Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp
35269 views
1
//===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// Eliminate conditions based on constraints collected from dominating
10
// conditions.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "llvm/Transforms/Scalar/ConstraintElimination.h"
15
#include "llvm/ADT/STLExtras.h"
16
#include "llvm/ADT/ScopeExit.h"
17
#include "llvm/ADT/SmallVector.h"
18
#include "llvm/ADT/Statistic.h"
19
#include "llvm/Analysis/ConstraintSystem.h"
20
#include "llvm/Analysis/GlobalsModRef.h"
21
#include "llvm/Analysis/LoopInfo.h"
22
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
23
#include "llvm/Analysis/ScalarEvolution.h"
24
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
25
#include "llvm/Analysis/ValueTracking.h"
26
#include "llvm/IR/DataLayout.h"
27
#include "llvm/IR/Dominators.h"
28
#include "llvm/IR/Function.h"
29
#include "llvm/IR/IRBuilder.h"
30
#include "llvm/IR/InstrTypes.h"
31
#include "llvm/IR/Instructions.h"
32
#include "llvm/IR/Module.h"
33
#include "llvm/IR/PatternMatch.h"
34
#include "llvm/IR/Verifier.h"
35
#include "llvm/Pass.h"
36
#include "llvm/Support/CommandLine.h"
37
#include "llvm/Support/Debug.h"
38
#include "llvm/Support/DebugCounter.h"
39
#include "llvm/Support/MathExtras.h"
40
#include "llvm/Transforms/Utils/Cloning.h"
41
#include "llvm/Transforms/Utils/ValueMapper.h"
42
43
#include <cmath>
44
#include <optional>
45
#include <string>
46
47
using namespace llvm;
48
using namespace PatternMatch;
49
50
#define DEBUG_TYPE "constraint-elimination"
51
52
STATISTIC(NumCondsRemoved, "Number of instructions removed");
53
DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
54
"Controls which conditions are eliminated");
55
56
static cl::opt<unsigned>
57
MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden,
58
cl::desc("Maximum number of rows to keep in constraint system"));
59
60
static cl::opt<bool> DumpReproducers(
61
"constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden,
62
cl::desc("Dump IR to reproduce successful transformations."));
63
64
static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
65
static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
66
67
// A helper to multiply 2 signed integers where overflowing is allowed.
68
static int64_t multiplyWithOverflow(int64_t A, int64_t B) {
69
int64_t Result;
70
MulOverflow(A, B, Result);
71
return Result;
72
}
73
74
// A helper to add 2 signed integers where overflowing is allowed.
75
static int64_t addWithOverflow(int64_t A, int64_t B) {
76
int64_t Result;
77
AddOverflow(A, B, Result);
78
return Result;
79
}
80
81
static Instruction *getContextInstForUse(Use &U) {
82
Instruction *UserI = cast<Instruction>(U.getUser());
83
if (auto *Phi = dyn_cast<PHINode>(UserI))
84
UserI = Phi->getIncomingBlock(U)->getTerminator();
85
return UserI;
86
}
87
88
namespace {
89
/// Struct to express a condition of the form %Op0 Pred %Op1.
90
struct ConditionTy {
91
CmpInst::Predicate Pred;
92
Value *Op0;
93
Value *Op1;
94
95
ConditionTy()
96
: Pred(CmpInst::BAD_ICMP_PREDICATE), Op0(nullptr), Op1(nullptr) {}
97
ConditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
98
: Pred(Pred), Op0(Op0), Op1(Op1) {}
99
};
100
101
/// Represents either
102
/// * a condition that holds on entry to a block (=condition fact)
103
/// * an assume (=assume fact)
104
/// * a use of a compare instruction to simplify.
105
/// It also tracks the Dominator DFS in and out numbers for each entry.
106
struct FactOrCheck {
107
enum class EntryTy {
108
ConditionFact, /// A condition that holds on entry to a block.
109
InstFact, /// A fact that holds after Inst executed (e.g. an assume or
110
/// min/mix intrinsic.
111
InstCheck, /// An instruction to simplify (e.g. an overflow math
112
/// intrinsics).
113
UseCheck /// An use of a compare instruction to simplify.
114
};
115
116
union {
117
Instruction *Inst;
118
Use *U;
119
ConditionTy Cond;
120
};
121
122
/// A pre-condition that must hold for the current fact to be added to the
123
/// system.
124
ConditionTy DoesHold;
125
126
unsigned NumIn;
127
unsigned NumOut;
128
EntryTy Ty;
129
130
FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst)
131
: Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
132
Ty(Ty) {}
133
134
FactOrCheck(DomTreeNode *DTN, Use *U)
135
: U(U), DoesHold(CmpInst::BAD_ICMP_PREDICATE, nullptr, nullptr),
136
NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
137
Ty(EntryTy::UseCheck) {}
138
139
FactOrCheck(DomTreeNode *DTN, CmpInst::Predicate Pred, Value *Op0, Value *Op1,
140
ConditionTy Precond = ConditionTy())
141
: Cond(Pred, Op0, Op1), DoesHold(Precond), NumIn(DTN->getDFSNumIn()),
142
NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {}
143
144
static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpInst::Predicate Pred,
145
Value *Op0, Value *Op1,
146
ConditionTy Precond = ConditionTy()) {
147
return FactOrCheck(DTN, Pred, Op0, Op1, Precond);
148
}
149
150
static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) {
151
return FactOrCheck(EntryTy::InstFact, DTN, Inst);
152
}
153
154
static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) {
155
return FactOrCheck(DTN, U);
156
}
157
158
static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) {
159
return FactOrCheck(EntryTy::InstCheck, DTN, CI);
160
}
161
162
bool isCheck() const {
163
return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck;
164
}
165
166
Instruction *getContextInst() const {
167
if (Ty == EntryTy::UseCheck)
168
return getContextInstForUse(*U);
169
return Inst;
170
}
171
172
Instruction *getInstructionToSimplify() const {
173
assert(isCheck());
174
if (Ty == EntryTy::InstCheck)
175
return Inst;
176
// The use may have been simplified to a constant already.
177
return dyn_cast<Instruction>(*U);
178
}
179
180
bool isConditionFact() const { return Ty == EntryTy::ConditionFact; }
181
};
182
183
/// Keep state required to build worklist.
184
struct State {
185
DominatorTree &DT;
186
LoopInfo &LI;
187
ScalarEvolution &SE;
188
SmallVector<FactOrCheck, 64> WorkList;
189
190
State(DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE)
191
: DT(DT), LI(LI), SE(SE) {}
192
193
/// Process block \p BB and add known facts to work-list.
194
void addInfoFor(BasicBlock &BB);
195
196
/// Try to add facts for loop inductions (AddRecs) in EQ/NE compares
197
/// controlling the loop header.
198
void addInfoForInductions(BasicBlock &BB);
199
200
/// Returns true if we can add a known condition from BB to its successor
201
/// block Succ.
202
bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
203
return DT.dominates(BasicBlockEdge(&BB, Succ), Succ);
204
}
205
};
206
207
class ConstraintInfo;
208
209
struct StackEntry {
210
unsigned NumIn;
211
unsigned NumOut;
212
bool IsSigned = false;
213
/// Variables that can be removed from the system once the stack entry gets
214
/// removed.
215
SmallVector<Value *, 2> ValuesToRelease;
216
217
StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned,
218
SmallVector<Value *, 2> ValuesToRelease)
219
: NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned),
220
ValuesToRelease(ValuesToRelease) {}
221
};
222
223
struct ConstraintTy {
224
SmallVector<int64_t, 8> Coefficients;
225
SmallVector<ConditionTy, 2> Preconditions;
226
227
SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
228
229
bool IsSigned = false;
230
231
ConstraintTy() = default;
232
233
ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq,
234
bool IsNe)
235
: Coefficients(std::move(Coefficients)), IsSigned(IsSigned), IsEq(IsEq),
236
IsNe(IsNe) {}
237
238
unsigned size() const { return Coefficients.size(); }
239
240
unsigned empty() const { return Coefficients.empty(); }
241
242
/// Returns true if all preconditions for this list of constraints are
243
/// satisfied given \p CS and the corresponding \p Value2Index mapping.
244
bool isValid(const ConstraintInfo &Info) const;
245
246
bool isEq() const { return IsEq; }
247
248
bool isNe() const { return IsNe; }
249
250
/// Check if the current constraint is implied by the given ConstraintSystem.
251
///
252
/// \return true or false if the constraint is proven to be respectively true,
253
/// or false. When the constraint cannot be proven to be either true or false,
254
/// std::nullopt is returned.
255
std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const;
256
257
private:
258
bool IsEq = false;
259
bool IsNe = false;
260
};
261
262
/// Wrapper encapsulating separate constraint systems and corresponding value
263
/// mappings for both unsigned and signed information. Facts are added to and
264
/// conditions are checked against the corresponding system depending on the
265
/// signed-ness of their predicates. While the information is kept separate
266
/// based on signed-ness, certain conditions can be transferred between the two
267
/// systems.
