Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp
35269 views
1
//===- InferAddressSpace.cpp - --------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// CUDA C/C++ includes memory space designation as variable type qualifers (such
10
// as __global__ and __shared__). Knowing the space of a memory access allows
11
// CUDA compilers to emit faster PTX loads and stores. For example, a load from
12
// shared memory can be translated to `ld.shared` which is roughly 10% faster
13
// than a generic `ld` on an NVIDIA Tesla K40c.
14
//
15
// Unfortunately, type qualifiers only apply to variable declarations, so CUDA
16
// compilers must infer the memory space of an address expression from
17
// type-qualified variables.
18
//
19
// LLVM IR uses non-zero (so-called) specific address spaces to represent memory
20
// spaces (e.g. addrspace(3) means shared memory). The Clang frontend
21
// places only type-qualified variables in specific address spaces, and then
22
// conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
23
// (so-called the generic address space) for other instructions to use.
24
//
25
// For example, the Clang translates the following CUDA code
26
// __shared__ float a[10];
27
// float v = a[i];
28
// to
29
// %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
30
// %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
31
// %v = load float, float* %1 ; emits ld.f32
32
// @a is in addrspace(3) since it's type-qualified, but its use from %1 is
33
// redirected to %0 (the generic version of @a).
34
//
35
// The optimization implemented in this file propagates specific address spaces
36
// from type-qualified variable declarations to its users. For example, it
37
// optimizes the above IR to
38
// %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
39
// %v = load float addrspace(3)* %1 ; emits ld.shared.f32
40
// propagating the addrspace(3) from @a to %1. As the result, the NVPTX
41
// codegen is able to emit ld.shared.f32 for %v.
42
//
43
// Address space inference works in two steps. First, it uses a data-flow
44
// analysis to infer as many generic pointers as possible to point to only one
45
// specific address space. In the above example, it can prove that %1 only
46
// points to addrspace(3). This algorithm was published in
47
// CUDA: Compiling and optimizing for a GPU platform
48
// Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
49
// ICCS 2012
50
//
51
// Then, address space inference replaces all refinable generic pointers with
52
// equivalent specific pointers.
53
//
54
// The major challenge of implementing this optimization is handling PHINodes,
55
// which may create loops in the data flow graph. This brings two complications.
56
//
57
// First, the data flow analysis in Step 1 needs to be circular. For example,
58
// %generic.input = addrspacecast float addrspace(3)* %input to float*
59
// loop:
60
// %y = phi [ %generic.input, %y2 ]
61
// %y2 = getelementptr %y, 1
62
// %v = load %y2
63
// br ..., label %loop, ...
64
// proving %y specific requires proving both %generic.input and %y2 specific,
65
// but proving %y2 specific circles back to %y. To address this complication,
66
// the data flow analysis operates on a lattice:
67
// uninitialized > specific address spaces > generic.
68
// All address expressions (our implementation only considers phi, bitcast,
69
// addrspacecast, and getelementptr) start with the uninitialized address space.
70
// The monotone transfer function moves the address space of a pointer down a
71
// lattice path from uninitialized to specific and then to generic. A join
72
// operation of two different specific address spaces pushes the expression down
73
// to the generic address space. The analysis completes once it reaches a fixed
74
// point.
75
//
76
// Second, IR rewriting in Step 2 also needs to be circular. For example,
77
// converting %y to addrspace(3) requires the compiler to know the converted
78
// %y2, but converting %y2 needs the converted %y. To address this complication,
79
// we break these cycles using "poison" placeholders. When converting an
80
// instruction `I` to a new address space, if its operand `Op` is not converted
81
// yet, we let `I` temporarily use `poison` and fix all the uses later.
82
// For instance, our algorithm first converts %y to
83
// %y' = phi float addrspace(3)* [ %input, poison ]
84
// Then, it converts %y2 to
85
// %y2' = getelementptr %y', 1
86
// Finally, it fixes the poison in %y' so that
87
// %y' = phi float addrspace(3)* [ %input, %y2' ]
88
//
89
//===----------------------------------------------------------------------===//
90
91
#include "llvm/Transforms/Scalar/InferAddressSpaces.h"
92
#include "llvm/ADT/ArrayRef.h"
93
#include "llvm/ADT/DenseMap.h"
94
#include "llvm/ADT/DenseSet.h"
95
#include "llvm/ADT/SetVector.h"
96
#include "llvm/ADT/SmallVector.h"
97
#include "llvm/Analysis/AssumptionCache.h"
98
#include "llvm/Analysis/TargetTransformInfo.h"
99
#include "llvm/Analysis/ValueTracking.h"
100
#include "llvm/IR/BasicBlock.h"
101
#include "llvm/IR/Constant.h"
102
#include "llvm/IR/Constants.h"
103
#include "llvm/IR/Dominators.h"
104
#include "llvm/IR/Function.h"
105
#include "llvm/IR/IRBuilder.h"
106
#include "llvm/IR/InstIterator.h"
107
#include "llvm/IR/Instruction.h"
108
#include "llvm/IR/Instructions.h"
109
#include "llvm/IR/IntrinsicInst.h"
110
#include "llvm/IR/Intrinsics.h"
111
#include "llvm/IR/LLVMContext.h"
112
#include "llvm/IR/Operator.h"
113
#include "llvm/IR/PassManager.h"
114
#include "llvm/IR/Type.h"
115
#include "llvm/IR/Use.h"
116
#include "llvm/IR/User.h"
117
#include "llvm/IR/Value.h"
118
#include "llvm/IR/ValueHandle.h"
119
#include "llvm/InitializePasses.h"
120
#include "llvm/Pass.h"
121
#include "llvm/Support/Casting.h"
122
#include "llvm/Support/CommandLine.h"
123
#include "llvm/Support/Compiler.h"
124
#include "llvm/Support/Debug.h"
125
#include "llvm/Support/ErrorHandling.h"
126
#include "llvm/Support/raw_ostream.h"
127
#include "llvm/Transforms/Scalar.h"
128
#include "llvm/Transforms/Utils/Local.h"
129
#include "llvm/Transforms/Utils/ValueMapper.h"
130
#include <cassert>
131
#include <iterator>
132
#include <limits>
133
#include <utility>
134
#include <vector>
135
136
#define DEBUG_TYPE "infer-address-spaces"
137
138
using namespace llvm;
139
140
static cl::opt<bool> AssumeDefaultIsFlatAddressSpace(
141
"assume-default-is-flat-addrspace", cl::init(false), cl::ReallyHidden,
142
cl::desc("The default address space is assumed as the flat address space. "
143
"This is mainly for test purpose."));
144
145
static const unsigned UninitializedAddressSpace =
146
std::numeric_limits<unsigned>::max();
147
148
namespace {
149
150
using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
151
// Different from ValueToAddrSpaceMapTy, where a new addrspace is inferred on
152
// the *def* of a value, PredicatedAddrSpaceMapTy is map where a new
153
// addrspace is inferred on the *use* of a pointer. This map is introduced to
154
// infer addrspace from the addrspace predicate assumption built from assume
155
// intrinsic. In that scenario, only specific uses (under valid assumption
156
// context) could be inferred with a new addrspace.
