Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopPredication.cpp
35266 views
1
//===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// The LoopPredication pass tries to convert loop variant range checks to loop
10
// invariant by widening checks across loop iterations. For example, it will
11
// convert
12
//
13
// for (i = 0; i < n; i++) {
14
// guard(i < len);
15
// ...
16
// }
17
//
18
// to
19
//
20
// for (i = 0; i < n; i++) {
21
// guard(n - 1 < len);
22
// ...
23
// }
24
//
25
// After this transformation the condition of the guard is loop invariant, so
26
// loop-unswitch can later unswitch the loop by this condition which basically
27
// predicates the loop by the widened condition:
28
//
29
// if (n - 1 < len)
30
// for (i = 0; i < n; i++) {
31
// ...
32
// }
33
// else
34
// deoptimize
35
//
36
// It's tempting to rely on SCEV here, but it has proven to be problematic.
37
// Generally the facts SCEV provides about the increment step of add
38
// recurrences are true if the backedge of the loop is taken, which implicitly
39
// assumes that the guard doesn't fail. Using these facts to optimize the
40
// guard results in a circular logic where the guard is optimized under the
41
// assumption that it never fails.
42
//
43
// For example, in the loop below the induction variable will be marked as nuw
44
// basing on the guard. Basing on nuw the guard predicate will be considered
45
// monotonic. Given a monotonic condition it's tempting to replace the induction
46
// variable in the condition with its value on the last iteration. But this
47
// transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48
//
49
// for (int i = b; i != e; i++)
50
// guard(i u< len)
51
//
52
// One of the ways to reason about this problem is to use an inductive proof
53
// approach. Given the loop:
54
//
55
// if (B(0)) {
56
// do {
57
// I = PHI(0, I.INC)
58
// I.INC = I + Step
59
// guard(G(I));
60
// } while (B(I));
61
// }
62
//
63
// where B(x) and G(x) are predicates that map integers to booleans, we want a
64
// loop invariant expression M such the following program has the same semantics
65
// as the above:
66
//
67
// if (B(0)) {
68
// do {
69
// I = PHI(0, I.INC)
70
// I.INC = I + Step
71
// guard(G(0) && M);
72
// } while (B(I));
73
// }
74
//
75
// One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
76
//
77
// Informal proof that the transformation above is correct:
78
//
79
// By the definition of guards we can rewrite the guard condition to:
80
// G(I) && G(0) && M
81
//
82
// Let's prove that for each iteration of the loop:
83
// G(0) && M => G(I)
84
// And the condition above can be simplified to G(Start) && M.
85
//
86
// Induction base.
87
// G(0) && M => G(0)
88
//
89
// Induction step. Assuming G(0) && M => G(I) on the subsequent
90
// iteration:
91
//
92
// B(I) is true because it's the backedge condition.
93
// G(I) is true because the backedge is guarded by this condition.
94
//
95
// So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
96
//
97
// Note that we can use anything stronger than M, i.e. any condition which
98
// implies M.
99
//
100
// When S = 1 (i.e. forward iterating loop), the transformation is supported
101
// when:
102
// * The loop has a single latch with the condition of the form:
103
// B(X) = latchStart + X <pred> latchLimit,
104
// where <pred> is u<, u<=, s<, or s<=.
105
// * The guard condition is of the form
106
// G(X) = guardStart + X u< guardLimit
107
//
108
// For the ult latch comparison case M is:
109
// forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110
// guardStart + X + 1 u< guardLimit
111
//
112
// The only way the antecedent can be true and the consequent can be false is
113
// if
114
// X == guardLimit - 1 - guardStart
115
// (and guardLimit is non-zero, but we won't use this latter fact).
116
// If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117
// latchStart + guardLimit - 1 - guardStart u< latchLimit
118
// and its negation is
119
// latchStart + guardLimit - 1 - guardStart u>= latchLimit
120
//
121
// In other words, if
122
// latchLimit u<= latchStart + guardLimit - 1 - guardStart
123
// then:
124
// (the ranges below are written in ConstantRange notation, where [A, B) is the
125
// set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
126
//
127
// forall X . guardStart + X u< guardLimit &&
128
// latchStart + X u< latchLimit =>
129
// guardStart + X + 1 u< guardLimit
130
// == forall X . guardStart + X u< guardLimit &&
131
// latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132
// guardStart + X + 1 u< guardLimit
133
// == forall X . (guardStart + X) in [0, guardLimit) &&
134
// (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135
// (guardStart + X + 1) in [0, guardLimit)
136
// == forall X . X in [-guardStart, guardLimit - guardStart) &&
137
// X in [-latchStart, guardLimit - 1 - guardStart) =>
138
// X in [-guardStart - 1, guardLimit - guardStart - 1)
139
// == true
140
//
141
// So the widened condition is:
142
// guardStart u< guardLimit &&
143
// latchStart + guardLimit - 1 - guardStart u>= latchLimit
144
// Similarly for ule condition the widened condition is:
145
// guardStart u< guardLimit &&
146
// latchStart + guardLimit - 1 - guardStart u> latchLimit
147
// For slt condition the widened condition is:
148
// guardStart u< guardLimit &&
149
// latchStart + guardLimit - 1 - guardStart s>= latchLimit
150
// For sle condition the widened condition is:
151
// guardStart u< guardLimit &&
152
// latchStart + guardLimit - 1 - guardStart s> latchLimit
153
//
154
// When S = -1 (i.e. reverse iterating loop), the transformation is supported
155
// when:
156
// * The loop has a single latch with the condition of the form:
157
// B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
158
// * The guard condition is of the form
159
// G(X) = X - 1 u< guardLimit
160
//
161
// For the ugt latch comparison case M is:
162
// forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
163
//
164
// The only way the antecedent can be true and the consequent can be false is if
165
// X == 1.
