Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Scalar/Float2Int.cpp
35266 views
1
//===- Float2Int.cpp - Demote floating point ops to work on integers ------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the Float2Int pass, which aims to demote floating
10
// point operations to work on integers, where that is losslessly possible.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "llvm/Transforms/Scalar/Float2Int.h"
15
#include "llvm/ADT/APInt.h"
16
#include "llvm/ADT/APSInt.h"
17
#include "llvm/ADT/SmallVector.h"
18
#include "llvm/Analysis/GlobalsModRef.h"
19
#include "llvm/IR/Constants.h"
20
#include "llvm/IR/Dominators.h"
21
#include "llvm/IR/IRBuilder.h"
22
#include "llvm/IR/Module.h"
23
#include "llvm/Support/CommandLine.h"
24
#include "llvm/Support/Debug.h"
25
#include "llvm/Support/raw_ostream.h"
26
#include <deque>
27
28
#define DEBUG_TYPE "float2int"
29
30
using namespace llvm;
31
32
// The algorithm is simple. Start at instructions that convert from the
33
// float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use
34
// graph, using an equivalence datastructure to unify graphs that interfere.
35
//
36
// Mappable instructions are those with an integer corrollary that, given
37
// integer domain inputs, produce an integer output; fadd, for example.
38
//
39
// If a non-mappable instruction is seen, this entire def-use graph is marked
40
// as non-transformable. If we see an instruction that converts from the
41
// integer domain to FP domain (uitofp,sitofp), we terminate our walk.
42
43
/// The largest integer type worth dealing with.
44
static cl::opt<unsigned>
45
MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden,
46
cl::desc("Max integer bitwidth to consider in float2int"
47
"(default=64)"));
48
49
// Given a FCmp predicate, return a matching ICmp predicate if one
50
// exists, otherwise return BAD_ICMP_PREDICATE.
51
static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) {
52
switch (P) {
53
case CmpInst::FCMP_OEQ:
54
case CmpInst::FCMP_UEQ:
55
return CmpInst::ICMP_EQ;
56
case CmpInst::FCMP_OGT:
57
case CmpInst::FCMP_UGT:
58
return CmpInst::ICMP_SGT;
59
case CmpInst::FCMP_OGE:
60
case CmpInst::FCMP_UGE:
61
return CmpInst::ICMP_SGE;
62
case CmpInst::FCMP_OLT:
63
case CmpInst::FCMP_ULT:
64
return CmpInst::ICMP_SLT;
65
case CmpInst::FCMP_OLE:
66
case CmpInst::FCMP_ULE:
67
return CmpInst::ICMP_SLE;
68
case CmpInst::FCMP_ONE:
69
case CmpInst::FCMP_UNE:
70
return CmpInst::ICMP_NE;
71
default:
72
return CmpInst::BAD_ICMP_PREDICATE;
73
}
74
}
75
76
// Given a floating point binary operator, return the matching
77
// integer version.
78
static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) {
79
switch (Opcode) {
80
default: llvm_unreachable("Unhandled opcode!");
81
case Instruction::FAdd: return Instruction::Add;
82
case Instruction::FSub: return Instruction::Sub;
83
case Instruction::FMul: return Instruction::Mul;
84
}
85
}
86
87
// Find the roots - instructions that convert from the FP domain to
88
// integer domain.
89
void Float2IntPass::findRoots(Function &F, const DominatorTree &DT) {
90
for (BasicBlock &BB : F) {
91
// Unreachable code can take on strange forms that we are not prepared to
92
// handle. For example, an instruction may have itself as an operand.
93
if (!DT.isReachableFromEntry(&BB))
94
continue;
95
96
for (Instruction &I : BB) {
97
if (isa<VectorType>(I.getType()))
98
continue;
99
switch (I.getOpcode()) {
100
default: break;
101
case Instruction::FPToUI:
102
case Instruction::FPToSI:
103
Roots.insert(&I);
104
break;
105
case Instruction::FCmp:
106
if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) !=
107
CmpInst::BAD_ICMP_PREDICATE)
108
Roots.insert(&I);
109
break;
110
}
111
}
112
}
113
}
114
115
// Helper - mark I as having been traversed, having range R.
116
void Float2IntPass::seen(Instruction *I, ConstantRange R) {
117
LLVM_DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n");
118
auto IT = SeenInsts.find(I);
119
if (IT != SeenInsts.end())
120
IT->second = std::move(R);
121
else
122
SeenInsts.insert(std::make_pair(I, std::move(R)));
123
}
124
125
// Helper - get a range representing a poison value.