157
using PredicatedAddrSpaceMapTy =
158
DenseMap<std::pair<const Value *, const Value *>, unsigned>;
159
using PostorderStackTy = llvm::SmallVector<PointerIntPair<Value *, 1, bool>, 4>;
160
161
class InferAddressSpaces : public FunctionPass {
162
unsigned FlatAddrSpace = 0;
163
164
public:
165
static char ID;
166
167
InferAddressSpaces()
168
: FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) {
169
initializeInferAddressSpacesPass(*PassRegistry::getPassRegistry());
170
}
171
InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) {
172
initializeInferAddressSpacesPass(*PassRegistry::getPassRegistry());
173
}
174
175
void getAnalysisUsage(AnalysisUsage &AU) const override {
176
AU.setPreservesCFG();
177
AU.addPreserved<DominatorTreeWrapperPass>();
178
AU.addRequired<AssumptionCacheTracker>();
179
AU.addRequired<TargetTransformInfoWrapperPass>();
180
}
181
182
bool runOnFunction(Function &F) override;
183
};
184
185
class InferAddressSpacesImpl {
186
AssumptionCache &AC;
187
const DominatorTree *DT = nullptr;
188
const TargetTransformInfo *TTI = nullptr;
189
const DataLayout *DL = nullptr;
190
191
/// Target specific address space which uses of should be replaced if
192
/// possible.
193
unsigned FlatAddrSpace = 0;
194
195
// Try to update the address space of V. If V is updated, returns true and
196
// false otherwise.
197
bool updateAddressSpace(const Value &V,
198
ValueToAddrSpaceMapTy &InferredAddrSpace,
199
PredicatedAddrSpaceMapTy &PredicatedAS) const;
200
201
// Tries to infer the specific address space of each address expression in
202
// Postorder.
203
void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
204
ValueToAddrSpaceMapTy &InferredAddrSpace,
205
PredicatedAddrSpaceMapTy &PredicatedAS) const;
206
207
bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
208
209
Value *cloneInstructionWithNewAddressSpace(
210
Instruction *I, unsigned NewAddrSpace,
211
const ValueToValueMapTy &ValueWithNewAddrSpace,
212
const PredicatedAddrSpaceMapTy &PredicatedAS,
213
SmallVectorImpl<const Use *> *PoisonUsesToFix) const;
214
215
// Changes the flat address expressions in function F to point to specific
216
// address spaces if InferredAddrSpace says so. Postorder is the postorder of
217
// all flat expressions in the use-def graph of function F.
218
bool
219
rewriteWithNewAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
220
const ValueToAddrSpaceMapTy &InferredAddrSpace,
221
const PredicatedAddrSpaceMapTy &PredicatedAS,
222
Function *F) const;
223
224
void appendsFlatAddressExpressionToPostorderStack(
225
Value *V, PostorderStackTy &PostorderStack,
226
DenseSet<Value *> &Visited) const;
227
228
bool rewriteIntrinsicOperands(IntrinsicInst *II, Value *OldV,
229
Value *NewV) const;
230
void collectRewritableIntrinsicOperands(IntrinsicInst *II,
231
PostorderStackTy &PostorderStack,
232
DenseSet<Value *> &Visited) const;
233
234
std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
235
236
Value *cloneValueWithNewAddressSpace(
237
Value *V, unsigned NewAddrSpace,
238
const ValueToValueMapTy &ValueWithNewAddrSpace,
239
const PredicatedAddrSpaceMapTy &PredicatedAS,
240
SmallVectorImpl<const Use *> *PoisonUsesToFix) const;
241
unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
242
243
unsigned getPredicatedAddrSpace(const Value &V, Value *Opnd) const;
244
245
public:
246
InferAddressSpacesImpl(AssumptionCache &AC, const DominatorTree *DT,
247
const TargetTransformInfo *TTI, unsigned FlatAddrSpace)
248
: AC(AC), DT(DT), TTI(TTI), FlatAddrSpace(FlatAddrSpace) {}
249
bool run(Function &F);
250
};
251
252
} // end anonymous namespace
253
254
char InferAddressSpaces::ID = 0;
255
256
INITIALIZE_PASS_BEGIN(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
257
false, false)
258
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
259
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
260
INITIALIZE_PASS_END(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
261
false, false)
262
263
static Type *getPtrOrVecOfPtrsWithNewAS(Type *Ty, unsigned NewAddrSpace) {
264
assert(Ty->isPtrOrPtrVectorTy());
265
PointerType *NPT = PointerType::get(Ty->getContext(), NewAddrSpace);
266
return Ty->getWithNewType(NPT);
267
}
268
269
// Check whether that's no-op pointer bicast using a pair of
270
// `ptrtoint`/`inttoptr` due to the missing no-op pointer bitcast over
271
// different address spaces.
272
static bool isNoopPtrIntCastPair(const Operator *I2P, const DataLayout &DL,
273
const TargetTransformInfo *TTI) {
274
assert(I2P->getOpcode() == Instruction::IntToPtr);
275
auto *P2I = dyn_cast<Operator>(I2P->getOperand(0));
276
if (!P2I || P2I->getOpcode() != Instruction::PtrToInt)
277
return false;
278
// Check it's really safe to treat that pair of `ptrtoint`/`inttoptr` as a
279
// no-op cast. Besides checking both of them are no-op casts, as the
280
// reinterpreted pointer may be used in other pointer arithmetic, we also
281
// need to double-check that through the target-specific hook. That ensures
282
// the underlying target also agrees that's a no-op address space cast and
283
// pointer bits are preserved.
284
// The current IR spec doesn't have clear rules on address space casts,
285
// especially a clear definition for pointer bits in non-default address
286
// spaces. It would be undefined if that pointer is dereferenced after an
287
// invalid reinterpret cast. Also, due to the unclearness for the meaning of
288
// bits in non-default address spaces in the current spec, the pointer
289
// arithmetic may also be undefined after invalid pointer reinterpret cast.
290
// However, as we confirm through the target hooks that it's a no-op
291
// addrspacecast, it doesn't matter since the bits should be the same.
292
unsigned P2IOp0AS = P2I->getOperand(0)->getType()->getPointerAddressSpace();
293
unsigned I2PAS = I2P->getType()->getPointerAddressSpace();
294
return CastInst::isNoopCast(Instruction::CastOps(I2P->getOpcode()),
295
I2P->getOperand(0)->getType(), I2P->getType(),
296
DL) &&
297
CastInst::isNoopCast(Instruction::CastOps(P2I->getOpcode()),
298
P2I->getOperand(0)->getType(), P2I->getType(),
299
DL) &&
300
(P2IOp0AS == I2PAS || TTI->isNoopAddrSpaceCast(P2IOp0AS, I2PAS));
301
}
302
303
// Returns true if V is an address expression.