166
// If X == 1 then the second half of the antecedent is
167
// 1 u> latchLimit, and its negation is latchLimit u>= 1.
168
//
169
// So the widened condition is:
170
// guardStart u< guardLimit && latchLimit u>= 1.
171
// Similarly for sgt condition the widened condition is:
172
// guardStart u< guardLimit && latchLimit s>= 1.
173
// For uge condition the widened condition is:
174
// guardStart u< guardLimit && latchLimit u> 1.
175
// For sge condition the widened condition is:
176
// guardStart u< guardLimit && latchLimit s> 1.
177
//===----------------------------------------------------------------------===//
178
179
#include "llvm/Transforms/Scalar/LoopPredication.h"
180
#include "llvm/ADT/Statistic.h"
181
#include "llvm/Analysis/AliasAnalysis.h"
182
#include "llvm/Analysis/BranchProbabilityInfo.h"
183
#include "llvm/Analysis/GuardUtils.h"
184
#include "llvm/Analysis/LoopInfo.h"
185
#include "llvm/Analysis/LoopPass.h"
186
#include "llvm/Analysis/MemorySSA.h"
187
#include "llvm/Analysis/MemorySSAUpdater.h"
188
#include "llvm/Analysis/ScalarEvolution.h"
189
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
190
#include "llvm/IR/Function.h"
191
#include "llvm/IR/IntrinsicInst.h"
192
#include "llvm/IR/Module.h"
193
#include "llvm/IR/PatternMatch.h"
194
#include "llvm/IR/ProfDataUtils.h"
195
#include "llvm/InitializePasses.h"
196
#include "llvm/Pass.h"
197
#include "llvm/Support/CommandLine.h"
198
#include "llvm/Support/Debug.h"
199
#include "llvm/Transforms/Scalar.h"
200
#include "llvm/Transforms/Utils/GuardUtils.h"
201
#include "llvm/Transforms/Utils/Local.h"
202
#include "llvm/Transforms/Utils/LoopUtils.h"
203
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
204
#include <optional>
205
206
#define DEBUG_TYPE "loop-predication"
207
208
STATISTIC(TotalConsidered, "Number of guards considered");
209
STATISTIC(TotalWidened, "Number of checks widened");
210
211
using namespace llvm;
212
213
static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
214
cl::Hidden, cl::init(true));
215
216
static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
217
cl::Hidden, cl::init(true));
218
219
static cl::opt<bool>
220
SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
221
cl::Hidden, cl::init(false));
222
223
// This is the scale factor for the latch probability. We use this during
224
// profitability analysis to find other exiting blocks that have a much higher
225
// probability of exiting the loop instead of loop exiting via latch.
226
// This value should be greater than 1 for a sane profitability check.
227
static cl::opt<float> LatchExitProbabilityScale(
228
"loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
229
cl::desc("scale factor for the latch probability. Value should be greater "
230
"than 1. Lower values are ignored"));
231
232
static cl::opt<bool> PredicateWidenableBranchGuards(
233
"loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
234
cl::desc("Whether or not we should predicate guards "
235
"expressed as widenable branches to deoptimize blocks"),
236
cl::init(true));
237
238
static cl::opt<bool> InsertAssumesOfPredicatedGuardsConditions(
239
"loop-predication-insert-assumes-of-predicated-guards-conditions",
240
cl::Hidden,
241
cl::desc("Whether or not we should insert assumes of conditions of "
242
"predicated guards"),
243
cl::init(true));
244
245
namespace {
246
/// Represents an induction variable check:
247
/// icmp Pred, <induction variable>, <loop invariant limit>
248
struct LoopICmp {
249
ICmpInst::Predicate Pred;
250
const SCEVAddRecExpr *IV;
251
const SCEV *Limit;
252
LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
253
const SCEV *Limit)
254
: Pred(Pred), IV(IV), Limit(Limit) {}
255
LoopICmp() = default;
256
void dump() {
257
dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
258
<< ", Limit = " << *Limit << "\n";
259
}
260
};
261
262
class LoopPredication {
263
AliasAnalysis *AA;
264
DominatorTree *DT;
265
ScalarEvolution *SE;
266
LoopInfo *LI;
267
MemorySSAUpdater *MSSAU;
268
269
Loop *L;
270
const DataLayout *DL;
271
BasicBlock *Preheader;
272
LoopICmp LatchCheck;
273
274
bool isSupportedStep(const SCEV* Step);
275
std::optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
276
std::optional<LoopICmp> parseLoopLatchICmp();
277
278
/// Return an insertion point suitable for inserting a safe to speculate
279
/// instruction whose only user will be 'User' which has operands 'Ops'. A
280
/// trivial result would be the at the User itself, but we try to return a
281
/// loop invariant location if possible.
