Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp
35266 views
1
//===-- ThreadSanitizer.cpp - race detector -------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file is a part of ThreadSanitizer, a race detector.
10
//
11
// The tool is under development, for the details about previous versions see
12
// http://code.google.com/p/data-race-test
13
//
14
// The instrumentation phase is quite simple:
15
// - Insert calls to run-time library before every memory access.
16
// - Optimizations may apply to avoid instrumenting some of the accesses.
17
// - Insert calls at function entry/exit.
18
// The rest is handled by the run-time library.
19
//===----------------------------------------------------------------------===//
20
21
#include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
22
#include "llvm/ADT/DenseMap.h"
23
#include "llvm/ADT/SmallString.h"
24
#include "llvm/ADT/SmallVector.h"
25
#include "llvm/ADT/Statistic.h"
26
#include "llvm/ADT/StringExtras.h"
27
#include "llvm/Analysis/CaptureTracking.h"
28
#include "llvm/Analysis/TargetLibraryInfo.h"
29
#include "llvm/Analysis/ValueTracking.h"
30
#include "llvm/IR/DataLayout.h"
31
#include "llvm/IR/Function.h"
32
#include "llvm/IR/IRBuilder.h"
33
#include "llvm/IR/Instructions.h"
34
#include "llvm/IR/IntrinsicInst.h"
35
#include "llvm/IR/Intrinsics.h"
36
#include "llvm/IR/LLVMContext.h"
37
#include "llvm/IR/Metadata.h"
38
#include "llvm/IR/Module.h"
39
#include "llvm/IR/Type.h"
40
#include "llvm/ProfileData/InstrProf.h"
41
#include "llvm/Support/CommandLine.h"
42
#include "llvm/Support/Debug.h"
43
#include "llvm/Support/MathExtras.h"
44
#include "llvm/Support/raw_ostream.h"
45
#include "llvm/Transforms/Instrumentation.h"
46
#include "llvm/Transforms/Utils/EscapeEnumerator.h"
47
#include "llvm/Transforms/Utils/Local.h"
48
#include "llvm/Transforms/Utils/ModuleUtils.h"
49
50
using namespace llvm;
51
52
#define DEBUG_TYPE "tsan"
53
54
static cl::opt<bool> ClInstrumentMemoryAccesses(
55
"tsan-instrument-memory-accesses", cl::init(true),
56
cl::desc("Instrument memory accesses"), cl::Hidden);
57
static cl::opt<bool>
58
ClInstrumentFuncEntryExit("tsan-instrument-func-entry-exit", cl::init(true),
59
cl::desc("Instrument function entry and exit"),
60
cl::Hidden);
61
static cl::opt<bool> ClHandleCxxExceptions(
62
"tsan-handle-cxx-exceptions", cl::init(true),
63
cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"),
64
cl::Hidden);
65
static cl::opt<bool> ClInstrumentAtomics("tsan-instrument-atomics",
66
cl::init(true),
67
cl::desc("Instrument atomics"),
68
cl::Hidden);
69
static cl::opt<bool> ClInstrumentMemIntrinsics(
70
"tsan-instrument-memintrinsics", cl::init(true),
71
cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
72
static cl::opt<bool> ClDistinguishVolatile(
73
"tsan-distinguish-volatile", cl::init(false),
74
cl::desc("Emit special instrumentation for accesses to volatiles"),
75
cl::Hidden);
76
static cl::opt<bool> ClInstrumentReadBeforeWrite(
77
"tsan-instrument-read-before-write", cl::init(false),
78
cl::desc("Do not eliminate read instrumentation for read-before-writes"),
79
cl::Hidden);
80
static cl::opt<bool> ClCompoundReadBeforeWrite(
81
"tsan-compound-read-before-write", cl::init(false),
82
cl::desc("Emit special compound instrumentation for reads-before-writes"),
83
cl::Hidden);
84
85
STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
86
STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
87
STATISTIC(NumOmittedReadsBeforeWrite,
88
"Number of reads ignored due to following writes");
89
STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
90
STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
91
STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
92
STATISTIC(NumOmittedReadsFromConstantGlobals,
93
"Number of reads from constant globals");
94
STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
95
STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing");
96
97
const char kTsanModuleCtorName[] = "tsan.module_ctor";
98
const char kTsanInitName[] = "__tsan_init";
99
100
namespace {
101
102
/// ThreadSanitizer: instrument the code in module to find races.
103
///
104
/// Instantiating ThreadSanitizer inserts the tsan runtime library API function
105
/// declarations into the module if they don't exist already. Instantiating
106
/// ensures the __tsan_init function is in the list of global constructors for
107
/// the module.