304
// TODO: Currently, we consider only phi, bitcast, addrspacecast, and
305
// getelementptr operators.
306
static bool isAddressExpression(const Value &V, const DataLayout &DL,
307
const TargetTransformInfo *TTI) {
308
const Operator *Op = dyn_cast<Operator>(&V);
309
if (!Op)
310
return false;
311
312
switch (Op->getOpcode()) {
313
case Instruction::PHI:
314
assert(Op->getType()->isPtrOrPtrVectorTy());
315
return true;
316
case Instruction::BitCast:
317
case Instruction::AddrSpaceCast:
318
case Instruction::GetElementPtr:
319
return true;
320
case Instruction::Select:
321
return Op->getType()->isPtrOrPtrVectorTy();
322
case Instruction::Call: {
323
const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&V);
324
return II && II->getIntrinsicID() == Intrinsic::ptrmask;
325
}
326
case Instruction::IntToPtr:
327
return isNoopPtrIntCastPair(Op, DL, TTI);
328
default:
329
// That value is an address expression if it has an assumed address space.
330
return TTI->getAssumedAddrSpace(&V) != UninitializedAddressSpace;
331
}
332
}
333
334
// Returns the pointer operands of V.
335
//
336
// Precondition: V is an address expression.
337
static SmallVector<Value *, 2>
338
getPointerOperands(const Value &V, const DataLayout &DL,
339
const TargetTransformInfo *TTI) {
340
const Operator &Op = cast<Operator>(V);
341
switch (Op.getOpcode()) {
342
case Instruction::PHI: {
343
auto IncomingValues = cast<PHINode>(Op).incoming_values();
344
return {IncomingValues.begin(), IncomingValues.end()};
345
}
346
case Instruction::BitCast:
347
case Instruction::AddrSpaceCast:
348
case Instruction::GetElementPtr:
349
return {Op.getOperand(0)};
350
case Instruction::Select:
351
return {Op.getOperand(1), Op.getOperand(2)};
352
case Instruction::Call: {
353
const IntrinsicInst &II = cast<IntrinsicInst>(Op);
354
assert(II.getIntrinsicID() == Intrinsic::ptrmask &&
355
"unexpected intrinsic call");
356
return {II.getArgOperand(0)};
357
}
358
case Instruction::IntToPtr: {
359
assert(isNoopPtrIntCastPair(&Op, DL, TTI));
360
auto *P2I = cast<Operator>(Op.getOperand(0));
361
return {P2I->getOperand(0)};
362
}
363
default:
364
llvm_unreachable("Unexpected instruction type.");
365
}
366
}
367
368
bool InferAddressSpacesImpl::rewriteIntrinsicOperands(IntrinsicInst *II,
369
Value *OldV,
370
Value *NewV) const {
371
Module *M = II->getParent()->getParent()->getParent();
372
373
switch (II->getIntrinsicID()) {
374
case Intrinsic::objectsize: {
375
Type *DestTy = II->getType();
376
Type *SrcTy = NewV->getType();
377
Function *NewDecl =
378
Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
379
II->setArgOperand(0, NewV);
380
II->setCalledFunction(NewDecl);
381
return true;
382
}
383
case Intrinsic::ptrmask:
384
// This is handled as an address expression, not as a use memory operation.
385
return false;
386
case Intrinsic::masked_gather: {
387
Type *RetTy = II->getType();
388
Type *NewPtrTy = NewV->getType();
389
Function *NewDecl =
390
Intrinsic::getDeclaration(M, II->getIntrinsicID(), {RetTy, NewPtrTy});
391
II->setArgOperand(0, NewV);
392
II->setCalledFunction(NewDecl);
393
return true;
394
}
395
case Intrinsic::masked_scatter: {
396
Type *ValueTy = II->getOperand(0)->getType();
397
Type *NewPtrTy = NewV->getType();
398
Function *NewDecl =
399
Intrinsic::getDeclaration(M, II->getIntrinsicID(), {ValueTy, NewPtrTy});
400
II->setArgOperand(1, NewV);
401
II->setCalledFunction(NewDecl);
402
return true;
403
}
404
default: {
405
Value *Rewrite = TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
406
if (!Rewrite)
407
return false;
408
if (Rewrite != II)
409
II->replaceAllUsesWith(Rewrite);
410
return true;
411
}
412
}
413
}
414
415
void InferAddressSpacesImpl::collectRewritableIntrinsicOperands(
416
IntrinsicInst *II, PostorderStackTy &PostorderStack,
417
DenseSet<Value *> &Visited) const {
418
auto IID = II->getIntrinsicID();
419
switch (IID) {
420
case Intrinsic::ptrmask:
421
case Intrinsic::objectsize:
422
appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
423
PostorderStack, Visited);
424
break;
425
case Intrinsic::masked_gather:
426
appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
427
PostorderStack, Visited);
428
break;
429
case Intrinsic::masked_scatter:
430
appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(1),
431
PostorderStack, Visited);
432
break;
433
default:
434
SmallVector<int, 2> OpIndexes;
435
if (TTI->collectFlatAddressOperands(OpIndexes, IID)) {
436
for (int Idx : OpIndexes) {
437
appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx),
438
PostorderStack, Visited);
439
}
440
}
441
break;
442
}
443
}
444
445
// Returns all flat address expressions in function F. The elements are
446
// If V is an unvisited flat address expression, appends V to PostorderStack
447
// and marks it as visited.
448
void InferAddressSpacesImpl::appendsFlatAddressExpressionToPostorderStack(
449
Value *V, PostorderStackTy &PostorderStack,
450
DenseSet<Value *> &Visited) const {
451
assert(V->getType()->isPtrOrPtrVectorTy());
452
453
// Generic addressing expressions may be hidden in nested constant
454
// expressions.
455
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
456
// TODO: Look in non-address parts, like icmp operands.
457
if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
458
PostorderStack.emplace_back(CE, false);
459
460
return;
461
}
462
463
if (V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
464
isAddressExpression(*V, *DL, TTI)) {
465
if (Visited.insert(V).second) {
466
PostorderStack.emplace_back(V, false);
467
468
Operator *Op = cast<Operator>(V);
469
for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
470
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
471
if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
472
PostorderStack.emplace_back(CE, false);
473
}
474
}
475
}
476
}
477
}
478
479
// Returns all flat address expressions in function F. The elements are ordered
480
// in postorder.
481
std::vector<WeakTrackingVH>
482
InferAddressSpacesImpl::collectFlatAddressExpressions(Function &F) const {
483
// This function implements a non-recursive postorder traversal of a partial
484
// use-def graph of function F.
485
PostorderStackTy PostorderStack;
486
// The set of visited expressions.
487
DenseSet<Value *> Visited;
488
489
auto PushPtrOperand = [&](Value *Ptr) {
490
appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, Visited);
491
};
492
493
// Look at operations that may be interesting accelerate by moving to a known
494
// address space. We aim at generating after loads and stores, but pure
495
// addressing calculations may also be faster.
