Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Scalar/ConstantHoisting.cpp
35269 views
1
//===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This pass identifies expensive constants to hoist and coalesces them to
10
// better prepare it for SelectionDAG-based code generation. This works around
11
// the limitations of the basic-block-at-a-time approach.
12
//
13
// First it scans all instructions for integer constants and calculates its
14
// cost. If the constant can be folded into the instruction (the cost is
15
// TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
16
// consider it expensive and leave it alone. This is the default behavior and
17
// the default implementation of getIntImmCostInst will always return TCC_Free.
18
//
19
// If the cost is more than TCC_BASIC, then the integer constant can't be folded
20
// into the instruction and it might be beneficial to hoist the constant.
21
// Similar constants are coalesced to reduce register pressure and
22
// materialization code.
23
//
24
// When a constant is hoisted, it is also hidden behind a bitcast to force it to
25
// be live-out of the basic block. Otherwise the constant would be just
26
// duplicated and each basic block would have its own copy in the SelectionDAG.
27
// The SelectionDAG recognizes such constants as opaque and doesn't perform
28
// certain transformations on them, which would create a new expensive constant.
29
//
30
// This optimization is only applied to integer constants in instructions and
31
// simple (this means not nested) constant cast expressions. For example:
32
// %0 = load i64* inttoptr (i64 big_constant to i64*)
33
//===----------------------------------------------------------------------===//
34
35
#include "llvm/Transforms/Scalar/ConstantHoisting.h"
36
#include "llvm/ADT/APInt.h"
37
#include "llvm/ADT/DenseMap.h"
38
#include "llvm/ADT/SmallPtrSet.h"
39
#include "llvm/ADT/SmallVector.h"
40
#include "llvm/ADT/Statistic.h"
41
#include "llvm/Analysis/BlockFrequencyInfo.h"
42
#include "llvm/Analysis/ProfileSummaryInfo.h"
43
#include "llvm/Analysis/TargetTransformInfo.h"
44
#include "llvm/IR/BasicBlock.h"
45
#include "llvm/IR/Constants.h"
46
#include "llvm/IR/DataLayout.h"
47
#include "llvm/IR/DebugInfoMetadata.h"
48
#include "llvm/IR/Dominators.h"
49
#include "llvm/IR/Function.h"
50
#include "llvm/IR/InstrTypes.h"
51
#include "llvm/IR/Instruction.h"
52
#include "llvm/IR/Instructions.h"
53
#include "llvm/IR/IntrinsicInst.h"
54
#include "llvm/IR/Operator.h"
55
#include "llvm/IR/Value.h"
56
#include "llvm/InitializePasses.h"
57
#include "llvm/Pass.h"
58
#include "llvm/Support/BlockFrequency.h"
59
#include "llvm/Support/Casting.h"
60
#include "llvm/Support/CommandLine.h"
61
#include "llvm/Support/Debug.h"
62
#include "llvm/Support/raw_ostream.h"
63
#include "llvm/Transforms/Scalar.h"
64
#include "llvm/Transforms/Utils/Local.h"
65
#include "llvm/Transforms/Utils/SizeOpts.h"
66
#include <algorithm>
67
#include <cassert>
68
#include <cstdint>
69
#include <iterator>
70
#include <tuple>
71
#include <utility>
72
73
using namespace llvm;
74
using namespace consthoist;
75
76
#define DEBUG_TYPE "consthoist"
77
78
STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
79
STATISTIC(NumConstantsRebased, "Number of constants rebased");
80
81
static cl::opt<bool> ConstHoistWithBlockFrequency(
82
"consthoist-with-block-frequency", cl::init(true), cl::Hidden,
83
cl::desc("Enable the use of the block frequency analysis to reduce the "
84
"chance to execute const materialization more frequently than "
85
"without hoisting."));
86
87
static cl::opt<bool> ConstHoistGEP(
88
"consthoist-gep", cl::init(false), cl::Hidden,
89
cl::desc("Try hoisting constant gep expressions"));
90
91
static cl::opt<unsigned>
92
MinNumOfDependentToRebase("consthoist-min-num-to-rebase",
93
cl::desc("Do not rebase if number of dependent constants of a Base is less "
94
"than this number."),
95
cl::init(0), cl::Hidden);
96
97
namespace {
98
99
/// The constant hoisting pass.
