Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopFuse.cpp
35266 views
1
//===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
///
9
/// \file
10
/// This file implements the loop fusion pass.
11
/// The implementation is largely based on the following document:
12
///
13
/// Code Transformations to Augment the Scope of Loop Fusion in a
14
/// Production Compiler
15
/// Christopher Mark Barton
16
/// MSc Thesis
17
/// https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf
18
///
19
/// The general approach taken is to collect sets of control flow equivalent
20
/// loops and test whether they can be fused. The necessary conditions for
21
/// fusion are:
22
/// 1. The loops must be adjacent (there cannot be any statements between
23
/// the two loops).
24
/// 2. The loops must be conforming (they must execute the same number of
25
/// iterations).
26
/// 3. The loops must be control flow equivalent (if one loop executes, the
27
/// other is guaranteed to execute).
28
/// 4. There cannot be any negative distance dependencies between the loops.
29
/// If all of these conditions are satisfied, it is safe to fuse the loops.
30
///
31
/// This implementation creates FusionCandidates that represent the loop and the
32
/// necessary information needed by fusion. It then operates on the fusion
33
/// candidates, first confirming that the candidate is eligible for fusion. The
34
/// candidates are then collected into control flow equivalent sets, sorted in
35
/// dominance order. Each set of control flow equivalent candidates is then
36
/// traversed, attempting to fuse pairs of candidates in the set. If all
37
/// requirements for fusion are met, the two candidates are fused, creating a
38
/// new (fused) candidate which is then added back into the set to consider for
39
/// additional fusion.
40
///
41
/// This implementation currently does not make any modifications to remove
42
/// conditions for fusion. Code transformations to make loops conform to each of
43
/// the conditions for fusion are discussed in more detail in the document
44
/// above. These can be added to the current implementation in the future.
45
//===----------------------------------------------------------------------===//
46
47
#include "llvm/Transforms/Scalar/LoopFuse.h"
48
#include "llvm/ADT/Statistic.h"
49
#include "llvm/Analysis/AssumptionCache.h"
50
#include "llvm/Analysis/DependenceAnalysis.h"
51
#include "llvm/Analysis/DomTreeUpdater.h"
52
#include "llvm/Analysis/LoopInfo.h"
53
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
54
#include "llvm/Analysis/PostDominators.h"
55
#include "llvm/Analysis/ScalarEvolution.h"
56
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
57
#include "llvm/Analysis/TargetTransformInfo.h"
58
#include "llvm/IR/Function.h"
59
#include "llvm/IR/Verifier.h"
60
#include "llvm/Support/CommandLine.h"
61
#include "llvm/Support/Debug.h"
62
#include "llvm/Support/raw_ostream.h"
63
#include "llvm/Transforms/Utils.h"
64
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
65
#include "llvm/Transforms/Utils/CodeMoverUtils.h"
66
#include "llvm/Transforms/Utils/LoopPeel.h"
67
#include "llvm/Transforms/Utils/LoopSimplify.h"
68
69
using namespace llvm;
70
71
#define DEBUG_TYPE "loop-fusion"
72
73
STATISTIC(FuseCounter, "Loops fused");
74
STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion");
75
STATISTIC(InvalidPreheader, "Loop has invalid preheader");
76
STATISTIC(InvalidHeader, "Loop has invalid header");
77
STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks");
78
STATISTIC(InvalidExitBlock, "Loop has invalid exit block");
79
STATISTIC(InvalidLatch, "Loop has invalid latch");
80
STATISTIC(InvalidLoop, "Loop is invalid");
81
STATISTIC(AddressTakenBB, "Basic block has address taken");
82
STATISTIC(MayThrowException, "Loop may throw an exception");
83
STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access");
84
STATISTIC(NotSimplifiedForm, "Loop is not in simplified form");
85
STATISTIC(InvalidDependencies, "Dependencies prevent fusion");
86
STATISTIC(UnknownTripCount, "Loop has unknown trip count");
87
STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop");
88
STATISTIC(NonEqualTripCount, "Loop trip counts are not the same");
89
STATISTIC(NonAdjacent, "Loops are not adjacent");
90
STATISTIC(
91
NonEmptyPreheader,
92
"Loop has a non-empty preheader with instructions that cannot be moved");
93
STATISTIC(FusionNotBeneficial, "Fusion is not beneficial");
94
STATISTIC(NonIdenticalGuards, "Candidates have different guards");
95
STATISTIC(NonEmptyExitBlock, "Candidate has a non-empty exit block with "
96
"instructions that cannot be moved");
97
STATISTIC(NonEmptyGuardBlock, "Candidate has a non-empty guard block with "
98
"instructions that cannot be moved");
99
STATISTIC(NotRotated, "Candidate is not rotated");
100
STATISTIC(OnlySecondCandidateIsGuarded,
101
"The second candidate is guarded while the first one is not");
102
STATISTIC(NumHoistedInsts, "Number of hoisted preheader instructions.");
103
STATISTIC(NumSunkInsts, "Number of hoisted preheader instructions.");
104
105
enum FusionDependenceAnalysisChoice {
106
FUSION_DEPENDENCE_ANALYSIS_SCEV,
107
FUSION_DEPENDENCE_ANALYSIS_DA,
108
FUSION_DEPENDENCE_ANALYSIS_ALL,
109
};
110
111
static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis(
112
"loop-fusion-dependence-analysis",
113
cl::desc("Which dependence analysis should loop fusion use?"),
114
cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev",
115
"Use the scalar evolution interface"),
116
clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da",
117
"Use the dependence analysis interface"),
118
clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all",
119
"Use all available analyses")),
120
cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL));
121
122
static cl::opt<unsigned> FusionPeelMaxCount(
123
"loop-fusion-peel-max-count", cl::init(0), cl::Hidden,
124
cl::desc("Max number of iterations to be peeled from a loop, such that "
125
"fusion can take place"));
126
127
#ifndef NDEBUG
128
static cl::opt<bool>
129
VerboseFusionDebugging("loop-fusion-verbose-debug",
130
cl::desc("Enable verbose debugging for Loop Fusion"),
131
cl::Hidden, cl::init(false));
132
#endif
133
134
namespace {
135
/// This class is used to represent a candidate for loop fusion. When it is
136
/// constructed, it checks the conditions for loop fusion to ensure that it
137
/// represents a valid candidate. It caches several parts of a loop that are
138
/// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead
139
/// of continually querying the underlying Loop to retrieve these values. It is
140
/// assumed these will not change throughout loop fusion.
141
///
142
/// The invalidate method should be used to indicate that the FusionCandidate is
143
/// no longer a valid candidate for fusion. Similarly, the isValid() method can
144
/// be used to ensure that the FusionCandidate is still valid for fusion.
145
struct FusionCandidate {
146
/// Cache of parts of the loop used throughout loop fusion. These should not
147
/// need to change throughout the analysis and transformation.
148
/// These parts are cached to avoid repeatedly looking up in the Loop class.
149
150
/// Preheader of the loop this candidate represents
151
BasicBlock *Preheader;
152
/// Header of the loop this candidate represents
153
BasicBlock *Header;
154
/// Blocks in the loop that exit the loop
155
BasicBlock *ExitingBlock;
156
/// The successor block of this loop (where the exiting blocks go to)
157
BasicBlock *ExitBlock;
158
/// Latch of the loop
159
BasicBlock *Latch;
160
/// The loop that this fusion candidate represents
161
Loop *L;
162
/// Vector of instructions in this loop that read from memory
163
SmallVector<Instruction *, 16> MemReads;
164
/// Vector of instructions in this loop that write to memory
165
SmallVector<Instruction *, 16> MemWrites;
166
/// Are all of the members of this fusion candidate still valid
167
bool Valid;
168
/// Guard branch of the loop, if it exists
169
BranchInst *GuardBranch;
170
/// Peeling Paramaters of the Loop.
171
TTI::PeelingPreferences PP;
172
/// Can you Peel this Loop?
173
bool AbleToPeel;
174
/// Has this loop been Peeled
175
bool Peeled;
176
177
/// Dominator and PostDominator trees are needed for the
178
/// FusionCandidateCompare function, required by FusionCandidateSet to
179
/// determine where the FusionCandidate should be inserted into the set. These
180
/// are used to establish ordering of the FusionCandidates based on dominance.
181
DominatorTree &DT;
182
const PostDominatorTree *PDT;
183
184
OptimizationRemarkEmitter &ORE;
185
186
FusionCandidate(Loop *L, DominatorTree &DT, const PostDominatorTree *PDT,
187
OptimizationRemarkEmitter &ORE, TTI::PeelingPreferences PP)
188
: Preheader(L->getLoopPreheader()), Header(L->getHeader()),
189
ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()),
190
Latch(L->getLoopLatch()), L(L), Valid(true),
191
GuardBranch(L->getLoopGuardBranch()), PP(PP), AbleToPeel(canPeel(L)),
192
Peeled(false), DT(DT), PDT(PDT), ORE(ORE) {
193
194
// Walk over all blocks in the loop and check for conditions that may
195
// prevent fusion. For each block, walk over all instructions and collect
196
// the memory reads and writes If any instructions that prevent fusion are
197
// found, invalidate this object and return.
198
for (BasicBlock *BB : L->blocks()) {
199
if (BB->hasAddressTaken()) {
200
invalidate();
201
reportInvalidCandidate(AddressTakenBB);
202
return;
203
}
204
205
for (Instruction &I : *BB) {
206
if (I.mayThrow()) {
207
invalidate();
208
reportInvalidCandidate(MayThrowException);
209
return;
210
}
211
if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
212
if (SI->isVolatile()) {
213
invalidate();
214
reportInvalidCandidate(ContainsVolatileAccess);
215
return;
216
}
217
}
218
if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
219
if (LI->isVolatile()) {
220
invalidate();
221
reportInvalidCandidate(ContainsVolatileAccess);
222
return;
223
}
224
}
225
if (I.mayWriteToMemory())
226
MemWrites.push_back(&I);
227
if (I.mayReadFromMemory())
228
MemReads.push_back(&I);
229
}
230
}
231
}
232
233
/// Check if all members of the class are valid.
234
bool isValid() const {
235
return Preheader && Header && ExitingBlock && ExitBlock && Latch && L &&
236
!L->isInvalid() && Valid;
237
}
238
239
/// Verify that all members are in sync with the Loop object.
240
void verify() const {
241
assert(isValid() && "Candidate is not valid!!");
242
assert(!L->isInvalid() && "Loop is invalid!");
243
assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync");
244
assert(Header == L->getHeader() && "Header is out of sync");
245
assert(ExitingBlock == L->getExitingBlock() &&
246
"Exiting Blocks is out of sync");
247
assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync");
248
assert(Latch == L->getLoopLatch() && "Latch is out of sync");
249
}
250
251
/// Get the entry block for this fusion candidate.