496
for (Instruction &I : instructions(F)) {
497
if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
498
PushPtrOperand(GEP->getPointerOperand());
499
} else if (auto *LI = dyn_cast<LoadInst>(&I))
500
PushPtrOperand(LI->getPointerOperand());
501
else if (auto *SI = dyn_cast<StoreInst>(&I))
502
PushPtrOperand(SI->getPointerOperand());
503
else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
504
PushPtrOperand(RMW->getPointerOperand());
505
else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
506
PushPtrOperand(CmpX->getPointerOperand());
507
else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
508
// For memset/memcpy/memmove, any pointer operand can be replaced.
509
PushPtrOperand(MI->getRawDest());
510
511
// Handle 2nd operand for memcpy/memmove.
512
if (auto *MTI = dyn_cast<MemTransferInst>(MI))
513
PushPtrOperand(MTI->getRawSource());
514
} else if (auto *II = dyn_cast<IntrinsicInst>(&I))
515
collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
516
else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
517
if (Cmp->getOperand(0)->getType()->isPtrOrPtrVectorTy()) {
518
PushPtrOperand(Cmp->getOperand(0));
519
PushPtrOperand(Cmp->getOperand(1));
520
}
521
} else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
522
PushPtrOperand(ASC->getPointerOperand());
523
} else if (auto *I2P = dyn_cast<IntToPtrInst>(&I)) {
524
if (isNoopPtrIntCastPair(cast<Operator>(I2P), *DL, TTI))
525
PushPtrOperand(cast<Operator>(I2P->getOperand(0))->getOperand(0));
526
} else if (auto *RI = dyn_cast<ReturnInst>(&I)) {
527
if (auto *RV = RI->getReturnValue();
528
RV && RV->getType()->isPtrOrPtrVectorTy())
529
PushPtrOperand(RV);
530
}
531
}
532
533
std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
534
while (!PostorderStack.empty()) {
535
Value *TopVal = PostorderStack.back().getPointer();
536
// If the operands of the expression on the top are already explored,
537
// adds that expression to the resultant postorder.
538
if (PostorderStack.back().getInt()) {
539
if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
540
Postorder.push_back(TopVal);
541
PostorderStack.pop_back();
542
continue;
543
}
544
// Otherwise, adds its operands to the stack and explores them.
545
PostorderStack.back().setInt(true);
546
// Skip values with an assumed address space.
547
if (TTI->getAssumedAddrSpace(TopVal) == UninitializedAddressSpace) {
548
for (Value *PtrOperand : getPointerOperands(*TopVal, *DL, TTI)) {
549
appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
550
Visited);
551
}
552
}
553
}
554
return Postorder;
555
}
556
557
// A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
558
// of OperandUse.get() in the new address space. If the clone is not ready yet,
559
// returns poison in the new address space as a placeholder.
560
static Value *operandWithNewAddressSpaceOrCreatePoison(
561
const Use &OperandUse, unsigned NewAddrSpace,
562
const ValueToValueMapTy &ValueWithNewAddrSpace,
563
const PredicatedAddrSpaceMapTy &PredicatedAS,
564
SmallVectorImpl<const Use *> *PoisonUsesToFix) {
565
Value *Operand = OperandUse.get();
566
567
Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAddrSpace);
568
569
if (Constant *C = dyn_cast<Constant>(Operand))
570
return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
571
572
if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
573
return NewOperand;
574
575
Instruction *Inst = cast<Instruction>(OperandUse.getUser());
576
auto I = PredicatedAS.find(std::make_pair(Inst, Operand));
577
if (I != PredicatedAS.end()) {
578
// Insert an addrspacecast on that operand before the user.
579
unsigned NewAS = I->second;
580
Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAS);
581
auto *NewI = new AddrSpaceCastInst(Operand, NewPtrTy);
582
NewI->insertBefore(Inst);
583
NewI->setDebugLoc(Inst->getDebugLoc());
584
return NewI;
585
}
586
587
PoisonUsesToFix->push_back(&OperandUse);
588
return PoisonValue::get(NewPtrTy);
589
}
590
591
// Returns a clone of `I` with its operands converted to those specified in
592
// ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
593
// operand whose address space needs to be modified might not exist in
594
// ValueWithNewAddrSpace. In that case, uses poison as a placeholder operand and
595
// adds that operand use to PoisonUsesToFix so that caller can fix them later.
596
//
597
// Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
598
// from a pointer whose type already matches. Therefore, this function returns a
599
// Value* instead of an Instruction*.
600
//
601
// This may also return nullptr in the case the instruction could not be
602
// rewritten.
603
Value *InferAddressSpacesImpl::cloneInstructionWithNewAddressSpace(
604
Instruction *I, unsigned NewAddrSpace,
605
const ValueToValueMapTy &ValueWithNewAddrSpace,
606
const PredicatedAddrSpaceMapTy &PredicatedAS,
607
SmallVectorImpl<const Use *> *PoisonUsesToFix) const {
608
Type *NewPtrType = getPtrOrVecOfPtrsWithNewAS(I->getType(), NewAddrSpace);
609
610
if (I->getOpcode() == Instruction::AddrSpaceCast) {
611
Value *Src = I->getOperand(0);
612
// Because `I` is flat, the source address space must be specific.
613
// Therefore, the inferred address space must be the source space, according
614
// to our algorithm.
615
assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
616
if (Src->getType() != NewPtrType)
617
return new BitCastInst(Src, NewPtrType);
618
return Src;
619
}
620
621
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
622
// Technically the intrinsic ID is a pointer typed argument, so specially
623
// handle calls early.
624
assert(II->getIntrinsicID() == Intrinsic::ptrmask);
625
Value *NewPtr = operandWithNewAddressSpaceOrCreatePoison(
626
II->getArgOperandUse(0), NewAddrSpace, ValueWithNewAddrSpace,
627
PredicatedAS, PoisonUsesToFix);
628
Value *Rewrite =
629
TTI->rewriteIntrinsicWithAddressSpace(II, II->getArgOperand(0), NewPtr);
630
if (Rewrite) {
631
assert(Rewrite != II && "cannot modify this pointer operation in place");
632
return Rewrite;
633
}
634
635
return nullptr;
636
}
637
638
unsigned AS = TTI->getAssumedAddrSpace(I);
639
if (AS != UninitializedAddressSpace) {
640
// For the assumed address space, insert an `addrspacecast` to make that
641
// explicit.
642
Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(I->getType(), AS);
643
auto *NewI = new AddrSpaceCastInst(I, NewPtrTy);
644
NewI->insertAfter(I);
645
NewI->setDebugLoc(I->getDebugLoc());
646
return NewI;
647
}
648
649
// Computes the converted pointer operands.