282
Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
283
/// Same as above, *except* that this uses the SCEV definition of invariant
284
/// which is that an expression *can be made* invariant via SCEVExpander.
285
/// Thus, this version is only suitable for finding an insert point to be
286
/// passed to SCEVExpander!
287
Instruction *findInsertPt(const SCEVExpander &Expander, Instruction *User,
288
ArrayRef<const SCEV *> Ops);
289
290
/// Return true if the value is known to produce a single fixed value across
291
/// all iterations on which it executes. Note that this does not imply
292
/// speculation safety. That must be established separately.
293
bool isLoopInvariantValue(const SCEV* S);
294
295
Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
296
ICmpInst::Predicate Pred, const SCEV *LHS,
297
const SCEV *RHS);
298
299
std::optional<Value *> widenICmpRangeCheck(ICmpInst *ICI,
300
SCEVExpander &Expander,
301
Instruction *Guard);
302
std::optional<Value *>
303
widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, LoopICmp RangeCheck,
304
SCEVExpander &Expander,
305
Instruction *Guard);
306
std::optional<Value *>
307
widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, LoopICmp RangeCheck,
308
SCEVExpander &Expander,
309
Instruction *Guard);
310
void widenChecks(SmallVectorImpl<Value *> &Checks,
311
SmallVectorImpl<Value *> &WidenedChecks,
312
SCEVExpander &Expander, Instruction *Guard);
313
bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
314
bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
315
// If the loop always exits through another block in the loop, we should not
316
// predicate based on the latch check. For example, the latch check can be a
317
// very coarse grained check and there can be more fine grained exit checks
318
// within the loop.
319
bool isLoopProfitableToPredicate();
320
321
bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
322
323
public:
324
LoopPredication(AliasAnalysis *AA, DominatorTree *DT, ScalarEvolution *SE,
325
LoopInfo *LI, MemorySSAUpdater *MSSAU)
326
: AA(AA), DT(DT), SE(SE), LI(LI), MSSAU(MSSAU){};
327
bool runOnLoop(Loop *L);
328
};
329
330
} // end namespace
331
332
PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
333
LoopStandardAnalysisResults &AR,
334
LPMUpdater &U) {
335
std::unique_ptr<MemorySSAUpdater> MSSAU;
336
if (AR.MSSA)
337
MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA);
338
LoopPredication LP(&AR.AA, &AR.DT, &AR.SE, &AR.LI,
339
MSSAU ? MSSAU.get() : nullptr);
340
if (!LP.runOnLoop(&L))
341
return PreservedAnalyses::all();
342
343
auto PA = getLoopPassPreservedAnalyses();
344
if (AR.MSSA)
345
PA.preserve<MemorySSAAnalysis>();
346
return PA;
347
}
348
349
std::optional<LoopICmp> LoopPredication::parseLoopICmp(ICmpInst *ICI) {
350
auto Pred = ICI->getPredicate();
351
auto *LHS = ICI->getOperand(0);
352
auto *RHS = ICI->getOperand(1);
353
354
const SCEV *LHSS = SE->getSCEV(LHS);
355
if (isa<SCEVCouldNotCompute>(LHSS))
356
return std::nullopt;
357
const SCEV *RHSS = SE->getSCEV(RHS);
358
if (isa<SCEVCouldNotCompute>(RHSS))
359
return std::nullopt;
360
361
// Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
362
if (SE->isLoopInvariant(LHSS, L)) {
363
std::swap(LHS, RHS);
364
std::swap(LHSS, RHSS);
365
Pred = ICmpInst::getSwappedPredicate(Pred);
366
}
367
368
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
369
if (!AR || AR->getLoop() != L)
370
return std::nullopt;
371
372
return LoopICmp(Pred, AR, RHSS);
373
}
374
375
Value *LoopPredication::expandCheck(SCEVExpander &Expander,
376
Instruction *Guard,
377
ICmpInst::Predicate Pred, const SCEV *LHS,
378
const SCEV *RHS) {
379
Type *Ty = LHS->getType();
380
assert(Ty == RHS->getType() && "expandCheck operands have different types?");
381
382
if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
383
IRBuilder<> Builder(Guard);
384
if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
385
return Builder.getTrue();
386
if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
387
LHS, RHS))
388
return Builder.getFalse();
389
}
390
391
Value *LHSV =
392
Expander.expandCodeFor(LHS, Ty, findInsertPt(Expander, Guard, {LHS}));
393
Value *RHSV =
394
Expander.expandCodeFor(RHS, Ty, findInsertPt(Expander, Guard, {RHS}));
395
IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
396
return Builder.CreateICmp(Pred, LHSV, RHSV);
397
}
398
399
// Returns true if its safe to truncate the IV to RangeCheckType.