108
struct ThreadSanitizer {
109
ThreadSanitizer() {
110
// Check options and warn user.
111
if (ClInstrumentReadBeforeWrite && ClCompoundReadBeforeWrite) {
112
errs()
113
<< "warning: Option -tsan-compound-read-before-write has no effect "
114
"when -tsan-instrument-read-before-write is set.\n";
115
}
116
}
117
118
bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI);
119
120
private:
121
// Internal Instruction wrapper that contains more information about the
122
// Instruction from prior analysis.
123
struct InstructionInfo {
124
// Instrumentation emitted for this instruction is for a compounded set of
125
// read and write operations in the same basic block.
126
static constexpr unsigned kCompoundRW = (1U << 0);
127
128
explicit InstructionInfo(Instruction *Inst) : Inst(Inst) {}
129
130
Instruction *Inst;
131
unsigned Flags = 0;
132
};
133
134
void initialize(Module &M, const TargetLibraryInfo &TLI);
135
bool instrumentLoadOrStore(const InstructionInfo &II, const DataLayout &DL);
136
bool instrumentAtomic(Instruction *I, const DataLayout &DL);
137
bool instrumentMemIntrinsic(Instruction *I);
138
void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local,
139
SmallVectorImpl<InstructionInfo> &All,
140
const DataLayout &DL);
141
bool addrPointsToConstantData(Value *Addr);
142
int getMemoryAccessFuncIndex(Type *OrigTy, Value *Addr, const DataLayout &DL);
143
void InsertRuntimeIgnores(Function &F);
144
145
Type *IntptrTy;
146
FunctionCallee TsanFuncEntry;
147
FunctionCallee TsanFuncExit;
148
FunctionCallee TsanIgnoreBegin;
149
FunctionCallee TsanIgnoreEnd;
150
// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
151
static const size_t kNumberOfAccessSizes = 5;
152
FunctionCallee TsanRead[kNumberOfAccessSizes];
153
FunctionCallee TsanWrite[kNumberOfAccessSizes];
154
FunctionCallee TsanUnalignedRead[kNumberOfAccessSizes];
155
FunctionCallee TsanUnalignedWrite[kNumberOfAccessSizes];
156
FunctionCallee TsanVolatileRead[kNumberOfAccessSizes];
157
FunctionCallee TsanVolatileWrite[kNumberOfAccessSizes];
158
FunctionCallee TsanUnalignedVolatileRead[kNumberOfAccessSizes];
159
FunctionCallee TsanUnalignedVolatileWrite[kNumberOfAccessSizes];
160
FunctionCallee TsanCompoundRW[kNumberOfAccessSizes];
161
FunctionCallee TsanUnalignedCompoundRW[kNumberOfAccessSizes];
162
FunctionCallee TsanAtomicLoad[kNumberOfAccessSizes];
163
FunctionCallee TsanAtomicStore[kNumberOfAccessSizes];
164
FunctionCallee TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1]
165
[kNumberOfAccessSizes];
166
FunctionCallee TsanAtomicCAS[kNumberOfAccessSizes];
167
FunctionCallee TsanAtomicThreadFence;
168
FunctionCallee TsanAtomicSignalFence;
169
FunctionCallee TsanVptrUpdate;
170
FunctionCallee TsanVptrLoad;
171
FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
172
};
173
174
void insertModuleCtor(Module &M) {
175
getOrCreateSanitizerCtorAndInitFunctions(
176
M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{},
177
/*InitArgs=*/{},
178
// This callback is invoked when the functions are created the first
179
// time. Hook them into the global ctors list in that case:
180
[&](Function *Ctor, FunctionCallee) { appendToGlobalCtors(M, Ctor, 0); });
181
}
182
} // namespace
183
184
PreservedAnalyses ThreadSanitizerPass::run(Function &F,
185
FunctionAnalysisManager &FAM) {
186
ThreadSanitizer TSan;
187
if (TSan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)))
188
return PreservedAnalyses::none();
189
return PreservedAnalyses::all();
190
}
191
192
PreservedAnalyses ModuleThreadSanitizerPass::run(Module &M,
193
ModuleAnalysisManager &MAM) {
194
insertModuleCtor(M);
195
return PreservedAnalyses::none();
196
}
197
void ThreadSanitizer::initialize(Module &M, const TargetLibraryInfo &TLI) {
198
const DataLayout &DL = M.getDataLayout();
199
LLVMContext &Ctx = M.getContext();
200
IntptrTy = DL.getIntPtrType(Ctx);
201
202
IRBuilder<> IRB(Ctx);
203
AttributeList Attr;
204
Attr = Attr.addFnAttribute(Ctx, Attribute::NoUnwind);
205
// Initialize the callbacks.