268
class ConstraintInfo {
269
270
ConstraintSystem UnsignedCS;
271
ConstraintSystem SignedCS;
272
273
const DataLayout &DL;
274
275
public:
276
ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs)
277
: UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {
278
auto &Value2Index = getValue2Index(false);
279
// Add Arg > -1 constraints to unsigned system for all function arguments.
280
for (Value *Arg : FunctionArgs) {
281
ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0),
282
false, false, false);
283
VarPos.Coefficients[Value2Index[Arg]] = -1;
284
UnsignedCS.addVariableRow(VarPos.Coefficients);
285
}
286
}
287
288
DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
289
return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
290
}
291
const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
292
return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
293
}
294
295
ConstraintSystem &getCS(bool Signed) {
296
return Signed ? SignedCS : UnsignedCS;
297
}
298
const ConstraintSystem &getCS(bool Signed) const {
299
return Signed ? SignedCS : UnsignedCS;
300
}
301
302
void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
303
void popLastNVariables(bool Signed, unsigned N) {
304
getCS(Signed).popLastNVariables(N);
305
}
306
307
bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
308
309
void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
310
unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
311
312
/// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
313
/// constraints, using indices from the corresponding constraint system.
314
/// New variables that need to be added to the system are collected in
315
/// \p NewVariables.
316
ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
317
SmallVectorImpl<Value *> &NewVariables) const;
318
319
/// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
320
/// constraints using getConstraint. Returns an empty constraint if the result
321
/// cannot be used to query the existing constraint system, e.g. because it
322
/// would require adding new variables. Also tries to convert signed
323
/// predicates to unsigned ones if possible to allow using the unsigned system
324
/// which increases the effectiveness of the signed <-> unsigned transfer
325
/// logic.
326
ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0,
327
Value *Op1) const;
328
329
/// Try to add information from \p A \p Pred \p B to the unsigned/signed
330
/// system if \p Pred is signed/unsigned.
331
void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
332
unsigned NumIn, unsigned NumOut,
333
SmallVectorImpl<StackEntry> &DFSInStack);
334
};
335
336
/// Represents a (Coefficient * Variable) entry after IR decomposition.
337
struct DecompEntry {
338
int64_t Coefficient;
339
Value *Variable;
340
/// True if the variable is known positive in the current constraint.
341
bool IsKnownNonNegative;
342
343
DecompEntry(int64_t Coefficient, Value *Variable,
344
bool IsKnownNonNegative = false)
345
: Coefficient(Coefficient), Variable(Variable),
346
IsKnownNonNegative(IsKnownNonNegative) {}
347
};
348
349
/// Represents an Offset + Coefficient1 * Variable1 + ... decomposition.
350
struct Decomposition {
351
int64_t Offset = 0;
352
SmallVector<DecompEntry, 3> Vars;
353
354
Decomposition(int64_t Offset) : Offset(Offset) {}
355
Decomposition(Value *V, bool IsKnownNonNegative = false) {
356
Vars.emplace_back(1, V, IsKnownNonNegative);
357
}
358
Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars)
359
: Offset(Offset), Vars(Vars) {}
360
361
void add(int64_t OtherOffset) {
362
Offset = addWithOverflow(Offset, OtherOffset);
363
}
364
365
void add(const Decomposition &Other) {
366
add(Other.Offset);
367
append_range(Vars, Other.Vars);
368
}
369
370
void sub(const Decomposition &Other) {
371
Decomposition Tmp = Other;
372
Tmp.mul(-1);
373
add(Tmp.Offset);
374
append_range(Vars, Tmp.Vars);
375
}
376
377
void mul(int64_t Factor) {
378
Offset = multiplyWithOverflow(Offset, Factor);
379
for (auto &Var : Vars)
380
Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor);
381
}
382
};
383
384
// Variable and constant offsets for a chain of GEPs, with base pointer BasePtr.
385
struct OffsetResult {
386
Value *BasePtr;
387
APInt ConstantOffset;
388
MapVector<Value *, APInt> VariableOffsets;
389
bool AllInbounds;
390
391
OffsetResult() : BasePtr(nullptr), ConstantOffset(0, uint64_t(0)) {}
392
393
OffsetResult(GEPOperator &GEP, const DataLayout &DL)
394
: BasePtr(GEP.getPointerOperand()), AllInbounds(GEP.isInBounds()) {
395
ConstantOffset = APInt(DL.getIndexTypeSizeInBits(BasePtr->getType()), 0);
396
}
397
};
398
} // namespace
399
400
// Try to collect variable and constant offsets for \p GEP, partly traversing
401
// nested GEPs. Returns an OffsetResult with nullptr as BasePtr of collecting
402
// the offset fails.
403
static OffsetResult collectOffsets(GEPOperator &GEP, const DataLayout &DL) {
404
OffsetResult Result(GEP, DL);
405
unsigned BitWidth = Result.ConstantOffset.getBitWidth();
406
if (!GEP.collectOffset(DL, BitWidth, Result.VariableOffsets,
407
Result.ConstantOffset))
408
return {};
409
410
// If we have a nested GEP, check if we can combine the constant offset of the
411
// inner GEP with the outer GEP.
412
if (auto *InnerGEP = dyn_cast<GetElementPtrInst>(Result.BasePtr)) {
413
MapVector<Value *, APInt> VariableOffsets2;
414
APInt ConstantOffset2(BitWidth, 0);
415
bool CanCollectInner = InnerGEP->collectOffset(
416
DL, BitWidth, VariableOffsets2, ConstantOffset2);
417
// TODO: Support cases with more than 1 variable offset.
418
if (!CanCollectInner || Result.VariableOffsets.size() > 1 ||
419
VariableOffsets2.size() > 1 ||
420
(Result.VariableOffsets.size() >= 1 && VariableOffsets2.size() >= 1)) {
421
// More than 1 variable index, use outer result.
422
return Result;
423
}
424
Result.BasePtr = InnerGEP->getPointerOperand();
425
Result.ConstantOffset += ConstantOffset2;
426
if (Result.VariableOffsets.size() == 0 && VariableOffsets2.size() == 1)
427
Result.VariableOffsets = VariableOffsets2;
428
Result.AllInbounds &= InnerGEP->isInBounds();
429
}
430
return Result;
431
}
432
433
static Decomposition decompose(Value *V,
434
SmallVectorImpl<ConditionTy> &Preconditions,
435
bool IsSigned, const DataLayout &DL);
436
437
static bool canUseSExt(ConstantInt *CI) {
438
const APInt &Val = CI->getValue();
439
return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
440
}
441
442
static Decomposition decomposeGEP(GEPOperator &GEP,
443
SmallVectorImpl<ConditionTy> &Preconditions,
444
bool IsSigned, const DataLayout &DL) {
445
// Do not reason about pointers where the index size is larger than 64 bits,
446
// as the coefficients used to encode constraints are 64 bit integers.
447
if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64)
448
return &GEP;
449
450
assert(!IsSigned && "The logic below only supports decomposition for "
451
"unsigned predicates at the moment.");
452
const auto &[BasePtr, ConstantOffset, VariableOffsets, AllInbounds] =
453
collectOffsets(GEP, DL);
454
if (!BasePtr || !AllInbounds)
455
return &GEP;
456
457
Decomposition Result(ConstantOffset.getSExtValue(), DecompEntry(1, BasePtr));
458
for (auto [Index, Scale] : VariableOffsets) {
459
auto IdxResult = decompose(Index, Preconditions, IsSigned, DL);
460
IdxResult.mul(Scale.getSExtValue());
461
Result.add(IdxResult);
462
463
// If Op0 is signed non-negative, the GEP is increasing monotonically and
464
// can be de-composed.
465
if (!isKnownNonNegative(Index, DL))
466
Preconditions.emplace_back(CmpInst::ICMP_SGE, Index,
467
ConstantInt::get(Index->getType(), 0));
468
}
469
return Result;
470
}
471
472
// Decomposes \p V into a constant offset + list of pairs { Coefficient,
473
// Variable } where Coefficient * Variable. The sum of the constant offset and
474
// pairs equals \p V.
475
static Decomposition decompose(Value *V,
476
SmallVectorImpl<ConditionTy> &Preconditions,
477
bool IsSigned, const DataLayout &DL) {
478
479
auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B,
480
bool IsSignedB) {
481
auto ResA = decompose(A, Preconditions, IsSigned, DL);
482
auto ResB = decompose(B, Preconditions, IsSignedB, DL);
483
ResA.add(ResB);
484
return ResA;
485
};
486
487
Type *Ty = V->getType()->getScalarType();
488
if (Ty->isPointerTy() && !IsSigned) {
489
if (auto *GEP = dyn_cast<GEPOperator>(V))
490
return decomposeGEP(*GEP, Preconditions, IsSigned, DL);
491
if (isa<ConstantPointerNull>(V))
492
return int64_t(0);
493
494
return V;
495
}
496
497
// Don't handle integers > 64 bit. Our coefficients are 64-bit large, so
498
// coefficient add/mul may wrap, while the operation in the full bit width
499
// would not.
500
if (!Ty->isIntegerTy() || Ty->getIntegerBitWidth() > 64)
501
return V;
502
503
bool IsKnownNonNegative = false;
504
505
// Decompose \p V used with a signed predicate.