126
ConstantRange Float2IntPass::badRange() {
127
return ConstantRange::getFull(MaxIntegerBW + 1);
128
}
129
ConstantRange Float2IntPass::unknownRange() {
130
return ConstantRange::getEmpty(MaxIntegerBW + 1);
131
}
132
ConstantRange Float2IntPass::validateRange(ConstantRange R) {
133
if (R.getBitWidth() > MaxIntegerBW + 1)
134
return badRange();
135
return R;
136
}
137
138
// The most obvious way to structure the search is a depth-first, eager
139
// search from each root. However, that require direct recursion and so
140
// can only handle small instruction sequences. Instead, we split the search
141
// up into two phases:
142
// - walkBackwards: A breadth-first walk of the use-def graph starting from
143
// the roots. Populate "SeenInsts" with interesting
144
// instructions and poison values if they're obvious and
145
// cheap to compute. Calculate the equivalance set structure
146
// while we're here too.
147
// - walkForwards: Iterate over SeenInsts in reverse order, so we visit
148
// defs before their uses. Calculate the real range info.
149
150
// Breadth-first walk of the use-def graph; determine the set of nodes
151
// we care about and eagerly determine if some of them are poisonous.
152
void Float2IntPass::walkBackwards() {
153
std::deque<Instruction*> Worklist(Roots.begin(), Roots.end());
154
while (!Worklist.empty()) {
155
Instruction *I = Worklist.back();
156
Worklist.pop_back();
157
158
if (SeenInsts.contains(I))
159
// Seen already.
160
continue;
161
162
switch (I->getOpcode()) {
163
// FIXME: Handle select and phi nodes.
164
default:
165
// Path terminated uncleanly.
166
seen(I, badRange());
167
break;
168
169
case Instruction::UIToFP:
170
case Instruction::SIToFP: {
171
// Path terminated cleanly - use the type of the integer input to seed
172
// the analysis.
173
unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
174
auto Input = ConstantRange::getFull(BW);
175
auto CastOp = (Instruction::CastOps)I->getOpcode();
176
seen(I, validateRange(Input.castOp(CastOp, MaxIntegerBW+1)));
177
continue;
178
}
179
180
case Instruction::FNeg:
181
case Instruction::FAdd:
182
case Instruction::FSub:
183
case Instruction::FMul:
184
case Instruction::FPToUI:
185
case Instruction::FPToSI:
186
case Instruction::FCmp:
187
seen(I, unknownRange());
188
break;
189
}
190
191
for (Value *O : I->operands()) {
192
if (Instruction *OI = dyn_cast<Instruction>(O)) {
193
// Unify def-use chains if they interfere.
194
ECs.unionSets(I, OI);
195
if (SeenInsts.find(I)->second != badRange())
196
Worklist.push_back(OI);
197
} else if (!isa<ConstantFP>(O)) {
198
// Not an instruction or ConstantFP? we can't do anything.
199
seen(I, badRange());
200
}
201
}
202
}
203
}
204
205
// Calculate result range from operand ranges.
206
// Return std::nullopt if the range cannot be calculated yet.
207
std::optional<ConstantRange> Float2IntPass::calcRange(Instruction *I) {
208
SmallVector<ConstantRange, 4> OpRanges;
209
for (Value *O : I->operands()) {
210
if (Instruction *OI = dyn_cast<Instruction>(O)) {
211
auto OpIt = SeenInsts.find(OI);
212
assert(OpIt != SeenInsts.end() && "def not seen before use!");
213
if (OpIt->second == unknownRange())
214
return std::nullopt; // Wait until operand range has been calculated.
215
OpRanges.push_back(OpIt->second);
216
} else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) {
217
// Work out if the floating point number can be losslessly represented
218
// as an integer.
219
// APFloat::convertToInteger(&Exact) purports to do what we want, but
220
// the exactness can be too precise. For example, negative zero can
221
// never be exactly converted to an integer.
222
//
223
// Instead, we ask APFloat to round itself to an integral value - this
224
// preserves sign-of-zero - then compare the result with the original.
225
//
226
const APFloat &F = CF->getValueAPF();
227
228
// First, weed out obviously incorrect values. Non-finite numbers
229
// can't be represented and neither can negative zero, unless
230
// we're in fast math mode.
231
if (!F.isFinite() ||
232
(F.isZero() && F.isNegative() && isa<FPMathOperator>(I) &&
233
!I->hasNoSignedZeros()))
234
return badRange();
235
236
APFloat NewF = F;
237
auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven);
238
if (Res != APFloat::opOK || NewF != F)
239
return badRange();
240
241
// OK, it's representable. Now get it.