206
TsanFuncEntry = M.getOrInsertFunction("__tsan_func_entry", Attr,
207
IRB.getVoidTy(), IRB.getPtrTy());
208
TsanFuncExit =
209
M.getOrInsertFunction("__tsan_func_exit", Attr, IRB.getVoidTy());
210
TsanIgnoreBegin = M.getOrInsertFunction("__tsan_ignore_thread_begin", Attr,
211
IRB.getVoidTy());
212
TsanIgnoreEnd =
213
M.getOrInsertFunction("__tsan_ignore_thread_end", Attr, IRB.getVoidTy());
214
IntegerType *OrdTy = IRB.getInt32Ty();
215
for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
216
const unsigned ByteSize = 1U << i;
217
const unsigned BitSize = ByteSize * 8;
218
std::string ByteSizeStr = utostr(ByteSize);
219
std::string BitSizeStr = utostr(BitSize);
220
SmallString<32> ReadName("__tsan_read" + ByteSizeStr);
221
TsanRead[i] = M.getOrInsertFunction(ReadName, Attr, IRB.getVoidTy(),
222
IRB.getPtrTy());
223
224
SmallString<32> WriteName("__tsan_write" + ByteSizeStr);
225
TsanWrite[i] = M.getOrInsertFunction(WriteName, Attr, IRB.getVoidTy(),
226
IRB.getPtrTy());
227
228
SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr);
229
TsanUnalignedRead[i] = M.getOrInsertFunction(
230
UnalignedReadName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
231
232
SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr);
233
TsanUnalignedWrite[i] = M.getOrInsertFunction(
234
UnalignedWriteName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
235
236
SmallString<64> VolatileReadName("__tsan_volatile_read" + ByteSizeStr);
237
TsanVolatileRead[i] = M.getOrInsertFunction(
238
VolatileReadName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
239
240
SmallString<64> VolatileWriteName("__tsan_volatile_write" + ByteSizeStr);
241
TsanVolatileWrite[i] = M.getOrInsertFunction(
242
VolatileWriteName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
243
244
SmallString<64> UnalignedVolatileReadName("__tsan_unaligned_volatile_read" +
245
ByteSizeStr);
246
TsanUnalignedVolatileRead[i] = M.getOrInsertFunction(
247
UnalignedVolatileReadName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
248
249
SmallString<64> UnalignedVolatileWriteName(
250
"__tsan_unaligned_volatile_write" + ByteSizeStr);
251
TsanUnalignedVolatileWrite[i] = M.getOrInsertFunction(
252
UnalignedVolatileWriteName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
253
254
SmallString<64> CompoundRWName("__tsan_read_write" + ByteSizeStr);
255
TsanCompoundRW[i] = M.getOrInsertFunction(
256
CompoundRWName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
257
258
SmallString<64> UnalignedCompoundRWName("__tsan_unaligned_read_write" +
259
ByteSizeStr);
260
TsanUnalignedCompoundRW[i] = M.getOrInsertFunction(
261
UnalignedCompoundRWName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
262
263
Type *Ty = Type::getIntNTy(Ctx, BitSize);
264
Type *PtrTy = PointerType::get(Ctx, 0);
265
SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load");
266
TsanAtomicLoad[i] =
267
M.getOrInsertFunction(AtomicLoadName,
268
TLI.getAttrList(&Ctx, {1}, /*Signed=*/true,
269
/*Ret=*/BitSize <= 32, Attr),
270
Ty, PtrTy, OrdTy);
271
272
// Args of type Ty need extension only when BitSize is 32 or less.
