Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopFlatten.cpp
35266 views
1
//===- LoopFlatten.cpp - Loop flattening pass------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This pass flattens pairs nested loops into a single loop.
10
//
11
// The intention is to optimise loop nests like this, which together access an
12
// array linearly:
13
//
14
// for (int i = 0; i < N; ++i)
15
// for (int j = 0; j < M; ++j)
16
// f(A[i*M+j]);
17
//
18
// into one loop:
19
//
20
// for (int i = 0; i < (N*M); ++i)
21
// f(A[i]);
22
//
23
// It can also flatten loops where the induction variables are not used in the
24
// loop. This is only worth doing if the induction variables are only used in an
25
// expression like i*M+j. If they had any other uses, we would have to insert a
26
// div/mod to reconstruct the original values, so this wouldn't be profitable.
27
//
28
// We also need to prove that N*M will not overflow. The preferred solution is
29
// to widen the IV, which avoids overflow checks, so that is tried first. If
30
// the IV cannot be widened, then we try to determine that this new tripcount
31
// expression won't overflow.
32
//
33
// Q: Does LoopFlatten use SCEV?
34
// Short answer: Yes and no.
35
//
36
// Long answer:
37
// For this transformation to be valid, we require all uses of the induction
38
// variables to be linear expressions of the form i*M+j. The different Loop
39
// APIs are used to get some loop components like the induction variable,
40
// compare statement, etc. In addition, we do some pattern matching to find the
41
// linear expressions and other loop components like the loop increment. The
42
// latter are examples of expressions that do use the induction variable, but
43
// are safe to ignore when we check all uses to be of the form i*M+j. We keep
44
// track of all of this in bookkeeping struct FlattenInfo.
45
// We assume the loops to be canonical, i.e. starting at 0 and increment with
46
// 1. This makes RHS of the compare the loop tripcount (with the right
47
// predicate). We use SCEV to then sanity check that this tripcount matches
48
// with the tripcount as computed by SCEV.
49
//
50
//===----------------------------------------------------------------------===//
51
52
#include "llvm/Transforms/Scalar/LoopFlatten.h"
53
54
#include "llvm/ADT/Statistic.h"
55
#include "llvm/Analysis/AssumptionCache.h"
56
#include "llvm/Analysis/LoopInfo.h"
57
#include "llvm/Analysis/LoopNestAnalysis.h"
58
#include "llvm/Analysis/MemorySSAUpdater.h"
59
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
60
#include "llvm/Analysis/ScalarEvolution.h"
61
#include "llvm/Analysis/TargetTransformInfo.h"
62
#include "llvm/Analysis/ValueTracking.h"
63
#include "llvm/IR/Dominators.h"
64
#include "llvm/IR/Function.h"
65
#include "llvm/IR/IRBuilder.h"
66
#include "llvm/IR/Module.h"
67
#include "llvm/IR/PatternMatch.h"
68
#include "llvm/Support/Debug.h"
69
#include "llvm/Support/raw_ostream.h"
70
#include "llvm/Transforms/Scalar/LoopPassManager.h"
71
#include "llvm/Transforms/Utils/Local.h"
72
#include "llvm/Transforms/Utils/LoopUtils.h"
73
#include "llvm/Transforms/Utils/LoopVersioning.h"
74
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
75
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
76
#include <optional>
77
78
using namespace llvm;
79
using namespace llvm::PatternMatch;
80
81
#define DEBUG_TYPE "loop-flatten"
82
83
STATISTIC(NumFlattened, "Number of loops flattened");
84
85
static cl::opt<unsigned> RepeatedInstructionThreshold(
86
"loop-flatten-cost-threshold", cl::Hidden, cl::init(2),
87
cl::desc("Limit on the cost of instructions that can be repeated due to "
88
"loop flattening"));
89
90
static cl::opt<bool>
91
AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden,
92
cl::init(false),
93
cl::desc("Assume that the product of the two iteration "
94
"trip counts will never overflow"));
95
96
static cl::opt<bool>
97
WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true),
98
cl::desc("Widen the loop induction variables, if possible, so "
99
"overflow checks won't reject flattening"));
100
101
static cl::opt<bool>
102
VersionLoops("loop-flatten-version-loops", cl::Hidden, cl::init(true),
103
cl::desc("Version loops if flattened loop could overflow"));
104
105
namespace {
106
// We require all uses of both induction variables to match this pattern:
107
//
108
// (OuterPHI * InnerTripCount) + InnerPHI
109
//
110
// I.e., it needs to be a linear expression of the induction variables and the
111
// inner loop trip count. We keep track of all different expressions on which
112
// checks will be performed in this bookkeeping struct.
113
//
114
struct FlattenInfo {
115
Loop *OuterLoop = nullptr; // The loop pair to be flattened.
116
Loop *InnerLoop = nullptr;
117
118
PHINode *InnerInductionPHI = nullptr; // These PHINodes correspond to loop
119
PHINode *OuterInductionPHI = nullptr; // induction variables, which are
120
// expected to start at zero and
121
// increment by one on each loop.
122
123
Value *InnerTripCount = nullptr; // The product of these two tripcounts
124
Value *OuterTripCount = nullptr; // will be the new flattened loop
125
// tripcount. Also used to recognise a
126
// linear expression that will be replaced.