252
///
253
/// If this fusion candidate represents a guarded loop, the entry block is the
254
/// loop guard block. If it represents an unguarded loop, the entry block is
255
/// the preheader of the loop.
256
BasicBlock *getEntryBlock() const {
257
if (GuardBranch)
258
return GuardBranch->getParent();
259
else
260
return Preheader;
261
}
262
263
/// After Peeling the loop is modified quite a bit, hence all of the Blocks
264
/// need to be updated accordingly.
265
void updateAfterPeeling() {
266
Preheader = L->getLoopPreheader();
267
Header = L->getHeader();
268
ExitingBlock = L->getExitingBlock();
269
ExitBlock = L->getExitBlock();
270
Latch = L->getLoopLatch();
271
verify();
272
}
273
274
/// Given a guarded loop, get the successor of the guard that is not in the
275
/// loop.
276
///
277
/// This method returns the successor of the loop guard that is not located
278
/// within the loop (i.e., the successor of the guard that is not the
279
/// preheader).
280
/// This method is only valid for guarded loops.
281
BasicBlock *getNonLoopBlock() const {
282
assert(GuardBranch && "Only valid on guarded loops.");
283
assert(GuardBranch->isConditional() &&
284
"Expecting guard to be a conditional branch.");
285
if (Peeled)
286
return GuardBranch->getSuccessor(1);
287
return (GuardBranch->getSuccessor(0) == Preheader)
288
? GuardBranch->getSuccessor(1)
289
: GuardBranch->getSuccessor(0);
290
}
291
292
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
293
LLVM_DUMP_METHOD void dump() const {
294
dbgs() << "\tGuardBranch: ";
295
if (GuardBranch)
296
dbgs() << *GuardBranch;
297
else
298
dbgs() << "nullptr";
299
dbgs() << "\n"
300
<< (GuardBranch ? GuardBranch->getName() : "nullptr") << "\n"
301
<< "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr")
302
<< "\n"
303
<< "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n"
304
<< "\tExitingBB: "
305
<< (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n"
306
<< "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr")
307
<< "\n"
308
<< "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n"
309
<< "\tEntryBlock: "
310
<< (getEntryBlock() ? getEntryBlock()->getName() : "nullptr")
311
<< "\n";
312
}
313
#endif
314
315
/// Determine if a fusion candidate (representing a loop) is eligible for
316
/// fusion. Note that this only checks whether a single loop can be fused - it
317
/// does not check whether it is *legal* to fuse two loops together.
318
bool isEligibleForFusion(ScalarEvolution &SE) const {
319
if (!isValid()) {
320
LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n");
321
if (!Preheader)
322
++InvalidPreheader;
323
if (!Header)
324
++InvalidHeader;
325
if (!ExitingBlock)
326
++InvalidExitingBlock;
327
if (!ExitBlock)
328
++InvalidExitBlock;
329
if (!Latch)
330
++InvalidLatch;
331
if (L->isInvalid())
332
++InvalidLoop;
333
334
return false;
335
}
336
337
// Require ScalarEvolution to be able to determine a trip count.
338
if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
339
LLVM_DEBUG(dbgs() << "Loop " << L->getName()
340
<< " trip count not computable!\n");
341
return reportInvalidCandidate(UnknownTripCount);
342
}
343
344
if (!L->isLoopSimplifyForm()) {
345
LLVM_DEBUG(dbgs() << "Loop " << L->getName()
346
<< " is not in simplified form!\n");
347
return reportInvalidCandidate(NotSimplifiedForm);
348
}
349
350
if (!L->isRotatedForm()) {
351
LLVM_DEBUG(dbgs() << "Loop " << L->getName() << " is not rotated!\n");
352
return reportInvalidCandidate(NotRotated);
353
}
354
355
return true;
356
}
357
358
private:
359
// This is only used internally for now, to clear the MemWrites and MemReads
360
// list and setting Valid to false. I can't envision other uses of this right
361
// now, since once FusionCandidates are put into the FusionCandidateSet they
362
// are immutable. Thus, any time we need to change/update a FusionCandidate,
363
// we must create a new one and insert it into the FusionCandidateSet to
364
// ensure the FusionCandidateSet remains ordered correctly.
365
void invalidate() {
366
MemWrites.clear();
367
MemReads.clear();
368
Valid = false;
369
}
370
371
bool reportInvalidCandidate(llvm::Statistic &Stat) const {
372
using namespace ore;
373
assert(L && Preheader && "Fusion candidate not initialized properly!");
374
#if LLVM_ENABLE_STATS
375
++Stat;
376
ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(),
377
L->getStartLoc(), Preheader)
378
<< "[" << Preheader->getParent()->getName() << "]: "
379
<< "Loop is not a candidate for fusion: " << Stat.getDesc());
380
#endif
381
return false;
382
}
383
};
384
385
struct FusionCandidateCompare {
386
/// Comparison functor to sort two Control Flow Equivalent fusion candidates
387
/// into dominance order.
388
/// If LHS dominates RHS and RHS post-dominates LHS, return true;
389
/// If RHS dominates LHS and LHS post-dominates RHS, return false;
390
/// If both LHS and RHS are not dominating each other then, non-strictly
391
/// post dominate check will decide the order of candidates. If RHS
392
/// non-strictly post dominates LHS then, return true. If LHS non-strictly
393
/// post dominates RHS then, return false. If both are non-strictly post
394
/// dominate each other then, level in the post dominator tree will decide
395
/// the order of candidates.
396
bool operator()(const FusionCandidate &LHS,
397
const FusionCandidate &RHS) const {
398
const DominatorTree *DT = &(LHS.DT);
399
400
BasicBlock *LHSEntryBlock = LHS.getEntryBlock();
401
BasicBlock *RHSEntryBlock = RHS.getEntryBlock();
402
403
// Do not save PDT to local variable as it is only used in asserts and thus
404
// will trigger an unused variable warning if building without asserts.
405
assert(DT && LHS.PDT && "Expecting valid dominator tree");
406
407
// Do this compare first so if LHS == RHS, function returns false.
408
if (DT->dominates(RHSEntryBlock, LHSEntryBlock)) {
409
// RHS dominates LHS
410
// Verify LHS post-dominates RHS
411
assert(LHS.PDT->dominates(LHSEntryBlock, RHSEntryBlock));
412
return false;
413
}
414
415
if (DT->dominates(LHSEntryBlock, RHSEntryBlock)) {
416
// Verify RHS Postdominates LHS
417
assert(LHS.PDT->dominates(RHSEntryBlock, LHSEntryBlock));
418
return true;
419
}
420
421
// If two FusionCandidates are in the same level of dominator tree,
422
// they will not dominate each other, but may still be control flow
423
// equivalent. To sort those FusionCandidates, nonStrictlyPostDominate()
424
// function is needed.
425
bool WrongOrder =
426
nonStrictlyPostDominate(LHSEntryBlock, RHSEntryBlock, DT, LHS.PDT);
427
bool RightOrder =
428
nonStrictlyPostDominate(RHSEntryBlock, LHSEntryBlock, DT, LHS.PDT);
429
if (WrongOrder && RightOrder) {
430
// If common predecessor of LHS and RHS post dominates both
431
// FusionCandidates then, Order of FusionCandidate can be
432
// identified by its level in post dominator tree.
433
DomTreeNode *LNode = LHS.PDT->getNode(LHSEntryBlock);
434
DomTreeNode *RNode = LHS.PDT->getNode(RHSEntryBlock);
435
return LNode->getLevel() > RNode->getLevel();
436
} else if (WrongOrder)
437
return false;
438
else if (RightOrder)
439
return true;
440
441
// If LHS does not non-strict Postdominate RHS and RHS does not non-strict
442
// Postdominate LHS then, there is no dominance relationship between the
443
// two FusionCandidates. Thus, they should not be in the same set together.
444
llvm_unreachable(
445
"No dominance relationship between these fusion candidates!");
446
}
447
};
448
449
using LoopVector = SmallVector<Loop *, 4>;
450
451
// Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance
452
// order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0
453
// dominates FC1 and FC1 post-dominates FC0.
454
// std::set was chosen because we want a sorted data structure with stable
455
// iterators. A subsequent patch to loop fusion will enable fusing non-adjacent
456
// loops by moving intervening code around. When this intervening code contains
457
// loops, those loops will be moved also. The corresponding FusionCandidates
458
// will also need to be moved accordingly. As this is done, having stable
459
// iterators will simplify the logic. Similarly, having an efficient insert that
460
// keeps the FusionCandidateSet sorted will also simplify the implementation.
461
using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>;
462
using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>;
463
464
#if !defined(NDEBUG)
465
static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
466
const FusionCandidate &FC) {
467
if (FC.isValid())
468
OS << FC.Preheader->getName();
469
else
470
OS << "<Invalid>";
471
472
return OS;
473
}
474
475
static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
476
const FusionCandidateSet &CandSet) {
477
for (const FusionCandidate &FC : CandSet)
478
OS << FC << '\n';
479
480
return OS;
481
}
482
483
static void
484
printFusionCandidates(const FusionCandidateCollection &FusionCandidates) {
485
dbgs() << "Fusion Candidates: \n";
486
for (const auto &CandidateSet : FusionCandidates) {
487
dbgs() << "*** Fusion Candidate Set ***\n";
488
dbgs() << CandidateSet;
489
dbgs() << "****************************\n";
490
}
491
}
492
#endif
493
494
/// Collect all loops in function at the same nest level, starting at the
495
/// outermost level.
496
///
497
/// This data structure collects all loops at the same nest level for a
498
/// given function (specified by the LoopInfo object). It starts at the
499
/// outermost level.
500
struct LoopDepthTree {
501
using LoopsOnLevelTy = SmallVector<LoopVector, 4>;
502
using iterator = LoopsOnLevelTy::iterator;
503
using const_iterator = LoopsOnLevelTy::const_iterator;
504
505
LoopDepthTree(LoopInfo &LI) : Depth(1) {
506
if (!LI.empty())
507
LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend()));
508
}
509
510
/// Test whether a given loop has been removed from the function, and thus is
511
/// no longer valid.
512
bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); }
513
514
/// Record that a given loop has been removed from the function and is no
515
/// longer valid.
516
void removeLoop(const Loop *L) { RemovedLoops.insert(L); }
517
518
/// Descend the tree to the next (inner) nesting level
519
void descend() {
520
LoopsOnLevelTy LoopsOnNextLevel;
521
522
for (const LoopVector &LV : *this)
523
for (Loop *L : LV)
524
if (!isRemovedLoop(L) && L->begin() != L->end())
525
LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end()));
526
527
LoopsOnLevel = LoopsOnNextLevel;
528
RemovedLoops.clear();
529
Depth++;
530
}
531
532
bool empty() const { return size() == 0; }
533
size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); }
534
unsigned getDepth() const { return Depth; }
535
536
iterator begin() { return LoopsOnLevel.begin(); }
537
iterator end() { return LoopsOnLevel.end(); }
538
const_iterator begin() const { return LoopsOnLevel.begin(); }
539
const_iterator end() const { return LoopsOnLevel.end(); }
540
541
private:
542
/// Set of loops that have been removed from the function and are no longer
543
/// valid.