400
// When the IV type is wider than the range operand type, we can still do loop
401
// predication, by generating SCEVs for the range and latch that are of the
402
// same type. We achieve this by generating a SCEV truncate expression for the
403
// latch IV. This is done iff truncation of the IV is a safe operation,
404
// without loss of information.
405
// Another way to achieve this is by generating a wider type SCEV for the
406
// range check operand, however, this needs a more involved check that
407
// operands do not overflow. This can lead to loss of information when the
408
// range operand is of the form: add i32 %offset, %iv. We need to prove that
409
// sext(x + y) is same as sext(x) + sext(y).
410
// This function returns true if we can safely represent the IV type in
411
// the RangeCheckType without loss of information.
412
static bool isSafeToTruncateWideIVType(const DataLayout &DL,
413
ScalarEvolution &SE,
414
const LoopICmp LatchCheck,
415
Type *RangeCheckType) {
416
if (!EnableIVTruncation)
417
return false;
418
assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()).getFixedValue() >
419
DL.getTypeSizeInBits(RangeCheckType).getFixedValue() &&
420
"Expected latch check IV type to be larger than range check operand "
421
"type!");
422
// The start and end values of the IV should be known. This is to guarantee
423
// that truncating the wide type will not lose information.
424
auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
425
auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
426
if (!Limit || !Start)
427
return false;
428
// This check makes sure that the IV does not change sign during loop
429
// iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
430
// LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
431
// IV wraps around, and the truncation of the IV would lose the range of
432
// iterations between 2^32 and 2^64.
433
if (!SE.getMonotonicPredicateType(LatchCheck.IV, LatchCheck.Pred))
434
return false;
435
// The active bits should be less than the bits in the RangeCheckType. This
436
// guarantees that truncating the latch check to RangeCheckType is a safe
437
// operation.
438
auto RangeCheckTypeBitSize =
439
DL.getTypeSizeInBits(RangeCheckType).getFixedValue();
440
return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
441
Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
442
}
443
444
445
// Return an LoopICmp describing a latch check equivlent to LatchCheck but with
446
// the requested type if safe to do so. May involve the use of a new IV.
447
static std::optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL,
448
ScalarEvolution &SE,
449
const LoopICmp LatchCheck,
450
Type *RangeCheckType) {
451
452
auto *LatchType = LatchCheck.IV->getType();
453
if (RangeCheckType == LatchType)
454
return LatchCheck;
455
// For now, bail out if latch type is narrower than range type.
456
if (DL.getTypeSizeInBits(LatchType).getFixedValue() <
457
DL.getTypeSizeInBits(RangeCheckType).getFixedValue())
458
return std::nullopt;
459
if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType))
460
return std::nullopt;
461
// We can now safely identify the truncated version of the IV and limit for
462
// RangeCheckType.
463
LoopICmp NewLatchCheck;
464
NewLatchCheck.Pred = LatchCheck.Pred;
465
NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
466
SE.getTruncateExpr(LatchCheck.IV, RangeCheckType));
467
if (!NewLatchCheck.IV)
468
return std::nullopt;
469
NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType);
470
LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
471
<< "can be represented as range check type:"
472
<< *RangeCheckType << "\n");
473
LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
474
LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
475
return NewLatchCheck;
476
}
477
478
bool LoopPredication::isSupportedStep(const SCEV* Step) {
479
return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
480
}
481
482
Instruction *LoopPredication::findInsertPt(Instruction *Use,
483
ArrayRef<Value*> Ops) {
484
for (Value *Op : Ops)
485
if (!L->isLoopInvariant(Op))
486
return Use;
487
return Preheader->getTerminator();
488
}
489
490
Instruction *LoopPredication::findInsertPt(const SCEVExpander &Expander,
491
Instruction *Use,
492
ArrayRef<const SCEV *> Ops) {
493
// Subtlety: SCEV considers things to be invariant if the value produced is
494
// the same across iterations. This is not the same as being able to
495
// evaluate outside the loop, which is what we actually need here.
496
for (const SCEV *Op : Ops)
497
if (!SE->isLoopInvariant(Op, L) ||
498
!Expander.isSafeToExpandAt(Op, Preheader->getTerminator()))
499
return Use;
500
return Preheader->getTerminator();
501
}
502
503
bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
504
// Handling expressions which produce invariant results, but *haven't* yet
505
// been removed from the loop serves two important purposes.
506
// 1) Most importantly, it resolves a pass ordering cycle which would
507
// otherwise need us to iteration licm, loop-predication, and either
508
// loop-unswitch or loop-peeling to make progress on examples with lots of
509
// predicable range checks in a row. (Since, in the general case, we can't
510
// hoist the length checks until the dominating checks have been discharged
511
// as we can't prove doing so is safe.)
512
// 2) As a nice side effect, this exposes the value of peeling or unswitching
513
// much more obviously in the IR. Otherwise, the cost modeling for other
514
// transforms would end up needing to duplicate all of this logic to model a
515
// check which becomes predictable based on a modeled peel or unswitch.
516
//
517
// The cost of doing so in the worst case is an extra fill from the stack in
518
// the loop to materialize the loop invariant test value instead of checking
519
// against the original IV which is presumable in a register inside the loop.
520
// Such cases are presumably rare, and hint at missing oppurtunities for
521
// other passes.