100
class ConstantHoistingLegacyPass : public FunctionPass {
101
public:
102
static char ID; // Pass identification, replacement for typeid
103
104
ConstantHoistingLegacyPass() : FunctionPass(ID) {
105
initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
106
}
107
108
bool runOnFunction(Function &Fn) override;
109
110
StringRef getPassName() const override { return "Constant Hoisting"; }
111
112
void getAnalysisUsage(AnalysisUsage &AU) const override {
113
AU.setPreservesCFG();
114
if (ConstHoistWithBlockFrequency)
115
AU.addRequired<BlockFrequencyInfoWrapperPass>();
116
AU.addRequired<DominatorTreeWrapperPass>();
117
AU.addRequired<ProfileSummaryInfoWrapperPass>();
118
AU.addRequired<TargetTransformInfoWrapperPass>();
119
}
120
121
private:
122
ConstantHoistingPass Impl;
123
};
124
125
} // end anonymous namespace
126
127
char ConstantHoistingLegacyPass::ID = 0;
128
129
INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist",
130
"Constant Hoisting", false, false)
131
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
132
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
133
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
134
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
135
INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist",
136
"Constant Hoisting", false, false)
137
138
FunctionPass *llvm::createConstantHoistingPass() {
139
return new ConstantHoistingLegacyPass();
140
}
141
142
/// Perform the constant hoisting optimization for the given function.
143
bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) {
144
if (skipFunction(Fn))
145
return false;
146
147
LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
148
LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
149
150
bool MadeChange =
151
Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn),
152
getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
153
ConstHoistWithBlockFrequency
154
? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI()
155
: nullptr,
156
Fn.getEntryBlock(),
157
&getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
158
159
LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
160
161
return MadeChange;
162
}
163
164
void ConstantHoistingPass::collectMatInsertPts(
165
const RebasedConstantListType &RebasedConstants,
166
SmallVectorImpl<BasicBlock::iterator> &MatInsertPts) const {
167
for (const RebasedConstantInfo &RCI : RebasedConstants)
168
for (const ConstantUser &U : RCI.Uses)
169
MatInsertPts.emplace_back(findMatInsertPt(U.Inst, U.OpndIdx));
170
}
171
172
/// Find the constant materialization insertion point.
173
BasicBlock::iterator ConstantHoistingPass::findMatInsertPt(Instruction *Inst,
174
unsigned Idx) const {
175
// If the operand is a cast instruction, then we have to materialize the
176
// constant before the cast instruction.
177
if (Idx != ~0U) {
178
Value *Opnd = Inst->getOperand(Idx);
179
if (auto CastInst = dyn_cast<Instruction>(Opnd))
180
if (CastInst->isCast())
181
return CastInst->getIterator();
182
}
183
184
// The simple and common case. This also includes constant expressions.
185
if (!isa<PHINode>(Inst) && !Inst->isEHPad())
186
return Inst->getIterator();
187
188
// We can't insert directly before a phi node or an eh pad. Insert before
189
// the terminator of the incoming or dominating block.
190
assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
191
BasicBlock *InsertionBlock = nullptr;
192
if (Idx != ~0U && isa<PHINode>(Inst)) {
193
InsertionBlock = cast<PHINode>(Inst)->getIncomingBlock(Idx);
194
if (!InsertionBlock->isEHPad()) {
195
return InsertionBlock->getTerminator()->getIterator();
196
}
197
} else {
198
InsertionBlock = Inst->getParent();
199
}
200
201
// This must be an EH pad. Iterate over immediate dominators until we find a
202
// non-EH pad. We need to skip over catchswitch blocks, which are both EH pads
203
// and terminators.
204
auto *IDom = DT->getNode(InsertionBlock)->getIDom();
205
while (IDom->getBlock()->isEHPad()) {
206
assert(Entry != IDom->getBlock() && "eh pad in entry block");
207
IDom = IDom->getIDom();
208
}
209
210
return IDom->getBlock()->getTerminator()->getIterator();
211
}
212
213
/// Given \p BBs as input, find another set of BBs which collectively
214
/// dominates \p BBs and have the minimal sum of frequencies. Return the BB
215
/// set found in \p BBs.
216
static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI,
217
BasicBlock *Entry,
218
SetVector<BasicBlock *> &BBs) {
219
assert(!BBs.count(Entry) && "Assume Entry is not in BBs");
220
// Nodes on the current path to the root.
221
SmallPtrSet<BasicBlock *, 8> Path;
222
// Candidates includes any block 'BB' in set 'BBs' that is not strictly
223
// dominated by any other blocks in set 'BBs', and all nodes in the path
224
// in the dominator tree from Entry to 'BB'.
225
SmallPtrSet<BasicBlock *, 16> Candidates;
226
for (auto *BB : BBs) {
227
// Ignore unreachable basic blocks.
228
if (!DT.isReachableFromEntry(BB))
229
continue;
230
Path.clear();
231
// Walk up the dominator tree until Entry or another BB in BBs
232
// is reached. Insert the nodes on the way to the Path.
233
BasicBlock *Node = BB;
234
// The "Path" is a candidate path to be added into Candidates set.
235
bool isCandidate = false;
236
do {
237
Path.insert(Node);
238
if (Node == Entry || Candidates.count(Node)) {
239
isCandidate = true;
240
break;
241
}
242
assert(DT.getNode(Node)->getIDom() &&
243
"Entry doens't dominate current Node");
244
Node = DT.getNode(Node)->getIDom()->getBlock();
245
} while (!BBs.count(Node));
246
247
// If isCandidate is false, Node is another Block in BBs dominating
248
// current 'BB'. Drop the nodes on the Path.