544
SmallPtrSet<const Loop *, 8> RemovedLoops;
545
546
/// Depth of the current level, starting at 1 (outermost loops).
547
unsigned Depth;
548
549
/// Vector of loops at the current depth level that have the same parent loop
550
LoopsOnLevelTy LoopsOnLevel;
551
};
552
553
#ifndef NDEBUG
554
static void printLoopVector(const LoopVector &LV) {
555
dbgs() << "****************************\n";
556
for (auto *L : LV)
557
printLoop(*L, dbgs());
558
dbgs() << "****************************\n";
559
}
560
#endif
561
562
struct LoopFuser {
563
private:
564
// Sets of control flow equivalent fusion candidates for a given nest level.
565
FusionCandidateCollection FusionCandidates;
566
567
LoopDepthTree LDT;
568
DomTreeUpdater DTU;
569
570
LoopInfo &LI;
571
DominatorTree &DT;
572
DependenceInfo &DI;
573
ScalarEvolution &SE;
574
PostDominatorTree &PDT;
575
OptimizationRemarkEmitter &ORE;
576
AssumptionCache &AC;
577
const TargetTransformInfo &TTI;
578
579
public:
580
LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI,
581
ScalarEvolution &SE, PostDominatorTree &PDT,
582
OptimizationRemarkEmitter &ORE, const DataLayout &DL,
583
AssumptionCache &AC, const TargetTransformInfo &TTI)
584
: LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI),
585
DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE), AC(AC), TTI(TTI) {}
586
587
/// This is the main entry point for loop fusion. It will traverse the
588
/// specified function and collect candidate loops to fuse, starting at the
589
/// outermost nesting level and working inwards.
590
bool fuseLoops(Function &F) {
591
#ifndef NDEBUG
592
if (VerboseFusionDebugging) {
593
LI.print(dbgs());
594
}
595
#endif
596
597
LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName()
598
<< "\n");
599
bool Changed = false;
600
601
while (!LDT.empty()) {
602
LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth "
603
<< LDT.getDepth() << "\n";);
604
605
for (const LoopVector &LV : LDT) {
606
assert(LV.size() > 0 && "Empty loop set was build!");
607
608
// Skip singleton loop sets as they do not offer fusion opportunities on
609
// this level.
610
if (LV.size() == 1)
611
continue;
612
#ifndef NDEBUG
613
if (VerboseFusionDebugging) {
614
LLVM_DEBUG({
615
dbgs() << " Visit loop set (#" << LV.size() << "):\n";
616
printLoopVector(LV);
617
});
618
}
619
#endif
620
621
collectFusionCandidates(LV);
622
Changed |= fuseCandidates();
623
}
624
625
// Finished analyzing candidates at this level.
626
// Descend to the next level and clear all of the candidates currently
627
// collected. Note that it will not be possible to fuse any of the
628
// existing candidates with new candidates because the new candidates will
629
// be at a different nest level and thus not be control flow equivalent
630
// with all of the candidates collected so far.
631
LLVM_DEBUG(dbgs() << "Descend one level!\n");
632
LDT.descend();
633
FusionCandidates.clear();
634
}
635
636
if (Changed)
637
LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump(););
638
639
#ifndef NDEBUG
640
assert(DT.verify());
641
assert(PDT.verify());
642
LI.verify(DT);
643
SE.verify();
644
#endif
645
646
LLVM_DEBUG(dbgs() << "Loop Fusion complete\n");
647
return Changed;
648
}
649
650
private:
651
/// Determine if two fusion candidates are control flow equivalent.
652
///
653
/// Two fusion candidates are control flow equivalent if when one executes,
654
/// the other is guaranteed to execute. This is determined using dominators
655
/// and post-dominators: if A dominates B and B post-dominates A then A and B
656
/// are control-flow equivalent.
657
bool isControlFlowEquivalent(const FusionCandidate &FC0,
658
const FusionCandidate &FC1) const {
659
assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders");
660
661
return ::isControlFlowEquivalent(*FC0.getEntryBlock(), *FC1.getEntryBlock(),
662
DT, PDT);
663
}
664
665
/// Iterate over all loops in the given loop set and identify the loops that
666
/// are eligible for fusion. Place all eligible fusion candidates into Control
667
/// Flow Equivalent sets, sorted by dominance.
668
void collectFusionCandidates(const LoopVector &LV) {
669
for (Loop *L : LV) {
670
TTI::PeelingPreferences PP =
671
gatherPeelingPreferences(L, SE, TTI, std::nullopt, std::nullopt);
672
FusionCandidate CurrCand(L, DT, &PDT, ORE, PP);
673
if (!CurrCand.isEligibleForFusion(SE))
674
continue;
675
676
// Go through each list in FusionCandidates and determine if L is control
677
// flow equivalent with the first loop in that list. If it is, append LV.
678
// If not, go to the next list.
679
// If no suitable list is found, start another list and add it to
680
// FusionCandidates.
681
bool FoundSet = false;
682
683
for (auto &CurrCandSet : FusionCandidates) {
684
if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) {
685
CurrCandSet.insert(CurrCand);
686
FoundSet = true;
687
#ifndef NDEBUG
688
if (VerboseFusionDebugging)
689
LLVM_DEBUG(dbgs() << "Adding " << CurrCand
690
<< " to existing candidate set\n");
691
#endif
692
break;
693
}
694
}
695
if (!FoundSet) {
696
// No set was found. Create a new set and add to FusionCandidates
697
#ifndef NDEBUG
698
if (VerboseFusionDebugging)
699
LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n");
700
#endif
701
FusionCandidateSet NewCandSet;
702
NewCandSet.insert(CurrCand);
703
FusionCandidates.push_back(NewCandSet);
704
}
705
NumFusionCandidates++;
706
}
707
}
708
709
/// Determine if it is beneficial to fuse two loops.
710
///
711
/// For now, this method simply returns true because we want to fuse as much
712
/// as possible (primarily to test the pass). This method will evolve, over
713
/// time, to add heuristics for profitability of fusion.
714
bool isBeneficialFusion(const FusionCandidate &FC0,
715
const FusionCandidate &FC1) {
716
return true;
717
}
718
719
/// Determine if two fusion candidates have the same trip count (i.e., they
720
/// execute the same number of iterations).
721
///
722
/// This function will return a pair of values. The first is a boolean,
723
/// stating whether or not the two candidates are known at compile time to
724
/// have the same TripCount. The second is the difference in the two
725
/// TripCounts. This information can be used later to determine whether or not
726
/// peeling can be performed on either one of the candidates.
727
std::pair<bool, std::optional<unsigned>>
728
haveIdenticalTripCounts(const FusionCandidate &FC0,
729
const FusionCandidate &FC1) const {
730
const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L);
731
if (isa<SCEVCouldNotCompute>(TripCount0)) {
732
UncomputableTripCount++;
733
LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!");
734
return {false, std::nullopt};
735
}
736
737
const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L);
738
if (isa<SCEVCouldNotCompute>(TripCount1)) {
739
UncomputableTripCount++;
740
LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!");
741
return {false, std::nullopt};
742
}
743
744
LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & "
745
<< *TripCount1 << " are "
746
<< (TripCount0 == TripCount1 ? "identical" : "different")
747
<< "\n");
748
749
if (TripCount0 == TripCount1)
750
return {true, 0};
751
752
LLVM_DEBUG(dbgs() << "The loops do not have the same tripcount, "
753
"determining the difference between trip counts\n");
754
755
// Currently only considering loops with a single exit point
756
// and a non-constant trip count.
757
const unsigned TC0 = SE.getSmallConstantTripCount(FC0.L);
758
const unsigned TC1 = SE.getSmallConstantTripCount(FC1.L);
759
760
// If any of the tripcounts are zero that means that loop(s) do not have
761
// a single exit or a constant tripcount.
762
if (TC0 == 0 || TC1 == 0) {
763
LLVM_DEBUG(dbgs() << "Loop(s) do not have a single exit point or do not "
764
"have a constant number of iterations. Peeling "
765
"is not benefical\n");
766
return {false, std::nullopt};
767
}
768
769
std::optional<unsigned> Difference;
770
int Diff = TC0 - TC1;
771
772
if (Diff > 0)
773
Difference = Diff;
774
else {
775
LLVM_DEBUG(
776
dbgs() << "Difference is less than 0. FC1 (second loop) has more "
777
"iterations than the first one. Currently not supported\n");
778
}
779
780
LLVM_DEBUG(dbgs() << "Difference in loop trip count is: " << Difference
781
<< "\n");
782
783
return {false, Difference};
784
}
785
786
void peelFusionCandidate(FusionCandidate &FC0, const FusionCandidate &FC1,
787
unsigned PeelCount) {
788
assert(FC0.AbleToPeel && "Should be able to peel loop");
789
790
LLVM_DEBUG(dbgs() << "Attempting to peel first " << PeelCount
791
<< " iterations of the first loop. \n");
792
793
ValueToValueMapTy VMap;
794
FC0.Peeled = peelLoop(FC0.L, PeelCount, &LI, &SE, DT, &AC, true, VMap);
795
if (FC0.Peeled) {
796
LLVM_DEBUG(dbgs() << "Done Peeling\n");
797
798
#ifndef NDEBUG
799
auto IdenticalTripCount = haveIdenticalTripCounts(FC0, FC1);
800
801
assert(IdenticalTripCount.first && *IdenticalTripCount.second == 0 &&
802
"Loops should have identical trip counts after peeling");
803
#endif
804
805
FC0.PP.PeelCount += PeelCount;
806
807
// Peeling does not update the PDT
808
PDT.recalculate(*FC0.Preheader->getParent());
809
810
FC0.updateAfterPeeling();
811
812
// In this case the iterations of the loop are constant, so the first
813
// loop will execute completely (will not jump from one of
814
// the peeled blocks to the second loop). Here we are updating the
815
// branch conditions of each of the peeled blocks, such that it will
816
// branch to its successor which is not the preheader of the second loop
817
// in the case of unguarded loops, or the succesors of the exit block of
818
// the first loop otherwise. Doing this update will ensure that the entry
819
// block of the first loop dominates the entry block of the second loop.
820
BasicBlock *BB =
821
FC0.GuardBranch ? FC0.ExitBlock->getUniqueSuccessor() : FC1.Preheader;
822
if (BB) {
823
SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
824
SmallVector<Instruction *, 8> WorkList;
825
for (BasicBlock *Pred : predecessors(BB)) {
826
if (Pred != FC0.ExitBlock) {
827
WorkList.emplace_back(Pred->getTerminator());
828
TreeUpdates.emplace_back(
829
DominatorTree::UpdateType(DominatorTree::Delete, Pred, BB));
830
}
831
}
832
// Cannot modify the predecessors inside the above loop as it will cause
833
// the iterators to be nullptrs, causing memory errors.
