Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopInterchange.cpp
35266 views
1
//===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This Pass handles loop interchange transform.
10
// This pass interchanges loops to provide a more cache-friendly memory access
11
// patterns.
12
//
13
//===----------------------------------------------------------------------===//
14
15
#include "llvm/Transforms/Scalar/LoopInterchange.h"
16
#include "llvm/ADT/STLExtras.h"
17
#include "llvm/ADT/SmallVector.h"
18
#include "llvm/ADT/Statistic.h"
19
#include "llvm/ADT/StringRef.h"
20
#include "llvm/Analysis/DependenceAnalysis.h"
21
#include "llvm/Analysis/LoopCacheAnalysis.h"
22
#include "llvm/Analysis/LoopInfo.h"
23
#include "llvm/Analysis/LoopNestAnalysis.h"
24
#include "llvm/Analysis/LoopPass.h"
25
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
26
#include "llvm/Analysis/ScalarEvolution.h"
27
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28
#include "llvm/IR/BasicBlock.h"
29
#include "llvm/IR/Constants.h"
30
#include "llvm/IR/DiagnosticInfo.h"
31
#include "llvm/IR/Dominators.h"
32
#include "llvm/IR/Function.h"
33
#include "llvm/IR/InstrTypes.h"
34
#include "llvm/IR/Instruction.h"
35
#include "llvm/IR/Instructions.h"
36
#include "llvm/IR/User.h"
37
#include "llvm/IR/Value.h"
38
#include "llvm/Support/Casting.h"
39
#include "llvm/Support/CommandLine.h"
40
#include "llvm/Support/Debug.h"
41
#include "llvm/Support/ErrorHandling.h"
42
#include "llvm/Support/raw_ostream.h"
43
#include "llvm/Transforms/Scalar/LoopPassManager.h"
44
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
45
#include "llvm/Transforms/Utils/LoopUtils.h"
46
#include <cassert>
47
#include <utility>
48
#include <vector>
49
50
using namespace llvm;
51
52
#define DEBUG_TYPE "loop-interchange"
53
54
STATISTIC(LoopsInterchanged, "Number of loops interchanged");
55
56
static cl::opt<int> LoopInterchangeCostThreshold(
57
"loop-interchange-threshold", cl::init(0), cl::Hidden,
58
cl::desc("Interchange if you gain more than this number"));
59
60
namespace {
61
62
using LoopVector = SmallVector<Loop *, 8>;
63
64
// TODO: Check if we can use a sparse matrix here.
65
using CharMatrix = std::vector<std::vector<char>>;
66
67
} // end anonymous namespace
68
69
// Maximum number of dependencies that can be handled in the dependency matrix.
70
static const unsigned MaxMemInstrCount = 100;
71
72
// Maximum loop depth supported.
73
static const unsigned MaxLoopNestDepth = 10;
74
75
#ifdef DUMP_DEP_MATRICIES
76
static void printDepMatrix(CharMatrix &DepMatrix) {
77
for (auto &Row : DepMatrix) {
78
for (auto D : Row)
79
LLVM_DEBUG(dbgs() << D << " ");
80
LLVM_DEBUG(dbgs() << "\n");
81
}
82
}
83
#endif
84
85
static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
86
Loop *L, DependenceInfo *DI,
87
ScalarEvolution *SE) {
88
using ValueVector = SmallVector<Value *, 16>;
89
90
ValueVector MemInstr;
91
92
// For each block.
93
for (BasicBlock *BB : L->blocks()) {
94
// Scan the BB and collect legal loads and stores.
95
for (Instruction &I : *BB) {
96
if (!isa<Instruction>(I))
97
return false;
98
if (auto *Ld = dyn_cast<LoadInst>(&I)) {
99
if (!Ld->isSimple())
100
return false;
101
MemInstr.push_back(&I);
102
} else if (auto *St = dyn_cast<StoreInst>(&I)) {
103
if (!St->isSimple())
104
return false;
105
MemInstr.push_back(&I);
106
}
107
}
108
}
109
110
LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
111
<< " Loads and Stores to analyze\n");
112
113
ValueVector::iterator I, IE, J, JE;
114
115
for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
116
for (J = I, JE = MemInstr.end(); J != JE; ++J) {
117
std::vector<char> Dep;
118
Instruction *Src = cast<Instruction>(*I);
119
Instruction *Dst = cast<Instruction>(*J);
120
// Ignore Input dependencies.
121
if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
122
continue;
123
// Track Output, Flow, and Anti dependencies.
124
if (auto D = DI->depends(Src, Dst, true)) {
125
assert(D->isOrdered() && "Expected an output, flow or anti dep.");
126
// If the direction vector is negative, normalize it to
127
// make it non-negative.
128
if (D->normalize(SE))
129
LLVM_DEBUG(dbgs() << "Negative dependence vector normalized.\n");
130
LLVM_DEBUG(StringRef DepType =
131
D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
132
dbgs() << "Found " << DepType
133
<< " dependency between Src and Dst\n"
134
<< " Src:" << *Src << "\n Dst:" << *Dst << '\n');
135
unsigned Levels = D->getLevels();
136
char Direction;
137
for (unsigned II = 1; II <= Levels; ++II) {
138
if (D->isScalar(II)) {
139
Direction = 'S';
140
Dep.push_back(Direction);
141
} else {
142
unsigned Dir = D->getDirection(II);
143
if (Dir == Dependence::DVEntry::LT ||
144
Dir == Dependence::DVEntry::LE)
145
Direction = '<';
146
else if (Dir == Dependence::DVEntry::GT ||
147
Dir == Dependence::DVEntry::GE)
148
Direction = '>';
149
else if (Dir == Dependence::DVEntry::EQ)
150
Direction = '=';
151
else
152
Direction = '*';
153
Dep.push_back(Direction);
154
}
155
}
156
while (Dep.size() != Level) {
157
Dep.push_back('I');
158
}
159
160
DepMatrix.push_back(Dep);
161
if (DepMatrix.size() > MaxMemInstrCount) {
162
LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
163
<< " dependencies inside loop\n");
164
return false;
165
}
166
}
167
}
168
}
169
170
return true;
171
}
172
173
// A loop is moved from index 'from' to an index 'to'. Update the Dependence
174
// matrix by exchanging the two columns.
175
static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
176
unsigned ToIndx) {
177
for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I)
178
std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]);
179
}
180
181
// After interchanging, check if the direction vector is valid.
182
// [Theorem] A permutation of the loops in a perfect nest is legal if and only
183
// if the direction matrix, after the same permutation is applied to its
184
// columns, has no ">" direction as the leftmost non-"=" direction in any row.
185
static bool isLexicographicallyPositive(std::vector<char> &DV) {
186
for (unsigned char Direction : DV) {
187
if (Direction == '<')
188
return true;
189
if (Direction == '>' || Direction == '*')
190
return false;
191
}
192
return true;
193
}
194
195
// Checks if it is legal to interchange 2 loops.
196
static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
197
unsigned InnerLoopId,
198
unsigned OuterLoopId) {
199
unsigned NumRows = DepMatrix.size();
200
std::vector<char> Cur;
201
// For each row check if it is valid to interchange.
202
for (unsigned Row = 0; Row < NumRows; ++Row) {
203
// Create temporary DepVector check its lexicographical order
204
// before and after swapping OuterLoop vs InnerLoop
205
Cur = DepMatrix[Row];
206
if (!isLexicographicallyPositive(Cur))
207
return false;
208
std::swap(Cur[InnerLoopId], Cur[OuterLoopId]);
209
if (!isLexicographicallyPositive(Cur))
210
return false;
211
}
212
return true;
213
}
214
215
static void populateWorklist(Loop &L, LoopVector &LoopList) {
216
LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
217
<< L.getHeader()->getParent()->getName() << " Loop: %"
218
<< L.getHeader()->getName() << '\n');
219
assert(LoopList.empty() && "LoopList should initially be empty!");
220
Loop *CurrentLoop = &L;
221
const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
222
while (!Vec->empty()) {
223
// The current loop has multiple subloops in it hence it is not tightly
224
// nested.