273
using Idxs = std::vector<unsigned>;
274
Idxs Idxs2Or12 ((BitSize <= 32) ? Idxs({1, 2}) : Idxs({2}));
275
Idxs Idxs34Or1234((BitSize <= 32) ? Idxs({1, 2, 3, 4}) : Idxs({3, 4}));
276
SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store");
277
TsanAtomicStore[i] = M.getOrInsertFunction(
278
AtomicStoreName,
279
TLI.getAttrList(&Ctx, Idxs2Or12, /*Signed=*/true, /*Ret=*/false, Attr),
280
IRB.getVoidTy(), PtrTy, Ty, OrdTy);
281
282
for (unsigned Op = AtomicRMWInst::FIRST_BINOP;
283
Op <= AtomicRMWInst::LAST_BINOP; ++Op) {
284
TsanAtomicRMW[Op][i] = nullptr;
285
const char *NamePart = nullptr;
286
if (Op == AtomicRMWInst::Xchg)
287
NamePart = "_exchange";
288
else if (Op == AtomicRMWInst::Add)
289
NamePart = "_fetch_add";
290
else if (Op == AtomicRMWInst::Sub)
291
NamePart = "_fetch_sub";
292
else if (Op == AtomicRMWInst::And)
293
NamePart = "_fetch_and";
294
else if (Op == AtomicRMWInst::Or)
295
NamePart = "_fetch_or";
296
else if (Op == AtomicRMWInst::Xor)
297
NamePart = "_fetch_xor";
298
else if (Op == AtomicRMWInst::Nand)
299
NamePart = "_fetch_nand";
300
else
301
continue;
302
SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
303
TsanAtomicRMW[Op][i] = M.getOrInsertFunction(
304
RMWName,
305
TLI.getAttrList(&Ctx, Idxs2Or12, /*Signed=*/true,
306
/*Ret=*/BitSize <= 32, Attr),
307
Ty, PtrTy, Ty, OrdTy);
308
}
309
310
SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr +
311
"_compare_exchange_val");
312
TsanAtomicCAS[i] = M.getOrInsertFunction(
313
AtomicCASName,
314
TLI.getAttrList(&Ctx, Idxs34Or1234, /*Signed=*/true,
315
/*Ret=*/BitSize <= 32, Attr),
316
Ty, PtrTy, Ty, Ty, OrdTy, OrdTy);
317
}
318
TsanVptrUpdate =
319
M.getOrInsertFunction("__tsan_vptr_update", Attr, IRB.getVoidTy(),
320
IRB.getPtrTy(), IRB.getPtrTy());
321
TsanVptrLoad = M.getOrInsertFunction("__tsan_vptr_read", Attr,
322
IRB.getVoidTy(), IRB.getPtrTy());
323
TsanAtomicThreadFence = M.getOrInsertFunction(
324
"__tsan_atomic_thread_fence",
325
TLI.getAttrList(&Ctx, {0}, /*Signed=*/true, /*Ret=*/false, Attr),
326
IRB.getVoidTy(), OrdTy);
327
328
TsanAtomicSignalFence = M.getOrInsertFunction(
329
"__tsan_atomic_signal_fence",
330
TLI.getAttrList(&Ctx, {0}, /*Signed=*/true, /*Ret=*/false, Attr),
331
IRB.getVoidTy(), OrdTy);
332
333
MemmoveFn =
334
M.getOrInsertFunction("__tsan_memmove", Attr, IRB.getPtrTy(),
335
IRB.getPtrTy(), IRB.getPtrTy(), IntptrTy);
336
MemcpyFn =
337
M.getOrInsertFunction("__tsan_memcpy", Attr, IRB.getPtrTy(),
338
IRB.getPtrTy(), IRB.getPtrTy(), IntptrTy);
339
MemsetFn = M.getOrInsertFunction(
340
"__tsan_memset",
341
TLI.getAttrList(&Ctx, {1}, /*Signed=*/true, /*Ret=*/false, Attr),
342
IRB.getPtrTy(), IRB.getPtrTy(), IRB.getInt32Ty(), IntptrTy);
343
}
344
345
static bool isVtableAccess(Instruction *I) {
346
if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
347
return Tag->isTBAAVtableAccess();
348
return false;
349
}
350
351
// Do not instrument known races/"benign races" that come from compiler
352
// instrumentatin. The user has no way of suppressing them.
353
static bool shouldInstrumentReadWriteFromAddress(const Module *M, Value *Addr) {
354
// Peel off GEPs and BitCasts.
355
Addr = Addr->stripInBoundsOffsets();
356
357
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
358
if (GV->hasSection()) {
359
StringRef SectionName = GV->getSection();
360
// Check if the global is in the PGO counters section.
361
auto OF = Triple(M->getTargetTriple()).getObjectFormat();
362
if (SectionName.ends_with(
363
getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false)))
364
return false;
365
}
366
}
367
368
// Do not instrument accesses from different address spaces; we cannot deal
369
// with them.
370
if (Addr) {
371
Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
372
if (PtrTy->getPointerAddressSpace() != 0)
373
return false;
374
}
375
376
return true;
377
}
378
379
bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
380
// If this is a GEP, just analyze its pointer operand.
381
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
382
Addr = GEP->getPointerOperand();
383
384
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
385
if (GV->isConstant()) {
386
// Reads from constant globals can not race with any writes.
