Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopLoadElimination.cpp
35266 views
1
//===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implement a loop-aware load elimination pass.
10
//
11
// It uses LoopAccessAnalysis to identify loop-carried dependences with a
12
// distance of one between stores and loads. These form the candidates for the
13
// transformation. The source value of each store then propagated to the user
14
// of the corresponding load. This makes the load dead.
15
//
16
// The pass can also version the loop and add memchecks in order to prove that
17
// may-aliasing stores can't change the value in memory before it's read by the
18
// load.
19
//
20
//===----------------------------------------------------------------------===//
21
22
#include "llvm/Transforms/Scalar/LoopLoadElimination.h"
23
#include "llvm/ADT/APInt.h"
24
#include "llvm/ADT/DenseMap.h"
25
#include "llvm/ADT/DepthFirstIterator.h"
26
#include "llvm/ADT/STLExtras.h"
27
#include "llvm/ADT/SmallPtrSet.h"
28
#include "llvm/ADT/SmallVector.h"
29
#include "llvm/ADT/Statistic.h"
30
#include "llvm/Analysis/AssumptionCache.h"
31
#include "llvm/Analysis/BlockFrequencyInfo.h"
32
#include "llvm/Analysis/GlobalsModRef.h"
33
#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
34
#include "llvm/Analysis/LoopAccessAnalysis.h"
35
#include "llvm/Analysis/LoopAnalysisManager.h"
36
#include "llvm/Analysis/LoopInfo.h"
37
#include "llvm/Analysis/ProfileSummaryInfo.h"
38
#include "llvm/Analysis/ScalarEvolution.h"
39
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
40
#include "llvm/Analysis/TargetLibraryInfo.h"
41
#include "llvm/Analysis/TargetTransformInfo.h"
42
#include "llvm/IR/DataLayout.h"
43
#include "llvm/IR/Dominators.h"
44
#include "llvm/IR/Instructions.h"
45
#include "llvm/IR/Module.h"
46
#include "llvm/IR/PassManager.h"
47
#include "llvm/IR/Type.h"
48
#include "llvm/IR/Value.h"
49
#include "llvm/Support/Casting.h"
50
#include "llvm/Support/CommandLine.h"
51
#include "llvm/Support/Debug.h"
52
#include "llvm/Support/raw_ostream.h"
53
#include "llvm/Transforms/Utils.h"
54
#include "llvm/Transforms/Utils/LoopSimplify.h"
55
#include "llvm/Transforms/Utils/LoopVersioning.h"
56
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
57
#include "llvm/Transforms/Utils/SizeOpts.h"
58
#include <algorithm>
59
#include <cassert>
60
#include <forward_list>
61
#include <tuple>
62
#include <utility>
63
64
using namespace llvm;
65
66
#define LLE_OPTION "loop-load-elim"
67
#define DEBUG_TYPE LLE_OPTION
68
69
static cl::opt<unsigned> CheckPerElim(
70
"runtime-check-per-loop-load-elim", cl::Hidden,
71
cl::desc("Max number of memchecks allowed per eliminated load on average"),
72
cl::init(1));
73
74
static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
75
"loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
76
cl::desc("The maximum number of SCEV checks allowed for Loop "
77
"Load Elimination"));
78
79
STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
80
81
namespace {
82
83
/// Represent a store-to-forwarding candidate.
84
struct StoreToLoadForwardingCandidate {
85
LoadInst *Load;
86
StoreInst *Store;
87
88
StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
89
: Load(Load), Store(Store) {}
90
91
/// Return true if the dependence from the store to the load has an
92
/// absolute distance of one.
93
/// E.g. A[i+1] = A[i] (or A[i-1] = A[i] for descending loop)
94
bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
95
Loop *L) const {
96
Value *LoadPtr = Load->getPointerOperand();
97
Value *StorePtr = Store->getPointerOperand();
98
Type *LoadType = getLoadStoreType(Load);
99
auto &DL = Load->getDataLayout();
100
101
assert(LoadPtr->getType()->getPointerAddressSpace() ==
102
StorePtr->getType()->getPointerAddressSpace() &&
103
DL.getTypeSizeInBits(LoadType) ==
104
DL.getTypeSizeInBits(getLoadStoreType(Store)) &&
105
"Should be a known dependence");
106
107
int64_t StrideLoad = getPtrStride(PSE, LoadType, LoadPtr, L).value_or(0);
108
int64_t StrideStore = getPtrStride(PSE, LoadType, StorePtr, L).value_or(0);
109
if (!StrideLoad || !StrideStore || StrideLoad != StrideStore)
110
return false;
111
112
// TODO: This check for stride values other than 1 and -1 can be eliminated.
