Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Scalar/DivRemPairs.cpp
35294 views
1
//===- DivRemPairs.cpp - Hoist/[dr]ecompose division and remainder --------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This pass hoists and/or decomposes/recomposes integer division and remainder
10
// instructions to enable CFG improvements and better codegen.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "llvm/Transforms/Scalar/DivRemPairs.h"
15
#include "llvm/ADT/DenseMap.h"
16
#include "llvm/ADT/MapVector.h"
17
#include "llvm/ADT/Statistic.h"
18
#include "llvm/Analysis/GlobalsModRef.h"
19
#include "llvm/Analysis/TargetTransformInfo.h"
20
#include "llvm/Analysis/ValueTracking.h"
21
#include "llvm/IR/Dominators.h"
22
#include "llvm/IR/Function.h"
23
#include "llvm/IR/PatternMatch.h"
24
#include "llvm/Support/DebugCounter.h"
25
#include "llvm/Transforms/Utils/BypassSlowDivision.h"
26
#include <optional>
27
28
using namespace llvm;
29
using namespace llvm::PatternMatch;
30
31
#define DEBUG_TYPE "div-rem-pairs"
32
STATISTIC(NumPairs, "Number of div/rem pairs");
33
STATISTIC(NumRecomposed, "Number of instructions recomposed");
34
STATISTIC(NumHoisted, "Number of instructions hoisted");
35
STATISTIC(NumDecomposed, "Number of instructions decomposed");
36
DEBUG_COUNTER(DRPCounter, "div-rem-pairs-transform",
37
"Controls transformations in div-rem-pairs pass");
38
39
namespace {
40
struct ExpandedMatch {
41
DivRemMapKey Key;
42
Instruction *Value;
43
};
44
} // namespace
45
46
/// See if we can match: (which is the form we expand into)
47
/// X - ((X ?/ Y) * Y)
48
/// which is equivalent to:
49
/// X ?% Y
50
static std::optional<ExpandedMatch> matchExpandedRem(Instruction &I) {
51
Value *Dividend, *XroundedDownToMultipleOfY;
52
if (!match(&I, m_Sub(m_Value(Dividend), m_Value(XroundedDownToMultipleOfY))))
53
return std::nullopt;
54
55
Value *Divisor;
56
Instruction *Div;
57
// Look for ((X / Y) * Y)
58
if (!match(
59
XroundedDownToMultipleOfY,
60
m_c_Mul(m_CombineAnd(m_IDiv(m_Specific(Dividend), m_Value(Divisor)),
61
m_Instruction(Div)),
62
m_Deferred(Divisor))))
63
return std::nullopt;
64
65
ExpandedMatch M;
66
M.Key.SignedOp = Div->getOpcode() == Instruction::SDiv;
67
M.Key.Dividend = Dividend;
68
M.Key.Divisor = Divisor;
69
M.Value = &I;
70
return M;
71
}
72
73
namespace {
74
/// A thin wrapper to store two values that we matched as div-rem pair.
75
/// We want this extra indirection to avoid dealing with RAUW'ing the map keys.
76
struct DivRemPairWorklistEntry {
77
/// The actual udiv/sdiv instruction. Source of truth.
78
AssertingVH<Instruction> DivInst;
79
80
/// The instruction that we have matched as a remainder instruction.
81
/// Should only be used as Value, don't introspect it.
82
AssertingVH<Instruction> RemInst;
83
84
DivRemPairWorklistEntry(Instruction *DivInst_, Instruction *RemInst_)
85
: DivInst(DivInst_), RemInst(RemInst_) {
86
assert((DivInst->getOpcode() == Instruction::UDiv ||
87
DivInst->getOpcode() == Instruction::SDiv) &&
88
"Not a division.");
89
assert(DivInst->getType() == RemInst->getType() && "Types should match.");
90
// We can't check anything else about remainder instruction,
91
// it's not strictly required to be a urem/srem.
92
}
93
94
/// The type for this pair, identical for both the div and rem.
95
Type *getType() const { return DivInst->getType(); }
96
97
/// Is this pair signed or unsigned?
98
bool isSigned() const { return DivInst->getOpcode() == Instruction::SDiv; }
99
100
/// In this pair, what are the divident and divisor?
101
Value *getDividend() const { return DivInst->getOperand(0); }
102
Value *getDivisor() const { return DivInst->getOperand(1); }
103
104
bool isRemExpanded() const {
105
switch (RemInst->getOpcode()) {
106
case Instruction::SRem:
107
case Instruction::URem:
108
return false; // single 'rem' instruction - unexpanded form.
109
default:
110
return true; // anything else means we have remainder in expanded form.
