Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Scalar/AlignmentFromAssumptions.cpp
35269 views
1
//===----------------------- AlignmentFromAssumptions.cpp -----------------===//
2
// Set Load/Store Alignments From Assumptions
3
//
4
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5
// See https://llvm.org/LICENSE.txt for license information.
6
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7
//
8
//===----------------------------------------------------------------------===//
9
//
10
// This file implements a ScalarEvolution-based transformation to set
11
// the alignments of load, stores and memory intrinsics based on the truth
12
// expressions of assume intrinsics. The primary motivation is to handle
13
// complex alignment assumptions that apply to vector loads and stores that
14
// appear after vectorization and unrolling.
15
//
16
//===----------------------------------------------------------------------===//
17
18
#include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h"
19
#include "llvm/ADT/SmallPtrSet.h"
20
#include "llvm/ADT/Statistic.h"
21
#include "llvm/Analysis/AliasAnalysis.h"
22
#include "llvm/Analysis/AssumptionCache.h"
23
#include "llvm/Analysis/GlobalsModRef.h"
24
#include "llvm/Analysis/LoopInfo.h"
25
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
26
#include "llvm/Analysis/ValueTracking.h"
27
#include "llvm/IR/Dominators.h"
28
#include "llvm/IR/Instruction.h"
29
#include "llvm/IR/Instructions.h"
30
#include "llvm/IR/IntrinsicInst.h"
31
#include "llvm/Support/Debug.h"
32
#include "llvm/Support/raw_ostream.h"
33
34
#define DEBUG_TYPE "alignment-from-assumptions"
35
using namespace llvm;
36
37
STATISTIC(NumLoadAlignChanged,
38
"Number of loads changed by alignment assumptions");
39
STATISTIC(NumStoreAlignChanged,
40
"Number of stores changed by alignment assumptions");
41
STATISTIC(NumMemIntAlignChanged,
42
"Number of memory intrinsics changed by alignment assumptions");
43
44
// Given an expression for the (constant) alignment, AlignSCEV, and an
45
// expression for the displacement between a pointer and the aligned address,
46
// DiffSCEV, compute the alignment of the displaced pointer if it can be reduced
47
// to a constant. Using SCEV to compute alignment handles the case where
48
// DiffSCEV is a recurrence with constant start such that the aligned offset
49
// is constant. e.g. {16,+,32} % 32 -> 16.
50
static MaybeAlign getNewAlignmentDiff(const SCEV *DiffSCEV,
51
const SCEV *AlignSCEV,
52
ScalarEvolution *SE) {
53
// DiffUnits = Diff % int64_t(Alignment)
54
const SCEV *DiffUnitsSCEV = SE->getURemExpr(DiffSCEV, AlignSCEV);
55
56
LLVM_DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is "
57
<< *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n");
58
59
if (const SCEVConstant *ConstDUSCEV =
60
dyn_cast<SCEVConstant>(DiffUnitsSCEV)) {
61
int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue();
62
63
// If the displacement is an exact multiple of the alignment, then the
64
// displaced pointer has the same alignment as the aligned pointer, so
65
// return the alignment value.
66
if (!DiffUnits)
67
return cast<SCEVConstant>(AlignSCEV)->getValue()->getAlignValue();
68
69
// If the displacement is not an exact multiple, but the remainder is a
70
// constant, then return this remainder (but only if it is a power of 2).
71
uint64_t DiffUnitsAbs = std::abs(DiffUnits);
72
if (isPowerOf2_64(DiffUnitsAbs))
73
return Align(DiffUnitsAbs);
74
}
75
76
return std::nullopt;
77
}
78
79
// There is an address given by an offset OffSCEV from AASCEV which has an
80
// alignment AlignSCEV. Use that information, if possible, to compute a new
81
// alignment for Ptr.
82
static Align getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV,
83
const SCEV *OffSCEV, Value *Ptr,
84
ScalarEvolution *SE) {
85
const SCEV *PtrSCEV = SE->getSCEV(Ptr);
86
87
const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV);
88
if (isa<SCEVCouldNotCompute>(DiffSCEV))
89
return Align(1);
90
91
// On 32-bit platforms, DiffSCEV might now have type i32 -- we've always
92
// sign-extended OffSCEV to i64, so make sure they agree again.
93
DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType());
94
95
// What we really want to know is the overall offset to the aligned
96
// address. This address is displaced by the provided offset.