834
for (Instruction *CurrentBranch : WorkList) {
835
BasicBlock *Succ = CurrentBranch->getSuccessor(0);
836
if (Succ == BB)
837
Succ = CurrentBranch->getSuccessor(1);
838
ReplaceInstWithInst(CurrentBranch, BranchInst::Create(Succ));
839
}
840
841
DTU.applyUpdates(TreeUpdates);
842
DTU.flush();
843
}
844
LLVM_DEBUG(
845
dbgs() << "Sucessfully peeled " << FC0.PP.PeelCount
846
<< " iterations from the first loop.\n"
847
"Both Loops have the same number of iterations now.\n");
848
}
849
}
850
851
/// Walk each set of control flow equivalent fusion candidates and attempt to
852
/// fuse them. This does a single linear traversal of all candidates in the
853
/// set. The conditions for legal fusion are checked at this point. If a pair
854
/// of fusion candidates passes all legality checks, they are fused together
855
/// and a new fusion candidate is created and added to the FusionCandidateSet.
856
/// The original fusion candidates are then removed, as they are no longer
857
/// valid.
858
bool fuseCandidates() {
859
bool Fused = false;
860
LLVM_DEBUG(printFusionCandidates(FusionCandidates));
861
for (auto &CandidateSet : FusionCandidates) {
862
if (CandidateSet.size() < 2)
863
continue;
864
865
LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n"
866
<< CandidateSet << "\n");
867
868
for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) {
869
assert(!LDT.isRemovedLoop(FC0->L) &&
870
"Should not have removed loops in CandidateSet!");
871
auto FC1 = FC0;
872
for (++FC1; FC1 != CandidateSet.end(); ++FC1) {
873
assert(!LDT.isRemovedLoop(FC1->L) &&
874
"Should not have removed loops in CandidateSet!");
875
876
LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump();
877
dbgs() << " with\n"; FC1->dump(); dbgs() << "\n");
878
879
FC0->verify();
880
FC1->verify();
881
882
// Check if the candidates have identical tripcounts (first value of
883
// pair), and if not check the difference in the tripcounts between
884
// the loops (second value of pair). The difference is not equal to
885
// std::nullopt iff the loops iterate a constant number of times, and
886
// have a single exit.
887
std::pair<bool, std::optional<unsigned>> IdenticalTripCountRes =
888
haveIdenticalTripCounts(*FC0, *FC1);
889
bool SameTripCount = IdenticalTripCountRes.first;
890
std::optional<unsigned> TCDifference = IdenticalTripCountRes.second;
891
892
// Here we are checking that FC0 (the first loop) can be peeled, and
893
// both loops have different tripcounts.
894
if (FC0->AbleToPeel && !SameTripCount && TCDifference) {
895
if (*TCDifference > FusionPeelMaxCount) {
896
LLVM_DEBUG(dbgs()
897
<< "Difference in loop trip counts: " << *TCDifference
898
<< " is greater than maximum peel count specificed: "
899
<< FusionPeelMaxCount << "\n");
900
} else {
901
// Dependent on peeling being performed on the first loop, and
902
// assuming all other conditions for fusion return true.
903
SameTripCount = true;
904
}
905
}
906
907
if (!SameTripCount) {
908
LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip "
909
"counts. Not fusing.\n");
910
reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
911
NonEqualTripCount);
912
continue;
913
}
914
915
if (!isAdjacent(*FC0, *FC1)) {
916
LLVM_DEBUG(dbgs()
917
<< "Fusion candidates are not adjacent. Not fusing.\n");
918
reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent);
919
continue;
920
}
921
922
if ((!FC0->GuardBranch && FC1->GuardBranch) ||
923
(FC0->GuardBranch && !FC1->GuardBranch)) {
924
LLVM_DEBUG(dbgs() << "The one of candidate is guarded while the "
925
"another one is not. Not fusing.\n");
926
reportLoopFusion<OptimizationRemarkMissed>(
927
*FC0, *FC1, OnlySecondCandidateIsGuarded);
928
continue;
929
}
930
931
// Ensure that FC0 and FC1 have identical guards.
932
// If one (or both) are not guarded, this check is not necessary.
933
if (FC0->GuardBranch && FC1->GuardBranch &&
934
!haveIdenticalGuards(*FC0, *FC1) && !TCDifference) {
935
LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical "
936
"guards. Not Fusing.\n");
937
reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
938
NonIdenticalGuards);
939
continue;
940
}
941
942
if (FC0->GuardBranch) {
943
assert(FC1->GuardBranch && "Expecting valid FC1 guard branch");
944
945
if (!isSafeToMoveBefore(*FC0->ExitBlock,
946
*FC1->ExitBlock->getFirstNonPHIOrDbg(), DT,
947
&PDT, &DI)) {
948
LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe "
949
"instructions in exit block. Not fusing.\n");
950
reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
951
NonEmptyExitBlock);
952
continue;
953
}
954
955
if (!isSafeToMoveBefore(
956
*FC1->GuardBranch->getParent(),
957
*FC0->GuardBranch->getParent()->getTerminator(), DT, &PDT,
958
&DI)) {
959
LLVM_DEBUG(dbgs()
960
<< "Fusion candidate contains unsafe "
961
"instructions in guard block. Not fusing.\n");
962
reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
963
NonEmptyGuardBlock);
964
continue;
965
}
966
}
967
968
// Check the dependencies across the loops and do not fuse if it would
969
// violate them.
970
if (!dependencesAllowFusion(*FC0, *FC1)) {
971
LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n");
972
reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
973
InvalidDependencies);
974
continue;
975
}
976
977
// If the second loop has instructions in the pre-header, attempt to
978
// hoist them up to the first loop's pre-header or sink them into the
979
// body of the second loop.
980
SmallVector<Instruction *, 4> SafeToHoist;
981
SmallVector<Instruction *, 4> SafeToSink;
982
// At this point, this is the last remaining legality check.
983
// Which means if we can make this pre-header empty, we can fuse
984
// these loops
985
if (!isEmptyPreheader(*FC1)) {
986
LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty "
987
"preheader.\n");
988
989
// If it is not safe to hoist/sink all instructions in the
990
// pre-header, we cannot fuse these loops.
991
if (!collectMovablePreheaderInsts(*FC0, *FC1, SafeToHoist,
992
SafeToSink)) {
993
LLVM_DEBUG(dbgs() << "Could not hoist/sink all instructions in "
994
"Fusion Candidate Pre-header.\n"
995
<< "Not Fusing.\n");
996
reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
997
NonEmptyPreheader);
998
continue;
999
}
1000
}
1001
1002
bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1);
1003
LLVM_DEBUG(dbgs()
1004
<< "\tFusion appears to be "
1005
<< (BeneficialToFuse ? "" : "un") << "profitable!\n");
1006
if (!BeneficialToFuse) {
1007
reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
1008
FusionNotBeneficial);
1009
continue;
1010
}
1011
// All analysis has completed and has determined that fusion is legal
1012
// and profitable. At this point, start transforming the code and
1013
// perform fusion.
1014
1015
// Execute the hoist/sink operations on preheader instructions
1016
movePreheaderInsts(*FC0, *FC1, SafeToHoist, SafeToSink);
1017
1018
LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and "
1019
<< *FC1 << "\n");
1020
1021
FusionCandidate FC0Copy = *FC0;
1022
// Peel the loop after determining that fusion is legal. The Loops
1023
// will still be safe to fuse after the peeling is performed.
1024
bool Peel = TCDifference && *TCDifference > 0;
1025
if (Peel)
1026
peelFusionCandidate(FC0Copy, *FC1, *TCDifference);
1027
1028
// Report fusion to the Optimization Remarks.
1029
// Note this needs to be done *before* performFusion because
1030
// performFusion will change the original loops, making it not
1031
// possible to identify them after fusion is complete.
1032
reportLoopFusion<OptimizationRemark>((Peel ? FC0Copy : *FC0), *FC1,
1033
FuseCounter);
1034
1035
FusionCandidate FusedCand(
1036
performFusion((Peel ? FC0Copy : *FC0), *FC1), DT, &PDT, ORE,
1037
FC0Copy.PP);
1038
FusedCand.verify();
1039
assert(FusedCand.isEligibleForFusion(SE) &&
1040
"Fused candidate should be eligible for fusion!");
1041
1042
// Notify the loop-depth-tree that these loops are not valid objects
1043
LDT.removeLoop(FC1->L);
1044
1045
CandidateSet.erase(FC0);
1046
CandidateSet.erase(FC1);
1047
1048
auto InsertPos = CandidateSet.insert(FusedCand);
1049
1050
assert(InsertPos.second &&
1051
"Unable to insert TargetCandidate in CandidateSet!");
1052
1053
// Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations
1054
// of the FC1 loop will attempt to fuse the new (fused) loop with the
1055
// remaining candidates in the current candidate set.
1056
FC0 = FC1 = InsertPos.first;
1057
1058
LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet
1059
<< "\n");
1060
1061
Fused = true;
1062
}
1063
}
1064
}
1065
return Fused;
1066
}
1067
1068
// Returns true if the instruction \p I can be hoisted to the end of the
1069
// preheader of \p FC0. \p SafeToHoist contains the instructions that are
1070
// known to be safe to hoist. The instructions encountered that cannot be
1071
// hoisted are in \p NotHoisting.
1072
// TODO: Move functionality into CodeMoverUtils
1073
bool canHoistInst(Instruction &I,
1074
const SmallVector<Instruction *, 4> &SafeToHoist,
1075
const SmallVector<Instruction *, 4> &NotHoisting,
1076
const FusionCandidate &FC0) const {
1077
const BasicBlock *FC0PreheaderTarget = FC0.Preheader->getSingleSuccessor();
1078
assert(FC0PreheaderTarget &&
1079
"Expected single successor for loop preheader.");
1080
1081
for (Use &Op : I.operands()) {
1082
if (auto *OpInst = dyn_cast<Instruction>(Op)) {
1083
bool OpHoisted = is_contained(SafeToHoist, OpInst);
1084
// Check if we have already decided to hoist this operand. In this
1085
// case, it does not dominate FC0 *yet*, but will after we hoist it.
1086
if (!(OpHoisted || DT.dominates(OpInst, FC0PreheaderTarget))) {
1087
return false;
1088
}
1089
}
1090
}
1091
1092
// PHIs in FC1's header only have FC0 blocks as predecessors. PHIs
1093
// cannot be hoisted and should be sunk to the exit of the fused loop.