127
128
SmallPtrSet<Value *, 4> LinearIVUses; // Contains the linear expressions
129
// of the form i*M+j that will be
130
// replaced.
131
132
BinaryOperator *InnerIncrement = nullptr; // Uses of induction variables in
133
BinaryOperator *OuterIncrement = nullptr; // loop control statements that
134
BranchInst *InnerBranch = nullptr; // are safe to ignore.
135
136
BranchInst *OuterBranch = nullptr; // The instruction that needs to be
137
// updated with new tripcount.
138
139
SmallPtrSet<PHINode *, 4> InnerPHIsToTransform;
140
141
bool Widened = false; // Whether this holds the flatten info before or after
142
// widening.
143
144
PHINode *NarrowInnerInductionPHI = nullptr; // Holds the old/narrow induction
145
PHINode *NarrowOuterInductionPHI = nullptr; // phis, i.e. the Phis before IV
146
// has been applied. Used to skip
147
// checks on phi nodes.
148
149
Value *NewTripCount = nullptr; // The tripcount of the flattened loop.
150
151
FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL){};
152
153
bool isNarrowInductionPhi(PHINode *Phi) {
154
// This can't be the narrow phi if we haven't widened the IV first.
155
if (!Widened)
156
return false;
157
return NarrowInnerInductionPHI == Phi || NarrowOuterInductionPHI == Phi;
158
}
159
bool isInnerLoopIncrement(User *U) {
160
return InnerIncrement == U;
161
}
162
bool isOuterLoopIncrement(User *U) {
163
return OuterIncrement == U;
164
}
165
bool isInnerLoopTest(User *U) {
166
return InnerBranch->getCondition() == U;
167
}
168
169
bool checkOuterInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
170
for (User *U : OuterInductionPHI->users()) {
171
if (isOuterLoopIncrement(U))
172
continue;
173
174
auto IsValidOuterPHIUses = [&] (User *U) -> bool {
175
LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump());
176
if (!ValidOuterPHIUses.count(U)) {
177
LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
178
return false;
179
}
180
LLVM_DEBUG(dbgs() << "Use is optimisable\n");
181
return true;
182
};
183
184
if (auto *V = dyn_cast<TruncInst>(U)) {
185
for (auto *K : V->users()) {
186
if (!IsValidOuterPHIUses(K))
187
return false;
188
}
189
continue;
190
}
191
192
if (!IsValidOuterPHIUses(U))
193
return false;
194
}
195
return true;
196
}
197
198
bool matchLinearIVUser(User *U, Value *InnerTripCount,
199
SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
200
LLVM_DEBUG(dbgs() << "Checking linear i*M+j expression for: "; U->dump());
201
Value *MatchedMul = nullptr;
202
Value *MatchedItCount = nullptr;
203
204
bool IsAdd = match(U, m_c_Add(m_Specific(InnerInductionPHI),
205
m_Value(MatchedMul))) &&
206
match(MatchedMul, m_c_Mul(m_Specific(OuterInductionPHI),
207
m_Value(MatchedItCount)));
208
209
// Matches the same pattern as above, except it also looks for truncs
210
// on the phi, which can be the result of widening the induction variables.
211
bool IsAddTrunc =
212
match(U, m_c_Add(m_Trunc(m_Specific(InnerInductionPHI)),
213
m_Value(MatchedMul))) &&
214
match(MatchedMul, m_c_Mul(m_Trunc(m_Specific(OuterInductionPHI)),
215
m_Value(MatchedItCount)));
216
217
// Matches the pattern ptr+i*M+j, with the two additions being done via GEP.
218
bool IsGEP = match(U, m_GEP(m_GEP(m_Value(), m_Value(MatchedMul)),
219
m_Specific(InnerInductionPHI))) &&
220
match(MatchedMul, m_c_Mul(m_Specific(OuterInductionPHI),
221
m_Value(MatchedItCount)));
222
223
if (!MatchedItCount)
224
return false;
225
226
LLVM_DEBUG(dbgs() << "Matched multiplication: "; MatchedMul->dump());
227
LLVM_DEBUG(dbgs() << "Matched iteration count: "; MatchedItCount->dump());
228
229
// The mul should not have any other uses. Widening may leave trivially dead
230
// uses, which can be ignored.
231
if (count_if(MatchedMul->users(), [](User *U) {
232
return !isInstructionTriviallyDead(cast<Instruction>(U));
233
}) > 1) {
234
LLVM_DEBUG(dbgs() << "Multiply has more than one use\n");
235
return false;
236
}
237
238
// Look through extends if the IV has been widened. Don't look through
239
// extends if we already looked through a trunc.
