Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
35269 views
1
//===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This pass implements an idiom recognizer that transforms simple loops into a
10
// non-loop form. In cases that this kicks in, it can be a significant
11
// performance win.
12
//
13
// If compiling for code size we avoid idiom recognition if the resulting
14
// code could be larger than the code for the original loop. One way this could
15
// happen is if the loop is not removable after idiom recognition due to the
16
// presence of non-idiom instructions. The initial implementation of the
17
// heuristics applies to idioms in multi-block loops.
18
//
19
//===----------------------------------------------------------------------===//
20
//
21
// TODO List:
22
//
23
// Future loop memory idioms to recognize:
24
// memcmp, strlen, etc.
25
//
26
// This could recognize common matrix multiplies and dot product idioms and
27
// replace them with calls to BLAS (if linked in??).
28
//
29
//===----------------------------------------------------------------------===//
30
31
#include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
32
#include "llvm/ADT/APInt.h"
33
#include "llvm/ADT/ArrayRef.h"
34
#include "llvm/ADT/DenseMap.h"
35
#include "llvm/ADT/MapVector.h"
36
#include "llvm/ADT/SetVector.h"
37
#include "llvm/ADT/SmallPtrSet.h"
38
#include "llvm/ADT/SmallVector.h"
39
#include "llvm/ADT/Statistic.h"
40
#include "llvm/ADT/StringRef.h"
41
#include "llvm/Analysis/AliasAnalysis.h"
42
#include "llvm/Analysis/CmpInstAnalysis.h"
43
#include "llvm/Analysis/LoopAccessAnalysis.h"
44
#include "llvm/Analysis/LoopInfo.h"
45
#include "llvm/Analysis/LoopPass.h"
46
#include "llvm/Analysis/MemoryLocation.h"
47
#include "llvm/Analysis/MemorySSA.h"
48
#include "llvm/Analysis/MemorySSAUpdater.h"
49
#include "llvm/Analysis/MustExecute.h"
50
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
51
#include "llvm/Analysis/ScalarEvolution.h"
52
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
53
#include "llvm/Analysis/TargetLibraryInfo.h"
54
#include "llvm/Analysis/TargetTransformInfo.h"
55
#include "llvm/Analysis/ValueTracking.h"
56
#include "llvm/IR/BasicBlock.h"
57
#include "llvm/IR/Constant.h"
58
#include "llvm/IR/Constants.h"
59
#include "llvm/IR/DataLayout.h"
60
#include "llvm/IR/DebugLoc.h"
61
#include "llvm/IR/DerivedTypes.h"
62
#include "llvm/IR/Dominators.h"
63
#include "llvm/IR/GlobalValue.h"
64
#include "llvm/IR/GlobalVariable.h"
65
#include "llvm/IR/IRBuilder.h"
66
#include "llvm/IR/InstrTypes.h"
67
#include "llvm/IR/Instruction.h"
68
#include "llvm/IR/Instructions.h"
69
#include "llvm/IR/IntrinsicInst.h"
70
#include "llvm/IR/Intrinsics.h"
71
#include "llvm/IR/LLVMContext.h"
72
#include "llvm/IR/Module.h"
73
#include "llvm/IR/PassManager.h"
74
#include "llvm/IR/PatternMatch.h"
75
#include "llvm/IR/Type.h"
76
#include "llvm/IR/User.h"
77
#include "llvm/IR/Value.h"
78
#include "llvm/IR/ValueHandle.h"
79
#include "llvm/Support/Casting.h"
80
#include "llvm/Support/CommandLine.h"
81
#include "llvm/Support/Debug.h"
82
#include "llvm/Support/InstructionCost.h"
83
#include "llvm/Support/raw_ostream.h"
84
#include "llvm/Transforms/Utils/BuildLibCalls.h"
85
#include "llvm/Transforms/Utils/Local.h"
86
#include "llvm/Transforms/Utils/LoopUtils.h"
87
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
88
#include <algorithm>
89
#include <cassert>
90
#include <cstdint>
91
#include <utility>
92
#include <vector>
93
94
using namespace llvm;
95
96
#define DEBUG_TYPE "loop-idiom"
97
98
STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
99
STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
100
STATISTIC(NumMemMove, "Number of memmove's formed from loop load+stores");
101
STATISTIC(
102
NumShiftUntilBitTest,
103
"Number of uncountable loops recognized as 'shift until bitttest' idiom");
104
STATISTIC(NumShiftUntilZero,
105
"Number of uncountable loops recognized as 'shift until zero' idiom");
106
107
bool DisableLIRP::All;
108
static cl::opt<bool, true>
109
DisableLIRPAll("disable-" DEBUG_TYPE "-all",
110
cl::desc("Options to disable Loop Idiom Recognize Pass."),
111
cl::location(DisableLIRP::All), cl::init(false),
112
cl::ReallyHidden);
113
114
bool DisableLIRP::Memset;
115
static cl::opt<bool, true>
116
DisableLIRPMemset("disable-" DEBUG_TYPE "-memset",
117
cl::desc("Proceed with loop idiom recognize pass, but do "
118
"not convert loop(s) to memset."),
119
cl::location(DisableLIRP::Memset), cl::init(false),
120
cl::ReallyHidden);
121
122
bool DisableLIRP::Memcpy;
123
static cl::opt<bool, true>
124
DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy",
125
cl::desc("Proceed with loop idiom recognize pass, but do "
126
"not convert loop(s) to memcpy."),
127
cl::location(DisableLIRP::Memcpy), cl::init(false),
128
cl::ReallyHidden);
129
130
static cl::opt<bool> UseLIRCodeSizeHeurs(
131
"use-lir-code-size-heurs",
132
cl::desc("Use loop idiom recognition code size heuristics when compiling"
133
"with -Os/-Oz"),
134
cl::init(true), cl::Hidden);
135
136
namespace {
137
138
class LoopIdiomRecognize {
139
Loop *CurLoop = nullptr;
140
AliasAnalysis *AA;
141
DominatorTree *DT;
142
LoopInfo *LI;
143
ScalarEvolution *SE;
144
TargetLibraryInfo *TLI;
145
const TargetTransformInfo *TTI;
146
const DataLayout *DL;
147
OptimizationRemarkEmitter &ORE;
148
bool ApplyCodeSizeHeuristics;
149
std::unique_ptr<MemorySSAUpdater> MSSAU;
150
151
public:
152
explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
153
LoopInfo *LI, ScalarEvolution *SE,
154
TargetLibraryInfo *TLI,
155
const TargetTransformInfo *TTI, MemorySSA *MSSA,
156
const DataLayout *DL,
157
OptimizationRemarkEmitter &ORE)
158
: AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {
159
if (MSSA)
160
MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
161
}
162
163
bool runOnLoop(Loop *L);
164
165
private:
166
using StoreList = SmallVector<StoreInst *, 8>;
167
using StoreListMap = MapVector<Value *, StoreList>;
168
169
StoreListMap StoreRefsForMemset;
170
StoreListMap StoreRefsForMemsetPattern;
171
StoreList StoreRefsForMemcpy;
172
bool HasMemset;
173
bool HasMemsetPattern;
174
bool HasMemcpy;
175
176
/// Return code for isLegalStore()
177
enum LegalStoreKind {
178
None = 0,
179
Memset,
180
MemsetPattern,
181
Memcpy,
182
UnorderedAtomicMemcpy,
183
DontUse // Dummy retval never to be used. Allows catching errors in retval
184
// handling.
185
};
186
187
/// \name Countable Loop Idiom Handling
188
/// @{
189
190
bool runOnCountableLoop();
191
bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
192
SmallVectorImpl<BasicBlock *> &ExitBlocks);
193
194
void collectStores(BasicBlock *BB);
195
LegalStoreKind isLegalStore(StoreInst *SI);
196
enum class ForMemset { No, Yes };
197
bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
198
ForMemset For);
199
200
template <typename MemInst>
201
bool processLoopMemIntrinsic(
202
BasicBlock *BB,
203
bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *),
204
const SCEV *BECount);
205
bool processLoopMemCpy(MemCpyInst *MCI, const SCEV *BECount);
206
bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
207
208
bool processLoopStridedStore(Value *DestPtr, const SCEV *StoreSizeSCEV,
209
MaybeAlign StoreAlignment, Value *StoredVal,
210
Instruction *TheStore,
211
SmallPtrSetImpl<Instruction *> &Stores,
212
const SCEVAddRecExpr *Ev, const SCEV *BECount,
213
bool IsNegStride, bool IsLoopMemset = false);
214
bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
215
bool processLoopStoreOfLoopLoad(Value *DestPtr, Value *SourcePtr,
216
const SCEV *StoreSize, MaybeAlign StoreAlign,
217
MaybeAlign LoadAlign, Instruction *TheStore,
218
Instruction *TheLoad,
219
const SCEVAddRecExpr *StoreEv,
220
const SCEVAddRecExpr *LoadEv,
221
const SCEV *BECount);
222
bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
223
bool IsLoopMemset = false);
224
225
/// @}
226
/// \name Noncountable Loop Idiom Handling
227
/// @{
228
229
bool runOnNoncountableLoop();
230
231
bool recognizePopcount();
232
void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
233
PHINode *CntPhi, Value *Var);
234
bool isProfitableToInsertFFS(Intrinsic::ID IntrinID, Value *InitX,
235
bool ZeroCheck, size_t CanonicalSize);
236
bool insertFFSIfProfitable(Intrinsic::ID IntrinID, Value *InitX,
237
Instruction *DefX, PHINode *CntPhi,
238
Instruction *CntInst);
239
bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz
240
bool recognizeShiftUntilLessThan();
241
void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
242
Instruction *CntInst, PHINode *CntPhi,
243
Value *Var, Instruction *DefX,
244
const DebugLoc &DL, bool ZeroCheck,
245
bool IsCntPhiUsedOutsideLoop,
246
bool InsertSub = false);
247
248
bool recognizeShiftUntilBitTest();
249
bool recognizeShiftUntilZero();
250
251
/// @}
252
};
253
} // end anonymous namespace
254
255
PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
256
LoopStandardAnalysisResults &AR,
257
LPMUpdater &) {
258
if (DisableLIRP::All)
259
return PreservedAnalyses::all();
260
261
const auto *DL = &L.getHeader()->getDataLayout();
262
263
// For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
264
// pass. Function analyses need to be preserved across loop transformations
265
// but ORE cannot be preserved (see comment before the pass definition).
266
OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
267
268
LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI,
269
AR.MSSA, DL, ORE);
270
if (!LIR.runOnLoop(&L))
271
return PreservedAnalyses::all();
272
273
auto PA = getLoopPassPreservedAnalyses();
274
if (AR.MSSA)
275
PA.preserve<MemorySSAAnalysis>();
276
return PA;
277
}
278
279
static void deleteDeadInstruction(Instruction *I) {
280
I->replaceAllUsesWith(PoisonValue::get(I->getType()));
281
I->eraseFromParent();
282
}
283
284
//===----------------------------------------------------------------------===//
285
//
286
// Implementation of LoopIdiomRecognize
287
//
288
//===----------------------------------------------------------------------===//
289
290
bool LoopIdiomRecognize::runOnLoop(Loop *L) {
291
CurLoop = L;
292
// If the loop could not be converted to canonical form, it must have an
293
// indirectbr in it, just give up.
294
if (!L->getLoopPreheader())
295
return false;
296
297
// Disable loop idiom recognition if the function's name is a common idiom.
298
StringRef Name = L->getHeader()->getParent()->getName();
299
if (Name == "memset" || Name == "memcpy")
300
return false;
301
302
// Determine if code size heuristics need to be applied.
303
ApplyCodeSizeHeuristics =
304
L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs;
305
306
HasMemset = TLI->has(LibFunc_memset);
307
HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
308
HasMemcpy = TLI->has(LibFunc_memcpy);
309
310
if (HasMemset || HasMemsetPattern || HasMemcpy)
311
if (SE->hasLoopInvariantBackedgeTakenCount(L))
312
return runOnCountableLoop();
313
314
return runOnNoncountableLoop();
315
}
316
317
bool LoopIdiomRecognize::runOnCountableLoop() {
318
const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
319
assert(!isa<SCEVCouldNotCompute>(BECount) &&
320
"runOnCountableLoop() called on a loop without a predictable"
321
"backedge-taken count");
322
323
// If this loop executes exactly one time, then it should be peeled, not
324
// optimized by this pass.
325
if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
326
if (BECst->getAPInt() == 0)
327
return false;
328
329
SmallVector<BasicBlock *, 8> ExitBlocks;
330
CurLoop->getUniqueExitBlocks(ExitBlocks);
331
332
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
333
<< CurLoop->getHeader()->getParent()->getName()
334
<< "] Countable Loop %" << CurLoop->getHeader()->getName()
335
<< "\n");
336
337
// The following transforms hoist stores/memsets into the loop pre-header.
338
// Give up if the loop has instructions that may throw.
339
SimpleLoopSafetyInfo SafetyInfo;
340
SafetyInfo.computeLoopSafetyInfo(CurLoop);
341
if (SafetyInfo.anyBlockMayThrow())
342
return false;
343
344
bool MadeChange = false;
345
346
// Scan all the blocks in the loop that are not in subloops.
347
for (auto *BB : CurLoop->getBlocks()) {
348
// Ignore blocks in subloops.
349
if (LI->getLoopFor(BB) != CurLoop)
350
continue;
351
352
MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
353
}
354
return MadeChange;
355
}
356
357
static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
358
const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
359
return ConstStride->getAPInt();
360
}
361
362
/// getMemSetPatternValue - If a strided store of the specified value is safe to
363
/// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
364
/// be passed in. Otherwise, return null.
365
///
366
/// Note that we don't ever attempt to use memset_pattern8 or 4, because these
367
/// just replicate their input array and then pass on to memset_pattern16.
368
static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
369
// FIXME: This could check for UndefValue because it can be merged into any
370
// other valid pattern.
371
372
// If the value isn't a constant, we can't promote it to being in a constant
373
// array. We could theoretically do a store to an alloca or something, but
374
// that doesn't seem worthwhile.
375
Constant *C = dyn_cast<Constant>(V);
376
if (!C || isa<ConstantExpr>(C))
377
return nullptr;
378
379
// Only handle simple values that are a power of two bytes in size.
380
uint64_t Size = DL->getTypeSizeInBits(V->getType());
381
if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
382
return nullptr;
383
384
// Don't care enough about darwin/ppc to implement this.
385
if (DL->isBigEndian())
386
return nullptr;
387
388
// Convert to size in bytes.
389
Size /= 8;
390
391
// TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
392
// if the top and bottom are the same (e.g. for vectors and large integers).
393
if (Size > 16)
394
return nullptr;
395
396
// If the constant is exactly 16 bytes, just use it.
397
if (Size == 16)
398
return C;
399
400
// Otherwise, we'll use an array of the constants.
401
unsigned ArraySize = 16 / Size;
402
ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
403
return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
404
}
405
406
LoopIdiomRecognize::LegalStoreKind
407
LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
408
// Don't touch volatile stores.
409
if (SI->isVolatile())
410
return LegalStoreKind::None;
411
// We only want simple or unordered-atomic stores.