506
if (IsSigned) {
507
if (auto *CI = dyn_cast<ConstantInt>(V)) {
508
if (canUseSExt(CI))
509
return CI->getSExtValue();
510
}
511
Value *Op0;
512
Value *Op1;
513
514
if (match(V, m_SExt(m_Value(Op0))))
515
V = Op0;
516
else if (match(V, m_NNegZExt(m_Value(Op0)))) {
517
V = Op0;
518
IsKnownNonNegative = true;
519
}
520
521
if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1))))
522
return MergeResults(Op0, Op1, IsSigned);
523
524
ConstantInt *CI;
525
if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) {
526
auto Result = decompose(Op0, Preconditions, IsSigned, DL);
527
Result.mul(CI->getSExtValue());
528
return Result;
529
}
530
531
// (shl nsw x, shift) is (mul nsw x, (1<<shift)), with the exception of
532
// shift == bw-1.
533
if (match(V, m_NSWShl(m_Value(Op0), m_ConstantInt(CI)))) {
534
uint64_t Shift = CI->getValue().getLimitedValue();
535
if (Shift < Ty->getIntegerBitWidth() - 1) {
536
assert(Shift < 64 && "Would overflow");
537
auto Result = decompose(Op0, Preconditions, IsSigned, DL);
538
Result.mul(int64_t(1) << Shift);
539
return Result;
540
}
541
}
542
543
return {V, IsKnownNonNegative};
544
}
545
546
if (auto *CI = dyn_cast<ConstantInt>(V)) {
547
if (CI->uge(MaxConstraintValue))
548
return V;
549
return int64_t(CI->getZExtValue());
550
}
551
552
Value *Op0;
553
if (match(V, m_ZExt(m_Value(Op0)))) {
554
IsKnownNonNegative = true;
555
V = Op0;
556
}
557
558
if (match(V, m_SExt(m_Value(Op0)))) {
559
V = Op0;
560
Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
561
ConstantInt::get(Op0->getType(), 0));
562
}
563
564
Value *Op1;
565
ConstantInt *CI;
566
if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
567
return MergeResults(Op0, Op1, IsSigned);
568
}
569
if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) {
570
if (!isKnownNonNegative(Op0, DL))
571
Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
572
ConstantInt::get(Op0->getType(), 0));
573
if (!isKnownNonNegative(Op1, DL))
574
Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1,
575
ConstantInt::get(Op1->getType(), 0));
576
577
return MergeResults(Op0, Op1, IsSigned);
578
}
579
580
if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
581
canUseSExt(CI)) {
582
Preconditions.emplace_back(
583
CmpInst::ICMP_UGE, Op0,
584
ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
585
return MergeResults(Op0, CI, true);
586
}
587
588
// Decompose or as an add if there are no common bits between the operands.
589
if (match(V, m_DisjointOr(m_Value(Op0), m_ConstantInt(CI))))
590
return MergeResults(Op0, CI, IsSigned);
591
592
if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) {
593
if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64)
594
return {V, IsKnownNonNegative};
595
auto Result = decompose(Op1, Preconditions, IsSigned, DL);
596
Result.mul(int64_t{1} << CI->getSExtValue());
597
return Result;
598
}
599
600
if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) &&
601
(!CI->isNegative())) {
602
auto Result = decompose(Op1, Preconditions, IsSigned, DL);
603
Result.mul(CI->getSExtValue());
604
return Result;
605
}
606
607
if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) {
608
auto ResA = decompose(Op0, Preconditions, IsSigned, DL);
609
auto ResB = decompose(Op1, Preconditions, IsSigned, DL);
610
ResA.sub(ResB);
611
return ResA;
612
}
613
614
return {V, IsKnownNonNegative};
615
}
616
617
ConstraintTy
618
ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
619
SmallVectorImpl<Value *> &NewVariables) const {
620
assert(NewVariables.empty() && "NewVariables must be empty when passed in");
621
bool IsEq = false;
622
bool IsNe = false;
623
624
// Try to convert Pred to one of ULE/SLT/SLE/SLT.
625
switch (Pred) {
626
case CmpInst::ICMP_UGT:
627
case CmpInst::ICMP_UGE:
628
case CmpInst::ICMP_SGT:
629
case CmpInst::ICMP_SGE: {
630
Pred = CmpInst::getSwappedPredicate(Pred);
631
std::swap(Op0, Op1);
632
break;
633
}
634
case CmpInst::ICMP_EQ:
635
if (match(Op1, m_Zero())) {
636
Pred = CmpInst::ICMP_ULE;
637
} else {
638
IsEq = true;
639
Pred = CmpInst::ICMP_ULE;
640
}
641
break;
642
case CmpInst::ICMP_NE:
643
if (match(Op1, m_Zero())) {
644
Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
645
std::swap(Op0, Op1);
646
} else {
647
IsNe = true;
648
Pred = CmpInst::ICMP_ULE;
649
}
650
break;
651
default:
652
break;
653
}
654
655
if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
656
Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
657
return {};
658
659
SmallVector<ConditionTy, 4> Preconditions;
660
bool IsSigned = CmpInst::isSigned(Pred);
661
auto &Value2Index = getValue2Index(IsSigned);
662
auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
663
Preconditions, IsSigned, DL);
664
auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
665
Preconditions, IsSigned, DL);
666
int64_t Offset1 = ADec.Offset;
667
int64_t Offset2 = BDec.Offset;
668
Offset1 *= -1;
669
670
auto &VariablesA = ADec.Vars;
671
auto &VariablesB = BDec.Vars;
672
673
// First try to look up \p V in Value2Index and NewVariables. Otherwise add a
674
// new entry to NewVariables.
675
SmallDenseMap<Value *, unsigned> NewIndexMap;
676
auto GetOrAddIndex = [&Value2Index, &NewVariables,
677
&NewIndexMap](Value *V) -> unsigned {
678
auto V2I = Value2Index.find(V);
679
if (V2I != Value2Index.end())
680
return V2I->second;
681
auto Insert =
682
NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1});
683
if (Insert.second)
684
NewVariables.push_back(V);
685
return Insert.first->second;
686
};
687
688
// Make sure all variables have entries in Value2Index or NewVariables.
689
for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
690
GetOrAddIndex(KV.Variable);
691
692
// Build result constraint, by first adding all coefficients from A and then
693
// subtracting all coefficients from B.
694
ConstraintTy Res(
695
SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0),
696
IsSigned, IsEq, IsNe);
697
// Collect variables that are known to be positive in all uses in the
698
// constraint.
699
SmallDenseMap<Value *, bool> KnownNonNegativeVariables;
700
auto &R = Res.Coefficients;
701
for (const auto &KV : VariablesA) {
702
R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
703
auto I =
704
KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
705
I.first->second &= KV.IsKnownNonNegative;
706
}
707
708
for (const auto &KV : VariablesB) {
709
if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient,
710
R[GetOrAddIndex(KV.Variable)]))
711
return {};
712
auto I =
713
KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
714
I.first->second &= KV.IsKnownNonNegative;
715
}
716
717
int64_t OffsetSum;
718
if (AddOverflow(Offset1, Offset2, OffsetSum))
719
return {};
720
if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
721
if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
722
return {};
723
R[0] = OffsetSum;
724
Res.Preconditions = std::move(Preconditions);
725
726
// Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new
727
// variables.
728
while (!NewVariables.empty()) {
729
int64_t Last = R.back();
730
if (Last != 0)
731
break;
732
R.pop_back();
733
Value *RemovedV = NewVariables.pop_back_val();
734
NewIndexMap.erase(RemovedV);
735
}
736
737
// Add extra constraints for variables that are known positive.
738
for (auto &KV : KnownNonNegativeVariables) {
739
if (!KV.second ||
740
(!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first)))
741
continue;
742
SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0);
743
C[GetOrAddIndex(KV.first)] = -1;
744
Res.ExtraInfo.push_back(C);
745
}
746
return Res;
747
}
748
749
ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred,
750
Value *Op0,
751
Value *Op1) const {
752
Constant *NullC = Constant::getNullValue(Op0->getType());
753
// Handle trivially true compares directly to avoid adding V UGE 0 constraints
754
// for all variables in the unsigned system.
755
if ((Pred == CmpInst::ICMP_ULE && Op0 == NullC) ||
756
(Pred == CmpInst::ICMP_UGE && Op1 == NullC)) {
757
auto &Value2Index = getValue2Index(false);
758
// Return constraint that's trivially true.
759
return ConstraintTy(SmallVector<int64_t, 8>(Value2Index.size(), 0), false,
760
false, false);
761
}
762
763
// If both operands are known to be non-negative, change signed predicates to
764
// unsigned ones. This increases the reasoning effectiveness in combination
765
// with the signed <-> unsigned transfer logic.
