Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Instrumentation/IndirectCallPromotion.cpp
35269 views
1
//===- IndirectCallPromotion.cpp - Optimizations based on value profiling -===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the transformation that promotes indirect calls to
10
// conditional direct calls when the indirect-call value profile metadata is
11
// available.
12
//
13
//===----------------------------------------------------------------------===//
14
15
#include "llvm/ADT/ArrayRef.h"
16
#include "llvm/ADT/DenseMap.h"
17
#include "llvm/ADT/Statistic.h"
18
#include "llvm/ADT/StringRef.h"
19
#include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
20
#include "llvm/Analysis/IndirectCallVisitor.h"
21
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
22
#include "llvm/Analysis/ProfileSummaryInfo.h"
23
#include "llvm/Analysis/TypeMetadataUtils.h"
24
#include "llvm/IR/DiagnosticInfo.h"
25
#include "llvm/IR/Dominators.h"
26
#include "llvm/IR/Function.h"
27
#include "llvm/IR/InstrTypes.h"
28
#include "llvm/IR/Instructions.h"
29
#include "llvm/IR/LLVMContext.h"
30
#include "llvm/IR/MDBuilder.h"
31
#include "llvm/IR/PassManager.h"
32
#include "llvm/IR/ProfDataUtils.h"
33
#include "llvm/IR/Value.h"
34
#include "llvm/ProfileData/InstrProf.h"
35
#include "llvm/Support/Casting.h"
36
#include "llvm/Support/CommandLine.h"
37
#include "llvm/Support/Debug.h"
38
#include "llvm/Support/Error.h"
39
#include "llvm/Support/raw_ostream.h"
40
#include "llvm/Transforms/Instrumentation.h"
41
#include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
42
#include "llvm/Transforms/Utils/CallPromotionUtils.h"
43
#include <cassert>
44
#include <cstdint>
45
#include <memory>
46
#include <set>
47
#include <string>
48
#include <unordered_map>
49
#include <utility>
50
#include <vector>
51
52
using namespace llvm;
53
54
#define DEBUG_TYPE "pgo-icall-prom"
55
56
STATISTIC(NumOfPGOICallPromotion, "Number of indirect call promotions.");
57
STATISTIC(NumOfPGOICallsites, "Number of indirect call candidate sites.");
58
59
extern cl::opt<unsigned> MaxNumVTableAnnotations;
60
61
namespace llvm {
62
extern cl::opt<bool> EnableVTableProfileUse;
63
}
64
65
// Command line option to disable indirect-call promotion with the default as
66
// false. This is for debug purpose.
67
static cl::opt<bool> DisableICP("disable-icp", cl::init(false), cl::Hidden,
68
cl::desc("Disable indirect call promotion"));
69
70
// Set the cutoff value for the promotion. If the value is other than 0, we
71
// stop the transformation once the total number of promotions equals the cutoff
72
// value.
73
// For debug use only.
74
static cl::opt<unsigned>
75
ICPCutOff("icp-cutoff", cl::init(0), cl::Hidden,
76
cl::desc("Max number of promotions for this compilation"));
77
78
// If ICPCSSkip is non zero, the first ICPCSSkip callsites will be skipped.
79
// For debug use only.
80
static cl::opt<unsigned>
81
ICPCSSkip("icp-csskip", cl::init(0), cl::Hidden,
82
cl::desc("Skip Callsite up to this number for this compilation"));
83
84
// Set if the pass is called in LTO optimization. The difference for LTO mode
85
// is the pass won't prefix the source module name to the internal linkage
86
// symbols.
87
static cl::opt<bool> ICPLTOMode("icp-lto", cl::init(false), cl::Hidden,
88
cl::desc("Run indirect-call promotion in LTO "
89
"mode"));
90
91
// Set if the pass is called in SamplePGO mode. The difference for SamplePGO
92
// mode is it will add prof metadatato the created direct call.
93
static cl::opt<bool>
94
ICPSamplePGOMode("icp-samplepgo", cl::init(false), cl::Hidden,
95
cl::desc("Run indirect-call promotion in SamplePGO mode"));
96
97
// If the option is set to true, only call instructions will be considered for
98
// transformation -- invoke instructions will be ignored.
99
static cl::opt<bool>
100
ICPCallOnly("icp-call-only", cl::init(false), cl::Hidden,
101
cl::desc("Run indirect-call promotion for call instructions "
102
"only"));
103
104
// If the option is set to true, only invoke instructions will be considered for
105
// transformation -- call instructions will be ignored.
106
static cl::opt<bool> ICPInvokeOnly("icp-invoke-only", cl::init(false),
107
cl::Hidden,
108
cl::desc("Run indirect-call promotion for "
109
"invoke instruction only"));
110
111
// Dump the function level IR if the transformation happened in this
112
// function. For debug use only.
113
static cl::opt<bool>
114
ICPDUMPAFTER("icp-dumpafter", cl::init(false), cl::Hidden,
115
cl::desc("Dump IR after transformation happens"));
116
117
// Indirect call promotion pass will fall back to function-based comparison if
118
// vtable-count / function-count is smaller than this threshold.
119
static cl::opt<float> ICPVTablePercentageThreshold(
120
"icp-vtable-percentage-threshold", cl::init(0.99), cl::Hidden,
121
cl::desc("The percentage threshold of vtable-count / function-count for "
122
"cost-benefit analysis."));
123
124
// Although comparing vtables can save a vtable load, we may need to compare
125
// vtable pointer with multiple vtable address points due to class inheritance.
126
// Comparing with multiple vtables inserts additional instructions on hot code
127
// path, and doing so for an earlier candidate delays the comparisons for later
128
// candidates. For the last candidate, only the fallback path is affected.
129
// We allow multiple vtable comparison for the last function candidate and use
130
// the option below to cap the number of vtables.