650
SmallVector<Value *, 4> NewPointerOperands;
651
for (const Use &OperandUse : I->operands()) {
652
if (!OperandUse.get()->getType()->isPtrOrPtrVectorTy())
653
NewPointerOperands.push_back(nullptr);
654
else
655
NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreatePoison(
656
OperandUse, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS,
657
PoisonUsesToFix));
658
}
659
660
switch (I->getOpcode()) {
661
case Instruction::BitCast:
662
return new BitCastInst(NewPointerOperands[0], NewPtrType);
663
case Instruction::PHI: {
664
assert(I->getType()->isPtrOrPtrVectorTy());
665
PHINode *PHI = cast<PHINode>(I);
666
PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
667
for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
668
unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
669
NewPHI->addIncoming(NewPointerOperands[OperandNo],
670
PHI->getIncomingBlock(Index));
671
}
672
return NewPHI;
673
}
674
case Instruction::GetElementPtr: {
675
GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
676
GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
677
GEP->getSourceElementType(), NewPointerOperands[0],
678
SmallVector<Value *, 4>(GEP->indices()));
679
NewGEP->setIsInBounds(GEP->isInBounds());
680
return NewGEP;
681
}
682
case Instruction::Select:
683
assert(I->getType()->isPtrOrPtrVectorTy());
684
return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
685
NewPointerOperands[2], "", nullptr, I);
686
case Instruction::IntToPtr: {
687
assert(isNoopPtrIntCastPair(cast<Operator>(I), *DL, TTI));
688
Value *Src = cast<Operator>(I->getOperand(0))->getOperand(0);
689
if (Src->getType() == NewPtrType)
690
return Src;
691
692
// If we had a no-op inttoptr/ptrtoint pair, we may still have inferred a
693
// source address space from a generic pointer source need to insert a cast
694
// back.
695
return CastInst::CreatePointerBitCastOrAddrSpaceCast(Src, NewPtrType);
696
}
697
default:
698
llvm_unreachable("Unexpected opcode");
699
}
700
}
701
702
// Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
703
// constant expression `CE` with its operands replaced as specified in
704
// ValueWithNewAddrSpace.
705
static Value *cloneConstantExprWithNewAddressSpace(
706
ConstantExpr *CE, unsigned NewAddrSpace,
707
const ValueToValueMapTy &ValueWithNewAddrSpace, const DataLayout *DL,
708
const TargetTransformInfo *TTI) {
709
Type *TargetType =
710
CE->getType()->isPtrOrPtrVectorTy()
711
? getPtrOrVecOfPtrsWithNewAS(CE->getType(), NewAddrSpace)
712
: CE->getType();
713
714
if (CE->getOpcode() == Instruction::AddrSpaceCast) {
715
// Because CE is flat, the source address space must be specific.
716
// Therefore, the inferred address space must be the source space according
717
// to our algorithm.
718
assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
719
NewAddrSpace);
720
return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
721
}
722
723
if (CE->getOpcode() == Instruction::BitCast) {
724
if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
725
return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
726
return ConstantExpr::getAddrSpaceCast(CE, TargetType);
727
}
728
729
if (CE->getOpcode() == Instruction::IntToPtr) {
730
assert(isNoopPtrIntCastPair(cast<Operator>(CE), *DL, TTI));
731
Constant *Src = cast<ConstantExpr>(CE->getOperand(0))->getOperand(0);
732
assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
733
return ConstantExpr::getBitCast(Src, TargetType);
734
}
735
736
// Computes the operands of the new constant expression.
737
bool IsNew = false;
738
SmallVector<Constant *, 4> NewOperands;
739
for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
740
Constant *Operand = CE->getOperand(Index);
741
// If the address space of `Operand` needs to be modified, the new operand
742
// with the new address space should already be in ValueWithNewAddrSpace
743
// because (1) the constant expressions we consider (i.e. addrspacecast,
744
// bitcast, and getelementptr) do not incur cycles in the data flow graph
745
// and (2) this function is called on constant expressions in postorder.
746
if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
747
IsNew = true;
748
NewOperands.push_back(cast<Constant>(NewOperand));
749
continue;
750
}
751
if (auto *CExpr = dyn_cast<ConstantExpr>(Operand))
752
if (Value *NewOperand = cloneConstantExprWithNewAddressSpace(
753
CExpr, NewAddrSpace, ValueWithNewAddrSpace, DL, TTI)) {
754
IsNew = true;
755
NewOperands.push_back(cast<Constant>(NewOperand));
756
continue;
757
}
758
// Otherwise, reuses the old operand.
759
NewOperands.push_back(Operand);
760
}
761
762
// If !IsNew, we will replace the Value with itself. However, replaced values
763
// are assumed to wrapped in an addrspacecast cast later so drop it now.
764
if (!IsNew)
765
return nullptr;
766
767
if (CE->getOpcode() == Instruction::GetElementPtr) {
768
// Needs to specify the source type while constructing a getelementptr
769
// constant expression.
770
return CE->getWithOperands(NewOperands, TargetType, /*OnlyIfReduced=*/false,
771
cast<GEPOperator>(CE)->getSourceElementType());
772
}
773
774
return CE->getWithOperands(NewOperands, TargetType);
775
}
776
777
// Returns a clone of the value `V`, with its operands replaced as specified in
778
// ValueWithNewAddrSpace. This function is called on every flat address
779
// expression whose address space needs to be modified, in postorder.
780
//
781
// See cloneInstructionWithNewAddressSpace for the meaning of PoisonUsesToFix.
782
Value *InferAddressSpacesImpl::cloneValueWithNewAddressSpace(
783
Value *V, unsigned NewAddrSpace,
784
const ValueToValueMapTy &ValueWithNewAddrSpace,
785
const PredicatedAddrSpaceMapTy &PredicatedAS,
786
SmallVectorImpl<const Use *> *PoisonUsesToFix) const {
787
// All values in Postorder are flat address expressions.
788
assert(V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
789
isAddressExpression(*V, *DL, TTI));
790
791
if (Instruction *I = dyn_cast<Instruction>(V)) {
792
Value *NewV = cloneInstructionWithNewAddressSpace(
793
I, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, PoisonUsesToFix);
794
if (Instruction *NewI = dyn_cast_or_null<Instruction>(NewV)) {
795
if (NewI->getParent() == nullptr) {
796
NewI->insertBefore(I);
797
NewI->takeName(I);
798
NewI->setDebugLoc(I->getDebugLoc());
799
}
800
}
801
return NewV;
802
}
803
804
return cloneConstantExprWithNewAddressSpace(
805
cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace, DL, TTI);
806
}
807
808
// Defines the join operation on the address space lattice (see the file header
809
// comments).
810
unsigned InferAddressSpacesImpl::joinAddressSpaces(unsigned AS1,
811
unsigned AS2) const {
812
if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
813
return FlatAddrSpace;
814
815
if (AS1 == UninitializedAddressSpace)
816
return AS2;
817
if (AS2 == UninitializedAddressSpace)
818
return AS1;
819
820
// The join of two different specific address spaces is flat.