766
if (CmpInst::isSigned(Pred) &&
767
isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) &&
768
isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
769
Pred = CmpInst::getUnsignedPredicate(Pred);
770
771
SmallVector<Value *> NewVariables;
772
ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables);
773
if (!NewVariables.empty())
774
return {};
775
return R;
776
}
777
778
bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
779
return Coefficients.size() > 0 &&
780
all_of(Preconditions, [&Info](const ConditionTy &C) {
781
return Info.doesHold(C.Pred, C.Op0, C.Op1);
782
});
783
}
784
785
std::optional<bool>
786
ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const {
787
bool IsConditionImplied = CS.isConditionImplied(Coefficients);
788
789
if (IsEq || IsNe) {
790
auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients);
791
bool IsNegatedOrEqualImplied =
792
!NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual);
793
794
// In order to check that `%a == %b` is true (equality), both conditions `%a
795
// >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq`
796
// is true), we return true if they both hold, false in the other cases.
797
if (IsConditionImplied && IsNegatedOrEqualImplied)
798
return IsEq;
799
800
auto Negated = ConstraintSystem::negate(Coefficients);
801
bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
802
803
auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients);
804
bool IsStrictLessThanImplied =
805
!StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan);
806
807
// In order to check that `%a != %b` is true (non-equality), either
808
// condition `%a > %b` or `%a < %b` must hold true. When checking for
809
// non-equality (`IsNe` is true), we return true if one of the two holds,
810
// false in the other cases.
811
if (IsNegatedImplied || IsStrictLessThanImplied)
812
return IsNe;
813
814
return std::nullopt;
815
}
816
817
if (IsConditionImplied)
818
return true;
819
820
auto Negated = ConstraintSystem::negate(Coefficients);
821
auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
822
if (IsNegatedImplied)
823
return false;
824
825
// Neither the condition nor its negated holds, did not prove anything.
826
return std::nullopt;
827
}
828
829
bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
830
Value *B) const {
831
auto R = getConstraintForSolving(Pred, A, B);
832
return R.isValid(*this) &&
833
getCS(R.IsSigned).isConditionImplied(R.Coefficients);
834
}
835
836
void ConstraintInfo::transferToOtherSystem(
837
CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
838
unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
839
auto IsKnownNonNegative = [this](Value *V) {
840
return doesHold(CmpInst::ICMP_SGE, V, ConstantInt::get(V->getType(), 0)) ||
841
isKnownNonNegative(V, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1);
842
};
843
// Check if we can combine facts from the signed and unsigned systems to
844
// derive additional facts.
845
if (!A->getType()->isIntegerTy())
846
return;
847
// FIXME: This currently depends on the order we add facts. Ideally we
848
// would first add all known facts and only then try to add additional
849
// facts.
850
switch (Pred) {
851
default:
852
break;
853
case CmpInst::ICMP_ULT:
854
case CmpInst::ICMP_ULE:
855
// If B is a signed positive constant, then A >=s 0 and A <s (or <=s) B.
856
if (IsKnownNonNegative(B)) {
857
addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn,
858
NumOut, DFSInStack);
859
addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut,
860
DFSInStack);
861
}
862
break;
863
case CmpInst::ICMP_UGE:
864
case CmpInst::ICMP_UGT:
865
// If A is a signed positive constant, then B >=s 0 and A >s (or >=s) B.
866
if (IsKnownNonNegative(A)) {
867
addFact(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0), NumIn,
868
NumOut, DFSInStack);
869
addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut,
870
DFSInStack);
871
}
872
break;
873
case CmpInst::ICMP_SLT:
874
if (IsKnownNonNegative(A))
875
addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack);
876
break;
877
case CmpInst::ICMP_SGT: {
878
if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
879
addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn,
880
NumOut, DFSInStack);
881
if (IsKnownNonNegative(B))
882
addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack);
883
884
break;
885
}
886
case CmpInst::ICMP_SGE:
887
if (IsKnownNonNegative(B))
888
addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack);
889
break;
890
}
891
}
892
893
#ifndef NDEBUG
894
895
static void dumpConstraint(ArrayRef<int64_t> C,
896
const DenseMap<Value *, unsigned> &Value2Index) {
897
ConstraintSystem CS(Value2Index);
898
CS.addVariableRowFill(C);
899
CS.dump();
900
}
901
#endif
902
903
void State::addInfoForInductions(BasicBlock &BB) {
904
auto *L = LI.getLoopFor(&BB);
905
if (!L || L->getHeader() != &BB)
906
return;
907
908
Value *A;
909
Value *B;
910
CmpInst::Predicate Pred;
911
912
if (!match(BB.getTerminator(),
913
m_Br(m_ICmp(Pred, m_Value(A), m_Value(B)), m_Value(), m_Value())))
914
return;
915
PHINode *PN = dyn_cast<PHINode>(A);
916
if (!PN) {
917
Pred = CmpInst::getSwappedPredicate(Pred);
918
std::swap(A, B);
919
PN = dyn_cast<PHINode>(A);
920
}
921
922
if (!PN || PN->getParent() != &BB || PN->getNumIncomingValues() != 2 ||
923
!SE.isSCEVable(PN->getType()))
924
return;
925
926
BasicBlock *InLoopSucc = nullptr;
927
if (Pred == CmpInst::ICMP_NE)
928
InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(0);
929
else if (Pred == CmpInst::ICMP_EQ)
930
InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(1);
931
else
932
return;
933
934
if (!L->contains(InLoopSucc) || !L->isLoopExiting(&BB) || InLoopSucc == &BB)
935
return;
936
937
auto *AR = dyn_cast_or_null<SCEVAddRecExpr>(SE.getSCEV(PN));
938
BasicBlock *LoopPred = L->getLoopPredecessor();
939
if (!AR || AR->getLoop() != L || !LoopPred)
940
return;
941
942
const SCEV *StartSCEV = AR->getStart();
943
Value *StartValue = nullptr;
944
if (auto *C = dyn_cast<SCEVConstant>(StartSCEV)) {
945
StartValue = C->getValue();
946
} else {
947
StartValue = PN->getIncomingValueForBlock(LoopPred);
948
assert(SE.getSCEV(StartValue) == StartSCEV && "inconsistent start value");
949
}
950
951
DomTreeNode *DTN = DT.getNode(InLoopSucc);
952
auto IncUnsigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_UGT);
953
auto IncSigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_SGT);
954
bool MonotonicallyIncreasingUnsigned =
955
IncUnsigned && *IncUnsigned == ScalarEvolution::MonotonicallyIncreasing;
956
bool MonotonicallyIncreasingSigned =
957
IncSigned && *IncSigned == ScalarEvolution::MonotonicallyIncreasing;
958
// If SCEV guarantees that AR does not wrap, PN >= StartValue can be added
959
// unconditionally.
960
if (MonotonicallyIncreasingUnsigned)
961
WorkList.push_back(
962
FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_UGE, PN, StartValue));
963
if (MonotonicallyIncreasingSigned)
964
WorkList.push_back(
965
FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_SGE, PN, StartValue));
966
967
APInt StepOffset;
968
if (auto *C = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
969
StepOffset = C->getAPInt();
970
else
971
return;
972
973
// Make sure the bound B is loop-invariant.
974
if (!L->isLoopInvariant(B))
975
return;
976
977
// Handle negative steps.
978
if (StepOffset.isNegative()) {
979
// TODO: Extend to allow steps > -1.
980
if (!(-StepOffset).isOne())
981
return;
982
983
// AR may wrap.
984
// Add StartValue >= PN conditional on B <= StartValue which guarantees that
985
// the loop exits before wrapping with a step of -1.
986
WorkList.push_back(FactOrCheck::getConditionFact(
987
DTN, CmpInst::ICMP_UGE, StartValue, PN,
988
ConditionTy(CmpInst::ICMP_ULE, B, StartValue)));
989
WorkList.push_back(FactOrCheck::getConditionFact(
990
DTN, CmpInst::ICMP_SGE, StartValue, PN,
991
ConditionTy(CmpInst::ICMP_SLE, B, StartValue)));
992
// Add PN > B conditional on B <= StartValue which guarantees that the loop
993
// exits when reaching B with a step of -1.
994
WorkList.push_back(FactOrCheck::getConditionFact(
995
DTN, CmpInst::ICMP_UGT, PN, B,
996
ConditionTy(CmpInst::ICMP_ULE, B, StartValue)));
997
WorkList.push_back(FactOrCheck::getConditionFact(
998
DTN, CmpInst::ICMP_SGT, PN, B,
999
ConditionTy(CmpInst::ICMP_SLE, B, StartValue)));
1000
return;
1001
}
1002
1003
// Make sure AR either steps by 1 or that the value we compare against is a
1004
// GEP based on the same start value and all offsets are a multiple of the
1005
// step size, to guarantee that the induction will reach the value.
1006
if (StepOffset.isZero() || StepOffset.isNegative())
1007
return;
1008
1009
if (!StepOffset.isOne()) {
1010
// Check whether B-Start is known to be a multiple of StepOffset.
1011
const SCEV *BMinusStart = SE.getMinusSCEV(SE.getSCEV(B), StartSCEV);
1012
if (isa<SCEVCouldNotCompute>(BMinusStart) ||
1013
!SE.getConstantMultiple(BMinusStart).urem(StepOffset).isZero())
1014
return;
1015
}
1016
1017
// AR may wrap. Add PN >= StartValue conditional on StartValue <= B which
1018
// guarantees that the loop exits before wrapping in combination with the
1019
// restrictions on B and the step above.
