Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Scalar/GVNHoist.cpp
35269 views
1
//===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This pass hoists expressions from branches to a common dominator. It uses
10
// GVN (global value numbering) to discover expressions computing the same
11
// values. The primary goals of code-hoisting are:
12
// 1. To reduce the code size.
13
// 2. In some cases reduce critical path (by exposing more ILP).
14
//
15
// The algorithm factors out the reachability of values such that multiple
16
// queries to find reachability of values are fast. This is based on finding the
17
// ANTIC points in the CFG which do not change during hoisting. The ANTIC points
18
// are basically the dominance-frontiers in the inverse graph. So we introduce a
19
// data structure (CHI nodes) to keep track of values flowing out of a basic
20
// block. We only do this for values with multiple occurrences in the function
21
// as they are the potential hoistable candidates. This approach allows us to
22
// hoist instructions to a basic block with more than two successors, as well as
23
// deal with infinite loops in a trivial way.
24
//
25
// Limitations: This pass does not hoist fully redundant expressions because
26
// they are already handled by GVN-PRE. It is advisable to run gvn-hoist before
27
// and after gvn-pre because gvn-pre creates opportunities for more instructions
28
// to be hoisted.
29
//
30
// Hoisting may affect the performance in some cases. To mitigate that, hoisting
31
// is disabled in the following cases.
32
// 1. Scalars across calls.
33
// 2. geps when corresponding load/store cannot be hoisted.
34
//===----------------------------------------------------------------------===//
35
36
#include "llvm/ADT/DenseMap.h"
37
#include "llvm/ADT/DenseSet.h"
38
#include "llvm/ADT/STLExtras.h"
39
#include "llvm/ADT/SmallPtrSet.h"
40
#include "llvm/ADT/SmallVector.h"
41
#include "llvm/ADT/Statistic.h"
42
#include "llvm/ADT/iterator_range.h"
43
#include "llvm/Analysis/AliasAnalysis.h"
44
#include "llvm/Analysis/GlobalsModRef.h"
45
#include "llvm/Analysis/IteratedDominanceFrontier.h"
46
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
47
#include "llvm/Analysis/MemorySSA.h"
48
#include "llvm/Analysis/MemorySSAUpdater.h"
49
#include "llvm/Analysis/PostDominators.h"
50
#include "llvm/Analysis/ValueTracking.h"
51
#include "llvm/IR/Argument.h"
52
#include "llvm/IR/BasicBlock.h"
53
#include "llvm/IR/CFG.h"
54
#include "llvm/IR/Constants.h"
55
#include "llvm/IR/Dominators.h"
56
#include "llvm/IR/Function.h"
57
#include "llvm/IR/Instruction.h"
58
#include "llvm/IR/Instructions.h"
59
#include "llvm/IR/IntrinsicInst.h"
60
#include "llvm/IR/LLVMContext.h"
61
#include "llvm/IR/PassManager.h"
62
#include "llvm/IR/Use.h"
63
#include "llvm/IR/User.h"
64
#include "llvm/IR/Value.h"
65
#include "llvm/Support/Casting.h"
66
#include "llvm/Support/CommandLine.h"
67
#include "llvm/Support/Debug.h"
68
#include "llvm/Support/raw_ostream.h"
69
#include "llvm/Transforms/Scalar/GVN.h"
70
#include "llvm/Transforms/Utils/Local.h"
71
#include <algorithm>
72
#include <cassert>
73
#include <iterator>
74
#include <memory>
75
#include <utility>
76
#include <vector>
77
78
using namespace llvm;
79
80
#define DEBUG_TYPE "gvn-hoist"
81
82
STATISTIC(NumHoisted, "Number of instructions hoisted");
83
STATISTIC(NumRemoved, "Number of instructions removed");
84
STATISTIC(NumLoadsHoisted, "Number of loads hoisted");
85
STATISTIC(NumLoadsRemoved, "Number of loads removed");
86
STATISTIC(NumStoresHoisted, "Number of stores hoisted");
87
STATISTIC(NumStoresRemoved, "Number of stores removed");
88
STATISTIC(NumCallsHoisted, "Number of calls hoisted");
89
STATISTIC(NumCallsRemoved, "Number of calls removed");
90
91
static cl::opt<int>
92
MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1),
93
cl::desc("Max number of instructions to hoist "
94
"(default unlimited = -1)"));
95
96
static cl::opt<int> MaxNumberOfBBSInPath(
97
"gvn-hoist-max-bbs", cl::Hidden, cl::init(4),
98
cl::desc("Max number of basic blocks on the path between "
99
"hoisting locations (default = 4, unlimited = -1)"));
100
101
static cl::opt<int> MaxDepthInBB(
102
"gvn-hoist-max-depth", cl::Hidden, cl::init(100),
103
cl::desc("Hoist instructions from the beginning of the BB up to the "
104
"maximum specified depth (default = 100, unlimited = -1)"));
105
106
static cl::opt<int>
107
MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10),
108
cl::desc("Maximum length of dependent chains to hoist "
109
"(default = 10, unlimited = -1)"));
110
111
namespace llvm {
112
113
using BBSideEffectsSet = DenseMap<const BasicBlock *, bool>;
114
using SmallVecInsn = SmallVector<Instruction *, 4>;
115
using SmallVecImplInsn = SmallVectorImpl<Instruction *>;
116
117
// Each element of a hoisting list contains the basic block where to hoist and
118
// a list of instructions to be hoisted.
119
using HoistingPointInfo = std::pair<BasicBlock *, SmallVecInsn>;
120
121
using HoistingPointList = SmallVector<HoistingPointInfo, 4>;
122
123
// A map from a pair of VNs to all the instructions with those VNs.
124
using VNType = std::pair<unsigned, uintptr_t>;
125
126
using VNtoInsns = DenseMap<VNType, SmallVector<Instruction *, 4>>;
127
128
// CHI keeps information about values flowing out of a basic block. It is
129
// similar to PHI but in the inverse graph, and used for outgoing values on each
130
// edge. For conciseness, it is computed only for instructions with multiple
131
// occurrences in the CFG because they are the only hoistable candidates.