249
if (!isCandidate)
250
continue;
251
252
// Add nodes on the Path into Candidates.
253
Candidates.insert(Path.begin(), Path.end());
254
}
255
256
// Sort the nodes in Candidates in top-down order and save the nodes
257
// in Orders.
258
unsigned Idx = 0;
259
SmallVector<BasicBlock *, 16> Orders;
260
Orders.push_back(Entry);
261
while (Idx != Orders.size()) {
262
BasicBlock *Node = Orders[Idx++];
263
for (auto *ChildDomNode : DT.getNode(Node)->children()) {
264
if (Candidates.count(ChildDomNode->getBlock()))
265
Orders.push_back(ChildDomNode->getBlock());
266
}
267
}
268
269
// Visit Orders in bottom-up order.
270
using InsertPtsCostPair =
271
std::pair<SetVector<BasicBlock *>, BlockFrequency>;
272
273
// InsertPtsMap is a map from a BB to the best insertion points for the
274
// subtree of BB (subtree not including the BB itself).
275
DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap;
276
InsertPtsMap.reserve(Orders.size() + 1);
277
for (BasicBlock *Node : llvm::reverse(Orders)) {
278
bool NodeInBBs = BBs.count(Node);
279
auto &InsertPts = InsertPtsMap[Node].first;
280
BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second;
281
282
// Return the optimal insert points in BBs.
283
if (Node == Entry) {
284
BBs.clear();
285
if (InsertPtsFreq > BFI.getBlockFreq(Node) ||
286
(InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1))
287
BBs.insert(Entry);
288
else
289
BBs.insert(InsertPts.begin(), InsertPts.end());
290
break;
291
}
292
293
BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock();
294
// Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child
295
// will update its parent's ParentInsertPts and ParentPtsFreq.
296
auto &ParentInsertPts = InsertPtsMap[Parent].first;
297
BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second;
298
// Choose to insert in Node or in subtree of Node.
299
// Don't hoist to EHPad because we may not find a proper place to insert
300
// in EHPad.
301
// If the total frequency of InsertPts is the same as the frequency of the
302
// target Node, and InsertPts contains more than one nodes, choose hoisting
303
// to reduce code size.
304
if (NodeInBBs ||
305
(!Node->isEHPad() &&
306
(InsertPtsFreq > BFI.getBlockFreq(Node) ||
307
(InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) {
308
ParentInsertPts.insert(Node);
309
ParentPtsFreq += BFI.getBlockFreq(Node);
310
} else {
311
ParentInsertPts.insert(InsertPts.begin(), InsertPts.end());
312
ParentPtsFreq += InsertPtsFreq;
313
}
314
}
315
}
316
317
/// Find an insertion point that dominates all uses.
318
SetVector<BasicBlock::iterator>
319
ConstantHoistingPass::findConstantInsertionPoint(
320
const ConstantInfo &ConstInfo,
321
const ArrayRef<BasicBlock::iterator> MatInsertPts) const {
322
assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
323
// Collect all basic blocks.
324
SetVector<BasicBlock *> BBs;
325
SetVector<BasicBlock::iterator> InsertPts;
326
327
for (BasicBlock::iterator MatInsertPt : MatInsertPts)
328
BBs.insert(MatInsertPt->getParent());
329
330
if (BBs.count(Entry)) {
331
InsertPts.insert(Entry->begin());
332
return InsertPts;
333
}
334
335
if (BFI) {
336
findBestInsertionSet(*DT, *BFI, Entry, BBs);
337
for (BasicBlock *BB : BBs)
338
InsertPts.insert(BB->getFirstInsertionPt());
339
return InsertPts;
340
}
341
342
while (BBs.size() >= 2) {
343
BasicBlock *BB, *BB1, *BB2;
344
BB1 = BBs.pop_back_val();
345
BB2 = BBs.pop_back_val();
346
BB = DT->findNearestCommonDominator(BB1, BB2);
347
if (BB == Entry) {
348
InsertPts.insert(Entry->begin());
349
return InsertPts;
350
}
351
BBs.insert(BB);
352
}
353
assert((BBs.size() == 1) && "Expected only one element.");
354
Instruction &FirstInst = (*BBs.begin())->front();
355
InsertPts.insert(findMatInsertPt(&FirstInst));
356
return InsertPts;
357
}
358
359
/// Record constant integer ConstInt for instruction Inst at operand
360
/// index Idx.
361
///
362
/// The operand at index Idx is not necessarily the constant integer itself. It
363
/// could also be a cast instruction or a constant expression that uses the
364
/// constant integer.
365
void ConstantHoistingPass::collectConstantCandidates(
366
ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
367
ConstantInt *ConstInt) {
368
if (ConstInt->getType()->isVectorTy())
369
return;
370
371
InstructionCost Cost;
372
// Ask the target about the cost of materializing the constant for the given
373
// instruction and operand index.