1020
if (!MonotonicallyIncreasingUnsigned)
1021
WorkList.push_back(FactOrCheck::getConditionFact(
1022
DTN, CmpInst::ICMP_UGE, PN, StartValue,
1023
ConditionTy(CmpInst::ICMP_ULE, StartValue, B)));
1024
if (!MonotonicallyIncreasingSigned)
1025
WorkList.push_back(FactOrCheck::getConditionFact(
1026
DTN, CmpInst::ICMP_SGE, PN, StartValue,
1027
ConditionTy(CmpInst::ICMP_SLE, StartValue, B)));
1028
1029
WorkList.push_back(FactOrCheck::getConditionFact(
1030
DTN, CmpInst::ICMP_ULT, PN, B,
1031
ConditionTy(CmpInst::ICMP_ULE, StartValue, B)));
1032
WorkList.push_back(FactOrCheck::getConditionFact(
1033
DTN, CmpInst::ICMP_SLT, PN, B,
1034
ConditionTy(CmpInst::ICMP_SLE, StartValue, B)));
1035
1036
// Try to add condition from header to the dedicated exit blocks. When exiting
1037
// either with EQ or NE in the header, we know that the induction value must
1038
// be u<= B, as other exits may only exit earlier.
1039
assert(!StepOffset.isNegative() && "induction must be increasing");
1040
assert((Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) &&
1041
"unsupported predicate");
1042
ConditionTy Precond = {CmpInst::ICMP_ULE, StartValue, B};
1043
SmallVector<BasicBlock *> ExitBBs;
1044
L->getExitBlocks(ExitBBs);
1045
for (BasicBlock *EB : ExitBBs) {
1046
// Bail out on non-dedicated exits.
1047
if (DT.dominates(&BB, EB)) {
1048
WorkList.emplace_back(FactOrCheck::getConditionFact(
1049
DT.getNode(EB), CmpInst::ICMP_ULE, A, B, Precond));
1050
}
1051
}
1052
}
1053
1054
void State::addInfoFor(BasicBlock &BB) {
1055
addInfoForInductions(BB);
1056
1057
// True as long as long as the current instruction is guaranteed to execute.
1058
bool GuaranteedToExecute = true;
1059
// Queue conditions and assumes.
1060
for (Instruction &I : BB) {
1061
if (auto Cmp = dyn_cast<ICmpInst>(&I)) {
1062
for (Use &U : Cmp->uses()) {
1063
auto *UserI = getContextInstForUse(U);
1064
auto *DTN = DT.getNode(UserI->getParent());
1065
if (!DTN)
1066
continue;
1067
WorkList.push_back(FactOrCheck::getCheck(DTN, &U));
1068
}
1069
continue;
1070
}
1071
1072
auto *II = dyn_cast<IntrinsicInst>(&I);
1073
Intrinsic::ID ID = II ? II->getIntrinsicID() : Intrinsic::not_intrinsic;
1074
switch (ID) {
1075
case Intrinsic::assume: {
1076
Value *A, *B;
1077
CmpInst::Predicate Pred;
1078
if (!match(I.getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B))))
1079
break;
1080
if (GuaranteedToExecute) {
1081
// The assume is guaranteed to execute when BB is entered, hence Cond
1082
// holds on entry to BB.
1083
WorkList.emplace_back(FactOrCheck::getConditionFact(
1084
DT.getNode(I.getParent()), Pred, A, B));
1085
} else {
1086
WorkList.emplace_back(
1087
FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I));
1088
}
1089
break;
1090
}
1091
// Enqueue ssub_with_overflow for simplification.
1092
case Intrinsic::ssub_with_overflow:
1093
case Intrinsic::ucmp:
1094
case Intrinsic::scmp:
1095
WorkList.push_back(
1096
FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I)));
1097
break;
1098
// Enqueue the intrinsics to add extra info.
1099
case Intrinsic::umin:
1100
case Intrinsic::umax:
1101
case Intrinsic::smin:
1102
case Intrinsic::smax:
1103
// TODO: handle llvm.abs as well
1104
WorkList.push_back(
1105
FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I)));
1106
// TODO: Check if it is possible to instead only added the min/max facts
1107
// when simplifying uses of the min/max intrinsics.
1108
if (!isGuaranteedNotToBePoison(&I))
1109
break;
1110
[[fallthrough]];
1111
case Intrinsic::abs:
1112
WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I));
1113
break;
1114
}
1115
1116
GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
1117
}
1118
1119
if (auto *Switch = dyn_cast<SwitchInst>(BB.getTerminator())) {
1120
for (auto &Case : Switch->cases()) {
1121
BasicBlock *Succ = Case.getCaseSuccessor();
1122
Value *V = Case.getCaseValue();
1123
if (!canAddSuccessor(BB, Succ))
1124
continue;
1125
WorkList.emplace_back(FactOrCheck::getConditionFact(
1126
DT.getNode(Succ), CmpInst::ICMP_EQ, Switch->getCondition(), V));
1127
}
1128
return;
1129
}
1130
1131
auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
1132
if (!Br || !Br->isConditional())
1133
return;
1134
1135
Value *Cond = Br->getCondition();
1136
1137
// If the condition is a chain of ORs/AND and the successor only has the
1138
// current block as predecessor, queue conditions for the successor.
1139
Value *Op0, *Op1;
1140
if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
1141
match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
1142
bool IsOr = match(Cond, m_LogicalOr());
1143
bool IsAnd = match(Cond, m_LogicalAnd());
1144
// If there's a select that matches both AND and OR, we need to commit to
1145
// one of the options. Arbitrarily pick OR.
1146
if (IsOr && IsAnd)
1147
IsAnd = false;
1148
1149
BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0);
1150
if (canAddSuccessor(BB, Successor)) {
1151
SmallVector<Value *> CondWorkList;
1152
SmallPtrSet<Value *, 8> SeenCond;
1153
auto QueueValue = [&CondWorkList, &SeenCond](Value *V) {
1154
if (SeenCond.insert(V).second)
1155
CondWorkList.push_back(V);
1156
};
1157
QueueValue(Op1);
1158
QueueValue(Op0);
1159
while (!CondWorkList.empty()) {
1160
Value *Cur = CondWorkList.pop_back_val();
1161
if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) {
1162
WorkList.emplace_back(FactOrCheck::getConditionFact(
1163
DT.getNode(Successor),
1164
IsOr ? CmpInst::getInversePredicate(Cmp->getPredicate())
1165
: Cmp->getPredicate(),
1166
Cmp->getOperand(0), Cmp->getOperand(1)));
1167
continue;
1168
}
1169
if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
1170
QueueValue(Op1);
1171
QueueValue(Op0);
1172
continue;
1173
}
1174
if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
1175
QueueValue(Op1);
1176
QueueValue(Op0);
1177
continue;
1178
}
1179
}
1180
}
1181
return;
1182
}
1183
1184
auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
1185
if (!CmpI)
1186
return;
1187
if (canAddSuccessor(BB, Br->getSuccessor(0)))
1188
WorkList.emplace_back(FactOrCheck::getConditionFact(
1189
DT.getNode(Br->getSuccessor(0)), CmpI->getPredicate(),
1190
CmpI->getOperand(0), CmpI->getOperand(1)));
1191
if (canAddSuccessor(BB, Br->getSuccessor(1)))
1192
WorkList.emplace_back(FactOrCheck::getConditionFact(
1193
DT.getNode(Br->getSuccessor(1)),
1194
CmpInst::getInversePredicate(CmpI->getPredicate()), CmpI->getOperand(0),
1195
CmpI->getOperand(1)));
1196
}
1197
1198
#ifndef NDEBUG
1199
static void dumpUnpackedICmp(raw_ostream &OS, ICmpInst::Predicate Pred,
1200
Value *LHS, Value *RHS) {
1201
OS << "icmp " << Pred << ' ';
1202
LHS->printAsOperand(OS, /*PrintType=*/true);
1203
OS << ", ";
1204
RHS->printAsOperand(OS, /*PrintType=*/false);
1205
}
1206
#endif
1207
1208
namespace {
1209
/// Helper to keep track of a condition and if it should be treated as negated
1210
/// for reproducer construction.
1211
/// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a
1212
/// placeholder to keep the ReproducerCondStack in sync with DFSInStack.
1213
struct ReproducerEntry {
1214
ICmpInst::Predicate Pred;
1215
Value *LHS;
1216
Value *RHS;
1217
1218
ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS)
1219
: Pred(Pred), LHS(LHS), RHS(RHS) {}
1220
};
1221
} // namespace
1222
1223
/// Helper function to generate a reproducer function for simplifying \p Cond.
1224
/// The reproducer function contains a series of @llvm.assume calls, one for
1225
/// each condition in \p Stack. For each condition, the operand instruction are
1226
/// cloned until we reach operands that have an entry in \p Value2Index. Those
1227
/// will then be added as function arguments. \p DT is used to order cloned
1228
/// instructions. The reproducer function will get added to \p M, if it is
1229
/// non-null. Otherwise no reproducer function is generated.
