Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Scalar/GuardWidening.cpp
35266 views
1
//===- GuardWidening.cpp - ---- Guard widening ----------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the guard widening pass. The semantics of the
10
// @llvm.experimental.guard intrinsic lets LLVM transform it so that it fails
11
// more often that it did before the transform. This optimization is called
12
// "widening" and can be used hoist and common runtime checks in situations like
13
// these:
14
//
15
// %cmp0 = 7 u< Length
16
// call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
17
// call @unknown_side_effects()
18
// %cmp1 = 9 u< Length
19
// call @llvm.experimental.guard(i1 %cmp1) [ "deopt"(...) ]
20
// ...
21
//
22
// =>
23
//
24
// %cmp0 = 9 u< Length
25
// call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
26
// call @unknown_side_effects()
27
// ...
28
//
29
// If %cmp0 is false, @llvm.experimental.guard will "deoptimize" back to a
30
// generic implementation of the same function, which will have the correct
31
// semantics from that point onward. It is always _legal_ to deoptimize (so
32
// replacing %cmp0 with false is "correct"), though it may not always be
33
// profitable to do so.
34
//
35
// NB! This pass is a work in progress. It hasn't been tuned to be "production
36
// ready" yet. It is known to have quadriatic running time and will not scale
37
// to large numbers of guards
38
//
39
//===----------------------------------------------------------------------===//
40
41
#include "llvm/Transforms/Scalar/GuardWidening.h"
42
#include "llvm/ADT/DenseMap.h"
43
#include "llvm/ADT/DepthFirstIterator.h"
44
#include "llvm/ADT/Statistic.h"
45
#include "llvm/Analysis/AssumptionCache.h"
46
#include "llvm/Analysis/GuardUtils.h"
47
#include "llvm/Analysis/LoopInfo.h"
48
#include "llvm/Analysis/MemorySSAUpdater.h"
49
#include "llvm/Analysis/PostDominators.h"
50
#include "llvm/Analysis/ValueTracking.h"
51
#include "llvm/IR/ConstantRange.h"
52
#include "llvm/IR/Dominators.h"
53
#include "llvm/IR/IRBuilder.h"
54
#include "llvm/IR/IntrinsicInst.h"
55
#include "llvm/IR/Module.h"
56
#include "llvm/IR/PatternMatch.h"
57
#include "llvm/Support/CommandLine.h"
58
#include "llvm/Support/Debug.h"
59
#include "llvm/Support/KnownBits.h"
60
#include "llvm/Transforms/Scalar.h"
61
#include "llvm/Transforms/Utils/GuardUtils.h"
62
#include "llvm/Transforms/Utils/LoopUtils.h"
63
#include <functional>
64
65
using namespace llvm;
66
67
#define DEBUG_TYPE "guard-widening"
68
69
STATISTIC(GuardsEliminated, "Number of eliminated guards");
70
STATISTIC(CondBranchEliminated, "Number of eliminated conditional branches");
71
STATISTIC(FreezeAdded, "Number of freeze instruction introduced");
72
73
static cl::opt<bool>
74
WidenBranchGuards("guard-widening-widen-branch-guards", cl::Hidden,
75
cl::desc("Whether or not we should widen guards "
76
"expressed as branches by widenable conditions"),
77
cl::init(true));
78
79
namespace {
80
81
// Get the condition of \p I. It can either be a guard or a conditional branch.
82
static Value *getCondition(Instruction *I) {
83
if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
84
assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
85
"Bad guard intrinsic?");
86
return GI->getArgOperand(0);
87
}
88
Value *Cond, *WC;
89
BasicBlock *IfTrueBB, *IfFalseBB;
90
if (parseWidenableBranch(I, Cond, WC, IfTrueBB, IfFalseBB))
91
return Cond;
92
93
return cast<BranchInst>(I)->getCondition();
94
}
95
96
// Set the condition for \p I to \p NewCond. \p I can either be a guard or a
97
// conditional branch.
98
static void setCondition(Instruction *I, Value *NewCond) {
99
if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
100
assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
101
"Bad guard intrinsic?");
102
GI->setArgOperand(0, NewCond);
103
return;
104
}
105
cast<BranchInst>(I)->setCondition(NewCond);
106
}
107
108
// Eliminates the guard instruction properly.
109
static void eliminateGuard(Instruction *GuardInst, MemorySSAUpdater *MSSAU) {
110
GuardInst->eraseFromParent();
111
if (MSSAU)
112
MSSAU->removeMemoryAccess(GuardInst);
113
++GuardsEliminated;
114
}
115
116
/// Find a point at which the widened condition of \p Guard should be inserted.
117
/// When it is represented as intrinsic call, we can do it right before the call
118
/// instruction. However, when we are dealing with widenable branch, we must
119
/// account for the following situation: widening should not turn a
120
/// loop-invariant condition into a loop-variant. It means that if
121
/// widenable.condition() call is invariant (w.r.t. any loop), the new wide
122
/// condition should stay invariant. Otherwise there can be a miscompile, like
123
/// the one described at https://github.com/llvm/llvm-project/issues/60234. The
124
/// safest way to do it is to expand the new condition at WC's block.
125
static std::optional<BasicBlock::iterator>
126
findInsertionPointForWideCondition(Instruction *WCOrGuard) {
127
if (isGuard(WCOrGuard))
128
return WCOrGuard->getIterator();
129
if (auto WC = extractWidenableCondition(WCOrGuard))
130
return cast<Instruction>(WC)->getIterator();
131
return std::nullopt;
132
}
133
134
class GuardWideningImpl {
135
DominatorTree &DT;
136
PostDominatorTree *PDT;
137
LoopInfo &LI;
138
AssumptionCache &AC;
139
MemorySSAUpdater *MSSAU;
140
141
/// Together, these describe the region of interest. This might be all of
142
/// the blocks within a function, or only a given loop's blocks and preheader.