111
}
112
}
113
};
114
} // namespace
115
using DivRemWorklistTy = SmallVector<DivRemPairWorklistEntry, 4>;
116
117
/// Find matching pairs of integer div/rem ops (they have the same numerator,
118
/// denominator, and signedness). Place those pairs into a worklist for further
119
/// processing. This indirection is needed because we have to use TrackingVH<>
120
/// because we will be doing RAUW, and if one of the rem instructions we change
121
/// happens to be an input to another div/rem in the maps, we'd have problems.
122
static DivRemWorklistTy getWorklist(Function &F) {
123
// Insert all divide and remainder instructions into maps keyed by their
124
// operands and opcode (signed or unsigned).
125
DenseMap<DivRemMapKey, Instruction *> DivMap;
126
// Use a MapVector for RemMap so that instructions are moved/inserted in a
127
// deterministic order.
128
MapVector<DivRemMapKey, Instruction *> RemMap;
129
for (auto &BB : F) {
130
for (auto &I : BB) {
131
if (I.getOpcode() == Instruction::SDiv)
132
DivMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
133
else if (I.getOpcode() == Instruction::UDiv)
134
DivMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
135
else if (I.getOpcode() == Instruction::SRem)
136
RemMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
137
else if (I.getOpcode() == Instruction::URem)
138
RemMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
139
else if (auto Match = matchExpandedRem(I))
140
RemMap[Match->Key] = Match->Value;
141
}
142
}
143
144
// We'll accumulate the matching pairs of div-rem instructions here.
145
DivRemWorklistTy Worklist;
146
147
// We can iterate over either map because we are only looking for matched
148
// pairs. Choose remainders for efficiency because they are usually even more
149
// rare than division.
150
for (auto &RemPair : RemMap) {
151
// Find the matching division instruction from the division map.
152
auto It = DivMap.find(RemPair.first);
153
if (It == DivMap.end())
154
continue;
155
156
// We have a matching pair of div/rem instructions.
157
NumPairs++;
158
Instruction *RemInst = RemPair.second;
159
160
// Place it in the worklist.
161
Worklist.emplace_back(It->second, RemInst);
162
}
163
164
return Worklist;
165
}
166
167
/// Find matching pairs of integer div/rem ops (they have the same numerator,
168
/// denominator, and signedness). If they exist in different basic blocks, bring
169
/// them together by hoisting or replace the common division operation that is
170
/// implicit in the remainder:
171
/// X % Y <--> X - ((X / Y) * Y).
172
///
173
/// We can largely ignore the normal safety and cost constraints on speculation
174
/// of these ops when we find a matching pair. This is because we are already
175
/// guaranteed that any exceptions and most cost are already incurred by the
176
/// first member of the pair.
177
///
178
/// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or
179
/// SimplifyCFG, but it's split off on its own because it's different enough
180
/// that it doesn't quite match the stated objectives of those passes.
181
static bool optimizeDivRem(Function &F, const TargetTransformInfo &TTI,
182
const DominatorTree &DT) {
183
bool Changed = false;
184
185
// Get the matching pairs of div-rem instructions. We want this extra
186
// indirection to avoid dealing with having to RAUW the keys of the maps.
187
DivRemWorklistTy Worklist = getWorklist(F);
188
189
// Process each entry in the worklist.
190
for (DivRemPairWorklistEntry &E : Worklist) {
191
if (!DebugCounter::shouldExecute(DRPCounter))
192
continue;
193
194
bool HasDivRemOp = TTI.hasDivRemOp(E.getType(), E.isSigned());
195
196
auto &DivInst = E.DivInst;
197
auto &RemInst = E.RemInst;
198
199
const bool RemOriginallyWasInExpandedForm = E.isRemExpanded();
200
(void)RemOriginallyWasInExpandedForm; // suppress unused variable warning
201
202
if (HasDivRemOp && E.isRemExpanded()) {
203
// The target supports div+rem but the rem is expanded.
204
// We should recompose it first.
205
Value *X = E.getDividend();
206
Value *Y = E.getDivisor();
207
Instruction *RealRem = E.isSigned() ? BinaryOperator::CreateSRem(X, Y)
208
: BinaryOperator::CreateURem(X, Y);
209
// Note that we place it right next to the original expanded instruction,
210
// and letting further handling to move it if needed.
211
RealRem->setName(RemInst->getName() + ".recomposed");
212
RealRem->insertAfter(RemInst);
213
Instruction *OrigRemInst = RemInst;
214
// Update AssertingVH<> with new instruction so it doesn't assert.
215
RemInst = RealRem;
216
// And replace the original instruction with the new one.