131
static cl::opt<int> ICPMaxNumVTableLastCandidate(
132
"icp-max-num-vtable-last-candidate", cl::init(1), cl::Hidden,
133
cl::desc("The maximum number of vtable for the last candidate."));
134
135
namespace {
136
137
// The key is a vtable global variable, and the value is a map.
138
// In the inner map, the key represents address point offsets and the value is a
139
// constant for this address point.
140
using VTableAddressPointOffsetValMap =
141
SmallDenseMap<const GlobalVariable *, std::unordered_map<int, Constant *>>;
142
143
// A struct to collect type information for a virtual call site.
144
struct VirtualCallSiteInfo {
145
// The offset from the address point to virtual function in the vtable.
146
uint64_t FunctionOffset;
147
// The instruction that computes the address point of vtable.
148
Instruction *VPtr;
149
// The compatible type used in LLVM type intrinsics.
150
StringRef CompatibleTypeStr;
151
};
152
153
// The key is a virtual call, and value is its type information.
154
using VirtualCallSiteTypeInfoMap =
155
SmallDenseMap<const CallBase *, VirtualCallSiteInfo>;
156
157
// The key is vtable GUID, and value is its value profile count.
158
using VTableGUIDCountsMap = SmallDenseMap<uint64_t, uint64_t, 16>;
159
160
// Return the address point offset of the given compatible type.
161
//
162
// Type metadata of a vtable specifies the types that can contain a pointer to
163
// this vtable, for example, `Base*` can be a pointer to an derived type
164
// but not vice versa. See also https://llvm.org/docs/TypeMetadata.html
165
static std::optional<uint64_t>
166
getAddressPointOffset(const GlobalVariable &VTableVar,
167
StringRef CompatibleType) {
168
SmallVector<MDNode *> Types;
169
VTableVar.getMetadata(LLVMContext::MD_type, Types);
170
171
for (MDNode *Type : Types)
172
if (auto *TypeId = dyn_cast<MDString>(Type->getOperand(1).get());
173
TypeId && TypeId->getString() == CompatibleType)
174
return cast<ConstantInt>(
175
cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
176
->getZExtValue();
177
178
return std::nullopt;
179
}
180
181
// Return a constant representing the vtable's address point specified by the
182
// offset.
183
static Constant *getVTableAddressPointOffset(GlobalVariable *VTable,
184
uint32_t AddressPointOffset) {
185
Module &M = *VTable->getParent();
186
LLVMContext &Context = M.getContext();
187
assert(AddressPointOffset <
188
M.getDataLayout().getTypeAllocSize(VTable->getValueType()) &&
189
"Out-of-bound access");
190
191
return ConstantExpr::getInBoundsGetElementPtr(
192
Type::getInt8Ty(Context), VTable,
193
llvm::ConstantInt::get(Type::getInt32Ty(Context), AddressPointOffset));
194
}
195
196
// Return the basic block in which Use `U` is used via its `UserInst`.
197
static BasicBlock *getUserBasicBlock(Use &U, Instruction *UserInst) {
198
if (PHINode *PN = dyn_cast<PHINode>(UserInst))
199
return PN->getIncomingBlock(U);
200
201
return UserInst->getParent();
202
}
203
204
// `DestBB` is a suitable basic block to sink `Inst` into when `Inst` have users
205
// and all users are in `DestBB`. The caller guarantees that `Inst->getParent()`
206
// is the sole predecessor of `DestBB` and `DestBB` is dominated by
207
// `Inst->getParent()`.
208
static bool isDestBBSuitableForSink(Instruction *Inst, BasicBlock *DestBB) {
209
// 'BB' is used only by assert.
210
[[maybe_unused]] BasicBlock *BB = Inst->getParent();
211
212
assert(BB != DestBB && BB->getTerminator()->getNumSuccessors() == 2 &&
213
DestBB->getUniquePredecessor() == BB &&
214
"Guaranteed by ICP transformation");
215
216
BasicBlock *UserBB = nullptr;
217
for (Use &Use : Inst->uses()) {
218
User *User = Use.getUser();
219
// Do checked cast since IR verifier guarantees that the user of an
220
// instruction must be an instruction. See `Verifier::visitInstruction`.
221
Instruction *UserInst = cast<Instruction>(User);
222
// We can sink debug or pseudo instructions together with Inst.
223
if (UserInst->isDebugOrPseudoInst())
224
continue;
225
UserBB = getUserBasicBlock(Use, UserInst);
226
// Do not sink if Inst is used in a basic block that is not DestBB.
227
// TODO: Sink to the common dominator of all user blocks.
228
if (UserBB != DestBB)
229
return false;
230
}
231
return UserBB != nullptr;
232
}
233
234
// For the virtual call dispatch sequence, try to sink vtable load instructions
235
// to the cold indirect call fallback.
236
// FIXME: Move the sink eligibility check below to a utility function in
237
// Transforms/Utils/ directory.
238
static bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
239
if (!isDestBBSuitableForSink(I, DestBlock))
240
return false;
241
242
// Do not move control-flow-involving, volatile loads, vaarg, alloca
243
// instructions, etc.
244
if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() ||
245
isa<AllocaInst>(I))
246
return false;
247
248
// Do not sink convergent call instructions.
249
if (const auto *C = dyn_cast<CallBase>(I))
250
if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent())
251
return false;
252
253
// Do not move an instruction that may write to memory.
254
if (I->mayWriteToMemory())
255
return false;
256
257
// We can only sink load instructions if there is nothing between the load and
258
// the end of block that could change the value.
259
if (I->mayReadFromMemory()) {
260
// We already know that SrcBlock is the unique predecessor of DestBlock.
261
for (BasicBlock::iterator Scan = std::next(I->getIterator()),
262
E = I->getParent()->end();
263
Scan != E; ++Scan) {
264
// Note analysis analysis can tell whether two pointers can point to the
265
// same object in memory or not thereby find further opportunities to
266
// sink.