143
DomTreeNode *Root;
144
std::function<bool(BasicBlock*)> BlockFilter;
145
146
/// The set of guards and conditional branches whose conditions have been
147
/// widened into dominating guards.
148
SmallVector<Instruction *, 16> EliminatedGuardsAndBranches;
149
150
/// The set of guards which have been widened to include conditions to other
151
/// guards.
152
DenseSet<Instruction *> WidenedGuards;
153
154
/// Try to eliminate instruction \p Instr by widening it into an earlier
155
/// dominating guard. \p DFSI is the DFS iterator on the dominator tree that
156
/// is currently visiting the block containing \p Guard, and \p GuardsPerBlock
157
/// maps BasicBlocks to the set of guards seen in that block.
158
bool eliminateInstrViaWidening(
159
Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
160
const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>>
161
&GuardsPerBlock);
162
163
/// Used to keep track of which widening potential is more effective.
164
enum WideningScore {
165
/// Don't widen.
166
WS_IllegalOrNegative,
167
168
/// Widening is performance neutral as far as the cycles spent in check
169
/// conditions goes (but can still help, e.g., code layout, having less
170
/// deopt state).
171
WS_Neutral,
172
173
/// Widening is profitable.
174
WS_Positive,
175
176
/// Widening is very profitable. Not significantly different from \c
177
/// WS_Positive, except by the order.
178
WS_VeryPositive
179
};
180
181
static StringRef scoreTypeToString(WideningScore WS);
182
183
/// Compute the score for widening the condition in \p DominatedInstr
184
/// into \p WideningPoint.
185
WideningScore computeWideningScore(Instruction *DominatedInstr,
186
Instruction *ToWiden,
187
BasicBlock::iterator WideningPoint,
188
SmallVectorImpl<Value *> &ChecksToHoist,
189
SmallVectorImpl<Value *> &ChecksToWiden);
190
191
/// Helper to check if \p V can be hoisted to \p InsertPos.
192
bool canBeHoistedTo(const Value *V, BasicBlock::iterator InsertPos) const {
193
SmallPtrSet<const Instruction *, 8> Visited;
194
return canBeHoistedTo(V, InsertPos, Visited);
195
}
196
197
bool canBeHoistedTo(const Value *V, BasicBlock::iterator InsertPos,
198
SmallPtrSetImpl<const Instruction *> &Visited) const;
199
200
bool canBeHoistedTo(const SmallVectorImpl<Value *> &Checks,
201
BasicBlock::iterator InsertPos) const {
202
return all_of(Checks,
203
[&](const Value *V) { return canBeHoistedTo(V, InsertPos); });
204
}
205
/// Helper to hoist \p V to \p InsertPos. Guaranteed to succeed if \c
206
/// canBeHoistedTo returned true.
207
void makeAvailableAt(Value *V, BasicBlock::iterator InsertPos) const;
208
209
void makeAvailableAt(const SmallVectorImpl<Value *> &Checks,
210
BasicBlock::iterator InsertPos) const {
211
for (Value *V : Checks)
212
makeAvailableAt(V, InsertPos);
213
}
214
215
/// Common helper used by \c widenGuard and \c isWideningCondProfitable. Try
216
/// to generate an expression computing the logical AND of \p ChecksToHoist
217
/// and \p ChecksToWiden. Return true if the expression computing the AND is
218
/// only as expensive as computing one of the set of expressions. If \p
219
/// InsertPt is true then actually generate the resulting expression, make it
220
/// available at \p InsertPt and return it in \p Result (else no change to the
221
/// IR is made).
222
std::optional<Value *>
223
mergeChecks(SmallVectorImpl<Value *> &ChecksToHoist,
224
SmallVectorImpl<Value *> &ChecksToWiden,
225
std::optional<BasicBlock::iterator> InsertPt);
226
227
/// Generate the logical AND of \p ChecksToHoist and \p OldCondition and make
228
/// it available at InsertPt
229
Value *hoistChecks(SmallVectorImpl<Value *> &ChecksToHoist,
230
Value *OldCondition, BasicBlock::iterator InsertPt);
231
232
/// Adds freeze to Orig and push it as far as possible very aggressively.
233
/// Also replaces all uses of frozen instruction with frozen version.
234
Value *freezeAndPush(Value *Orig, BasicBlock::iterator InsertPt);
235
236
/// Represents a range check of the form \c Base + \c Offset u< \c Length,
237
/// with the constraint that \c Length is not negative. \c CheckInst is the
238
/// pre-existing instruction in the IR that computes the result of this range
239
/// check.
240
class RangeCheck {
241
const Value *Base;
242
const ConstantInt *Offset;
243
const Value *Length;
244
ICmpInst *CheckInst;
245
246
public:
247
explicit RangeCheck(const Value *Base, const ConstantInt *Offset,
248
const Value *Length, ICmpInst *CheckInst)
249
: Base(Base), Offset(Offset), Length(Length), CheckInst(CheckInst) {}
250
251
void setBase(const Value *NewBase) { Base = NewBase; }
252
void setOffset(const ConstantInt *NewOffset) { Offset = NewOffset; }
253
254
const Value *getBase() const { return Base; }
255
const ConstantInt *getOffset() const { return Offset; }
256
const APInt &getOffsetValue() const { return getOffset()->getValue(); }
257
const Value *getLength() const { return Length; };
258
ICmpInst *getCheckInst() const { return CheckInst; }
259
260
void print(raw_ostream &OS, bool PrintTypes = false) {
261
OS << "Base: ";
262
Base->printAsOperand(OS, PrintTypes);
263
OS << " Offset: ";
264
Offset->printAsOperand(OS, PrintTypes);
265
OS << " Length: ";
266
Length->printAsOperand(OS, PrintTypes);
267
}
268
269
LLVM_DUMP_METHOD void dump() {
270
print(dbgs());
271
dbgs() << "\n";
272
}
273
};
274
275
/// Parse \p ToParse into a conjunction (logical-and) of range checks; and
276
/// append them to \p Checks. Returns true on success, may clobber \c Checks
277
/// on failure.