97
DiffSCEV = SE->getAddExpr(DiffSCEV, OffSCEV);
98
99
LLVM_DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to "
100
<< *AlignSCEV << " and offset " << *OffSCEV
101
<< " using diff " << *DiffSCEV << "\n");
102
103
if (MaybeAlign NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE)) {
104
LLVM_DEBUG(dbgs() << "\tnew alignment: " << DebugStr(NewAlignment) << "\n");
105
return *NewAlignment;
106
}
107
108
if (const SCEVAddRecExpr *DiffARSCEV = dyn_cast<SCEVAddRecExpr>(DiffSCEV)) {
109
// The relative offset to the alignment assumption did not yield a constant,
110
// but we should try harder: if we assume that a is 32-byte aligned, then in
111
// for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are
112
// 32-byte aligned, but instead alternate between 32 and 16-byte alignment.
113
// As a result, the new alignment will not be a constant, but can still
114
// be improved over the default (of 4) to 16.
115
116
const SCEV *DiffStartSCEV = DiffARSCEV->getStart();
117
const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE);
118
119
LLVM_DEBUG(dbgs() << "\ttrying start/inc alignment using start "
120
<< *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n");
121
122
// Now compute the new alignment using the displacement to the value in the
123
// first iteration, and also the alignment using the per-iteration delta.
124
// If these are the same, then use that answer. Otherwise, use the smaller
125
// one, but only if it divides the larger one.
126
MaybeAlign NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE);
127
MaybeAlign NewIncAlignment =
128
getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE);
129
130
LLVM_DEBUG(dbgs() << "\tnew start alignment: " << DebugStr(NewAlignment)
131
<< "\n");
132
LLVM_DEBUG(dbgs() << "\tnew inc alignment: " << DebugStr(NewIncAlignment)
133
<< "\n");
134
135
if (!NewAlignment || !NewIncAlignment)
136
return Align(1);
137
138
const Align NewAlign = *NewAlignment;
139
const Align NewIncAlign = *NewIncAlignment;
140
if (NewAlign > NewIncAlign) {
141
LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: "
142
<< DebugStr(NewIncAlign) << "\n");
143
return NewIncAlign;
144
}
145
if (NewIncAlign > NewAlign) {
146
LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << DebugStr(NewAlign)
147
<< "\n");
148
return NewAlign;
149
}
150
assert(NewIncAlign == NewAlign);
151
LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << DebugStr(NewAlign)
152
<< "\n");
153
return NewAlign;
154
}
155
156
return Align(1);
157
}
158
159
bool AlignmentFromAssumptionsPass::extractAlignmentInfo(CallInst *I,
160
unsigned Idx,
161
Value *&AAPtr,
162
const SCEV *&AlignSCEV,
163
const SCEV *&OffSCEV) {
164
Type *Int64Ty = Type::getInt64Ty(I->getContext());
165
OperandBundleUse AlignOB = I->getOperandBundleAt(Idx);
166
if (AlignOB.getTagName() != "align")
167
return false;
168
assert(AlignOB.Inputs.size() >= 2);
169
AAPtr = AlignOB.Inputs[0].get();
170
// TODO: Consider accumulating the offset to the base.
171
AAPtr = AAPtr->stripPointerCastsSameRepresentation();
172
AlignSCEV = SE->getSCEV(AlignOB.Inputs[1].get());
173
AlignSCEV = SE->getTruncateOrZeroExtend(AlignSCEV, Int64Ty);
174
if (!isa<SCEVConstant>(AlignSCEV))
175
// Added to suppress a crash because consumer doesn't expect non-constant
176
// alignments in the assume bundle. TODO: Consider generalizing caller.
177
return false;
178
if (!cast<SCEVConstant>(AlignSCEV)->getAPInt().isPowerOf2())
179
// Only power of two alignments are supported.
180
return false;
181
if (AlignOB.Inputs.size() == 3)
182
OffSCEV = SE->getSCEV(AlignOB.Inputs[2].get());
183
else
184
OffSCEV = SE->getZero(Int64Ty);
185
OffSCEV = SE->getTruncateOrZeroExtend(OffSCEV, Int64Ty);
186
return true;
187
}
188
189
bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall,
190
unsigned Idx) {
191
Value *AAPtr;
192
const SCEV *AlignSCEV, *OffSCEV;
193
if (!extractAlignmentInfo(ACall, Idx, AAPtr, AlignSCEV, OffSCEV))
194
return false;
195
196
// Skip ConstantPointerNull and UndefValue. Assumptions on these shouldn't
197
// affect other users.