240
if (Widened && (IsAdd || IsGEP) &&
241
(isa<SExtInst>(MatchedItCount) || isa<ZExtInst>(MatchedItCount))) {
242
assert(MatchedItCount->getType() == InnerInductionPHI->getType() &&
243
"Unexpected type mismatch in types after widening");
244
MatchedItCount = isa<SExtInst>(MatchedItCount)
245
? dyn_cast<SExtInst>(MatchedItCount)->getOperand(0)
246
: dyn_cast<ZExtInst>(MatchedItCount)->getOperand(0);
247
}
248
249
LLVM_DEBUG(dbgs() << "Looking for inner trip count: ";
250
InnerTripCount->dump());
251
252
if ((IsAdd || IsAddTrunc || IsGEP) && MatchedItCount == InnerTripCount) {
253
LLVM_DEBUG(dbgs() << "Found. This sse is optimisable\n");
254
ValidOuterPHIUses.insert(MatchedMul);
255
LinearIVUses.insert(U);
256
return true;
257
}
258
259
LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
260
return false;
261
}
262
263
bool checkInnerInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
264
Value *SExtInnerTripCount = InnerTripCount;
265
if (Widened &&
266
(isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount)))
267
SExtInnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0);
268
269
for (User *U : InnerInductionPHI->users()) {
270
LLVM_DEBUG(dbgs() << "Checking User: "; U->dump());
271
if (isInnerLoopIncrement(U)) {
272
LLVM_DEBUG(dbgs() << "Use is inner loop increment, continuing\n");
273
continue;
274
}
275
276
// After widening the IVs, a trunc instruction might have been introduced,
277
// so look through truncs.
278
if (isa<TruncInst>(U)) {
279
if (!U->hasOneUse())
280
return false;
281
U = *U->user_begin();
282
}
283
284
// If the use is in the compare (which is also the condition of the inner
285
// branch) then the compare has been altered by another transformation e.g
286
// icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, where tripcount is
287
// a constant. Ignore this use as the compare gets removed later anyway.
288
if (isInnerLoopTest(U)) {
289
LLVM_DEBUG(dbgs() << "Use is the inner loop test, continuing\n");
290
continue;
291
}
292
293
if (!matchLinearIVUser(U, SExtInnerTripCount, ValidOuterPHIUses)) {
294
LLVM_DEBUG(dbgs() << "Not a linear IV user\n");
295
return false;
296
}
297
LLVM_DEBUG(dbgs() << "Linear IV users found!\n");
298
}
299
return true;
300
}
301
};
302
} // namespace
303
304
static bool
305
setLoopComponents(Value *&TC, Value *&TripCount, BinaryOperator *&Increment,
306
SmallPtrSetImpl<Instruction *> &IterationInstructions) {
307
TripCount = TC;
308
IterationInstructions.insert(Increment);
309
LLVM_DEBUG(dbgs() << "Found Increment: "; Increment->dump());
310
LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump());
311
LLVM_DEBUG(dbgs() << "Successfully found all loop components\n");
312
return true;
313
}
314
315
// Given the RHS of the loop latch compare instruction, verify with SCEV
316
// that this is indeed the loop tripcount.
317
// TODO: This used to be a straightforward check but has grown to be quite
318
// complicated now. It is therefore worth revisiting what the additional
319
// benefits are of this (compared to relying on canonical loops and pattern
320
// matching).
321
static bool verifyTripCount(Value *RHS, Loop *L,
322
SmallPtrSetImpl<Instruction *> &IterationInstructions,
323
PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
324
BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
325
const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
326
if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
327
LLVM_DEBUG(dbgs() << "Backedge-taken count is not predictable\n");
328
return false;
329
}
330
331
// Evaluating in the trip count's type can not overflow here as the overflow
332
// checks are performed in checkOverflow, but are first tried to avoid by
333
// widening the IV.
334
const SCEV *SCEVTripCount =
335
SE->getTripCountFromExitCount(BackedgeTakenCount,
336
BackedgeTakenCount->getType(), L);
337
338
const SCEV *SCEVRHS = SE->getSCEV(RHS);
339
if (SCEVRHS == SCEVTripCount)
340
return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
341
ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(RHS);
342
if (ConstantRHS) {
343
const SCEV *BackedgeTCExt = nullptr;
344
if (IsWidened) {
345
const SCEV *SCEVTripCountExt;
346
// Find the extended backedge taken count and extended trip count using
347
// SCEV. One of these should now match the RHS of the compare.
348
BackedgeTCExt = SE->getZeroExtendExpr(BackedgeTakenCount, RHS->getType());
349
SCEVTripCountExt = SE->getTripCountFromExitCount(BackedgeTCExt,
350
RHS->getType(), L);
351
if (SCEVRHS != BackedgeTCExt && SCEVRHS != SCEVTripCountExt) {
352
LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
353
return false;
354
}
355
}
356
// If the RHS of the compare is equal to the backedge taken count we need
357
// to add one to get the trip count.
358
if (SCEVRHS == BackedgeTCExt || SCEVRHS == BackedgeTakenCount) {
359
Value *NewRHS = ConstantInt::get(ConstantRHS->getContext(),
360
ConstantRHS->getValue() + 1);
361
return setLoopComponents(NewRHS, TripCount, Increment,
362
IterationInstructions);
363
}
364
return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
365
}
366
// If the RHS isn't a constant then check that the reason it doesn't match
367
// the SCEV trip count is because the RHS is a ZExt or SExt instruction
368
// (and take the trip count to be the RHS).
369
if (!IsWidened) {
370
LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
371
return false;
372
}
373
auto *TripCountInst = dyn_cast<Instruction>(RHS);
374
if (!TripCountInst) {
375
LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
376
return false;
377
}
378
if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) ||
379
SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) {
380
LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n");
381
return false;
382
}
383
return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
384
}
385
386
// Finds the induction variable, increment and trip count for a simple loop that
387
// we can flatten.