278
bool parseRangeChecks(SmallVectorImpl<Value *> &ToParse,
279
SmallVectorImpl<RangeCheck> &Checks) {
280
for (auto CheckCond : ToParse) {
281
if (!parseRangeChecks(CheckCond, Checks))
282
return false;
283
}
284
return true;
285
}
286
287
bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks);
288
289
/// Combine the checks in \p Checks into a smaller set of checks and append
290
/// them into \p CombinedChecks. Return true on success (i.e. all of checks
291
/// in \p Checks were combined into \p CombinedChecks). Clobbers \p Checks
292
/// and \p CombinedChecks on success and on failure.
293
bool combineRangeChecks(SmallVectorImpl<RangeCheck> &Checks,
294
SmallVectorImpl<RangeCheck> &CombinedChecks) const;
295
296
/// Can we compute the logical AND of \p ChecksToHoist and \p ChecksToWiden
297
/// for the price of computing only one of the set of expressions?
298
bool isWideningCondProfitable(SmallVectorImpl<Value *> &ChecksToHoist,
299
SmallVectorImpl<Value *> &ChecksToWiden) {
300
return mergeChecks(ChecksToHoist, ChecksToWiden, /*InsertPt=*/std::nullopt)
301
.has_value();
302
}
303
304
/// Widen \p ChecksToWiden to fail if any of \p ChecksToHoist is false
305
void widenGuard(SmallVectorImpl<Value *> &ChecksToHoist,
306
SmallVectorImpl<Value *> &ChecksToWiden,
307
Instruction *ToWiden) {
308
auto InsertPt = findInsertionPointForWideCondition(ToWiden);
309
auto MergedCheck = mergeChecks(ChecksToHoist, ChecksToWiden, InsertPt);
310
Value *Result = MergedCheck ? *MergedCheck
311
: hoistChecks(ChecksToHoist,
312
getCondition(ToWiden), *InsertPt);
313
314
if (isGuardAsWidenableBranch(ToWiden)) {
315
setWidenableBranchCond(cast<BranchInst>(ToWiden), Result);
316
return;
317
}
318
setCondition(ToWiden, Result);
319
}
320
321
public:
322
explicit GuardWideningImpl(DominatorTree &DT, PostDominatorTree *PDT,
323
LoopInfo &LI, AssumptionCache &AC,
324
MemorySSAUpdater *MSSAU, DomTreeNode *Root,
325
std::function<bool(BasicBlock *)> BlockFilter)
326
: DT(DT), PDT(PDT), LI(LI), AC(AC), MSSAU(MSSAU), Root(Root),
327
BlockFilter(BlockFilter) {}
328
329
/// The entry point for this pass.
330
bool run();
331
};
332
}
333
334
static bool isSupportedGuardInstruction(const Instruction *Insn) {
335
if (isGuard(Insn))
336
return true;
337
if (WidenBranchGuards && isGuardAsWidenableBranch(Insn))
338
return true;
339
return false;
340
}
341
342
bool GuardWideningImpl::run() {
343
DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> GuardsInBlock;
344
bool Changed = false;
345
for (auto DFI = df_begin(Root), DFE = df_end(Root);
346
DFI != DFE; ++DFI) {
347
auto *BB = (*DFI)->getBlock();
348
if (!BlockFilter(BB))
349
continue;
350
351
auto &CurrentList = GuardsInBlock[BB];
352
353
for (auto &I : *BB)
354
if (isSupportedGuardInstruction(&I))
355
CurrentList.push_back(cast<Instruction>(&I));
356
357
for (auto *II : CurrentList)
358
Changed |= eliminateInstrViaWidening(II, DFI, GuardsInBlock);
359
}
360
361
assert(EliminatedGuardsAndBranches.empty() || Changed);
362
for (auto *I : EliminatedGuardsAndBranches)
363
if (!WidenedGuards.count(I)) {
364
assert(isa<ConstantInt>(getCondition(I)) && "Should be!");
365
if (isSupportedGuardInstruction(I))
366
eliminateGuard(I, MSSAU);
367
else {
368
assert(isa<BranchInst>(I) &&
369
"Eliminated something other than guard or branch?");
370
++CondBranchEliminated;
371
}
372
}
373
374
return Changed;
375
}
376
377
bool GuardWideningImpl::eliminateInstrViaWidening(
378
Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
379
const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>>
380
&GuardsInBlock) {
381
SmallVector<Value *> ChecksToHoist;
382
parseWidenableGuard(Instr, ChecksToHoist);
383
// Ignore trivial true or false conditions. These instructions will be
384
// trivially eliminated by any cleanup pass. Do not erase them because other
385
// guards can possibly be widened into them.
386
if (ChecksToHoist.empty() ||
387
(ChecksToHoist.size() == 1 && isa<ConstantInt>(ChecksToHoist.front())))
388
return false;
389
390
Instruction *BestSoFar = nullptr;
391
auto BestScoreSoFar = WS_IllegalOrNegative;
392
393
// In the set of dominating guards, find the one we can merge GuardInst with
394
// for the most profit.
