572
IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
3573
BasePlus0);
3574
// Write the frame description constant to redzone[1].
3575
Value *BasePlus1 = IRB.CreateIntToPtr(
3576
IRB.CreateAdd(LocalStackBase,
3577
ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
3578
IntptrPtrTy);
3579
GlobalVariable *StackDescriptionGlobal =
3580
createPrivateGlobalForString(*F.getParent(), DescriptionString,
3581
/*AllowMerging*/ true, kAsanGenPrefix);
3582
Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
3583
IRB.CreateStore(Description, BasePlus1);
3584
// Write the PC to redzone[2].
3585
Value *BasePlus2 = IRB.CreateIntToPtr(
3586
IRB.CreateAdd(LocalStackBase,
3587
ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
3588
IntptrPtrTy);
3589
IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
3590
3591
const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
3592
3593
// Poison the stack red zones at the entry.
3594
Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
3595
// As mask we must use most poisoned case: red zones and after scope.
3596
// As bytes we can use either the same or just red zones only.
3597
copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
3598
3599
if (!StaticAllocaPoisonCallVec.empty()) {
3600
const auto &ShadowInScope = GetShadowBytes(SVD, L);
3601
3602
// Poison static allocas near lifetime intrinsics.
3603
for (const auto &APC : StaticAllocaPoisonCallVec) {
3604
const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3605
assert(Desc.Offset % L.Granularity == 0);
3606
size_t Begin = Desc.Offset / L.Granularity;
3607
size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
3608
3609
IRBuilder<> IRB(APC.InsBefore);
3610
copyToShadow(ShadowAfterScope,
3611
APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
3612
IRB, ShadowBase);
3613
}
3614
}
3615
3616
SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
3617
SmallVector<uint8_t, 64> ShadowAfterReturn;
3618
3619
// (Un)poison the stack before all ret instructions.
3620
for (Instruction *Ret : RetVec) {
3621
IRBuilder<> IRBRet(Ret);
3622
// Mark the current frame as retired.
3623
IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
3624
BasePlus0);
3625
if (DoStackMalloc) {
3626
assert(StackMallocIdx >= 0);
3627
// if FakeStack != 0 // LocalStackBase == FakeStack
3628
// // In use-after-return mode, poison the whole stack frame.
3629
// if StackMallocIdx <= 4
3630
// // For small sizes inline the whole thing:
3631
// memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
3632
// **SavedFlagPtr(FakeStack) = 0
3633
// else
3634
// __asan_stack_free_N(FakeStack, LocalStackSize)
3635
// else
3636
// <This is not a fake stack; unpoison the redzones>
3637
Value *Cmp =
3638
IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
3639
Instruction *ThenTerm, *ElseTerm;
3640
SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
3641
3642
IRBuilder<> IRBPoison(ThenTerm);
3643
if (ASan.MaxInlinePoisoningSize != 0 && StackMallocIdx <= 4) {
3644
int ClassSize = kMinStackMallocSize << StackMallocIdx;
3645
ShadowAfterReturn.resize(ClassSize / L.Granularity,
3646
kAsanStackUseAfterReturnMagic);
3647
copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
3648
ShadowBase);
3649
Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
3650
FakeStack,
3651
ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
3652
Value *SavedFlagPtr = IRBPoison.CreateLoad(
3653
IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
3654
IRBPoison.CreateStore(
3655
Constant::getNullValue(IRBPoison.getInt8Ty()),
3656
IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getPtrTy()));
3657
} else {
3658
// For larger frames call __asan_stack_free_*.
3659
RTCI.createRuntimeCall(
3660
IRBPoison, AsanStackFreeFunc[StackMallocIdx],
3661
{FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
3662
}
3663
3664
IRBuilder<> IRBElse(ElseTerm);
3665
copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
3666
} else {
3667
copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
3668
}
3669
}
3670
3671
// We are done. Remove the old unused alloca instructions.
3672
for (auto *AI : AllocaVec)
3673
AI->eraseFromParent();
3674
}
3675
3676
void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
3677
IRBuilder<> &IRB, bool DoPoison) {
3678
// For now just insert the call to ASan runtime.