225
// Discard all loops above it added into Worklist.
226
if (Vec->size() != 1) {
227
LoopList = {};
228
return;
229
}
230
231
LoopList.push_back(CurrentLoop);
232
CurrentLoop = Vec->front();
233
Vec = &CurrentLoop->getSubLoops();
234
}
235
LoopList.push_back(CurrentLoop);
236
}
237
238
namespace {
239
240
/// LoopInterchangeLegality checks if it is legal to interchange the loop.
241
class LoopInterchangeLegality {
242
public:
243
LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
244
OptimizationRemarkEmitter *ORE)
245
: OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
246
247
/// Check if the loops can be interchanged.
248
bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
249
CharMatrix &DepMatrix);
250
251
/// Discover induction PHIs in the header of \p L. Induction
252
/// PHIs are added to \p Inductions.
253
bool findInductions(Loop *L, SmallVectorImpl<PHINode *> &Inductions);
254
255
/// Check if the loop structure is understood. We do not handle triangular
256
/// loops for now.
257
bool isLoopStructureUnderstood();
258
259
bool currentLimitations();
260
261
const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
262
return OuterInnerReductions;
263
}
264
265
const SmallVectorImpl<PHINode *> &getInnerLoopInductions() const {
266
return InnerLoopInductions;
267
}
268
269
private:
270
bool tightlyNested(Loop *Outer, Loop *Inner);
271
bool containsUnsafeInstructions(BasicBlock *BB);
272
273
/// Discover induction and reduction PHIs in the header of \p L. Induction
274
/// PHIs are added to \p Inductions, reductions are added to
275
/// OuterInnerReductions. When the outer loop is passed, the inner loop needs
276
/// to be passed as \p InnerLoop.
277
bool findInductionAndReductions(Loop *L,
278
SmallVector<PHINode *, 8> &Inductions,
279
Loop *InnerLoop);
280
281
Loop *OuterLoop;
282
Loop *InnerLoop;
283
284
ScalarEvolution *SE;
285
286
/// Interface to emit optimization remarks.
287
OptimizationRemarkEmitter *ORE;
288
289
/// Set of reduction PHIs taking part of a reduction across the inner and
290
/// outer loop.
291
SmallPtrSet<PHINode *, 4> OuterInnerReductions;
292
293
/// Set of inner loop induction PHIs
294
SmallVector<PHINode *, 8> InnerLoopInductions;
295
};
296
297
/// LoopInterchangeProfitability checks if it is profitable to interchange the
298
/// loop.
299
class LoopInterchangeProfitability {
300
public:
301
LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
302
OptimizationRemarkEmitter *ORE)
303
: OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
304
305
/// Check if the loop interchange is profitable.
306
bool isProfitable(const Loop *InnerLoop, const Loop *OuterLoop,
307
unsigned InnerLoopId, unsigned OuterLoopId,
308
CharMatrix &DepMatrix,
309
const DenseMap<const Loop *, unsigned> &CostMap,
310
std::unique_ptr<CacheCost> &CC);
311
312
private:
313
int getInstrOrderCost();
314
std::optional<bool> isProfitablePerLoopCacheAnalysis(
315
const DenseMap<const Loop *, unsigned> &CostMap,
316
std::unique_ptr<CacheCost> &CC);
317
std::optional<bool> isProfitablePerInstrOrderCost();
318
std::optional<bool> isProfitableForVectorization(unsigned InnerLoopId,
319
unsigned OuterLoopId,
320
CharMatrix &DepMatrix);
321
Loop *OuterLoop;
322
Loop *InnerLoop;
323
324
/// Scev analysis.
325
ScalarEvolution *SE;
326
327
/// Interface to emit optimization remarks.
328
OptimizationRemarkEmitter *ORE;
329
};
330
331
/// LoopInterchangeTransform interchanges the loop.
332
class LoopInterchangeTransform {
333
public:
334
LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
335
LoopInfo *LI, DominatorTree *DT,
336
const LoopInterchangeLegality &LIL)
337
: OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {}
338
339
/// Interchange OuterLoop and InnerLoop.
340
bool transform();
341
void restructureLoops(Loop *NewInner, Loop *NewOuter,
342
BasicBlock *OrigInnerPreHeader,
343
BasicBlock *OrigOuterPreHeader);
344
void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
345
346
private:
347
bool adjustLoopLinks();
348
bool adjustLoopBranches();
349
350
Loop *OuterLoop;
351
Loop *InnerLoop;
352
353
/// Scev analysis.
354
ScalarEvolution *SE;
355
356
LoopInfo *LI;
357
DominatorTree *DT;
358
359
const LoopInterchangeLegality &LIL;
360
};
361
362
struct LoopInterchange {
363
ScalarEvolution *SE = nullptr;
364
LoopInfo *LI = nullptr;
365
DependenceInfo *DI = nullptr;
366
DominatorTree *DT = nullptr;
367
std::unique_ptr<CacheCost> CC = nullptr;
368
369
/// Interface to emit optimization remarks.
370
OptimizationRemarkEmitter *ORE;
371
372
LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI,
373
DominatorTree *DT, std::unique_ptr<CacheCost> &CC,
374
OptimizationRemarkEmitter *ORE)
375
: SE(SE), LI(LI), DI(DI), DT(DT), CC(std::move(CC)), ORE(ORE) {}
376
377
bool run(Loop *L) {
378
if (L->getParentLoop())
379
return false;
380
SmallVector<Loop *, 8> LoopList;
381
populateWorklist(*L, LoopList);
382
return processLoopList(LoopList);
383
}
384
385
bool run(LoopNest &LN) {
386
SmallVector<Loop *, 8> LoopList(LN.getLoops().begin(), LN.getLoops().end());
387
for (unsigned I = 1; I < LoopList.size(); ++I)
388
if (LoopList[I]->getParentLoop() != LoopList[I - 1])
389
return false;
390
return processLoopList(LoopList);
391
}
392
393
bool isComputableLoopNest(ArrayRef<Loop *> LoopList) {
394
for (Loop *L : LoopList) {
395
const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
396
if (isa<SCEVCouldNotCompute>(ExitCountOuter)) {
397
LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
398
return false;
399
}
400
if (L->getNumBackEdges() != 1) {
401
LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
402
return false;
403
}
404
if (!L->getExitingBlock()) {
405
LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
406
return false;
407
}
408
}
409
return true;
410
}
411
412
unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) {
413
// TODO: Add a better heuristic to select the loop to be interchanged based
414
// on the dependence matrix. Currently we select the innermost loop.
415
return LoopList.size() - 1;
416
}
417
418
bool processLoopList(SmallVectorImpl<Loop *> &LoopList) {
419
bool Changed = false;
420
unsigned LoopNestDepth = LoopList.size();
421
if (LoopNestDepth < 2) {
422
LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
423
return false;
424
}
425
if (LoopNestDepth > MaxLoopNestDepth) {
426
LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
427
<< MaxLoopNestDepth << "\n");
428
return false;
429
}
430
if (!isComputableLoopNest(LoopList)) {
431
LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
432
return false;
433
}
434
435
LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
436
<< "\n");
437
438
CharMatrix DependencyMatrix;
439
Loop *OuterMostLoop = *(LoopList.begin());
440
if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
441
OuterMostLoop, DI, SE)) {
442
LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
443
return false;
444
}
445
#ifdef DUMP_DEP_MATRICIES
446
LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
447
printDepMatrix(DependencyMatrix);
448
#endif
449
450
// Get the Outermost loop exit.