395
for (unsigned i = 0, e = DFSI.getPathLength(); i != e; ++i) {
396
auto *CurBB = DFSI.getPath(i)->getBlock();
397
if (!BlockFilter(CurBB))
398
break;
399
assert(GuardsInBlock.count(CurBB) && "Must have been populated by now!");
400
const auto &GuardsInCurBB = GuardsInBlock.find(CurBB)->second;
401
402
auto I = GuardsInCurBB.begin();
403
auto E = Instr->getParent() == CurBB ? find(GuardsInCurBB, Instr)
404
: GuardsInCurBB.end();
405
406
#ifndef NDEBUG
407
{
408
unsigned Index = 0;
409
for (auto &I : *CurBB) {
410
if (Index == GuardsInCurBB.size())
411
break;
412
if (GuardsInCurBB[Index] == &I)
413
Index++;
414
}
415
assert(Index == GuardsInCurBB.size() &&
416
"Guards expected to be in order!");
417
}
418
#endif
419
420
assert((i == (e - 1)) == (Instr->getParent() == CurBB) && "Bad DFS?");
421
422
for (auto *Candidate : make_range(I, E)) {
423
auto WideningPoint = findInsertionPointForWideCondition(Candidate);
424
if (!WideningPoint)
425
continue;
426
SmallVector<Value *> CandidateChecks;
427
parseWidenableGuard(Candidate, CandidateChecks);
428
auto Score = computeWideningScore(Instr, Candidate, *WideningPoint,
429
ChecksToHoist, CandidateChecks);
430
LLVM_DEBUG(dbgs() << "Score between " << *Instr << " and " << *Candidate
431
<< " is " << scoreTypeToString(Score) << "\n");
432
if (Score > BestScoreSoFar) {
433
BestScoreSoFar = Score;
434
BestSoFar = Candidate;
435
}
436
}
437
}
438
439
if (BestScoreSoFar == WS_IllegalOrNegative) {
440
LLVM_DEBUG(dbgs() << "Did not eliminate guard " << *Instr << "\n");
441
return false;
442
}
443
444
assert(BestSoFar != Instr && "Should have never visited same guard!");
445
assert(DT.dominates(BestSoFar, Instr) && "Should be!");
446
447
LLVM_DEBUG(dbgs() << "Widening " << *Instr << " into " << *BestSoFar
448
<< " with score " << scoreTypeToString(BestScoreSoFar)
449
<< "\n");
450
SmallVector<Value *> ChecksToWiden;
451
parseWidenableGuard(BestSoFar, ChecksToWiden);
452
widenGuard(ChecksToHoist, ChecksToWiden, BestSoFar);
453
auto NewGuardCondition = ConstantInt::getTrue(Instr->getContext());
454
setCondition(Instr, NewGuardCondition);
455
EliminatedGuardsAndBranches.push_back(Instr);
456
WidenedGuards.insert(BestSoFar);
457
return true;
458
}
459
460
GuardWideningImpl::WideningScore GuardWideningImpl::computeWideningScore(
461
Instruction *DominatedInstr, Instruction *ToWiden,
462
BasicBlock::iterator WideningPoint, SmallVectorImpl<Value *> &ChecksToHoist,
463
SmallVectorImpl<Value *> &ChecksToWiden) {
464
Loop *DominatedInstrLoop = LI.getLoopFor(DominatedInstr->getParent());
465
Loop *DominatingGuardLoop = LI.getLoopFor(WideningPoint->getParent());
466
bool HoistingOutOfLoop = false;
467
468
if (DominatingGuardLoop != DominatedInstrLoop) {
469
// Be conservative and don't widen into a sibling loop. TODO: If the
470
// sibling is colder, we should consider allowing this.
471
if (DominatingGuardLoop &&
472
!DominatingGuardLoop->contains(DominatedInstrLoop))
473
return WS_IllegalOrNegative;
474
475
HoistingOutOfLoop = true;
476
}
477
478
if (!canBeHoistedTo(ChecksToHoist, WideningPoint))
479
return WS_IllegalOrNegative;
480
// Further in the GuardWideningImpl::hoistChecks the entire condition might be
481
// widened, not the parsed list of checks. So we need to check the possibility
482
// of that condition hoisting.
483
if (!canBeHoistedTo(getCondition(ToWiden), WideningPoint))
484
return WS_IllegalOrNegative;
485
486
// If the guard was conditional executed, it may never be reached
487
// dynamically. There are two potential downsides to hoisting it out of the
488
// conditionally executed region: 1) we may spuriously deopt without need and
489
// 2) we have the extra cost of computing the guard condition in the common
490
// case. At the moment, we really only consider the second in our heuristic
491
// here. TODO: evaluate cost model for spurious deopt
492
// NOTE: As written, this also lets us hoist right over another guard which
493
// is essentially just another spelling for control flow.
494
if (isWideningCondProfitable(ChecksToHoist, ChecksToWiden))
495
return HoistingOutOfLoop ? WS_VeryPositive : WS_Positive;
496
497
if (HoistingOutOfLoop)
498
return WS_Positive;
499
500
// For a given basic block \p BB, return its successor which is guaranteed or
501
// highly likely will be taken as its successor.
502
auto GetLikelySuccessor = [](const BasicBlock * BB)->const BasicBlock * {
503
if (auto *UniqueSucc = BB->getUniqueSuccessor())
504
return UniqueSucc;
505
auto *Term = BB->getTerminator();
506
Value *Cond = nullptr;
507
const BasicBlock *IfTrue = nullptr, *IfFalse = nullptr;
508
using namespace PatternMatch;
509
if (!match(Term, m_Br(m_Value(Cond), m_BasicBlock(IfTrue),
510
m_BasicBlock(IfFalse))))
511
return nullptr;
512
// For constant conditions, only one dynamical successor is possible
513
if (auto *ConstCond = dyn_cast<ConstantInt>(Cond))
514
return ConstCond->isAllOnesValue() ? IfTrue : IfFalse;
515
// If one of successors ends with deopt, another one is likely.