412
if (!SI->isUnordered())
413
return LegalStoreKind::None;
414
415
// Avoid merging nontemporal stores.
416
if (SI->getMetadata(LLVMContext::MD_nontemporal))
417
return LegalStoreKind::None;
418
419
Value *StoredVal = SI->getValueOperand();
420
Value *StorePtr = SI->getPointerOperand();
421
422
// Don't convert stores of non-integral pointer types to memsets (which stores
423
// integers).
424
if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
425
return LegalStoreKind::None;
426
427
// Reject stores that are so large that they overflow an unsigned.
428
// When storing out scalable vectors we bail out for now, since the code
429
// below currently only works for constant strides.
430
TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
431
if (SizeInBits.isScalable() || (SizeInBits.getFixedValue() & 7) ||
432
(SizeInBits.getFixedValue() >> 32) != 0)
433
return LegalStoreKind::None;
434
435
// See if the pointer expression is an AddRec like {base,+,1} on the current
436
// loop, which indicates a strided store. If we have something else, it's a
437
// random store we can't handle.
438
const SCEVAddRecExpr *StoreEv =
439
dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
440
if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
441
return LegalStoreKind::None;
442
443
// Check to see if we have a constant stride.
444
if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
445
return LegalStoreKind::None;
446
447
// See if the store can be turned into a memset.
448
449
// If the stored value is a byte-wise value (like i32 -1), then it may be
450
// turned into a memset of i8 -1, assuming that all the consecutive bytes
451
// are stored. A store of i32 0x01020304 can never be turned into a memset,
452
// but it can be turned into memset_pattern if the target supports it.
453
Value *SplatValue = isBytewiseValue(StoredVal, *DL);
454
455
// Note: memset and memset_pattern on unordered-atomic is yet not supported
456
bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
457
458
// If we're allowed to form a memset, and the stored value would be
459
// acceptable for memset, use it.
460
if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset &&
461
// Verify that the stored value is loop invariant. If not, we can't
462
// promote the memset.
463
CurLoop->isLoopInvariant(SplatValue)) {
464
// It looks like we can use SplatValue.
465
return LegalStoreKind::Memset;
466
}
467
if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset &&
468
// Don't create memset_pattern16s with address spaces.
469
StorePtr->getType()->getPointerAddressSpace() == 0 &&
470
getMemSetPatternValue(StoredVal, DL)) {
471
// It looks like we can use PatternValue!
472
return LegalStoreKind::MemsetPattern;
473
}
474
475
// Otherwise, see if the store can be turned into a memcpy.
476
if (HasMemcpy && !DisableLIRP::Memcpy) {
477
// Check to see if the stride matches the size of the store. If so, then we
478
// know that every byte is touched in the loop.
479
APInt Stride = getStoreStride(StoreEv);
480
unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
481
if (StoreSize != Stride && StoreSize != -Stride)
482
return LegalStoreKind::None;
483
484
// The store must be feeding a non-volatile load.
485
LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
486
487
// Only allow non-volatile loads
488
if (!LI || LI->isVolatile())
489
return LegalStoreKind::None;
490
// Only allow simple or unordered-atomic loads
491
if (!LI->isUnordered())
492
return LegalStoreKind::None;
493
494
// See if the pointer expression is an AddRec like {base,+,1} on the current
495
// loop, which indicates a strided load. If we have something else, it's a
496
// random load we can't handle.
497
const SCEVAddRecExpr *LoadEv =
498
dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
499
if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
500
return LegalStoreKind::None;
501
502
// The store and load must share the same stride.
503
if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
504
return LegalStoreKind::None;
505
506
// Success. This store can be converted into a memcpy.
507
UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
508
return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
509
: LegalStoreKind::Memcpy;
510
}
511
// This store can't be transformed into a memset/memcpy.
512
return LegalStoreKind::None;
513
}
514
515
void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
516
StoreRefsForMemset.clear();
517
StoreRefsForMemsetPattern.clear();
518
StoreRefsForMemcpy.clear();
519
for (Instruction &I : *BB) {
520
StoreInst *SI = dyn_cast<StoreInst>(&I);
521
if (!SI)
522
continue;
523
524
// Make sure this is a strided store with a constant stride.
525
switch (isLegalStore(SI)) {
526
case LegalStoreKind::None:
527
// Nothing to do
528
break;
529
case LegalStoreKind::Memset: {
530
// Find the base pointer.
531
Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
532
StoreRefsForMemset[Ptr].push_back(SI);
533
} break;
534
case LegalStoreKind::MemsetPattern: {
535
// Find the base pointer.
536
Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
537
StoreRefsForMemsetPattern[Ptr].push_back(SI);
538
} break;
539
case LegalStoreKind::Memcpy:
540
case LegalStoreKind::UnorderedAtomicMemcpy:
541
StoreRefsForMemcpy.push_back(SI);
542
break;
543
default:
544
assert(false && "unhandled return value");
545
break;
546
}
547
}
548
}
549
550
/// runOnLoopBlock - Process the specified block, which lives in a counted loop
551
/// with the specified backedge count. This block is known to be in the current
552
/// loop and not in any subloops.
553
bool LoopIdiomRecognize::runOnLoopBlock(
554
BasicBlock *BB, const SCEV *BECount,
555
SmallVectorImpl<BasicBlock *> &ExitBlocks) {
556
// We can only promote stores in this block if they are unconditionally
557
// executed in the loop. For a block to be unconditionally executed, it has
558
// to dominate all the exit blocks of the loop. Verify this now.
559
for (BasicBlock *ExitBlock : ExitBlocks)
560
if (!DT->dominates(BB, ExitBlock))
561
return false;
562
563
bool MadeChange = false;
564
// Look for store instructions, which may be optimized to memset/memcpy.
565
collectStores(BB);
566
567
// Look for a single store or sets of stores with a common base, which can be
568
// optimized into a memset (memset_pattern). The latter most commonly happens
569
// with structs and handunrolled loops.
570
for (auto &SL : StoreRefsForMemset)
571
MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);
572
573
for (auto &SL : StoreRefsForMemsetPattern)
574
MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);
575
576
// Optimize the store into a memcpy, if it feeds an similarly strided load.
577
for (auto &SI : StoreRefsForMemcpy)
578
MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
579
580
MadeChange |= processLoopMemIntrinsic<MemCpyInst>(
581
BB, &LoopIdiomRecognize::processLoopMemCpy, BECount);
582
MadeChange |= processLoopMemIntrinsic<MemSetInst>(
583
BB, &LoopIdiomRecognize::processLoopMemSet, BECount);
584
585
return MadeChange;
586
}
587
588
/// See if this store(s) can be promoted to a memset.
589
bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
590
const SCEV *BECount, ForMemset For) {
591
// Try to find consecutive stores that can be transformed into memsets.
592
SetVector<StoreInst *> Heads, Tails;
593
SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
594
595
// Do a quadratic search on all of the given stores and find
596
// all of the pairs of stores that follow each other.
597
SmallVector<unsigned, 16> IndexQueue;
598
for (unsigned i = 0, e = SL.size(); i < e; ++i) {
599
assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
600
601
Value *FirstStoredVal = SL[i]->getValueOperand();
602
Value *FirstStorePtr = SL[i]->getPointerOperand();
603
const SCEVAddRecExpr *FirstStoreEv =
604
cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
605
APInt FirstStride = getStoreStride(FirstStoreEv);
606
unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
607
608
// See if we can optimize just this store in isolation.
609
if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
610
Heads.insert(SL[i]);
611
continue;
612
}
613
614
Value *FirstSplatValue = nullptr;
615
Constant *FirstPatternValue = nullptr;
616
617
if (For == ForMemset::Yes)
618
FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL);
619
else
620
FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
621
622
assert((FirstSplatValue || FirstPatternValue) &&
623
"Expected either splat value or pattern value.");
624
625
IndexQueue.clear();
626
// If a store has multiple consecutive store candidates, search Stores
627
// array according to the sequence: from i+1 to e, then from i-1 to 0.
628
// This is because usually pairing with immediate succeeding or preceding
629
// candidate create the best chance to find memset opportunity.
630
unsigned j = 0;
631
for (j = i + 1; j < e; ++j)
632
IndexQueue.push_back(j);
633
for (j = i; j > 0; --j)
634
IndexQueue.push_back(j - 1);
635
636
for (auto &k : IndexQueue) {
637
assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
638
Value *SecondStorePtr = SL[k]->getPointerOperand();
639
const SCEVAddRecExpr *SecondStoreEv =
640
cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
641
APInt SecondStride = getStoreStride(SecondStoreEv);
642
643
if (FirstStride != SecondStride)
644
continue;
645
646
Value *SecondStoredVal = SL[k]->getValueOperand();
647
Value *SecondSplatValue = nullptr;
648
Constant *SecondPatternValue = nullptr;
649
650
if (For == ForMemset::Yes)
651
SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL);
652
else
653
SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
654
655
assert((SecondSplatValue || SecondPatternValue) &&
656
"Expected either splat value or pattern value.");
657
658
if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
659
if (For == ForMemset::Yes) {
660
if (isa<UndefValue>(FirstSplatValue))
661
FirstSplatValue = SecondSplatValue;
662
if (FirstSplatValue != SecondSplatValue)
663
continue;
664
} else {
665
if (isa<UndefValue>(FirstPatternValue))
666
FirstPatternValue = SecondPatternValue;
667
if (FirstPatternValue != SecondPatternValue)
668
continue;
669
}
670
Tails.insert(SL[k]);
671
Heads.insert(SL[i]);
672
ConsecutiveChain[SL[i]] = SL[k];
673
break;
674
}
675
}
676
}
677
678
// We may run into multiple chains that merge into a single chain. We mark the
679
// stores that we transformed so that we don't visit the same store twice.
680
SmallPtrSet<Value *, 16> TransformedStores;
681
bool Changed = false;
682
683
// For stores that start but don't end a link in the chain:
684
for (StoreInst *I : Heads) {
685
if (Tails.count(I))
686
continue;
687
688
// We found a store instr that starts a chain. Now follow the chain and try
689
// to transform it.
690
SmallPtrSet<Instruction *, 8> AdjacentStores;
691
StoreInst *HeadStore = I;
692
unsigned StoreSize = 0;
693
694
// Collect the chain into a list.
695
while (Tails.count(I) || Heads.count(I)) {
696
if (TransformedStores.count(I))
697
break;
698
AdjacentStores.insert(I);
699
700
StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
701
// Move to the next value in the chain.
702
I = ConsecutiveChain[I];
703
}
704
705
Value *StoredVal = HeadStore->getValueOperand();
706
Value *StorePtr = HeadStore->getPointerOperand();
707
const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
708
APInt Stride = getStoreStride(StoreEv);
709
710
// Check to see if the stride matches the size of the stores. If so, then
711
// we know that every byte is touched in the loop.
712
if (StoreSize != Stride && StoreSize != -Stride)
713
continue;
714
715
bool IsNegStride = StoreSize == -Stride;
716
717
Type *IntIdxTy = DL->getIndexType(StorePtr->getType());
718
const SCEV *StoreSizeSCEV = SE->getConstant(IntIdxTy, StoreSize);
719
if (processLoopStridedStore(StorePtr, StoreSizeSCEV,
720
MaybeAlign(HeadStore->getAlign()), StoredVal,
721
HeadStore, AdjacentStores, StoreEv, BECount,
722
IsNegStride)) {
723
TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
724
Changed = true;
725
}
726
}
727
728
return Changed;
729
}
730
731
/// processLoopMemIntrinsic - Template function for calling different processor
732
/// functions based on mem intrinsic type.
733
template <typename MemInst>
734
bool LoopIdiomRecognize::processLoopMemIntrinsic(
735
BasicBlock *BB,
736
bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *),
737
const SCEV *BECount) {
738
bool MadeChange = false;
739
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
740
Instruction *Inst = &*I++;
741
// Look for memory instructions, which may be optimized to a larger one.
742
if (MemInst *MI = dyn_cast<MemInst>(Inst)) {
743
WeakTrackingVH InstPtr(&*I);
744
if (!(this->*Processor)(MI, BECount))
745
continue;
746
MadeChange = true;
747
748
// If processing the instruction invalidated our iterator, start over from
749
// the top of the block.
750
if (!InstPtr)
751
I = BB->begin();
752
}
753
}
754
return MadeChange;
755
}
756
757
/// processLoopMemCpy - See if this memcpy can be promoted to a large memcpy
758
bool LoopIdiomRecognize::processLoopMemCpy(MemCpyInst *MCI,
759
const SCEV *BECount) {
760
// We can only handle non-volatile memcpys with a constant size.
761
if (MCI->isVolatile() || !isa<ConstantInt>(MCI->getLength()))
762
return false;
763
764
// If we're not allowed to hack on memcpy, we fail.
765
if ((!HasMemcpy && !isa<MemCpyInlineInst>(MCI)) || DisableLIRP::Memcpy)
766
return false;
767
768
Value *Dest = MCI->getDest();
769
Value *Source = MCI->getSource();
770
if (!Dest || !Source)
771
return false;
772
773
// See if the load and store pointer expressions are AddRec like {base,+,1} on
774
// the current loop, which indicates a strided load and store. If we have
775
// something else, it's a random load or store we can't handle.
776
const SCEVAddRecExpr *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Dest));
777
if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
778
return false;
779
const SCEVAddRecExpr *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Source));
780
if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
781
return false;
782
783
// Reject memcpys that are so large that they overflow an unsigned.
784
uint64_t SizeInBytes = cast<ConstantInt>(MCI->getLength())->getZExtValue();
785
if ((SizeInBytes >> 32) != 0)
786
return false;
787
788
// Check if the stride matches the size of the memcpy. If so, then we know
789
// that every byte is touched in the loop.
790
const SCEVConstant *ConstStoreStride =
791
dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
792
const SCEVConstant *ConstLoadStride =
793
dyn_cast<SCEVConstant>(LoadEv->getOperand(1));
794
if (!ConstStoreStride || !ConstLoadStride)
795
return false;
796
797
APInt StoreStrideValue = ConstStoreStride->getAPInt();
798
APInt LoadStrideValue = ConstLoadStride->getAPInt();
799
// Huge stride value - give up
800
if (StoreStrideValue.getBitWidth() > 64 || LoadStrideValue.getBitWidth() > 64)
801
return false;
802
803
if (SizeInBytes != StoreStrideValue && SizeInBytes != -StoreStrideValue) {
804
ORE.emit([&]() {
805
return OptimizationRemarkMissed(DEBUG_TYPE, "SizeStrideUnequal", MCI)
806
<< ore::NV("Inst", "memcpy") << " in "
807
<< ore::NV("Function", MCI->getFunction())
808
<< " function will not be hoisted: "
809
<< ore::NV("Reason", "memcpy size is not equal to stride");
810
});
811
return false;
812
}
813
814
int64_t StoreStrideInt = StoreStrideValue.getSExtValue();
815
int64_t LoadStrideInt = LoadStrideValue.getSExtValue();
816
// Check if the load stride matches the store stride.