387
NumOmittedReadsFromConstantGlobals++;
388
return true;
389
}
390
} else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
391
if (isVtableAccess(L)) {
392
// Reads from a vtable pointer can not race with any writes.
393
NumOmittedReadsFromVtable++;
394
return true;
395
}
396
}
397
return false;
398
}
399
400
// Instrumenting some of the accesses may be proven redundant.
401
// Currently handled:
402
// - read-before-write (within same BB, no calls between)
403
// - not captured variables
404
//
405
// We do not handle some of the patterns that should not survive
406
// after the classic compiler optimizations.
407
// E.g. two reads from the same temp should be eliminated by CSE,
408
// two writes should be eliminated by DSE, etc.
409
//
410
// 'Local' is a vector of insns within the same BB (no calls between).
411
// 'All' is a vector of insns that will be instrumented.
412
void ThreadSanitizer::chooseInstructionsToInstrument(
413
SmallVectorImpl<Instruction *> &Local,
414
SmallVectorImpl<InstructionInfo> &All, const DataLayout &DL) {
415
DenseMap<Value *, size_t> WriteTargets; // Map of addresses to index in All
416
// Iterate from the end.
417
for (Instruction *I : reverse(Local)) {
418
const bool IsWrite = isa<StoreInst>(*I);
419
Value *Addr = IsWrite ? cast<StoreInst>(I)->getPointerOperand()
420
: cast<LoadInst>(I)->getPointerOperand();
421
422
if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr))
423
continue;
424
425
if (!IsWrite) {
426
const auto WriteEntry = WriteTargets.find(Addr);
427
if (!ClInstrumentReadBeforeWrite && WriteEntry != WriteTargets.end()) {
428
auto &WI = All[WriteEntry->second];
429
// If we distinguish volatile accesses and if either the read or write
430
// is volatile, do not omit any instrumentation.
431
const bool AnyVolatile =
432
ClDistinguishVolatile && (cast<LoadInst>(I)->isVolatile() ||
433
cast<StoreInst>(WI.Inst)->isVolatile());
434
if (!AnyVolatile) {
435
// We will write to this temp, so no reason to analyze the read.
436
// Mark the write instruction as compound.
437
WI.Flags |= InstructionInfo::kCompoundRW;
438
NumOmittedReadsBeforeWrite++;
439
continue;
440
}
441
}
442
443
if (addrPointsToConstantData(Addr)) {
444
// Addr points to some constant data -- it can not race with any writes.
445
continue;
446
}
447
}
448
449
if (isa<AllocaInst>(getUnderlyingObject(Addr)) &&
450
!PointerMayBeCaptured(Addr, true, true)) {
451
// The variable is addressable but not captured, so it cannot be
452
// referenced from a different thread and participate in a data race
453
// (see llvm/Analysis/CaptureTracking.h for details).
454
NumOmittedNonCaptured++;
455
continue;
456
}
457
458
// Instrument this instruction.
459
All.emplace_back(I);
460
if (IsWrite) {
461
// For read-before-write and compound instrumentation we only need one
462
// write target, and we can override any previous entry if it exists.
463
WriteTargets[Addr] = All.size() - 1;
464
}
465
}
466
Local.clear();
467
}
468
469
static bool isTsanAtomic(const Instruction *I) {
470
// TODO: Ask TTI whether synchronization scope is between threads.
471
auto SSID = getAtomicSyncScopeID(I);
472
if (!SSID)
473
return false;
474
if (isa<LoadInst>(I) || isa<StoreInst>(I))
475
return *SSID != SyncScope::SingleThread;
476
return true;
477
}
478
479
void ThreadSanitizer::InsertRuntimeIgnores(Function &F) {
480
InstrumentationIRBuilder IRB(F.getEntryBlock().getFirstNonPHI());
481
IRB.CreateCall(TsanIgnoreBegin);
482
EscapeEnumerator EE(F, "tsan_ignore_cleanup", ClHandleCxxExceptions);
483
while (IRBuilder<> *AtExit = EE.Next()) {
484
InstrumentationIRBuilder::ensureDebugInfo(*AtExit, F);
485
AtExit->CreateCall(TsanIgnoreEnd);
486
}
487
}
488
489
bool ThreadSanitizer::sanitizeFunction(Function &F,
490
const TargetLibraryInfo &TLI) {
491
// This is required to prevent instrumenting call to __tsan_init from within
492
// the module constructor.
493
if (F.getName() == kTsanModuleCtorName)
494
return false;
495
// Naked functions can not have prologue/epilogue
496
// (__tsan_func_entry/__tsan_func_exit) generated, so don't instrument them at
497
// all.