267
if (Scan->mayWriteToMemory())
268
return false;
269
}
270
}
271
272
BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
273
I->moveBefore(*DestBlock, InsertPos);
274
275
// TODO: Sink debug intrinsic users of I to 'DestBlock'.
276
// 'InstCombinerImpl::tryToSinkInstructionDbgValues' and
277
// 'InstCombinerImpl::tryToSinkInstructionDbgVariableRecords' already have
278
// the core logic to do this.
279
return true;
280
}
281
282
// Try to sink instructions after VPtr to the indirect call fallback.
283
// Return the number of sunk IR instructions.
284
static int tryToSinkInstructions(BasicBlock *OriginalBB,
285
BasicBlock *IndirectCallBB) {
286
int SinkCount = 0;
287
// Do not sink across a critical edge for simplicity.
288
if (IndirectCallBB->getUniquePredecessor() != OriginalBB)
289
return SinkCount;
290
// Sink all eligible instructions in OriginalBB in reverse order.
291
for (Instruction &I :
292
llvm::make_early_inc_range(llvm::drop_begin(llvm::reverse(*OriginalBB))))
293
if (tryToSinkInstruction(&I, IndirectCallBB))
294
SinkCount++;
295
296
return SinkCount;
297
}
298
299
// Promote indirect calls to conditional direct calls, keeping track of
300
// thresholds.
301
class IndirectCallPromoter {
302
private:
303
Function &F;
304
Module &M;
305
306
ProfileSummaryInfo *PSI = nullptr;
307
308
// Symtab that maps indirect call profile values to function names and
309
// defines.
310
InstrProfSymtab *const Symtab;
311
312
const bool SamplePGO;
313
314
// A map from a virtual call to its type information.
315
const VirtualCallSiteTypeInfoMap &VirtualCSInfo;
316
317
VTableAddressPointOffsetValMap &VTableAddressPointOffsetVal;
318
319
OptimizationRemarkEmitter &ORE;
320
321
// A struct that records the direct target and it's call count.
322
struct PromotionCandidate {
323
Function *const TargetFunction;
324
const uint64_t Count;
325
326
// The following fields only exists for promotion candidates with vtable
327
// information.
328
//
329
// Due to class inheritance, one virtual call candidate can come from
330
// multiple vtables. `VTableGUIDAndCounts` tracks the vtable GUIDs and
331
// counts for 'TargetFunction'. `AddressPoints` stores the vtable address
332
// points for comparison.
333
VTableGUIDCountsMap VTableGUIDAndCounts;
334
SmallVector<Constant *> AddressPoints;
335
336
PromotionCandidate(Function *F, uint64_t C) : TargetFunction(F), Count(C) {}
337
};
338
339
// Check if the indirect-call call site should be promoted. Return the number
340
// of promotions. Inst is the candidate indirect call, ValueDataRef
341
// contains the array of value profile data for profiled targets,
342
// TotalCount is the total profiled count of call executions, and
343
// NumCandidates is the number of candidate entries in ValueDataRef.
344
std::vector<PromotionCandidate> getPromotionCandidatesForCallSite(
345
const CallBase &CB, ArrayRef<InstrProfValueData> ValueDataRef,
346
uint64_t TotalCount, uint32_t NumCandidates);
347
348
// Promote a list of targets for one indirect-call callsite by comparing
349
// indirect callee with functions. Return true if there are IR
350
// transformations and false otherwise.
351
bool tryToPromoteWithFuncCmp(CallBase &CB, Instruction *VPtr,
352
ArrayRef<PromotionCandidate> Candidates,
353
uint64_t TotalCount,
354
ArrayRef<InstrProfValueData> ICallProfDataRef,
355
uint32_t NumCandidates,
356
VTableGUIDCountsMap &VTableGUIDCounts);
357
358
// Promote a list of targets for one indirect call by comparing vtables with
359
// functions. Return true if there are IR transformations and false
360
// otherwise.
361
bool tryToPromoteWithVTableCmp(
362
CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates,
363
uint64_t TotalFuncCount, uint32_t NumCandidates,
364
MutableArrayRef<InstrProfValueData> ICallProfDataRef,
365
VTableGUIDCountsMap &VTableGUIDCounts);
366
367
// Return true if it's profitable to compare vtables for the callsite.
368
bool isProfitableToCompareVTables(const CallBase &CB,
369
ArrayRef<PromotionCandidate> Candidates,
370
uint64_t TotalCount);
371
372
// Given an indirect callsite and the list of function candidates, compute
373
// the following vtable information in output parameters and return vtable
374
// pointer if type profiles exist.
375
// - Populate `VTableGUIDCounts` with <vtable-guid, count> using !prof
376
// metadata attached on the vtable pointer.
377
// - For each function candidate, finds out the vtables from which it gets
378
// called and stores the <vtable-guid, count> in promotion candidate.
379
Instruction *computeVTableInfos(const CallBase *CB,
380
VTableGUIDCountsMap &VTableGUIDCounts,
381
std::vector<PromotionCandidate> &Candidates);
382
383
Constant *getOrCreateVTableAddressPointVar(GlobalVariable *GV,
384
uint64_t AddressPointOffset);
385
386
void updateFuncValueProfiles(CallBase &CB, ArrayRef<InstrProfValueData> VDs,
387
uint64_t Sum, uint32_t MaxMDCount);
388
389
void updateVPtrValueProfiles(Instruction *VPtr,
390
VTableGUIDCountsMap &VTableGUIDCounts);
391
392
public:
393
IndirectCallPromoter(
394
Function &Func, Module &M, ProfileSummaryInfo *PSI,
395
InstrProfSymtab *Symtab, bool SamplePGO,
396
const VirtualCallSiteTypeInfoMap &VirtualCSInfo,
397
VTableAddressPointOffsetValMap &VTableAddressPointOffsetVal,
398
OptimizationRemarkEmitter &ORE)
399
: F(Func), M(M), PSI(PSI), Symtab(Symtab), SamplePGO(SamplePGO),
400
VirtualCSInfo(VirtualCSInfo),
401
VTableAddressPointOffsetVal(VTableAddressPointOffsetVal), ORE(ORE) {}
402
IndirectCallPromoter(const IndirectCallPromoter &) = delete;
403
IndirectCallPromoter &operator=(const IndirectCallPromoter &) = delete;
404
405
bool processFunction(ProfileSummaryInfo *PSI);
406
};
407
408
} // end anonymous namespace
409
410
// Indirect-call promotion heuristic. The direct targets are sorted based on
411
// the count. Stop at the first target that is not promoted.