817
if (StoreStrideInt != LoadStrideInt)
818
return false;
819
820
return processLoopStoreOfLoopLoad(
821
Dest, Source, SE->getConstant(Dest->getType(), SizeInBytes),
822
MCI->getDestAlign(), MCI->getSourceAlign(), MCI, MCI, StoreEv, LoadEv,
823
BECount);
824
}
825
826
/// processLoopMemSet - See if this memset can be promoted to a large memset.
827
bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
828
const SCEV *BECount) {
829
// We can only handle non-volatile memsets.
830
if (MSI->isVolatile())
831
return false;
832
833
// If we're not allowed to hack on memset, we fail.
834
if (!HasMemset || DisableLIRP::Memset)
835
return false;
836
837
Value *Pointer = MSI->getDest();
838
839
// See if the pointer expression is an AddRec like {base,+,1} on the current
840
// loop, which indicates a strided store. If we have something else, it's a
841
// random store we can't handle.
842
const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
843
if (!Ev || Ev->getLoop() != CurLoop)
844
return false;
845
if (!Ev->isAffine()) {
846
LLVM_DEBUG(dbgs() << " Pointer is not affine, abort\n");
847
return false;
848
}
849
850
const SCEV *PointerStrideSCEV = Ev->getOperand(1);
851
const SCEV *MemsetSizeSCEV = SE->getSCEV(MSI->getLength());
852
if (!PointerStrideSCEV || !MemsetSizeSCEV)
853
return false;
854
855
bool IsNegStride = false;
856
const bool IsConstantSize = isa<ConstantInt>(MSI->getLength());
857
858
if (IsConstantSize) {
859
// Memset size is constant.
860
// Check if the pointer stride matches the memset size. If so, then
861
// we know that every byte is touched in the loop.
862
LLVM_DEBUG(dbgs() << " memset size is constant\n");
863
uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
864
const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
865
if (!ConstStride)
866
return false;
867
868
APInt Stride = ConstStride->getAPInt();
869
if (SizeInBytes != Stride && SizeInBytes != -Stride)
870
return false;
871
872
IsNegStride = SizeInBytes == -Stride;
873
} else {
874
// Memset size is non-constant.
875
// Check if the pointer stride matches the memset size.
876
// To be conservative, the pass would not promote pointers that aren't in
877
// address space zero. Also, the pass only handles memset length and stride
878
// that are invariant for the top level loop.
879
LLVM_DEBUG(dbgs() << " memset size is non-constant\n");
880
if (Pointer->getType()->getPointerAddressSpace() != 0) {
881
LLVM_DEBUG(dbgs() << " pointer is not in address space zero, "
882
<< "abort\n");
883
return false;
884
}
885
if (!SE->isLoopInvariant(MemsetSizeSCEV, CurLoop)) {
886
LLVM_DEBUG(dbgs() << " memset size is not a loop-invariant, "
887
<< "abort\n");
888
return false;
889
}
890
891
// Compare positive direction PointerStrideSCEV with MemsetSizeSCEV
892
IsNegStride = PointerStrideSCEV->isNonConstantNegative();
893
const SCEV *PositiveStrideSCEV =
894
IsNegStride ? SE->getNegativeSCEV(PointerStrideSCEV)
895
: PointerStrideSCEV;
896
LLVM_DEBUG(dbgs() << " MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n"
897
<< " PositiveStrideSCEV: " << *PositiveStrideSCEV
898
<< "\n");
899
900
if (PositiveStrideSCEV != MemsetSizeSCEV) {
901
// If an expression is covered by the loop guard, compare again and
902
// proceed with optimization if equal.
903
const SCEV *FoldedPositiveStride =
904
SE->applyLoopGuards(PositiveStrideSCEV, CurLoop);
905
const SCEV *FoldedMemsetSize =
906
SE->applyLoopGuards(MemsetSizeSCEV, CurLoop);
907
908
LLVM_DEBUG(dbgs() << " Try to fold SCEV based on loop guard\n"
909
<< " FoldedMemsetSize: " << *FoldedMemsetSize << "\n"
910
<< " FoldedPositiveStride: " << *FoldedPositiveStride
911
<< "\n");
912
913
if (FoldedPositiveStride != FoldedMemsetSize) {
914
LLVM_DEBUG(dbgs() << " SCEV don't match, abort\n");
915
return false;
916
}
917
}
918
}
919
920
// Verify that the memset value is loop invariant. If not, we can't promote
921
// the memset.
922
Value *SplatValue = MSI->getValue();
923
if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
924
return false;
925
926
SmallPtrSet<Instruction *, 1> MSIs;
927
MSIs.insert(MSI);
928
return processLoopStridedStore(Pointer, SE->getSCEV(MSI->getLength()),
929
MSI->getDestAlign(), SplatValue, MSI, MSIs, Ev,
930
BECount, IsNegStride, /*IsLoopMemset=*/true);
931
}
932
933
/// mayLoopAccessLocation - Return true if the specified loop might access the
934
/// specified pointer location, which is a loop-strided access. The 'Access'
935
/// argument specifies what the verboten forms of access are (read or write).
936
static bool
937
mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
938
const SCEV *BECount, const SCEV *StoreSizeSCEV,
939
AliasAnalysis &AA,
940
SmallPtrSetImpl<Instruction *> &IgnoredInsts) {
941
// Get the location that may be stored across the loop. Since the access is
942
// strided positively through memory, we say that the modified location starts
943
// at the pointer and has infinite size.
944
LocationSize AccessSize = LocationSize::afterPointer();
945
946
// If the loop iterates a fixed number of times, we can refine the access size
947
// to be exactly the size of the memset, which is (BECount+1)*StoreSize
948
const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount);
949
const SCEVConstant *ConstSize = dyn_cast<SCEVConstant>(StoreSizeSCEV);
950
if (BECst && ConstSize) {
951
std::optional<uint64_t> BEInt = BECst->getAPInt().tryZExtValue();
952
std::optional<uint64_t> SizeInt = ConstSize->getAPInt().tryZExtValue();
953
// FIXME: Should this check for overflow?
954
if (BEInt && SizeInt)
955
AccessSize = LocationSize::precise((*BEInt + 1) * *SizeInt);
956
}
957
958
// TODO: For this to be really effective, we have to dive into the pointer
959
// operand in the store. Store to &A[i] of 100 will always return may alias
960
// with store of &A[100], we need to StoreLoc to be "A" with size of 100,
961
// which will then no-alias a store to &A[100].
962
MemoryLocation StoreLoc(Ptr, AccessSize);
963
964
for (BasicBlock *B : L->blocks())
965
for (Instruction &I : *B)
966
if (!IgnoredInsts.contains(&I) &&
967
isModOrRefSet(AA.getModRefInfo(&I, StoreLoc) & Access))
968
return true;
969
return false;
970
}
971
972
// If we have a negative stride, Start refers to the end of the memory location
973
// we're trying to memset. Therefore, we need to recompute the base pointer,
974
// which is just Start - BECount*Size.
975
static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
976
Type *IntPtr, const SCEV *StoreSizeSCEV,
977
ScalarEvolution *SE) {
978
const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
979
if (!StoreSizeSCEV->isOne()) {
980
// index = back edge count * store size
981
Index = SE->getMulExpr(Index,
982
SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr),
983
SCEV::FlagNUW);
984
}
985
// base pointer = start - index * store size
986
return SE->getMinusSCEV(Start, Index);
987
}
988
989
/// Compute the number of bytes as a SCEV from the backedge taken count.
990
///
991
/// This also maps the SCEV into the provided type and tries to handle the
992
/// computation in a way that will fold cleanly.
993
static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
994
const SCEV *StoreSizeSCEV, Loop *CurLoop,
995
const DataLayout *DL, ScalarEvolution *SE) {
996
const SCEV *TripCountSCEV =
997
SE->getTripCountFromExitCount(BECount, IntPtr, CurLoop);
998
return SE->getMulExpr(TripCountSCEV,
999
SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr),
1000
SCEV::FlagNUW);
1001
}
1002
1003
/// processLoopStridedStore - We see a strided store of some value. If we can
1004
/// transform this into a memset or memset_pattern in the loop preheader, do so.
1005
bool LoopIdiomRecognize::processLoopStridedStore(
1006
Value *DestPtr, const SCEV *StoreSizeSCEV, MaybeAlign StoreAlignment,
1007
Value *StoredVal, Instruction *TheStore,
1008
SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
1009
const SCEV *BECount, bool IsNegStride, bool IsLoopMemset) {
1010
Module *M = TheStore->getModule();
1011
Value *SplatValue = isBytewiseValue(StoredVal, *DL);
1012
Constant *PatternValue = nullptr;
1013
1014
if (!SplatValue)
1015
PatternValue = getMemSetPatternValue(StoredVal, DL);
1016
1017
assert((SplatValue || PatternValue) &&
1018
"Expected either splat value or pattern value.");
1019
1020
// The trip count of the loop and the base pointer of the addrec SCEV is
1021
// guaranteed to be loop invariant, which means that it should dominate the
1022
// header. This allows us to insert code for it in the preheader.
1023
unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
1024
BasicBlock *Preheader = CurLoop->getLoopPreheader();
1025
IRBuilder<> Builder(Preheader->getTerminator());
1026
SCEVExpander Expander(*SE, *DL, "loop-idiom");
1027
SCEVExpanderCleaner ExpCleaner(Expander);
1028
1029
Type *DestInt8PtrTy = Builder.getPtrTy(DestAS);
1030
Type *IntIdxTy = DL->getIndexType(DestPtr->getType());
1031
1032
bool Changed = false;
1033
const SCEV *Start = Ev->getStart();
1034
// Handle negative strided loops.
1035
if (IsNegStride)
1036
Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSizeSCEV, SE);
1037
1038
// TODO: ideally we should still be able to generate memset if SCEV expander
1039
// is taught to generate the dependencies at the latest point.
1040
if (!Expander.isSafeToExpand(Start))
1041
return Changed;
1042
1043
// Okay, we have a strided store "p[i]" of a splattable value. We can turn
1044
// this into a memset in the loop preheader now if we want. However, this
1045
// would be unsafe to do if there is anything else in the loop that may read
1046
// or write to the aliased location. Check for any overlap by generating the
1047
// base pointer and checking the region.
1048
Value *BasePtr =
1049
Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
1050
1051
// From here on out, conservatively report to the pass manager that we've
1052
// changed the IR, even if we later clean up these added instructions. There
1053
// may be structural differences e.g. in the order of use lists not accounted
1054
// for in just a textual dump of the IR. This is written as a variable, even
1055
// though statically all the places this dominates could be replaced with
1056
// 'true', with the hope that anyone trying to be clever / "more precise" with
1057
// the return value will read this comment, and leave them alone.
1058
Changed = true;
1059
1060
if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1061
StoreSizeSCEV, *AA, Stores))
1062
return Changed;
1063
1064
if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
1065
return Changed;
1066
1067
// Okay, everything looks good, insert the memset.
1068
1069
const SCEV *NumBytesS =
1070
getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE);
1071
1072
// TODO: ideally we should still be able to generate memset if SCEV expander
1073
// is taught to generate the dependencies at the latest point.
1074
if (!Expander.isSafeToExpand(NumBytesS))
1075
return Changed;
1076
1077
Value *NumBytes =
1078
Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1079
1080
if (!SplatValue && !isLibFuncEmittable(M, TLI, LibFunc_memset_pattern16))
1081
return Changed;
1082
1083
AAMDNodes AATags = TheStore->getAAMetadata();
1084
for (Instruction *Store : Stores)
1085
AATags = AATags.merge(Store->getAAMetadata());
1086
if (auto CI = dyn_cast<ConstantInt>(NumBytes))
1087
AATags = AATags.extendTo(CI->getZExtValue());
1088
else
1089
AATags = AATags.extendTo(-1);
1090
1091
CallInst *NewCall;
1092
if (SplatValue) {
1093
NewCall = Builder.CreateMemSet(
1094
BasePtr, SplatValue, NumBytes, MaybeAlign(StoreAlignment),
1095
/*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias);
1096
} else {
1097
assert (isLibFuncEmittable(M, TLI, LibFunc_memset_pattern16));
1098
// Everything is emitted in default address space
1099
Type *Int8PtrTy = DestInt8PtrTy;
1100
1101
StringRef FuncName = "memset_pattern16";
1102
FunctionCallee MSP = getOrInsertLibFunc(M, *TLI, LibFunc_memset_pattern16,
1103
Builder.getVoidTy(), Int8PtrTy, Int8PtrTy, IntIdxTy);
1104
inferNonMandatoryLibFuncAttrs(M, FuncName, *TLI);
1105
1106
// Otherwise we should form a memset_pattern16. PatternValue is known to be
1107
// an constant array of 16-bytes. Plop the value into a mergable global.
1108
GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
1109
GlobalValue::PrivateLinkage,
1110
PatternValue, ".memset_pattern");
1111
GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
1112
GV->setAlignment(Align(16));
1113
Value *PatternPtr = GV;
1114
NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
1115
1116
// Set the TBAA info if present.
1117
if (AATags.TBAA)
1118
NewCall->setMetadata(LLVMContext::MD_tbaa, AATags.TBAA);
1119
1120
if (AATags.Scope)
1121
NewCall->setMetadata(LLVMContext::MD_alias_scope, AATags.Scope);
1122
1123
if (AATags.NoAlias)
1124
NewCall->setMetadata(LLVMContext::MD_noalias, AATags.NoAlias);
1125
}
1126
1127
NewCall->setDebugLoc(TheStore->getDebugLoc());
1128
1129
if (MSSAU) {
1130
MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1131
NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1132
MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1133
}
1134
1135
LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n"
1136
<< " from store to: " << *Ev << " at: " << *TheStore
1137
<< "\n");
1138
1139
ORE.emit([&]() {
1140
OptimizationRemark R(DEBUG_TYPE, "ProcessLoopStridedStore",
1141
NewCall->getDebugLoc(), Preheader);
1142
R << "Transformed loop-strided store in "
1143
<< ore::NV("Function", TheStore->getFunction())
1144
<< " function into a call to "
1145
<< ore::NV("NewFunction", NewCall->getCalledFunction())
1146
<< "() intrinsic";
1147
if (!Stores.empty())
1148
R << ore::setExtraArgs();
1149
for (auto *I : Stores) {
1150
R << ore::NV("FromBlock", I->getParent()->getName())
1151
<< ore::NV("ToBlock", Preheader->getName());
1152
}
1153
return R;
1154
});
1155
1156
// Okay, the memset has been formed. Zap the original store and anything that
1157
// feeds into it.
1158
for (auto *I : Stores) {
1159
if (MSSAU)
1160
MSSAU->removeMemoryAccess(I, true);
1161
deleteDeadInstruction(I);
1162
}
1163
if (MSSAU && VerifyMemorySSA)
1164
MSSAU->getMemorySSA()->verifyMemorySSA();
1165
++NumMemSet;
1166
ExpCleaner.markResultUsed();
1167
return true;
1168
}
1169
1170
/// If the stored value is a strided load in the same loop with the same stride
1171
/// this may be transformable into a memcpy. This kicks in for stuff like
1172
/// for (i) A[i] = B[i];
1173
bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
1174
const SCEV *BECount) {
1175
assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
1176
1177
Value *StorePtr = SI->getPointerOperand();
1178
const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1179
unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
1180
1181
// The store must be feeding a non-volatile load.