3679
Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
3680
Value *SizeArg = ConstantInt::get(IntptrTy, Size);
3681
RTCI.createRuntimeCall(
3682
IRB, DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
3683
{AddrArg, SizeArg});
3684
}
3685
3686
// Handling llvm.lifetime intrinsics for a given %alloca:
3687
// (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
3688
// (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
3689
// invalid accesses) and unpoison it for llvm.lifetime.start (the memory
3690
// could be poisoned by previous llvm.lifetime.end instruction, as the
3691
// variable may go in and out of scope several times, e.g. in loops).
3692
// (3) if we poisoned at least one %alloca in a function,
3693
// unpoison the whole stack frame at function exit.
3694
void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
3695
IRBuilder<> IRB(AI);
3696
3697
const Align Alignment = std::max(Align(kAllocaRzSize), AI->getAlign());
3698
const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
3699
3700
Value *Zero = Constant::getNullValue(IntptrTy);
3701
Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
3702
Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
3703
3704
// Since we need to extend alloca with additional memory to locate
3705
// redzones, and OldSize is number of allocated blocks with
3706
// ElementSize size, get allocated memory size in bytes by
3707
// OldSize * ElementSize.
3708
const unsigned ElementSize =
3709
F.getDataLayout().getTypeAllocSize(AI->getAllocatedType());
3710
Value *OldSize =
3711
IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
3712
ConstantInt::get(IntptrTy, ElementSize));
3713
3714
// PartialSize = OldSize % 32
3715
Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
3716
3717
// Misalign = kAllocaRzSize - PartialSize;
3718
Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
3719
3720
// PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
3721
Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
3722
Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
3723
3724
// AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize
3725
// Alignment is added to locate left redzone, PartialPadding for possible
3726
// partial redzone and kAllocaRzSize for right redzone respectively.
3727
Value *AdditionalChunkSize = IRB.CreateAdd(
3728
ConstantInt::get(IntptrTy, Alignment.value() + kAllocaRzSize),
3729
PartialPadding);
3730
3731
Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
3732
3733
// Insert new alloca with new NewSize and Alignment params.
3734
AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
3735
NewAlloca->setAlignment(Alignment);
3736
3737
// NewAddress = Address + Alignment
3738
Value *NewAddress =
3739
IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
3740
ConstantInt::get(IntptrTy, Alignment.value()));
3741
3742
// Insert __asan_alloca_poison call for new created alloca.
3743
RTCI.createRuntimeCall(IRB, AsanAllocaPoisonFunc, {NewAddress, OldSize});
3744
3745
// Store the last alloca's address to DynamicAllocaLayout. We'll need this
3746
// for unpoisoning stuff.
3747
IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
3748
3749
Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
3750
3751
// Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
3752
AI->replaceAllUsesWith(NewAddressPtr);
3753
3754
// We are done. Erase old alloca from parent.
3755
AI->eraseFromParent();
3756
}
3757
3758
// isSafeAccess returns true if Addr is always inbounds with respect to its
3759
// base object. For example, it is a field access or an array access with
3760
// constant inbounds index.
3761
bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
3762
Value *Addr, TypeSize TypeStoreSize) const {
3763
if (TypeStoreSize.isScalable())
3764
// TODO: We can use vscale_range to convert a scalable value to an
3765
// upper bound on the access size.
3766
return false;
3767
3768
SizeOffsetAPInt SizeOffset = ObjSizeVis.compute(Addr);
3769
if (!SizeOffset.bothKnown())
3770
return false;
3771
3772
uint64_t Size = SizeOffset.Size.getZExtValue();
3773
int64_t Offset = SizeOffset.Offset.getSExtValue();
3774
3775
// Three checks are required to ensure safety:
3776
// . Offset >= 0 (since the offset is given from the base ptr)
3777
// . Size >= Offset (unsigned)
3778
// . Size - Offset >= NeededSize (unsigned)
3779
return Offset >= 0 && Size >= uint64_t(Offset) &&
3780
Size - uint64_t(Offset) >= TypeStoreSize / 8;
3781
}
3782
3783