1094
if (isa<PHINode>(I))
1095
return false;
1096
1097
// If this isn't a memory inst, hoisting is safe
1098
if (!I.mayReadOrWriteMemory())
1099
return true;
1100
1101
LLVM_DEBUG(dbgs() << "Checking if this mem inst can be hoisted.\n");
1102
for (Instruction *NotHoistedInst : NotHoisting) {
1103
if (auto D = DI.depends(&I, NotHoistedInst, true)) {
1104
// Dependency is not read-before-write, write-before-read or
1105
// write-before-write
1106
if (D->isFlow() || D->isAnti() || D->isOutput()) {
1107
LLVM_DEBUG(dbgs() << "Inst depends on an instruction in FC1's "
1108
"preheader that is not being hoisted.\n");
1109
return false;
1110
}
1111
}
1112
}
1113
1114
for (Instruction *ReadInst : FC0.MemReads) {
1115
if (auto D = DI.depends(ReadInst, &I, true)) {
1116
// Dependency is not read-before-write
1117
if (D->isAnti()) {
1118
LLVM_DEBUG(dbgs() << "Inst depends on a read instruction in FC0.\n");
1119
return false;
1120
}
1121
}
1122
}
1123
1124
for (Instruction *WriteInst : FC0.MemWrites) {
1125
if (auto D = DI.depends(WriteInst, &I, true)) {
1126
// Dependency is not write-before-read or write-before-write
1127
if (D->isFlow() || D->isOutput()) {
1128
LLVM_DEBUG(dbgs() << "Inst depends on a write instruction in FC0.\n");
1129
return false;
1130
}
1131
}
1132
}
1133
return true;
1134
}
1135
1136
// Returns true if the instruction \p I can be sunk to the top of the exit
1137
// block of \p FC1.
1138
// TODO: Move functionality into CodeMoverUtils
1139
bool canSinkInst(Instruction &I, const FusionCandidate &FC1) const {
1140
for (User *U : I.users()) {
1141
if (auto *UI{dyn_cast<Instruction>(U)}) {
1142
// Cannot sink if user in loop
1143
// If FC1 has phi users of this value, we cannot sink it into FC1.
1144
if (FC1.L->contains(UI)) {
1145
// Cannot hoist or sink this instruction. No hoisting/sinking
1146
// should take place, loops should not fuse
1147
return false;
1148
}
1149
}
1150
}
1151
1152
// If this isn't a memory inst, sinking is safe
1153
if (!I.mayReadOrWriteMemory())
1154
return true;
1155
1156
for (Instruction *ReadInst : FC1.MemReads) {
1157
if (auto D = DI.depends(&I, ReadInst, true)) {
1158
// Dependency is not write-before-read
1159
if (D->isFlow()) {
1160
LLVM_DEBUG(dbgs() << "Inst depends on a read instruction in FC1.\n");
1161
return false;
1162
}
1163
}
1164
}
1165
1166
for (Instruction *WriteInst : FC1.MemWrites) {
1167
if (auto D = DI.depends(&I, WriteInst, true)) {
1168
// Dependency is not write-before-write or read-before-write
1169
if (D->isOutput() || D->isAnti()) {
1170
LLVM_DEBUG(dbgs() << "Inst depends on a write instruction in FC1.\n");
1171
return false;
1172
}
1173
}
1174
}
1175
1176
return true;
1177
}
1178
1179
/// Collect instructions in the \p FC1 Preheader that can be hoisted
1180
/// to the \p FC0 Preheader or sunk into the \p FC1 Body
1181
bool collectMovablePreheaderInsts(
1182
const FusionCandidate &FC0, const FusionCandidate &FC1,
1183
SmallVector<Instruction *, 4> &SafeToHoist,
1184
SmallVector<Instruction *, 4> &SafeToSink) const {
1185
BasicBlock *FC1Preheader = FC1.Preheader;
1186
// Save the instructions that are not being hoisted, so we know not to hoist
1187
// mem insts that they dominate.
1188
SmallVector<Instruction *, 4> NotHoisting;
1189
1190
for (Instruction &I : *FC1Preheader) {
1191
// Can't move a branch
1192
if (&I == FC1Preheader->getTerminator())
1193
continue;
1194
// If the instruction has side-effects, give up.
1195
// TODO: The case of mayReadFromMemory we can handle but requires
1196
// additional work with a dependence analysis so for now we give
1197
// up on memory reads.
1198
if (I.mayThrow() || !I.willReturn()) {
1199
LLVM_DEBUG(dbgs() << "Inst: " << I << " may throw or won't return.\n");
1200
return false;
1201
}
1202
1203
LLVM_DEBUG(dbgs() << "Checking Inst: " << I << "\n");
1204
1205
if (I.isAtomic() || I.isVolatile()) {
1206
LLVM_DEBUG(
1207
dbgs() << "\tInstruction is volatile or atomic. Cannot move it.\n");
1208
return false;
1209
}
1210
1211
if (canHoistInst(I, SafeToHoist, NotHoisting, FC0)) {
1212
SafeToHoist.push_back(&I);
1213
LLVM_DEBUG(dbgs() << "\tSafe to hoist.\n");
1214
} else {
1215
LLVM_DEBUG(dbgs() << "\tCould not hoist. Trying to sink...\n");
1216
NotHoisting.push_back(&I);
1217
1218
if (canSinkInst(I, FC1)) {
1219
SafeToSink.push_back(&I);
1220
LLVM_DEBUG(dbgs() << "\tSafe to sink.\n");
1221
} else {
1222
LLVM_DEBUG(dbgs() << "\tCould not sink.\n");
1223
return false;
1224
}
1225
}
1226
}
1227
LLVM_DEBUG(
1228
dbgs() << "All preheader instructions could be sunk or hoisted!\n");
1229
return true;
1230
}
1231
1232
/// Rewrite all additive recurrences in a SCEV to use a new loop.
1233
class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> {
1234
public:
1235
AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL,
1236
bool UseMax = true)
1237
: SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL),
1238
NewL(NewL) {}
1239
1240
const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
1241
const Loop *ExprL = Expr->getLoop();
1242
SmallVector<const SCEV *, 2> Operands;
1243
if (ExprL == &OldL) {
1244
append_range(Operands, Expr->operands());
1245
return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags());
1246
}
1247
1248
if (OldL.contains(ExprL)) {
1249
bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE));
1250
if (!UseMax || !Pos || !Expr->isAffine()) {
1251
Valid = false;
1252
return Expr;
1253
}
1254
return visit(Expr->getStart());
1255
}
1256
1257
for (const SCEV *Op : Expr->operands())
1258
Operands.push_back(visit(Op));
1259
return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags());
1260
}
1261
1262
bool wasValidSCEV() const { return Valid; }
1263
1264
private:
1265
bool Valid, UseMax;
1266
const Loop &OldL, &NewL;
1267
};
1268
1269
/// Return false if the access functions of \p I0 and \p I1 could cause
1270
/// a negative dependence.
1271
bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0,
1272
Instruction &I1, bool EqualIsInvalid) {
1273
Value *Ptr0 = getLoadStorePointerOperand(&I0);
1274
Value *Ptr1 = getLoadStorePointerOperand(&I1);
1275
if (!Ptr0 || !Ptr1)
1276
return false;
1277
1278
const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0);
1279
const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1);
1280
#ifndef NDEBUG
1281
if (VerboseFusionDebugging)
1282
LLVM_DEBUG(dbgs() << " Access function check: " << *SCEVPtr0 << " vs "
1283
<< *SCEVPtr1 << "\n");
1284
#endif
1285
AddRecLoopReplacer Rewriter(SE, L0, L1);
1286
SCEVPtr0 = Rewriter.visit(SCEVPtr0);
1287
#ifndef NDEBUG
1288
if (VerboseFusionDebugging)
1289
LLVM_DEBUG(dbgs() << " Access function after rewrite: " << *SCEVPtr0
1290
<< " [Valid: " << Rewriter.wasValidSCEV() << "]\n");
1291
#endif
1292
if (!Rewriter.wasValidSCEV())
1293
return false;
1294
1295
// TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by
1296
// L0) and the other is not. We could check if it is monotone and test
1297
// the beginning and end value instead.
1298
1299
BasicBlock *L0Header = L0.getHeader();
1300
auto HasNonLinearDominanceRelation = [&](const SCEV *S) {
1301
const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S);
1302
if (!AddRec)
1303
return false;
1304
return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) &&
1305
!DT.dominates(AddRec->getLoop()->getHeader(), L0Header);
1306
};
1307
if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation))
1308
return false;
1309
1310
ICmpInst::Predicate Pred =
1311
EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE;
1312
bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1);
1313
#ifndef NDEBUG
1314
if (VerboseFusionDebugging)
1315
LLVM_DEBUG(dbgs() << " Relation: " << *SCEVPtr0
1316
<< (IsAlwaysGE ? " >= " : " may < ") << *SCEVPtr1
1317
<< "\n");
1318
#endif
1319
return IsAlwaysGE;
1320
}
1321
1322
/// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in
1323
/// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses
1324
/// specified by @p DepChoice are used to determine this.
1325
bool dependencesAllowFusion(const FusionCandidate &FC0,
1326
const FusionCandidate &FC1, Instruction &I0,
1327
Instruction &I1, bool AnyDep,
1328
FusionDependenceAnalysisChoice DepChoice) {
1329
#ifndef NDEBUG
1330
if (VerboseFusionDebugging) {
1331
LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : "
1332
<< DepChoice << "\n");
1333
}
1334
#endif
1335
switch (DepChoice) {
1336
case FUSION_DEPENDENCE_ANALYSIS_SCEV:
1337
return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep);
1338
case FUSION_DEPENDENCE_ANALYSIS_DA: {
1339
auto DepResult = DI.depends(&I0, &I1, true);
1340
if (!DepResult)
1341
return true;
1342
#ifndef NDEBUG
1343
if (VerboseFusionDebugging) {
1344
LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs());
1345
dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: "
1346
<< (DepResult->isOrdered() ? "true" : "false")
1347
<< "]\n");
1348
LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels()
1349
<< "\n");
1350
}
1351
#endif
1352
1353
if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor())
1354
LLVM_DEBUG(
1355
dbgs() << "TODO: Implement pred/succ dependence handling!\n");
1356
1357
// TODO: Can we actually use the dependence info analysis here?
1358
return false;
1359
}
1360
1361
case FUSION_DEPENDENCE_ANALYSIS_ALL:
1362
return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
1363
FUSION_DEPENDENCE_ANALYSIS_SCEV) ||
1364
dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
1365
FUSION_DEPENDENCE_ANALYSIS_DA);
1366
}
1367
1368
llvm_unreachable("Unknown fusion dependence analysis choice!");
1369
}
1370
1371
/// Perform a dependence check and return if @p FC0 and @p FC1 can be fused.