412
std::vector<IndirectCallPromoter::PromotionCandidate>
413
IndirectCallPromoter::getPromotionCandidatesForCallSite(
414
const CallBase &CB, ArrayRef<InstrProfValueData> ValueDataRef,
415
uint64_t TotalCount, uint32_t NumCandidates) {
416
std::vector<PromotionCandidate> Ret;
417
418
LLVM_DEBUG(dbgs() << " \nWork on callsite #" << NumOfPGOICallsites << CB
419
<< " Num_targets: " << ValueDataRef.size()
420
<< " Num_candidates: " << NumCandidates << "\n");
421
NumOfPGOICallsites++;
422
if (ICPCSSkip != 0 && NumOfPGOICallsites <= ICPCSSkip) {
423
LLVM_DEBUG(dbgs() << " Skip: User options.\n");
424
return Ret;
425
}
426
427
for (uint32_t I = 0; I < NumCandidates; I++) {
428
uint64_t Count = ValueDataRef[I].Count;
429
assert(Count <= TotalCount);
430
(void)TotalCount;
431
uint64_t Target = ValueDataRef[I].Value;
432
LLVM_DEBUG(dbgs() << " Candidate " << I << " Count=" << Count
433
<< " Target_func: " << Target << "\n");
434
435
if (ICPInvokeOnly && isa<CallInst>(CB)) {
436
LLVM_DEBUG(dbgs() << " Not promote: User options.\n");
437
ORE.emit([&]() {
438
return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB)
439
<< " Not promote: User options";
440
});
441
break;
442
}
443
if (ICPCallOnly && isa<InvokeInst>(CB)) {
444
LLVM_DEBUG(dbgs() << " Not promote: User option.\n");
445
ORE.emit([&]() {
446
return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB)
447
<< " Not promote: User options";
448
});
449
break;
450
}
451
if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) {
452
LLVM_DEBUG(dbgs() << " Not promote: Cutoff reached.\n");
453
ORE.emit([&]() {
454
return OptimizationRemarkMissed(DEBUG_TYPE, "CutOffReached", &CB)
455
<< " Not promote: Cutoff reached";
456
});
457
break;
458
}
459
460
// Don't promote if the symbol is not defined in the module. This avoids
461
// creating a reference to a symbol that doesn't exist in the module
462
// This can happen when we compile with a sample profile collected from
463
// one binary but used for another, which may have profiled targets that
464
// aren't used in the new binary. We might have a declaration initially in
465
// the case where the symbol is globally dead in the binary and removed by
466
// ThinLTO.
467
Function *TargetFunction = Symtab->getFunction(Target);
468
if (TargetFunction == nullptr || TargetFunction->isDeclaration()) {
469
LLVM_DEBUG(dbgs() << " Not promote: Cannot find the target\n");
470
ORE.emit([&]() {
471
return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToFindTarget", &CB)
472
<< "Cannot promote indirect call: target with md5sum "
473
<< ore::NV("target md5sum", Target) << " not found";
474
});
475
break;
476
}
477
478
const char *Reason = nullptr;
479
if (!isLegalToPromote(CB, TargetFunction, &Reason)) {
480
using namespace ore;
481
482
ORE.emit([&]() {
483
return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToPromote", &CB)
484
<< "Cannot promote indirect call to "
485
<< NV("TargetFunction", TargetFunction) << " with count of "
486
<< NV("Count", Count) << ": " << Reason;
487
});
488
break;
489
}
490
491
Ret.push_back(PromotionCandidate(TargetFunction, Count));
492
TotalCount -= Count;
493
}
494
return Ret;
495
}
496
497
Constant *IndirectCallPromoter::getOrCreateVTableAddressPointVar(
498
GlobalVariable *GV, uint64_t AddressPointOffset) {
499
auto [Iter, Inserted] =
500
VTableAddressPointOffsetVal[GV].try_emplace(AddressPointOffset, nullptr);
501
if (Inserted)
502
Iter->second = getVTableAddressPointOffset(GV, AddressPointOffset);
503
return Iter->second;
504
}
505
506
Instruction *IndirectCallPromoter::computeVTableInfos(
507
const CallBase *CB, VTableGUIDCountsMap &GUIDCountsMap,
508
std::vector<PromotionCandidate> &Candidates) {
509
if (!EnableVTableProfileUse)
510
return nullptr;
511
512
// Take the following code sequence as an example, here is how the code works
513
// @vtable1 = {[n x ptr] [... ptr @func1]}
514
// @vtable2 = {[m x ptr] [... ptr @func2]}
515
//
516
// %vptr = load ptr, ptr %d, !prof !0
517
// %0 = tail call i1 @llvm.type.test(ptr %vptr, metadata !"vtable1")
518
// tail call void @llvm.assume(i1 %0)
519
// %vfn = getelementptr inbounds ptr, ptr %vptr, i64 1
520
// %1 = load ptr, ptr %vfn
521
// call void %1(ptr %d), !prof !1
522
//
523
// !0 = !{!"VP", i32 2, i64 100, i64 123, i64 50, i64 456, i64 50}
524
// !1 = !{!"VP", i32 0, i64 100, i64 789, i64 50, i64 579, i64 50}
525
//
526
// Step 1. Find out the %vptr instruction for indirect call and use its !prof
527
// to populate `GUIDCountsMap`.