1230
static void generateReproducer(CmpInst *Cond, Module *M,
1231
ArrayRef<ReproducerEntry> Stack,
1232
ConstraintInfo &Info, DominatorTree &DT) {
1233
if (!M)
1234
return;
1235
1236
LLVMContext &Ctx = Cond->getContext();
1237
1238
LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n");
1239
1240
ValueToValueMapTy Old2New;
1241
SmallVector<Value *> Args;
1242
SmallPtrSet<Value *, 8> Seen;
1243
// Traverse Cond and its operands recursively until we reach a value that's in
1244
// Value2Index or not an instruction, or not a operation that
1245
// ConstraintElimination can decompose. Such values will be considered as
1246
// external inputs to the reproducer, they are collected and added as function
1247
// arguments later.
1248
auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) {
1249
auto &Value2Index = Info.getValue2Index(IsSigned);
1250
SmallVector<Value *, 4> WorkList(Ops);
1251
while (!WorkList.empty()) {
1252
Value *V = WorkList.pop_back_val();
1253
if (!Seen.insert(V).second)
1254
continue;
1255
if (Old2New.find(V) != Old2New.end())
1256
continue;
1257
if (isa<Constant>(V))
1258
continue;
1259
1260
auto *I = dyn_cast<Instruction>(V);
1261
if (Value2Index.contains(V) || !I ||
1262
!isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) {
1263
Old2New[V] = V;
1264
Args.push_back(V);
1265
LLVM_DEBUG(dbgs() << " found external input " << *V << "\n");
1266
} else {
1267
append_range(WorkList, I->operands());
1268
}
1269
}
1270
};
1271
1272
for (auto &Entry : Stack)
1273
if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE)
1274
CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred));
1275
CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate()));
1276
1277
SmallVector<Type *> ParamTys;
1278
for (auto *P : Args)
1279
ParamTys.push_back(P->getType());
1280
1281
FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys,
1282
/*isVarArg=*/false);
1283
Function *F = Function::Create(FTy, Function::ExternalLinkage,
1284
Cond->getModule()->getName() +
1285
Cond->getFunction()->getName() + "repro",
1286
M);
1287
// Add arguments to the reproducer function for each external value collected.
1288
for (unsigned I = 0; I < Args.size(); ++I) {
1289
F->getArg(I)->setName(Args[I]->getName());
1290
Old2New[Args[I]] = F->getArg(I);
1291
}
1292
1293
BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F);
1294
IRBuilder<> Builder(Entry);
1295
Builder.CreateRet(Builder.getTrue());
1296
Builder.SetInsertPoint(Entry->getTerminator());
1297
1298
// Clone instructions in \p Ops and their operands recursively until reaching
1299
// an value in Value2Index (external input to the reproducer). Update Old2New
1300
// mapping for the original and cloned instructions. Sort instructions to
1301
// clone by dominance, then insert the cloned instructions in the function.
1302
auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) {
1303
SmallVector<Value *, 4> WorkList(Ops);
1304
SmallVector<Instruction *> ToClone;
1305
auto &Value2Index = Info.getValue2Index(IsSigned);
1306
while (!WorkList.empty()) {
1307
Value *V = WorkList.pop_back_val();
1308
if (Old2New.find(V) != Old2New.end())
1309
continue;
1310
1311
auto *I = dyn_cast<Instruction>(V);
1312
if (!Value2Index.contains(V) && I) {
1313
Old2New[V] = nullptr;
1314
ToClone.push_back(I);
1315
append_range(WorkList, I->operands());
1316
}
1317
}
1318
1319
sort(ToClone,
1320
[&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); });
1321
for (Instruction *I : ToClone) {
1322
Instruction *Cloned = I->clone();
1323
Old2New[I] = Cloned;
1324
Old2New[I]->setName(I->getName());
1325
Cloned->insertBefore(&*Builder.GetInsertPoint());
1326
Cloned->dropUnknownNonDebugMetadata();
1327
Cloned->setDebugLoc({});
1328
}
1329
};
1330
1331
// Materialize the assumptions for the reproducer using the entries in Stack.
1332
// That is, first clone the operands of the condition recursively until we
1333
// reach an external input to the reproducer and add them to the reproducer
1334
// function. Then add an ICmp for the condition (with the inverse predicate if
1335
// the entry is negated) and an assert using the ICmp.
1336
for (auto &Entry : Stack) {
1337
if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE)
1338
continue;
1339
1340
LLVM_DEBUG(dbgs() << " Materializing assumption ";
1341
dumpUnpackedICmp(dbgs(), Entry.Pred, Entry.LHS, Entry.RHS);
1342
dbgs() << "\n");
1343
CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred));
1344
1345
auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS);
1346
Builder.CreateAssumption(Cmp);
1347
}
1348
1349
// Finally, clone the condition to reproduce and remap instruction operands in
1350
// the reproducer using Old2New.
1351
CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate()));
1352
Entry->getTerminator()->setOperand(0, Cond);
1353
remapInstructionsInBlocks({Entry}, Old2New);
1354
1355
assert(!verifyFunction(*F, &dbgs()));
1356
}
1357
1358
static std::optional<bool> checkCondition(CmpInst::Predicate Pred, Value *A,
1359
Value *B, Instruction *CheckInst,
1360
ConstraintInfo &Info) {
1361
LLVM_DEBUG(dbgs() << "Checking " << *CheckInst << "\n");
1362
1363
auto R = Info.getConstraintForSolving(Pred, A, B);
1364
if (R.empty() || !R.isValid(Info)){
1365
LLVM_DEBUG(dbgs() << " failed to decompose condition\n");
1366
return std::nullopt;
1367
}
1368
1369
auto &CSToUse = Info.getCS(R.IsSigned);
1370
1371
// If there was extra information collected during decomposition, apply
1372
// it now and remove it immediately once we are done with reasoning
1373
// about the constraint.
1374
for (auto &Row : R.ExtraInfo)
1375
CSToUse.addVariableRow(Row);
1376
auto InfoRestorer = make_scope_exit([&]() {
1377
for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
1378
CSToUse.popLastConstraint();
1379
});
1380
1381
if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) {
1382
if (!DebugCounter::shouldExecute(EliminatedCounter))
1383
return std::nullopt;
1384
1385
LLVM_DEBUG({
1386
dbgs() << "Condition ";
1387
dumpUnpackedICmp(
1388
dbgs(), *ImpliedCondition ? Pred : CmpInst::getInversePredicate(Pred),
1389
A, B);
1390
dbgs() << " implied by dominating constraints\n";
1391
CSToUse.dump();
1392
});
1393
return ImpliedCondition;
1394
}
1395
1396
return std::nullopt;
1397
}
1398
1399
static bool checkAndReplaceCondition(
1400
CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut,
1401
Instruction *ContextInst, Module *ReproducerModule,
1402
ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT,
1403
SmallVectorImpl<Instruction *> &ToRemove) {
1404
auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) {
1405
generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT);
1406
Constant *ConstantC = ConstantInt::getBool(
1407
CmpInst::makeCmpResultType(Cmp->getType()), IsTrue);
1408
Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut,
1409
ContextInst](Use &U) {
1410
auto *UserI = getContextInstForUse(U);
1411
auto *DTN = DT.getNode(UserI->getParent());
1412
if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut)
1413
return false;
1414
if (UserI->getParent() == ContextInst->getParent() &&
1415
UserI->comesBefore(ContextInst))
1416
return false;
1417
1418
// Conditions in an assume trivially simplify to true. Skip uses
1419
// in assume calls to not destroy the available information.
1420
auto *II = dyn_cast<IntrinsicInst>(U.getUser());
1421
return !II || II->getIntrinsicID() != Intrinsic::assume;
1422
});
1423
NumCondsRemoved++;
1424
if (Cmp->use_empty())
1425
ToRemove.push_back(Cmp);
1426
return true;
1427
};
1428
1429
if (auto ImpliedCondition =
1430
checkCondition(Cmp->getPredicate(), Cmp->getOperand(0),
1431
Cmp->getOperand(1), Cmp, Info))
1432
return ReplaceCmpWithConstant(Cmp, *ImpliedCondition);
1433
return false;
1434
}
1435
1436
static bool checkAndReplaceMinMax(MinMaxIntrinsic *MinMax, ConstraintInfo &Info,
1437
SmallVectorImpl<Instruction *> &ToRemove) {
1438
auto ReplaceMinMaxWithOperand = [&](MinMaxIntrinsic *MinMax, bool UseLHS) {
1439
// TODO: generate reproducer for min/max.