451
BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
452
if (!LoopNestExit) {
453
LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
454
return false;
455
}
456
457
unsigned SelecLoopId = selectLoopForInterchange(LoopList);
458
// Obtain the loop vector returned from loop cache analysis beforehand,
459
// and put each <Loop, index> pair into a map for constant time query
460
// later. Indices in loop vector reprsent the optimal order of the
461
// corresponding loop, e.g., given a loopnest with depth N, index 0
462
// indicates the loop should be placed as the outermost loop and index N
463
// indicates the loop should be placed as the innermost loop.
464
//
465
// For the old pass manager CacheCost would be null.
466
DenseMap<const Loop *, unsigned> CostMap;
467
if (CC != nullptr) {
468
const auto &LoopCosts = CC->getLoopCosts();
469
for (unsigned i = 0; i < LoopCosts.size(); i++) {
470
CostMap[LoopCosts[i].first] = i;
471
}
472
}
473
// We try to achieve the globally optimal memory access for the loopnest,
474
// and do interchange based on a bubble-sort fasion. We start from
475
// the innermost loop, move it outwards to the best possible position
476
// and repeat this process.
477
for (unsigned j = SelecLoopId; j > 0; j--) {
478
bool ChangedPerIter = false;
479
for (unsigned i = SelecLoopId; i > SelecLoopId - j; i--) {
480
bool Interchanged = processLoop(LoopList[i], LoopList[i - 1], i, i - 1,
481
DependencyMatrix, CostMap);
482
if (!Interchanged)
483
continue;
484
// Loops interchanged, update LoopList accordingly.
485
std::swap(LoopList[i - 1], LoopList[i]);
486
// Update the DependencyMatrix
487
interChangeDependencies(DependencyMatrix, i, i - 1);
488
#ifdef DUMP_DEP_MATRICIES
489
LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
490
printDepMatrix(DependencyMatrix);
491
#endif
492
ChangedPerIter |= Interchanged;
493
Changed |= Interchanged;
494
}
495
// Early abort if there was no interchange during an entire round of
496
// moving loops outwards.
497
if (!ChangedPerIter)
498
break;
499
}
500
return Changed;
501
}
502
503
bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId,
504
unsigned OuterLoopId,
505
std::vector<std::vector<char>> &DependencyMatrix,
506
const DenseMap<const Loop *, unsigned> &CostMap) {
507
LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId
508
<< " and OuterLoopId = " << OuterLoopId << "\n");
509
LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
510
if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
511
LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
512
return false;
513
}
514
LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
515
LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
516
if (!LIP.isProfitable(InnerLoop, OuterLoop, InnerLoopId, OuterLoopId,
517
DependencyMatrix, CostMap, CC)) {
518
LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
519
return false;
520
}
521
522
ORE->emit([&]() {
523
return OptimizationRemark(DEBUG_TYPE, "Interchanged",
524
InnerLoop->getStartLoc(),
525
InnerLoop->getHeader())
526
<< "Loop interchanged with enclosing loop.";
527
});
528
529
LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL);
530
LIT.transform();
531
LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
532
LoopsInterchanged++;
533
534
llvm::formLCSSARecursively(*OuterLoop, *DT, LI, SE);
535
return true;
536
}
537
};
538
539
} // end anonymous namespace
540
541
bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
542
return any_of(*BB, [](const Instruction &I) {
543
return I.mayHaveSideEffects() || I.mayReadFromMemory();
544
});
545
}
546
547
bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
548
BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
549
BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
550
BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
551
552
LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
553
554
// A perfectly nested loop will not have any branch in between the outer and
555
// inner block i.e. outer header will branch to either inner preheader and
556
// outerloop latch.
557
BranchInst *OuterLoopHeaderBI =
558
dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
559
if (!OuterLoopHeaderBI)
560
return false;
561
562
for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
563
if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
564
Succ != OuterLoopLatch)
565
return false;
566
567
LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
568
// We do not have any basic block in between now make sure the outer header
569
// and outer loop latch doesn't contain any unsafe instructions.
570
if (containsUnsafeInstructions(OuterLoopHeader) ||
571
containsUnsafeInstructions(OuterLoopLatch))
572
return false;
573
574
// Also make sure the inner loop preheader does not contain any unsafe
575
// instructions. Note that all instructions in the preheader will be moved to
576
// the outer loop header when interchanging.
577
if (InnerLoopPreHeader != OuterLoopHeader &&
578
containsUnsafeInstructions(InnerLoopPreHeader))
579
return false;
580
581
BasicBlock *InnerLoopExit = InnerLoop->getExitBlock();
582
// Ensure the inner loop exit block flows to the outer loop latch possibly
583
// through empty blocks.
584
const BasicBlock &SuccInner =
585
LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch);
586
if (&SuccInner != OuterLoopLatch) {
587
LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit
588
<< " does not lead to the outer loop latch.\n";);
589
return false;
590
}
591
// The inner loop exit block does flow to the outer loop latch and not some
592
// other BBs, now make sure it contains safe instructions, since it will be
593
// moved into the (new) inner loop after interchange.
594
if (containsUnsafeInstructions(InnerLoopExit))
595
return false;
596
597
LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
598
// We have a perfect loop nest.
599
return true;
600
}
601
602
bool LoopInterchangeLegality::isLoopStructureUnderstood() {
603
BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
604
for (PHINode *InnerInduction : InnerLoopInductions) {
605
unsigned Num = InnerInduction->getNumOperands();
606
for (unsigned i = 0; i < Num; ++i) {
607
Value *Val = InnerInduction->getOperand(i);
608
if (isa<Constant>(Val))
609
continue;
610
Instruction *I = dyn_cast<Instruction>(Val);
611
if (!I)
612
return false;
613
// TODO: Handle triangular loops.
614
// e.g. for(int i=0;i<N;i++)
615
// for(int j=i;j<N;j++)
616
unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
617
if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
618
InnerLoopPreheader &&
619
!OuterLoop->isLoopInvariant(I)) {
620
return false;
621
}
622
}
623
}
624
625
// TODO: Handle triangular loops of another form.
626
// e.g. for(int i=0;i<N;i++)
627
// for(int j=0;j<i;j++)
628
// or,
629
// for(int i=0;i<N;i++)
630
// for(int j=0;j*i<N;j++)
631
BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
632
BranchInst *InnerLoopLatchBI =
633
dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
634
if (!InnerLoopLatchBI->isConditional())
635
return false;
636
if (CmpInst *InnerLoopCmp =
637
dyn_cast<CmpInst>(InnerLoopLatchBI->getCondition())) {
638
Value *Op0 = InnerLoopCmp->getOperand(0);
639
Value *Op1 = InnerLoopCmp->getOperand(1);
640
641
// LHS and RHS of the inner loop exit condition, e.g.,
642
// in "for(int j=0;j<i;j++)", LHS is j and RHS is i.
643
Value *Left = nullptr;
644
Value *Right = nullptr;
645
646
// Check if V only involves inner loop induction variable.
647
// Return true if V is InnerInduction, or a cast from
648
// InnerInduction, or a binary operator that involves
649
// InnerInduction and a constant.
650
std::function<bool(Value *)> IsPathToInnerIndVar;
651
IsPathToInnerIndVar = [this, &IsPathToInnerIndVar](const Value *V) -> bool {
652
if (llvm::is_contained(InnerLoopInductions, V))
653
return true;
654
if (isa<Constant>(V))
655
return true;
656
const Instruction *I = dyn_cast<Instruction>(V);
657
if (!I)
658
return false;
659
if (isa<CastInst>(I))
660
return IsPathToInnerIndVar(I->getOperand(0));
661
if (isa<BinaryOperator>(I))
662
return IsPathToInnerIndVar(I->getOperand(0)) &&
663
IsPathToInnerIndVar(I->getOperand(1));
664
return false;
665
};
666
667
// In case of multiple inner loop indvars, it is okay if LHS and RHS
668
// are both inner indvar related variables.
669
if (IsPathToInnerIndVar(Op0) && IsPathToInnerIndVar(Op1))
670
return true;
671
672
// Otherwise we check if the cmp instruction compares an inner indvar
673
// related variable (Left) with a outer loop invariant (Right).