374
if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
375
Cost = TTI->getIntImmCostIntrin(IntrInst->getIntrinsicID(), Idx,
376
ConstInt->getValue(), ConstInt->getType(),
377
TargetTransformInfo::TCK_SizeAndLatency);
378
else
379
Cost = TTI->getIntImmCostInst(
380
Inst->getOpcode(), Idx, ConstInt->getValue(), ConstInt->getType(),
381
TargetTransformInfo::TCK_SizeAndLatency, Inst);
382
383
// Ignore cheap integer constants.
384
if (Cost > TargetTransformInfo::TCC_Basic) {
385
ConstCandMapType::iterator Itr;
386
bool Inserted;
387
ConstPtrUnionType Cand = ConstInt;
388
std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
389
if (Inserted) {
390
ConstIntCandVec.push_back(ConstantCandidate(ConstInt));
391
Itr->second = ConstIntCandVec.size() - 1;
392
}
393
ConstIntCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue());
394
LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs()
395
<< "Collect constant " << *ConstInt << " from " << *Inst
396
<< " with cost " << Cost << '\n';
397
else dbgs() << "Collect constant " << *ConstInt
398
<< " indirectly from " << *Inst << " via "
399
<< *Inst->getOperand(Idx) << " with cost " << Cost
400
<< '\n';);
401
}
402
}
403
404
/// Record constant GEP expression for instruction Inst at operand index Idx.
405
void ConstantHoistingPass::collectConstantCandidates(
406
ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
407
ConstantExpr *ConstExpr) {
408
// TODO: Handle vector GEPs
409
if (ConstExpr->getType()->isVectorTy())
410
return;
411
412
GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
413
if (!BaseGV)
414
return;
415
416
// Get offset from the base GV.
417
PointerType *GVPtrTy = cast<PointerType>(BaseGV->getType());
418
IntegerType *OffsetTy = DL->getIndexType(*Ctx, GVPtrTy->getAddressSpace());
419
APInt Offset(DL->getTypeSizeInBits(OffsetTy), /*val*/ 0, /*isSigned*/ true);
420
auto *GEPO = cast<GEPOperator>(ConstExpr);
421
422
// TODO: If we have a mix of inbounds and non-inbounds GEPs, then basing a
423
// non-inbounds GEP on an inbounds GEP is potentially incorrect. Restrict to
424
// inbounds GEP for now -- alternatively, we could drop inbounds from the
425
// constant expression,
426
if (!GEPO->isInBounds())
427
return;
428
429
if (!GEPO->accumulateConstantOffset(*DL, Offset))
430
return;
431
432
if (!Offset.isIntN(32))
433
return;
434
435
// A constant GEP expression that has a GlobalVariable as base pointer is
436
// usually lowered to a load from constant pool. Such operation is unlikely
437
// to be cheaper than compute it by <Base + Offset>, which can be lowered to
438
// an ADD instruction or folded into Load/Store instruction.
439
InstructionCost Cost =
440
TTI->getIntImmCostInst(Instruction::Add, 1, Offset, OffsetTy,
441
TargetTransformInfo::TCK_SizeAndLatency, Inst);
442
ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV];
443
ConstCandMapType::iterator Itr;
444
bool Inserted;
445
ConstPtrUnionType Cand = ConstExpr;
446
std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
447
if (Inserted) {
448
ExprCandVec.push_back(ConstantCandidate(
449
ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()),
450
ConstExpr));
451
Itr->second = ExprCandVec.size() - 1;
452
}
453
ExprCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue());
454
}
455
456
/// Check the operand for instruction Inst at index Idx.
457
void ConstantHoistingPass::collectConstantCandidates(
458
ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) {
459
Value *Opnd = Inst->getOperand(Idx);
460
461
// Visit constant integers.
462
if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
463
collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
464
return;
465
}
466
467
// Visit cast instructions that have constant integers.
468
if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
469
// Only visit cast instructions, which have been skipped. All other
470
// instructions should have already been visited.
471
if (!CastInst->isCast())
472
return;
473
474
if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
475
// Pretend the constant is directly used by the instruction and ignore
476
// the cast instruction.
477
collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
478
return;
479
}
480
}
481
482
// Visit constant expressions that have constant integers.
483
if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
484
// Handle constant gep expressions.
485
if (ConstHoistGEP && isa<GEPOperator>(ConstExpr))
486
collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr);
487
488
// Only visit constant cast expressions.
489
if (!ConstExpr->isCast())
490
return;
491
492
if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
493
// Pretend the constant is directly used by the instruction and ignore
494
// the constant expression.
495
collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
496
return;
497
}
498
}
499
}
500
501
/// Scan the instruction for expensive integer constants and record them
502
/// in the constant candidate vector.
503
void ConstantHoistingPass::collectConstantCandidates(
504
ConstCandMapType &ConstCandMap, Instruction *Inst) {
505
// Skip all cast instructions. They are visited indirectly later on.
506
if (Inst->isCast())
507
return;
508
509
// Scan all operands.