821
return (AS1 == AS2) ? AS1 : FlatAddrSpace;
822
}
823
824
bool InferAddressSpacesImpl::run(Function &F) {
825
DL = &F.getDataLayout();
826
827
if (AssumeDefaultIsFlatAddressSpace)
828
FlatAddrSpace = 0;
829
830
if (FlatAddrSpace == UninitializedAddressSpace) {
831
FlatAddrSpace = TTI->getFlatAddressSpace();
832
if (FlatAddrSpace == UninitializedAddressSpace)
833
return false;
834
}
835
836
// Collects all flat address expressions in postorder.
837
std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F);
838
839
// Runs a data-flow analysis to refine the address spaces of every expression
840
// in Postorder.
841
ValueToAddrSpaceMapTy InferredAddrSpace;
842
PredicatedAddrSpaceMapTy PredicatedAS;
843
inferAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS);
844
845
// Changes the address spaces of the flat address expressions who are inferred
846
// to point to a specific address space.
847
return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS,
848
&F);
849
}
850
851
// Constants need to be tracked through RAUW to handle cases with nested
852
// constant expressions, so wrap values in WeakTrackingVH.
853
void InferAddressSpacesImpl::inferAddressSpaces(
854
ArrayRef<WeakTrackingVH> Postorder,
855
ValueToAddrSpaceMapTy &InferredAddrSpace,
856
PredicatedAddrSpaceMapTy &PredicatedAS) const {
857
SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
858
// Initially, all expressions are in the uninitialized address space.
859
for (Value *V : Postorder)
860
InferredAddrSpace[V] = UninitializedAddressSpace;
861
862
while (!Worklist.empty()) {
863
Value *V = Worklist.pop_back_val();
864
865
// Try to update the address space of the stack top according to the
866
// address spaces of its operands.
867
if (!updateAddressSpace(*V, InferredAddrSpace, PredicatedAS))
868
continue;
869
870
for (Value *User : V->users()) {
871
// Skip if User is already in the worklist.
872
if (Worklist.count(User))
873
continue;
874
875
auto Pos = InferredAddrSpace.find(User);
876
// Our algorithm only updates the address spaces of flat address
877
// expressions, which are those in InferredAddrSpace.
878
if (Pos == InferredAddrSpace.end())
879
continue;
880
881
// Function updateAddressSpace moves the address space down a lattice
882
// path. Therefore, nothing to do if User is already inferred as flat (the
883
// bottom element in the lattice).
884
if (Pos->second == FlatAddrSpace)
885
continue;
886
887
Worklist.insert(User);
888
}
889
}
890
}
891
892
unsigned InferAddressSpacesImpl::getPredicatedAddrSpace(const Value &V,
893
Value *Opnd) const {
894
const Instruction *I = dyn_cast<Instruction>(&V);
895
if (!I)
896
return UninitializedAddressSpace;
897
898
Opnd = Opnd->stripInBoundsOffsets();
899
for (auto &AssumeVH : AC.assumptionsFor(Opnd)) {
900
if (!AssumeVH)
901
continue;
902
CallInst *CI = cast<CallInst>(AssumeVH);
903
if (!isValidAssumeForContext(CI, I, DT))
904
continue;
905
906
const Value *Ptr;
907
unsigned AS;
908
std::tie(Ptr, AS) = TTI->getPredicatedAddrSpace(CI->getArgOperand(0));
909
if (Ptr)
910
return AS;
911
}
912
913
return UninitializedAddressSpace;
914
}
915
916
bool InferAddressSpacesImpl::updateAddressSpace(
917
const Value &V, ValueToAddrSpaceMapTy &InferredAddrSpace,
918
PredicatedAddrSpaceMapTy &PredicatedAS) const {
919
assert(InferredAddrSpace.count(&V));
920
921
LLVM_DEBUG(dbgs() << "Updating the address space of\n " << V << '\n');
922
923
// The new inferred address space equals the join of the address spaces
924
// of all its pointer operands.
925
unsigned NewAS = UninitializedAddressSpace;
926
927
const Operator &Op = cast<Operator>(V);
928
if (Op.getOpcode() == Instruction::Select) {
929
Value *Src0 = Op.getOperand(1);
930
Value *Src1 = Op.getOperand(2);
931
932
auto I = InferredAddrSpace.find(Src0);
933
unsigned Src0AS = (I != InferredAddrSpace.end())
934
? I->second
935
: Src0->getType()->getPointerAddressSpace();
936
937
auto J = InferredAddrSpace.find(Src1);
938
unsigned Src1AS = (J != InferredAddrSpace.end())
939
? J->second
940
: Src1->getType()->getPointerAddressSpace();
941
942
auto *C0 = dyn_cast<Constant>(Src0);
943
auto *C1 = dyn_cast<Constant>(Src1);
944
945
// If one of the inputs is a constant, we may be able to do a constant
946
// addrspacecast of it. Defer inferring the address space until the input
947
// address space is known.
948
if ((C1 && Src0AS == UninitializedAddressSpace) ||
949
(C0 && Src1AS == UninitializedAddressSpace))
950
return false;
951
952
if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
953
NewAS = Src1AS;
954
else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
955
NewAS = Src0AS;
956
else
957
NewAS = joinAddressSpaces(Src0AS, Src1AS);
958
} else {
959
unsigned AS = TTI->getAssumedAddrSpace(&V);
960
if (AS != UninitializedAddressSpace) {
961
// Use the assumed address space directly.
962
NewAS = AS;
963
} else {
964
// Otherwise, infer the address space from its pointer operands.
965
for (Value *PtrOperand : getPointerOperands(V, *DL, TTI)) {
966
auto I = InferredAddrSpace.find(PtrOperand);
967
unsigned OperandAS;
968
if (I == InferredAddrSpace.end()) {
969
OperandAS = PtrOperand->getType()->getPointerAddressSpace();
970
if (OperandAS == FlatAddrSpace) {
971
// Check AC for assumption dominating V.
972
unsigned AS = getPredicatedAddrSpace(V, PtrOperand);
973
if (AS != UninitializedAddressSpace) {
974
LLVM_DEBUG(dbgs()
975
<< " deduce operand AS from the predicate addrspace "
976
<< AS << '\n');
977
OperandAS = AS;
978
// Record this use with the predicated AS.
979
PredicatedAS[std::make_pair(&V, PtrOperand)] = OperandAS;
980
}
981
}
982
} else
983
OperandAS = I->second;
984
985
// join(flat, *) = flat. So we can break if NewAS is already flat.
986
NewAS = joinAddressSpaces(NewAS, OperandAS);
987
if (NewAS == FlatAddrSpace)
988
break;
989
}
990
}
991
}
992
993
unsigned OldAS = InferredAddrSpace.lookup(&V);
994
assert(OldAS != FlatAddrSpace);
995
if (OldAS == NewAS)
996
return false;
997
998
// If any updates are made, grabs its users to the worklist because
999
// their address spaces can also be possibly updated.