113
// However, doing so may cause the LoopAccessAnalysis to overcompensate,
114
// generating numerous non-wrap runtime checks that may undermine the
115
// benefits of load elimination. To safely implement support for non-unit
116
// strides, we would need to ensure either that the processed case does not
117
// require these additional checks, or improve the LAA to handle them more
118
// efficiently, or potentially both.
119
if (std::abs(StrideLoad) != 1)
120
return false;
121
122
unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
123
124
auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
125
auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
126
127
// We don't need to check non-wrapping here because forward/backward
128
// dependence wouldn't be valid if these weren't monotonic accesses.
129
auto *Dist = dyn_cast<SCEVConstant>(
130
PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
131
if (!Dist)
132
return false;
133
const APInt &Val = Dist->getAPInt();
134
return Val == TypeByteSize * StrideLoad;
135
}
136
137
Value *getLoadPtr() const { return Load->getPointerOperand(); }
138
139
#ifndef NDEBUG
140
friend raw_ostream &operator<<(raw_ostream &OS,
141
const StoreToLoadForwardingCandidate &Cand) {
142
OS << *Cand.Store << " -->\n";
143
OS.indent(2) << *Cand.Load << "\n";
144
return OS;
145
}
146
#endif
147
};
148
149
} // end anonymous namespace
150
151
/// Check if the store dominates all latches, so as long as there is no
152
/// intervening store this value will be loaded in the next iteration.
153
static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
154
DominatorTree *DT) {
155
SmallVector<BasicBlock *, 8> Latches;
156
L->getLoopLatches(Latches);
157
return llvm::all_of(Latches, [&](const BasicBlock *Latch) {
158
return DT->dominates(StoreBlock, Latch);
159
});
160
}
161
162
/// Return true if the load is not executed on all paths in the loop.
163
static bool isLoadConditional(LoadInst *Load, Loop *L) {
164
return Load->getParent() != L->getHeader();
165
}
166
167
namespace {
168
169
/// The per-loop class that does most of the work.
170
class LoadEliminationForLoop {
171
public:
172
LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
173
DominatorTree *DT, BlockFrequencyInfo *BFI,
174
ProfileSummaryInfo* PSI)
175
: L(L), LI(LI), LAI(LAI), DT(DT), BFI(BFI), PSI(PSI), PSE(LAI.getPSE()) {}
176
177
/// Look through the loop-carried and loop-independent dependences in
178
/// this loop and find store->load dependences.
179
///
180
/// Note that no candidate is returned if LAA has failed to analyze the loop
181
/// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
182
std::forward_list<StoreToLoadForwardingCandidate>
183
findStoreToLoadDependences(const LoopAccessInfo &LAI) {
184
std::forward_list<StoreToLoadForwardingCandidate> Candidates;
185
186
const auto &DepChecker = LAI.getDepChecker();
187
const auto *Deps = DepChecker.getDependences();
188
if (!Deps)
189
return Candidates;
190
191
// Find store->load dependences (consequently true dep). Both lexically
192
// forward and backward dependences qualify. Disqualify loads that have
193
// other unknown dependences.
194
195
SmallPtrSet<Instruction *, 4> LoadsWithUnknownDepedence;
196
197
for (const auto &Dep : *Deps) {
198
Instruction *Source = Dep.getSource(DepChecker);
199
Instruction *Destination = Dep.getDestination(DepChecker);
200
201
if (Dep.Type == MemoryDepChecker::Dependence::Unknown ||
202
Dep.Type == MemoryDepChecker::Dependence::IndirectUnsafe) {
203
if (isa<LoadInst>(Source))
204
LoadsWithUnknownDepedence.insert(Source);
205
if (isa<LoadInst>(Destination))
206
LoadsWithUnknownDepedence.insert(Destination);
207
continue;
208
}
209
210
if (Dep.isBackward())
211
// Note that the designations source and destination follow the program
212
// order, i.e. source is always first. (The direction is given by the
213
// DepType.)