674
if (IsPathToInnerIndVar(Op0) && !isa<Constant>(Op0)) {
675
Left = Op0;
676
Right = Op1;
677
} else if (IsPathToInnerIndVar(Op1) && !isa<Constant>(Op1)) {
678
Left = Op1;
679
Right = Op0;
680
}
681
682
if (Left == nullptr)
683
return false;
684
685
const SCEV *S = SE->getSCEV(Right);
686
if (!SE->isLoopInvariant(S, OuterLoop))
687
return false;
688
}
689
690
return true;
691
}
692
693
// If SV is a LCSSA PHI node with a single incoming value, return the incoming
694
// value.
695
static Value *followLCSSA(Value *SV) {
696
PHINode *PHI = dyn_cast<PHINode>(SV);
697
if (!PHI)
698
return SV;
699
700
if (PHI->getNumIncomingValues() != 1)
701
return SV;
702
return followLCSSA(PHI->getIncomingValue(0));
703
}
704
705
// Check V's users to see if it is involved in a reduction in L.
706
static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
707
// Reduction variables cannot be constants.
708
if (isa<Constant>(V))
709
return nullptr;
710
711
for (Value *User : V->users()) {
712
if (PHINode *PHI = dyn_cast<PHINode>(User)) {
713
if (PHI->getNumIncomingValues() == 1)
714
continue;
715
RecurrenceDescriptor RD;
716
if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) {
717
// Detect floating point reduction only when it can be reordered.
718
if (RD.getExactFPMathInst() != nullptr)
719
return nullptr;
720
return PHI;
721
}
722
return nullptr;
723
}
724
}
725
726
return nullptr;
727
}
728
729
bool LoopInterchangeLegality::findInductionAndReductions(
730
Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
731
if (!L->getLoopLatch() || !L->getLoopPredecessor())
732
return false;
733
for (PHINode &PHI : L->getHeader()->phis()) {
734
InductionDescriptor ID;
735
if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
736
Inductions.push_back(&PHI);
737
else {
738
// PHIs in inner loops need to be part of a reduction in the outer loop,
739
// discovered when checking the PHIs of the outer loop earlier.
740
if (!InnerLoop) {
741
if (!OuterInnerReductions.count(&PHI)) {
742
LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
743
"across the outer loop.\n");
744
return false;
745
}
746
} else {
747
assert(PHI.getNumIncomingValues() == 2 &&
748
"Phis in loop header should have exactly 2 incoming values");
749
// Check if we have a PHI node in the outer loop that has a reduction
750
// result from the inner loop as an incoming value.
751
Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
752
PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
753
if (!InnerRedPhi ||
754
!llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) {
755
LLVM_DEBUG(
756
dbgs()
757
<< "Failed to recognize PHI as an induction or reduction.\n");
758
return false;
759
}
760
OuterInnerReductions.insert(&PHI);
761
OuterInnerReductions.insert(InnerRedPhi);
762
}
763
}
764
}
765
return true;
766
}
767
768
// This function indicates the current limitations in the transform as a result
769
// of which we do not proceed.
770
bool LoopInterchangeLegality::currentLimitations() {
771
BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
772
773
// transform currently expects the loop latches to also be the exiting
774
// blocks.
775
if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
776
OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
777
!isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
778
!isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
779
LLVM_DEBUG(
780
dbgs() << "Loops where the latch is not the exiting block are not"
781
<< " supported currently.\n");
782
ORE->emit([&]() {
783
return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
784
OuterLoop->getStartLoc(),
785
OuterLoop->getHeader())
786
<< "Loops where the latch is not the exiting block cannot be"
787
" interchange currently.";
788
});
789
return true;
790
}
791
792
SmallVector<PHINode *, 8> Inductions;
793
if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
794
LLVM_DEBUG(
795
dbgs() << "Only outer loops with induction or reduction PHI nodes "
796
<< "are supported currently.\n");
797
ORE->emit([&]() {
798
return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
799
OuterLoop->getStartLoc(),
800
OuterLoop->getHeader())
801
<< "Only outer loops with induction or reduction PHI nodes can be"
802
" interchanged currently.";
803
});
804
return true;
805
}
806
807
Inductions.clear();
808
// For multi-level loop nests, make sure that all phi nodes for inner loops
809
// at all levels can be recognized as a induction or reduction phi. Bail out
810
// if a phi node at a certain nesting level cannot be properly recognized.
811
Loop *CurLevelLoop = OuterLoop;
812
while (!CurLevelLoop->getSubLoops().empty()) {
813
// We already made sure that the loop nest is tightly nested.
814
CurLevelLoop = CurLevelLoop->getSubLoops().front();
815
if (!findInductionAndReductions(CurLevelLoop, Inductions, nullptr)) {
816
LLVM_DEBUG(
817
dbgs() << "Only inner loops with induction or reduction PHI nodes "
818
<< "are supported currently.\n");
819
ORE->emit([&]() {
820
return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
821
CurLevelLoop->getStartLoc(),
822
CurLevelLoop->getHeader())
823
<< "Only inner loops with induction or reduction PHI nodes can be"
824
" interchange currently.";
825
});
826
return true;
827
}
828
}
829
830
// TODO: Triangular loops are not handled for now.
831
if (!isLoopStructureUnderstood()) {
832
LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
833
ORE->emit([&]() {
834
return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
835
InnerLoop->getStartLoc(),
836
InnerLoop->getHeader())
837
<< "Inner loop structure not understood currently.";
838
});
839
return true;
840
}
841
842
return false;
843
}
844
845
bool LoopInterchangeLegality::findInductions(
846
Loop *L, SmallVectorImpl<PHINode *> &Inductions) {
847
for (PHINode &PHI : L->getHeader()->phis()) {
848
InductionDescriptor ID;
849
if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
850
Inductions.push_back(&PHI);
851
}
852
return !Inductions.empty();
853
}
854
855
// We currently only support LCSSA PHI nodes in the inner loop exit, if their
856
// users are either reduction PHIs or PHIs outside the outer loop (which means
857
// the we are only interested in the final value after the loop).
858
static bool
859
areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL,
860
SmallPtrSetImpl<PHINode *> &Reductions) {
861
BasicBlock *InnerExit = OuterL->getUniqueExitBlock();
862
for (PHINode &PHI : InnerExit->phis()) {
863
// Reduction lcssa phi will have only 1 incoming block that from loop latch.
864
if (PHI.getNumIncomingValues() > 1)
865
return false;
866
if (any_of(PHI.users(), [&Reductions, OuterL](User *U) {
867
PHINode *PN = dyn_cast<PHINode>(U);
868
return !PN ||
869
(!Reductions.count(PN) && OuterL->contains(PN->getParent()));
870
})) {
871
return false;
872
}
873
}
874
return true;
875
}
876
877
// We currently support LCSSA PHI nodes in the outer loop exit, if their
878
// incoming values do not come from the outer loop latch or if the
879
// outer loop latch has a single predecessor. In that case, the value will
880
// be available if both the inner and outer loop conditions are true, which
881
// will still be true after interchanging. If we have multiple predecessor,
882
// that may not be the case, e.g. because the outer loop latch may be executed
883
// if the inner loop is not executed.
884
static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
885
BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
886
for (PHINode &PHI : LoopNestExit->phis()) {
887
for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
888
Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
889
if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
890
continue;
891
892
// The incoming value is defined in the outer loop latch. Currently we
893
// only support that in case the outer loop latch has a single predecessor.
894
// This guarantees that the outer loop latch is executed if and only if
895
// the inner loop is executed (because tightlyNested() guarantees that the
896
// outer loop header only branches to the inner loop or the outer loop
897
// latch).
898
// FIXME: We could weaken this logic and allow multiple predecessors,
899
// if the values are produced outside the loop latch. We would need
900
// additional logic to update the PHI nodes in the exit block as
901
// well.