1182
LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
1183
assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
1184
1185
// See if the pointer expression is an AddRec like {base,+,1} on the current
1186
// loop, which indicates a strided load. If we have something else, it's a
1187
// random load we can't handle.
1188
Value *LoadPtr = LI->getPointerOperand();
1189
const SCEVAddRecExpr *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr));
1190
1191
const SCEV *StoreSizeSCEV = SE->getConstant(StorePtr->getType(), StoreSize);
1192
return processLoopStoreOfLoopLoad(StorePtr, LoadPtr, StoreSizeSCEV,
1193
SI->getAlign(), LI->getAlign(), SI, LI,
1194
StoreEv, LoadEv, BECount);
1195
}
1196
1197
namespace {
1198
class MemmoveVerifier {
1199
public:
1200
explicit MemmoveVerifier(const Value &LoadBasePtr, const Value &StoreBasePtr,
1201
const DataLayout &DL)
1202
: DL(DL), BP1(llvm::GetPointerBaseWithConstantOffset(
1203
LoadBasePtr.stripPointerCasts(), LoadOff, DL)),
1204
BP2(llvm::GetPointerBaseWithConstantOffset(
1205
StoreBasePtr.stripPointerCasts(), StoreOff, DL)),
1206
IsSameObject(BP1 == BP2) {}
1207
1208
bool loadAndStoreMayFormMemmove(unsigned StoreSize, bool IsNegStride,
1209
const Instruction &TheLoad,
1210
bool IsMemCpy) const {
1211
if (IsMemCpy) {
1212
// Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr
1213
// for negative stride.
1214
if ((!IsNegStride && LoadOff <= StoreOff) ||
1215
(IsNegStride && LoadOff >= StoreOff))
1216
return false;
1217
} else {
1218
// Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr
1219
// for negative stride. LoadBasePtr shouldn't overlap with StoreBasePtr.
1220
int64_t LoadSize =
1221
DL.getTypeSizeInBits(TheLoad.getType()).getFixedValue() / 8;
1222
if (BP1 != BP2 || LoadSize != int64_t(StoreSize))
1223
return false;
1224
if ((!IsNegStride && LoadOff < StoreOff + int64_t(StoreSize)) ||
1225
(IsNegStride && LoadOff + LoadSize > StoreOff))
1226
return false;
1227
}
1228
return true;
1229
}
1230
1231
private:
1232
const DataLayout &DL;
1233
int64_t LoadOff = 0;
1234
int64_t StoreOff = 0;
1235
const Value *BP1;
1236
const Value *BP2;
1237
1238
public:
1239
const bool IsSameObject;
1240
};
1241
} // namespace
1242
1243
bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(
1244
Value *DestPtr, Value *SourcePtr, const SCEV *StoreSizeSCEV,
1245
MaybeAlign StoreAlign, MaybeAlign LoadAlign, Instruction *TheStore,
1246
Instruction *TheLoad, const SCEVAddRecExpr *StoreEv,
1247
const SCEVAddRecExpr *LoadEv, const SCEV *BECount) {
1248
1249
// FIXME: until llvm.memcpy.inline supports dynamic sizes, we need to
1250
// conservatively bail here, since otherwise we may have to transform
1251
// llvm.memcpy.inline into llvm.memcpy which is illegal.
1252
if (isa<MemCpyInlineInst>(TheStore))
1253
return false;
1254
1255
// The trip count of the loop and the base pointer of the addrec SCEV is
1256
// guaranteed to be loop invariant, which means that it should dominate the
1257
// header. This allows us to insert code for it in the preheader.
1258
BasicBlock *Preheader = CurLoop->getLoopPreheader();
1259
IRBuilder<> Builder(Preheader->getTerminator());
1260
SCEVExpander Expander(*SE, *DL, "loop-idiom");
1261
1262
SCEVExpanderCleaner ExpCleaner(Expander);
1263
1264
bool Changed = false;
1265
const SCEV *StrStart = StoreEv->getStart();
1266
unsigned StrAS = DestPtr->getType()->getPointerAddressSpace();
1267
Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS));
1268
1269
APInt Stride = getStoreStride(StoreEv);
1270
const SCEVConstant *ConstStoreSize = dyn_cast<SCEVConstant>(StoreSizeSCEV);
1271
1272
// TODO: Deal with non-constant size; Currently expect constant store size
1273
assert(ConstStoreSize && "store size is expected to be a constant");
1274
1275
int64_t StoreSize = ConstStoreSize->getValue()->getZExtValue();
1276
bool IsNegStride = StoreSize == -Stride;
1277
1278
// Handle negative strided loops.
1279
if (IsNegStride)
1280
StrStart =
1281
getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSizeSCEV, SE);
1282
1283
// Okay, we have a strided store "p[i]" of a loaded value. We can turn
1284
// this into a memcpy in the loop preheader now if we want. However, this
1285
// would be unsafe to do if there is anything else in the loop that may read
1286
// or write the memory region we're storing to. This includes the load that
1287
// feeds the stores. Check for an alias by generating the base address and
1288
// checking everything.
1289
Value *StoreBasePtr = Expander.expandCodeFor(
1290
StrStart, Builder.getPtrTy(StrAS), Preheader->getTerminator());
1291
1292
// From here on out, conservatively report to the pass manager that we've
1293
// changed the IR, even if we later clean up these added instructions. There
1294
// may be structural differences e.g. in the order of use lists not accounted
1295
// for in just a textual dump of the IR. This is written as a variable, even
1296
// though statically all the places this dominates could be replaced with
1297
// 'true', with the hope that anyone trying to be clever / "more precise" with
1298
// the return value will read this comment, and leave them alone.
1299
Changed = true;
1300
1301
SmallPtrSet<Instruction *, 2> IgnoredInsts;
1302
IgnoredInsts.insert(TheStore);
1303
1304
bool IsMemCpy = isa<MemCpyInst>(TheStore);
1305
const StringRef InstRemark = IsMemCpy ? "memcpy" : "load and store";
1306
1307
bool LoopAccessStore =
1308
mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1309
StoreSizeSCEV, *AA, IgnoredInsts);
1310
if (LoopAccessStore) {
1311
// For memmove case it's not enough to guarantee that loop doesn't access
1312
// TheStore and TheLoad. Additionally we need to make sure that TheStore is
1313
// the only user of TheLoad.
1314
if (!TheLoad->hasOneUse())
1315
return Changed;
1316
IgnoredInsts.insert(TheLoad);
1317
if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop,
1318
BECount, StoreSizeSCEV, *AA, IgnoredInsts)) {
1319
ORE.emit([&]() {
1320
return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessStore",
1321
TheStore)
1322
<< ore::NV("Inst", InstRemark) << " in "
1323
<< ore::NV("Function", TheStore->getFunction())
1324
<< " function will not be hoisted: "
1325
<< ore::NV("Reason", "The loop may access store location");
1326
});
1327
return Changed;
1328
}
1329
IgnoredInsts.erase(TheLoad);
1330
}
1331
1332
const SCEV *LdStart = LoadEv->getStart();
1333
unsigned LdAS = SourcePtr->getType()->getPointerAddressSpace();
1334
1335
// Handle negative strided loops.
1336
if (IsNegStride)
1337
LdStart =
1338
getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSizeSCEV, SE);
1339
1340
// For a memcpy, we have to make sure that the input array is not being
1341
// mutated by the loop.
1342
Value *LoadBasePtr = Expander.expandCodeFor(LdStart, Builder.getPtrTy(LdAS),
1343
Preheader->getTerminator());
1344
1345
// If the store is a memcpy instruction, we must check if it will write to
1346
// the load memory locations. So remove it from the ignored stores.
1347
MemmoveVerifier Verifier(*LoadBasePtr, *StoreBasePtr, *DL);
1348
if (IsMemCpy && !Verifier.IsSameObject)
1349
IgnoredInsts.erase(TheStore);
1350
if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
1351
StoreSizeSCEV, *AA, IgnoredInsts)) {
1352
ORE.emit([&]() {
1353
return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessLoad", TheLoad)
1354
<< ore::NV("Inst", InstRemark) << " in "
1355
<< ore::NV("Function", TheStore->getFunction())
1356
<< " function will not be hoisted: "
1357
<< ore::NV("Reason", "The loop may access load location");
1358
});
1359
return Changed;
1360
}
1361
1362
bool UseMemMove = IsMemCpy ? Verifier.IsSameObject : LoopAccessStore;
1363
if (UseMemMove)
1364
if (!Verifier.loadAndStoreMayFormMemmove(StoreSize, IsNegStride, *TheLoad,
1365
IsMemCpy))
1366
return Changed;
1367
1368
if (avoidLIRForMultiBlockLoop())
1369
return Changed;
1370
1371
// Okay, everything is safe, we can transform this!
1372
1373
const SCEV *NumBytesS =
1374
getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE);
1375
1376
Value *NumBytes =
1377
Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1378
1379
AAMDNodes AATags = TheLoad->getAAMetadata();
1380
AAMDNodes StoreAATags = TheStore->getAAMetadata();
1381
AATags = AATags.merge(StoreAATags);
1382
if (auto CI = dyn_cast<ConstantInt>(NumBytes))
1383
AATags = AATags.extendTo(CI->getZExtValue());
1384
else
1385
AATags = AATags.extendTo(-1);
1386
1387
CallInst *NewCall = nullptr;
1388
// Check whether to generate an unordered atomic memcpy:
1389
// If the load or store are atomic, then they must necessarily be unordered
1390
// by previous checks.
1391
if (!TheStore->isAtomic() && !TheLoad->isAtomic()) {
1392
if (UseMemMove)
1393
NewCall = Builder.CreateMemMove(
1394
StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, NumBytes,
1395
/*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias);
1396
else
1397
NewCall =
1398
Builder.CreateMemCpy(StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign,
1399
NumBytes, /*isVolatile=*/false, AATags.TBAA,
1400
AATags.TBAAStruct, AATags.Scope, AATags.NoAlias);
1401
} else {
1402
// For now don't support unordered atomic memmove.
1403
if (UseMemMove)
1404
return Changed;
1405
// We cannot allow unaligned ops for unordered load/store, so reject
1406
// anything where the alignment isn't at least the element size.
1407
assert((StoreAlign && LoadAlign) &&
1408
"Expect unordered load/store to have align.");
1409
if (*StoreAlign < StoreSize || *LoadAlign < StoreSize)
1410
return Changed;
1411
1412
// If the element.atomic memcpy is not lowered into explicit
1413
// loads/stores later, then it will be lowered into an element-size
1414
// specific lib call. If the lib call doesn't exist for our store size, then
1415
// we shouldn't generate the memcpy.
1416
if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
1417
return Changed;
1418
1419
// Create the call.
1420
// Note that unordered atomic loads/stores are *required* by the spec to
1421
// have an alignment but non-atomic loads/stores may not.
1422
NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
1423
StoreBasePtr, *StoreAlign, LoadBasePtr, *LoadAlign, NumBytes, StoreSize,
1424
AATags.TBAA, AATags.TBAAStruct, AATags.Scope, AATags.NoAlias);
1425
}
1426
NewCall->setDebugLoc(TheStore->getDebugLoc());
1427
1428
if (MSSAU) {
1429
MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1430
NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1431
MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1432
}
1433
1434
LLVM_DEBUG(dbgs() << " Formed new call: " << *NewCall << "\n"
1435
<< " from load ptr=" << *LoadEv << " at: " << *TheLoad
1436
<< "\n"
1437
<< " from store ptr=" << *StoreEv << " at: " << *TheStore
1438
<< "\n");
1439
1440
ORE.emit([&]() {
1441
return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad",
1442
NewCall->getDebugLoc(), Preheader)
1443
<< "Formed a call to "
1444
<< ore::NV("NewFunction", NewCall->getCalledFunction())
1445
<< "() intrinsic from " << ore::NV("Inst", InstRemark)
1446
<< " instruction in " << ore::NV("Function", TheStore->getFunction())
1447
<< " function"
1448
<< ore::setExtraArgs()
1449
<< ore::NV("FromBlock", TheStore->getParent()->getName())
1450
<< ore::NV("ToBlock", Preheader->getName());
1451
});
1452
1453
// Okay, a new call to memcpy/memmove has been formed. Zap the original store
1454
// and anything that feeds into it.
1455
if (MSSAU)
1456
MSSAU->removeMemoryAccess(TheStore, true);
1457
deleteDeadInstruction(TheStore);
1458
if (MSSAU && VerifyMemorySSA)
1459
MSSAU->getMemorySSA()->verifyMemorySSA();
1460
if (UseMemMove)
1461
++NumMemMove;
1462
else
1463
++NumMemCpy;
1464
ExpCleaner.markResultUsed();
1465
return true;
1466
}
1467
1468
// When compiling for codesize we avoid idiom recognition for a multi-block loop
1469
// unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
1470
//
1471
bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
1472
bool IsLoopMemset) {
1473
if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
1474
if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) {
1475
LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName()
1476
<< " : LIR " << (IsMemset ? "Memset" : "Memcpy")
1477
<< " avoided: multi-block top-level loop\n");
1478
return true;
1479
}
1480
}
1481
1482
return false;
1483
}
1484
1485
bool LoopIdiomRecognize::runOnNoncountableLoop() {
1486
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
1487
<< CurLoop->getHeader()->getParent()->getName()
1488
<< "] Noncountable Loop %"
1489
<< CurLoop->getHeader()->getName() << "\n");
1490
1491
return recognizePopcount() || recognizeAndInsertFFS() ||
1492
recognizeShiftUntilBitTest() || recognizeShiftUntilZero() ||
1493
recognizeShiftUntilLessThan();
1494
}
1495
1496
/// Check if the given conditional branch is based on the comparison between
1497
/// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
1498
/// true), the control yields to the loop entry. If the branch matches the
1499
/// behavior, the variable involved in the comparison is returned. This function
1500
/// will be called to see if the precondition and postcondition of the loop are
1501
/// in desirable form.
1502
static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry,
1503
bool JmpOnZero = false) {
1504
if (!BI || !BI->isConditional())
1505
return nullptr;
1506
1507
ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1508
if (!Cond)
1509
return nullptr;
1510
1511
ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
1512
if (!CmpZero || !CmpZero->isZero())
1513
return nullptr;
1514
1515
BasicBlock *TrueSucc = BI->getSuccessor(0);
1516
BasicBlock *FalseSucc = BI->getSuccessor(1);
1517
if (JmpOnZero)
1518
std::swap(TrueSucc, FalseSucc);
1519
1520
ICmpInst::Predicate Pred = Cond->getPredicate();
1521
if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) ||
1522
(Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry))
1523
return Cond->getOperand(0);
1524
1525
return nullptr;
1526
}
1527
1528
/// Check if the given conditional branch is based on an unsigned less-than
1529
/// comparison between a variable and a constant, and if the comparison is false
1530
/// the control yields to the loop entry. If the branch matches the behaviour,
1531
/// the variable involved in the comparison is returned.