242
APSInt Int(MaxIntegerBW+1, false);
243
bool Exact;
244
CF->getValueAPF().convertToInteger(Int,
245
APFloat::rmNearestTiesToEven,
246
&Exact);
247
OpRanges.push_back(ConstantRange(Int));
248
} else {
249
llvm_unreachable("Should have already marked this as badRange!");
250
}
251
}
252
253
switch (I->getOpcode()) {
254
// FIXME: Handle select and phi nodes.
255
default:
256
case Instruction::UIToFP:
257
case Instruction::SIToFP:
258
llvm_unreachable("Should have been handled in walkForwards!");
259
260
case Instruction::FNeg: {
261
assert(OpRanges.size() == 1 && "FNeg is a unary operator!");
262
unsigned Size = OpRanges[0].getBitWidth();
263
auto Zero = ConstantRange(APInt::getZero(Size));
264
return Zero.sub(OpRanges[0]);
265
}
266
267
case Instruction::FAdd:
268
case Instruction::FSub:
269
case Instruction::FMul: {
270
assert(OpRanges.size() == 2 && "its a binary operator!");
271
auto BinOp = (Instruction::BinaryOps) I->getOpcode();
272
return OpRanges[0].binaryOp(BinOp, OpRanges[1]);
273
}
274
275
//
276
// Root-only instructions - we'll only see these if they're the
277
// first node in a walk.
278
//
279
case Instruction::FPToUI:
280
case Instruction::FPToSI: {
281
assert(OpRanges.size() == 1 && "FPTo[US]I is a unary operator!");
282
// Note: We're ignoring the casts output size here as that's what the
283
// caller expects.
284
auto CastOp = (Instruction::CastOps)I->getOpcode();
285
return OpRanges[0].castOp(CastOp, MaxIntegerBW+1);
286
}
287
288
case Instruction::FCmp:
289
assert(OpRanges.size() == 2 && "FCmp is a binary operator!");
290
return OpRanges[0].unionWith(OpRanges[1]);
291
}
292
}
293
294
// Walk forwards down the list of seen instructions, so we visit defs before
295
// uses.
296
void Float2IntPass::walkForwards() {
297
std::deque<Instruction *> Worklist;
298
for (const auto &Pair : SeenInsts)
299
if (Pair.second == unknownRange())
300
Worklist.push_back(Pair.first);
301
302
while (!Worklist.empty()) {
303
Instruction *I = Worklist.back();
304
Worklist.pop_back();
305
306
if (std::optional<ConstantRange> Range = calcRange(I))
307
seen(I, *Range);
308
else
309
Worklist.push_front(I); // Reprocess later.
310
}
311
}
312
313
// If there is a valid transform to be done, do it.
314
bool Float2IntPass::validateAndTransform(const DataLayout &DL) {
315
bool MadeChange = false;
316
317
// Iterate over every disjoint partition of the def-use graph.
318
for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) {
319
ConstantRange R(MaxIntegerBW + 1, false);
320
bool Fail = false;
321
Type *ConvertedToTy = nullptr;
322
323
// For every member of the partition, union all the ranges together.
324
for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
325
MI != ME; ++MI) {
326
Instruction *I = *MI;
327
auto SeenI = SeenInsts.find(I);
328
if (SeenI == SeenInsts.end())
329
continue;
330
331
R = R.unionWith(SeenI->second);
332
// We need to ensure I has no users that have not been seen.
333
// If it does, transformation would be illegal.
334
//
335
// Don't count the roots, as they terminate the graphs.
336
if (!Roots.contains(I)) {
337
// Set the type of the conversion while we're here.
338
if (!ConvertedToTy)
339
ConvertedToTy = I->getType();
340
for (User *U : I->users()) {
341
Instruction *UI = dyn_cast<Instruction>(U);
342
if (!UI || !SeenInsts.contains(UI)) {
343
LLVM_DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n");
344
Fail = true;
345
break;
346
}
347
}
348
}
349
if (Fail)
350
break;
351
}
352
353
// If the set was empty, or we failed, or the range is poisonous,
354
// bail out.
355
if (ECs.member_begin(It) == ECs.member_end() || Fail ||
356
R.isFullSet() || R.isSignWrappedSet())
357
continue;
358
assert(ConvertedToTy && "Must have set the convertedtoty by this point!");
359
360
// The number of bits required is the maximum of the upper and
361
// lower limits, plus one so it can be signed.
362
unsigned MinBW = R.getMinSignedBits() + 1;
363
LLVM_DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n");
364
365
// If we've run off the realms of the exactly representable integers,
366
// the floating point result will differ from an integer approximation.
367
368
// Do we need more bits than are in the mantissa of the type we converted
369
// to? semanticsPrecision returns the number of mantissa bits plus one
370
// for the sign bit.