217
OrigRemInst->replaceAllUsesWith(RealRem);
218
RealRem->setDebugLoc(OrigRemInst->getDebugLoc());
219
OrigRemInst->eraseFromParent();
220
NumRecomposed++;
221
// Note that we have left ((X / Y) * Y) around.
222
// If it had other uses we could rewrite it as X - X % Y
223
Changed = true;
224
}
225
226
assert((!E.isRemExpanded() || !HasDivRemOp) &&
227
"*If* the target supports div-rem, then by now the RemInst *is* "
228
"Instruction::[US]Rem.");
229
230
// If the target supports div+rem and the instructions are in the same block
231
// already, there's nothing to do. The backend should handle this. If the
232
// target does not support div+rem, then we will decompose the rem.
233
if (HasDivRemOp && RemInst->getParent() == DivInst->getParent())
234
continue;
235
236
bool DivDominates = DT.dominates(DivInst, RemInst);
237
if (!DivDominates && !DT.dominates(RemInst, DivInst)) {
238
// We have matching div-rem pair, but they are in two different blocks,
239
// neither of which dominates one another.
240
241
BasicBlock *PredBB = nullptr;
242
BasicBlock *DivBB = DivInst->getParent();
243
BasicBlock *RemBB = RemInst->getParent();
244
245
// It's only safe to hoist if every instruction before the Div/Rem in the
246
// basic block is guaranteed to transfer execution.
247
auto IsSafeToHoist = [](Instruction *DivOrRem, BasicBlock *ParentBB) {
248
for (auto I = ParentBB->begin(), E = DivOrRem->getIterator(); I != E;
249
++I)
250
if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
251
return false;
252
253
return true;
254
};
255
256
// Look for something like this
257
// PredBB
258
// | \
259
// | Rem
260
// | /
261
// Div
262
//
263
// If the Rem block has a single predecessor and successor, and all paths
264
// from PredBB go to either RemBB or DivBB, and execution of RemBB and
265
// DivBB will always reach the Div/Rem, we can hoist Div to PredBB. If
266
// we have a DivRem operation we can also hoist Rem. Otherwise we'll leave
267
// Rem where it is and rewrite it to mul/sub.
268
if (RemBB->getSingleSuccessor() == DivBB) {
269
PredBB = RemBB->getUniquePredecessor();
270
271
// Look for something like this
272
// PredBB
273
// / \
274
// Div Rem
275
//
276
// If the Rem and Din blocks share a unique predecessor, and all
277
// paths from PredBB go to either RemBB or DivBB, and execution of RemBB
278
// and DivBB will always reach the Div/Rem, we can hoist Div to PredBB.
279
// If we have a DivRem operation we can also hoist Rem. By hoisting both
280
// ops to the same block, we reduce code size and allow the DivRem to
281
// issue sooner. Without a DivRem op, this transformation is
282
// unprofitable because we would end up performing an extra Mul+Sub on
283
// the Rem path.
284
} else if (BasicBlock *RemPredBB = RemBB->getUniquePredecessor()) {
285
// This hoist is only profitable when the target has a DivRem op.
286
if (HasDivRemOp && RemPredBB == DivBB->getUniquePredecessor())
287
PredBB = RemPredBB;
288
}
289
// FIXME: We could handle more hoisting cases.
290
291
if (PredBB && !isa<CatchSwitchInst>(PredBB->getTerminator()) &&
292
isGuaranteedToTransferExecutionToSuccessor(PredBB->getTerminator()) &&
293
IsSafeToHoist(RemInst, RemBB) && IsSafeToHoist(DivInst, DivBB) &&
294
all_of(successors(PredBB),
295
[&](BasicBlock *BB) { return BB == DivBB || BB == RemBB; }) &&
296
all_of(predecessors(DivBB),
297
[&](BasicBlock *BB) { return BB == RemBB || BB == PredBB; })) {
298
DivDominates = true;
299
DivInst->moveBefore(PredBB->getTerminator());
300
Changed = true;
301
if (HasDivRemOp) {
302
RemInst->moveBefore(PredBB->getTerminator());
303
continue;
304
}
305
} else
306
continue;
307
}
308
309
// The target does not have a single div/rem operation,
310
// and the rem is already in expanded form. Nothing to do.
311
if (!HasDivRemOp && E.isRemExpanded())
312
continue;
313
314
if (HasDivRemOp) {
315
// The target has a single div/rem operation. Hoist the lower instruction
316
// to make the matched pair visible to the backend.