198
if (isa<ConstantData>(AAPtr))
199
return false;
200
201
const SCEV *AASCEV = SE->getSCEV(AAPtr);
202
203
// Apply the assumption to all other users of the specified pointer.
204
SmallPtrSet<Instruction *, 32> Visited;
205
SmallVector<Instruction*, 16> WorkList;
206
for (User *J : AAPtr->users()) {
207
if (J == ACall)
208
continue;
209
210
if (Instruction *K = dyn_cast<Instruction>(J))
211
WorkList.push_back(K);
212
}
213
214
while (!WorkList.empty()) {
215
Instruction *J = WorkList.pop_back_val();
216
if (LoadInst *LI = dyn_cast<LoadInst>(J)) {
217
if (!isValidAssumeForContext(ACall, J, DT))
218
continue;
219
Align NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
220
LI->getPointerOperand(), SE);
221
if (NewAlignment > LI->getAlign()) {
222
LI->setAlignment(NewAlignment);
223
++NumLoadAlignChanged;
224
}
225
} else if (StoreInst *SI = dyn_cast<StoreInst>(J)) {
226
if (!isValidAssumeForContext(ACall, J, DT))
227
continue;
228
Align NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
229
SI->getPointerOperand(), SE);
230
if (NewAlignment > SI->getAlign()) {
231
SI->setAlignment(NewAlignment);
232
++NumStoreAlignChanged;
233
}
234
} else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) {
235
if (!isValidAssumeForContext(ACall, J, DT))
236
continue;
237
Align NewDestAlignment =
238
getNewAlignment(AASCEV, AlignSCEV, OffSCEV, MI->getDest(), SE);
239
240
LLVM_DEBUG(dbgs() << "\tmem inst: " << DebugStr(NewDestAlignment)
241
<< "\n";);
242
if (NewDestAlignment > *MI->getDestAlign()) {
243
MI->setDestAlignment(NewDestAlignment);
244
++NumMemIntAlignChanged;
245
}
246
247
// For memory transfers, there is also a source alignment that
248
// can be set.
249
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
250
Align NewSrcAlignment =
251
getNewAlignment(AASCEV, AlignSCEV, OffSCEV, MTI->getSource(), SE);
252
253
LLVM_DEBUG(dbgs() << "\tmem trans: " << DebugStr(NewSrcAlignment)
254
<< "\n";);
255
256
if (NewSrcAlignment > *MTI->getSourceAlign()) {
257
MTI->setSourceAlignment(NewSrcAlignment);
258
++NumMemIntAlignChanged;
259
}
260
}
261
}
262
263
// Now that we've updated that use of the pointer, look for other uses of
264
// the pointer to update.
265
Visited.insert(J);
266
if (isa<GetElementPtrInst>(J) || isa<PHINode>(J))
267
for (auto &U : J->uses()) {
268
if (U->getType()->isPointerTy()) {
269
Instruction *K = cast<Instruction>(U.getUser());
270
StoreInst *SI = dyn_cast<StoreInst>(K);
271
if (SI && SI->getPointerOperandIndex() != U.getOperandNo())
272
continue;
273
if (!Visited.count(K))
274
WorkList.push_back(K);
275
}
276
}
277
}
278
279
return true;
280
}
281
282
bool AlignmentFromAssumptionsPass::runImpl(Function &F, AssumptionCache &AC,
283
ScalarEvolution *SE_,
284
DominatorTree *DT_) {
285
SE = SE_;
286
DT = DT_;
287
288
bool Changed = false;
289
for (auto &AssumeVH : AC.assumptions())
290
if (AssumeVH) {
291
CallInst *Call = cast<CallInst>(AssumeVH);
292
for (unsigned Idx = 0; Idx < Call->getNumOperandBundles(); Idx++)
293
Changed |= processAssumption(Call, Idx);
294
}
295
296
return Changed;
297
}
298
299
PreservedAnalyses
300
AlignmentFromAssumptionsPass::run(Function &F, FunctionAnalysisManager &AM) {
301
302
AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
303
ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
304
DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
305
if (!runImpl(F, AC, &SE, &DT))
306
return PreservedAnalyses::all();
307
308
PreservedAnalyses PA;
309
PA.preserveSet<CFGAnalyses>();
310
PA.preserve<ScalarEvolutionAnalysis>();
311
return PA;
312
}
313
314