510
for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
511
// The cost of materializing the constants (defined in
512
// `TargetTransformInfo::getIntImmCostInst`) for instructions which only
513
// take constant variables is lower than `TargetTransformInfo::TCC_Basic`.
514
// So it's safe for us to collect constant candidates from all
515
// IntrinsicInsts.
516
if (canReplaceOperandWithVariable(Inst, Idx)) {
517
collectConstantCandidates(ConstCandMap, Inst, Idx);
518
}
519
} // end of for all operands
520
}
521
522
/// Collect all integer constants in the function that cannot be folded
523
/// into an instruction itself.
524
void ConstantHoistingPass::collectConstantCandidates(Function &Fn) {
525
ConstCandMapType ConstCandMap;
526
for (BasicBlock &BB : Fn) {
527
// Ignore unreachable basic blocks.
528
if (!DT->isReachableFromEntry(&BB))
529
continue;
530
for (Instruction &Inst : BB)
531
if (!TTI->preferToKeepConstantsAttached(Inst, Fn))
532
collectConstantCandidates(ConstCandMap, &Inst);
533
}
534
}
535
536
// This helper function is necessary to deal with values that have different
537
// bit widths (APInt Operator- does not like that). If the value cannot be
538
// represented in uint64 we return an "empty" APInt. This is then interpreted
539
// as the value is not in range.
540
static std::optional<APInt> calculateOffsetDiff(const APInt &V1,
541
const APInt &V2) {
542
std::optional<APInt> Res;
543
unsigned BW = V1.getBitWidth() > V2.getBitWidth() ?
544
V1.getBitWidth() : V2.getBitWidth();
545
uint64_t LimVal1 = V1.getLimitedValue();
546
uint64_t LimVal2 = V2.getLimitedValue();
547
548
if (LimVal1 == ~0ULL || LimVal2 == ~0ULL)
549
return Res;
550
551
uint64_t Diff = LimVal1 - LimVal2;
552
return APInt(BW, Diff, true);
553
}
554
555
// From a list of constants, one needs to picked as the base and the other
556
// constants will be transformed into an offset from that base constant. The
557
// question is which we can pick best? For example, consider these constants
558
// and their number of uses:
559
//
560
// Constants| 2 | 4 | 12 | 42 |
561
// NumUses | 3 | 2 | 8 | 7 |
562
//
563
// Selecting constant 12 because it has the most uses will generate negative
564
// offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
565
// offsets lead to less optimal code generation, then there might be better
566
// solutions. Suppose immediates in the range of 0..35 are most optimally
567
// supported by the architecture, then selecting constant 2 is most optimal
568
// because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
569
// range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
570
// have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
571
// selecting the base constant the range of the offsets is a very important
572
// factor too that we take into account here. This algorithm calculates a total
573
// costs for selecting a constant as the base and substract the costs if
574
// immediates are out of range. It has quadratic complexity, so we call this
575
// function only when we're optimising for size and there are less than 100
576
// constants, we fall back to the straightforward algorithm otherwise
577
// which does not do all the offset calculations.
578
unsigned
579
ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S,
580
ConstCandVecType::iterator E,
581
ConstCandVecType::iterator &MaxCostItr) {
582
unsigned NumUses = 0;
583
584
if (!OptForSize || std::distance(S,E) > 100) {
585
for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
586
NumUses += ConstCand->Uses.size();
587
if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
588
MaxCostItr = ConstCand;
589
}
590
return NumUses;
591
}
592
593
LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n");
594
InstructionCost MaxCost = -1;
595
for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
596
auto Value = ConstCand->ConstInt->getValue();
597
Type *Ty = ConstCand->ConstInt->getType();
598
InstructionCost Cost = 0;
599
NumUses += ConstCand->Uses.size();
600
LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue()
601
<< "\n");
602
603
for (auto User : ConstCand->Uses) {
604
unsigned Opcode = User.Inst->getOpcode();
605
unsigned OpndIdx = User.OpndIdx;
606
Cost += TTI->getIntImmCostInst(Opcode, OpndIdx, Value, Ty,
607
TargetTransformInfo::TCK_SizeAndLatency);
608
LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n");
609
610
for (auto C2 = S; C2 != E; ++C2) {
611
std::optional<APInt> Diff = calculateOffsetDiff(
612
C2->ConstInt->getValue(), ConstCand->ConstInt->getValue());
613
if (Diff) {
614
const InstructionCost ImmCosts =
615
TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, *Diff, Ty);
616
Cost -= ImmCosts;
617
LLVM_DEBUG(dbgs() << "Offset " << *Diff << " "
618
<< "has penalty: " << ImmCosts << "\n"
619
<< "Adjusted cost: " << Cost << "\n");
620
}
621
}
622
}
623
LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n");
624
if (Cost > MaxCost) {
625
MaxCost = Cost;
626
MaxCostItr = ConstCand;
627
LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue()
628
<< "\n");
629
}
630
}
631
return NumUses;
632
}
633
634
/// Find the base constant within the given range and rebase all other
635
/// constants with respect to the base constant.