132
// A (CHI[{V, B, I1}, {V, C, I2}]
133
// / \
134
// / \
135
// B(I1) C (I2)
136
// The Value number for both I1 and I2 is V, the CHI node will save the
137
// instruction as well as the edge where the value is flowing to.
138
struct CHIArg {
139
VNType VN;
140
141
// Edge destination (shows the direction of flow), may not be where the I is.
142
BasicBlock *Dest;
143
144
// The instruction (VN) which uses the values flowing out of CHI.
145
Instruction *I;
146
147
bool operator==(const CHIArg &A) const { return VN == A.VN; }
148
bool operator!=(const CHIArg &A) const { return !(*this == A); }
149
};
150
151
using CHIIt = SmallVectorImpl<CHIArg>::iterator;
152
using CHIArgs = iterator_range<CHIIt>;
153
using OutValuesType = DenseMap<BasicBlock *, SmallVector<CHIArg, 2>>;
154
using InValuesType =
155
DenseMap<BasicBlock *, SmallVector<std::pair<VNType, Instruction *>, 2>>;
156
157
// An invalid value number Used when inserting a single value number into
158
// VNtoInsns.
159
enum : uintptr_t { InvalidVN = ~(uintptr_t)2 };
160
161
// Records all scalar instructions candidate for code hoisting.
162
class InsnInfo {
163
VNtoInsns VNtoScalars;
164
165
public:
166
// Inserts I and its value number in VNtoScalars.
167
void insert(Instruction *I, GVNPass::ValueTable &VN) {
168
// Scalar instruction.
169
unsigned V = VN.lookupOrAdd(I);
170
VNtoScalars[{V, InvalidVN}].push_back(I);
171
}
172
173
const VNtoInsns &getVNTable() const { return VNtoScalars; }
174
};
175
176
// Records all load instructions candidate for code hoisting.
177
class LoadInfo {
178
VNtoInsns VNtoLoads;
179
180
public:
181
// Insert Load and the value number of its memory address in VNtoLoads.
182
void insert(LoadInst *Load, GVNPass::ValueTable &VN) {
183
if (Load->isSimple()) {
184
unsigned V = VN.lookupOrAdd(Load->getPointerOperand());
185
// With opaque pointers we may have loads from the same pointer with
186
// different result types, which should be disambiguated.
187
VNtoLoads[{V, (uintptr_t)Load->getType()}].push_back(Load);
188
}
189
}
190
191
const VNtoInsns &getVNTable() const { return VNtoLoads; }
192
};
193
194
// Records all store instructions candidate for code hoisting.
195
class StoreInfo {
196
VNtoInsns VNtoStores;
197
198
public:
199
// Insert the Store and a hash number of the store address and the stored
200
// value in VNtoStores.
201
void insert(StoreInst *Store, GVNPass::ValueTable &VN) {
202
if (!Store->isSimple())
203
return;
204
// Hash the store address and the stored value.
205
Value *Ptr = Store->getPointerOperand();
206
Value *Val = Store->getValueOperand();
207
VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store);
208
}
209
210
const VNtoInsns &getVNTable() const { return VNtoStores; }
211
};
212
213
// Records all call instructions candidate for code hoisting.
214
class CallInfo {
215
VNtoInsns VNtoCallsScalars;
216
VNtoInsns VNtoCallsLoads;
217
VNtoInsns VNtoCallsStores;
218
219
public:
220
// Insert Call and its value numbering in one of the VNtoCalls* containers.
221
void insert(CallInst *Call, GVNPass::ValueTable &VN) {
222
// A call that doesNotAccessMemory is handled as a Scalar,
223
// onlyReadsMemory will be handled as a Load instruction,
224
// all other calls will be handled as stores.
225
unsigned V = VN.lookupOrAdd(Call);
226
auto Entry = std::make_pair(V, InvalidVN);
227
228
if (Call->doesNotAccessMemory())
229
VNtoCallsScalars[Entry].push_back(Call);
230
else if (Call->onlyReadsMemory())
231
VNtoCallsLoads[Entry].push_back(Call);
232
else
233
VNtoCallsStores[Entry].push_back(Call);
234
}
235
236
const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; }
237
const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; }
238
const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; }
239
};
240
241
// This pass hoists common computations across branches sharing common
242
// dominator. The primary goal is to reduce the code size, and in some
243
// cases reduce critical path (by exposing more ILP).
244
class GVNHoist {
245
public:
246
GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA,
247
MemoryDependenceResults *MD, MemorySSA *MSSA)
248
: DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA),
249
MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {
250
MSSA->ensureOptimizedUses();
251
}
252
253
bool run(Function &F);
254
255
// Copied from NewGVN.cpp
256
// This function provides global ranking of operations so that we can place
257
// them in a canonical order. Note that rank alone is not necessarily enough
258
// for a complete ordering, as constants all have the same rank. However,
259
// generally, we will simplify an operation with all constants so that it
260
// doesn't matter what order they appear in.
261
unsigned int rank(const Value *V) const;
262
263
private:
264
GVNPass::ValueTable VN;
265
DominatorTree *DT;
266
PostDominatorTree *PDT;
267
AliasAnalysis *AA;
268
MemoryDependenceResults *MD;
269
MemorySSA *MSSA;
270
std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
271
DenseMap<const Value *, unsigned> DFSNumber;
272
BBSideEffectsSet BBSideEffects;
273
DenseSet<const BasicBlock *> HoistBarrier;
274
SmallVector<BasicBlock *, 32> IDFBlocks;
275
unsigned NumFuncArgs;
276
const bool HoistingGeps = false;
277
278
enum InsKind { Unknown, Scalar, Load, Store };
279
280
// Return true when there are exception handling in BB.
281
bool hasEH(const BasicBlock *BB);
282
283
// Return true when I1 appears before I2 in the instructions of BB.