214
std::swap(Source, Destination);
215
else
216
assert(Dep.isForward() && "Needs to be a forward dependence");
217
218
auto *Store = dyn_cast<StoreInst>(Source);
219
if (!Store)
220
continue;
221
auto *Load = dyn_cast<LoadInst>(Destination);
222
if (!Load)
223
continue;
224
225
// Only propagate if the stored values are bit/pointer castable.
226
if (!CastInst::isBitOrNoopPointerCastable(
227
getLoadStoreType(Store), getLoadStoreType(Load),
228
Store->getDataLayout()))
229
continue;
230
231
Candidates.emplace_front(Load, Store);
232
}
233
234
if (!LoadsWithUnknownDepedence.empty())
235
Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
236
return LoadsWithUnknownDepedence.count(C.Load);
237
});
238
239
return Candidates;
240
}
241
242
/// Return the index of the instruction according to program order.
243
unsigned getInstrIndex(Instruction *Inst) {
244
auto I = InstOrder.find(Inst);
245
assert(I != InstOrder.end() && "No index for instruction");
246
return I->second;
247
}
248
249
/// If a load has multiple candidates associated (i.e. different
250
/// stores), it means that it could be forwarding from multiple stores
251
/// depending on control flow. Remove these candidates.
252
///
253
/// Here, we rely on LAA to include the relevant loop-independent dependences.
254
/// LAA is known to omit these in the very simple case when the read and the
255
/// write within an alias set always takes place using the *same* pointer.
256
///
257
/// However, we know that this is not the case here, i.e. we can rely on LAA
258
/// to provide us with loop-independent dependences for the cases we're
259
/// interested. Consider the case for example where a loop-independent
260
/// dependece S1->S2 invalidates the forwarding S3->S2.
261
///
262
/// A[i] = ... (S1)
263
/// ... = A[i] (S2)
264
/// A[i+1] = ... (S3)
265
///
266
/// LAA will perform dependence analysis here because there are two
267
/// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
268
void removeDependencesFromMultipleStores(
269
std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
270
// If Store is nullptr it means that we have multiple stores forwarding to
271
// this store.
272
using LoadToSingleCandT =
273
DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>;
274
LoadToSingleCandT LoadToSingleCand;
275
276
for (const auto &Cand : Candidates) {
277
bool NewElt;
278
LoadToSingleCandT::iterator Iter;
279
280
std::tie(Iter, NewElt) =
281
LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
282
if (!NewElt) {
283
const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
284
// Already multiple stores forward to this load.
285
if (OtherCand == nullptr)
286
continue;
287
288
// Handle the very basic case when the two stores are in the same block
289
// so deciding which one forwards is easy. The later one forwards as
290
// long as they both have a dependence distance of one to the load.
291
if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
292
Cand.isDependenceDistanceOfOne(PSE, L) &&
293
OtherCand->isDependenceDistanceOfOne(PSE, L)) {
294
// They are in the same block, the later one will forward to the load.
295
if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
296
OtherCand = &Cand;
297
} else
298
OtherCand = nullptr;
299
}
300
}
301
302
Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
303
if (LoadToSingleCand[Cand.Load] != &Cand) {
304
LLVM_DEBUG(
305
dbgs() << "Removing from candidates: \n"
306
<< Cand
307
<< " The load may have multiple stores forwarding to "
308
<< "it\n");
309
return true;
310
}
311
return false;
312
});
313
}
314
315
/// Given two pointers operations by their RuntimePointerChecking
316
/// indices, return true if they require an alias check.
317
///
318
/// We need a check if one is a pointer for a candidate load and the other is
319
/// a pointer for a possibly intervening store.
320
bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
321
const SmallPtrSetImpl<Value *> &PtrsWrittenOnFwdingPath,
322
const SmallPtrSetImpl<Value *> &CandLoadPtrs) {
323
Value *Ptr1 =
324
LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
325
Value *Ptr2 =
326
LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
327
return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
328
(PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
329
}
330
331
/// Return pointers that are possibly written to on the path from a
332
/// forwarding store to a load.
333
///
334
/// These pointers need to be alias-checked against the forwarding candidates.
335
SmallPtrSet<Value *, 4> findPointersWrittenOnForwardingPath(
336
const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
337
// From FirstStore to LastLoad neither of the elimination candidate loads
338
// should overlap with any of the stores.