1000
LLVM_DEBUG(dbgs() << " to " << NewAS << '\n');
1001
InferredAddrSpace[&V] = NewAS;
1002
return true;
1003
}
1004
1005
/// \p returns true if \p U is the pointer operand of a memory instruction with
1006
/// a single pointer operand that can have its address space changed by simply
1007
/// mutating the use to a new value. If the memory instruction is volatile,
1008
/// return true only if the target allows the memory instruction to be volatile
1009
/// in the new address space.
1010
static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI,
1011
Use &U, unsigned AddrSpace) {
1012
User *Inst = U.getUser();
1013
unsigned OpNo = U.getOperandNo();
1014
bool VolatileIsAllowed = false;
1015
if (auto *I = dyn_cast<Instruction>(Inst))
1016
VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace);
1017
1018
if (auto *LI = dyn_cast<LoadInst>(Inst))
1019
return OpNo == LoadInst::getPointerOperandIndex() &&
1020
(VolatileIsAllowed || !LI->isVolatile());
1021
1022
if (auto *SI = dyn_cast<StoreInst>(Inst))
1023
return OpNo == StoreInst::getPointerOperandIndex() &&
1024
(VolatileIsAllowed || !SI->isVolatile());
1025
1026
if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
1027
return OpNo == AtomicRMWInst::getPointerOperandIndex() &&
1028
(VolatileIsAllowed || !RMW->isVolatile());
1029
1030
if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst))
1031
return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
1032
(VolatileIsAllowed || !CmpX->isVolatile());
1033
1034
return false;
1035
}
1036
1037
/// Update memory intrinsic uses that require more complex processing than
1038
/// simple memory instructions. These require re-mangling and may have multiple
1039
/// pointer operands.
1040
static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
1041
Value *NewV) {
1042
IRBuilder<> B(MI);
1043
MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
1044
MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
1045
MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
1046
1047
if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
1048
B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(), MSI->getDestAlign(),
1049
false, // isVolatile
1050
TBAA, ScopeMD, NoAliasMD);
1051
} else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
1052
Value *Src = MTI->getRawSource();
1053
Value *Dest = MTI->getRawDest();
1054
1055
// Be careful in case this is a self-to-self copy.
1056
if (Src == OldV)
1057
Src = NewV;
1058
1059
if (Dest == OldV)
1060
Dest = NewV;
1061
1062
if (isa<MemCpyInlineInst>(MTI)) {
1063
MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
1064
B.CreateMemCpyInline(Dest, MTI->getDestAlign(), Src,
1065
MTI->getSourceAlign(), MTI->getLength(),
1066
false, // isVolatile
1067
TBAA, TBAAStruct, ScopeMD, NoAliasMD);
1068
} else if (isa<MemCpyInst>(MTI)) {
1069
MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
1070
B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
1071
MTI->getLength(),
1072
false, // isVolatile
1073
TBAA, TBAAStruct, ScopeMD, NoAliasMD);
1074
} else {
1075
assert(isa<MemMoveInst>(MTI));
1076
B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
1077
MTI->getLength(),
1078
false, // isVolatile
1079
TBAA, ScopeMD, NoAliasMD);
1080
}
1081
} else
1082
llvm_unreachable("unhandled MemIntrinsic");
1083
1084
MI->eraseFromParent();
1085
return true;
1086
}
1087
1088
// \p returns true if it is OK to change the address space of constant \p C with
1089
// a ConstantExpr addrspacecast.
1090
bool InferAddressSpacesImpl::isSafeToCastConstAddrSpace(Constant *C,
1091
unsigned NewAS) const {
1092
assert(NewAS != UninitializedAddressSpace);
1093
1094
unsigned SrcAS = C->getType()->getPointerAddressSpace();
1095
if (SrcAS == NewAS || isa<UndefValue>(C))
1096
return true;
1097
1098
// Prevent illegal casts between different non-flat address spaces.
1099
if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
1100
return false;
1101
1102
if (isa<ConstantPointerNull>(C))
1103
return true;
1104
1105
if (auto *Op = dyn_cast<Operator>(C)) {
1106
// If we already have a constant addrspacecast, it should be safe to cast it
1107
// off.
1108
if (Op->getOpcode() == Instruction::AddrSpaceCast)
1109
return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)),
1110
NewAS);
1111
1112
if (Op->getOpcode() == Instruction::IntToPtr &&
1113
Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
1114
return true;
1115
}
1116
1117
return false;
1118
}
1119
1120
static Value::use_iterator skipToNextUser(Value::use_iterator I,
1121
Value::use_iterator End) {
1122
User *CurUser = I->getUser();
1123
++I;
1124
1125
while (I != End && I->getUser() == CurUser)
1126
++I;
1127
1128
return I;
1129
}
1130
1131
bool InferAddressSpacesImpl::rewriteWithNewAddressSpaces(
1132
ArrayRef<WeakTrackingVH> Postorder,
1133
const ValueToAddrSpaceMapTy &InferredAddrSpace,
1134
const PredicatedAddrSpaceMapTy &PredicatedAS, Function *F) const {
1135
// For each address expression to be modified, creates a clone of it with its
1136
// pointer operands converted to the new address space. Since the pointer
1137
// operands are converted, the clone is naturally in the new address space by
1138
// construction.
1139
ValueToValueMapTy ValueWithNewAddrSpace;
1140
SmallVector<const Use *, 32> PoisonUsesToFix;
1141
for (Value *V : Postorder) {
1142
unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
1143
1144
// In some degenerate cases (e.g. invalid IR in unreachable code), we may
1145
// not even infer the value to have its original address space.
1146
if (NewAddrSpace == UninitializedAddressSpace)
1147
continue;
1148
1149
if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
1150
Value *New =
1151
cloneValueWithNewAddressSpace(V, NewAddrSpace, ValueWithNewAddrSpace,
1152
PredicatedAS, &PoisonUsesToFix);
1153
if (New)
1154
ValueWithNewAddrSpace[V] = New;
1155
}
1156
}
1157
1158
if (ValueWithNewAddrSpace.empty())
1159
return false;
1160
1161
// Fixes all the poison uses generated by cloneInstructionWithNewAddressSpace.
1162
for (const Use *PoisonUse : PoisonUsesToFix) {
1163
User *V = PoisonUse->getUser();
1164
User *NewV = cast_or_null<User>(ValueWithNewAddrSpace.lookup(V));
1165
if (!NewV)
1166
continue;
1167
1168
unsigned OperandNo = PoisonUse->getOperandNo();
1169
assert(isa<PoisonValue>(NewV->getOperand(OperandNo)));
1170
NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(PoisonUse->get()));
1171
}
1172
1173
SmallVector<Instruction *, 16> DeadInstructions;
1174
ValueToValueMapTy VMap;
1175
ValueMapper VMapper(VMap, RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1176
1177
// Replaces the uses of the old address expressions with the new ones.