902
if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
903
return false;
904
}
905
}
906
return true;
907
}
908
909
// In case of multi-level nested loops, it may occur that lcssa phis exist in
910
// the latch of InnerLoop, i.e., when defs of the incoming values are further
911
// inside the loopnest. Sometimes those incoming values are not available
912
// after interchange, since the original inner latch will become the new outer
913
// latch which may have predecessor paths that do not include those incoming
914
// values.
915
// TODO: Handle transformation of lcssa phis in the InnerLoop latch in case of
916
// multi-level loop nests.
917
static bool areInnerLoopLatchPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
918
if (InnerLoop->getSubLoops().empty())
919
return true;
920
// If the original outer latch has only one predecessor, then values defined
921
// further inside the looploop, e.g., in the innermost loop, will be available
922
// at the new outer latch after interchange.
923
if (OuterLoop->getLoopLatch()->getUniquePredecessor() != nullptr)
924
return true;
925
926
// The outer latch has more than one predecessors, i.e., the inner
927
// exit and the inner header.
928
// PHI nodes in the inner latch are lcssa phis where the incoming values
929
// are defined further inside the loopnest. Check if those phis are used
930
// in the original inner latch. If that is the case then bail out since
931
// those incoming values may not be available at the new outer latch.
932
BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
933
for (PHINode &PHI : InnerLoopLatch->phis()) {
934
for (auto *U : PHI.users()) {
935
Instruction *UI = cast<Instruction>(U);
936
if (InnerLoopLatch == UI->getParent())
937
return false;
938
}
939
}
940
return true;
941
}
942
943
bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
944
unsigned OuterLoopId,
945
CharMatrix &DepMatrix) {
946
if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
947
LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
948
<< " and OuterLoopId = " << OuterLoopId
949
<< " due to dependence\n");
950
ORE->emit([&]() {
951
return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
952
InnerLoop->getStartLoc(),
953
InnerLoop->getHeader())
954
<< "Cannot interchange loops due to dependences.";
955
});
956
return false;
957
}
958
// Check if outer and inner loop contain legal instructions only.
959
for (auto *BB : OuterLoop->blocks())
960
for (Instruction &I : BB->instructionsWithoutDebug())
961
if (CallInst *CI = dyn_cast<CallInst>(&I)) {
962
// readnone functions do not prevent interchanging.
963
if (CI->onlyWritesMemory())
964
continue;
965
LLVM_DEBUG(
966
dbgs() << "Loops with call instructions cannot be interchanged "
967
<< "safely.");
968
ORE->emit([&]() {
969
return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
970
CI->getDebugLoc(),
971
CI->getParent())
972
<< "Cannot interchange loops due to call instruction.";
973
});
974
975
return false;
976
}
977
978
if (!findInductions(InnerLoop, InnerLoopInductions)) {
979
LLVM_DEBUG(dbgs() << "Could not find inner loop induction variables.\n");
980
return false;
981
}
982
983
if (!areInnerLoopLatchPHIsSupported(OuterLoop, InnerLoop)) {
984
LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop latch.\n");
985
ORE->emit([&]() {
986
return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedInnerLatchPHI",
987
InnerLoop->getStartLoc(),
988
InnerLoop->getHeader())
989
<< "Cannot interchange loops because unsupported PHI nodes found "
990
"in inner loop latch.";
991
});
992
return false;
993
}
994
995
// TODO: The loops could not be interchanged due to current limitations in the
996
// transform module.
997
if (currentLimitations()) {
998
LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
999
return false;
1000
}
1001
1002
// Check if the loops are tightly nested.
1003
if (!tightlyNested(OuterLoop, InnerLoop)) {
1004
LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
1005
ORE->emit([&]() {
1006
return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
1007
InnerLoop->getStartLoc(),
1008
InnerLoop->getHeader())
1009
<< "Cannot interchange loops because they are not tightly "
1010
"nested.";
1011
});
1012
return false;
1013
}
1014
1015
if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop,
1016
OuterInnerReductions)) {
1017
LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n");
1018
ORE->emit([&]() {
1019
return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1020
InnerLoop->getStartLoc(),
1021
InnerLoop->getHeader())
1022
<< "Found unsupported PHI node in loop exit.";
1023
});
1024
return false;
1025
}
1026
1027
if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
1028
LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
1029
ORE->emit([&]() {
1030
return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1031
OuterLoop->getStartLoc(),
1032
OuterLoop->getHeader())
1033
<< "Found unsupported PHI node in loop exit.";
1034
});
1035
return false;
1036
}
1037
1038
return true;
1039
}
1040
1041
int LoopInterchangeProfitability::getInstrOrderCost() {
1042
unsigned GoodOrder, BadOrder;
1043
BadOrder = GoodOrder = 0;
1044
for (BasicBlock *BB : InnerLoop->blocks()) {
1045
for (Instruction &Ins : *BB) {
1046
if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
1047
unsigned NumOp = GEP->getNumOperands();
1048
bool FoundInnerInduction = false;
1049
bool FoundOuterInduction = false;
1050
for (unsigned i = 0; i < NumOp; ++i) {
1051
// Skip operands that are not SCEV-able.
1052
if (!SE->isSCEVable(GEP->getOperand(i)->getType()))
1053
continue;
1054
1055
const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
1056
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
1057
if (!AR)
1058
continue;
1059
1060
// If we find the inner induction after an outer induction e.g.
1061
// for(int i=0;i<N;i++)
1062
// for(int j=0;j<N;j++)
1063
// A[i][j] = A[i-1][j-1]+k;
1064
// then it is a good order.
1065
if (AR->getLoop() == InnerLoop) {
1066
// We found an InnerLoop induction after OuterLoop induction. It is
1067
// a good order.
1068
FoundInnerInduction = true;
1069
if (FoundOuterInduction) {
1070
GoodOrder++;
1071
break;
1072
}
1073
}
1074
// If we find the outer induction after an inner induction e.g.
1075
// for(int i=0;i<N;i++)
1076
// for(int j=0;j<N;j++)
1077
// A[j][i] = A[j-1][i-1]+k;
1078
// then it is a bad order.
1079
if (AR->getLoop() == OuterLoop) {
1080
// We found an OuterLoop induction after InnerLoop induction. It is
1081
// a bad order.
1082
FoundOuterInduction = true;
1083
if (FoundInnerInduction) {
1084
BadOrder++;
1085
break;
1086
}
1087
}
1088
}
1089
}
1090
}
1091
}
1092
return GoodOrder - BadOrder;
1093
}
1094
1095
std::optional<bool>
1096
LoopInterchangeProfitability::isProfitablePerLoopCacheAnalysis(
1097
const DenseMap<const Loop *, unsigned> &CostMap,
1098
std::unique_ptr<CacheCost> &CC) {
1099
// This is the new cost model returned from loop cache analysis.
1100
// A smaller index means the loop should be placed an outer loop, and vice
1101
// versa.
1102
if (CostMap.contains(InnerLoop) && CostMap.contains(OuterLoop)) {
1103
unsigned InnerIndex = 0, OuterIndex = 0;
1104
InnerIndex = CostMap.find(InnerLoop)->second;
1105
OuterIndex = CostMap.find(OuterLoop)->second;
1106
LLVM_DEBUG(dbgs() << "InnerIndex = " << InnerIndex
1107
<< ", OuterIndex = " << OuterIndex << "\n");
1108
if (InnerIndex < OuterIndex)
1109
return std::optional<bool>(true);
1110
assert(InnerIndex != OuterIndex && "CostMap should assign unique "
1111
"numbers to each loop");
1112
if (CC->getLoopCost(*OuterLoop) == CC->getLoopCost(*InnerLoop))
1113
return std::nullopt;
1114
return std::optional<bool>(false);
1115
}
1116
return std::nullopt;
1117
}
1118
1119
std::optional<bool>
1120
LoopInterchangeProfitability::isProfitablePerInstrOrderCost() {
1121
// Legacy cost model: this is rough cost estimation algorithm. It counts the
1122
// good and bad order of induction variables in the instruction and allows
1123
// reordering if number of bad orders is more than good.