1532
static Value *matchShiftULTCondition(BranchInst *BI, BasicBlock *LoopEntry,
1533
APInt &Threshold) {
1534
if (!BI || !BI->isConditional())
1535
return nullptr;
1536
1537
ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1538
if (!Cond)
1539
return nullptr;
1540
1541
ConstantInt *CmpConst = dyn_cast<ConstantInt>(Cond->getOperand(1));
1542
if (!CmpConst)
1543
return nullptr;
1544
1545
BasicBlock *FalseSucc = BI->getSuccessor(1);
1546
ICmpInst::Predicate Pred = Cond->getPredicate();
1547
1548
if (Pred == ICmpInst::ICMP_ULT && FalseSucc == LoopEntry) {
1549
Threshold = CmpConst->getValue();
1550
return Cond->getOperand(0);
1551
}
1552
1553
return nullptr;
1554
}
1555
1556
// Check if the recurrence variable `VarX` is in the right form to create
1557
// the idiom. Returns the value coerced to a PHINode if so.
1558
static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
1559
BasicBlock *LoopEntry) {
1560
auto *PhiX = dyn_cast<PHINode>(VarX);
1561
if (PhiX && PhiX->getParent() == LoopEntry &&
1562
(PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
1563
return PhiX;
1564
return nullptr;
1565
}
1566
1567
/// Return true if the idiom is detected in the loop.
1568
///
1569
/// Additionally:
1570
/// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
1571
/// or nullptr if there is no such.
1572
/// 2) \p CntPhi is set to the corresponding phi node
1573
/// or nullptr if there is no such.
1574
/// 3) \p InitX is set to the value whose CTLZ could be used.
1575
/// 4) \p DefX is set to the instruction calculating Loop exit condition.
1576
/// 5) \p Threshold is set to the constant involved in the unsigned less-than
1577
/// comparison.
1578
///
1579
/// The core idiom we are trying to detect is:
1580
/// \code
1581
/// if (x0 < 2)
1582
/// goto loop-exit // the precondition of the loop
1583
/// cnt0 = init-val
1584
/// do {
1585
/// x = phi (x0, x.next); //PhiX
1586
/// cnt = phi (cnt0, cnt.next)
1587
///
1588
/// cnt.next = cnt + 1;
1589
/// ...
1590
/// x.next = x >> 1; // DefX
1591
/// } while (x >= 4)
1592
/// loop-exit:
1593
/// \endcode
1594
static bool detectShiftUntilLessThanIdiom(Loop *CurLoop, const DataLayout &DL,
1595
Intrinsic::ID &IntrinID,
1596
Value *&InitX, Instruction *&CntInst,
1597
PHINode *&CntPhi, Instruction *&DefX,
1598
APInt &Threshold) {
1599
BasicBlock *LoopEntry;
1600
1601
DefX = nullptr;
1602
CntInst = nullptr;
1603
CntPhi = nullptr;
1604
LoopEntry = *(CurLoop->block_begin());
1605
1606
// step 1: Check if the loop-back branch is in desirable form.
1607
if (Value *T = matchShiftULTCondition(
1608
dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry,
1609
Threshold))
1610
DefX = dyn_cast<Instruction>(T);
1611
else
1612
return false;
1613
1614
// step 2: Check the recurrence of variable X
1615
if (!DefX || !isa<PHINode>(DefX))
1616
return false;
1617
1618
PHINode *VarPhi = cast<PHINode>(DefX);
1619
int Idx = VarPhi->getBasicBlockIndex(LoopEntry);
1620
if (Idx == -1)
1621
return false;
1622
1623
DefX = dyn_cast<Instruction>(VarPhi->getIncomingValue(Idx));
1624
if (!DefX || DefX->getNumOperands() == 0 || DefX->getOperand(0) != VarPhi)
1625
return false;
1626
1627
// step 3: detect instructions corresponding to "x.next = x >> 1"
1628
if (DefX->getOpcode() != Instruction::LShr)
1629
return false;
1630
1631
IntrinID = Intrinsic::ctlz;
1632
ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
1633
if (!Shft || !Shft->isOne())
1634
return false;
1635
1636
InitX = VarPhi->getIncomingValueForBlock(CurLoop->getLoopPreheader());
1637
1638
// step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
1639
// or cnt.next = cnt + -1.
1640
// TODO: We can skip the step. If loop trip count is known (CTLZ),
1641
// then all uses of "cnt.next" could be optimized to the trip count
1642
// plus "cnt0". Currently it is not optimized.
1643
// This step could be used to detect POPCNT instruction:
1644
// cnt.next = cnt + (x.next & 1)
1645
for (Instruction &Inst : llvm::make_range(
1646
LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) {
1647
if (Inst.getOpcode() != Instruction::Add)
1648
continue;
1649
1650
ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1));
1651
if (!Inc || (!Inc->isOne() && !Inc->isMinusOne()))
1652
continue;
1653
1654
PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry);
1655
if (!Phi)
1656
continue;
1657
1658
CntInst = &Inst;
1659
CntPhi = Phi;
1660
break;
1661
}
1662
if (!CntInst)
1663
return false;
1664
1665
return true;
1666
}
1667
1668
/// Return true iff the idiom is detected in the loop.
1669
///
1670
/// Additionally:
1671
/// 1) \p CntInst is set to the instruction counting the population bit.
1672
/// 2) \p CntPhi is set to the corresponding phi node.
1673
/// 3) \p Var is set to the value whose population bits are being counted.
1674
///
1675
/// The core idiom we are trying to detect is:
1676
/// \code
1677
/// if (x0 != 0)
1678
/// goto loop-exit // the precondition of the loop
1679
/// cnt0 = init-val;
1680
/// do {
1681
/// x1 = phi (x0, x2);
1682
/// cnt1 = phi(cnt0, cnt2);
1683
///
1684
/// cnt2 = cnt1 + 1;
1685
/// ...
1686
/// x2 = x1 & (x1 - 1);
1687
/// ...
1688
/// } while(x != 0);
1689
///
1690
/// loop-exit:
1691
/// \endcode
1692
static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
1693
Instruction *&CntInst, PHINode *&CntPhi,
1694
Value *&Var) {
1695
// step 1: Check to see if the look-back branch match this pattern:
1696
// "if (a!=0) goto loop-entry".
1697
BasicBlock *LoopEntry;
1698
Instruction *DefX2, *CountInst;
1699
Value *VarX1, *VarX0;
1700
PHINode *PhiX, *CountPhi;
1701
1702
DefX2 = CountInst = nullptr;
1703
VarX1 = VarX0 = nullptr;
1704
PhiX = CountPhi = nullptr;
1705
LoopEntry = *(CurLoop->block_begin());
1706
1707
// step 1: Check if the loop-back branch is in desirable form.
1708
{
1709
if (Value *T = matchCondition(
1710
dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1711
DefX2 = dyn_cast<Instruction>(T);
1712
else
1713
return false;
1714
}
1715
1716
// step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
1717
{
1718
if (!DefX2 || DefX2->getOpcode() != Instruction::And)
1719
return false;
1720
1721
BinaryOperator *SubOneOp;
1722
1723
if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
1724
VarX1 = DefX2->getOperand(1);
1725
else {
1726
VarX1 = DefX2->getOperand(0);
1727
SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
1728
}
1729
if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
1730
return false;
1731
1732
ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
1733
if (!Dec ||
1734
!((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
1735
(SubOneOp->getOpcode() == Instruction::Add &&
1736
Dec->isMinusOne()))) {
1737
return false;
1738
}
1739
}
1740
1741
// step 3: Check the recurrence of variable X
1742
PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
1743
if (!PhiX)
1744
return false;
1745
1746
// step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
1747
{
1748
CountInst = nullptr;
1749
for (Instruction &Inst : llvm::make_range(
1750
LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) {
1751
if (Inst.getOpcode() != Instruction::Add)
1752
continue;
1753
1754
ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1));
1755
if (!Inc || !Inc->isOne())
1756
continue;
1757
1758
PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry);
1759
if (!Phi)
1760
continue;
1761
1762
// Check if the result of the instruction is live of the loop.
1763
bool LiveOutLoop = false;
1764
for (User *U : Inst.users()) {
1765
if ((cast<Instruction>(U))->getParent() != LoopEntry) {
1766
LiveOutLoop = true;
1767
break;
1768
}
1769
}
1770
1771
if (LiveOutLoop) {
1772
CountInst = &Inst;
1773
CountPhi = Phi;
1774
break;
1775
}
1776
}
1777
1778
if (!CountInst)
1779
return false;
1780
}
1781
1782
// step 5: check if the precondition is in this form:
1783
// "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
1784
{
1785
auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1786
Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
1787
if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
1788
return false;
1789
1790
CntInst = CountInst;
1791
CntPhi = CountPhi;
1792
Var = T;
1793
}
1794
1795
return true;
1796
}
1797
1798
/// Return true if the idiom is detected in the loop.
1799
///
1800
/// Additionally:
1801
/// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
1802
/// or nullptr if there is no such.
1803
/// 2) \p CntPhi is set to the corresponding phi node
1804
/// or nullptr if there is no such.
1805
/// 3) \p Var is set to the value whose CTLZ could be used.
1806
/// 4) \p DefX is set to the instruction calculating Loop exit condition.
1807
///
1808
/// The core idiom we are trying to detect is:
1809
/// \code
1810
/// if (x0 == 0)
1811
/// goto loop-exit // the precondition of the loop
1812
/// cnt0 = init-val;
1813
/// do {
1814
/// x = phi (x0, x.next); //PhiX
1815
/// cnt = phi(cnt0, cnt.next);
1816
///
1817
/// cnt.next = cnt + 1;
1818
/// ...
1819
/// x.next = x >> 1; // DefX
1820
/// ...
1821
/// } while(x.next != 0);
1822
///
1823
/// loop-exit:
1824
/// \endcode
1825
static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL,
1826
Intrinsic::ID &IntrinID, Value *&InitX,
1827
Instruction *&CntInst, PHINode *&CntPhi,
1828
Instruction *&DefX) {
1829
BasicBlock *LoopEntry;
1830
Value *VarX = nullptr;
1831
1832
DefX = nullptr;
1833
CntInst = nullptr;
1834
CntPhi = nullptr;
1835
LoopEntry = *(CurLoop->block_begin());
1836
1837
// step 1: Check if the loop-back branch is in desirable form.
1838
if (Value *T = matchCondition(
1839
dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1840
DefX = dyn_cast<Instruction>(T);
1841
else
1842
return false;
1843
1844
// step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
1845
if (!DefX || !DefX->isShift())
1846
return false;
1847
IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz :
1848
Intrinsic::ctlz;
1849
ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
1850
if (!Shft || !Shft->isOne())
1851
return false;
1852
VarX = DefX->getOperand(0);
1853
1854
// step 3: Check the recurrence of variable X
1855
PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
1856
if (!PhiX)
1857
return false;
1858
1859
InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader());
1860
1861
// Make sure the initial value can't be negative otherwise the ashr in the
1862
// loop might never reach zero which would make the loop infinite.
1863
if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL))
1864
return false;
1865
1866
// step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
1867
// or cnt.next = cnt + -1.
1868
// TODO: We can skip the step. If loop trip count is known (CTLZ),
1869
// then all uses of "cnt.next" could be optimized to the trip count
1870
// plus "cnt0". Currently it is not optimized.
1871
// This step could be used to detect POPCNT instruction:
1872
// cnt.next = cnt + (x.next & 1)
1873
for (Instruction &Inst : llvm::make_range(
1874
LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) {
1875
if (Inst.getOpcode() != Instruction::Add)
1876
continue;
1877
1878
ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1));
1879
if (!Inc || (!Inc->isOne() && !Inc->isMinusOne()))
1880
continue;
1881
1882
PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry);
1883
if (!Phi)
1884
continue;
1885
1886
CntInst = &Inst;
1887
CntPhi = Phi;
1888
break;
1889
}
1890
if (!CntInst)
1891
return false;
1892
1893
return true;
1894
}
1895
1896
// Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
1897
// profitable if we delete the loop.
1898
bool LoopIdiomRecognize::isProfitableToInsertFFS(Intrinsic::ID IntrinID,
1899
Value *InitX, bool ZeroCheck,
1900
size_t CanonicalSize) {
1901
const Value *Args[] = {InitX,
1902
ConstantInt::getBool(InitX->getContext(), ZeroCheck)};
1903
1904
// @llvm.dbg doesn't count as they have no semantic effect.
1905
auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug();
1906
uint32_t HeaderSize =
1907
std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end());
1908
1909
IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args);
1910
InstructionCost Cost = TTI->getIntrinsicInstrCost(
1911
Attrs, TargetTransformInfo::TCK_SizeAndLatency);
1912
if (HeaderSize != CanonicalSize && Cost > TargetTransformInfo::TCC_Basic)
1913
return false;
1914
1915
return true;
1916
}
1917
1918
/// Convert CTLZ / CTTZ idiom loop into countable loop.
1919
/// If CTLZ / CTTZ inserted as a new trip count returns true; otherwise,
1920
/// returns false.
1921
bool LoopIdiomRecognize::insertFFSIfProfitable(Intrinsic::ID IntrinID,
1922
Value *InitX, Instruction *DefX,
1923
PHINode *CntPhi,
1924
Instruction *CntInst) {
1925
bool IsCntPhiUsedOutsideLoop = false;
1926
for (User *U : CntPhi->users())
1927
if (!CurLoop->contains(cast<Instruction>(U))) {
1928
IsCntPhiUsedOutsideLoop = true;
1929
break;
1930
}
1931
bool IsCntInstUsedOutsideLoop = false;
1932
for (User *U : CntInst->users())
1933
if (!CurLoop->contains(cast<Instruction>(U))) {
1934
IsCntInstUsedOutsideLoop = true;
1935
break;
1936
}
1937
// If both CntInst and CntPhi are used outside the loop the profitability
1938
// is questionable.
1939
if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
1940
return false;
1941
1942
// For some CPUs result of CTLZ(X) intrinsic is undefined
1943
// when X is 0. If we can not guarantee X != 0, we need to check this
1944
// when expand.
1945
bool ZeroCheck = false;
1946
// It is safe to assume Preheader exist as it was checked in
1947
// parent function RunOnLoop.
1948
BasicBlock *PH = CurLoop->getLoopPreheader();
1949
1950
// If we are using the count instruction outside the loop, make sure we
1951
// have a zero check as a precondition. Without the check the loop would run
1952
// one iteration for before any check of the input value. This means 0 and 1
1953
// would have identical behavior in the original loop and thus
1954
if (!IsCntPhiUsedOutsideLoop) {
1955
auto *PreCondBB = PH->getSinglePredecessor();
1956
if (!PreCondBB)
1957
return false;
1958
auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1959
if (!PreCondBI)
1960
return false;
1961
if (matchCondition(PreCondBI, PH) != InitX)
1962
return false;
1963
ZeroCheck = true;
1964
}
1965
1966
// FFS idiom loop has only 6 instructions:
1967
// %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
1968
// %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
1969
// %shr = ashr %n.addr.0, 1
1970
// %tobool = icmp eq %shr, 0
1971
// %inc = add nsw %i.0, 1
1972
// br i1 %tobool
1973
size_t IdiomCanonicalSize = 6;
1974
if (!isProfitableToInsertFFS(IntrinID, InitX, ZeroCheck, IdiomCanonicalSize))
1975
return false;
1976
1977
transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
1978
DefX->getDebugLoc(), ZeroCheck,
1979
IsCntPhiUsedOutsideLoop);
1980
return true;
1981
}
1982
1983
/// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
1984
/// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
1985
/// trip count returns true; otherwise, returns false.