522
523
if (SE->isLoopInvariant(S, L))
524
// Note: This the SCEV variant, so the original Value* may be within the
525
// loop even though SCEV has proven it is loop invariant.
526
return true;
527
528
// Handle a particular important case which SCEV doesn't yet know about which
529
// shows up in range checks on arrays with immutable lengths.
530
// TODO: This should be sunk inside SCEV.
531
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
532
if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
533
if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
534
if (!isModSet(AA->getModRefInfoMask(LI->getOperand(0))) ||
535
LI->hasMetadata(LLVMContext::MD_invariant_load))
536
return true;
537
return false;
538
}
539
540
std::optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
541
LoopICmp LatchCheck, LoopICmp RangeCheck, SCEVExpander &Expander,
542
Instruction *Guard) {
543
auto *Ty = RangeCheck.IV->getType();
544
// Generate the widened condition for the forward loop:
545
// guardStart u< guardLimit &&
546
// latchLimit <pred> guardLimit - 1 - guardStart + latchStart
547
// where <pred> depends on the latch condition predicate. See the file
548
// header comment for the reasoning.
549
// guardLimit - guardStart + latchStart - 1
550
const SCEV *GuardStart = RangeCheck.IV->getStart();
551
const SCEV *GuardLimit = RangeCheck.Limit;
552
const SCEV *LatchStart = LatchCheck.IV->getStart();
553
const SCEV *LatchLimit = LatchCheck.Limit;
554
// Subtlety: We need all the values to be *invariant* across all iterations,
555
// but we only need to check expansion safety for those which *aren't*
556
// already guaranteed to dominate the guard.
557
if (!isLoopInvariantValue(GuardStart) ||
558
!isLoopInvariantValue(GuardLimit) ||
559
!isLoopInvariantValue(LatchStart) ||
560
!isLoopInvariantValue(LatchLimit)) {
561
LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
562
return std::nullopt;
563
}
564
if (!Expander.isSafeToExpandAt(LatchStart, Guard) ||
565
!Expander.isSafeToExpandAt(LatchLimit, Guard)) {
566
LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
567
return std::nullopt;
568
}
569
570
// guardLimit - guardStart + latchStart - 1
571
const SCEV *RHS =
572
SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
573
SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
574
auto LimitCheckPred =
575
ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
576
577
LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
578
LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
579
LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
580
581
auto *LimitCheck =
582
expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
583
auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
584
GuardStart, GuardLimit);
585
IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
586
return Builder.CreateFreeze(
587
Builder.CreateAnd(FirstIterationCheck, LimitCheck));
588
}
589
590
std::optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
591
LoopICmp LatchCheck, LoopICmp RangeCheck, SCEVExpander &Expander,
592
Instruction *Guard) {
593
auto *Ty = RangeCheck.IV->getType();
594
const SCEV *GuardStart = RangeCheck.IV->getStart();
595
const SCEV *GuardLimit = RangeCheck.Limit;
596
const SCEV *LatchStart = LatchCheck.IV->getStart();
597
const SCEV *LatchLimit = LatchCheck.Limit;
598
// Subtlety: We need all the values to be *invariant* across all iterations,
599
// but we only need to check expansion safety for those which *aren't*
600
// already guaranteed to dominate the guard.
601
if (!isLoopInvariantValue(GuardStart) ||
602
!isLoopInvariantValue(GuardLimit) ||
603
!isLoopInvariantValue(LatchStart) ||
604
!isLoopInvariantValue(LatchLimit)) {
605
LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
606
return std::nullopt;
607
}
608
if (!Expander.isSafeToExpandAt(LatchStart, Guard) ||
609
!Expander.isSafeToExpandAt(LatchLimit, Guard)) {
610
LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
611
return std::nullopt;
612
}
613
// The decrement of the latch check IV should be the same as the
614
// rangeCheckIV.
615
auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
616
if (RangeCheck.IV != PostDecLatchCheckIV) {
617
LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
618
<< *PostDecLatchCheckIV
619
<< " and RangeCheckIV: " << *RangeCheck.IV << "\n");
620
return std::nullopt;
621
}
622
623
// Generate the widened condition for CountDownLoop:
624
// guardStart u< guardLimit &&
625
// latchLimit <pred> 1.
626
// See the header comment for reasoning of the checks.
627
auto LimitCheckPred =
628
ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
629
auto *FirstIterationCheck = expandCheck(Expander, Guard,
630
ICmpInst::ICMP_ULT,
631
GuardStart, GuardLimit);
632
auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
633
SE->getOne(Ty));
634
IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
635
return Builder.CreateFreeze(
636
Builder.CreateAnd(FirstIterationCheck, LimitCheck));
637
}
638
639
static void normalizePredicate(ScalarEvolution *SE, Loop *L,
640
LoopICmp& RC) {
641
// LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the
642
// ULT/UGE form for ease of handling by our caller.
643
if (ICmpInst::isEquality(RC.Pred) &&
644
RC.IV->getStepRecurrence(*SE)->isOne() &&
645
SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
646
RC.Pred = RC.Pred == ICmpInst::ICMP_NE ?