1440
MinMax->replaceAllUsesWith(MinMax->getOperand(UseLHS ? 0 : 1));
1441
ToRemove.push_back(MinMax);
1442
return true;
1443
};
1444
1445
ICmpInst::Predicate Pred =
1446
ICmpInst::getNonStrictPredicate(MinMax->getPredicate());
1447
if (auto ImpliedCondition = checkCondition(
1448
Pred, MinMax->getOperand(0), MinMax->getOperand(1), MinMax, Info))
1449
return ReplaceMinMaxWithOperand(MinMax, *ImpliedCondition);
1450
if (auto ImpliedCondition = checkCondition(
1451
Pred, MinMax->getOperand(1), MinMax->getOperand(0), MinMax, Info))
1452
return ReplaceMinMaxWithOperand(MinMax, !*ImpliedCondition);
1453
return false;
1454
}
1455
1456
static bool checkAndReplaceCmp(CmpIntrinsic *I, ConstraintInfo &Info,
1457
SmallVectorImpl<Instruction *> &ToRemove) {
1458
Value *LHS = I->getOperand(0);
1459
Value *RHS = I->getOperand(1);
1460
if (checkCondition(I->getGTPredicate(), LHS, RHS, I, Info).value_or(false)) {
1461
I->replaceAllUsesWith(ConstantInt::get(I->getType(), 1));
1462
ToRemove.push_back(I);
1463
return true;
1464
}
1465
if (checkCondition(I->getLTPredicate(), LHS, RHS, I, Info).value_or(false)) {
1466
I->replaceAllUsesWith(ConstantInt::getSigned(I->getType(), -1));
1467
ToRemove.push_back(I);
1468
return true;
1469
}
1470
if (checkCondition(ICmpInst::ICMP_EQ, LHS, RHS, I, Info).value_or(false)) {
1471
I->replaceAllUsesWith(ConstantInt::get(I->getType(), 0));
1472
ToRemove.push_back(I);
1473
return true;
1474
}
1475
return false;
1476
}
1477
1478
static void
1479
removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info,
1480
Module *ReproducerModule,
1481
SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
1482
SmallVectorImpl<StackEntry> &DFSInStack) {
1483
Info.popLastConstraint(E.IsSigned);
1484
// Remove variables in the system that went out of scope.
1485
auto &Mapping = Info.getValue2Index(E.IsSigned);
1486
for (Value *V : E.ValuesToRelease)
1487
Mapping.erase(V);
1488
Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
1489
DFSInStack.pop_back();
1490
if (ReproducerModule)
1491
ReproducerCondStack.pop_back();
1492
}
1493
1494
/// Check if either the first condition of an AND or OR is implied by the
1495
/// (negated in case of OR) second condition or vice versa.
1496
static bool checkOrAndOpImpliedByOther(
1497
FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule,
1498
SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
1499
SmallVectorImpl<StackEntry> &DFSInStack) {
1500
1501
CmpInst::Predicate Pred;
1502
Value *A, *B;
1503
Instruction *JoinOp = CB.getContextInst();
1504
CmpInst *CmpToCheck = cast<CmpInst>(CB.getInstructionToSimplify());
1505
unsigned OtherOpIdx = JoinOp->getOperand(0) == CmpToCheck ? 1 : 0;
1506
1507
// Don't try to simplify the first condition of a select by the second, as
1508
// this may make the select more poisonous than the original one.
1509
// TODO: check if the first operand may be poison.
1510
if (OtherOpIdx != 0 && isa<SelectInst>(JoinOp))
1511
return false;
1512
1513
if (!match(JoinOp->getOperand(OtherOpIdx),
1514
m_ICmp(Pred, m_Value(A), m_Value(B))))
1515
return false;
1516
1517
// For OR, check if the negated condition implies CmpToCheck.
1518
bool IsOr = match(JoinOp, m_LogicalOr());
1519
if (IsOr)
1520
Pred = CmpInst::getInversePredicate(Pred);
1521
1522
// Optimistically add fact from first condition.
1523
unsigned OldSize = DFSInStack.size();
1524
Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1525
if (OldSize == DFSInStack.size())
1526
return false;
1527
1528
bool Changed = false;
1529
// Check if the second condition can be simplified now.
1530
if (auto ImpliedCondition =
1531
checkCondition(CmpToCheck->getPredicate(), CmpToCheck->getOperand(0),
1532
CmpToCheck->getOperand(1), CmpToCheck, Info)) {
1533
if (IsOr && isa<SelectInst>(JoinOp)) {
1534
JoinOp->setOperand(
1535
OtherOpIdx == 0 ? 2 : 0,
1536
ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition));
1537
} else
1538
JoinOp->setOperand(
1539
1 - OtherOpIdx,
1540
ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition));
1541
1542
Changed = true;
1543
}
1544
1545
// Remove entries again.
1546
while (OldSize < DFSInStack.size()) {
1547
StackEntry E = DFSInStack.back();
1548
removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack,
1549
DFSInStack);
1550
}
1551
return Changed;
1552
}
1553
1554
void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
1555
unsigned NumIn, unsigned NumOut,
1556
SmallVectorImpl<StackEntry> &DFSInStack) {
1557
// If the constraint has a pre-condition, skip the constraint if it does not
1558
// hold.
1559
SmallVector<Value *> NewVariables;
1560
auto R = getConstraint(Pred, A, B, NewVariables);
1561
1562
// TODO: Support non-equality for facts as well.
1563
if (!R.isValid(*this) || R.isNe())
1564
return;
1565
1566
LLVM_DEBUG(dbgs() << "Adding '"; dumpUnpackedICmp(dbgs(), Pred, A, B);
1567
dbgs() << "'\n");
1568
bool Added = false;
1569
auto &CSToUse = getCS(R.IsSigned);
1570
if (R.Coefficients.empty())
1571
return;
1572
1573
Added |= CSToUse.addVariableRowFill(R.Coefficients);
1574
1575
// If R has been added to the system, add the new variables and queue it for
1576
// removal once it goes out-of-scope.
1577
if (Added) {
1578
SmallVector<Value *, 2> ValuesToRelease;
1579
auto &Value2Index = getValue2Index(R.IsSigned);
1580
for (Value *V : NewVariables) {
1581
Value2Index.insert({V, Value2Index.size() + 1});
1582
ValuesToRelease.push_back(V);
1583
}
1584
1585
LLVM_DEBUG({
1586
dbgs() << " constraint: ";
1587
dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned));
1588
dbgs() << "\n";
1589
});
1590
1591
DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1592
std::move(ValuesToRelease));
1593
1594
if (!R.IsSigned) {
1595
for (Value *V : NewVariables) {
1596
ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0),
1597
false, false, false);
1598
VarPos.Coefficients[Value2Index[V]] = -1;
1599
CSToUse.addVariableRow(VarPos.Coefficients);
1600
DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1601
SmallVector<Value *, 2>());
1602
}
1603
}
1604
1605
if (R.isEq()) {
1606
// Also add the inverted constraint for equality constraints.
1607
for (auto &Coeff : R.Coefficients)
1608
Coeff *= -1;
1609
CSToUse.addVariableRowFill(R.Coefficients);
1610
1611
DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1612
SmallVector<Value *, 2>());
1613
}
1614
}
1615
}
1616
1617
static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B,
1618
SmallVectorImpl<Instruction *> &ToRemove) {
1619
bool Changed = false;
1620
IRBuilder<> Builder(II->getParent(), II->getIterator());
1621
Value *Sub = nullptr;
1622
for (User *U : make_early_inc_range(II->users())) {
1623
if (match(U, m_ExtractValue<0>(m_Value()))) {
1624
if (!Sub)
1625
Sub = Builder.CreateSub(A, B);
1626
U->replaceAllUsesWith(Sub);
1627
Changed = true;
1628
} else if (match(U, m_ExtractValue<1>(m_Value()))) {
1629
U->replaceAllUsesWith(Builder.getFalse());
1630
Changed = true;
1631
} else
1632
continue;
1633
1634
if (U->use_empty()) {
1635
auto *I = cast<Instruction>(U);
1636
ToRemove.push_back(I);
1637
I->setOperand(0, PoisonValue::get(II->getType()));
1638
Changed = true;
1639
}
1640
}
1641
1642
if (II->use_empty()) {
1643
II->eraseFromParent();
1644
Changed = true;
1645
}
1646
return Changed;
1647
}
1648
1649
static bool
1650
tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
1651
SmallVectorImpl<Instruction *> &ToRemove) {
1652
auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
1653
ConstraintInfo &Info) {
1654
auto R = Info.getConstraintForSolving(Pred, A, B);
1655
if (R.size() < 2 || !R.isValid(Info))
1656
return false;
1657
1658
auto &CSToUse = Info.getCS(R.IsSigned);
1659
return CSToUse.isConditionImplied(R.Coefficients);
1660
};
1661
1662
bool Changed = false;
1663
if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
1664
// If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
1665
// can be simplified to a regular sub.
1666
Value *A = II->getArgOperand(0);
1667
Value *B = II->getArgOperand(1);
1668
if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
1669
!DoesConditionHold(CmpInst::ICMP_SGE, B,
1670
ConstantInt::get(A->getType(), 0), Info))
1671
return false;
1672
Changed = replaceSubOverflowUses(II, A, B, ToRemove);
1673
}
1674
return Changed;
1675
}
1676
1677
static bool eliminateConstraints(Function &F, DominatorTree &DT, LoopInfo &LI,
1678
ScalarEvolution &SE,
1679
OptimizationRemarkEmitter &ORE) {
1680
bool Changed = false;
1681
DT.updateDFSNumbers();
1682
SmallVector<Value *> FunctionArgs;
1683
for (Value &Arg : F.args())
1684
FunctionArgs.push_back(&Arg);
1685
ConstraintInfo Info(F.getDataLayout(), FunctionArgs);
1686
State S(DT, LI, SE);
1687
std::unique_ptr<Module> ReproducerModule(
1688
DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr);
1689
1690
// First, collect conditions implied by branches and blocks with their
1691
// Dominator DFS in and out numbers.