339
//
340
// E.g.:
341
//
342
// st1 C[i]
343
// ld1 B[i] <-------,
344
// ld0 A[i] <----, | * LastLoad
345
// ... | |
346
// st2 E[i] | |
347
// st3 B[i+1] -- | -' * FirstStore
348
// st0 A[i+1] ---'
349
// st4 D[i]
350
//
351
// st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
352
// ld0.
353
354
LoadInst *LastLoad =
355
llvm::max_element(Candidates,
356
[&](const StoreToLoadForwardingCandidate &A,
357
const StoreToLoadForwardingCandidate &B) {
358
return getInstrIndex(A.Load) <
359
getInstrIndex(B.Load);
360
})
361
->Load;
362
StoreInst *FirstStore =
363
llvm::min_element(Candidates,
364
[&](const StoreToLoadForwardingCandidate &A,
365
const StoreToLoadForwardingCandidate &B) {
366
return getInstrIndex(A.Store) <
367
getInstrIndex(B.Store);
368
})
369
->Store;
370
371
// We're looking for stores after the first forwarding store until the end
372
// of the loop, then from the beginning of the loop until the last
373
// forwarded-to load. Collect the pointer for the stores.
374
SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath;
375
376
auto InsertStorePtr = [&](Instruction *I) {
377
if (auto *S = dyn_cast<StoreInst>(I))
378
PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
379
};
380
const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
381
std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
382
MemInstrs.end(), InsertStorePtr);
383
std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
384
InsertStorePtr);
385
386
return PtrsWrittenOnFwdingPath;
387
}
388
389
/// Determine the pointer alias checks to prove that there are no
390
/// intervening stores.
391
SmallVector<RuntimePointerCheck, 4> collectMemchecks(
392
const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
393
394
SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath =
395
findPointersWrittenOnForwardingPath(Candidates);
396
397
// Collect the pointers of the candidate loads.
398
SmallPtrSet<Value *, 4> CandLoadPtrs;
399
for (const auto &Candidate : Candidates)
400
CandLoadPtrs.insert(Candidate.getLoadPtr());
401
402
const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
403
SmallVector<RuntimePointerCheck, 4> Checks;
404
405
copy_if(AllChecks, std::back_inserter(Checks),
406
[&](const RuntimePointerCheck &Check) {
407
for (auto PtrIdx1 : Check.first->Members)
408
for (auto PtrIdx2 : Check.second->Members)
409
if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath,
410
CandLoadPtrs))
411
return true;
412
return false;
413
});
414
415
LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size()
416
<< "):\n");
417
LLVM_DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
418
419
return Checks;
420
}
421
422
/// Perform the transformation for a candidate.
423
void
424
propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
425
SCEVExpander &SEE) {
426
// loop:
427
// %x = load %gep_i
428
// = ... %x
429
// store %y, %gep_i_plus_1
430
//
431
// =>
432
//
433
// ph:
434
// %x.initial = load %gep_0
435
// loop:
436
// %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
437
// %x = load %gep_i <---- now dead
438
// = ... %x.storeforward
439
// store %y, %gep_i_plus_1
440
441
Value *Ptr = Cand.Load->getPointerOperand();
442
auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
443
auto *PH = L->getLoopPreheader();
444
assert(PH && "Preheader should exist!");
445
Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
446
PH->getTerminator());
447
Value *Initial =
448
new LoadInst(Cand.Load->getType(), InitialPtr, "load_initial",
449
/* isVolatile */ false, Cand.Load->getAlign(),
450
PH->getTerminator()->getIterator());
451
// We don't give any debug location to Initial, because it is inserted
452
// into the loop's preheader. A debug location inside the loop will cause
453
// a misleading stepping when debugging. The test update-debugloc-store
454
// -forwarded.ll checks this.
455
456
PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded");
457
PHI->insertBefore(L->getHeader()->begin());
458
PHI->addIncoming(Initial, PH);
459
460
Type *LoadType = Initial->getType();
461
Type *StoreType = Cand.Store->getValueOperand()->getType();
462
auto &DL = Cand.Load->getDataLayout();
463
(void)DL;
464
465
assert(DL.getTypeSizeInBits(LoadType) == DL.getTypeSizeInBits(StoreType) &&
466
"The type sizes should match!");
467
468
Value *StoreValue = Cand.Store->getValueOperand();
469
if (LoadType != StoreType) {
470
StoreValue = CastInst::CreateBitOrPointerCast(StoreValue, LoadType,
471
"store_forward_cast",
472
Cand.Store->getIterator());
473
// Because it casts the old `load` value and is used by the new `phi`
474
// which replaces the old `load`, we give the `load`'s debug location
475
// to it.