1986
bool LoopIdiomRecognize::recognizeAndInsertFFS() {
1987
// Give up if the loop has multiple blocks or multiple backedges.
1988
if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1989
return false;
1990
1991
Intrinsic::ID IntrinID;
1992
Value *InitX;
1993
Instruction *DefX = nullptr;
1994
PHINode *CntPhi = nullptr;
1995
Instruction *CntInst = nullptr;
1996
1997
if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX, CntInst, CntPhi,
1998
DefX))
1999
return false;
2000
2001
return insertFFSIfProfitable(IntrinID, InitX, DefX, CntPhi, CntInst);
2002
}
2003
2004
bool LoopIdiomRecognize::recognizeShiftUntilLessThan() {
2005
// Give up if the loop has multiple blocks or multiple backedges.
2006
if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
2007
return false;
2008
2009
Intrinsic::ID IntrinID;
2010
Value *InitX;
2011
Instruction *DefX = nullptr;
2012
PHINode *CntPhi = nullptr;
2013
Instruction *CntInst = nullptr;
2014
2015
APInt LoopThreshold;
2016
if (!detectShiftUntilLessThanIdiom(CurLoop, *DL, IntrinID, InitX, CntInst,
2017
CntPhi, DefX, LoopThreshold))
2018
return false;
2019
2020
if (LoopThreshold == 2) {
2021
// Treat as regular FFS.
2022
return insertFFSIfProfitable(IntrinID, InitX, DefX, CntPhi, CntInst);
2023
}
2024
2025
// Look for Floor Log2 Idiom.
2026
if (LoopThreshold != 4)
2027
return false;
2028
2029
// Abort if CntPhi is used outside of the loop.
2030
for (User *U : CntPhi->users())
2031
if (!CurLoop->contains(cast<Instruction>(U)))
2032
return false;
2033
2034
// It is safe to assume Preheader exist as it was checked in
2035
// parent function RunOnLoop.
2036
BasicBlock *PH = CurLoop->getLoopPreheader();
2037
auto *PreCondBB = PH->getSinglePredecessor();
2038
if (!PreCondBB)
2039
return false;
2040
auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
2041
if (!PreCondBI)
2042
return false;
2043
2044
APInt PreLoopThreshold;
2045
if (matchShiftULTCondition(PreCondBI, PH, PreLoopThreshold) != InitX ||
2046
PreLoopThreshold != 2)
2047
return false;
2048
2049
bool ZeroCheck = true;
2050
2051
// the loop has only 6 instructions:
2052
// %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
2053
// %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
2054
// %shr = ashr %n.addr.0, 1
2055
// %tobool = icmp ult %n.addr.0, C
2056
// %inc = add nsw %i.0, 1
2057
// br i1 %tobool
2058
size_t IdiomCanonicalSize = 6;
2059
if (!isProfitableToInsertFFS(IntrinID, InitX, ZeroCheck, IdiomCanonicalSize))
2060
return false;
2061
2062
// log2(x) = w − 1 − clz(x)
2063
transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
2064
DefX->getDebugLoc(), ZeroCheck,
2065
/*IsCntPhiUsedOutsideLoop=*/false,
2066
/*InsertSub=*/true);
2067
return true;
2068
}
2069
2070
/// Recognizes a population count idiom in a non-countable loop.
2071
///
2072
/// If detected, transforms the relevant code to issue the popcount intrinsic
2073
/// function call, and returns true; otherwise, returns false.
2074
bool LoopIdiomRecognize::recognizePopcount() {
2075
if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
2076
return false;
2077
2078
// Counting population are usually conducted by few arithmetic instructions.
2079
// Such instructions can be easily "absorbed" by vacant slots in a
2080
// non-compact loop. Therefore, recognizing popcount idiom only makes sense
2081
// in a compact loop.
2082
2083
// Give up if the loop has multiple blocks or multiple backedges.
2084
if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
2085
return false;
2086
2087
BasicBlock *LoopBody = *(CurLoop->block_begin());
2088
if (LoopBody->size() >= 20) {
2089
// The loop is too big, bail out.
2090
return false;
2091
}
2092
2093
// It should have a preheader containing nothing but an unconditional branch.
2094
BasicBlock *PH = CurLoop->getLoopPreheader();
2095
if (!PH || &PH->front() != PH->getTerminator())
2096
return false;
2097
auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
2098
if (!EntryBI || EntryBI->isConditional())
2099
return false;
2100
2101
// It should have a precondition block where the generated popcount intrinsic
2102
// function can be inserted.
2103
auto *PreCondBB = PH->getSinglePredecessor();
2104
if (!PreCondBB)
2105
return false;
2106
auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
2107
if (!PreCondBI || PreCondBI->isUnconditional())
2108
return false;
2109
2110
Instruction *CntInst;
2111
PHINode *CntPhi;
2112
Value *Val;
2113
if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
2114
return false;
2115
2116
transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
2117
return true;
2118
}
2119
2120
static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
2121
const DebugLoc &DL) {
2122
Value *Ops[] = {Val};
2123
Type *Tys[] = {Val->getType()};
2124
2125
Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
2126
Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
2127
CallInst *CI = IRBuilder.CreateCall(Func, Ops);
2128
CI->setDebugLoc(DL);
2129
2130
return CI;
2131
}
2132
2133
static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
2134
const DebugLoc &DL, bool ZeroCheck,
2135
Intrinsic::ID IID) {
2136
Value *Ops[] = {Val, IRBuilder.getInt1(ZeroCheck)};
2137
Type *Tys[] = {Val->getType()};
2138
2139
Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
2140
Function *Func = Intrinsic::getDeclaration(M, IID, Tys);
2141
CallInst *CI = IRBuilder.CreateCall(Func, Ops);
2142
CI->setDebugLoc(DL);
2143
2144
return CI;
2145
}
2146
2147
/// Transform the following loop (Using CTLZ, CTTZ is similar):
2148
/// loop:
2149
/// CntPhi = PHI [Cnt0, CntInst]
2150
/// PhiX = PHI [InitX, DefX]
2151
/// CntInst = CntPhi + 1
2152
/// DefX = PhiX >> 1
2153
/// LOOP_BODY
2154
/// Br: loop if (DefX != 0)
2155
/// Use(CntPhi) or Use(CntInst)
2156
///
2157
/// Into:
2158
/// If CntPhi used outside the loop:
2159
/// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
2160
/// Count = CountPrev + 1
2161
/// else
2162
/// Count = BitWidth(InitX) - CTLZ(InitX)
2163
/// loop:
2164
/// CntPhi = PHI [Cnt0, CntInst]
2165
/// PhiX = PHI [InitX, DefX]
2166
/// PhiCount = PHI [Count, Dec]
2167
/// CntInst = CntPhi + 1
2168
/// DefX = PhiX >> 1
2169
/// Dec = PhiCount - 1
2170
/// LOOP_BODY
2171
/// Br: loop if (Dec != 0)
2172
/// Use(CountPrev + Cnt0) // Use(CntPhi)
2173
/// or
2174
/// Use(Count + Cnt0) // Use(CntInst)
2175
///
2176
/// If LOOP_BODY is empty the loop will be deleted.
2177
/// If CntInst and DefX are not used in LOOP_BODY they will be removed.
2178
void LoopIdiomRecognize::transformLoopToCountable(
2179
Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst,
2180
PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL,
2181
bool ZeroCheck, bool IsCntPhiUsedOutsideLoop, bool InsertSub) {
2182
BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
2183
2184
// Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
2185
IRBuilder<> Builder(PreheaderBr);
2186
Builder.SetCurrentDebugLocation(DL);
2187
2188
// If there are no uses of CntPhi crate:
2189
// Count = BitWidth - CTLZ(InitX);
2190
// NewCount = Count;
2191
// If there are uses of CntPhi create:
2192
// NewCount = BitWidth - CTLZ(InitX >> 1);
2193
// Count = NewCount + 1;
2194
Value *InitXNext;
2195
if (IsCntPhiUsedOutsideLoop) {
2196
if (DefX->getOpcode() == Instruction::AShr)
2197
InitXNext = Builder.CreateAShr(InitX, 1);
2198
else if (DefX->getOpcode() == Instruction::LShr)
2199
InitXNext = Builder.CreateLShr(InitX, 1);
2200
else if (DefX->getOpcode() == Instruction::Shl) // cttz
2201
InitXNext = Builder.CreateShl(InitX, 1);
2202
else
2203
llvm_unreachable("Unexpected opcode!");
2204
} else
2205
InitXNext = InitX;
2206
Value *Count =
2207
createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID);
2208
Type *CountTy = Count->getType();
2209
Count = Builder.CreateSub(
2210
ConstantInt::get(CountTy, CountTy->getIntegerBitWidth()), Count);
2211
if (InsertSub)
2212
Count = Builder.CreateSub(Count, ConstantInt::get(CountTy, 1));
2213
Value *NewCount = Count;
2214
if (IsCntPhiUsedOutsideLoop)
2215
Count = Builder.CreateAdd(Count, ConstantInt::get(CountTy, 1));
2216
2217
NewCount = Builder.CreateZExtOrTrunc(NewCount, CntInst->getType());
2218
2219
Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
2220
if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) {
2221
// If the counter was being incremented in the loop, add NewCount to the
2222
// counter's initial value, but only if the initial value is not zero.
2223
ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
2224
if (!InitConst || !InitConst->isZero())
2225
NewCount = Builder.CreateAdd(NewCount, CntInitVal);
2226
} else {
2227
// If the count was being decremented in the loop, subtract NewCount from
2228
// the counter's initial value.
2229
NewCount = Builder.CreateSub(CntInitVal, NewCount);
2230
}
2231
2232
// Step 2: Insert new IV and loop condition:
2233
// loop:
2234
// ...
2235
// PhiCount = PHI [Count, Dec]
2236
// ...
2237
// Dec = PhiCount - 1
2238
// ...
2239
// Br: loop if (Dec != 0)
2240
BasicBlock *Body = *(CurLoop->block_begin());
2241
auto *LbBr = cast<BranchInst>(Body->getTerminator());
2242
ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
2243
2244
PHINode *TcPhi = PHINode::Create(CountTy, 2, "tcphi");
2245
TcPhi->insertBefore(Body->begin());
2246
2247
Builder.SetInsertPoint(LbCond);
2248
Instruction *TcDec = cast<Instruction>(Builder.CreateSub(
2249
TcPhi, ConstantInt::get(CountTy, 1), "tcdec", false, true));
2250
2251
TcPhi->addIncoming(Count, Preheader);
2252
TcPhi->addIncoming(TcDec, Body);
2253
2254
CmpInst::Predicate Pred =
2255
(LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
2256
LbCond->setPredicate(Pred);
2257
LbCond->setOperand(0, TcDec);
2258
LbCond->setOperand(1, ConstantInt::get(CountTy, 0));
2259
2260
// Step 3: All the references to the original counter outside
2261
// the loop are replaced with the NewCount
2262
if (IsCntPhiUsedOutsideLoop)
2263
CntPhi->replaceUsesOutsideBlock(NewCount, Body);
2264
else
2265
CntInst->replaceUsesOutsideBlock(NewCount, Body);
2266
2267
// step 4: Forget the "non-computable" trip-count SCEV associated with the
2268
// loop. The loop would otherwise not be deleted even if it becomes empty.
2269
SE->forgetLoop(CurLoop);
2270
}
2271
2272
void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
2273
Instruction *CntInst,
2274
PHINode *CntPhi, Value *Var) {
2275
BasicBlock *PreHead = CurLoop->getLoopPreheader();
2276
auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
2277
const DebugLoc &DL = CntInst->getDebugLoc();
2278
2279
// Assuming before transformation, the loop is following:
2280
// if (x) // the precondition
2281
// do { cnt++; x &= x - 1; } while(x);
2282
2283
// Step 1: Insert the ctpop instruction at the end of the precondition block
2284
IRBuilder<> Builder(PreCondBr);
2285
Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
2286
{
2287
PopCnt = createPopcntIntrinsic(Builder, Var, DL);
2288
NewCount = PopCntZext =
2289
Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
2290
2291
if (NewCount != PopCnt)
2292
(cast<Instruction>(NewCount))->setDebugLoc(DL);
2293
2294
// TripCnt is exactly the number of iterations the loop has
2295
TripCnt = NewCount;
2296
2297
// If the population counter's initial value is not zero, insert Add Inst.
2298
Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
2299
ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
2300
if (!InitConst || !InitConst->isZero()) {
2301
NewCount = Builder.CreateAdd(NewCount, CntInitVal);
2302
(cast<Instruction>(NewCount))->setDebugLoc(DL);
2303
}
2304
}
2305
2306
// Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
2307
// "if (NewCount == 0) loop-exit". Without this change, the intrinsic
2308
// function would be partial dead code, and downstream passes will drag
2309
// it back from the precondition block to the preheader.
2310
{
2311
ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
2312
2313
Value *Opnd0 = PopCntZext;
2314
Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
2315
if (PreCond->getOperand(0) != Var)
2316
std::swap(Opnd0, Opnd1);
2317
2318
ICmpInst *NewPreCond = cast<ICmpInst>(
2319
Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
2320
PreCondBr->setCondition(NewPreCond);
2321
2322
RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
2323
}
2324
2325
// Step 3: Note that the population count is exactly the trip count of the
2326
// loop in question, which enable us to convert the loop from noncountable
2327
// loop into a countable one. The benefit is twofold:
2328
//
2329
// - If the loop only counts population, the entire loop becomes dead after
2330
// the transformation. It is a lot easier to prove a countable loop dead
2331
// than to prove a noncountable one. (In some C dialects, an infinite loop
2332
// isn't dead even if it computes nothing useful. In general, DCE needs
2333
// to prove a noncountable loop finite before safely delete it.)
2334
//
2335
// - If the loop also performs something else, it remains alive.
2336
// Since it is transformed to countable form, it can be aggressively
2337
// optimized by some optimizations which are in general not applicable
2338
// to a noncountable loop.
2339
//
2340
// After this step, this loop (conceptually) would look like following:
2341
// newcnt = __builtin_ctpop(x);
2342
// t = newcnt;
2343
// if (x)
2344
// do { cnt++; x &= x-1; t--) } while (t > 0);
2345
BasicBlock *Body = *(CurLoop->block_begin());
2346
{
2347
auto *LbBr = cast<BranchInst>(Body->getTerminator());
2348
ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
2349
Type *Ty = TripCnt->getType();
2350
2351
PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi");
2352
TcPhi->insertBefore(Body->begin());
2353
2354
Builder.SetInsertPoint(LbCond);
2355
Instruction *TcDec = cast<Instruction>(
2356
Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
2357
"tcdec", false, true));
2358
2359
TcPhi->addIncoming(TripCnt, PreHead);
2360
TcPhi->addIncoming(TcDec, Body);
2361
2362
CmpInst::Predicate Pred =
2363
(LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
2364
LbCond->setPredicate(Pred);
2365
LbCond->setOperand(0, TcDec);
2366
LbCond->setOperand(1, ConstantInt::get(Ty, 0));
2367
}
2368
2369
// Step 4: All the references to the original population counter outside
2370
// the loop are replaced with the NewCount -- the value returned from
2371
// __builtin_ctpop().