1124
int Cost = getInstrOrderCost();
1125
LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
1126
if (Cost < 0 && Cost < LoopInterchangeCostThreshold)
1127
return std::optional<bool>(true);
1128
1129
return std::nullopt;
1130
}
1131
1132
std::optional<bool> LoopInterchangeProfitability::isProfitableForVectorization(
1133
unsigned InnerLoopId, unsigned OuterLoopId, CharMatrix &DepMatrix) {
1134
for (auto &Row : DepMatrix) {
1135
// If the inner loop is loop independent or doesn't carry any dependency
1136
// it is not profitable to move this to outer position, since we are
1137
// likely able to do inner loop vectorization already.
1138
if (Row[InnerLoopId] == 'I' || Row[InnerLoopId] == '=')
1139
return std::optional<bool>(false);
1140
1141
// If the outer loop is not loop independent it is not profitable to move
1142
// this to inner position, since doing so would not enable inner loop
1143
// parallelism.
1144
if (Row[OuterLoopId] != 'I' && Row[OuterLoopId] != '=')
1145
return std::optional<bool>(false);
1146
}
1147
// If inner loop has dependence and outer loop is loop independent then it
1148
// is/ profitable to interchange to enable inner loop parallelism.
1149
// If there are no dependences, interchanging will not improve anything.
1150
return std::optional<bool>(!DepMatrix.empty());
1151
}
1152
1153
bool LoopInterchangeProfitability::isProfitable(
1154
const Loop *InnerLoop, const Loop *OuterLoop, unsigned InnerLoopId,
1155
unsigned OuterLoopId, CharMatrix &DepMatrix,
1156
const DenseMap<const Loop *, unsigned> &CostMap,
1157
std::unique_ptr<CacheCost> &CC) {
1158
// isProfitable() is structured to avoid endless loop interchange.
1159
// If loop cache analysis could decide the profitability then,
1160
// profitability check will stop and return the analysis result.
1161
// If cache analysis failed to analyze the loopnest (e.g.,
1162
// due to delinearization issues) then only check whether it is
1163
// profitable for InstrOrderCost. Likewise, if InstrOrderCost failed to
1164
// analysis the profitability then only, isProfitableForVectorization
1165
// will decide.
1166
std::optional<bool> shouldInterchange =
1167
isProfitablePerLoopCacheAnalysis(CostMap, CC);
1168
if (!shouldInterchange.has_value()) {
1169
shouldInterchange = isProfitablePerInstrOrderCost();
1170
if (!shouldInterchange.has_value())
1171
shouldInterchange =
1172
isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix);
1173
}
1174
if (!shouldInterchange.has_value()) {
1175
ORE->emit([&]() {
1176
return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1177
InnerLoop->getStartLoc(),
1178
InnerLoop->getHeader())
1179
<< "Insufficient information to calculate the cost of loop for "
1180
"interchange.";
1181
});
1182
return false;
1183
} else if (!shouldInterchange.value()) {
1184
ORE->emit([&]() {
1185
return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1186
InnerLoop->getStartLoc(),
1187
InnerLoop->getHeader())
1188
<< "Interchanging loops is not considered to improve cache "
1189
"locality nor vectorization.";
1190
});
1191
return false;
1192
}
1193
return true;
1194
}
1195
1196
void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
1197
Loop *InnerLoop) {
1198
for (Loop *L : *OuterLoop)
1199
if (L == InnerLoop) {
1200
OuterLoop->removeChildLoop(L);
1201
return;
1202
}
1203
llvm_unreachable("Couldn't find loop");
1204
}
1205
1206
/// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
1207
/// new inner and outer loop after interchanging: NewInner is the original
1208
/// outer loop and NewOuter is the original inner loop.
1209
///
1210
/// Before interchanging, we have the following structure
1211
/// Outer preheader
1212
// Outer header
1213
// Inner preheader
1214
// Inner header
1215
// Inner body
1216
// Inner latch
1217
// outer bbs
1218
// Outer latch
1219
//
1220
// After interchanging:
1221
// Inner preheader
1222
// Inner header
1223
// Outer preheader
1224
// Outer header
1225
// Inner body
1226
// outer bbs
1227
// Outer latch
1228
// Inner latch
1229
void LoopInterchangeTransform::restructureLoops(
1230
Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
1231
BasicBlock *OrigOuterPreHeader) {
1232
Loop *OuterLoopParent = OuterLoop->getParentLoop();
1233
// The original inner loop preheader moves from the new inner loop to
1234
// the parent loop, if there is one.
1235
NewInner->removeBlockFromLoop(OrigInnerPreHeader);
1236
LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
1237
1238
// Switch the loop levels.
1239
if (OuterLoopParent) {
1240
// Remove the loop from its parent loop.
1241
removeChildLoop(OuterLoopParent, NewInner);
1242
removeChildLoop(NewInner, NewOuter);
1243
OuterLoopParent->addChildLoop(NewOuter);
1244
} else {
1245
removeChildLoop(NewInner, NewOuter);
1246
LI->changeTopLevelLoop(NewInner, NewOuter);
1247
}
1248
while (!NewOuter->isInnermost())
1249
NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
1250
NewOuter->addChildLoop(NewInner);
1251
1252
// BBs from the original inner loop.
1253
SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
1254
1255
// Add BBs from the original outer loop to the original inner loop (excluding
1256
// BBs already in inner loop)
1257
for (BasicBlock *BB : NewInner->blocks())
1258
if (LI->getLoopFor(BB) == NewInner)
1259
NewOuter->addBlockEntry(BB);
1260
1261
// Now remove inner loop header and latch from the new inner loop and move
1262
// other BBs (the loop body) to the new inner loop.
1263
BasicBlock *OuterHeader = NewOuter->getHeader();
1264
BasicBlock *OuterLatch = NewOuter->getLoopLatch();
1265
for (BasicBlock *BB : OrigInnerBBs) {
1266
// Nothing will change for BBs in child loops.
1267
if (LI->getLoopFor(BB) != NewOuter)
1268
continue;
1269
// Remove the new outer loop header and latch from the new inner loop.
1270
if (BB == OuterHeader || BB == OuterLatch)
1271
NewInner->removeBlockFromLoop(BB);
1272
else
1273
LI->changeLoopFor(BB, NewInner);
1274
}
1275
1276
// The preheader of the original outer loop becomes part of the new
1277
// outer loop.
1278
NewOuter->addBlockEntry(OrigOuterPreHeader);
1279
LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
1280
1281
// Tell SE that we move the loops around.
1282
SE->forgetLoop(NewOuter);
1283
}
1284
1285
bool LoopInterchangeTransform::transform() {
1286
bool Transformed = false;
1287
1288
if (InnerLoop->getSubLoops().empty()) {
1289
BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1290
LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n");
1291
auto &InductionPHIs = LIL.getInnerLoopInductions();
1292
if (InductionPHIs.empty()) {
1293
LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1294
return false;
1295
}
1296
1297
SmallVector<Instruction *, 8> InnerIndexVarList;
1298
for (PHINode *CurInductionPHI : InductionPHIs) {
1299
if (CurInductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1300
InnerIndexVarList.push_back(
1301
dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(1)));
1302
else
1303
InnerIndexVarList.push_back(
1304
dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(0)));
1305
}
1306
1307
// Create a new latch block for the inner loop. We split at the
1308
// current latch's terminator and then move the condition and all
1309
// operands that are not either loop-invariant or the induction PHI into the
1310
// new latch block.