1372
bool dependencesAllowFusion(const FusionCandidate &FC0,
1373
const FusionCandidate &FC1) {
1374
LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1
1375
<< "\n");
1376
assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth());
1377
assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock()));
1378
1379
for (Instruction *WriteL0 : FC0.MemWrites) {
1380
for (Instruction *WriteL1 : FC1.MemWrites)
1381
if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
1382
/* AnyDep */ false,
1383
FusionDependenceAnalysis)) {
1384
InvalidDependencies++;
1385
return false;
1386
}
1387
for (Instruction *ReadL1 : FC1.MemReads)
1388
if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1,
1389
/* AnyDep */ false,
1390
FusionDependenceAnalysis)) {
1391
InvalidDependencies++;
1392
return false;
1393
}
1394
}
1395
1396
for (Instruction *WriteL1 : FC1.MemWrites) {
1397
for (Instruction *WriteL0 : FC0.MemWrites)
1398
if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
1399
/* AnyDep */ false,
1400
FusionDependenceAnalysis)) {
1401
InvalidDependencies++;
1402
return false;
1403
}
1404
for (Instruction *ReadL0 : FC0.MemReads)
1405
if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1,
1406
/* AnyDep */ false,
1407
FusionDependenceAnalysis)) {
1408
InvalidDependencies++;
1409
return false;
1410
}
1411
}
1412
1413
// Walk through all uses in FC1. For each use, find the reaching def. If the
1414
// def is located in FC0 then it is not safe to fuse.
1415
for (BasicBlock *BB : FC1.L->blocks())
1416
for (Instruction &I : *BB)
1417
for (auto &Op : I.operands())
1418
if (Instruction *Def = dyn_cast<Instruction>(Op))
1419
if (FC0.L->contains(Def->getParent())) {
1420
InvalidDependencies++;
1421
return false;
1422
}
1423
1424
return true;
1425
}
1426
1427
/// Determine if two fusion candidates are adjacent in the CFG.
1428
///
1429
/// This method will determine if there are additional basic blocks in the CFG
1430
/// between the exit of \p FC0 and the entry of \p FC1.
1431
/// If the two candidates are guarded loops, then it checks whether the
1432
/// non-loop successor of the \p FC0 guard branch is the entry block of \p
1433
/// FC1. If not, then the loops are not adjacent. If the two candidates are
1434
/// not guarded loops, then it checks whether the exit block of \p FC0 is the
1435
/// preheader of \p FC1.
1436
bool isAdjacent(const FusionCandidate &FC0,
1437
const FusionCandidate &FC1) const {
1438
// If the successor of the guard branch is FC1, then the loops are adjacent
1439
if (FC0.GuardBranch)
1440
return FC0.getNonLoopBlock() == FC1.getEntryBlock();
1441
else
1442
return FC0.ExitBlock == FC1.getEntryBlock();
1443
}
1444
1445
bool isEmptyPreheader(const FusionCandidate &FC) const {
1446
return FC.Preheader->size() == 1;
1447
}
1448
1449
/// Hoist \p FC1 Preheader instructions to \p FC0 Preheader
1450
/// and sink others into the body of \p FC1.
1451
void movePreheaderInsts(const FusionCandidate &FC0,
1452
const FusionCandidate &FC1,
1453
SmallVector<Instruction *, 4> &HoistInsts,
1454
SmallVector<Instruction *, 4> &SinkInsts) const {
1455
// All preheader instructions except the branch must be hoisted or sunk
1456
assert(HoistInsts.size() + SinkInsts.size() == FC1.Preheader->size() - 1 &&
1457
"Attempting to sink and hoist preheader instructions, but not all "
1458
"the preheader instructions are accounted for.");
1459
1460
NumHoistedInsts += HoistInsts.size();
1461
NumSunkInsts += SinkInsts.size();
1462
1463
LLVM_DEBUG(if (VerboseFusionDebugging) {
1464
if (!HoistInsts.empty())
1465
dbgs() << "Hoisting: \n";
1466
for (Instruction *I : HoistInsts)
1467
dbgs() << *I << "\n";
1468
if (!SinkInsts.empty())
1469
dbgs() << "Sinking: \n";
1470
for (Instruction *I : SinkInsts)
1471
dbgs() << *I << "\n";
1472
});
1473
1474
for (Instruction *I : HoistInsts) {
1475
assert(I->getParent() == FC1.Preheader);
1476
I->moveBefore(*FC0.Preheader,
1477
FC0.Preheader->getTerminator()->getIterator());
1478
}
1479
// insert instructions in reverse order to maintain dominance relationship
1480
for (Instruction *I : reverse(SinkInsts)) {
1481
assert(I->getParent() == FC1.Preheader);
1482
I->moveBefore(*FC1.ExitBlock, FC1.ExitBlock->getFirstInsertionPt());
1483
}
1484
}
1485
1486
/// Determine if two fusion candidates have identical guards
1487
///
1488
/// This method will determine if two fusion candidates have the same guards.
1489
/// The guards are considered the same if:
1490
/// 1. The instructions to compute the condition used in the compare are
1491
/// identical.
1492
/// 2. The successors of the guard have the same flow into/around the loop.
1493
/// If the compare instructions are identical, then the first successor of the
1494
/// guard must go to the same place (either the preheader of the loop or the
1495
/// NonLoopBlock). In other words, the first successor of both loops must
1496
/// both go into the loop (i.e., the preheader) or go around the loop (i.e.,
1497
/// the NonLoopBlock). The same must be true for the second successor.
1498
bool haveIdenticalGuards(const FusionCandidate &FC0,
1499
const FusionCandidate &FC1) const {
1500
assert(FC0.GuardBranch && FC1.GuardBranch &&
1501
"Expecting FC0 and FC1 to be guarded loops.");
1502
1503
if (auto FC0CmpInst =
1504
dyn_cast<Instruction>(FC0.GuardBranch->getCondition()))
1505
if (auto FC1CmpInst =
1506
dyn_cast<Instruction>(FC1.GuardBranch->getCondition()))
1507
if (!FC0CmpInst->isIdenticalTo(FC1CmpInst))
1508
return false;
1509
1510
// The compare instructions are identical.
1511
// Now make sure the successor of the guards have the same flow into/around
1512
// the loop
1513
if (FC0.GuardBranch->getSuccessor(0) == FC0.Preheader)
1514
return (FC1.GuardBranch->getSuccessor(0) == FC1.Preheader);
1515
else
1516
return (FC1.GuardBranch->getSuccessor(1) == FC1.Preheader);
1517
}
1518
1519
/// Modify the latch branch of FC to be unconditional since successors of the
1520
/// branch are the same.
1521
void simplifyLatchBranch(const FusionCandidate &FC) const {
1522
BranchInst *FCLatchBranch = dyn_cast<BranchInst>(FC.Latch->getTerminator());
1523
if (FCLatchBranch) {
1524
assert(FCLatchBranch->isConditional() &&
1525
FCLatchBranch->getSuccessor(0) == FCLatchBranch->getSuccessor(1) &&
1526
"Expecting the two successors of FCLatchBranch to be the same");
1527
BranchInst *NewBranch =
1528
BranchInst::Create(FCLatchBranch->getSuccessor(0));
1529
ReplaceInstWithInst(FCLatchBranch, NewBranch);
1530
}
1531
}
1532
1533
/// Move instructions from FC0.Latch to FC1.Latch. If FC0.Latch has an unique
1534
/// successor, then merge FC0.Latch with its unique successor.
1535
void mergeLatch(const FusionCandidate &FC0, const FusionCandidate &FC1) {
1536
moveInstructionsToTheBeginning(*FC0.Latch, *FC1.Latch, DT, PDT, DI);
1537
if (BasicBlock *Succ = FC0.Latch->getUniqueSuccessor()) {
1538
MergeBlockIntoPredecessor(Succ, &DTU, &LI);
1539
DTU.flush();
1540
}
1541
}
1542
1543
/// Fuse two fusion candidates, creating a new fused loop.
1544
///
1545
/// This method contains the mechanics of fusing two loops, represented by \p
1546
/// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1
1547
/// postdominates \p FC0 (making them control flow equivalent). It also
1548
/// assumes that the other conditions for fusion have been met: adjacent,
1549
/// identical trip counts, and no negative distance dependencies exist that
1550
/// would prevent fusion. Thus, there is no checking for these conditions in
1551
/// this method.
1552
///
1553
/// Fusion is performed by rewiring the CFG to update successor blocks of the
1554
/// components of tho loop. Specifically, the following changes are done:
1555
///
1556
/// 1. The preheader of \p FC1 is removed as it is no longer necessary
1557
/// (because it is currently only a single statement block).
1558
/// 2. The latch of \p FC0 is modified to jump to the header of \p FC1.
1559
/// 3. The latch of \p FC1 i modified to jump to the header of \p FC0.
1560
/// 4. All blocks from \p FC1 are removed from FC1 and added to FC0.
1561
///
1562
/// All of these modifications are done with dominator tree updates, thus
1563
/// keeping the dominator (and post dominator) information up-to-date.
1564
///
1565
/// This can be improved in the future by actually merging blocks during
1566
/// fusion. For example, the preheader of \p FC1 can be merged with the
1567
/// preheader of \p FC0. This would allow loops with more than a single
1568
/// statement in the preheader to be fused. Similarly, the latch blocks of the
1569
/// two loops could also be fused into a single block. This will require
1570
/// analysis to prove it is safe to move the contents of the block past
1571
/// existing code, which currently has not been implemented.
1572
Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) {
1573
assert(FC0.isValid() && FC1.isValid() &&
1574
"Expecting valid fusion candidates");
1575
1576
LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump();
1577
dbgs() << "Fusion Candidate 1: \n"; FC1.dump(););
1578
1579
// Move instructions from the preheader of FC1 to the end of the preheader
1580
// of FC0.
1581
moveInstructionsToTheEnd(*FC1.Preheader, *FC0.Preheader, DT, PDT, DI);
1582
1583
// Fusing guarded loops is handled slightly differently than non-guarded
1584
// loops and has been broken out into a separate method instead of trying to
1585
// intersperse the logic within a single method.
1586
if (FC0.GuardBranch)
1587
return fuseGuardedLoops(FC0, FC1);
1588
1589
assert(FC1.Preheader ==
1590
(FC0.Peeled ? FC0.ExitBlock->getUniqueSuccessor() : FC0.ExitBlock));
1591
assert(FC1.Preheader->size() == 1 &&
1592
FC1.Preheader->getSingleSuccessor() == FC1.Header);
1593
1594
// Remember the phi nodes originally in the header of FC0 in order to rewire
1595
// them later. However, this is only necessary if the new loop carried
1596
// values might not dominate the exiting branch. While we do not generally
1597
// test if this is the case but simply insert intermediate phi nodes, we
1598
// need to make sure these intermediate phi nodes have different
1599
// predecessors. To this end, we filter the special case where the exiting
1600
// block is the latch block of the first loop. Nothing needs to be done
1601
// anyway as all loop carried values dominate the latch and thereby also the
1602
// exiting branch.
1603
SmallVector<PHINode *, 8> OriginalFC0PHIs;
1604
if (FC0.ExitingBlock != FC0.Latch)
1605
for (PHINode &PHI : FC0.Header->phis())
1606
OriginalFC0PHIs.push_back(&PHI);
1607
1608
// Replace incoming blocks for header PHIs first.