498
if (F.hasFnAttribute(Attribute::Naked))
499
return false;
500
501
// __attribute__(disable_sanitizer_instrumentation) prevents all kinds of
502
// instrumentation.
503
if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation))
504
return false;
505
506
initialize(*F.getParent(), TLI);
507
SmallVector<InstructionInfo, 8> AllLoadsAndStores;
508
SmallVector<Instruction*, 8> LocalLoadsAndStores;
509
SmallVector<Instruction*, 8> AtomicAccesses;
510
SmallVector<Instruction*, 8> MemIntrinCalls;
511
bool Res = false;
512
bool HasCalls = false;
513
bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread);
514
const DataLayout &DL = F.getDataLayout();
515
516
// Traverse all instructions, collect loads/stores/returns, check for calls.
517
for (auto &BB : F) {
518
for (auto &Inst : BB) {
519
// Skip instructions inserted by another instrumentation.
520
if (Inst.hasMetadata(LLVMContext::MD_nosanitize))
521
continue;
522
if (isTsanAtomic(&Inst))
523
AtomicAccesses.push_back(&Inst);
524
else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
525
LocalLoadsAndStores.push_back(&Inst);
526
else if ((isa<CallInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst)) ||
527
isa<InvokeInst>(Inst)) {
528
if (CallInst *CI = dyn_cast<CallInst>(&Inst))
529
maybeMarkSanitizerLibraryCallNoBuiltin(CI, &TLI);
530
if (isa<MemIntrinsic>(Inst))
531
MemIntrinCalls.push_back(&Inst);
532
HasCalls = true;
533
chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores,
534
DL);
535
}
536
}
537
chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL);
538
}
539
540
// We have collected all loads and stores.
541
// FIXME: many of these accesses do not need to be checked for races
542
// (e.g. variables that do not escape, etc).
543
544
// Instrument memory accesses only if we want to report bugs in the function.
545
if (ClInstrumentMemoryAccesses && SanitizeFunction)
546
for (const auto &II : AllLoadsAndStores) {
547
Res |= instrumentLoadOrStore(II, DL);
548
}
549
550
// Instrument atomic memory accesses in any case (they can be used to
551
// implement synchronization).
552
if (ClInstrumentAtomics)
553
for (auto *Inst : AtomicAccesses) {
554
Res |= instrumentAtomic(Inst, DL);
555
}
556
557
if (ClInstrumentMemIntrinsics && SanitizeFunction)
558
for (auto *Inst : MemIntrinCalls) {
559
Res |= instrumentMemIntrinsic(Inst);
560
}
561
562
if (F.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) {
563
assert(!F.hasFnAttribute(Attribute::SanitizeThread));
564
if (HasCalls)
565
InsertRuntimeIgnores(F);
566
}
567
568
// Instrument function entry/exit points if there were instrumented accesses.
569
if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
570
InstrumentationIRBuilder IRB(F.getEntryBlock().getFirstNonPHI());
571
Value *ReturnAddress = IRB.CreateCall(
572
Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
573
IRB.getInt32(0));
574
IRB.CreateCall(TsanFuncEntry, ReturnAddress);
575
576
EscapeEnumerator EE(F, "tsan_cleanup", ClHandleCxxExceptions);
577
while (IRBuilder<> *AtExit = EE.Next()) {
578
InstrumentationIRBuilder::ensureDebugInfo(*AtExit, F);
579
AtExit->CreateCall(TsanFuncExit, {});
580
}
581
Res = true;
582
}
583
return Res;
584
}
585
586
bool ThreadSanitizer::instrumentLoadOrStore(const InstructionInfo &II,
587
const DataLayout &DL) {
588
InstrumentationIRBuilder IRB(II.Inst);
589
const bool IsWrite = isa<StoreInst>(*II.Inst);
590
Value *Addr = IsWrite ? cast<StoreInst>(II.Inst)->getPointerOperand()
591
: cast<LoadInst>(II.Inst)->getPointerOperand();
592
Type *OrigTy = getLoadStoreType(II.Inst);
593
594
// swifterror memory addresses are mem2reg promoted by instruction selection.
595
// As such they cannot have regular uses like an instrumentation function and
596
// it makes no sense to track them as memory.
597
if (Addr->isSwiftError())
598
return false;
599
600
int Idx = getMemoryAccessFuncIndex(OrigTy, Addr, DL);
601
if (Idx < 0)
602
return false;
603
if (IsWrite && isVtableAccess(II.Inst)) {
604
LLVM_DEBUG(dbgs() << " VPTR : " << *II.Inst << "\n");
605
Value *StoredValue = cast<StoreInst>(II.Inst)->getValueOperand();
606
// StoredValue may be a vector type if we are storing several vptrs at once.