528
// Step 2. For each vtable-guid, look up its definition from symtab. LTO can
529
// make vtable definitions visible across modules.
530
// Step 3. Compute the byte offset of the virtual call, by adding vtable
531
// address point offset and function's offset relative to vtable address
532
// point. For each function candidate, this step tells us the vtable from
533
// which it comes from, and the vtable address point to compare %vptr with.
534
535
// Only virtual calls have virtual call site info.
536
auto Iter = VirtualCSInfo.find(CB);
537
if (Iter == VirtualCSInfo.end())
538
return nullptr;
539
540
LLVM_DEBUG(dbgs() << "\nComputing vtable infos for callsite #"
541
<< NumOfPGOICallsites << "\n");
542
543
const auto &VirtualCallInfo = Iter->second;
544
Instruction *VPtr = VirtualCallInfo.VPtr;
545
546
SmallDenseMap<Function *, int, 4> CalleeIndexMap;
547
for (size_t I = 0; I < Candidates.size(); I++)
548
CalleeIndexMap[Candidates[I].TargetFunction] = I;
549
550
uint64_t TotalVTableCount = 0;
551
auto VTableValueDataArray =
552
getValueProfDataFromInst(*VirtualCallInfo.VPtr, IPVK_VTableTarget,
553
MaxNumVTableAnnotations, TotalVTableCount);
554
if (VTableValueDataArray.empty())
555
return VPtr;
556
557
// Compute the functions and counts from by each vtable.
558
for (const auto &V : VTableValueDataArray) {
559
uint64_t VTableVal = V.Value;
560
GUIDCountsMap[VTableVal] = V.Count;
561
GlobalVariable *VTableVar = Symtab->getGlobalVariable(VTableVal);
562
if (!VTableVar) {
563
LLVM_DEBUG(dbgs() << " Cannot find vtable definition for " << VTableVal
564
<< "; maybe the vtable isn't imported\n");
565
continue;
566
}
567
568
std::optional<uint64_t> MaybeAddressPointOffset =
569
getAddressPointOffset(*VTableVar, VirtualCallInfo.CompatibleTypeStr);
570
if (!MaybeAddressPointOffset)
571
continue;
572
573
const uint64_t AddressPointOffset = *MaybeAddressPointOffset;
574
575
Function *Callee = nullptr;
576
std::tie(Callee, std::ignore) = getFunctionAtVTableOffset(
577
VTableVar, AddressPointOffset + VirtualCallInfo.FunctionOffset, M);
578
if (!Callee)
579
continue;
580
auto CalleeIndexIter = CalleeIndexMap.find(Callee);
581
if (CalleeIndexIter == CalleeIndexMap.end())
582
continue;
583
584
auto &Candidate = Candidates[CalleeIndexIter->second];
585
// There shouldn't be duplicate GUIDs in one !prof metadata (except
586
// duplicated zeros), so assign counters directly won't cause overwrite or
587
// counter loss.
588
Candidate.VTableGUIDAndCounts[VTableVal] = V.Count;
589
Candidate.AddressPoints.push_back(
590
getOrCreateVTableAddressPointVar(VTableVar, AddressPointOffset));
591
}
592
593
return VPtr;
594
}
595
596
// Creates 'branch_weights' prof metadata using TrueWeight and FalseWeight.
597
// Scales uint64_t counters down to uint32_t if necessary to prevent overflow.
598
static MDNode *createBranchWeights(LLVMContext &Context, uint64_t TrueWeight,
599
uint64_t FalseWeight) {
600
MDBuilder MDB(Context);
601
uint64_t Scale = calculateCountScale(std::max(TrueWeight, FalseWeight));
602
return MDB.createBranchWeights(scaleBranchCount(TrueWeight, Scale),
603
scaleBranchCount(FalseWeight, Scale));
604
}
605
606
CallBase &llvm::pgo::promoteIndirectCall(CallBase &CB, Function *DirectCallee,
607
uint64_t Count, uint64_t TotalCount,
608
bool AttachProfToDirectCall,
609
OptimizationRemarkEmitter *ORE) {
610
CallBase &NewInst = promoteCallWithIfThenElse(
611
CB, DirectCallee,
612
createBranchWeights(CB.getContext(), Count, TotalCount - Count));
613
614
if (AttachProfToDirectCall)
615
setBranchWeights(NewInst, {static_cast<uint32_t>(Count)},
616
/*IsExpected=*/false);
617
618
using namespace ore;
619
620
if (ORE)
621
ORE->emit([&]() {
622
return OptimizationRemark(DEBUG_TYPE, "Promoted", &CB)
623
<< "Promote indirect call to " << NV("DirectCallee", DirectCallee)
624
<< " with count " << NV("Count", Count) << " out of "
625
<< NV("TotalCount", TotalCount);
626
});
627
return NewInst;
628
}
629
630
// Promote indirect-call to conditional direct-call for one callsite.
631
bool IndirectCallPromoter::tryToPromoteWithFuncCmp(
632
CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates,
633
uint64_t TotalCount, ArrayRef<InstrProfValueData> ICallProfDataRef,
634
uint32_t NumCandidates, VTableGUIDCountsMap &VTableGUIDCounts) {
635
uint32_t NumPromoted = 0;
636
637
for (const auto &C : Candidates) {
638
uint64_t FuncCount = C.Count;
639
pgo::promoteIndirectCall(CB, C.TargetFunction, FuncCount, TotalCount,
640
SamplePGO, &ORE);
641
assert(TotalCount >= FuncCount);
642
TotalCount -= FuncCount;
643
NumOfPGOICallPromotion++;
644
NumPromoted++;
645
646
if (!EnableVTableProfileUse || C.VTableGUIDAndCounts.empty())
647
continue;
648
649
// After a virtual call candidate gets promoted, update the vtable's counts
650
// proportionally. Each vtable-guid in `C.VTableGUIDAndCounts` represents
651
// a vtable from which the virtual call is loaded. Compute the sum and use
652
// 128-bit APInt to improve accuracy.