1311
BasicBlock *NewLatch =
1312
SplitBlock(InnerLoop->getLoopLatch(),
1313
InnerLoop->getLoopLatch()->getTerminator(), DT, LI);
1314
1315
SmallSetVector<Instruction *, 4> WorkList;
1316
unsigned i = 0;
1317
auto MoveInstructions = [&i, &WorkList, this, &InductionPHIs, NewLatch]() {
1318
for (; i < WorkList.size(); i++) {
1319
// Duplicate instruction and move it the new latch. Update uses that
1320
// have been moved.
1321
Instruction *NewI = WorkList[i]->clone();
1322
NewI->insertBefore(NewLatch->getFirstNonPHI());
1323
assert(!NewI->mayHaveSideEffects() &&
1324
"Moving instructions with side-effects may change behavior of "
1325
"the loop nest!");
1326
for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) {
1327
Instruction *UserI = cast<Instruction>(U.getUser());
1328
if (!InnerLoop->contains(UserI->getParent()) ||
1329
UserI->getParent() == NewLatch ||
1330
llvm::is_contained(InductionPHIs, UserI))
1331
U.set(NewI);
1332
}
1333
// Add operands of moved instruction to the worklist, except if they are
1334
// outside the inner loop or are the induction PHI.
1335
for (Value *Op : WorkList[i]->operands()) {
1336
Instruction *OpI = dyn_cast<Instruction>(Op);
1337
if (!OpI ||
1338
this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop ||
1339
llvm::is_contained(InductionPHIs, OpI))
1340
continue;
1341
WorkList.insert(OpI);
1342
}
1343
}
1344
};
1345
1346
// FIXME: Should we interchange when we have a constant condition?
1347
Instruction *CondI = dyn_cast<Instruction>(
1348
cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator())
1349
->getCondition());
1350
if (CondI)
1351
WorkList.insert(CondI);
1352
MoveInstructions();
1353
for (Instruction *InnerIndexVar : InnerIndexVarList)
1354
WorkList.insert(cast<Instruction>(InnerIndexVar));
1355
MoveInstructions();
1356
}
1357
1358
// Ensure the inner loop phi nodes have a separate basic block.
1359
BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1360
if (InnerLoopHeader->getFirstNonPHI() != InnerLoopHeader->getTerminator()) {
1361
SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1362
LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
1363
}
1364
1365
// Instructions in the original inner loop preheader may depend on values
1366
// defined in the outer loop header. Move them there, because the original
1367
// inner loop preheader will become the entry into the interchanged loop nest.
1368
// Currently we move all instructions and rely on LICM to move invariant
1369
// instructions outside the loop nest.
1370
BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1371
BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1372
if (InnerLoopPreHeader != OuterLoopHeader) {
1373
SmallPtrSet<Instruction *, 4> NeedsMoving;
1374
for (Instruction &I :
1375
make_early_inc_range(make_range(InnerLoopPreHeader->begin(),
1376
std::prev(InnerLoopPreHeader->end()))))
1377
I.moveBeforePreserving(OuterLoopHeader->getTerminator());
1378
}
1379
1380
Transformed |= adjustLoopLinks();
1381
if (!Transformed) {
1382
LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
1383
return false;
1384
}
1385
1386
return true;
1387
}
1388
1389
/// \brief Move all instructions except the terminator from FromBB right before
1390
/// InsertBefore
1391
static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1392
BasicBlock *ToBB = InsertBefore->getParent();
1393
1394
ToBB->splice(InsertBefore->getIterator(), FromBB, FromBB->begin(),
1395
FromBB->getTerminator()->getIterator());
1396
}
1397
1398
/// Swap instructions between \p BB1 and \p BB2 but keep terminators intact.
1399
static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) {
1400
// Save all non-terminator instructions of BB1 into TempInstrs and unlink them
1401
// from BB1 afterwards.
1402
auto Iter = map_range(*BB1, [](Instruction &I) { return &I; });
1403
SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end()));
1404
for (Instruction *I : TempInstrs)
1405
I->removeFromParent();
1406
1407
// Move instructions from BB2 to BB1.
1408
moveBBContents(BB2, BB1->getTerminator());
1409
1410
// Move instructions from TempInstrs to BB2.
1411
for (Instruction *I : TempInstrs)
1412
I->insertBefore(BB2->getTerminator());
1413
}
1414
1415
// Update BI to jump to NewBB instead of OldBB. Records updates to the
1416
// dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that
1417
// \p OldBB is exactly once in BI's successor list.
1418
static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
1419
BasicBlock *NewBB,
1420
std::vector<DominatorTree::UpdateType> &DTUpdates,
1421
bool MustUpdateOnce = true) {
1422
assert((!MustUpdateOnce ||
1423
llvm::count_if(successors(BI),
1424
[OldBB](BasicBlock *BB) {
1425
return BB == OldBB;
1426
}) == 1) && "BI must jump to OldBB exactly once.");
1427
bool Changed = false;
1428
for (Use &Op : BI->operands())
1429
if (Op == OldBB) {
1430
Op.set(NewBB);
1431
Changed = true;
1432
}
1433
1434
if (Changed) {
1435
DTUpdates.push_back(
1436
{DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
1437
DTUpdates.push_back(
1438
{DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
1439
}
1440
assert(Changed && "Expected a successor to be updated");
1441
}
1442
1443
// Move Lcssa PHIs to the right place.
1444
static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
1445
BasicBlock *InnerLatch, BasicBlock *OuterHeader,
1446
BasicBlock *OuterLatch, BasicBlock *OuterExit,
1447
Loop *InnerLoop, LoopInfo *LI) {
1448
1449
// Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
1450
// defined either in the header or latch. Those blocks will become header and
1451
// latch of the new outer loop, and the only possible users can PHI nodes
1452
// in the exit block of the loop nest or the outer loop header (reduction
1453
// PHIs, in that case, the incoming value must be defined in the inner loop
1454
// header). We can just substitute the user with the incoming value and remove
1455
// the PHI.
1456
for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
1457
assert(P.getNumIncomingValues() == 1 &&
1458
"Only loops with a single exit are supported!");
1459
1460
// Incoming values are guaranteed be instructions currently.
1461
auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
1462
// In case of multi-level nested loops, follow LCSSA to find the incoming
1463
// value defined from the innermost loop.
1464
auto IncIInnerMost = cast<Instruction>(followLCSSA(IncI));
1465
// Skip phis with incoming values from the inner loop body, excluding the
1466
// header and latch.
1467
if (IncIInnerMost->getParent() != InnerLatch &&
1468
IncIInnerMost->getParent() != InnerHeader)
1469
continue;
1470
1471
assert(all_of(P.users(),
1472
[OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
1473
return (cast<PHINode>(U)->getParent() == OuterHeader &&
1474
IncI->getParent() == InnerHeader) ||
1475
cast<PHINode>(U)->getParent() == OuterExit;
1476
}) &&
1477
"Can only replace phis iff the uses are in the loop nest exit or "
1478
"the incoming value is defined in the inner header (it will "
1479
"dominate all loop blocks after interchanging)");
1480
P.replaceAllUsesWith(IncI);
1481
P.eraseFromParent();
1482
}
1483
1484
SmallVector<PHINode *, 8> LcssaInnerExit;
1485
for (PHINode &P : InnerExit->phis())
1486
LcssaInnerExit.push_back(&P);
1487
1488
SmallVector<PHINode *, 8> LcssaInnerLatch;
1489
for (PHINode &P : InnerLatch->phis())
1490
LcssaInnerLatch.push_back(&P);
1491
1492
// Lcssa PHIs for values used outside the inner loop are in InnerExit.
1493
// If a PHI node has users outside of InnerExit, it has a use outside the
1494
// interchanged loop and we have to preserve it. We move these to
1495
// InnerLatch, which will become the new exit block for the innermost
1496
// loop after interchanging.
1497
for (PHINode *P : LcssaInnerExit)
1498
P->moveBefore(InnerLatch->getFirstNonPHI());
1499
1500
// If the inner loop latch contains LCSSA PHIs, those come from a child loop
1501
// and we have to move them to the new inner latch.