607
// In this case, just take the first element of the vector since this is
608
// enough to find vptr races.
609
if (isa<VectorType>(StoredValue->getType()))
610
StoredValue = IRB.CreateExtractElement(
611
StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
612
if (StoredValue->getType()->isIntegerTy())
613
StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getPtrTy());
614
// Call TsanVptrUpdate.
615
IRB.CreateCall(TsanVptrUpdate, {Addr, StoredValue});
616
NumInstrumentedVtableWrites++;
617
return true;
618
}
619
if (!IsWrite && isVtableAccess(II.Inst)) {
620
IRB.CreateCall(TsanVptrLoad, Addr);
621
NumInstrumentedVtableReads++;
622
return true;
623
}
624
625
const Align Alignment = IsWrite ? cast<StoreInst>(II.Inst)->getAlign()
626
: cast<LoadInst>(II.Inst)->getAlign();
627
const bool IsCompoundRW =
628
ClCompoundReadBeforeWrite && (II.Flags & InstructionInfo::kCompoundRW);
629
const bool IsVolatile = ClDistinguishVolatile &&
630
(IsWrite ? cast<StoreInst>(II.Inst)->isVolatile()
631
: cast<LoadInst>(II.Inst)->isVolatile());
632
assert((!IsVolatile || !IsCompoundRW) && "Compound volatile invalid!");
633
634
const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
635
FunctionCallee OnAccessFunc = nullptr;
636
if (Alignment >= Align(8) || (Alignment.value() % (TypeSize / 8)) == 0) {
637
if (IsCompoundRW)
638
OnAccessFunc = TsanCompoundRW[Idx];
639
else if (IsVolatile)
640
OnAccessFunc = IsWrite ? TsanVolatileWrite[Idx] : TsanVolatileRead[Idx];
641
else
642
OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
643
} else {
644
if (IsCompoundRW)
645
OnAccessFunc = TsanUnalignedCompoundRW[Idx];
646
else if (IsVolatile)
647
OnAccessFunc = IsWrite ? TsanUnalignedVolatileWrite[Idx]
648
: TsanUnalignedVolatileRead[Idx];
649
else
650
OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx];
651
}
652
IRB.CreateCall(OnAccessFunc, Addr);
653
if (IsCompoundRW || IsWrite)
654
NumInstrumentedWrites++;
655
if (IsCompoundRW || !IsWrite)
656
NumInstrumentedReads++;
657
return true;
658
}
659
660
static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
661
uint32_t v = 0;
662
switch (ord) {
663
case AtomicOrdering::NotAtomic:
664
llvm_unreachable("unexpected atomic ordering!");
665
case AtomicOrdering::Unordered: [[fallthrough]];
666
case AtomicOrdering::Monotonic: v = 0; break;
667
// Not specified yet:
668
// case AtomicOrdering::Consume: v = 1; break;
669
case AtomicOrdering::Acquire: v = 2; break;
670
case AtomicOrdering::Release: v = 3; break;
671
case AtomicOrdering::AcquireRelease: v = 4; break;
672
case AtomicOrdering::SequentiallyConsistent: v = 5; break;
673
}
674
return IRB->getInt32(v);
675
}
676
677
// If a memset intrinsic gets inlined by the code gen, we will miss races on it.
678
// So, we either need to ensure the intrinsic is not inlined, or instrument it.
679
// We do not instrument memset/memmove/memcpy intrinsics (too complicated),
680
// instead we simply replace them with regular function calls, which are then
681
// intercepted by the run-time.
682
// Since tsan is running after everyone else, the calls should not be
683
// replaced back with intrinsics. If that becomes wrong at some point,
684
// we will need to call e.g. __tsan_memset to avoid the intrinsics.