647
ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
648
}
649
650
/// If ICI can be widened to a loop invariant condition emits the loop
651
/// invariant condition in the loop preheader and return it, otherwise
652
/// returns std::nullopt.
653
std::optional<Value *>
654
LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
655
Instruction *Guard) {
656
LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
657
LLVM_DEBUG(ICI->dump());
658
659
// parseLoopStructure guarantees that the latch condition is:
660
// ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
661
// We are looking for the range checks of the form:
662
// i u< guardLimit
663
auto RangeCheck = parseLoopICmp(ICI);
664
if (!RangeCheck) {
665
LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
666
return std::nullopt;
667
}
668
LLVM_DEBUG(dbgs() << "Guard check:\n");
669
LLVM_DEBUG(RangeCheck->dump());
670
if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
671
LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
672
<< RangeCheck->Pred << ")!\n");
673
return std::nullopt;
674
}
675
auto *RangeCheckIV = RangeCheck->IV;
676
if (!RangeCheckIV->isAffine()) {
677
LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
678
return std::nullopt;
679
}
680
auto *Step = RangeCheckIV->getStepRecurrence(*SE);
681
// We cannot just compare with latch IV step because the latch and range IVs
682
// may have different types.
683
if (!isSupportedStep(Step)) {
684
LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
685
return std::nullopt;
686
}
687
auto *Ty = RangeCheckIV->getType();
688
auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty);
689
if (!CurrLatchCheckOpt) {
690
LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
691
"corresponding to range type: "
692
<< *Ty << "\n");
693
return std::nullopt;
694
}
695
696
LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
697
// At this point, the range and latch step should have the same type, but need
698
// not have the same value (we support both 1 and -1 steps).
699
assert(Step->getType() ==
700
CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
701
"Range and latch steps should be of same type!");
702
if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
703
LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
704
return std::nullopt;
705
}
706
707
if (Step->isOne())
708
return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
709
Expander, Guard);
710
else {
711
assert(Step->isAllOnesValue() && "Step should be -1!");
712
return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
713
Expander, Guard);
714
}
715
}
716
717
void LoopPredication::widenChecks(SmallVectorImpl<Value *> &Checks,
718
SmallVectorImpl<Value *> &WidenedChecks,
719
SCEVExpander &Expander, Instruction *Guard) {
720
for (auto &Check : Checks)
721
if (ICmpInst *ICI = dyn_cast<ICmpInst>(Check))
722
if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Guard)) {
723
WidenedChecks.push_back(Check);
724
Check = *NewRangeCheck;
725
}
726
}
727
728
bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
729
SCEVExpander &Expander) {
730
LLVM_DEBUG(dbgs() << "Processing guard:\n");
731
LLVM_DEBUG(Guard->dump());
732
733
TotalConsidered++;
734
SmallVector<Value *, 4> Checks;
735
SmallVector<Value *> WidenedChecks;
736
parseWidenableGuard(Guard, Checks);
737
widenChecks(Checks, WidenedChecks, Expander, Guard);
738
if (WidenedChecks.empty())
739
return false;
740
741
TotalWidened += WidenedChecks.size();
742
743
// Emit the new guard condition
744
IRBuilder<> Builder(findInsertPt(Guard, Checks));
745
Value *AllChecks = Builder.CreateAnd(Checks);
746
auto *OldCond = Guard->getOperand(0);
747
Guard->setOperand(0, AllChecks);
748
if (InsertAssumesOfPredicatedGuardsConditions) {
749
Builder.SetInsertPoint(&*++BasicBlock::iterator(Guard));
750
Builder.CreateAssumption(OldCond);
751
}
752
RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU);
753
754
LLVM_DEBUG(dbgs() << "Widened checks = " << WidenedChecks.size() << "\n");
755
return true;
756
}
757
758
bool LoopPredication::widenWidenableBranchGuardConditions(
759
BranchInst *BI, SCEVExpander &Expander) {
760
assert(isGuardAsWidenableBranch(BI) && "Must be!");
761
LLVM_DEBUG(dbgs() << "Processing guard:\n");
762
LLVM_DEBUG(BI->dump());
763
764
TotalConsidered++;
765
SmallVector<Value *, 4> Checks;
766
SmallVector<Value *> WidenedChecks;
767
parseWidenableGuard(BI, Checks);
768
// At the moment, our matching logic for wideable conditions implicitly
769
// assumes we preserve the form: (br (and Cond, WC())). FIXME
770
auto WC = extractWidenableCondition(BI);
771
Checks.push_back(WC);
772
widenChecks(Checks, WidenedChecks, Expander, BI);
773
if (WidenedChecks.empty())
774
return false;
775
776
TotalWidened += WidenedChecks.size();
777
778
// Emit the new guard condition
779
IRBuilder<> Builder(findInsertPt(BI, Checks));
780
Value *AllChecks = Builder.CreateAnd(Checks);
781
auto *OldCond = BI->getCondition();
782
BI->setCondition(AllChecks);
783
if (InsertAssumesOfPredicatedGuardsConditions) {
784
BasicBlock *IfTrueBB = BI->getSuccessor(0);
785
Builder.SetInsertPoint(IfTrueBB, IfTrueBB->getFirstInsertionPt());
786
// If this block has other predecessors, we might not be able to use Cond.