1178
for (const WeakTrackingVH &WVH : Postorder) {
1179
assert(WVH && "value was unexpectedly deleted");
1180
Value *V = WVH;
1181
Value *NewV = ValueWithNewAddrSpace.lookup(V);
1182
if (NewV == nullptr)
1183
continue;
1184
1185
LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n with\n "
1186
<< *NewV << '\n');
1187
1188
if (Constant *C = dyn_cast<Constant>(V)) {
1189
Constant *Replace =
1190
ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), C->getType());
1191
if (C != Replace) {
1192
LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace
1193
<< ": " << *Replace << '\n');
1194
SmallVector<User *, 16> WorkList;
1195
for (User *U : make_early_inc_range(C->users())) {
1196
if (auto *I = dyn_cast<Instruction>(U)) {
1197
if (I->getFunction() == F)
1198
I->replaceUsesOfWith(C, Replace);
1199
} else {
1200
WorkList.append(U->user_begin(), U->user_end());
1201
}
1202
}
1203
if (!WorkList.empty()) {
1204
VMap[C] = Replace;
1205
DenseSet<User *> Visited{WorkList.begin(), WorkList.end()};
1206
while (!WorkList.empty()) {
1207
User *U = WorkList.pop_back_val();
1208
if (auto *I = dyn_cast<Instruction>(U)) {
1209
if (I->getFunction() == F)
1210
VMapper.remapInstruction(*I);
1211
continue;
1212
}
1213
for (User *U2 : U->users())
1214
if (Visited.insert(U2).second)
1215
WorkList.push_back(U2);
1216
}
1217
}
1218
V = Replace;
1219
}
1220
}
1221
1222
Value::use_iterator I, E, Next;
1223
for (I = V->use_begin(), E = V->use_end(); I != E;) {
1224
Use &U = *I;
1225
User *CurUser = U.getUser();
1226
1227
// Some users may see the same pointer operand in multiple operands. Skip
1228
// to the next instruction.
1229
I = skipToNextUser(I, E);
1230
1231
if (isSimplePointerUseValidToReplace(
1232
*TTI, U, V->getType()->getPointerAddressSpace())) {
1233
// If V is used as the pointer operand of a compatible memory operation,
1234
// sets the pointer operand to NewV. This replacement does not change
1235
// the element type, so the resultant load/store is still valid.
1236
U.set(NewV);
1237
continue;
1238
}
1239
1240
// Skip if the current user is the new value itself.
1241
if (CurUser == NewV)
1242
continue;
1243
1244
if (auto *CurUserI = dyn_cast<Instruction>(CurUser);
1245
CurUserI && CurUserI->getFunction() != F)
1246
continue;
1247
1248
// Handle more complex cases like intrinsic that need to be remangled.
1249
if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
1250
if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
1251
continue;
1252
}
1253
1254
if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
1255
if (rewriteIntrinsicOperands(II, V, NewV))
1256
continue;
1257
}
1258
1259
if (isa<Instruction>(CurUser)) {
1260
if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
1261
// If we can infer that both pointers are in the same addrspace,
1262
// transform e.g.
1263
// %cmp = icmp eq float* %p, %q
1264
// into
1265
// %cmp = icmp eq float addrspace(3)* %new_p, %new_q
1266
1267
unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1268
int SrcIdx = U.getOperandNo();
1269
int OtherIdx = (SrcIdx == 0) ? 1 : 0;
1270
Value *OtherSrc = Cmp->getOperand(OtherIdx);
1271
1272
if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
1273
if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
1274
Cmp->setOperand(OtherIdx, OtherNewV);
1275
Cmp->setOperand(SrcIdx, NewV);
1276
continue;
1277
}
1278
}
1279
1280
// Even if the type mismatches, we can cast the constant.
1281
if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
1282
if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
1283
Cmp->setOperand(SrcIdx, NewV);
1284
Cmp->setOperand(OtherIdx, ConstantExpr::getAddrSpaceCast(
1285
KOtherSrc, NewV->getType()));
1286
continue;
1287
}
1288
}
1289
}
1290
1291
if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) {
1292
unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1293
if (ASC->getDestAddressSpace() == NewAS) {
1294
ASC->replaceAllUsesWith(NewV);
1295
DeadInstructions.push_back(ASC);
1296
continue;
1297
}
1298
}
1299
1300
// Otherwise, replaces the use with flat(NewV).
1301
if (Instruction *VInst = dyn_cast<Instruction>(V)) {
1302
// Don't create a copy of the original addrspacecast.
1303
if (U == V && isa<AddrSpaceCastInst>(V))
1304
continue;
1305
1306
// Insert the addrspacecast after NewV.
1307
BasicBlock::iterator InsertPos;
1308
if (Instruction *NewVInst = dyn_cast<Instruction>(NewV))
1309
InsertPos = std::next(NewVInst->getIterator());
1310
else
1311
InsertPos = std::next(VInst->getIterator());
1312
1313
while (isa<PHINode>(InsertPos))
1314
++InsertPos;
1315
// This instruction may contain multiple uses of V, update them all.
1316
CurUser->replaceUsesOfWith(
1317
V, new AddrSpaceCastInst(NewV, V->getType(), "", InsertPos));
1318
} else {
1319
CurUser->replaceUsesOfWith(
1320
V, ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
1321
V->getType()));
1322
}
1323
}
1324
}
1325
1326
if (V->use_empty()) {
1327
if (Instruction *I = dyn_cast<Instruction>(V))
1328
DeadInstructions.push_back(I);
1329
}
1330
}
1331
1332
for (Instruction *I : DeadInstructions)
1333
RecursivelyDeleteTriviallyDeadInstructions(I);
1334
1335
return true;
1336
}
1337
1338
bool InferAddressSpaces::runOnFunction(Function &F) {
1339
if (skipFunction(F))
1340
return false;
1341
1342
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1343
DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
1344
return InferAddressSpacesImpl(
1345
getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), DT,
1346
&getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
1347
FlatAddrSpace)
1348
.run(F);
1349
}
1350
1351
FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) {
1352
return new InferAddressSpaces(AddressSpace);
1353
}
1354
1355
InferAddressSpacesPass::InferAddressSpacesPass()
1356
: FlatAddrSpace(UninitializedAddressSpace) {}
1357
InferAddressSpacesPass::InferAddressSpacesPass(unsigned AddressSpace)
1358
: FlatAddrSpace(AddressSpace) {}
1359
1360
PreservedAnalyses InferAddressSpacesPass::run(Function &F,
1361
FunctionAnalysisManager &AM) {
1362
bool Changed =
1363
InferAddressSpacesImpl(AM.getResult<AssumptionAnalysis>(F),
1364
AM.getCachedResult<DominatorTreeAnalysis>(F),
1365
&AM.getResult<TargetIRAnalysis>(F), FlatAddrSpace)
1366
.run(F);
1367
if (Changed) {
1368
PreservedAnalyses PA;
1369
PA.preserveSet<CFGAnalyses>();
1370
PA.preserve<DominatorTreeAnalysis>();
1371
return PA;
1372
}
1373
return PreservedAnalyses::all();
1374
}
1375
1376