371
unsigned MaxRepresentableBits
372
= APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1;
373
if (MinBW > MaxRepresentableBits) {
374
LLVM_DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n");
375
continue;
376
}
377
378
// OK, R is known to be representable.
379
// Pick the smallest legal type that will fit.
380
Type *Ty = DL.getSmallestLegalIntType(*Ctx, MinBW);
381
if (!Ty) {
382
// Every supported target supports 64-bit and 32-bit integers,
383
// so fallback to a 32 or 64-bit integer if the value fits.
384
if (MinBW <= 32) {
385
Ty = Type::getInt32Ty(*Ctx);
386
} else if (MinBW <= 64) {
387
Ty = Type::getInt64Ty(*Ctx);
388
} else {
389
LLVM_DEBUG(dbgs() << "F2I: Value requires more bits to represent than "
390
"the target supports!\n");
391
continue;
392
}
393
}
394
395
for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
396
MI != ME; ++MI)
397
convert(*MI, Ty);
398
MadeChange = true;
399
}
400
401
return MadeChange;
402
}
403
404
Value *Float2IntPass::convert(Instruction *I, Type *ToTy) {
405
if (ConvertedInsts.contains(I))
406
// Already converted this instruction.
407
return ConvertedInsts[I];
408
409
SmallVector<Value*,4> NewOperands;
410
for (Value *V : I->operands()) {
411
// Don't recurse if we're an instruction that terminates the path.
412
if (I->getOpcode() == Instruction::UIToFP ||
413
I->getOpcode() == Instruction::SIToFP) {
414
NewOperands.push_back(V);
415
} else if (Instruction *VI = dyn_cast<Instruction>(V)) {
416
NewOperands.push_back(convert(VI, ToTy));
417
} else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
418
APSInt Val(ToTy->getPrimitiveSizeInBits(), /*isUnsigned=*/false);
419
bool Exact;
420
CF->getValueAPF().convertToInteger(Val,
421
APFloat::rmNearestTiesToEven,
422
&Exact);
423
NewOperands.push_back(ConstantInt::get(ToTy, Val));
424
} else {
425
llvm_unreachable("Unhandled operand type?");
426
}
427
}
428
429
// Now create a new instruction.
430
IRBuilder<> IRB(I);
431
Value *NewV = nullptr;
432
switch (I->getOpcode()) {
433
default: llvm_unreachable("Unhandled instruction!");
434
435
case Instruction::FPToUI:
436
NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType());
437
break;
438
439
case Instruction::FPToSI:
440
NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType());
441
break;
442
443
case Instruction::FCmp: {
444
CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate());
445
assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!");
446
NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName());
447
break;
448
}
449
450
case Instruction::UIToFP:
451
NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy);
452
break;
453
454
case Instruction::SIToFP:
455
NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy);
456
break;
457
458
case Instruction::FNeg:
459
NewV = IRB.CreateNeg(NewOperands[0], I->getName());
460
break;
461
462
case Instruction::FAdd:
463
case Instruction::FSub:
464
case Instruction::FMul:
465
NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()),
466
NewOperands[0], NewOperands[1],
467
I->getName());
468
break;
469
}
470
471
// If we're a root instruction, RAUW.
472
if (Roots.count(I))
473
I->replaceAllUsesWith(NewV);
474
475
ConvertedInsts[I] = NewV;
476
return NewV;
477
}
478
479
// Perform dead code elimination on the instructions we just modified.
480
void Float2IntPass::cleanup() {
481
for (auto &I : reverse(ConvertedInsts))
482
I.first->eraseFromParent();
483
}
484
485
bool Float2IntPass::runImpl(Function &F, const DominatorTree &DT) {
486
LLVM_DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n");
487
// Clear out all state.
488
ECs = EquivalenceClasses<Instruction*>();
489
SeenInsts.clear();
490
ConvertedInsts.clear();
491
Roots.clear();
492
493
Ctx = &F.getParent()->getContext();
494
495
findRoots(F, DT);
496
497
walkBackwards();
498
walkForwards();
499
500
const DataLayout &DL = F.getDataLayout();
501
bool Modified = validateAndTransform(DL);
502
if (Modified)
503
cleanup();
504
return Modified;
505
}
506
507
PreservedAnalyses Float2IntPass::run(Function &F, FunctionAnalysisManager &AM) {
508
const DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
509
if (!runImpl(F, DT))
510
return PreservedAnalyses::all();
511
512
PreservedAnalyses PA;
513
PA.preserveSet<CFGAnalyses>();
514
return PA;
515
}
516
517