787
// In this case, create a Phi where every other input is `true` and input
788
// from guard block is Cond.
789
Value *AssumeCond = Builder.CreateAnd(WidenedChecks);
790
if (!IfTrueBB->getUniquePredecessor()) {
791
auto *GuardBB = BI->getParent();
792
auto *PN = Builder.CreatePHI(AssumeCond->getType(), pred_size(IfTrueBB),
793
"assume.cond");
794
for (auto *Pred : predecessors(IfTrueBB))
795
PN->addIncoming(Pred == GuardBB ? AssumeCond : Builder.getTrue(), Pred);
796
AssumeCond = PN;
797
}
798
Builder.CreateAssumption(AssumeCond);
799
}
800
RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU);
801
assert(isGuardAsWidenableBranch(BI) &&
802
"Stopped being a guard after transform?");
803
804
LLVM_DEBUG(dbgs() << "Widened checks = " << WidenedChecks.size() << "\n");
805
return true;
806
}
807
808
std::optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
809
using namespace PatternMatch;
810
811
BasicBlock *LoopLatch = L->getLoopLatch();
812
if (!LoopLatch) {
813
LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
814
return std::nullopt;
815
}
816
817
auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
818
if (!BI || !BI->isConditional()) {
819
LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
820
return std::nullopt;
821
}
822
BasicBlock *TrueDest = BI->getSuccessor(0);
823
assert(
824
(TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) &&
825
"One of the latch's destinations must be the header");
826
827
auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
828
if (!ICI) {
829
LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
830
return std::nullopt;
831
}
832
auto Result = parseLoopICmp(ICI);
833
if (!Result) {
834
LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
835
return std::nullopt;
836
}
837
838
if (TrueDest != L->getHeader())
839
Result->Pred = ICmpInst::getInversePredicate(Result->Pred);
840
841
// Check affine first, so if it's not we don't try to compute the step
842
// recurrence.
843
if (!Result->IV->isAffine()) {
844
LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
845
return std::nullopt;
846
}
847
848
auto *Step = Result->IV->getStepRecurrence(*SE);
849
if (!isSupportedStep(Step)) {
850
LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
851
return std::nullopt;
852
}
853
854
auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
855
if (Step->isOne()) {
856
return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
857
Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
858
} else {
859
assert(Step->isAllOnesValue() && "Step should be -1!");
860
return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
861
Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
862
}
863
};
864
865
normalizePredicate(SE, L, *Result);
866
if (IsUnsupportedPredicate(Step, Result->Pred)) {
867
LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
868
<< ")!\n");
869
return std::nullopt;
870
}
871
872
return Result;
873
}
874
875
bool LoopPredication::isLoopProfitableToPredicate() {
876
if (SkipProfitabilityChecks)
877
return true;
878
879
SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges;
880
L->getExitEdges(ExitEdges);
881
// If there is only one exiting edge in the loop, it is always profitable to
882
// predicate the loop.
883
if (ExitEdges.size() == 1)
884
return true;
885
886
// Calculate the exiting probabilities of all exiting edges from the loop,
887
// starting with the LatchExitProbability.
888
// Heuristic for profitability: If any of the exiting blocks' probability of
889
// exiting the loop is larger than exiting through the latch block, it's not
890
// profitable to predicate the loop.
891
auto *LatchBlock = L->getLoopLatch();
892
assert(LatchBlock && "Should have a single latch at this point!");
893
auto *LatchTerm = LatchBlock->getTerminator();
894
assert(LatchTerm->getNumSuccessors() == 2 &&
895
"expected to be an exiting block with 2 succs!");
896
unsigned LatchBrExitIdx =
897
LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
898
// We compute branch probabilities without BPI. We do not rely on BPI since
899
// Loop predication is usually run in an LPM and BPI is only preserved
900
// lossily within loop pass managers, while BPI has an inherent notion of
901
// being complete for an entire function.
902
903
// If the latch exits into a deoptimize or an unreachable block, do not
904
// predicate on that latch check.
905
auto *LatchExitBlock = LatchTerm->getSuccessor(LatchBrExitIdx);
906
if (isa<UnreachableInst>(LatchTerm) ||
907
LatchExitBlock->getTerminatingDeoptimizeCall())
908
return false;
909
910
// Latch terminator has no valid profile data, so nothing to check
911
// profitability on.