1692
for (BasicBlock &BB : F) {
1693
if (!DT.getNode(&BB))
1694
continue;
1695
S.addInfoFor(BB);
1696
}
1697
1698
// Next, sort worklist by dominance, so that dominating conditions to check
1699
// and facts come before conditions and facts dominated by them. If a
1700
// condition to check and a fact have the same numbers, conditional facts come
1701
// first. Assume facts and checks are ordered according to their relative
1702
// order in the containing basic block. Also make sure conditions with
1703
// constant operands come before conditions without constant operands. This
1704
// increases the effectiveness of the current signed <-> unsigned fact
1705
// transfer logic.
1706
stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) {
1707
auto HasNoConstOp = [](const FactOrCheck &B) {
1708
Value *V0 = B.isConditionFact() ? B.Cond.Op0 : B.Inst->getOperand(0);
1709
Value *V1 = B.isConditionFact() ? B.Cond.Op1 : B.Inst->getOperand(1);
1710
return !isa<ConstantInt>(V0) && !isa<ConstantInt>(V1);
1711
};
1712
// If both entries have the same In numbers, conditional facts come first.
1713
// Otherwise use the relative order in the basic block.
1714
if (A.NumIn == B.NumIn) {
1715
if (A.isConditionFact() && B.isConditionFact()) {
1716
bool NoConstOpA = HasNoConstOp(A);
1717
bool NoConstOpB = HasNoConstOp(B);
1718
return NoConstOpA < NoConstOpB;
1719
}
1720
if (A.isConditionFact())
1721
return true;
1722
if (B.isConditionFact())
1723
return false;
1724
auto *InstA = A.getContextInst();
1725
auto *InstB = B.getContextInst();
1726
return InstA->comesBefore(InstB);
1727
}
1728
return A.NumIn < B.NumIn;
1729
});
1730
1731
SmallVector<Instruction *> ToRemove;
1732
1733
// Finally, process ordered worklist and eliminate implied conditions.
1734
SmallVector<StackEntry, 16> DFSInStack;
1735
SmallVector<ReproducerEntry> ReproducerCondStack;
1736
for (FactOrCheck &CB : S.WorkList) {
1737
// First, pop entries from the stack that are out-of-scope for CB. Remove
1738
// the corresponding entry from the constraint system.
1739
while (!DFSInStack.empty()) {
1740
auto &E = DFSInStack.back();
1741
LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
1742
<< "\n");
1743
LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
1744
assert(E.NumIn <= CB.NumIn);
1745
if (CB.NumOut <= E.NumOut)
1746
break;
1747
LLVM_DEBUG({
1748
dbgs() << "Removing ";
1749
dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(),
1750
Info.getValue2Index(E.IsSigned));
1751
dbgs() << "\n";
1752
});
1753
removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack,
1754
DFSInStack);
1755
}
1756
1757
// For a block, check if any CmpInsts become known based on the current set
1758
// of constraints.
1759
if (CB.isCheck()) {
1760
Instruction *Inst = CB.getInstructionToSimplify();
1761
if (!Inst)
1762
continue;
1763
LLVM_DEBUG(dbgs() << "Processing condition to simplify: " << *Inst
1764
<< "\n");
1765
if (auto *II = dyn_cast<WithOverflowInst>(Inst)) {
1766
Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove);
1767
} else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) {
1768
bool Simplified = checkAndReplaceCondition(
1769
Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(),
1770
ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove);
1771
if (!Simplified &&
1772
match(CB.getContextInst(), m_LogicalOp(m_Value(), m_Value()))) {
1773
Simplified =
1774
checkOrAndOpImpliedByOther(CB, Info, ReproducerModule.get(),
1775
ReproducerCondStack, DFSInStack);
1776
}
1777
Changed |= Simplified;
1778
} else if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(Inst)) {
1779
Changed |= checkAndReplaceMinMax(MinMax, Info, ToRemove);
1780
} else if (auto *CmpIntr = dyn_cast<CmpIntrinsic>(Inst)) {
1781
Changed |= checkAndReplaceCmp(CmpIntr, Info, ToRemove);
1782
}
1783
continue;
1784
}
1785
1786
auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) {
1787
LLVM_DEBUG(dbgs() << "Processing fact to add to the system: ";
1788
dumpUnpackedICmp(dbgs(), Pred, A, B); dbgs() << "\n");
1789
if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) {
1790
LLVM_DEBUG(
1791
dbgs()
1792
<< "Skip adding constraint because system has too many rows.\n");
1793
return;
1794
}
1795
1796
Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1797
if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size())
1798
ReproducerCondStack.emplace_back(Pred, A, B);
1799
1800
Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1801
if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) {
1802
// Add dummy entries to ReproducerCondStack to keep it in sync with
1803
// DFSInStack.
1804
for (unsigned I = 0,
1805
E = (DFSInStack.size() - ReproducerCondStack.size());
1806
I < E; ++I) {
1807
ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE,
1808
nullptr, nullptr);
1809
}
1810
}
1811
};
1812
1813
ICmpInst::Predicate Pred;
1814
if (!CB.isConditionFact()) {
1815
Value *X;
1816
if (match(CB.Inst, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) {
1817
// If is_int_min_poison is true then we may assume llvm.abs >= 0.
1818
if (cast<ConstantInt>(CB.Inst->getOperand(1))->isOne())
1819
AddFact(CmpInst::ICMP_SGE, CB.Inst,
1820
ConstantInt::get(CB.Inst->getType(), 0));
1821
AddFact(CmpInst::ICMP_SGE, CB.Inst, X);
1822
continue;
1823
}
1824
1825
if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) {
1826
Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate());
1827
AddFact(Pred, MinMax, MinMax->getLHS());
1828
AddFact(Pred, MinMax, MinMax->getRHS());
1829
continue;
1830
}
1831
}
1832
1833
Value *A = nullptr, *B = nullptr;
1834
if (CB.isConditionFact()) {
1835
Pred = CB.Cond.Pred;
1836
A = CB.Cond.Op0;
1837
B = CB.Cond.Op1;
1838
if (CB.DoesHold.Pred != CmpInst::BAD_ICMP_PREDICATE &&
1839
!Info.doesHold(CB.DoesHold.Pred, CB.DoesHold.Op0, CB.DoesHold.Op1)) {
1840
LLVM_DEBUG({
1841
dbgs() << "Not adding fact ";
1842
dumpUnpackedICmp(dbgs(), Pred, A, B);
1843
dbgs() << " because precondition ";
1844
dumpUnpackedICmp(dbgs(), CB.DoesHold.Pred, CB.DoesHold.Op0,
1845
CB.DoesHold.Op1);
1846
dbgs() << " does not hold.\n";
1847
});
1848
continue;
1849
}
1850
} else {
1851
bool Matched = match(CB.Inst, m_Intrinsic<Intrinsic::assume>(
1852
m_ICmp(Pred, m_Value(A), m_Value(B))));
1853
(void)Matched;
1854
assert(Matched && "Must have an assume intrinsic with a icmp operand");
1855
}
1856
AddFact(Pred, A, B);
1857
}
1858
1859
if (ReproducerModule && !ReproducerModule->functions().empty()) {
1860
std::string S;
1861
raw_string_ostream StringS(S);
1862
ReproducerModule->print(StringS, nullptr);
1863
StringS.flush();
1864
OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F);
1865
Rem << ore::NV("module") << S;
1866
ORE.emit(Rem);
1867
}
1868
1869
#ifndef NDEBUG
1870
unsigned SignedEntries =
1871
count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
1872
assert(Info.getCS(false).size() - FunctionArgs.size() ==
1873
DFSInStack.size() - SignedEntries &&
1874
"updates to CS and DFSInStack are out of sync");
1875
assert(Info.getCS(true).size() == SignedEntries &&
1876
"updates to CS and DFSInStack are out of sync");
1877
#endif
1878
1879
for (Instruction *I : ToRemove)
1880
I->eraseFromParent();
1881
return Changed;
1882
}
1883
1884
PreservedAnalyses ConstraintEliminationPass::run(Function &F,
1885
FunctionAnalysisManager &AM) {
1886
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1887
auto &LI = AM.getResult<LoopAnalysis>(F);
1888
auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1889
auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1890
if (!eliminateConstraints(F, DT, LI, SE, ORE))
1891
return PreservedAnalyses::all();
1892
1893
PreservedAnalyses PA;
1894
PA.preserve<DominatorTreeAnalysis>();
1895
PA.preserve<LoopAnalysis>();
1896
PA.preserve<ScalarEvolutionAnalysis>();
1897
PA.preserveSet<CFGAnalyses>();
1898
return PA;
1899
}
1900
1901