284
bool firstInBB(const Instruction *I1, const Instruction *I2) {
285
assert(I1->getParent() == I2->getParent());
286
unsigned I1DFS = DFSNumber.lookup(I1);
287
unsigned I2DFS = DFSNumber.lookup(I2);
288
assert(I1DFS && I2DFS);
289
return I1DFS < I2DFS;
290
}
291
292
// Return true when there are memory uses of Def in BB.
293
bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def,
294
const BasicBlock *BB);
295
296
bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB,
297
int &NBBsOnAllPaths);
298
299
// Return true when there are exception handling or loads of memory Def
300
// between Def and NewPt. This function is only called for stores: Def is
301
// the MemoryDef of the store to be hoisted.
302
303
// Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
304
// return true when the counter NBBsOnAllPaths reaces 0, except when it is
305
// initialized to -1 which is unlimited.
306
bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def,
307
int &NBBsOnAllPaths);
308
309
// Return true when there are exception handling between HoistPt and BB.
310
// Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
311
// return true when the counter NBBsOnAllPaths reaches 0, except when it is
312
// initialized to -1 which is unlimited.
313
bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB,
314
int &NBBsOnAllPaths);
315
316
// Return true when it is safe to hoist a memory load or store U from OldPt
317
// to NewPt.
318
bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt,
319
MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths);
320
321
// Return true when it is safe to hoist scalar instructions from all blocks in
322
// WL to HoistBB.
323
bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB,
324
int &NBBsOnAllPaths) {
325
return !hasEHOnPath(HoistBB, BB, NBBsOnAllPaths);
326
}
327
328
// In the inverse CFG, the dominance frontier of basic block (BB) is the
329
// point where ANTIC needs to be computed for instructions which are going
330
// to be hoisted. Since this point does not change during gvn-hoist,
331
// we compute it only once (on demand).
332
// The ides is inspired from:
333
// "Partial Redundancy Elimination in SSA Form"
334
// ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW
335
// They use similar idea in the forward graph to find fully redundant and
336
// partially redundant expressions, here it is used in the inverse graph to
337
// find fully anticipable instructions at merge point (post-dominator in
338
// the inverse CFG).
339
// Returns the edge via which an instruction in BB will get the values from.
340
341
// Returns true when the values are flowing out to each edge.
342
bool valueAnticipable(CHIArgs C, Instruction *TI) const;
343
344
// Check if it is safe to hoist values tracked by CHI in the range
345
// [Begin, End) and accumulate them in Safe.
346
void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K,
347
SmallVectorImpl<CHIArg> &Safe);
348
349
using RenameStackType = DenseMap<VNType, SmallVector<Instruction *, 2>>;
350
351
// Push all the VNs corresponding to BB into RenameStack.
352
void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs,
353
RenameStackType &RenameStack);
354
355
void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs,
356
RenameStackType &RenameStack);
357
358
// Walk the post-dominator tree top-down and use a stack for each value to
359
// store the last value you see. When you hit a CHI from a given edge, the
360
// value to use as the argument is at the top of the stack, add the value to
361
// CHI and pop.
362
void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) {
363
auto Root = PDT->getNode(nullptr);
364
if (!Root)
365
return;
366
// Depth first walk on PDom tree to fill the CHIargs at each PDF.
367
for (auto *Node : depth_first(Root)) {
368
BasicBlock *BB = Node->getBlock();
369
if (!BB)
370
continue;
371
372
RenameStackType RenameStack;
373
// Collect all values in BB and push to stack.
374
fillRenameStack(BB, ValueBBs, RenameStack);
375
376
// Fill outgoing values in each CHI corresponding to BB.
377
fillChiArgs(BB, CHIBBs, RenameStack);
378
}
379
}
380
381
// Walk all the CHI-nodes to find ones which have a empty-entry and remove
382
// them Then collect all the instructions which are safe to hoist and see if
383
// they form a list of anticipable values. OutValues contains CHIs
384
// corresponding to each basic block.
385
void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K,
386
HoistingPointList &HPL);
387
388
// Compute insertion points for each values which can be fully anticipated at
389
// a dominator. HPL contains all such values.
390
void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL,
391
InsKind K) {
392
// Sort VNs based on their rankings
393
std::vector<VNType> Ranks;
394
for (const auto &Entry : Map) {
395
Ranks.push_back(Entry.first);
396
}
397
398
// TODO: Remove fully-redundant expressions.
399
// Get instruction from the Map, assume that all the Instructions
400
// with same VNs have same rank (this is an approximation).
401
llvm::sort(Ranks, [this, &Map](const VNType &r1, const VNType &r2) {
402
return (rank(*Map.lookup(r1).begin()) < rank(*Map.lookup(r2).begin()));
403
});
404
405
// - Sort VNs according to their rank, and start with lowest ranked VN
406
// - Take a VN and for each instruction with same VN
407
// - Find the dominance frontier in the inverse graph (PDF)
408
// - Insert the chi-node at PDF
409
// - Remove the chi-nodes with missing entries
410
// - Remove values from CHI-nodes which do not truly flow out, e.g.,
411
// modified along the path.
412
// - Collect the remaining values that are still anticipable
413
SmallVector<BasicBlock *, 2> IDFBlocks;
414
ReverseIDFCalculator IDFs(*PDT);
415
OutValuesType OutValue;
416
InValuesType InValue;
417
for (const auto &R : Ranks) {
418
const SmallVecInsn &V = Map.lookup(R);
419
if (V.size() < 2)
420
continue;
421
const VNType &VN = R;
422
SmallPtrSet<BasicBlock *, 2> VNBlocks;
423
for (const auto &I : V) {
424
BasicBlock *BBI = I->getParent();
425
if (!hasEH(BBI))
426
VNBlocks.insert(BBI);
427
}
428
// Compute the Post Dominance Frontiers of each basic block
429
// The dominance frontier of a live block X in the reverse
430
// control graph is the set of blocks upon which X is control
431
// dependent. The following sequence computes the set of blocks
432
// which currently have dead terminators that are control
433
// dependence sources of a block which is in NewLiveBlocks.
434
IDFs.setDefiningBlocks(VNBlocks);
435
IDFBlocks.clear();
436
IDFs.calculate(IDFBlocks);
437
438
// Make a map of BB vs instructions to be hoisted.