388
static bool findLoopComponents(
389
Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions,
390
PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
391
BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
392
LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n");
393
394
if (!L->isLoopSimplifyForm()) {
395
LLVM_DEBUG(dbgs() << "Loop is not in normal form\n");
396
return false;
397
}
398
399
// Currently, to simplify the implementation, the Loop induction variable must
400
// start at zero and increment with a step size of one.
401
if (!L->isCanonical(*SE)) {
402
LLVM_DEBUG(dbgs() << "Loop is not canonical\n");
403
return false;
404
}
405
406
// There must be exactly one exiting block, and it must be the same at the
407
// latch.
408
BasicBlock *Latch = L->getLoopLatch();
409
if (L->getExitingBlock() != Latch) {
410
LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n");
411
return false;
412
}
413
414
// Find the induction PHI. If there is no induction PHI, we can't do the
415
// transformation. TODO: could other variables trigger this? Do we have to
416
// search for the best one?
417
InductionPHI = L->getInductionVariable(*SE);
418
if (!InductionPHI) {
419
LLVM_DEBUG(dbgs() << "Could not find induction PHI\n");
420
return false;
421
}
422
LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump());
423
424
bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0));
425
auto IsValidPredicate = [&](ICmpInst::Predicate Pred) {
426
if (ContinueOnTrue)
427
return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT;
428
else
429
return Pred == CmpInst::ICMP_EQ;
430
};
431
432
// Find Compare and make sure it is valid. getLatchCmpInst checks that the
433
// back branch of the latch is conditional.
434
ICmpInst *Compare = L->getLatchCmpInst();
435
if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) ||
436
Compare->hasNUsesOrMore(2)) {
437
LLVM_DEBUG(dbgs() << "Could not find valid comparison\n");
438
return false;
439
}
440
BackBranch = cast<BranchInst>(Latch->getTerminator());
441
IterationInstructions.insert(BackBranch);
442
LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump());
443
IterationInstructions.insert(Compare);
444
LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump());
445
446
// Find increment and trip count.
447
// There are exactly 2 incoming values to the induction phi; one from the
448
// pre-header and one from the latch. The incoming latch value is the
449
// increment variable.
450
Increment =
451
cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch));
452
if ((Compare->getOperand(0) != Increment || !Increment->hasNUses(2)) &&
453
!Increment->hasNUses(1)) {
454
LLVM_DEBUG(dbgs() << "Could not find valid increment\n");
455
return false;
456
}
457
// The trip count is the RHS of the compare. If this doesn't match the trip
458
// count computed by SCEV then this is because the trip count variable
459
// has been widened so the types don't match, or because it is a constant and
460
// another transformation has changed the compare (e.g. icmp ult %inc,
461
// tripcount -> icmp ult %j, tripcount-1), or both.
462
Value *RHS = Compare->getOperand(1);
463
464
return verifyTripCount(RHS, L, IterationInstructions, InductionPHI, TripCount,
465
Increment, BackBranch, SE, IsWidened);
466
}
467
468
static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) {
469
// All PHIs in the inner and outer headers must either be:
470
// - The induction PHI, which we are going to rewrite as one induction in
471
// the new loop. This is already checked by findLoopComponents.
472
// - An outer header PHI with all incoming values from outside the loop.
473
// LoopSimplify guarantees we have a pre-header, so we don't need to
474
// worry about that here.
475
// - Pairs of PHIs in the inner and outer headers, which implement a
476
// loop-carried dependency that will still be valid in the new loop. To
477
// be valid, this variable must be modified only in the inner loop.
478
479
// The set of PHI nodes in the outer loop header that we know will still be
480
// valid after the transformation. These will not need to be modified (with
481
// the exception of the induction variable), but we do need to check that
482
// there are no unsafe PHI nodes.
483
SmallPtrSet<PHINode *, 4> SafeOuterPHIs;
484
SafeOuterPHIs.insert(FI.OuterInductionPHI);
485
486
// Check that all PHI nodes in the inner loop header match one of the valid
487
// patterns.
488
for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) {
489
// The induction PHIs break these rules, and that's OK because we treat
490
// them specially when doing the transformation.
491
if (&InnerPHI == FI.InnerInductionPHI)
492
continue;
493
if (FI.isNarrowInductionPhi(&InnerPHI))
494
continue;
495
496
// Each inner loop PHI node must have two incoming values/blocks - one
497
// from the pre-header, and one from the latch.
498
assert(InnerPHI.getNumIncomingValues() == 2);
499
Value *PreHeaderValue =
500
InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader());
501
Value *LatchValue =
502
InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch());
503
504
// The incoming value from the outer loop must be the PHI node in the
505
// outer loop header, with no modifications made in the top of the outer
506
// loop.
507
PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue);
508
if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) {
509
LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n");
510
return false;
511
}
512
513
// The other incoming value must come from the inner loop, without any
514
// modifications in the tail end of the outer loop. We are in LCSSA form,
515
// so this will actually be a PHI in the inner loop's exit block, which
516
// only uses values from inside the inner loop.
517
PHINode *LCSSAPHI = dyn_cast<PHINode>(
518
OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch()));
519
if (!LCSSAPHI) {
520
LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n");
521
return false;
522
}
523
524
// The value used by the LCSSA PHI must be the same one that the inner
525
// loop's PHI uses.