685
bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
686
InstrumentationIRBuilder IRB(I);
687
if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
688
Value *Cast1 = IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false);
689
Value *Cast2 = IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false);
690
IRB.CreateCall(
691
MemsetFn,
692
{M->getArgOperand(0),
693
Cast1,
694
Cast2});
695
I->eraseFromParent();
696
} else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
697
IRB.CreateCall(
698
isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
699
{M->getArgOperand(0),
700
M->getArgOperand(1),
701
IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
702
I->eraseFromParent();
703
}
704
return false;
705
}
706
707
// Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
708
// standards. For background see C++11 standard. A slightly older, publicly
709
// available draft of the standard (not entirely up-to-date, but close enough
710
// for casual browsing) is available here:
711
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
712
// The following page contains more background information:
713
// http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
714
715
bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) {
716
InstrumentationIRBuilder IRB(I);
717
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
718
Value *Addr = LI->getPointerOperand();
719
Type *OrigTy = LI->getType();
720
int Idx = getMemoryAccessFuncIndex(OrigTy, Addr, DL);
721
if (Idx < 0)
722
return false;
723
Value *Args[] = {Addr,
724
createOrdering(&IRB, LI->getOrdering())};
725
Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args);
726
Value *Cast = IRB.CreateBitOrPointerCast(C, OrigTy);
727
I->replaceAllUsesWith(Cast);
728
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
729
Value *Addr = SI->getPointerOperand();
730
int Idx =
731
getMemoryAccessFuncIndex(SI->getValueOperand()->getType(), Addr, DL);
732
if (Idx < 0)
733
return false;
734
const unsigned ByteSize = 1U << Idx;
735
const unsigned BitSize = ByteSize * 8;
736
Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
737
Value *Args[] = {Addr,
738
IRB.CreateBitOrPointerCast(SI->getValueOperand(), Ty),
739
createOrdering(&IRB, SI->getOrdering())};
740
IRB.CreateCall(TsanAtomicStore[Idx], Args);
741
SI->eraseFromParent();
742
} else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
743
Value *Addr = RMWI->getPointerOperand();
744
int Idx =
745
getMemoryAccessFuncIndex(RMWI->getValOperand()->getType(), Addr, DL);
746
if (Idx < 0)
747
return false;
748
FunctionCallee F = TsanAtomicRMW[RMWI->getOperation()][Idx];
749
if (!F)
750
return false;
751
const unsigned ByteSize = 1U << Idx;
752
const unsigned BitSize = ByteSize * 8;
753
Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
754
Value *Val = RMWI->getValOperand();
755
Value *Args[] = {Addr, IRB.CreateBitOrPointerCast(Val, Ty),
756
createOrdering(&IRB, RMWI->getOrdering())};
757
Value *C = IRB.CreateCall(F, Args);
758
I->replaceAllUsesWith(IRB.CreateBitOrPointerCast(C, Val->getType()));
759
I->eraseFromParent();
760
} else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
761
Value *Addr = CASI->getPointerOperand();
762
Type *OrigOldValTy = CASI->getNewValOperand()->getType();
763
int Idx = getMemoryAccessFuncIndex(OrigOldValTy, Addr, DL);
764
if (Idx < 0)
765
return false;
766
const unsigned ByteSize = 1U << Idx;
767
const unsigned BitSize = ByteSize * 8;
768
Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
769
Value *CmpOperand =
770
IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty);
771
Value *NewOperand =
772
IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty);
773
Value *Args[] = {Addr,
774
CmpOperand,
775
NewOperand,
776
createOrdering(&IRB, CASI->getSuccessOrdering()),
777
createOrdering(&IRB, CASI->getFailureOrdering())};
778
CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args);
779
Value *Success = IRB.CreateICmpEQ(C, CmpOperand);
780
Value *OldVal = C;
781
if (Ty != OrigOldValTy) {
782
// The value is a pointer, so we need to cast the return value.
783
OldVal = IRB.CreateIntToPtr(C, OrigOldValTy);
784
}
785
786
Value *Res =
787
IRB.CreateInsertValue(PoisonValue::get(CASI->getType()), OldVal, 0);
788
Res = IRB.CreateInsertValue(Res, Success, 1);
789
790
I->replaceAllUsesWith(Res);
791
I->eraseFromParent();
792
} else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
793
Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
794
FunctionCallee F = FI->getSyncScopeID() == SyncScope::SingleThread
795
? TsanAtomicSignalFence
796
: TsanAtomicThreadFence;
797
IRB.CreateCall(F, Args);
798
FI->eraseFromParent();
799
}
800
return true;
801
}
802
803
int ThreadSanitizer::getMemoryAccessFuncIndex(Type *OrigTy, Value *Addr,
804
const DataLayout &DL) {
805
assert(OrigTy->isSized());
806
if (OrigTy->isScalableTy()) {
807
// FIXME: support vscale.
808
return -1;
809
}
810
uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
811
if (TypeSize != 8 && TypeSize != 16 &&
812
TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
813
NumAccessesWithBadSize++;
814
// Ignore all unusual sizes.
815
return -1;
816
}
817
size_t Idx = llvm::countr_zero(TypeSize / 8);
818
assert(Idx < kNumberOfAccessSizes);
819
return Idx;
820
}
821
822