2372
CntInst->replaceUsesOutsideBlock(NewCount, Body);
2373
2374
// step 5: Forget the "non-computable" trip-count SCEV associated with the
2375
// loop. The loop would otherwise not be deleted even if it becomes empty.
2376
SE->forgetLoop(CurLoop);
2377
}
2378
2379
/// Match loop-invariant value.
2380
template <typename SubPattern_t> struct match_LoopInvariant {
2381
SubPattern_t SubPattern;
2382
const Loop *L;
2383
2384
match_LoopInvariant(const SubPattern_t &SP, const Loop *L)
2385
: SubPattern(SP), L(L) {}
2386
2387
template <typename ITy> bool match(ITy *V) {
2388
return L->isLoopInvariant(V) && SubPattern.match(V);
2389
}
2390
};
2391
2392
/// Matches if the value is loop-invariant.
2393
template <typename Ty>
2394
inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) {
2395
return match_LoopInvariant<Ty>(M, L);
2396
}
2397
2398
/// Return true if the idiom is detected in the loop.
2399
///
2400
/// The core idiom we are trying to detect is:
2401
/// \code
2402
/// entry:
2403
/// <...>
2404
/// %bitmask = shl i32 1, %bitpos
2405
/// br label %loop
2406
///
2407
/// loop:
2408
/// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
2409
/// %x.curr.bitmasked = and i32 %x.curr, %bitmask
2410
/// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
2411
/// %x.next = shl i32 %x.curr, 1
2412
/// <...>
2413
/// br i1 %x.curr.isbitunset, label %loop, label %end
2414
///
2415
/// end:
2416
/// %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2417
/// %x.next.res = phi i32 [ %x.next, %loop ] <...>
2418
/// <...>
2419
/// \endcode
2420
static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX,
2421
Value *&BitMask, Value *&BitPos,
2422
Value *&CurrX, Instruction *&NextX) {
2423
LLVM_DEBUG(dbgs() << DEBUG_TYPE
2424
" Performing shift-until-bittest idiom detection.\n");
2425
2426
// Give up if the loop has multiple blocks or multiple backedges.
2427
if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) {
2428
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n");
2429
return false;
2430
}
2431
2432
BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2433
BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2434
assert(LoopPreheaderBB && "There is always a loop preheader.");
2435
2436
using namespace PatternMatch;
2437
2438
// Step 1: Check if the loop backedge is in desirable form.
2439
2440
ICmpInst::Predicate Pred;
2441
Value *CmpLHS, *CmpRHS;
2442
BasicBlock *TrueBB, *FalseBB;
2443
if (!match(LoopHeaderBB->getTerminator(),
2444
m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)),
2445
m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) {
2446
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n");
2447
return false;
2448
}
2449
2450
// Step 2: Check if the backedge's condition is in desirable form.
2451
2452
auto MatchVariableBitMask = [&]() {
2453
return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
2454
match(CmpLHS,
2455
m_c_And(m_Value(CurrX),
2456
m_CombineAnd(
2457
m_Value(BitMask),
2458
m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)),
2459
CurLoop))));
2460
};
2461
auto MatchConstantBitMask = [&]() {
2462
return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
2463
match(CmpLHS, m_And(m_Value(CurrX),
2464
m_CombineAnd(m_Value(BitMask), m_Power2()))) &&
2465
(BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask)));
2466
};
2467
auto MatchDecomposableConstantBitMask = [&]() {
2468
APInt Mask;
2469
return llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CurrX, Mask) &&
2470
ICmpInst::isEquality(Pred) && Mask.isPowerOf2() &&
2471
(BitMask = ConstantInt::get(CurrX->getType(), Mask)) &&
2472
(BitPos = ConstantInt::get(CurrX->getType(), Mask.logBase2()));
2473
};
2474
2475
if (!MatchVariableBitMask() && !MatchConstantBitMask() &&
2476
!MatchDecomposableConstantBitMask()) {
2477
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n");
2478
return false;
2479
}
2480
2481
// Step 3: Check if the recurrence is in desirable form.
2482
auto *CurrXPN = dyn_cast<PHINode>(CurrX);
2483
if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) {
2484
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n");
2485
return false;
2486
}
2487
2488
BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB);
2489
NextX =
2490
dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB));
2491
2492
assert(CurLoop->isLoopInvariant(BaseX) &&
2493
"Expected BaseX to be avaliable in the preheader!");
2494
2495
if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) {
2496
// FIXME: support right-shift?
2497
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n");
2498
return false;
2499
}
2500
2501
// Step 4: Check if the backedge's destinations are in desirable form.
2502
2503
assert(ICmpInst::isEquality(Pred) &&
2504
"Should only get equality predicates here.");
2505
2506
// cmp-br is commutative, so canonicalize to a single variant.
2507
if (Pred != ICmpInst::Predicate::ICMP_EQ) {
2508
Pred = ICmpInst::getInversePredicate(Pred);
2509
std::swap(TrueBB, FalseBB);
2510
}
2511
2512
// We expect to exit loop when comparison yields false,
2513
// so when it yields true we should branch back to loop header.
2514
if (TrueBB != LoopHeaderBB) {
2515
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n");
2516
return false;
2517
}
2518
2519
// Okay, idiom checks out.
2520
return true;
2521
}
2522
2523
/// Look for the following loop:
2524
/// \code
2525
/// entry:
2526
/// <...>
2527
/// %bitmask = shl i32 1, %bitpos
2528
/// br label %loop
2529
///
2530
/// loop:
2531
/// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
2532
/// %x.curr.bitmasked = and i32 %x.curr, %bitmask
2533
/// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
2534
/// %x.next = shl i32 %x.curr, 1
2535
/// <...>
2536
/// br i1 %x.curr.isbitunset, label %loop, label %end
2537
///
2538
/// end:
2539
/// %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2540
/// %x.next.res = phi i32 [ %x.next, %loop ] <...>
2541
/// <...>
2542
/// \endcode
2543
///
2544
/// And transform it into:
2545
/// \code
2546
/// entry:
2547
/// %bitmask = shl i32 1, %bitpos
2548
/// %lowbitmask = add i32 %bitmask, -1
2549
/// %mask = or i32 %lowbitmask, %bitmask
2550
/// %x.masked = and i32 %x, %mask
2551
/// %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked,
2552
/// i1 true)
2553
/// %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros
2554
/// %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1
2555
/// %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos
2556
/// %tripcount = add i32 %backedgetakencount, 1
2557
/// %x.curr = shl i32 %x, %backedgetakencount
2558
/// %x.next = shl i32 %x, %tripcount
2559
/// br label %loop
2560
///
2561
/// loop:
2562
/// %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ]
2563
/// %loop.iv.next = add nuw i32 %loop.iv, 1
2564
/// %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount
2565
/// <...>
2566
/// br i1 %loop.ivcheck, label %end, label %loop
2567
///
2568
/// end:
2569
/// %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2570
/// %x.next.res = phi i32 [ %x.next, %loop ] <...>
2571
/// <...>
2572
/// \endcode
2573
bool LoopIdiomRecognize::recognizeShiftUntilBitTest() {
2574
bool MadeChange = false;
2575
2576
Value *X, *BitMask, *BitPos, *XCurr;
2577
Instruction *XNext;
2578
if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr,
2579
XNext)) {
2580
LLVM_DEBUG(dbgs() << DEBUG_TYPE
2581
" shift-until-bittest idiom detection failed.\n");
2582
return MadeChange;
2583
}
2584
LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n");
2585
2586
// Ok, it is the idiom we were looking for, we *could* transform this loop,
2587
// but is it profitable to transform?
2588
2589
BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2590
BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2591
assert(LoopPreheaderBB && "There is always a loop preheader.");
2592
2593
BasicBlock *SuccessorBB = CurLoop->getExitBlock();
2594
assert(SuccessorBB && "There is only a single successor.");
2595
2596
IRBuilder<> Builder(LoopPreheaderBB->getTerminator());
2597
Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc());
2598
2599
Intrinsic::ID IntrID = Intrinsic::ctlz;
2600
Type *Ty = X->getType();
2601
unsigned Bitwidth = Ty->getScalarSizeInBits();
2602
2603
TargetTransformInfo::TargetCostKind CostKind =
2604
TargetTransformInfo::TCK_SizeAndLatency;
2605
2606
// The rewrite is considered to be unprofitable iff and only iff the
2607
// intrinsic/shift we'll use are not cheap. Note that we are okay with *just*
2608
// making the loop countable, even if nothing else changes.
2609
IntrinsicCostAttributes Attrs(
2610
IntrID, Ty, {PoisonValue::get(Ty), /*is_zero_poison=*/Builder.getTrue()});
2611
InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind);
2612
if (Cost > TargetTransformInfo::TCC_Basic) {
2613
LLVM_DEBUG(dbgs() << DEBUG_TYPE
2614
" Intrinsic is too costly, not beneficial\n");
2615
return MadeChange;
2616
}
2617
if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) >
2618
TargetTransformInfo::TCC_Basic) {
2619
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n");
2620
return MadeChange;
2621
}
2622
2623
// Ok, transform appears worthwhile.
2624
MadeChange = true;
2625
2626
if (!isGuaranteedNotToBeUndefOrPoison(BitPos)) {
2627
// BitMask may be computed from BitPos, Freeze BitPos so we can increase
2628
// it's use count.
2629
std::optional<BasicBlock::iterator> InsertPt = std::nullopt;
2630
if (auto *BitPosI = dyn_cast<Instruction>(BitPos))
2631
InsertPt = BitPosI->getInsertionPointAfterDef();
2632
else
2633
InsertPt = DT->getRoot()->getFirstNonPHIOrDbgOrAlloca();
2634
if (!InsertPt)
2635
return false;
2636
FreezeInst *BitPosFrozen =
2637
new FreezeInst(BitPos, BitPos->getName() + ".fr", *InsertPt);
2638
BitPos->replaceUsesWithIf(BitPosFrozen, [BitPosFrozen](Use &U) {
2639
return U.getUser() != BitPosFrozen;
2640
});
2641
BitPos = BitPosFrozen;
2642
}
2643
2644
// Step 1: Compute the loop trip count.
2645
2646
Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty),
2647
BitPos->getName() + ".lowbitmask");
2648
Value *Mask =
2649
Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask");
2650
Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked");
2651
CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic(
2652
IntrID, Ty, {XMasked, /*is_zero_poison=*/Builder.getTrue()},
2653
/*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros");
2654
Value *XMaskedNumActiveBits = Builder.CreateSub(
2655
ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros,
2656
XMasked->getName() + ".numactivebits", /*HasNUW=*/true,
2657
/*HasNSW=*/Bitwidth != 2);
2658
Value *XMaskedLeadingOnePos =
2659
Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty),
2660
XMasked->getName() + ".leadingonepos", /*HasNUW=*/false,
2661
/*HasNSW=*/Bitwidth > 2);
2662
2663
Value *LoopBackedgeTakenCount = Builder.CreateSub(
2664
BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount",
2665
/*HasNUW=*/true, /*HasNSW=*/true);
2666
// We know loop's backedge-taken count, but what's loop's trip count?
2667
// Note that while NUW is always safe, while NSW is only for bitwidths != 2.
2668
Value *LoopTripCount =
2669
Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
2670
CurLoop->getName() + ".tripcount", /*HasNUW=*/true,
2671
/*HasNSW=*/Bitwidth != 2);
2672
2673
// Step 2: Compute the recurrence's final value without a loop.
2674
2675
// NewX is always safe to compute, because `LoopBackedgeTakenCount`
2676
// will always be smaller than `bitwidth(X)`, i.e. we never get poison.
2677
Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount);
2678
NewX->takeName(XCurr);
2679
if (auto *I = dyn_cast<Instruction>(NewX))
2680
I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
2681
2682
Value *NewXNext;
2683
// Rewriting XNext is more complicated, however, because `X << LoopTripCount`
2684
// will be poison iff `LoopTripCount == bitwidth(X)` (which will happen
2685
// iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know
2686
// that isn't the case, we'll need to emit an alternative, safe IR.
2687
if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() ||
2688
PatternMatch::match(
2689
BitPos, PatternMatch::m_SpecificInt_ICMP(
2690
ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(),
2691
Ty->getScalarSizeInBits() - 1))))
2692
NewXNext = Builder.CreateShl(X, LoopTripCount);
2693
else {
2694
// Otherwise, just additionally shift by one. It's the smallest solution,
2695
// alternatively, we could check that NewX is INT_MIN (or BitPos is )
2696
// and select 0 instead.
2697
NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1));
2698
}
2699
2700
NewXNext->takeName(XNext);
2701
if (auto *I = dyn_cast<Instruction>(NewXNext))
2702
I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
2703
2704
// Step 3: Adjust the successor basic block to recieve the computed
2705
// recurrence's final value instead of the recurrence itself.
2706
2707
XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB);
2708
XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB);
2709
2710
// Step 4: Rewrite the loop into a countable form, with canonical IV.
2711
2712
// The new canonical induction variable.
2713
Builder.SetInsertPoint(LoopHeaderBB, LoopHeaderBB->begin());
2714
auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv");
2715
2716
// The induction itself.
2717
// Note that while NUW is always safe, while NSW is only for bitwidths != 2.
2718
Builder.SetInsertPoint(LoopHeaderBB->getTerminator());
2719
auto *IVNext =
2720
Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next",
2721
/*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
2722
2723
// The loop trip count check.
2724
auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount,
2725
CurLoop->getName() + ".ivcheck");
2726
Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB);
2727
LoopHeaderBB->getTerminator()->eraseFromParent();
2728
2729
// Populate the IV PHI.
2730
IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
2731
IV->addIncoming(IVNext, LoopHeaderBB);
2732
2733
// Step 5: Forget the "non-computable" trip-count SCEV associated with the
2734
// loop. The loop would otherwise not be deleted even if it becomes empty.
2735
2736
SE->forgetLoop(CurLoop);
2737
2738
// Other passes will take care of actually deleting the loop if possible.
2739
2740
LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n");
2741
2742
++NumShiftUntilBitTest;
2743
return MadeChange;
2744
}
2745
2746
/// Return true if the idiom is detected in the loop.