439
for (unsigned i = 0; i < V.size(); ++i) {
440
InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i]));
441
}
442
// Insert empty CHI node for this VN. This is used to factor out
443
// basic blocks where the ANTIC can potentially change.
444
CHIArg EmptyChi = {VN, nullptr, nullptr};
445
for (auto *IDFBB : IDFBlocks) {
446
for (unsigned i = 0; i < V.size(); ++i) {
447
// Ignore spurious PDFs.
448
if (DT->properlyDominates(IDFBB, V[i]->getParent())) {
449
OutValue[IDFBB].push_back(EmptyChi);
450
LLVM_DEBUG(dbgs() << "\nInserting a CHI for BB: "
451
<< IDFBB->getName() << ", for Insn: " << *V[i]);
452
}
453
}
454
}
455
}
456
457
// Insert CHI args at each PDF to iterate on factored graph of
458
// control dependence.
459
insertCHI(InValue, OutValue);
460
// Using the CHI args inserted at each PDF, find fully anticipable values.
461
findHoistableCandidates(OutValue, K, HPL);
462
}
463
464
// Return true when all operands of Instr are available at insertion point
465
// HoistPt. When limiting the number of hoisted expressions, one could hoist
466
// a load without hoisting its access function. So before hoisting any
467
// expression, make sure that all its operands are available at insert point.
468
bool allOperandsAvailable(const Instruction *I,
469
const BasicBlock *HoistPt) const;
470
471
// Same as allOperandsAvailable with recursive check for GEP operands.
472
bool allGepOperandsAvailable(const Instruction *I,
473
const BasicBlock *HoistPt) const;
474
475
// Make all operands of the GEP available.
476
void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt,
477
const SmallVecInsn &InstructionsToHoist,
478
Instruction *Gep) const;
479
480
void updateAlignment(Instruction *I, Instruction *Repl);
481
482
// Remove all the instructions in Candidates and replace their usage with
483
// Repl. Returns the number of instructions removed.
484
unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl,
485
MemoryUseOrDef *NewMemAcc);
486
487
// Replace all Memory PHI usage with NewMemAcc.
488
void raMPHIuw(MemoryUseOrDef *NewMemAcc);
489
490
// Remove all other instructions and replace them with Repl.
491
unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl,
492
BasicBlock *DestBB, bool MoveAccess);
493
494
// In the case Repl is a load or a store, we make all their GEPs
495
// available: GEPs are not hoisted by default to avoid the address
496
// computations to be hoisted without the associated load or store.
497
bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt,
498
const SmallVecInsn &InstructionsToHoist) const;
499
500
std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL);
501
502
// Hoist all expressions. Returns Number of scalars hoisted
503
// and number of non-scalars hoisted.
504
std::pair<unsigned, unsigned> hoistExpressions(Function &F);
505
};
506
507
bool GVNHoist::run(Function &F) {
508
NumFuncArgs = F.arg_size();
509
VN.setDomTree(DT);
510
VN.setAliasAnalysis(AA);
511
VN.setMemDep(MD);
512
bool Res = false;
513
// Perform DFS Numbering of instructions.
514
unsigned BBI = 0;
515
for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) {
516
DFSNumber[BB] = ++BBI;
517
unsigned I = 0;
518
for (const auto &Inst : *BB)
519
DFSNumber[&Inst] = ++I;
520
}
521
522
int ChainLength = 0;
523
524
// FIXME: use lazy evaluation of VN to avoid the fix-point computation.
525
while (true) {
526
if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength)
527
return Res;
528
529
auto HoistStat = hoistExpressions(F);
530
if (HoistStat.first + HoistStat.second == 0)
531
return Res;
532
533
if (HoistStat.second > 0)
534
// To address a limitation of the current GVN, we need to rerun the
535
// hoisting after we hoisted loads or stores in order to be able to
536
// hoist all scalars dependent on the hoisted ld/st.
537
VN.clear();
538
539
Res = true;
540
}
541
542
return Res;
543
}
544
545
unsigned int GVNHoist::rank(const Value *V) const {
546
// Prefer constants to undef to anything else
547
// Undef is a constant, have to check it first.
548
// Prefer smaller constants to constantexprs
549
if (isa<ConstantExpr>(V))
550
return 2;
551
if (isa<UndefValue>(V))
552
return 1;
553
if (isa<Constant>(V))
554
return 0;
555
else if (auto *A = dyn_cast<Argument>(V))
556
return 3 + A->getArgNo();
557
558
// Need to shift the instruction DFS by number of arguments + 3 to account
559
// for the constant and argument ranking above.
560
auto Result = DFSNumber.lookup(V);
561
if (Result > 0)
562
return 4 + NumFuncArgs + Result;
563
// Unreachable or something else, just return a really large number.
564
return ~0;
565
}
566
567
bool GVNHoist::hasEH(const BasicBlock *BB) {
568
auto It = BBSideEffects.find(BB);
569
if (It != BBSideEffects.end())
570
return It->second;
571
572
if (BB->isEHPad() || BB->hasAddressTaken()) {
573
BBSideEffects[BB] = true;
574
return true;
575
}
576
577
if (BB->getTerminator()->mayThrow()) {
578
BBSideEffects[BB] = true;
579
return true;
580
}
581
582
BBSideEffects[BB] = false;
583
return false;
584
}
585
586
bool GVNHoist::hasMemoryUse(const Instruction *NewPt, MemoryDef *Def,
587
const BasicBlock *BB) {
588
const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
589
if (!Acc)
590
return false;
591
592
Instruction *OldPt = Def->getMemoryInst();
593
const BasicBlock *OldBB = OldPt->getParent();
594
const BasicBlock *NewBB = NewPt->getParent();
595
bool ReachedNewPt = false;
596
597
for (const MemoryAccess &MA : *Acc)
598
if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) {
599
Instruction *Insn = MU->getMemoryInst();
600
601
// Do not check whether MU aliases Def when MU occurs after OldPt.
602
if (BB == OldBB && firstInBB(OldPt, Insn))
603
break;
604
605
// Do not check whether MU aliases Def when MU occurs before NewPt.