526
if (LCSSAPHI->hasConstantValue() != LatchValue) {
527
LLVM_DEBUG(
528
dbgs() << "LCSSA PHI incoming value does not match latch value\n");
529
return false;
530
}
531
532
LLVM_DEBUG(dbgs() << "PHI pair is safe:\n");
533
LLVM_DEBUG(dbgs() << " Inner: "; InnerPHI.dump());
534
LLVM_DEBUG(dbgs() << " Outer: "; OuterPHI->dump());
535
SafeOuterPHIs.insert(OuterPHI);
536
FI.InnerPHIsToTransform.insert(&InnerPHI);
537
}
538
539
for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) {
540
if (FI.isNarrowInductionPhi(&OuterPHI))
541
continue;
542
if (!SafeOuterPHIs.count(&OuterPHI)) {
543
LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump());
544
return false;
545
}
546
}
547
548
LLVM_DEBUG(dbgs() << "checkPHIs: OK\n");
549
return true;
550
}
551
552
static bool
553
checkOuterLoopInsts(FlattenInfo &FI,
554
SmallPtrSetImpl<Instruction *> &IterationInstructions,
555
const TargetTransformInfo *TTI) {
556
// Check for instructions in the outer but not inner loop. If any of these
557
// have side-effects then this transformation is not legal, and if there is
558
// a significant amount of code here which can't be optimised out that it's
559
// not profitable (as these instructions would get executed for each
560
// iteration of the inner loop).
561
InstructionCost RepeatedInstrCost = 0;
562
for (auto *B : FI.OuterLoop->getBlocks()) {
563
if (FI.InnerLoop->contains(B))
564
continue;
565
566
for (auto &I : *B) {
567
if (!isa<PHINode>(&I) && !I.isTerminator() &&
568
!isSafeToSpeculativelyExecute(&I)) {
569
LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have "
570
"side effects: ";
571
I.dump());
572
return false;
573
}
574
// The execution count of the outer loop's iteration instructions
575
// (increment, compare and branch) will be increased, but the
576
// equivalent instructions will be removed from the inner loop, so
577
// they make a net difference of zero.
578
if (IterationInstructions.count(&I))
579
continue;
580
// The unconditional branch to the inner loop's header will turn into
581
// a fall-through, so adds no cost.
582
BranchInst *Br = dyn_cast<BranchInst>(&I);
583
if (Br && Br->isUnconditional() &&
584
Br->getSuccessor(0) == FI.InnerLoop->getHeader())
585
continue;
586
// Multiplies of the outer iteration variable and inner iteration
587
// count will be optimised out.
588
if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI),
589
m_Specific(FI.InnerTripCount))))
590
continue;
591
InstructionCost Cost =
592
TTI->getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
593
LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump());
594
RepeatedInstrCost += Cost;
595
}
596
}
597
598
LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: "
599
<< RepeatedInstrCost << "\n");
600
// Bail out if flattening the loops would cause instructions in the outer
601
// loop but not in the inner loop to be executed extra times.
602
if (RepeatedInstrCost > RepeatedInstructionThreshold) {
603
LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n");
604
return false;
605
}
606
607
LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n");
608
return true;
609
}
610
611
612
613
// We require all uses of both induction variables to match this pattern:
614
//
615
// (OuterPHI * InnerTripCount) + InnerPHI
616
//
617
// Any uses of the induction variables not matching that pattern would
618
// require a div/mod to reconstruct in the flattened loop, so the
619
// transformation wouldn't be profitable.
620
static bool checkIVUsers(FlattenInfo &FI) {
621
// Check that all uses of the inner loop's induction variable match the
622
// expected pattern, recording the uses of the outer IV.
623
SmallPtrSet<Value *, 4> ValidOuterPHIUses;
624
if (!FI.checkInnerInductionPhiUsers(ValidOuterPHIUses))
625
return false;
626
627
// Check that there are no uses of the outer IV other than the ones found
628
// as part of the pattern above.
629
if (!FI.checkOuterInductionPhiUsers(ValidOuterPHIUses))
630
return false;
631
632
LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n";
633
dbgs() << "Found " << FI.LinearIVUses.size()
634
<< " value(s) that can be replaced:\n";
635
for (Value *V : FI.LinearIVUses) {
636
dbgs() << " ";
637
V->dump();
638
});
639
return true;
640
}
641
642
// Return an OverflowResult dependant on if overflow of the multiplication of
643
// InnerTripCount and OuterTripCount can be assumed not to happen.
644
static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT,
645
AssumptionCache *AC) {
646
Function *F = FI.OuterLoop->getHeader()->getParent();
647
const DataLayout &DL = F->getDataLayout();
648
649
// For debugging/testing.
650
if (AssumeNoOverflow)
651
return OverflowResult::NeverOverflows;
652
653
// Check if the multiply could not overflow due to known ranges of the
654
// input values.