653
uint64_t SumVTableCount = 0;
654
for (const auto &[GUID, VTableCount] : C.VTableGUIDAndCounts)
655
SumVTableCount += VTableCount;
656
657
for (const auto &[GUID, VTableCount] : C.VTableGUIDAndCounts) {
658
APInt APFuncCount((unsigned)128, FuncCount, false /*signed*/);
659
APFuncCount *= VTableCount;
660
VTableGUIDCounts[GUID] -= APFuncCount.udiv(SumVTableCount).getZExtValue();
661
}
662
}
663
if (NumPromoted == 0)
664
return false;
665
666
assert(NumPromoted <= ICallProfDataRef.size() &&
667
"Number of promoted functions should not be greater than the number "
668
"of values in profile metadata");
669
670
// Update value profiles on the indirect call.
671
updateFuncValueProfiles(CB, ICallProfDataRef.slice(NumPromoted), TotalCount,
672
NumCandidates);
673
updateVPtrValueProfiles(VPtr, VTableGUIDCounts);
674
return true;
675
}
676
677
void IndirectCallPromoter::updateFuncValueProfiles(
678
CallBase &CB, ArrayRef<InstrProfValueData> CallVDs, uint64_t TotalCount,
679
uint32_t MaxMDCount) {
680
// First clear the existing !prof.
681
CB.setMetadata(LLVMContext::MD_prof, nullptr);
682
// Annotate the remaining value profiles if counter is not zero.
683
if (TotalCount != 0)
684
annotateValueSite(M, CB, CallVDs, TotalCount, IPVK_IndirectCallTarget,
685
MaxMDCount);
686
}
687
688
void IndirectCallPromoter::updateVPtrValueProfiles(
689
Instruction *VPtr, VTableGUIDCountsMap &VTableGUIDCounts) {
690
if (!EnableVTableProfileUse || VPtr == nullptr ||
691
!VPtr->getMetadata(LLVMContext::MD_prof))
692
return;
693
VPtr->setMetadata(LLVMContext::MD_prof, nullptr);
694
std::vector<InstrProfValueData> VTableValueProfiles;
695
uint64_t TotalVTableCount = 0;
696
for (auto [GUID, Count] : VTableGUIDCounts) {
697
if (Count == 0)
698
continue;
699
700
VTableValueProfiles.push_back({GUID, Count});
701
TotalVTableCount += Count;
702
}
703
llvm::sort(VTableValueProfiles,
704
[](const InstrProfValueData &LHS, const InstrProfValueData &RHS) {
705
return LHS.Count > RHS.Count;
706
});
707
708
annotateValueSite(M, *VPtr, VTableValueProfiles, TotalVTableCount,
709
IPVK_VTableTarget, VTableValueProfiles.size());
710
}
711
712
bool IndirectCallPromoter::tryToPromoteWithVTableCmp(
713
CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates,
714
uint64_t TotalFuncCount, uint32_t NumCandidates,
715
MutableArrayRef<InstrProfValueData> ICallProfDataRef,
716
VTableGUIDCountsMap &VTableGUIDCounts) {
717
SmallVector<uint64_t, 4> PromotedFuncCount;
718
719
for (const auto &Candidate : Candidates) {
720
for (auto &[GUID, Count] : Candidate.VTableGUIDAndCounts)
721
VTableGUIDCounts[GUID] -= Count;
722
723
// 'OriginalBB' is the basic block of indirect call. After each candidate
724
// is promoted, a new basic block is created for the indirect fallback basic
725
// block and indirect call `CB` is moved into this new BB.
726
BasicBlock *OriginalBB = CB.getParent();
727
promoteCallWithVTableCmp(
728
CB, VPtr, Candidate.TargetFunction, Candidate.AddressPoints,
729
createBranchWeights(CB.getContext(), Candidate.Count,
730
TotalFuncCount - Candidate.Count));
731
732
int SinkCount = tryToSinkInstructions(OriginalBB, CB.getParent());
733
734
ORE.emit([&]() {
735
OptimizationRemark Remark(DEBUG_TYPE, "Promoted", &CB);
736
737
const auto &VTableGUIDAndCounts = Candidate.VTableGUIDAndCounts;
738
Remark << "Promote indirect call to "
739
<< ore::NV("DirectCallee", Candidate.TargetFunction)
740
<< " with count " << ore::NV("Count", Candidate.Count)
741
<< " out of " << ore::NV("TotalCount", TotalFuncCount) << ", sink "
742
<< ore::NV("SinkCount", SinkCount)
743
<< " instruction(s) and compare "
744
<< ore::NV("VTable", VTableGUIDAndCounts.size())
745
<< " vtable(s): {";
746
747
// Sort GUIDs so remark message is deterministic.
748
std::set<uint64_t> GUIDSet;
749
for (auto [GUID, Count] : VTableGUIDAndCounts)
750
GUIDSet.insert(GUID);
751
for (auto Iter = GUIDSet.begin(); Iter != GUIDSet.end(); Iter++) {
752
if (Iter != GUIDSet.begin())
753
Remark << ", ";
754
Remark << ore::NV("VTable", Symtab->getGlobalVariable(*Iter));
755
}
756
757
Remark << "}";
758
759
return Remark;
760
});
761
762
PromotedFuncCount.push_back(Candidate.Count);
763
764
assert(TotalFuncCount >= Candidate.Count &&
765
"Within one prof metadata, total count is the sum of counts from "
766
"individual <target, count> pairs");
767
// Use std::min since 'TotalFuncCount' is the saturated sum of individual
768
// counts, see
769
// https://github.com/llvm/llvm-project/blob/abedb3b8356d5d56f1c575c4f7682fba2cb19787/llvm/lib/ProfileData/InstrProf.cpp#L1281-L1288
770
TotalFuncCount -= std::min(TotalFuncCount, Candidate.Count);
771
NumOfPGOICallPromotion++;
772
}
773
774
if (PromotedFuncCount.empty())
775
return false;
776
777
// Update value profiles for 'CB' and 'VPtr', assuming that each 'CB' has a
778
// a distinct 'VPtr'.