606
if (BB == NewBB) {
607
if (!ReachedNewPt) {
608
if (firstInBB(Insn, NewPt))
609
continue;
610
ReachedNewPt = true;
611
}
612
}
613
if (MemorySSAUtil::defClobbersUseOrDef(Def, MU, *AA))
614
return true;
615
}
616
617
return false;
618
}
619
620
bool GVNHoist::hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB,
621
int &NBBsOnAllPaths) {
622
// Stop walk once the limit is reached.
623
if (NBBsOnAllPaths == 0)
624
return true;
625
626
// Impossible to hoist with exceptions on the path.
627
if (hasEH(BB))
628
return true;
629
630
// No such instruction after HoistBarrier in a basic block was
631
// selected for hoisting so instructions selected within basic block with
632
// a hoist barrier can be hoisted.
633
if ((BB != SrcBB) && HoistBarrier.count(BB))
634
return true;
635
636
return false;
637
}
638
639
bool GVNHoist::hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def,
640
int &NBBsOnAllPaths) {
641
const BasicBlock *NewBB = NewPt->getParent();
642
const BasicBlock *OldBB = Def->getBlock();
643
assert(DT->dominates(NewBB, OldBB) && "invalid path");
644
assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) &&
645
"def does not dominate new hoisting point");
646
647
// Walk all basic blocks reachable in depth-first iteration on the inverse
648
// CFG from OldBB to NewBB. These blocks are all the blocks that may be
649
// executed between the execution of NewBB and OldBB. Hoisting an expression
650
// from OldBB into NewBB has to be safe on all execution paths.
651
for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) {
652
const BasicBlock *BB = *I;
653
if (BB == NewBB) {
654
// Stop traversal when reaching HoistPt.
655
I.skipChildren();
656
continue;
657
}
658
659
if (hasEHhelper(BB, OldBB, NBBsOnAllPaths))
660
return true;
661
662
// Check that we do not move a store past loads.
663
if (hasMemoryUse(NewPt, Def, BB))
664
return true;
665
666
// -1 is unlimited number of blocks on all paths.
667
if (NBBsOnAllPaths != -1)
668
--NBBsOnAllPaths;
669
670
++I;
671
}
672
673
return false;
674
}
675
676
bool GVNHoist::hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB,
677
int &NBBsOnAllPaths) {
678
assert(DT->dominates(HoistPt, SrcBB) && "Invalid path");
679
680
// Walk all basic blocks reachable in depth-first iteration on
681
// the inverse CFG from BBInsn to NewHoistPt. These blocks are all the
682
// blocks that may be executed between the execution of NewHoistPt and
683
// BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe
684
// on all execution paths.
685
for (auto I = idf_begin(SrcBB), E = idf_end(SrcBB); I != E;) {
686
const BasicBlock *BB = *I;
687
if (BB == HoistPt) {
688
// Stop traversal when reaching NewHoistPt.
689
I.skipChildren();
690
continue;
691
}
692
693
if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths))
694
return true;
695
696
// -1 is unlimited number of blocks on all paths.
697
if (NBBsOnAllPaths != -1)
698
--NBBsOnAllPaths;
699
700
++I;
701
}
702
703
return false;
704
}
705
706
bool GVNHoist::safeToHoistLdSt(const Instruction *NewPt,
707
const Instruction *OldPt, MemoryUseOrDef *U,
708
GVNHoist::InsKind K, int &NBBsOnAllPaths) {
709
// In place hoisting is safe.
710
if (NewPt == OldPt)
711
return true;
712
713
const BasicBlock *NewBB = NewPt->getParent();
714
const BasicBlock *OldBB = OldPt->getParent();
715
const BasicBlock *UBB = U->getBlock();
716
717
// Check for dependences on the Memory SSA.
718
MemoryAccess *D = U->getDefiningAccess();
719
BasicBlock *DBB = D->getBlock();
720
if (DT->properlyDominates(NewBB, DBB))
721
// Cannot move the load or store to NewBB above its definition in DBB.
722
return false;
723
724
if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D))
725
if (auto *UD = dyn_cast<MemoryUseOrDef>(D))
726
if (!firstInBB(UD->getMemoryInst(), NewPt))
727
// Cannot move the load or store to NewPt above its definition in D.
728
return false;
729
730
// Check for unsafe hoistings due to side effects.
731
if (K == InsKind::Store) {
732
if (hasEHOrLoadsOnPath(NewPt, cast<MemoryDef>(U), NBBsOnAllPaths))
733
return false;
734
} else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths))
735
return false;
736
737
if (UBB == NewBB) {
738
if (DT->properlyDominates(DBB, NewBB))
739
return true;
740
assert(UBB == DBB);
741
assert(MSSA->locallyDominates(D, U));
742
}
743
744
// No side effects: it is safe to hoist.
745
return true;
746
}
747
748
bool GVNHoist::valueAnticipable(CHIArgs C, Instruction *TI) const {
749
if (TI->getNumSuccessors() > (unsigned)size(C))
750
return false; // Not enough args in this CHI.
751
752
for (auto CHI : C) {
753
// Find if all the edges have values flowing out of BB.
754
if (!llvm::is_contained(successors(TI), CHI.Dest))
755
return false;
756
}
757
return true;
758
}
759
760
void GVNHoist::checkSafety(CHIArgs C, BasicBlock *BB, GVNHoist::InsKind K,
761
SmallVectorImpl<CHIArg> &Safe) {
762
int NumBBsOnAllPaths = MaxNumberOfBBSInPath;
763
const Instruction *T = BB->getTerminator();
764
for (auto CHI : C) {
765
Instruction *Insn = CHI.I;
766
if (!Insn) // No instruction was inserted in this CHI.
767
continue;
768
// If the Terminator is some kind of "exotic terminator" that produces a
769
// value (such as InvokeInst, CallBrInst, or CatchSwitchInst) which the CHI
770
// uses, it is not safe to hoist the use above the def.