655
OverflowResult OR = computeOverflowForUnsignedMul(
656
FI.InnerTripCount, FI.OuterTripCount,
657
SimplifyQuery(DL, DT, AC,
658
FI.OuterLoop->getLoopPreheader()->getTerminator()));
659
if (OR != OverflowResult::MayOverflow)
660
return OR;
661
662
auto CheckGEP = [&](GetElementPtrInst *GEP, Value *GEPOperand) {
663
for (Value *GEPUser : GEP->users()) {
664
auto *GEPUserInst = cast<Instruction>(GEPUser);
665
if (!isa<LoadInst>(GEPUserInst) &&
666
!(isa<StoreInst>(GEPUserInst) && GEP == GEPUserInst->getOperand(1)))
667
continue;
668
if (!isGuaranteedToExecuteForEveryIteration(GEPUserInst, FI.InnerLoop))
669
continue;
670
// The IV is used as the operand of a GEP which dominates the loop
671
// latch, and the IV is at least as wide as the address space of the
672
// GEP. In this case, the GEP would wrap around the address space
673
// before the IV increment wraps, which would be UB.
674
if (GEP->isInBounds() &&
675
GEPOperand->getType()->getIntegerBitWidth() >=
676
DL.getPointerTypeSizeInBits(GEP->getType())) {
677
LLVM_DEBUG(
678
dbgs() << "use of linear IV would be UB if overflow occurred: ";
679
GEP->dump());
680
return true;
681
}
682
}
683
return false;
684
};
685
686
// Check if any IV user is, or is used by, a GEP that would cause UB if the
687
// multiply overflows.
688
for (Value *V : FI.LinearIVUses) {
689
if (auto *GEP = dyn_cast<GetElementPtrInst>(V))
690
if (GEP->getNumIndices() == 1 && CheckGEP(GEP, GEP->getOperand(1)))
691
return OverflowResult::NeverOverflows;
692
for (Value *U : V->users())
693
if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
694
if (CheckGEP(GEP, V))
695
return OverflowResult::NeverOverflows;
696
}
697
698
return OverflowResult::MayOverflow;
699
}
700
701
static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
702
ScalarEvolution *SE, AssumptionCache *AC,
703
const TargetTransformInfo *TTI) {
704
SmallPtrSet<Instruction *, 8> IterationInstructions;
705
if (!findLoopComponents(FI.InnerLoop, IterationInstructions,
706
FI.InnerInductionPHI, FI.InnerTripCount,
707
FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened))
708
return false;
709
if (!findLoopComponents(FI.OuterLoop, IterationInstructions,
710
FI.OuterInductionPHI, FI.OuterTripCount,
711
FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened))
712
return false;
713
714
// Both of the loop trip count values must be invariant in the outer loop
715
// (non-instructions are all inherently invariant).
716
if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) {
717
LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n");
718
return false;
719
}
720
if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) {
721
LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n");
722
return false;
723
}
724
725
if (!checkPHIs(FI, TTI))
726
return false;
727
728
// FIXME: it should be possible to handle different types correctly.
729
if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType())
730
return false;
731
732
if (!checkOuterLoopInsts(FI, IterationInstructions, TTI))
733
return false;
734
735
// Find the values in the loop that can be replaced with the linearized
736
// induction variable, and check that there are no other uses of the inner
737
// or outer induction variable. If there were, we could still do this
738
// transformation, but we'd have to insert a div/mod to calculate the
739
// original IVs, so it wouldn't be profitable.
740
if (!checkIVUsers(FI))
741
return false;
742
743
LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n");
744
return true;
745
}
746
747
static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
748
ScalarEvolution *SE, AssumptionCache *AC,
749
const TargetTransformInfo *TTI, LPMUpdater *U,
750
MemorySSAUpdater *MSSAU) {
751
Function *F = FI.OuterLoop->getHeader()->getParent();
752
LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n");
753
{
754
using namespace ore;
755
OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(),
756
FI.InnerLoop->getHeader());
757
OptimizationRemarkEmitter ORE(F);
758
Remark << "Flattened into outer loop";
759
ORE.emit(Remark);
760
}
761
762
if (!FI.NewTripCount) {
763
FI.NewTripCount = BinaryOperator::CreateMul(
764
FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount",
765
FI.OuterLoop->getLoopPreheader()->getTerminator()->getIterator());
766
LLVM_DEBUG(dbgs() << "Created new trip count in preheader: ";
767
FI.NewTripCount->dump());
768
}
769
770
// Fix up PHI nodes that take values from the inner loop back-edge, which
771
// we are about to remove.
772
FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
773
774
// The old Phi will be optimised away later, but for now we can't leave
775
// leave it in an invalid state, so are updating them too.
776
for (PHINode *PHI : FI.InnerPHIsToTransform)
777
PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
778
779
// Modify the trip count of the outer loop to be the product of the two
780
// trip counts.
781
cast<User>(FI.OuterBranch->getCondition())->setOperand(1, FI.NewTripCount);
782
783
// Replace the inner loop backedge with an unconditional branch to the exit.
784
BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock();
785
BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock();
786
Instruction *Term = InnerExitingBlock->getTerminator();
787
Instruction *BI = BranchInst::Create(InnerExitBlock, InnerExitingBlock);
788
BI->setDebugLoc(Term->getDebugLoc());
789
Term->eraseFromParent();
790
791
// Update the DomTree and MemorySSA.
792
DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
793
if (MSSAU)
794
MSSAU->removeEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
795
796
// Replace all uses of the polynomial calculated from the two induction
797
// variables with the one new one.