516
if (IfFalse->getPostdominatingDeoptimizeCall())
517
return IfTrue;
518
if (IfTrue->getPostdominatingDeoptimizeCall())
519
return IfFalse;
520
// TODO: Use branch frequency metatada to allow hoisting through non-deopt
521
// branches?
522
return nullptr;
523
};
524
525
// Returns true if we might be hoisting above explicit control flow into a
526
// considerably hotter block. Note that this completely ignores implicit
527
// control flow (guards, calls which throw, etc...). That choice appears
528
// arbitrary (we assume that implicit control flow exits are all rare).
529
auto MaybeHoistingToHotterBlock = [&]() {
530
const auto *DominatingBlock = WideningPoint->getParent();
531
const auto *DominatedBlock = DominatedInstr->getParent();
532
533
// Descend as low as we can, always taking the likely successor.
534
assert(DT.isReachableFromEntry(DominatingBlock) && "Unreached code");
535
assert(DT.isReachableFromEntry(DominatedBlock) && "Unreached code");
536
assert(DT.dominates(DominatingBlock, DominatedBlock) && "No dominance");
537
while (DominatedBlock != DominatingBlock) {
538
auto *LikelySucc = GetLikelySuccessor(DominatingBlock);
539
// No likely successor?
540
if (!LikelySucc)
541
break;
542
// Only go down the dominator tree.
543
if (!DT.properlyDominates(DominatingBlock, LikelySucc))
544
break;
545
DominatingBlock = LikelySucc;
546
}
547
548
// Found?
549
if (DominatedBlock == DominatingBlock)
550
return false;
551
// We followed the likely successor chain and went past the dominated
552
// block. It means that the dominated guard is in dead/very cold code.
553
if (!DT.dominates(DominatingBlock, DominatedBlock))
554
return true;
555
// TODO: diamond, triangle cases
556
if (!PDT)
557
return true;
558
return !PDT->dominates(DominatedBlock, DominatingBlock);
559
};
560
561
return MaybeHoistingToHotterBlock() ? WS_IllegalOrNegative : WS_Neutral;
562
}
563
564
bool GuardWideningImpl::canBeHoistedTo(
565
const Value *V, BasicBlock::iterator Loc,
566
SmallPtrSetImpl<const Instruction *> &Visited) const {
567
auto *Inst = dyn_cast<Instruction>(V);
568
if (!Inst || DT.dominates(Inst, Loc) || Visited.count(Inst))
569
return true;
570
571
if (!isSafeToSpeculativelyExecute(Inst, Loc, &AC, &DT) ||
572
Inst->mayReadFromMemory())
573
return false;
574
575
Visited.insert(Inst);
576
577
// We only want to go _up_ the dominance chain when recursing.
578
assert(!isa<PHINode>(Loc) &&
579
"PHIs should return false for isSafeToSpeculativelyExecute");
580
assert(DT.isReachableFromEntry(Inst->getParent()) &&
581
"We did a DFS from the block entry!");
582
return all_of(Inst->operands(),
583
[&](Value *Op) { return canBeHoistedTo(Op, Loc, Visited); });
584
}
585
586
void GuardWideningImpl::makeAvailableAt(Value *V,
587
BasicBlock::iterator Loc) const {
588
auto *Inst = dyn_cast<Instruction>(V);
589
if (!Inst || DT.dominates(Inst, Loc))
590
return;
591
592
assert(isSafeToSpeculativelyExecute(Inst, Loc, &AC, &DT) &&
593
!Inst->mayReadFromMemory() &&
594
"Should've checked with canBeHoistedTo!");
595
596
for (Value *Op : Inst->operands())
597
makeAvailableAt(Op, Loc);
598
599
Inst->moveBefore(*Loc->getParent(), Loc);
600
}
601
602
// Return Instruction before which we can insert freeze for the value V as close
603
// to def as possible. If there is no place to add freeze, return empty.
604
static std::optional<BasicBlock::iterator>
605
getFreezeInsertPt(Value *V, const DominatorTree &DT) {
606
auto *I = dyn_cast<Instruction>(V);
607
if (!I)
608
return DT.getRoot()->getFirstNonPHIOrDbgOrAlloca()->getIterator();
609
610
std::optional<BasicBlock::iterator> Res = I->getInsertionPointAfterDef();
611
// If there is no place to add freeze - return nullptr.
612
if (!Res || !DT.dominates(I, &**Res))
613
return std::nullopt;
614
615
Instruction *ResInst = &**Res;
616
617
// If there is a User dominated by original I, then it should be dominated
618
// by Freeze instruction as well.
619
if (any_of(I->users(), [&](User *U) {
620
Instruction *User = cast<Instruction>(U);
621
return ResInst != User && DT.dominates(I, User) &&
622
!DT.dominates(ResInst, User);
623
}))
624
return std::nullopt;
625
return Res;
626
}
627
628
Value *GuardWideningImpl::freezeAndPush(Value *Orig,
629
BasicBlock::iterator InsertPt) {
630
if (isGuaranteedNotToBePoison(Orig, nullptr, InsertPt, &DT))
631
return Orig;
632
std::optional<BasicBlock::iterator> InsertPtAtDef =
633
getFreezeInsertPt(Orig, DT);
634
if (!InsertPtAtDef) {
635
FreezeInst *FI = new FreezeInst(Orig, "gw.freeze");
636
FI->insertBefore(*InsertPt->getParent(), InsertPt);
637
return FI;
638
}
639
if (isa<Constant>(Orig) || isa<GlobalValue>(Orig)) {
640
BasicBlock::iterator InsertPt = *InsertPtAtDef;
641
FreezeInst *FI = new FreezeInst(Orig, "gw.freeze");
642
FI->insertBefore(*InsertPt->getParent(), InsertPt);
643
return FI;
644
}
645
646
SmallSet<Value *, 16> Visited;
647
SmallVector<Value *, 16> Worklist;
648
SmallSet<Instruction *, 16> DropPoisonFlags;
649
SmallVector<Value *, 16> NeedFreeze;
650
DenseMap<Value *, FreezeInst *> CacheOfFreezes;
651
652
// A bit overloaded data structures. Visited contains constant/GV
653
// if we already met it. In this case CacheOfFreezes has a freeze if it is
654
// required.