1609
FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1610
FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1611
1612
// Then modify the control flow and update DT and PDT.
1613
SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
1614
1615
// The old exiting block of the first loop (FC0) has to jump to the header
1616
// of the second as we need to execute the code in the second header block
1617
// regardless of the trip count. That is, if the trip count is 0, so the
1618
// back edge is never taken, we still have to execute both loop headers,
1619
// especially (but not only!) if the second is a do-while style loop.
1620
// However, doing so might invalidate the phi nodes of the first loop as
1621
// the new values do only need to dominate their latch and not the exiting
1622
// predicate. To remedy this potential problem we always introduce phi
1623
// nodes in the header of the second loop later that select the loop carried
1624
// value, if the second header was reached through an old latch of the
1625
// first, or undef otherwise. This is sound as exiting the first implies the
1626
// second will exit too, __without__ taking the back-edge. [Their
1627
// trip-counts are equal after all.
1628
// KB: Would this sequence be simpler to just make FC0.ExitingBlock go
1629
// to FC1.Header? I think this is basically what the three sequences are
1630
// trying to accomplish; however, doing this directly in the CFG may mean
1631
// the DT/PDT becomes invalid
1632
if (!FC0.Peeled) {
1633
FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader,
1634
FC1.Header);
1635
TreeUpdates.emplace_back(DominatorTree::UpdateType(
1636
DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader));
1637
TreeUpdates.emplace_back(DominatorTree::UpdateType(
1638
DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1639
} else {
1640
TreeUpdates.emplace_back(DominatorTree::UpdateType(
1641
DominatorTree::Delete, FC0.ExitBlock, FC1.Preheader));
1642
1643
// Remove the ExitBlock of the first Loop (also not needed)
1644
FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
1645
FC1.Header);
1646
TreeUpdates.emplace_back(DominatorTree::UpdateType(
1647
DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
1648
FC0.ExitBlock->getTerminator()->eraseFromParent();
1649
TreeUpdates.emplace_back(DominatorTree::UpdateType(
1650
DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1651
new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);
1652
}
1653
1654
// The pre-header of L1 is not necessary anymore.
1655
assert(pred_empty(FC1.Preheader));
1656
FC1.Preheader->getTerminator()->eraseFromParent();
1657
new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1658
TreeUpdates.emplace_back(DominatorTree::UpdateType(
1659
DominatorTree::Delete, FC1.Preheader, FC1.Header));
1660
1661
// Moves the phi nodes from the second to the first loops header block.
1662
while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1663
if (SE.isSCEVable(PHI->getType()))
1664
SE.forgetValue(PHI);
1665
if (PHI->hasNUsesOrMore(1))
1666
PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
1667
else
1668
PHI->eraseFromParent();
1669
}
1670
1671
// Introduce new phi nodes in the second loop header to ensure
1672
// exiting the first and jumping to the header of the second does not break
1673
// the SSA property of the phis originally in the first loop. See also the
1674
// comment above.
1675
BasicBlock::iterator L1HeaderIP = FC1.Header->begin();
1676
for (PHINode *LCPHI : OriginalFC0PHIs) {
1677
int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1678
assert(L1LatchBBIdx >= 0 &&
1679
"Expected loop carried value to be rewired at this point!");
1680
1681
Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1682
1683
PHINode *L1HeaderPHI =
1684
PHINode::Create(LCV->getType(), 2, LCPHI->getName() + ".afterFC0");
1685
L1HeaderPHI->insertBefore(L1HeaderIP);
1686
L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1687
L1HeaderPHI->addIncoming(PoisonValue::get(LCV->getType()),
1688
FC0.ExitingBlock);
1689
1690
LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1691
}
1692
1693
// Replace latch terminator destinations.
1694
FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1695
FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1696
1697
// Modify the latch branch of FC0 to be unconditional as both successors of
1698
// the branch are the same.
1699
simplifyLatchBranch(FC0);
1700
1701
// If FC0.Latch and FC0.ExitingBlock are the same then we have already
1702
// performed the updates above.
1703
if (FC0.Latch != FC0.ExitingBlock)
1704
TreeUpdates.emplace_back(DominatorTree::UpdateType(
1705
DominatorTree::Insert, FC0.Latch, FC1.Header));
1706
1707
TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1708
FC0.Latch, FC0.Header));
1709
TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1710
FC1.Latch, FC0.Header));
1711
TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1712
FC1.Latch, FC1.Header));
1713
1714
// Update DT/PDT
1715
DTU.applyUpdates(TreeUpdates);
1716
1717
LI.removeBlock(FC1.Preheader);
1718
DTU.deleteBB(FC1.Preheader);
1719
if (FC0.Peeled) {
1720
LI.removeBlock(FC0.ExitBlock);
1721
DTU.deleteBB(FC0.ExitBlock);
1722
}
1723
1724
DTU.flush();
1725
1726
// Is there a way to keep SE up-to-date so we don't need to forget the loops
1727
// and rebuild the information in subsequent passes of fusion?
1728
// Note: Need to forget the loops before merging the loop latches, as
1729
// mergeLatch may remove the only block in FC1.
1730
SE.forgetLoop(FC1.L);
1731
SE.forgetLoop(FC0.L);
1732
SE.forgetLoopDispositions();
1733
1734
// Move instructions from FC0.Latch to FC1.Latch.
1735
// Note: mergeLatch requires an updated DT.
1736
mergeLatch(FC0, FC1);
1737
1738
// Merge the loops.
1739
SmallVector<BasicBlock *, 8> Blocks(FC1.L->blocks());
1740
for (BasicBlock *BB : Blocks) {
1741
FC0.L->addBlockEntry(BB);
1742
FC1.L->removeBlockFromLoop(BB);
1743
if (LI.getLoopFor(BB) != FC1.L)
1744
continue;
1745
LI.changeLoopFor(BB, FC0.L);
1746
}
1747
while (!FC1.L->isInnermost()) {
1748
const auto &ChildLoopIt = FC1.L->begin();
1749
Loop *ChildLoop = *ChildLoopIt;
1750
FC1.L->removeChildLoop(ChildLoopIt);
1751
FC0.L->addChildLoop(ChildLoop);
1752
}
1753
1754
// Delete the now empty loop L1.
1755
LI.erase(FC1.L);
1756
1757
#ifndef NDEBUG
1758
assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
1759
assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1760
assert(PDT.verify());
1761
LI.verify(DT);
1762
SE.verify();
1763
#endif
1764
1765
LLVM_DEBUG(dbgs() << "Fusion done:\n");
1766
1767
return FC0.L;
1768
}
1769
1770
/// Report details on loop fusion opportunities.
1771
///
1772
/// This template function can be used to report both successful and missed
1773
/// loop fusion opportunities, based on the RemarkKind. The RemarkKind should
1774
/// be one of:
1775
/// - OptimizationRemarkMissed to report when loop fusion is unsuccessful
1776
/// given two valid fusion candidates.
1777
/// - OptimizationRemark to report successful fusion of two fusion
1778
/// candidates.
1779
/// The remarks will be printed using the form:
1780
/// <path/filename>:<line number>:<column number>: [<function name>]:
1781
/// <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description>
1782
template <typename RemarkKind>
1783
void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1,
1784
llvm::Statistic &Stat) {
1785
assert(FC0.Preheader && FC1.Preheader &&
1786
"Expecting valid fusion candidates");
1787
using namespace ore;
1788
#if LLVM_ENABLE_STATS
1789
++Stat;
1790
ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(),
1791
FC0.Preheader)
1792
<< "[" << FC0.Preheader->getParent()->getName()
1793
<< "]: " << NV("Cand1", StringRef(FC0.Preheader->getName()))
1794
<< " and " << NV("Cand2", StringRef(FC1.Preheader->getName()))
1795
<< ": " << Stat.getDesc());
1796
#endif
1797
}
1798
1799
/// Fuse two guarded fusion candidates, creating a new fused loop.
1800
///
1801
/// Fusing guarded loops is handled much the same way as fusing non-guarded
1802
/// loops. The rewiring of the CFG is slightly different though, because of
1803
/// the presence of the guards around the loops and the exit blocks after the
1804
/// loop body. As such, the new loop is rewired as follows:
1805
/// 1. Keep the guard branch from FC0 and use the non-loop block target
1806
/// from the FC1 guard branch.
1807
/// 2. Remove the exit block from FC0 (this exit block should be empty
1808
/// right now).
1809
/// 3. Remove the guard branch for FC1
1810
/// 4. Remove the preheader for FC1.
1811
/// The exit block successor for the latch of FC0 is updated to be the header
1812
/// of FC1 and the non-exit block successor of the latch of FC1 is updated to
1813
/// be the header of FC0, thus creating the fused loop.
1814
Loop *fuseGuardedLoops(const FusionCandidate &FC0,
1815
const FusionCandidate &FC1) {
1816
assert(FC0.GuardBranch && FC1.GuardBranch && "Expecting guarded loops");
1817
1818
BasicBlock *FC0GuardBlock = FC0.GuardBranch->getParent();
1819
BasicBlock *FC1GuardBlock = FC1.GuardBranch->getParent();
1820
BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock();
1821
BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock();
1822
BasicBlock *FC0ExitBlockSuccessor = FC0.ExitBlock->getUniqueSuccessor();
1823
1824
// Move instructions from the exit block of FC0 to the beginning of the exit
1825
// block of FC1, in the case that the FC0 loop has not been peeled. In the
1826
// case that FC0 loop is peeled, then move the instructions of the successor
1827
// of the FC0 Exit block to the beginning of the exit block of FC1.
1828
moveInstructionsToTheBeginning(
1829
(FC0.Peeled ? *FC0ExitBlockSuccessor : *FC0.ExitBlock), *FC1.ExitBlock,
1830
DT, PDT, DI);
1831
1832
// Move instructions from the guard block of FC1 to the end of the guard
1833
// block of FC0.
1834
moveInstructionsToTheEnd(*FC1GuardBlock, *FC0GuardBlock, DT, PDT, DI);
1835
1836
assert(FC0NonLoopBlock == FC1GuardBlock && "Loops are not adjacent");
1837
1838
SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
1839
1840
////////////////////////////////////////////////////////////////////////////
1841
// Update the Loop Guard
1842
////////////////////////////////////////////////////////////////////////////
1843
// The guard for FC0 is updated to guard both FC0 and FC1. This is done by
1844
// changing the NonLoopGuardBlock for FC0 to the NonLoopGuardBlock for FC1.
1845
// Thus, one path from the guard goes to the preheader for FC0 (and thus
1846
// executes the new fused loop) and the other path goes to the NonLoopBlock
1847
// for FC1 (where FC1 guard would have gone if FC1 was not executed).