636
void ConstantHoistingPass::findAndMakeBaseConstant(
637
ConstCandVecType::iterator S, ConstCandVecType::iterator E,
638
SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) {
639
auto MaxCostItr = S;
640
unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr);
641
642
// Don't hoist constants that have only one use.
643
if (NumUses <= 1)
644
return;
645
646
ConstantInt *ConstInt = MaxCostItr->ConstInt;
647
ConstantExpr *ConstExpr = MaxCostItr->ConstExpr;
648
ConstantInfo ConstInfo;
649
ConstInfo.BaseInt = ConstInt;
650
ConstInfo.BaseExpr = ConstExpr;
651
Type *Ty = ConstInt->getType();
652
653
// Rebase the constants with respect to the base constant.
654
for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
655
APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue();
656
Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
657
Type *ConstTy =
658
ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr;
659
ConstInfo.RebasedConstants.push_back(
660
RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy));
661
}
662
ConstInfoVec.push_back(std::move(ConstInfo));
663
}
664
665
/// Finds and combines constant candidates that can be easily
666
/// rematerialized with an add from a common base constant.
667
void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) {
668
// If BaseGV is nullptr, find base among candidate constant integers;
669
// Otherwise find base among constant GEPs that share the same BaseGV.
670
ConstCandVecType &ConstCandVec = BaseGV ?
671
ConstGEPCandMap[BaseGV] : ConstIntCandVec;
672
ConstInfoVecType &ConstInfoVec = BaseGV ?
673
ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
674
675
// Sort the constants by value and type. This invalidates the mapping!
676
llvm::stable_sort(ConstCandVec, [](const ConstantCandidate &LHS,
677
const ConstantCandidate &RHS) {
678
if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
679
return LHS.ConstInt->getBitWidth() < RHS.ConstInt->getBitWidth();
680
return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
681
});
682
683
// Simple linear scan through the sorted constant candidate vector for viable
684
// merge candidates.
685
auto MinValItr = ConstCandVec.begin();
686
for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
687
CC != E; ++CC) {
688
if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
689
Type *MemUseValTy = nullptr;
690
for (auto &U : CC->Uses) {
691
auto *UI = U.Inst;
692
if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
693
MemUseValTy = LI->getType();
694
break;
695
} else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
696
// Make sure the constant is used as pointer operand of the StoreInst.
697
if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) {
698
MemUseValTy = SI->getValueOperand()->getType();
699
break;
700
}
701
}
702
}
703
704
// Check if the constant is in range of an add with immediate.
705
APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
706
if ((Diff.getBitWidth() <= 64) &&
707
TTI->isLegalAddImmediate(Diff.getSExtValue()) &&
708
// Check if Diff can be used as offset in addressing mode of the user
709
// memory instruction.
710
(!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy,
711
/*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(),
712
/*HasBaseReg*/true, /*Scale*/0)))
713
continue;
714
}
715
// We either have now a different constant type or the constant is not in
716
// range of an add with immediate anymore.
717
findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec);
718
// Start a new base constant search.
719
MinValItr = CC;
720
}
721
// Finalize the last base constant search.
722
findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec);
723
}
724
725
/// Updates the operand at Idx in instruction Inst with the result of
726
/// instruction Mat. If the instruction is a PHI node then special
727
/// handling for duplicate values from the same incoming basic block is
728
/// required.
729
/// \return The update will always succeed, but the return value indicated if
730
/// Mat was used for the update or not.
731
static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
732
if (auto PHI = dyn_cast<PHINode>(Inst)) {
733
// Check if any previous operand of the PHI node has the same incoming basic
734
// block. This is a very odd case that happens when the incoming basic block
735
// has a switch statement. In this case use the same value as the previous
736
// operand(s), otherwise we will fail verification due to different values.
737
// The values are actually the same, but the variable names are different
738
// and the verifier doesn't like that.
739
BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
740
for (unsigned i = 0; i < Idx; ++i) {
741
if (PHI->getIncomingBlock(i) == IncomingBB) {
742
Value *IncomingVal = PHI->getIncomingValue(i);
743
Inst->setOperand(Idx, IncomingVal);
744
return false;
745
}
746
}
747
}
748
749
Inst->setOperand(Idx, Mat);
750
return true;
751
}
752
753
/// Emit materialization code for all rebased constants and update their
754
/// users.
755
void ConstantHoistingPass::emitBaseConstants(Instruction *Base,
756
UserAdjustment *Adj) {
757
Instruction *Mat = Base;
758
759
// The same offset can be dereferenced to different types in nested struct.
760
if (!Adj->Offset && Adj->Ty && Adj->Ty != Base->getType())
761
Adj->Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0);
762
763
if (Adj->Offset) {
764
if (Adj->Ty) {
765
// Constant being rebased is a ConstantExpr.
766
Mat = GetElementPtrInst::Create(Type::getInt8Ty(*Ctx), Base, Adj->Offset,
767
"mat_gep", Adj->MatInsertPt);
768
// Hide it behind a bitcast.