655
auto handleConstantOrGlobal = [&](Use &U) {
656
Value *Def = U.get();
657
if (!isa<Constant>(Def) && !isa<GlobalValue>(Def))
658
return false;
659
660
if (Visited.insert(Def).second) {
661
if (isGuaranteedNotToBePoison(Def, nullptr, InsertPt, &DT))
662
return true;
663
BasicBlock::iterator InsertPt = *getFreezeInsertPt(Def, DT);
664
FreezeInst *FI = new FreezeInst(Def, Def->getName() + ".gw.fr");
665
FI->insertBefore(*InsertPt->getParent(), InsertPt);
666
CacheOfFreezes[Def] = FI;
667
}
668
669
if (CacheOfFreezes.count(Def))
670
U.set(CacheOfFreezes[Def]);
671
return true;
672
};
673
674
Worklist.push_back(Orig);
675
while (!Worklist.empty()) {
676
Value *V = Worklist.pop_back_val();
677
if (!Visited.insert(V).second)
678
continue;
679
680
if (isGuaranteedNotToBePoison(V, nullptr, InsertPt, &DT))
681
continue;
682
683
Instruction *I = dyn_cast<Instruction>(V);
684
if (!I || canCreateUndefOrPoison(cast<Operator>(I),
685
/*ConsiderFlagsAndMetadata*/ false)) {
686
NeedFreeze.push_back(V);
687
continue;
688
}
689
// Check all operands. If for any of them we cannot insert Freeze,
690
// stop here. Otherwise, iterate.
691
if (any_of(I->operands(), [&](Value *Op) {
692
return isa<Instruction>(Op) && !getFreezeInsertPt(Op, DT);
693
})) {
694
NeedFreeze.push_back(I);
695
continue;
696
}
697
DropPoisonFlags.insert(I);
698
for (Use &U : I->operands())
699
if (!handleConstantOrGlobal(U))
700
Worklist.push_back(U.get());
701
}
702
for (Instruction *I : DropPoisonFlags)
703
I->dropPoisonGeneratingAnnotations();
704
705
Value *Result = Orig;
706
for (Value *V : NeedFreeze) {
707
BasicBlock::iterator FreezeInsertPt = *getFreezeInsertPt(V, DT);
708
FreezeInst *FI = new FreezeInst(V, V->getName() + ".gw.fr");
709
FI->insertBefore(*FreezeInsertPt->getParent(), FreezeInsertPt);
710
++FreezeAdded;
711
if (V == Orig)
712
Result = FI;
713
V->replaceUsesWithIf(
714
FI, [&](const Use & U)->bool { return U.getUser() != FI; });
715
}
716
717
return Result;
718
}
719
720
std::optional<Value *>
721
GuardWideningImpl::mergeChecks(SmallVectorImpl<Value *> &ChecksToHoist,
722
SmallVectorImpl<Value *> &ChecksToWiden,
723
std::optional<BasicBlock::iterator> InsertPt) {
724
using namespace llvm::PatternMatch;
725
726
Value *Result = nullptr;
727
{
728
// L >u C0 && L >u C1 -> L >u max(C0, C1)
729
ConstantInt *RHS0, *RHS1;
730
Value *LHS;
731
ICmpInst::Predicate Pred0, Pred1;
732
// TODO: Support searching for pairs to merge from both whole lists of
733
// ChecksToHoist and ChecksToWiden.
734
if (ChecksToWiden.size() == 1 && ChecksToHoist.size() == 1 &&
735
match(ChecksToWiden.front(),
736
m_ICmp(Pred0, m_Value(LHS), m_ConstantInt(RHS0))) &&
737
match(ChecksToHoist.front(),
738
m_ICmp(Pred1, m_Specific(LHS), m_ConstantInt(RHS1)))) {
739
740
ConstantRange CR0 =
741
ConstantRange::makeExactICmpRegion(Pred0, RHS0->getValue());
742
ConstantRange CR1 =
743
ConstantRange::makeExactICmpRegion(Pred1, RHS1->getValue());
744
745
// Given what we're doing here and the semantics of guards, it would
746
// be correct to use a subset intersection, but that may be too
747
// aggressive in cases we care about.
748
if (std::optional<ConstantRange> Intersect =
749
CR0.exactIntersectWith(CR1)) {
750
APInt NewRHSAP;
751
CmpInst::Predicate Pred;
752
if (Intersect->getEquivalentICmp(Pred, NewRHSAP)) {
753
if (InsertPt) {
754
ConstantInt *NewRHS =
755
ConstantInt::get((*InsertPt)->getContext(), NewRHSAP);
756
assert(canBeHoistedTo(LHS, *InsertPt) && "must be");
757
makeAvailableAt(LHS, *InsertPt);
758
Result = new ICmpInst(*InsertPt, Pred, LHS, NewRHS, "wide.chk");
759
}
760
return Result;
761
}
762
}
763
}
764
}
765
766
{
767
SmallVector<GuardWideningImpl::RangeCheck, 4> Checks, CombinedChecks;
768
if (parseRangeChecks(ChecksToWiden, Checks) &&
769
parseRangeChecks(ChecksToHoist, Checks) &&
770
combineRangeChecks(Checks, CombinedChecks)) {
771
if (InsertPt) {
772
for (auto &RC : CombinedChecks) {
773
makeAvailableAt(RC.getCheckInst(), *InsertPt);
774
if (Result)
775
Result = BinaryOperator::CreateAnd(RC.getCheckInst(), Result, "",
776
*InsertPt);
777
else
778
Result = RC.getCheckInst();
779
}
780
assert(Result && "Failed to find result value");
781
Result->setName("wide.chk");
782
Result = freezeAndPush(Result, *InsertPt);
783
}
784
return Result;
785
}
786
}
787
// We were not able to compute ChecksToHoist AND ChecksToWiden for the price
788
// of one.