1848
FC1NonLoopBlock->replacePhiUsesWith(FC1GuardBlock, FC0GuardBlock);
1849
FC0.GuardBranch->replaceUsesOfWith(FC0NonLoopBlock, FC1NonLoopBlock);
1850
1851
BasicBlock *BBToUpdate = FC0.Peeled ? FC0ExitBlockSuccessor : FC0.ExitBlock;
1852
BBToUpdate->getTerminator()->replaceUsesOfWith(FC1GuardBlock, FC1.Header);
1853
1854
// The guard of FC1 is not necessary anymore.
1855
FC1.GuardBranch->eraseFromParent();
1856
new UnreachableInst(FC1GuardBlock->getContext(), FC1GuardBlock);
1857
1858
TreeUpdates.emplace_back(DominatorTree::UpdateType(
1859
DominatorTree::Delete, FC1GuardBlock, FC1.Preheader));
1860
TreeUpdates.emplace_back(DominatorTree::UpdateType(
1861
DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock));
1862
TreeUpdates.emplace_back(DominatorTree::UpdateType(
1863
DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock));
1864
TreeUpdates.emplace_back(DominatorTree::UpdateType(
1865
DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock));
1866
1867
if (FC0.Peeled) {
1868
// Remove the Block after the ExitBlock of FC0
1869
TreeUpdates.emplace_back(DominatorTree::UpdateType(
1870
DominatorTree::Delete, FC0ExitBlockSuccessor, FC1GuardBlock));
1871
FC0ExitBlockSuccessor->getTerminator()->eraseFromParent();
1872
new UnreachableInst(FC0ExitBlockSuccessor->getContext(),
1873
FC0ExitBlockSuccessor);
1874
}
1875
1876
assert(pred_empty(FC1GuardBlock) &&
1877
"Expecting guard block to have no predecessors");
1878
assert(succ_empty(FC1GuardBlock) &&
1879
"Expecting guard block to have no successors");
1880
1881
// Remember the phi nodes originally in the header of FC0 in order to rewire
1882
// them later. However, this is only necessary if the new loop carried
1883
// values might not dominate the exiting branch. While we do not generally
1884
// test if this is the case but simply insert intermediate phi nodes, we
1885
// need to make sure these intermediate phi nodes have different
1886
// predecessors. To this end, we filter the special case where the exiting
1887
// block is the latch block of the first loop. Nothing needs to be done
1888
// anyway as all loop carried values dominate the latch and thereby also the
1889
// exiting branch.
1890
// KB: This is no longer necessary because FC0.ExitingBlock == FC0.Latch
1891
// (because the loops are rotated. Thus, nothing will ever be added to
1892
// OriginalFC0PHIs.
1893
SmallVector<PHINode *, 8> OriginalFC0PHIs;
1894
if (FC0.ExitingBlock != FC0.Latch)
1895
for (PHINode &PHI : FC0.Header->phis())
1896
OriginalFC0PHIs.push_back(&PHI);
1897
1898
assert(OriginalFC0PHIs.empty() && "Expecting OriginalFC0PHIs to be empty!");
1899
1900
// Replace incoming blocks for header PHIs first.
1901
FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1902
FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1903
1904
// The old exiting block of the first loop (FC0) has to jump to the header
1905
// of the second as we need to execute the code in the second header block
1906
// regardless of the trip count. That is, if the trip count is 0, so the
1907
// back edge is never taken, we still have to execute both loop headers,
1908
// especially (but not only!) if the second is a do-while style loop.
1909
// However, doing so might invalidate the phi nodes of the first loop as
1910
// the new values do only need to dominate their latch and not the exiting
1911
// predicate. To remedy this potential problem we always introduce phi
1912
// nodes in the header of the second loop later that select the loop carried
1913
// value, if the second header was reached through an old latch of the
1914
// first, or undef otherwise. This is sound as exiting the first implies the
1915
// second will exit too, __without__ taking the back-edge (their
1916
// trip-counts are equal after all).
1917
FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
1918
FC1.Header);
1919
1920
TreeUpdates.emplace_back(DominatorTree::UpdateType(
1921
DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
1922
TreeUpdates.emplace_back(DominatorTree::UpdateType(
1923
DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1924
1925
// Remove FC0 Exit Block
1926
// The exit block for FC0 is no longer needed since control will flow
1927
// directly to the header of FC1. Since it is an empty block, it can be
1928
// removed at this point.
1929
// TODO: In the future, we can handle non-empty exit blocks my merging any
1930
// instructions from FC0 exit block into FC1 exit block prior to removing
1931
// the block.
1932
assert(pred_empty(FC0.ExitBlock) && "Expecting exit block to be empty");
1933
FC0.ExitBlock->getTerminator()->eraseFromParent();
1934
new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);
1935
1936
// Remove FC1 Preheader
1937
// The pre-header of L1 is not necessary anymore.
1938
assert(pred_empty(FC1.Preheader));
1939
FC1.Preheader->getTerminator()->eraseFromParent();
1940
new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1941
TreeUpdates.emplace_back(DominatorTree::UpdateType(
1942
DominatorTree::Delete, FC1.Preheader, FC1.Header));
1943
1944
// Moves the phi nodes from the second to the first loops header block.
1945
while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1946
if (SE.isSCEVable(PHI->getType()))
1947
SE.forgetValue(PHI);
1948
if (PHI->hasNUsesOrMore(1))
1949
PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
1950
else
1951
PHI->eraseFromParent();
1952
}
1953
1954
// Introduce new phi nodes in the second loop header to ensure
1955
// exiting the first and jumping to the header of the second does not break
1956
// the SSA property of the phis originally in the first loop. See also the
1957
// comment above.
1958
BasicBlock::iterator L1HeaderIP = FC1.Header->begin();
1959
for (PHINode *LCPHI : OriginalFC0PHIs) {
1960
int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1961
assert(L1LatchBBIdx >= 0 &&
1962
"Expected loop carried value to be rewired at this point!");
1963
1964
Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1965
1966
PHINode *L1HeaderPHI =
1967
PHINode::Create(LCV->getType(), 2, LCPHI->getName() + ".afterFC0");
1968
L1HeaderPHI->insertBefore(L1HeaderIP);
1969
L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1970
L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
1971
FC0.ExitingBlock);
1972
1973
LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1974
}
1975
1976
// Update the latches
1977
1978
// Replace latch terminator destinations.
1979
FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1980
FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1981
1982
// Modify the latch branch of FC0 to be unconditional as both successors of
1983
// the branch are the same.
1984
simplifyLatchBranch(FC0);
1985
1986
// If FC0.Latch and FC0.ExitingBlock are the same then we have already
1987
// performed the updates above.
1988
if (FC0.Latch != FC0.ExitingBlock)
1989
TreeUpdates.emplace_back(DominatorTree::UpdateType(
1990
DominatorTree::Insert, FC0.Latch, FC1.Header));
1991
1992
TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1993
FC0.Latch, FC0.Header));
1994
TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1995
FC1.Latch, FC0.Header));
1996
TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1997
FC1.Latch, FC1.Header));
1998
1999
// All done
2000
// Apply the updates to the Dominator Tree and cleanup.
2001
2002
assert(succ_empty(FC1GuardBlock) && "FC1GuardBlock has successors!!");
2003
assert(pred_empty(FC1GuardBlock) && "FC1GuardBlock has predecessors!!");
2004
2005
// Update DT/PDT
2006
DTU.applyUpdates(TreeUpdates);
2007
2008
LI.removeBlock(FC1GuardBlock);
2009
LI.removeBlock(FC1.Preheader);
2010
LI.removeBlock(FC0.ExitBlock);
2011
if (FC0.Peeled) {
2012
LI.removeBlock(FC0ExitBlockSuccessor);
2013
DTU.deleteBB(FC0ExitBlockSuccessor);
2014
}
2015
DTU.deleteBB(FC1GuardBlock);
2016
DTU.deleteBB(FC1.Preheader);
2017
DTU.deleteBB(FC0.ExitBlock);
2018
DTU.flush();
2019
2020
// Is there a way to keep SE up-to-date so we don't need to forget the loops
2021
// and rebuild the information in subsequent passes of fusion?
2022
// Note: Need to forget the loops before merging the loop latches, as
2023
// mergeLatch may remove the only block in FC1.
2024
SE.forgetLoop(FC1.L);
2025
SE.forgetLoop(FC0.L);
2026
SE.forgetLoopDispositions();
2027
2028
// Move instructions from FC0.Latch to FC1.Latch.
2029
// Note: mergeLatch requires an updated DT.
2030
mergeLatch(FC0, FC1);
2031
2032
// Merge the loops.
2033
SmallVector<BasicBlock *, 8> Blocks(FC1.L->blocks());
2034
for (BasicBlock *BB : Blocks) {
2035
FC0.L->addBlockEntry(BB);
2036
FC1.L->removeBlockFromLoop(BB);
2037
if (LI.getLoopFor(BB) != FC1.L)
2038
continue;
2039
LI.changeLoopFor(BB, FC0.L);
2040
}
2041
while (!FC1.L->isInnermost()) {
2042
const auto &ChildLoopIt = FC1.L->begin();
2043
Loop *ChildLoop = *ChildLoopIt;
2044
FC1.L->removeChildLoop(ChildLoopIt);
2045
FC0.L->addChildLoop(ChildLoop);
2046
}
2047
2048
// Delete the now empty loop L1.
2049
LI.erase(FC1.L);
2050
2051
#ifndef NDEBUG
2052
assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
2053
assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2054
assert(PDT.verify());
2055
LI.verify(DT);
2056
SE.verify();
2057
#endif
2058
2059
LLVM_DEBUG(dbgs() << "Fusion done:\n");
2060
2061
return FC0.L;
2062
}
2063
};
2064
} // namespace
2065
2066
PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) {
2067
auto &LI = AM.getResult<LoopAnalysis>(F);
2068
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2069
auto &DI = AM.getResult<DependenceAnalysis>(F);
2070
auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
2071
auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
2072
auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
2073
auto &AC = AM.getResult<AssumptionAnalysis>(F);
2074
const TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
2075
const DataLayout &DL = F.getDataLayout();
2076
2077
// Ensure loops are in simplifed form which is a pre-requisite for loop fusion
2078
// pass. Added only for new PM since the legacy PM has already added
2079
// LoopSimplify pass as a dependency.
2080
bool Changed = false;
2081
for (auto &L : LI) {
2082
Changed |=
2083
simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
2084
}
2085
if (Changed)
2086
PDT.recalculate(F);
2087
2088
LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL, AC, TTI);
2089
Changed |= LF.fuseLoops(F);
2090
if (!Changed)
2091
return PreservedAnalyses::all();
2092
2093
PreservedAnalyses PA;
2094
PA.preserve<DominatorTreeAnalysis>();
2095
PA.preserve<PostDominatorTreeAnalysis>();
2096
PA.preserve<ScalarEvolutionAnalysis>();
2097
PA.preserve<LoopAnalysis>();
2098
return PA;
2099
}
2100
2101