779
// FIXME: When Clang `-fstrict-vtable-pointers` is enabled, a vtable might be
780
// used to load multiple virtual functions. The vtable profiles needs to be
781
// updated properly in that case (e.g, for each indirect call annotate both
782
// type profiles and function profiles in one !prof).
783
for (size_t I = 0; I < PromotedFuncCount.size(); I++)
784
ICallProfDataRef[I].Count -=
785
std::max(PromotedFuncCount[I], ICallProfDataRef[I].Count);
786
// Sort value profiles by count in descending order.
787
llvm::stable_sort(ICallProfDataRef, [](const InstrProfValueData &LHS,
788
const InstrProfValueData &RHS) {
789
return LHS.Count > RHS.Count;
790
});
791
// Drop the <target-value, count> pair if count is zero.
792
ArrayRef<InstrProfValueData> VDs(
793
ICallProfDataRef.begin(),
794
llvm::upper_bound(ICallProfDataRef, 0U,
795
[](uint64_t Count, const InstrProfValueData &ProfData) {
796
return ProfData.Count <= Count;
797
}));
798
updateFuncValueProfiles(CB, VDs, TotalFuncCount, NumCandidates);
799
updateVPtrValueProfiles(VPtr, VTableGUIDCounts);
800
return true;
801
}
802
803
// Traverse all the indirect-call callsite and get the value profile
804
// annotation to perform indirect-call promotion.
805
bool IndirectCallPromoter::processFunction(ProfileSummaryInfo *PSI) {
806
bool Changed = false;
807
ICallPromotionAnalysis ICallAnalysis;
808
for (auto *CB : findIndirectCalls(F)) {
809
uint32_t NumCandidates;
810
uint64_t TotalCount;
811
auto ICallProfDataRef = ICallAnalysis.getPromotionCandidatesForInstruction(
812
CB, TotalCount, NumCandidates);
813
if (!NumCandidates ||
814
(PSI && PSI->hasProfileSummary() && !PSI->isHotCount(TotalCount)))
815
continue;
816
817
auto PromotionCandidates = getPromotionCandidatesForCallSite(
818
*CB, ICallProfDataRef, TotalCount, NumCandidates);
819
820
VTableGUIDCountsMap VTableGUIDCounts;
821
Instruction *VPtr =
822
computeVTableInfos(CB, VTableGUIDCounts, PromotionCandidates);
823
824
if (isProfitableToCompareVTables(*CB, PromotionCandidates, TotalCount))
825
Changed |= tryToPromoteWithVTableCmp(*CB, VPtr, PromotionCandidates,
826
TotalCount, NumCandidates,
827
ICallProfDataRef, VTableGUIDCounts);
828
else
829
Changed |= tryToPromoteWithFuncCmp(*CB, VPtr, PromotionCandidates,
830
TotalCount, ICallProfDataRef,
831
NumCandidates, VTableGUIDCounts);
832
}
833
return Changed;
834
}
835
836
// TODO: Return false if the function addressing and vtable load instructions
837
// cannot sink to indirect fallback.
838
bool IndirectCallPromoter::isProfitableToCompareVTables(
839
const CallBase &CB, ArrayRef<PromotionCandidate> Candidates,
840
uint64_t TotalCount) {
841
if (!EnableVTableProfileUse || Candidates.empty())
842
return false;
843
LLVM_DEBUG(dbgs() << "\nEvaluating vtable profitability for callsite #"
844
<< NumOfPGOICallsites << CB << "\n");
845
uint64_t RemainingVTableCount = TotalCount;
846
const size_t CandidateSize = Candidates.size();
847
for (size_t I = 0; I < CandidateSize; I++) {
848
auto &Candidate = Candidates[I];
849
auto &VTableGUIDAndCounts = Candidate.VTableGUIDAndCounts;
850
851
LLVM_DEBUG(dbgs() << " Candidate " << I << " FunctionCount: "
852
<< Candidate.Count << ", VTableCounts:");
853
// Add [[maybe_unused]] since <GUID, Count> are only used by LLVM_DEBUG.
854
for ([[maybe_unused]] auto &[GUID, Count] : VTableGUIDAndCounts)
855
LLVM_DEBUG(dbgs() << " {" << Symtab->getGlobalVariable(GUID)->getName()
856
<< ", " << Count << "}");
857
LLVM_DEBUG(dbgs() << "\n");
858
859
uint64_t CandidateVTableCount = 0;
860
for (auto &[GUID, Count] : VTableGUIDAndCounts)
861
CandidateVTableCount += Count;
862
863
if (CandidateVTableCount < Candidate.Count * ICPVTablePercentageThreshold) {
864
LLVM_DEBUG(
865
dbgs() << " function count " << Candidate.Count
866
<< " and its vtable sum count " << CandidateVTableCount
867
<< " have discrepancies. Bail out vtable comparison.\n");
868
return false;
869
}
870
871
RemainingVTableCount -= Candidate.Count;
872
873
// 'MaxNumVTable' limits the number of vtables to make vtable comparison
874
// profitable. Comparing multiple vtables for one function candidate will
875
// insert additional instructions on the hot path, and allowing more than
876
// one vtable for non last candidates may or may not elongate the dependency
877
// chain for the subsequent candidates. Set its value to 1 for non-last
878
// candidate and allow option to override it for the last candidate.
879
int MaxNumVTable = 1;
880
if (I == CandidateSize - 1)
881
MaxNumVTable = ICPMaxNumVTableLastCandidate;
882
883
if ((int)Candidate.AddressPoints.size() > MaxNumVTable) {
884
LLVM_DEBUG(dbgs() << " allow at most " << MaxNumVTable << " and got "
885
<< Candidate.AddressPoints.size()
886
<< " vtables. Bail out for vtable comparison.\n");
887
return false;
888
}
889
}
890
891
// If the indirect fallback is not cold, don't compare vtables.