2747
///
2748
/// The core idiom we are trying to detect is:
2749
/// \code
2750
/// entry:
2751
/// <...>
2752
/// %start = <...>
2753
/// %extraoffset = <...>
2754
/// <...>
2755
/// br label %for.cond
2756
///
2757
/// loop:
2758
/// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ]
2759
/// %nbits = add nsw i8 %iv, %extraoffset
2760
/// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits
2761
/// %val.shifted.iszero = icmp eq i8 %val.shifted, 0
2762
/// %iv.next = add i8 %iv, 1
2763
/// <...>
2764
/// br i1 %val.shifted.iszero, label %end, label %loop
2765
///
2766
/// end:
2767
/// %iv.res = phi i8 [ %iv, %loop ] <...>
2768
/// %nbits.res = phi i8 [ %nbits, %loop ] <...>
2769
/// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...>
2770
/// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...>
2771
/// %iv.next.res = phi i8 [ %iv.next, %loop ] <...>
2772
/// <...>
2773
/// \endcode
2774
static bool detectShiftUntilZeroIdiom(Loop *CurLoop, ScalarEvolution *SE,
2775
Instruction *&ValShiftedIsZero,
2776
Intrinsic::ID &IntrinID, Instruction *&IV,
2777
Value *&Start, Value *&Val,
2778
const SCEV *&ExtraOffsetExpr,
2779
bool &InvertedCond) {
2780
LLVM_DEBUG(dbgs() << DEBUG_TYPE
2781
" Performing shift-until-zero idiom detection.\n");
2782
2783
// Give up if the loop has multiple blocks or multiple backedges.
2784
if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) {
2785
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n");
2786
return false;
2787
}
2788
2789
Instruction *ValShifted, *NBits, *IVNext;
2790
Value *ExtraOffset;
2791
2792
BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2793
BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2794
assert(LoopPreheaderBB && "There is always a loop preheader.");
2795
2796
using namespace PatternMatch;
2797
2798
// Step 1: Check if the loop backedge, condition is in desirable form.
2799
2800
ICmpInst::Predicate Pred;
2801
BasicBlock *TrueBB, *FalseBB;
2802
if (!match(LoopHeaderBB->getTerminator(),
2803
m_Br(m_Instruction(ValShiftedIsZero), m_BasicBlock(TrueBB),
2804
m_BasicBlock(FalseBB))) ||
2805
!match(ValShiftedIsZero,
2806
m_ICmp(Pred, m_Instruction(ValShifted), m_Zero())) ||
2807
!ICmpInst::isEquality(Pred)) {
2808
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n");
2809
return false;
2810
}
2811
2812
// Step 2: Check if the comparison's operand is in desirable form.
2813
// FIXME: Val could be a one-input PHI node, which we should look past.
2814
if (!match(ValShifted, m_Shift(m_LoopInvariant(m_Value(Val), CurLoop),
2815
m_Instruction(NBits)))) {
2816
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad comparisons value computation.\n");
2817
return false;
2818
}
2819
IntrinID = ValShifted->getOpcode() == Instruction::Shl ? Intrinsic::cttz
2820
: Intrinsic::ctlz;
2821
2822
// Step 3: Check if the shift amount is in desirable form.
2823
2824
if (match(NBits, m_c_Add(m_Instruction(IV),
2825
m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) &&
2826
(NBits->hasNoSignedWrap() || NBits->hasNoUnsignedWrap()))
2827
ExtraOffsetExpr = SE->getNegativeSCEV(SE->getSCEV(ExtraOffset));
2828
else if (match(NBits,
2829
m_Sub(m_Instruction(IV),
2830
m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) &&
2831
NBits->hasNoSignedWrap())
2832
ExtraOffsetExpr = SE->getSCEV(ExtraOffset);
2833
else {
2834
IV = NBits;
2835
ExtraOffsetExpr = SE->getZero(NBits->getType());
2836
}
2837
2838
// Step 4: Check if the recurrence is in desirable form.
2839
auto *IVPN = dyn_cast<PHINode>(IV);
2840
if (!IVPN || IVPN->getParent() != LoopHeaderBB) {
2841
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n");
2842
return false;
2843
}
2844
2845
Start = IVPN->getIncomingValueForBlock(LoopPreheaderBB);
2846
IVNext = dyn_cast<Instruction>(IVPN->getIncomingValueForBlock(LoopHeaderBB));
2847
2848
if (!IVNext || !match(IVNext, m_Add(m_Specific(IVPN), m_One()))) {
2849
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n");
2850
return false;
2851
}
2852
2853
// Step 4: Check if the backedge's destinations are in desirable form.
2854
2855
assert(ICmpInst::isEquality(Pred) &&
2856
"Should only get equality predicates here.");
2857
2858
// cmp-br is commutative, so canonicalize to a single variant.
2859
InvertedCond = Pred != ICmpInst::Predicate::ICMP_EQ;
2860
if (InvertedCond) {
2861
Pred = ICmpInst::getInversePredicate(Pred);
2862
std::swap(TrueBB, FalseBB);
2863
}
2864
2865
// We expect to exit loop when comparison yields true,
2866
// so when it yields false we should branch back to loop header.
2867
if (FalseBB != LoopHeaderBB) {
2868
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n");
2869
return false;
2870
}
2871
2872
// The new, countable, loop will certainly only run a known number of
2873
// iterations, It won't be infinite. But the old loop might be infinite
2874
// under certain conditions. For logical shifts, the value will become zero
2875
// after at most bitwidth(%Val) loop iterations. However, for arithmetic
2876
// right-shift, iff the sign bit was set, the value will never become zero,
2877
// and the loop may never finish.
2878
if (ValShifted->getOpcode() == Instruction::AShr &&
2879
!isMustProgress(CurLoop) && !SE->isKnownNonNegative(SE->getSCEV(Val))) {
2880
LLVM_DEBUG(dbgs() << DEBUG_TYPE " Can not prove the loop is finite.\n");
2881
return false;
2882
}
2883
2884
// Okay, idiom checks out.
2885
return true;
2886
}
2887
2888
/// Look for the following loop:
2889
/// \code
2890
/// entry:
2891
/// <...>
2892
/// %start = <...>
2893
/// %extraoffset = <...>
2894
/// <...>
2895
/// br label %for.cond
2896
///
2897
/// loop:
2898
/// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ]
2899
/// %nbits = add nsw i8 %iv, %extraoffset
2900
/// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits
2901
/// %val.shifted.iszero = icmp eq i8 %val.shifted, 0
2902
/// %iv.next = add i8 %iv, 1
2903
/// <...>
2904
/// br i1 %val.shifted.iszero, label %end, label %loop
2905
///
2906
/// end:
2907
/// %iv.res = phi i8 [ %iv, %loop ] <...>
2908
/// %nbits.res = phi i8 [ %nbits, %loop ] <...>
2909
/// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...>
2910
/// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...>
2911
/// %iv.next.res = phi i8 [ %iv.next, %loop ] <...>
2912
/// <...>
2913
/// \endcode
2914
///
2915
/// And transform it into:
2916
/// \code
2917
/// entry:
2918
/// <...>
2919
/// %start = <...>
2920
/// %extraoffset = <...>
2921
/// <...>
2922
/// %val.numleadingzeros = call i8 @llvm.ct{l,t}z.i8(i8 %val, i1 0)
2923
/// %val.numactivebits = sub i8 8, %val.numleadingzeros
2924
/// %extraoffset.neg = sub i8 0, %extraoffset
2925
/// %tmp = add i8 %val.numactivebits, %extraoffset.neg
2926
/// %iv.final = call i8 @llvm.smax.i8(i8 %tmp, i8 %start)
2927
/// %loop.tripcount = sub i8 %iv.final, %start
2928
/// br label %loop
2929
///
2930
/// loop:
2931
/// %loop.iv = phi i8 [ 0, %entry ], [ %loop.iv.next, %loop ]
2932
/// %loop.iv.next = add i8 %loop.iv, 1
2933
/// %loop.ivcheck = icmp eq i8 %loop.iv.next, %loop.tripcount
2934
/// %iv = add i8 %loop.iv, %start
2935
/// <...>
2936
/// br i1 %loop.ivcheck, label %end, label %loop
2937
///
2938
/// end:
2939
/// %iv.res = phi i8 [ %iv.final, %loop ] <...>
2940
/// <...>
2941
/// \endcode
2942
bool LoopIdiomRecognize::recognizeShiftUntilZero() {
2943
bool MadeChange = false;
2944
2945
Instruction *ValShiftedIsZero;
2946
Intrinsic::ID IntrID;
2947
Instruction *IV;
2948
Value *Start, *Val;
2949
const SCEV *ExtraOffsetExpr;
2950
bool InvertedCond;
2951
if (!detectShiftUntilZeroIdiom(CurLoop, SE, ValShiftedIsZero, IntrID, IV,
2952
Start, Val, ExtraOffsetExpr, InvertedCond)) {
2953
LLVM_DEBUG(dbgs() << DEBUG_TYPE
2954
" shift-until-zero idiom detection failed.\n");
2955
return MadeChange;
2956
}
2957
LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom detected!\n");
2958
2959
// Ok, it is the idiom we were looking for, we *could* transform this loop,
2960
// but is it profitable to transform?
2961
2962
BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2963
BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2964
assert(LoopPreheaderBB && "There is always a loop preheader.");
2965
2966
BasicBlock *SuccessorBB = CurLoop->getExitBlock();
2967
assert(SuccessorBB && "There is only a single successor.");
2968
2969
IRBuilder<> Builder(LoopPreheaderBB->getTerminator());
2970
Builder.SetCurrentDebugLocation(IV->getDebugLoc());
2971
2972
Type *Ty = Val->getType();
2973
unsigned Bitwidth = Ty->getScalarSizeInBits();
2974
2975
TargetTransformInfo::TargetCostKind CostKind =
2976
TargetTransformInfo::TCK_SizeAndLatency;
2977
2978
// The rewrite is considered to be unprofitable iff and only iff the
2979
// intrinsic we'll use are not cheap. Note that we are okay with *just*
2980
// making the loop countable, even if nothing else changes.
2981
IntrinsicCostAttributes Attrs(
2982
IntrID, Ty, {PoisonValue::get(Ty), /*is_zero_poison=*/Builder.getFalse()});
2983
InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind);
2984
if (Cost > TargetTransformInfo::TCC_Basic) {
2985
LLVM_DEBUG(dbgs() << DEBUG_TYPE
2986
" Intrinsic is too costly, not beneficial\n");
2987
return MadeChange;
2988
}
2989
2990
// Ok, transform appears worthwhile.
2991
MadeChange = true;
2992
2993
bool OffsetIsZero = false;
2994
if (auto *ExtraOffsetExprC = dyn_cast<SCEVConstant>(ExtraOffsetExpr))
2995
OffsetIsZero = ExtraOffsetExprC->isZero();
2996
2997
// Step 1: Compute the loop's final IV value / trip count.
2998
2999
CallInst *ValNumLeadingZeros = Builder.CreateIntrinsic(
3000
IntrID, Ty, {Val, /*is_zero_poison=*/Builder.getFalse()},
3001
/*FMFSource=*/nullptr, Val->getName() + ".numleadingzeros");
3002
Value *ValNumActiveBits = Builder.CreateSub(
3003
ConstantInt::get(Ty, Ty->getScalarSizeInBits()), ValNumLeadingZeros,
3004
Val->getName() + ".numactivebits", /*HasNUW=*/true,
3005
/*HasNSW=*/Bitwidth != 2);
3006
3007
SCEVExpander Expander(*SE, *DL, "loop-idiom");
3008
Expander.setInsertPoint(&*Builder.GetInsertPoint());
3009
Value *ExtraOffset = Expander.expandCodeFor(ExtraOffsetExpr);
3010
3011
Value *ValNumActiveBitsOffset = Builder.CreateAdd(
3012
ValNumActiveBits, ExtraOffset, ValNumActiveBits->getName() + ".offset",
3013
/*HasNUW=*/OffsetIsZero, /*HasNSW=*/true);
3014
Value *IVFinal = Builder.CreateIntrinsic(Intrinsic::smax, {Ty},
3015
{ValNumActiveBitsOffset, Start},
3016
/*FMFSource=*/nullptr, "iv.final");
3017
3018
auto *LoopBackedgeTakenCount = cast<Instruction>(Builder.CreateSub(
3019
IVFinal, Start, CurLoop->getName() + ".backedgetakencount",
3020
/*HasNUW=*/OffsetIsZero, /*HasNSW=*/true));
3021
// FIXME: or when the offset was `add nuw`
3022
3023
// We know loop's backedge-taken count, but what's loop's trip count?
3024
Value *LoopTripCount =
3025
Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
3026
CurLoop->getName() + ".tripcount", /*HasNUW=*/true,
3027
/*HasNSW=*/Bitwidth != 2);
3028
3029
// Step 2: Adjust the successor basic block to recieve the original
3030
// induction variable's final value instead of the orig. IV itself.
3031
3032
IV->replaceUsesOutsideBlock(IVFinal, LoopHeaderBB);
3033
3034
// Step 3: Rewrite the loop into a countable form, with canonical IV.
3035
3036
// The new canonical induction variable.
3037
Builder.SetInsertPoint(LoopHeaderBB, LoopHeaderBB->begin());
3038
auto *CIV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv");
3039
3040
// The induction itself.
3041
Builder.SetInsertPoint(LoopHeaderBB, LoopHeaderBB->getFirstNonPHIIt());
3042
auto *CIVNext =
3043
Builder.CreateAdd(CIV, ConstantInt::get(Ty, 1), CIV->getName() + ".next",
3044
/*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
3045
3046
// The loop trip count check.
3047
auto *CIVCheck = Builder.CreateICmpEQ(CIVNext, LoopTripCount,
3048
CurLoop->getName() + ".ivcheck");
3049
auto *NewIVCheck = CIVCheck;
3050
if (InvertedCond) {
3051
NewIVCheck = Builder.CreateNot(CIVCheck);
3052
NewIVCheck->takeName(ValShiftedIsZero);
3053
}
3054
3055
// The original IV, but rebased to be an offset to the CIV.
3056
auto *IVDePHId = Builder.CreateAdd(CIV, Start, "", /*HasNUW=*/false,
3057
/*HasNSW=*/true); // FIXME: what about NUW?
3058
IVDePHId->takeName(IV);
3059
3060
// The loop terminator.
3061
Builder.SetInsertPoint(LoopHeaderBB->getTerminator());
3062
Builder.CreateCondBr(CIVCheck, SuccessorBB, LoopHeaderBB);
3063
LoopHeaderBB->getTerminator()->eraseFromParent();
3064
3065
// Populate the IV PHI.
3066
CIV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
3067
CIV->addIncoming(CIVNext, LoopHeaderBB);
3068
3069
// Step 4: Forget the "non-computable" trip-count SCEV associated with the
3070
// loop. The loop would otherwise not be deleted even if it becomes empty.
3071
3072
SE->forgetLoop(CurLoop);
3073
3074
// Step 5: Try to cleanup the loop's body somewhat.
3075
IV->replaceAllUsesWith(IVDePHId);
3076
IV->eraseFromParent();
3077
3078
ValShiftedIsZero->replaceAllUsesWith(NewIVCheck);
3079
ValShiftedIsZero->eraseFromParent();
3080
3081
// Other passes will take care of actually deleting the loop if possible.
3082
3083
LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom optimized!\n");
3084
3085
++NumShiftUntilZero;
3086
return MadeChange;
3087
}
3088
3089