769
Mat = new BitCastInst(Mat, Adj->Ty, "mat_bitcast",
770
Adj->MatInsertPt->getIterator());
771
} else
772
// Constant being rebased is a ConstantInt.
773
Mat =
774
BinaryOperator::Create(Instruction::Add, Base, Adj->Offset,
775
"const_mat", Adj->MatInsertPt->getIterator());
776
777
LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
778
<< " + " << *Adj->Offset << ") in BB "
779
<< Mat->getParent()->getName() << '\n'
780
<< *Mat << '\n');
781
Mat->setDebugLoc(Adj->User.Inst->getDebugLoc());
782
}
783
Value *Opnd = Adj->User.Inst->getOperand(Adj->User.OpndIdx);
784
785
// Visit constant integer.
786
if (isa<ConstantInt>(Opnd)) {
787
LLVM_DEBUG(dbgs() << "Update: " << *Adj->User.Inst << '\n');
788
if (!updateOperand(Adj->User.Inst, Adj->User.OpndIdx, Mat) && Adj->Offset)
789
Mat->eraseFromParent();
790
LLVM_DEBUG(dbgs() << "To : " << *Adj->User.Inst << '\n');
791
return;
792
}
793
794
// Visit cast instruction.
795
if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
796
assert(CastInst->isCast() && "Expected an cast instruction!");
797
// Check if we already have visited this cast instruction before to avoid
798
// unnecessary cloning.
799
Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
800
if (!ClonedCastInst) {
801
ClonedCastInst = CastInst->clone();
802
ClonedCastInst->setOperand(0, Mat);
803
ClonedCastInst->insertAfter(CastInst);
804
// Use the same debug location as the original cast instruction.
805
ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
806
LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
807
<< "To : " << *ClonedCastInst << '\n');
808
}
809
810
LLVM_DEBUG(dbgs() << "Update: " << *Adj->User.Inst << '\n');
811
updateOperand(Adj->User.Inst, Adj->User.OpndIdx, ClonedCastInst);
812
LLVM_DEBUG(dbgs() << "To : " << *Adj->User.Inst << '\n');
813
return;
814
}
815
816
// Visit constant expression.
817
if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
818
if (isa<GEPOperator>(ConstExpr)) {
819
// Operand is a ConstantGEP, replace it.
820
updateOperand(Adj->User.Inst, Adj->User.OpndIdx, Mat);
821
return;
822
}
823
824
// Aside from constant GEPs, only constant cast expressions are collected.
825
assert(ConstExpr->isCast() && "ConstExpr should be a cast");
826
Instruction *ConstExprInst = ConstExpr->getAsInstruction();
827
ConstExprInst->insertBefore(Adj->MatInsertPt);
828
ConstExprInst->setOperand(0, Mat);
829
830
// Use the same debug location as the instruction we are about to update.
831
ConstExprInst->setDebugLoc(Adj->User.Inst->getDebugLoc());
832
833
LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
834
<< "From : " << *ConstExpr << '\n');
835
LLVM_DEBUG(dbgs() << "Update: " << *Adj->User.Inst << '\n');
836
if (!updateOperand(Adj->User.Inst, Adj->User.OpndIdx, ConstExprInst)) {
837
ConstExprInst->eraseFromParent();
838
if (Adj->Offset)
839
Mat->eraseFromParent();
840
}
841
LLVM_DEBUG(dbgs() << "To : " << *Adj->User.Inst << '\n');
842
return;
843
}
844
}
845
846
/// Hoist and hide the base constant behind a bitcast and emit
847
/// materialization code for derived constants.
848
bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) {
849
bool MadeChange = false;
850
SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec =
851
BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
852
for (const consthoist::ConstantInfo &ConstInfo : ConstInfoVec) {
853
SmallVector<BasicBlock::iterator, 4> MatInsertPts;
854
collectMatInsertPts(ConstInfo.RebasedConstants, MatInsertPts);
855
SetVector<BasicBlock::iterator> IPSet =
856
findConstantInsertionPoint(ConstInfo, MatInsertPts);
857
// We can have an empty set if the function contains unreachable blocks.
858
if (IPSet.empty())
859
continue;
860
861
unsigned UsesNum = 0;
862
unsigned ReBasesNum = 0;
863
unsigned NotRebasedNum = 0;
864
for (const BasicBlock::iterator &IP : IPSet) {
865
// First, collect constants depending on this IP of the base.
866
UsesNum = 0;
867
SmallVector<UserAdjustment, 4> ToBeRebased;
868
unsigned MatCtr = 0;
869
for (auto const &RCI : ConstInfo.RebasedConstants) {
870
UsesNum += RCI.Uses.size();
871
for (auto const &U : RCI.Uses) {
872
const BasicBlock::iterator &MatInsertPt = MatInsertPts[MatCtr++];
873
BasicBlock *OrigMatInsertBB = MatInsertPt->getParent();
874
// If Base constant is to be inserted in multiple places,
875
// generate rebase for U using the Base dominating U.