771
if (!T->use_empty() && is_contained(Insn->operands(), cast<const Value>(T)))
772
continue;
773
if (K == InsKind::Scalar) {
774
if (safeToHoistScalar(BB, Insn->getParent(), NumBBsOnAllPaths))
775
Safe.push_back(CHI);
776
} else {
777
if (MemoryUseOrDef *UD = MSSA->getMemoryAccess(Insn))
778
if (safeToHoistLdSt(T, Insn, UD, K, NumBBsOnAllPaths))
779
Safe.push_back(CHI);
780
}
781
}
782
}
783
784
void GVNHoist::fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs,
785
GVNHoist::RenameStackType &RenameStack) {
786
auto it1 = ValueBBs.find(BB);
787
if (it1 != ValueBBs.end()) {
788
// Iterate in reverse order to keep lower ranked values on the top.
789
LLVM_DEBUG(dbgs() << "\nVisiting: " << BB->getName()
790
<< " for pushing instructions on stack";);
791
for (std::pair<VNType, Instruction *> &VI : reverse(it1->second)) {
792
// Get the value of instruction I
793
LLVM_DEBUG(dbgs() << "\nPushing on stack: " << *VI.second);
794
RenameStack[VI.first].push_back(VI.second);
795
}
796
}
797
}
798
799
void GVNHoist::fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs,
800
GVNHoist::RenameStackType &RenameStack) {
801
// For each *predecessor* (because Post-DOM) of BB check if it has a CHI
802
for (auto *Pred : predecessors(BB)) {
803
auto P = CHIBBs.find(Pred);
804
if (P == CHIBBs.end()) {
805
continue;
806
}
807
LLVM_DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName(););
808
// A CHI is found (BB -> Pred is an edge in the CFG)
809
// Pop the stack until Top(V) = Ve.
810
auto &VCHI = P->second;
811
for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) {
812
CHIArg &C = *It;
813
if (!C.Dest) {
814
auto si = RenameStack.find(C.VN);
815
// The Basic Block where CHI is must dominate the value we want to
816
// track in a CHI. In the PDom walk, there can be values in the
817
// stack which are not control dependent e.g., nested loop.
818
if (si != RenameStack.end() && si->second.size() &&
819
DT->properlyDominates(Pred, si->second.back()->getParent())) {
820
C.Dest = BB; // Assign the edge
821
C.I = si->second.pop_back_val(); // Assign the argument
822
LLVM_DEBUG(dbgs()
823
<< "\nCHI Inserted in BB: " << C.Dest->getName() << *C.I
824
<< ", VN: " << C.VN.first << ", " << C.VN.second);
825
}
826
// Move to next CHI of a different value
827
It = std::find_if(It, VCHI.end(), [It](CHIArg &A) { return A != *It; });
828
} else
829
++It;
830
}
831
}
832
}
833
834
void GVNHoist::findHoistableCandidates(OutValuesType &CHIBBs,
835
GVNHoist::InsKind K,
836
HoistingPointList &HPL) {
837
auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; };
838
839
// CHIArgs now have the outgoing values, so check for anticipability and
840
// accumulate hoistable candidates in HPL.
841
for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) {
842
BasicBlock *BB = A.first;
843
SmallVectorImpl<CHIArg> &CHIs = A.second;
844
// Vector of PHIs contains PHIs for different instructions.
845
// Sort the args according to their VNs, such that identical
846
// instructions are together.
847
llvm::stable_sort(CHIs, cmpVN);
848
auto TI = BB->getTerminator();
849
auto B = CHIs.begin();
850
// [PreIt, PHIIt) form a range of CHIs which have identical VNs.
851
auto PHIIt = llvm::find_if(CHIs, [B](CHIArg &A) { return A != *B; });
852
auto PrevIt = CHIs.begin();
853
while (PrevIt != PHIIt) {
854
// Collect values which satisfy safety checks.
855
SmallVector<CHIArg, 2> Safe;
856
// We check for safety first because there might be multiple values in
857
// the same path, some of which are not safe to be hoisted, but overall
858
// each edge has at least one value which can be hoisted, making the
859
// value anticipable along that path.
860
checkSafety(make_range(PrevIt, PHIIt), BB, K, Safe);
861
862
// List of safe values should be anticipable at TI.
863
if (valueAnticipable(make_range(Safe.begin(), Safe.end()), TI)) {
864
HPL.push_back({BB, SmallVecInsn()});
865
SmallVecInsn &V = HPL.back().second;
866
for (auto B : Safe)
867
V.push_back(B.I);
868
}
869
870
// Check other VNs
871
PrevIt = PHIIt;
872
PHIIt = std::find_if(PrevIt, CHIs.end(),
873
[PrevIt](CHIArg &A) { return A != *PrevIt; });
874
}
875
}
876
}
877
878
bool GVNHoist::allOperandsAvailable(const Instruction *I,
879
const BasicBlock *HoistPt) const {
880
for (const Use &Op : I->operands())
881
if (const auto *Inst = dyn_cast<Instruction>(&Op))
882
if (!DT->dominates(Inst->getParent(), HoistPt))
883
return false;
884
885
return true;
886
}
887
888
bool GVNHoist::allGepOperandsAvailable(const Instruction *I,
889
const BasicBlock *HoistPt) const {
890
for (const Use &Op : I->operands())
891
if (const auto *Inst = dyn_cast<Instruction>(&Op))
892
if (!DT->dominates(Inst->getParent(), HoistPt)) {
893
if (const GetElementPtrInst *GepOp =
894
dyn_cast<GetElementPtrInst>(Inst)) {
895
if (!allGepOperandsAvailable(GepOp, HoistPt))
896
return false;
897
// Gep is available if all operands of GepOp are available.
898
} else {
899
// Gep is not available if it has operands other than GEPs that are
900
// defined in blocks not dominating HoistPt.
901
return false;
902
}
903
}
904
return true;
905
}
906
907
void GVNHoist::makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt,
908
const SmallVecInsn &InstructionsToHoist,
909
Instruction *Gep) const {
910
assert(allGepOperandsAvailable(Gep, HoistPt) && "GEP operands not available");
911
912
Instruction *ClonedGep = Gep->clone();
913
for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i)
914
if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) {
915
// Check whether the operand is already available.