476
cast<Instruction>(StoreValue)->setDebugLoc(Cand.Load->getDebugLoc());
477
}
478
479
PHI->addIncoming(StoreValue, L->getLoopLatch());
480
481
Cand.Load->replaceAllUsesWith(PHI);
482
PHI->setDebugLoc(Cand.Load->getDebugLoc());
483
}
484
485
/// Top-level driver for each loop: find store->load forwarding
486
/// candidates, add run-time checks and perform transformation.
487
bool processLoop() {
488
LLVM_DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
489
<< "\" checking " << *L << "\n");
490
491
// Look for store-to-load forwarding cases across the
492
// backedge. E.g.:
493
//
494
// loop:
495
// %x = load %gep_i
496
// = ... %x
497
// store %y, %gep_i_plus_1
498
//
499
// =>
500
//
501
// ph:
502
// %x.initial = load %gep_0
503
// loop:
504
// %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
505
// %x = load %gep_i <---- now dead
506
// = ... %x.storeforward
507
// store %y, %gep_i_plus_1
508
509
// First start with store->load dependences.
510
auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
511
if (StoreToLoadDependences.empty())
512
return false;
513
514
// Generate an index for each load and store according to the original
515
// program order. This will be used later.
516
InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
517
518
// To keep things simple for now, remove those where the load is potentially
519
// fed by multiple stores.
520
removeDependencesFromMultipleStores(StoreToLoadDependences);
521
if (StoreToLoadDependences.empty())
522
return false;
523
524
// Filter the candidates further.
525
SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
526
for (const StoreToLoadForwardingCandidate &Cand : StoreToLoadDependences) {
527
LLVM_DEBUG(dbgs() << "Candidate " << Cand);
528
529
// Make sure that the stored values is available everywhere in the loop in
530
// the next iteration.
531
if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
532
continue;
533
534
// If the load is conditional we can't hoist its 0-iteration instance to
535
// the preheader because that would make it unconditional. Thus we would
536
// access a memory location that the original loop did not access.
537
if (isLoadConditional(Cand.Load, L))
538
continue;
539
540
// Check whether the SCEV difference is the same as the induction step,
541
// thus we load the value in the next iteration.
542
if (!Cand.isDependenceDistanceOfOne(PSE, L))
543
continue;
544
545
assert(isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Load->getPointerOperand())) &&
546
"Loading from something other than indvar?");
547
assert(
548
isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Store->getPointerOperand())) &&
549
"Storing to something other than indvar?");
550
551
Candidates.push_back(Cand);
552
LLVM_DEBUG(
553
dbgs()
554
<< Candidates.size()
555
<< ". Valid store-to-load forwarding across the loop backedge\n");
556
}
557
if (Candidates.empty())
558
return false;
559
560
// Check intervening may-alias stores. These need runtime checks for alias
561
// disambiguation.
562
SmallVector<RuntimePointerCheck, 4> Checks = collectMemchecks(Candidates);
563
564
// Too many checks are likely to outweigh the benefits of forwarding.
565
if (Checks.size() > Candidates.size() * CheckPerElim) {
566
LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n");
567
return false;
568
}
569
570
if (LAI.getPSE().getPredicate().getComplexity() >
571
LoadElimSCEVCheckThreshold) {
572
LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
573
return false;
574
}
575
576
if (!L->isLoopSimplifyForm()) {
577
LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form");
578
return false;
579
}
580
581
if (!Checks.empty() || !LAI.getPSE().getPredicate().isAlwaysTrue()) {
582
if (LAI.hasConvergentOp()) {
583
LLVM_DEBUG(dbgs() << "Versioning is needed but not allowed with "
584
"convergent calls\n");
585
return false;
586
}
587
588
auto *HeaderBB = L->getHeader();
589
auto *F = HeaderBB->getParent();
590
bool OptForSize = F->hasOptSize() ||
591
llvm::shouldOptimizeForSize(HeaderBB, PSI, BFI,
592
PGSOQueryType::IRPass);
593
if (OptForSize) {
594
LLVM_DEBUG(
595
dbgs() << "Versioning is needed but not allowed when optimizing "
596
"for size.\n");
597
return false;
598
}
599
600
// Point of no-return, start the transformation. First, version the loop
601
// if necessary.