876
if (IPSet.size() == 1 ||
877
DT->dominates(IP->getParent(), OrigMatInsertBB))
878
ToBeRebased.emplace_back(RCI.Offset, RCI.Ty, MatInsertPt, U);
879
}
880
}
881
882
// If only few constants depend on this IP of base, skip rebasing,
883
// assuming the base and the rebased have the same materialization cost.
884
if (ToBeRebased.size() < MinNumOfDependentToRebase) {
885
NotRebasedNum += ToBeRebased.size();
886
continue;
887
}
888
889
// Emit an instance of the base at this IP.
890
Instruction *Base = nullptr;
891
// Hoist and hide the base constant behind a bitcast.
892
if (ConstInfo.BaseExpr) {
893
assert(BaseGV && "A base constant expression must have an base GV");
894
Type *Ty = ConstInfo.BaseExpr->getType();
895
Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP);
896
} else {
897
IntegerType *Ty = ConstInfo.BaseInt->getIntegerType();
898
Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP);
899
}
900
901
Base->setDebugLoc(IP->getDebugLoc());
902
903
LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt
904
<< ") to BB " << IP->getParent()->getName() << '\n'
905
<< *Base << '\n');
906
907
// Emit materialization code for rebased constants depending on this IP.
908
for (UserAdjustment &R : ToBeRebased) {
909
emitBaseConstants(Base, &R);
910
ReBasesNum++;
911
// Use the same debug location as the last user of the constant.
912
Base->setDebugLoc(DILocation::getMergedLocation(
913
Base->getDebugLoc(), R.User.Inst->getDebugLoc()));
914
}
915
assert(!Base->use_empty() && "The use list is empty!?");
916
assert(isa<Instruction>(Base->user_back()) &&
917
"All uses should be instructions.");
918
}
919
(void)UsesNum;
920
(void)ReBasesNum;
921
(void)NotRebasedNum;
922
// Expect all uses are rebased after rebase is done.
923
assert(UsesNum == (ReBasesNum + NotRebasedNum) &&
924
"Not all uses are rebased");
925
926
NumConstantsHoisted++;
927
928
// Base constant is also included in ConstInfo.RebasedConstants, so
929
// deduct 1 from ConstInfo.RebasedConstants.size().
930
NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1;
931
932
MadeChange = true;
933
}
934
return MadeChange;
935
}
936
937
/// Check all cast instructions we made a copy of and remove them if they
938
/// have no more users.
939
void ConstantHoistingPass::deleteDeadCastInst() const {
940
for (auto const &I : ClonedCastMap)
941
if (I.first->use_empty())
942
I.first->eraseFromParent();
943
}
944
945
/// Optimize expensive integer constants in the given function.
946
bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI,
947
DominatorTree &DT, BlockFrequencyInfo *BFI,
948
BasicBlock &Entry, ProfileSummaryInfo *PSI) {
949
this->TTI = &TTI;
950
this->DT = &DT;
951
this->BFI = BFI;
952
this->DL = &Fn.getDataLayout();
953
this->Ctx = &Fn.getContext();
954
this->Entry = &Entry;
955
this->PSI = PSI;
956
this->OptForSize = Entry.getParent()->hasOptSize() ||
957
llvm::shouldOptimizeForSize(Entry.getParent(), PSI, BFI,
958
PGSOQueryType::IRPass);
959
960
// Collect all constant candidates.
961
collectConstantCandidates(Fn);
962
963
// Combine constants that can be easily materialized with an add from a common
964
// base constant.
965
if (!ConstIntCandVec.empty())
966
findBaseConstants(nullptr);
967
for (const auto &MapEntry : ConstGEPCandMap)
968
if (!MapEntry.second.empty())
969
findBaseConstants(MapEntry.first);
970
971
// Finally hoist the base constant and emit materialization code for dependent
972
// constants.
973
bool MadeChange = false;
974
if (!ConstIntInfoVec.empty())
975
MadeChange = emitBaseConstants(nullptr);
976
for (const auto &MapEntry : ConstGEPInfoMap)
977
if (!MapEntry.second.empty())
978
MadeChange |= emitBaseConstants(MapEntry.first);
979
980
981
// Cleanup dead instructions.
982
deleteDeadCastInst();
983
984
cleanup();
985
986
return MadeChange;
987
}
988
989
PreservedAnalyses ConstantHoistingPass::run(Function &F,
990
FunctionAnalysisManager &AM) {
991
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
992
auto &TTI = AM.getResult<TargetIRAnalysis>(F);
993
auto BFI = ConstHoistWithBlockFrequency
994
? &AM.getResult<BlockFrequencyAnalysis>(F)
995
: nullptr;
996
auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
997
auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
998
if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock(), PSI))
999
return PreservedAnalyses::all();
1000
1001
PreservedAnalyses PA;
1002
PA.preserveSet<CFGAnalyses>();
1003
return PA;
1004
}
1005
1006