789
return std::nullopt;
790
}
791
792
Value *GuardWideningImpl::hoistChecks(SmallVectorImpl<Value *> &ChecksToHoist,
793
Value *OldCondition,
794
BasicBlock::iterator InsertPt) {
795
assert(!ChecksToHoist.empty());
796
IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
797
makeAvailableAt(ChecksToHoist, InsertPt);
798
makeAvailableAt(OldCondition, InsertPt);
799
Value *Result = Builder.CreateAnd(ChecksToHoist);
800
Result = freezeAndPush(Result, InsertPt);
801
Result = Builder.CreateAnd(OldCondition, Result);
802
Result->setName("wide.chk");
803
return Result;
804
}
805
806
bool GuardWideningImpl::parseRangeChecks(
807
Value *CheckCond, SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks) {
808
using namespace llvm::PatternMatch;
809
810
auto *IC = dyn_cast<ICmpInst>(CheckCond);
811
if (!IC || !IC->getOperand(0)->getType()->isIntegerTy() ||
812
(IC->getPredicate() != ICmpInst::ICMP_ULT &&
813
IC->getPredicate() != ICmpInst::ICMP_UGT))
814
return false;
815
816
const Value *CmpLHS = IC->getOperand(0), *CmpRHS = IC->getOperand(1);
817
if (IC->getPredicate() == ICmpInst::ICMP_UGT)
818
std::swap(CmpLHS, CmpRHS);
819
820
auto &DL = IC->getDataLayout();
821
822
GuardWideningImpl::RangeCheck Check(
823
CmpLHS, cast<ConstantInt>(ConstantInt::getNullValue(CmpRHS->getType())),
824
CmpRHS, IC);
825
826
if (!isKnownNonNegative(Check.getLength(), DL))
827
return false;
828
829
// What we have in \c Check now is a correct interpretation of \p CheckCond.
830
// Try to see if we can move some constant offsets into the \c Offset field.
831
832
bool Changed;
833
auto &Ctx = CheckCond->getContext();
834
835
do {
836
Value *OpLHS;
837
ConstantInt *OpRHS;
838
Changed = false;
839
840
#ifndef NDEBUG
841
auto *BaseInst = dyn_cast<Instruction>(Check.getBase());
842
assert((!BaseInst || DT.isReachableFromEntry(BaseInst->getParent())) &&
843
"Unreachable instruction?");
844
#endif
845
846
if (match(Check.getBase(), m_Add(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
847
Check.setBase(OpLHS);
848
APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
849
Check.setOffset(ConstantInt::get(Ctx, NewOffset));
850
Changed = true;
851
} else if (match(Check.getBase(),
852
m_Or(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
853
KnownBits Known = computeKnownBits(OpLHS, DL);
854
if ((OpRHS->getValue() & Known.Zero) == OpRHS->getValue()) {
855
Check.setBase(OpLHS);
856
APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
857
Check.setOffset(ConstantInt::get(Ctx, NewOffset));
858
Changed = true;
859
}
860
}
861
} while (Changed);
862
863
Checks.push_back(Check);
864
return true;
865
}
866
867
bool GuardWideningImpl::combineRangeChecks(
868
SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks,
869
SmallVectorImpl<GuardWideningImpl::RangeCheck> &RangeChecksOut) const {
870
unsigned OldCount = Checks.size();
871
while (!Checks.empty()) {
872
// Pick all of the range checks with a specific base and length, and try to
873
// merge them.
874
const Value *CurrentBase = Checks.front().getBase();
875
const Value *CurrentLength = Checks.front().getLength();
876
877
SmallVector<GuardWideningImpl::RangeCheck, 3> CurrentChecks;
878
879
auto IsCurrentCheck = [&](GuardWideningImpl::RangeCheck &RC) {
880
return RC.getBase() == CurrentBase && RC.getLength() == CurrentLength;
881
};
882
883
copy_if(Checks, std::back_inserter(CurrentChecks), IsCurrentCheck);
884
erase_if(Checks, IsCurrentCheck);
885
886
assert(CurrentChecks.size() != 0 && "We know we have at least one!");
887
888
if (CurrentChecks.size() < 3) {
889
llvm::append_range(RangeChecksOut, CurrentChecks);
890
continue;
891
}
892
893
// CurrentChecks.size() will typically be 3 here, but so far there has been
894
// no need to hard-code that fact.
895
896
llvm::sort(CurrentChecks, [&](const GuardWideningImpl::RangeCheck &LHS,
897
const GuardWideningImpl::RangeCheck &RHS) {
898
return LHS.getOffsetValue().slt(RHS.getOffsetValue());
899
});
900
901
// Note: std::sort should not invalidate the ChecksStart iterator.