317
if (DivDominates)
318
RemInst->moveAfter(DivInst);
319
else
320
DivInst->moveAfter(RemInst);
321
NumHoisted++;
322
} else {
323
// The target does not have a single div/rem operation,
324
// and the rem is *not* in a already-expanded form.
325
// Decompose the remainder calculation as:
326
// X % Y --> X - ((X / Y) * Y).
327
328
assert(!RemOriginallyWasInExpandedForm &&
329
"We should not be expanding if the rem was in expanded form to "
330
"begin with.");
331
332
Value *X = E.getDividend();
333
Value *Y = E.getDivisor();
334
Instruction *Mul = BinaryOperator::CreateMul(DivInst, Y);
335
Instruction *Sub = BinaryOperator::CreateSub(X, Mul);
336
337
// If the remainder dominates, then hoist the division up to that block:
338
//
339
// bb1:
340
// %rem = srem %x, %y
341
// bb2:
342
// %div = sdiv %x, %y
343
// -->
344
// bb1:
345
// %div = sdiv %x, %y
346
// %mul = mul %div, %y
347
// %rem = sub %x, %mul
348
//
349
// If the division dominates, it's already in the right place. The mul+sub
350
// will be in a different block because we don't assume that they are
351
// cheap to speculatively execute:
352
//
353
// bb1:
354
// %div = sdiv %x, %y
355
// bb2:
356
// %rem = srem %x, %y
357
// -->
358
// bb1:
359
// %div = sdiv %x, %y
360
// bb2:
361
// %mul = mul %div, %y
362
// %rem = sub %x, %mul
363
//
364
// If the div and rem are in the same block, we do the same transform,
365
// but any code movement would be within the same block.
366
367
if (!DivDominates)
368
DivInst->moveBefore(RemInst);
369
Mul->insertAfter(RemInst);
370
Mul->setDebugLoc(RemInst->getDebugLoc());
371
Sub->insertAfter(Mul);
372
Sub->setDebugLoc(RemInst->getDebugLoc());
373
374
// If DivInst has the exact flag, remove it. Otherwise this optimization
375
// may replace a well-defined value 'X % Y' with poison.
376
DivInst->dropPoisonGeneratingFlags();
377
378
// If X can be undef, X should be frozen first.
379
// For example, let's assume that Y = 1 & X = undef:
380
// %div = sdiv undef, 1 // %div = undef
381
// %rem = srem undef, 1 // %rem = 0
382
// =>
383
// %div = sdiv undef, 1 // %div = undef
384
// %mul = mul %div, 1 // %mul = undef
385
// %rem = sub %x, %mul // %rem = undef - undef = undef
386
// If X is not frozen, %rem becomes undef after transformation.
387
if (!isGuaranteedNotToBeUndef(X, nullptr, DivInst, &DT)) {
388
auto *FrX =
389
new FreezeInst(X, X->getName() + ".frozen", DivInst->getIterator());
390
FrX->setDebugLoc(DivInst->getDebugLoc());
391
DivInst->setOperand(0, FrX);
392
Sub->setOperand(0, FrX);
393
}
394
// Same for Y. If X = 1 and Y = (undef | 1), %rem in src is either 1 or 0,
395
// but %rem in tgt can be one of many integer values.
396
if (!isGuaranteedNotToBeUndef(Y, nullptr, DivInst, &DT)) {
397
auto *FrY =
398
new FreezeInst(Y, Y->getName() + ".frozen", DivInst->getIterator());
399
FrY->setDebugLoc(DivInst->getDebugLoc());
400
DivInst->setOperand(1, FrY);
401
Mul->setOperand(1, FrY);
402
}
403
404
// Now kill the explicit remainder. We have replaced it with:
405
// (sub X, (mul (div X, Y), Y)
406
Sub->setName(RemInst->getName() + ".decomposed");
407
Instruction *OrigRemInst = RemInst;
408
// Update AssertingVH<> with new instruction so it doesn't assert.
409
RemInst = Sub;
410
// And replace the original instruction with the new one.
411
OrigRemInst->replaceAllUsesWith(Sub);
412
OrigRemInst->eraseFromParent();
413
NumDecomposed++;
414
}
415
Changed = true;
416
}
417
418
return Changed;
419
}
420
421
// Pass manager boilerplate below here.
422
423
PreservedAnalyses DivRemPairsPass::run(Function &F,
424
FunctionAnalysisManager &FAM) {
425
TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
426
DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
427
if (!optimizeDivRem(F, TTI, DT))
428
return PreservedAnalyses::all();
429
// TODO: This pass just hoists/replaces math ops - all analyses are preserved?
430
PreservedAnalyses PA;
431
PA.preserveSet<CFGAnalyses>();
432
return PA;
433
}
434
435