916
if (DT->dominates(Op->getParent(), HoistPt))
917
continue;
918
919
// As a GEP can refer to other GEPs, recursively make all the operands
920
// of this GEP available at HoistPt.
921
if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op))
922
makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp);
923
}
924
925
// Copy Gep and replace its uses in Repl with ClonedGep.
926
ClonedGep->insertBefore(HoistPt->getTerminator());
927
928
// Conservatively discard any optimization hints, they may differ on the
929
// other paths.
930
ClonedGep->dropUnknownNonDebugMetadata();
931
932
// If we have optimization hints which agree with each other along different
933
// paths, preserve them.
934
for (const Instruction *OtherInst : InstructionsToHoist) {
935
const GetElementPtrInst *OtherGep;
936
if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst))
937
OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand());
938
else
939
OtherGep = cast<GetElementPtrInst>(
940
cast<StoreInst>(OtherInst)->getPointerOperand());
941
ClonedGep->andIRFlags(OtherGep);
942
943
// Merge debug locations of GEPs, because the hoisted GEP replaces those
944
// in branches. When cloning, ClonedGep preserves the debug location of
945
// Gepd, so Gep is skipped to avoid merging it twice.
946
if (OtherGep != Gep) {
947
ClonedGep->applyMergedLocation(ClonedGep->getDebugLoc(),
948
OtherGep->getDebugLoc());
949
}
950
}
951
952
// Replace uses of Gep with ClonedGep in Repl.
953
Repl->replaceUsesOfWith(Gep, ClonedGep);
954
}
955
956
void GVNHoist::updateAlignment(Instruction *I, Instruction *Repl) {
957
if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) {
958
ReplacementLoad->setAlignment(
959
std::min(ReplacementLoad->getAlign(), cast<LoadInst>(I)->getAlign()));
960
++NumLoadsRemoved;
961
} else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) {
962
ReplacementStore->setAlignment(
963
std::min(ReplacementStore->getAlign(), cast<StoreInst>(I)->getAlign()));
964
++NumStoresRemoved;
965
} else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) {
966
ReplacementAlloca->setAlignment(std::max(ReplacementAlloca->getAlign(),
967
cast<AllocaInst>(I)->getAlign()));
968
} else if (isa<CallInst>(Repl)) {
969
++NumCallsRemoved;
970
}
971
}
972
973
unsigned GVNHoist::rauw(const SmallVecInsn &Candidates, Instruction *Repl,
974
MemoryUseOrDef *NewMemAcc) {
975
unsigned NR = 0;
976
for (Instruction *I : Candidates) {
977
if (I != Repl) {
978
++NR;
979
updateAlignment(I, Repl);
980
if (NewMemAcc) {
981
// Update the uses of the old MSSA access with NewMemAcc.
982
MemoryAccess *OldMA = MSSA->getMemoryAccess(I);
983
OldMA->replaceAllUsesWith(NewMemAcc);
984
MSSAUpdater->removeMemoryAccess(OldMA);
985
}
986
987
combineMetadataForCSE(Repl, I, true);
988
Repl->andIRFlags(I);
989
I->replaceAllUsesWith(Repl);
990
// Also invalidate the Alias Analysis cache.
991
MD->removeInstruction(I);
992
I->eraseFromParent();
993
}
994
}
995
return NR;
996
}
997
998
void GVNHoist::raMPHIuw(MemoryUseOrDef *NewMemAcc) {
999
SmallPtrSet<MemoryPhi *, 4> UsePhis;
1000
for (User *U : NewMemAcc->users())
1001
if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U))
1002
UsePhis.insert(Phi);
1003
1004
for (MemoryPhi *Phi : UsePhis) {
1005
auto In = Phi->incoming_values();
1006
if (llvm::all_of(In, [&](Use &U) { return U == NewMemAcc; })) {
1007
Phi->replaceAllUsesWith(NewMemAcc);
1008
MSSAUpdater->removeMemoryAccess(Phi);
1009
}
1010
}
1011
}
1012
1013
unsigned GVNHoist::removeAndReplace(const SmallVecInsn &Candidates,
1014
Instruction *Repl, BasicBlock *DestBB,
1015
bool MoveAccess) {
1016
MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(Repl);
1017
if (MoveAccess && NewMemAcc) {
1018
// The definition of this ld/st will not change: ld/st hoisting is
1019
// legal when the ld/st is not moved past its current definition.
1020
MSSAUpdater->moveToPlace(NewMemAcc, DestBB, MemorySSA::BeforeTerminator);
1021
}
1022
1023
// Replace all other instructions with Repl with memory access NewMemAcc.
1024
unsigned NR = rauw(Candidates, Repl, NewMemAcc);
1025
1026
// Remove MemorySSA phi nodes with the same arguments.
1027
if (NewMemAcc)
1028
raMPHIuw(NewMemAcc);
1029
return NR;
1030
}
1031
1032
bool GVNHoist::makeGepOperandsAvailable(
1033
Instruction *Repl, BasicBlock *HoistPt,
1034
const SmallVecInsn &InstructionsToHoist) const {
1035
// Check whether the GEP of a ld/st can be synthesized at HoistPt.
1036
GetElementPtrInst *Gep = nullptr;
1037
Instruction *Val = nullptr;
1038
if (auto *Ld = dyn_cast<LoadInst>(Repl)) {
1039
Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand());
1040
} else if (auto *St = dyn_cast<StoreInst>(Repl)) {
1041
Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand());
1042
Val = dyn_cast<Instruction>(St->getValueOperand());
1043
// Check that the stored value is available.
1044
if (Val) {
1045
if (isa<GetElementPtrInst>(Val)) {
1046
// Check whether we can compute the GEP at HoistPt.
1047
if (!allGepOperandsAvailable(Val, HoistPt))
1048
return false;
1049
} else if (!DT->dominates(Val->getParent(), HoistPt))
1050
return false;
1051
}
1052
}
1053
1054
// Check whether we can compute the Gep at HoistPt.