798
IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator());
799
for (Value *V : FI.LinearIVUses) {
800
Value *OuterValue = FI.OuterInductionPHI;
801
if (FI.Widened)
802
OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(),
803
"flatten.trunciv");
804
805
if (auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
806
// Replace the GEP with one that uses OuterValue as the offset.
807
auto *InnerGEP = cast<GetElementPtrInst>(GEP->getOperand(0));
808
Value *Base = InnerGEP->getOperand(0);
809
// When the base of the GEP doesn't dominate the outer induction phi then
810
// we need to insert the new GEP where the old GEP was.
811
if (!DT->dominates(Base, &*Builder.GetInsertPoint()))
812
Builder.SetInsertPoint(cast<Instruction>(V));
813
OuterValue =
814
Builder.CreateGEP(GEP->getSourceElementType(), Base, OuterValue,
815
"flatten." + V->getName(),
816
GEP->isInBounds() && InnerGEP->isInBounds());
817
}
818
819
LLVM_DEBUG(dbgs() << "Replacing: "; V->dump(); dbgs() << "with: ";
820
OuterValue->dump());
821
V->replaceAllUsesWith(OuterValue);
822
}
823
824
// Tell LoopInfo, SCEV and the pass manager that the inner loop has been
825
// deleted, and invalidate any outer loop information.
826
SE->forgetLoop(FI.OuterLoop);
827
SE->forgetBlockAndLoopDispositions();
828
if (U)
829
U->markLoopAsDeleted(*FI.InnerLoop, FI.InnerLoop->getName());
830
LI->erase(FI.InnerLoop);
831
832
// Increment statistic value.
833
NumFlattened++;
834
835
return true;
836
}
837
838
static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
839
ScalarEvolution *SE, AssumptionCache *AC,
840
const TargetTransformInfo *TTI) {
841
if (!WidenIV) {
842
LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n");
843
return false;
844
}
845
846
LLVM_DEBUG(dbgs() << "Try widening the IVs\n");
847
Module *M = FI.InnerLoop->getHeader()->getParent()->getParent();
848
auto &DL = M->getDataLayout();
849
auto *InnerType = FI.InnerInductionPHI->getType();
850
auto *OuterType = FI.OuterInductionPHI->getType();
851
unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits();
852
auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext());
853
854
// If both induction types are less than the maximum legal integer width,
855
// promote both to the widest type available so we know calculating
856
// (OuterTripCount * InnerTripCount) as the new trip count is safe.
857
if (InnerType != OuterType ||
858
InnerType->getScalarSizeInBits() >= MaxLegalSize ||
859
MaxLegalType->getScalarSizeInBits() <
860
InnerType->getScalarSizeInBits() * 2) {
861
LLVM_DEBUG(dbgs() << "Can't widen the IV\n");
862
return false;
863
}
864
865
SCEVExpander Rewriter(*SE, DL, "loopflatten");
866
SmallVector<WeakTrackingVH, 4> DeadInsts;
867
unsigned ElimExt = 0;
868
unsigned Widened = 0;
869
870
auto CreateWideIV = [&](WideIVInfo WideIV, bool &Deleted) -> bool {
871
PHINode *WidePhi =
872
createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts, ElimExt, Widened,
873
true /* HasGuards */, true /* UsePostIncrementRanges */);
874
if (!WidePhi)
875
return false;
876
LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump());
877
LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump());
878
Deleted = RecursivelyDeleteDeadPHINode(WideIV.NarrowIV);
879
return true;
880
};
881
882
bool Deleted;
883
if (!CreateWideIV({FI.InnerInductionPHI, MaxLegalType, false}, Deleted))
884
return false;
885
// Add the narrow phi to list, so that it will be adjusted later when the
886
// the transformation is performed.
887
if (!Deleted)
888
FI.InnerPHIsToTransform.insert(FI.InnerInductionPHI);
889
890
if (!CreateWideIV({FI.OuterInductionPHI, MaxLegalType, false}, Deleted))
891
return false;
892
893
assert(Widened && "Widened IV expected");
894
FI.Widened = true;
895
896
// Save the old/narrow induction phis, which we need to ignore in CheckPHIs.
897
FI.NarrowInnerInductionPHI = FI.InnerInductionPHI;
898
FI.NarrowOuterInductionPHI = FI.OuterInductionPHI;
899
900
// After widening, rediscover all the loop components.
901
return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
902
}
903
904
static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
905
ScalarEvolution *SE, AssumptionCache *AC,
906
const TargetTransformInfo *TTI, LPMUpdater *U,
907
MemorySSAUpdater *MSSAU,
908
const LoopAccessInfo &LAI) {
909
LLVM_DEBUG(
910
dbgs() << "Loop flattening running on outer loop "
911
<< FI.OuterLoop->getHeader()->getName() << " and inner loop "
912
<< FI.InnerLoop->getHeader()->getName() << " in "
913
<< FI.OuterLoop->getHeader()->getParent()->getName() << "\n");
914
915
if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI))
916
return false;
917
918
// Check if we can widen the induction variables to avoid overflow checks.