902
903
const ConstantInt *MinOffset = CurrentChecks.front().getOffset();
904
const ConstantInt *MaxOffset = CurrentChecks.back().getOffset();
905
906
unsigned BitWidth = MaxOffset->getValue().getBitWidth();
907
if ((MaxOffset->getValue() - MinOffset->getValue())
908
.ugt(APInt::getSignedMinValue(BitWidth)))
909
return false;
910
911
APInt MaxDiff = MaxOffset->getValue() - MinOffset->getValue();
912
const APInt &HighOffset = MaxOffset->getValue();
913
auto OffsetOK = [&](const GuardWideningImpl::RangeCheck &RC) {
914
return (HighOffset - RC.getOffsetValue()).ult(MaxDiff);
915
};
916
917
if (MaxDiff.isMinValue() || !all_of(drop_begin(CurrentChecks), OffsetOK))
918
return false;
919
920
// We have a series of f+1 checks as:
921
//
922
// I+k_0 u< L ... Chk_0
923
// I+k_1 u< L ... Chk_1
924
// ...
925
// I+k_f u< L ... Chk_f
926
//
927
// with forall i in [0,f]: k_f-k_i u< k_f-k_0 ... Precond_0
928
// k_f-k_0 u< INT_MIN+k_f ... Precond_1
929
// k_f != k_0 ... Precond_2
930
//
931
// Claim:
932
// Chk_0 AND Chk_f implies all the other checks
933
//
934
// Informal proof sketch:
935
//
936
// We will show that the integer range [I+k_0,I+k_f] does not unsigned-wrap
937
// (i.e. going from I+k_0 to I+k_f does not cross the -1,0 boundary) and
938
// thus I+k_f is the greatest unsigned value in that range.
939
//
940
// This combined with Ckh_(f+1) shows that everything in that range is u< L.
941
// Via Precond_0 we know that all of the indices in Chk_0 through Chk_(f+1)
942
// lie in [I+k_0,I+k_f], this proving our claim.
943
//
944
// To see that [I+k_0,I+k_f] is not a wrapping range, note that there are
945
// two possibilities: I+k_0 u< I+k_f or I+k_0 >u I+k_f (they can't be equal
946
// since k_0 != k_f). In the former case, [I+k_0,I+k_f] is not a wrapping
947
// range by definition, and the latter case is impossible:
948
//
949
// 0-----I+k_f---I+k_0----L---INT_MAX,INT_MIN------------------(-1)
950
// xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
951
//
952
// For Chk_0 to succeed, we'd have to have k_f-k_0 (the range highlighted
953
// with 'x' above) to be at least >u INT_MIN.
954
955
RangeChecksOut.emplace_back(CurrentChecks.front());
956
RangeChecksOut.emplace_back(CurrentChecks.back());
957
}
958
959
assert(RangeChecksOut.size() <= OldCount && "We pessimized!");
960
return RangeChecksOut.size() != OldCount;
961
}
962
963
#ifndef NDEBUG
964
StringRef GuardWideningImpl::scoreTypeToString(WideningScore WS) {
965
switch (WS) {
966
case WS_IllegalOrNegative:
967
return "IllegalOrNegative";
968
case WS_Neutral:
969
return "Neutral";
970
case WS_Positive:
971
return "Positive";
972
case WS_VeryPositive:
973
return "VeryPositive";
974
}
975
976
llvm_unreachable("Fully covered switch above!");
977
}
978
#endif
979
980
PreservedAnalyses GuardWideningPass::run(Function &F,
981
FunctionAnalysisManager &AM) {
982
// Avoid requesting analyses if there are no guards or widenable conditions.
983
auto *GuardDecl = F.getParent()->getFunction(
984
Intrinsic::getName(Intrinsic::experimental_guard));
985
bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
986
auto *WCDecl = F.getParent()->getFunction(
987
Intrinsic::getName(Intrinsic::experimental_widenable_condition));
988
bool HasWidenableConditions = WCDecl && !WCDecl->use_empty();
989
if (!HasIntrinsicGuards && !HasWidenableConditions)
990
return PreservedAnalyses::all();
991
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
992
auto &LI = AM.getResult<LoopAnalysis>(F);
993
auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
994
auto &AC = AM.getResult<AssumptionAnalysis>(F);
995
auto *MSSAA = AM.getCachedResult<MemorySSAAnalysis>(F);
996
std::unique_ptr<MemorySSAUpdater> MSSAU;
997
if (MSSAA)
998
MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAA->getMSSA());
999
if (!GuardWideningImpl(DT, &PDT, LI, AC, MSSAU ? MSSAU.get() : nullptr,
1000
DT.getRootNode(), [](BasicBlock *) { return true; })
1001
.run())
1002
return PreservedAnalyses::all();
1003
1004
PreservedAnalyses PA;
1005
PA.preserveSet<CFGAnalyses>();
1006
PA.preserve<MemorySSAAnalysis>();
1007
return PA;
1008
}
1009
1010
PreservedAnalyses GuardWideningPass::run(Loop &L, LoopAnalysisManager &AM,
1011
LoopStandardAnalysisResults &AR,
1012
LPMUpdater &U) {
1013
BasicBlock *RootBB = L.getLoopPredecessor();
1014
if (!RootBB)
1015
RootBB = L.getHeader();
1016
auto BlockFilter = [&](BasicBlock *BB) {
1017
return BB == RootBB || L.contains(BB);
1018
};
1019
std::unique_ptr<MemorySSAUpdater> MSSAU;
1020
if (AR.MSSA)
1021
MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA);
1022
if (!GuardWideningImpl(AR.DT, nullptr, AR.LI, AR.AC,
1023
MSSAU ? MSSAU.get() : nullptr, AR.DT.getNode(RootBB),
1024
BlockFilter)
1025
.run())
1026
return PreservedAnalyses::all();
1027
1028
auto PA = getLoopPassPreservedAnalyses();
1029
if (AR.MSSA)
1030
PA.preserve<MemorySSAAnalysis>();
1031
return PA;
1032
}
1033
1034