1055
if (!Gep || !allGepOperandsAvailable(Gep, HoistPt))
1056
return false;
1057
1058
makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep);
1059
1060
if (Val && isa<GetElementPtrInst>(Val))
1061
makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val);
1062
1063
return true;
1064
}
1065
1066
std::pair<unsigned, unsigned> GVNHoist::hoist(HoistingPointList &HPL) {
1067
unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0;
1068
for (const HoistingPointInfo &HP : HPL) {
1069
// Find out whether we already have one of the instructions in HoistPt,
1070
// in which case we do not have to move it.
1071
BasicBlock *DestBB = HP.first;
1072
const SmallVecInsn &InstructionsToHoist = HP.second;
1073
Instruction *Repl = nullptr;
1074
for (Instruction *I : InstructionsToHoist)
1075
if (I->getParent() == DestBB)
1076
// If there are two instructions in HoistPt to be hoisted in place:
1077
// update Repl to be the first one, such that we can rename the uses
1078
// of the second based on the first.
1079
if (!Repl || firstInBB(I, Repl))
1080
Repl = I;
1081
1082
// Keep track of whether we moved the instruction so we know whether we
1083
// should move the MemoryAccess.
1084
bool MoveAccess = true;
1085
if (Repl) {
1086
// Repl is already in HoistPt: it remains in place.
1087
assert(allOperandsAvailable(Repl, DestBB) &&
1088
"instruction depends on operands that are not available");
1089
MoveAccess = false;
1090
} else {
1091
// When we do not find Repl in HoistPt, select the first in the list
1092
// and move it to HoistPt.
1093
Repl = InstructionsToHoist.front();
1094
1095
// We can move Repl in HoistPt only when all operands are available.
1096
// The order in which hoistings are done may influence the availability
1097
// of operands.
1098
if (!allOperandsAvailable(Repl, DestBB)) {
1099
// When HoistingGeps there is nothing more we can do to make the
1100
// operands available: just continue.
1101
if (HoistingGeps)
1102
continue;
1103
1104
// When not HoistingGeps we need to copy the GEPs.
1105
if (!makeGepOperandsAvailable(Repl, DestBB, InstructionsToHoist))
1106
continue;
1107
}
1108
1109
// Move the instruction at the end of HoistPt.
1110
Instruction *Last = DestBB->getTerminator();
1111
MD->removeInstruction(Repl);
1112
Repl->moveBefore(Last);
1113
1114
DFSNumber[Repl] = DFSNumber[Last]++;
1115
}
1116
1117
// Drop debug location as per debug info update guide.
1118
Repl->dropLocation();
1119
NR += removeAndReplace(InstructionsToHoist, Repl, DestBB, MoveAccess);
1120
1121
if (isa<LoadInst>(Repl))
1122
++NL;
1123
else if (isa<StoreInst>(Repl))
1124
++NS;
1125
else if (isa<CallInst>(Repl))
1126
++NC;
1127
else // Scalar
1128
++NI;
1129
}
1130
1131
if (MSSA && VerifyMemorySSA)
1132
MSSA->verifyMemorySSA();
1133
1134
NumHoisted += NL + NS + NC + NI;
1135
NumRemoved += NR;
1136
NumLoadsHoisted += NL;
1137
NumStoresHoisted += NS;
1138
NumCallsHoisted += NC;
1139
return {NI, NL + NC + NS};
1140
}
1141
1142
std::pair<unsigned, unsigned> GVNHoist::hoistExpressions(Function &F) {
1143
InsnInfo II;
1144
LoadInfo LI;
1145
StoreInfo SI;
1146
CallInfo CI;
1147
for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
1148
int InstructionNb = 0;
1149
for (Instruction &I1 : *BB) {
1150
// If I1 cannot guarantee progress, subsequent instructions
1151
// in BB cannot be hoisted anyways.
1152
if (!isGuaranteedToTransferExecutionToSuccessor(&I1)) {
1153
HoistBarrier.insert(BB);
1154
break;
1155
}
1156
// Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting
1157
// deeper may increase the register pressure and compilation time.
1158
if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB)
1159
break;
1160
1161
// Do not value number terminator instructions.
1162
if (I1.isTerminator())
1163
break;
1164
1165
if (auto *Load = dyn_cast<LoadInst>(&I1))
1166
LI.insert(Load, VN);
1167
else if (auto *Store = dyn_cast<StoreInst>(&I1))
1168
SI.insert(Store, VN);
1169
else if (auto *Call = dyn_cast<CallInst>(&I1)) {
1170
if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) {
1171
if (isa<DbgInfoIntrinsic>(Intr) ||
1172
Intr->getIntrinsicID() == Intrinsic::assume ||
1173
Intr->getIntrinsicID() == Intrinsic::sideeffect)
1174
continue;
1175
}
1176
if (Call->mayHaveSideEffects())
1177
break;
1178
1179
if (Call->isConvergent())
1180
break;
1181
1182
CI.insert(Call, VN);
1183
} else if (HoistingGeps || !isa<GetElementPtrInst>(&I1))
1184
// Do not hoist scalars past calls that may write to memory because
1185
// that could result in spills later. geps are handled separately.
1186
// TODO: We can relax this for targets like AArch64 as they have more
1187
// registers than X86.
1188
II.insert(&I1, VN);
1189
}
1190
}
1191
1192
HoistingPointList HPL;
1193
computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar);
1194
computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load);
1195
computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store);
1196
computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar);
1197
computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load);
1198
computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store);
1199
return hoist(HPL);
1200
}
1201
1202
} // end namespace llvm
1203
1204
PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) {
1205
DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
1206
PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
1207
AliasAnalysis &AA = AM.getResult<AAManager>(F);
1208
MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F);
1209
MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
1210
GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
1211
if (!G.run(F))
1212
return PreservedAnalyses::all();
1213
1214
PreservedAnalyses PA;
1215
PA.preserve<DominatorTreeAnalysis>();
1216
PA.preserve<MemorySSAAnalysis>();
1217
return PA;
1218
}
1219
1220