892
if (PSI && PSI->hasProfileSummary() &&
893
!PSI->isColdCount(RemainingVTableCount)) {
894
LLVM_DEBUG(dbgs() << " Indirect fallback basic block is not cold. Bail "
895
"out for vtable comparison.\n");
896
return false;
897
}
898
899
return true;
900
}
901
902
// For virtual calls in the module, collect per-callsite information which will
903
// be used to associate an ICP candidate with a vtable and a specific function
904
// in the vtable. With type intrinsics (llvm.type.test), we can find virtual
905
// calls in a compile-time efficient manner (by iterating its users) and more
906
// importantly use the compatible type later to figure out the function byte
907
// offset relative to the start of vtables.
908
static void
909
computeVirtualCallSiteTypeInfoMap(Module &M, ModuleAnalysisManager &MAM,
910
VirtualCallSiteTypeInfoMap &VirtualCSInfo) {
911
// Right now only llvm.type.test is used to find out virtual call sites.
912
// With ThinLTO and whole-program-devirtualization, llvm.type.test and
913
// llvm.public.type.test are emitted, and llvm.public.type.test is either
914
// refined to llvm.type.test or dropped before indirect-call-promotion pass.
915
//
916
// FIXME: For fullLTO with VFE, `llvm.type.checked.load intrinsic` is emitted.
917
// Find out virtual calls by looking at users of llvm.type.checked.load in
918
// that case.
919
Function *TypeTestFunc =
920
M.getFunction(Intrinsic::getName(Intrinsic::type_test));
921
if (!TypeTestFunc || TypeTestFunc->use_empty())
922
return;
923
924
auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
925
auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
926
return FAM.getResult<DominatorTreeAnalysis>(F);
927
};
928
// Iterate all type.test calls to find all indirect calls.
929
for (Use &U : llvm::make_early_inc_range(TypeTestFunc->uses())) {
930
auto *CI = dyn_cast<CallInst>(U.getUser());
931
if (!CI)
932
continue;
933
auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
934
if (!TypeMDVal)
935
continue;
936
auto *CompatibleTypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
937
if (!CompatibleTypeId)
938
continue;
939
940
// Find out all devirtualizable call sites given a llvm.type.test
941
// intrinsic call.
942
SmallVector<DevirtCallSite, 1> DevirtCalls;
943
SmallVector<CallInst *, 1> Assumes;
944
auto &DT = LookupDomTree(*CI->getFunction());
945
findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
946
947
for (auto &DevirtCall : DevirtCalls) {
948
CallBase &CB = DevirtCall.CB;
949
// Given an indirect call, try find the instruction which loads a
950
// pointer to virtual table.
951
Instruction *VTablePtr =
952
PGOIndirectCallVisitor::tryGetVTableInstruction(&CB);
953
if (!VTablePtr)
954
continue;
955
VirtualCSInfo[&CB] = {DevirtCall.Offset, VTablePtr,
956
CompatibleTypeId->getString()};
957
}
958
}
959
}
960
961
// A wrapper function that does the actual work.
962
static bool promoteIndirectCalls(Module &M, ProfileSummaryInfo *PSI, bool InLTO,
963
bool SamplePGO, ModuleAnalysisManager &MAM) {
964
if (DisableICP)
965
return false;
966
InstrProfSymtab Symtab;
967
if (Error E = Symtab.create(M, InLTO)) {
968
std::string SymtabFailure = toString(std::move(E));
969
M.getContext().emitError("Failed to create symtab: " + SymtabFailure);
970
return false;
971
}
972
bool Changed = false;
973
VirtualCallSiteTypeInfoMap VirtualCSInfo;
974
975
if (EnableVTableProfileUse)
976
computeVirtualCallSiteTypeInfoMap(M, MAM, VirtualCSInfo);
977
978
// VTableAddressPointOffsetVal stores the vtable address points. The vtable
979
// address point of a given <vtable, address point offset> is static (doesn't
980
// change after being computed once).
981
// IndirectCallPromoter::getOrCreateVTableAddressPointVar creates the map
982
// entry the first time a <vtable, offset> pair is seen, as
983
// promoteIndirectCalls processes an IR module and calls IndirectCallPromoter
984
// repeatedly on each function.
985
VTableAddressPointOffsetValMap VTableAddressPointOffsetVal;
986
987
for (auto &F : M) {
988
if (F.isDeclaration() || F.hasOptNone())
989
continue;
990
991
auto &FAM =
992
MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
993
auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
994
995
IndirectCallPromoter CallPromoter(F, M, PSI, &Symtab, SamplePGO,
996
VirtualCSInfo,
997
VTableAddressPointOffsetVal, ORE);
998
bool FuncChanged = CallPromoter.processFunction(PSI);
999
if (ICPDUMPAFTER && FuncChanged) {
1000
LLVM_DEBUG(dbgs() << "\n== IR Dump After =="; F.print(dbgs()));
1001
LLVM_DEBUG(dbgs() << "\n");
1002
}
1003
Changed |= FuncChanged;
1004
if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) {
1005
LLVM_DEBUG(dbgs() << " Stop: Cutoff reached.\n");
1006
break;
1007
}
1008
}
1009
return Changed;
1010
}
1011
1012
PreservedAnalyses PGOIndirectCallPromotion::run(Module &M,
1013
ModuleAnalysisManager &MAM) {
1014
ProfileSummaryInfo *PSI = &MAM.getResult<ProfileSummaryAnalysis>(M);
1015
1016
if (!promoteIndirectCalls(M, PSI, InLTO | ICPLTOMode,
1017
SamplePGO | ICPSamplePGOMode, MAM))
1018
return PreservedAnalyses::all();
1019
1020
return PreservedAnalyses::none();
1021
}
1022
1023