602
603
LoopVersioning LV(LAI, Checks, L, LI, DT, PSE.getSE());
604
LV.versionLoop();
605
606
// After versioning, some of the candidates' pointers could stop being
607
// SCEVAddRecs. We need to filter them out.
608
auto NoLongerGoodCandidate = [this](
609
const StoreToLoadForwardingCandidate &Cand) {
610
return !isa<SCEVAddRecExpr>(
611
PSE.getSCEV(Cand.Load->getPointerOperand())) ||
612
!isa<SCEVAddRecExpr>(
613
PSE.getSCEV(Cand.Store->getPointerOperand()));
614
};
615
llvm::erase_if(Candidates, NoLongerGoodCandidate);
616
}
617
618
// Next, propagate the value stored by the store to the users of the load.
619
// Also for the first iteration, generate the initial value of the load.
620
SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getDataLayout(),
621
"storeforward");
622
for (const auto &Cand : Candidates)
623
propagateStoredValueToLoadUsers(Cand, SEE);
624
NumLoopLoadEliminted += Candidates.size();
625
626
return true;
627
}
628
629
private:
630
Loop *L;
631
632
/// Maps the load/store instructions to their index according to
633
/// program order.
634
DenseMap<Instruction *, unsigned> InstOrder;
635
636
// Analyses used.
637
LoopInfo *LI;
638
const LoopAccessInfo &LAI;
639
DominatorTree *DT;
640
BlockFrequencyInfo *BFI;
641
ProfileSummaryInfo *PSI;
642
PredicatedScalarEvolution PSE;
643
};
644
645
} // end anonymous namespace
646
647
static bool eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI,
648
DominatorTree &DT,
649
BlockFrequencyInfo *BFI,
650
ProfileSummaryInfo *PSI,
651
ScalarEvolution *SE, AssumptionCache *AC,
652
LoopAccessInfoManager &LAIs) {
653
// Build up a worklist of inner-loops to transform to avoid iterator
654
// invalidation.
655
// FIXME: This logic comes from other passes that actually change the loop
656
// nest structure. It isn't clear this is necessary (or useful) for a pass
657
// which merely optimizes the use of loads in a loop.
658
SmallVector<Loop *, 8> Worklist;
659
660
bool Changed = false;
661
662
for (Loop *TopLevelLoop : LI)
663
for (Loop *L : depth_first(TopLevelLoop)) {
664
Changed |= simplifyLoop(L, &DT, &LI, SE, AC, /*MSSAU*/ nullptr, false);
665
// We only handle inner-most loops.
666
if (L->isInnermost())
667
Worklist.push_back(L);
668
}
669
670
// Now walk the identified inner loops.
671
for (Loop *L : Worklist) {
672
// Match historical behavior
673
if (!L->isRotatedForm() || !L->getExitingBlock())
674
continue;
675
// The actual work is performed by LoadEliminationForLoop.
676
LoadEliminationForLoop LEL(L, &LI, LAIs.getInfo(*L), &DT, BFI, PSI);
677
Changed |= LEL.processLoop();
678
if (Changed)
679
LAIs.clear();
680
}
681
return Changed;
682
}
683
684
PreservedAnalyses LoopLoadEliminationPass::run(Function &F,
685
FunctionAnalysisManager &AM) {
686
auto &LI = AM.getResult<LoopAnalysis>(F);
687
// There are no loops in the function. Return before computing other expensive
688
// analyses.
689
if (LI.empty())
690
return PreservedAnalyses::all();
691
auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
692
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
693
auto &AC = AM.getResult<AssumptionAnalysis>(F);
694
auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
695
auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
696
auto *BFI = (PSI && PSI->hasProfileSummary()) ?
697
&AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
698
LoopAccessInfoManager &LAIs = AM.getResult<LoopAccessAnalysis>(F);
699
700
bool Changed = eliminateLoadsAcrossLoops(F, LI, DT, BFI, PSI, &SE, &AC, LAIs);
701
702
if (!Changed)
703
return PreservedAnalyses::all();
704
705
PreservedAnalyses PA;
706
PA.preserve<DominatorTreeAnalysis>();
707
PA.preserve<LoopAnalysis>();
708
return PA;
709
}
710
711