1502
for (PHINode *P : LcssaInnerLatch)
1503
P->moveBefore(InnerExit->getFirstNonPHI());
1504
1505
// Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
1506
// incoming values defined in the outer loop, we have to add a new PHI
1507
// in the inner loop latch, which became the exit block of the outer loop,
1508
// after interchanging.
1509
if (OuterExit) {
1510
for (PHINode &P : OuterExit->phis()) {
1511
if (P.getNumIncomingValues() != 1)
1512
continue;
1513
// Skip Phis with incoming values defined in the inner loop. Those should
1514
// already have been updated.
1515
auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
1516
if (!I || LI->getLoopFor(I->getParent()) == InnerLoop)
1517
continue;
1518
1519
PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
1520
NewPhi->setIncomingValue(0, P.getIncomingValue(0));
1521
NewPhi->setIncomingBlock(0, OuterLatch);
1522
// We might have incoming edges from other BBs, i.e., the original outer
1523
// header.
1524
for (auto *Pred : predecessors(InnerLatch)) {
1525
if (Pred == OuterLatch)
1526
continue;
1527
NewPhi->addIncoming(P.getIncomingValue(0), Pred);
1528
}
1529
NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
1530
P.setIncomingValue(0, NewPhi);
1531
}
1532
}
1533
1534
// Now adjust the incoming blocks for the LCSSA PHIs.
1535
// For PHIs moved from Inner's exit block, we need to replace Inner's latch
1536
// with the new latch.
1537
InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
1538
}
1539
1540
bool LoopInterchangeTransform::adjustLoopBranches() {
1541
LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
1542
std::vector<DominatorTree::UpdateType> DTUpdates;
1543
1544
BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1545
BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1546
1547
assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
1548
InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
1549
InnerLoopPreHeader && "Guaranteed by loop-simplify form");
1550
// Ensure that both preheaders do not contain PHI nodes and have single
1551
// predecessors. This allows us to move them easily. We use
1552
// InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
1553
// preheaders do not satisfy those conditions.
1554
if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
1555
!OuterLoopPreHeader->getUniquePredecessor())
1556
OuterLoopPreHeader =
1557
InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
1558
if (InnerLoopPreHeader == OuterLoop->getHeader())
1559
InnerLoopPreHeader =
1560
InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);
1561
1562
// Adjust the loop preheader
1563
BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1564
BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1565
BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1566
BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1567
BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1568
BasicBlock *InnerLoopLatchPredecessor =
1569
InnerLoopLatch->getUniquePredecessor();
1570
BasicBlock *InnerLoopLatchSuccessor;
1571
BasicBlock *OuterLoopLatchSuccessor;
1572
1573
BranchInst *OuterLoopLatchBI =
1574
dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1575
BranchInst *InnerLoopLatchBI =
1576
dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1577
BranchInst *OuterLoopHeaderBI =
1578
dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1579
BranchInst *InnerLoopHeaderBI =
1580
dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1581
1582
if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1583
!OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1584
!InnerLoopHeaderBI)
1585
return false;
1586
1587
BranchInst *InnerLoopLatchPredecessorBI =
1588
dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1589
BranchInst *OuterLoopPredecessorBI =
1590
dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1591
1592
if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1593
return false;
1594
BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1595
if (!InnerLoopHeaderSuccessor)
1596
return false;
1597
1598
// Adjust Loop Preheader and headers.
1599
// The branches in the outer loop predecessor and the outer loop header can
1600
// be unconditional branches or conditional branches with duplicates. Consider
1601
// this when updating the successors.
1602
updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
1603
InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false);
1604
// The outer loop header might or might not branch to the outer latch.
1605
// We are guaranteed to branch to the inner loop preheader.
1606
if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) {
1607
// In this case the outerLoopHeader should branch to the InnerLoopLatch.
1608
updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch,
1609
DTUpdates,
1610
/*MustUpdateOnce=*/false);
1611
}
1612
updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
1613
InnerLoopHeaderSuccessor, DTUpdates,
1614
/*MustUpdateOnce=*/false);
1615
1616
// Adjust reduction PHI's now that the incoming block has changed.
1617
InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
1618
OuterLoopHeader);
1619
1620
updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
1621
OuterLoopPreHeader, DTUpdates);
1622
1623
// -------------Adjust loop latches-----------
1624
if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1625
InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1626
else
1627
InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1628
1629
updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
1630
InnerLoopLatchSuccessor, DTUpdates);
1631
1632
if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1633
OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1634
else
1635
OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1636
1637
updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
1638
OuterLoopLatchSuccessor, DTUpdates);
1639
updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
1640
DTUpdates);
1641
1642
DT->applyUpdates(DTUpdates);
1643
restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
1644
OuterLoopPreHeader);
1645
1646
moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
1647
OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(),
1648
InnerLoop, LI);
1649
// For PHIs in the exit block of the outer loop, outer's latch has been
1650
// replaced by Inners'.
1651
OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1652
1653
auto &OuterInnerReductions = LIL.getOuterInnerReductions();
1654
// Now update the reduction PHIs in the inner and outer loop headers.
1655
SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
1656
for (PHINode &PHI : InnerLoopHeader->phis())
1657
if (OuterInnerReductions.contains(&PHI))
1658
InnerLoopPHIs.push_back(&PHI);
1659
1660
for (PHINode &PHI : OuterLoopHeader->phis())
1661
if (OuterInnerReductions.contains(&PHI))
1662
OuterLoopPHIs.push_back(&PHI);
1663
1664
// Now move the remaining reduction PHIs from outer to inner loop header and
1665
// vice versa. The PHI nodes must be part of a reduction across the inner and
1666
// outer loop and all the remains to do is and updating the incoming blocks.
1667
for (PHINode *PHI : OuterLoopPHIs) {
1668
LLVM_DEBUG(dbgs() << "Outer loop reduction PHIs:\n"; PHI->dump(););
1669
PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
1670
assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1671
}
1672
for (PHINode *PHI : InnerLoopPHIs) {
1673
LLVM_DEBUG(dbgs() << "Inner loop reduction PHIs:\n"; PHI->dump(););
1674
PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
1675
assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1676
}
1677
1678
// Update the incoming blocks for moved PHI nodes.
1679
OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
1680
OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
1681
InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
1682
InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1683
1684
// Values defined in the outer loop header could be used in the inner loop
1685
// latch. In that case, we need to create LCSSA phis for them, because after
1686
// interchanging they will be defined in the new inner loop and used in the
1687
// new outer loop.
1688
SmallVector<Instruction *, 4> MayNeedLCSSAPhis;
1689
for (Instruction &I :
1690
make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end())))
1691
MayNeedLCSSAPhis.push_back(&I);
1692
formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE);
1693
1694
return true;
1695
}
1696
1697
bool LoopInterchangeTransform::adjustLoopLinks() {
1698
// Adjust all branches in the inner and outer loop.
1699
bool Changed = adjustLoopBranches();
1700
if (Changed) {
1701
// We have interchanged the preheaders so we need to interchange the data in
1702
// the preheaders as well. This is because the content of the inner
1703
// preheader was previously executed inside the outer loop.
1704
BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1705
BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1706
swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader);
1707
}
1708
return Changed;
1709
}
1710
1711
PreservedAnalyses LoopInterchangePass::run(LoopNest &LN,
1712
LoopAnalysisManager &AM,
1713
LoopStandardAnalysisResults &AR,
1714
LPMUpdater &U) {
1715
Function &F = *LN.getParent();
1716
1717
DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI);
1718
std::unique_ptr<CacheCost> CC =
1719
CacheCost::getCacheCost(LN.getOutermostLoop(), AR, DI);
1720
OptimizationRemarkEmitter ORE(&F);
1721
if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, CC, &ORE).run(LN))
1722
return PreservedAnalyses::all();
1723
U.markLoopNestChanged(true);
1724
return getLoopPassPreservedAnalyses();
1725
}
1726
1727