919
bool CanFlatten = CanWidenIV(FI, DT, LI, SE, AC, TTI);
920
921
// It can happen that after widening of the IV, flattening may not be
922
// possible/happening, e.g. when it is deemed unprofitable. So bail here if
923
// that is the case.
924
// TODO: IV widening without performing the actual flattening transformation
925
// is not ideal. While this codegen change should not matter much, it is an
926
// unnecessary change which is better to avoid. It's unlikely this happens
927
// often, because if it's unprofitibale after widening, it should be
928
// unprofitabe before widening as checked in the first round of checks. But
929
// 'RepeatedInstructionThreshold' is set to only 2, which can probably be
930
// relaxed. Because this is making a code change (the IV widening, but not
931
// the flattening), we return true here.
932
if (FI.Widened && !CanFlatten)
933
return true;
934
935
// If we have widened and can perform the transformation, do that here.
936
if (CanFlatten)
937
return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU);
938
939
// Otherwise, if we haven't widened the IV, check if the new iteration
940
// variable might overflow. In this case, we need to version the loop, and
941
// select the original version at runtime if the iteration space is too
942
// large.
943
OverflowResult OR = checkOverflow(FI, DT, AC);
944
if (OR == OverflowResult::AlwaysOverflowsHigh ||
945
OR == OverflowResult::AlwaysOverflowsLow) {
946
LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n");
947
return false;
948
} else if (OR == OverflowResult::MayOverflow) {
949
Module *M = FI.OuterLoop->getHeader()->getParent()->getParent();
950
const DataLayout &DL = M->getDataLayout();
951
if (!VersionLoops) {
952
LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n");
953
return false;
954
} else if (!DL.isLegalInteger(
955
FI.OuterTripCount->getType()->getScalarSizeInBits())) {
956
// If the trip count type isn't legal then it won't be possible to check
957
// for overflow using only a single multiply instruction, so don't
958
// flatten.
959
LLVM_DEBUG(
960
dbgs() << "Can't check overflow efficiently, not flattening\n");
961
return false;
962
}
963
LLVM_DEBUG(dbgs() << "Multiply might overflow, versioning loop\n");
964
965
// Version the loop. The overflow check isn't a runtime pointer check, so we
966
// pass an empty list of runtime pointer checks, causing LoopVersioning to
967
// emit 'false' as the branch condition, and add our own check afterwards.
968
BasicBlock *CheckBlock = FI.OuterLoop->getLoopPreheader();
969
ArrayRef<RuntimePointerCheck> Checks(nullptr, nullptr);
970
LoopVersioning LVer(LAI, Checks, FI.OuterLoop, LI, DT, SE);
971
LVer.versionLoop();
972
973
// Check for overflow by calculating the new tripcount using
974
// umul_with_overflow and then checking if it overflowed.
975
BranchInst *Br = cast<BranchInst>(CheckBlock->getTerminator());
976
assert(Br->isConditional() &&
977
"Expected LoopVersioning to generate a conditional branch");
978
assert(match(Br->getCondition(), m_Zero()) &&
979
"Expected branch condition to be false");
980
IRBuilder<> Builder(Br);
981
Function *F = Intrinsic::getDeclaration(M, Intrinsic::umul_with_overflow,
982
FI.OuterTripCount->getType());
983
Value *Call = Builder.CreateCall(F, {FI.OuterTripCount, FI.InnerTripCount},
984
"flatten.mul");
985
FI.NewTripCount = Builder.CreateExtractValue(Call, 0, "flatten.tripcount");
986
Value *Overflow = Builder.CreateExtractValue(Call, 1, "flatten.overflow");
987
Br->setCondition(Overflow);
988
} else {
989
LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n");
990
}
991
992
return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU);
993
}
994
995
PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM,
996
LoopStandardAnalysisResults &AR,
997
LPMUpdater &U) {
998
999
bool Changed = false;
1000
1001
std::optional<MemorySSAUpdater> MSSAU;
1002
if (AR.MSSA) {
1003
MSSAU = MemorySSAUpdater(AR.MSSA);
1004
if (VerifyMemorySSA)
1005
AR.MSSA->verifyMemorySSA();
1006
}
1007
1008
// The loop flattening pass requires loops to be
1009
// in simplified form, and also needs LCSSA. Running
1010
// this pass will simplify all loops that contain inner loops,
1011
// regardless of whether anything ends up being flattened.
1012
LoopAccessInfoManager LAIM(AR.SE, AR.AA, AR.DT, AR.LI, &AR.TTI, nullptr);
1013
for (Loop *InnerLoop : LN.getLoops()) {
1014
auto *OuterLoop = InnerLoop->getParentLoop();
1015
if (!OuterLoop)
1016
continue;
1017
FlattenInfo FI(OuterLoop, InnerLoop);
1018
Changed |=
1019
FlattenLoopPair(FI, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI, &U,
1020
MSSAU ? &*MSSAU : nullptr, LAIM.getInfo(*OuterLoop));
1021
}
1022
1023
if (!Changed)
1024
return PreservedAnalyses::all();
1025
1026
if (AR.MSSA && VerifyMemorySSA)
1027
AR.MSSA->verifyMemorySSA();
1028
1029
auto PA = getLoopPassPreservedAnalyses();
1030
if (AR.MSSA)
1031
PA.preserve<MemorySSAAnalysis>();
1032
return PA;
1033
}
1034
1035