912
if (!hasValidBranchWeightMD(*LatchTerm))
913
return true;
914
915
auto ComputeBranchProbability =
916
[&](const BasicBlock *ExitingBlock,
917
const BasicBlock *ExitBlock) -> BranchProbability {
918
auto *Term = ExitingBlock->getTerminator();
919
unsigned NumSucc = Term->getNumSuccessors();
920
if (MDNode *ProfileData = getValidBranchWeightMDNode(*Term)) {
921
SmallVector<uint32_t> Weights;
922
extractBranchWeights(ProfileData, Weights);
923
uint64_t Numerator = 0, Denominator = 0;
924
for (auto [i, Weight] : llvm::enumerate(Weights)) {
925
if (Term->getSuccessor(i) == ExitBlock)
926
Numerator += Weight;
927
Denominator += Weight;
928
}
929
// If all weights are zero act as if there was no profile data
930
if (Denominator == 0)
931
return BranchProbability::getBranchProbability(1, NumSucc);
932
return BranchProbability::getBranchProbability(Numerator, Denominator);
933
} else {
934
assert(LatchBlock != ExitingBlock &&
935
"Latch term should always have profile data!");
936
// No profile data, so we choose the weight as 1/num_of_succ(Src)
937
return BranchProbability::getBranchProbability(1, NumSucc);
938
}
939
};
940
941
BranchProbability LatchExitProbability =
942
ComputeBranchProbability(LatchBlock, LatchExitBlock);
943
944
// Protect against degenerate inputs provided by the user. Providing a value
945
// less than one, can invert the definition of profitable loop predication.
946
float ScaleFactor = LatchExitProbabilityScale;
947
if (ScaleFactor < 1) {
948
LLVM_DEBUG(
949
dbgs()
950
<< "Ignored user setting for loop-predication-latch-probability-scale: "
951
<< LatchExitProbabilityScale << "\n");
952
LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
953
ScaleFactor = 1.0;
954
}
955
const auto LatchProbabilityThreshold = LatchExitProbability * ScaleFactor;
956
957
for (const auto &ExitEdge : ExitEdges) {
958
BranchProbability ExitingBlockProbability =
959
ComputeBranchProbability(ExitEdge.first, ExitEdge.second);
960
// Some exiting edge has higher probability than the latch exiting edge.
961
// No longer profitable to predicate.
962
if (ExitingBlockProbability > LatchProbabilityThreshold)
963
return false;
964
}
965
966
// We have concluded that the most probable way to exit from the
967
// loop is through the latch (or there's no profile information and all
968
// exits are equally likely).
969
return true;
970
}
971
972
/// If we can (cheaply) find a widenable branch which controls entry into the
973
/// loop, return it.
974
static BranchInst *FindWidenableTerminatorAboveLoop(Loop *L, LoopInfo &LI) {
975
// Walk back through any unconditional executed blocks and see if we can find
976
// a widenable condition which seems to control execution of this loop. Note
977
// that we predict that maythrow calls are likely untaken and thus that it's
978
// profitable to widen a branch before a maythrow call with a condition
979
// afterwards even though that may cause the slow path to run in a case where
980
// it wouldn't have otherwise.
981
BasicBlock *BB = L->getLoopPreheader();
982
if (!BB)
983
return nullptr;
984
do {
985
if (BasicBlock *Pred = BB->getSinglePredecessor())
986
if (BB == Pred->getSingleSuccessor()) {
987
BB = Pred;
988
continue;
989
}
990
break;
991
} while (true);
992
993
if (BasicBlock *Pred = BB->getSinglePredecessor()) {
994
if (auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
995
if (BI->getSuccessor(0) == BB && isWidenableBranch(BI))
996
return BI;
997
}
998
return nullptr;
999
}
1000
1001
/// Return the minimum of all analyzeable exit counts. This is an upper bound
1002
/// on the actual exit count. If there are not at least two analyzeable exits,
1003
/// returns SCEVCouldNotCompute.
1004
static const SCEV *getMinAnalyzeableBackedgeTakenCount(ScalarEvolution &SE,
1005
DominatorTree &DT,
1006
Loop *L) {
1007
SmallVector<BasicBlock *, 16> ExitingBlocks;
1008
L->getExitingBlocks(ExitingBlocks);
1009
1010
SmallVector<const SCEV *, 4> ExitCounts;
1011
for (BasicBlock *ExitingBB : ExitingBlocks) {
1012
const SCEV *ExitCount = SE.getExitCount(L, ExitingBB);
1013
if (isa<SCEVCouldNotCompute>(ExitCount))
1014
continue;
1015
assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
1016
"We should only have known counts for exiting blocks that "
1017
"dominate latch!");
1018
ExitCounts.push_back(ExitCount);
1019
}
1020
if (ExitCounts.size() < 2)
1021
return SE.getCouldNotCompute();
1022
return SE.getUMinFromMismatchedTypes(ExitCounts);
1023
}
1024
1025
/// This implements an analogous, but entirely distinct transform from the main
1026
/// loop predication transform. This one is phrased in terms of using a
1027
/// widenable branch *outside* the loop to allow us to simplify loop exits in a
1028
/// following loop. This is close in spirit to the IndVarSimplify transform
1029
/// of the same name, but is materially different widening loosens legality
1030
/// sharply.
1031
bool LoopPredication::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
1032
// The transformation performed here aims to widen a widenable condition
1033
// above the loop such that all analyzeable exit leading to deopt are dead.
1034
// It assumes that the latch is the dominant exit for profitability and that
1035
// exits branching to deoptimizing blocks are rarely taken. It relies on the
1036
// semantics of widenable expressions for legality. (i.e. being able to fall
1037
// down the widenable path spuriously allows us to ignore exit order,
1038
// unanalyzeable exits, side effects, exceptional exits, and other challenges
1039
// which restrict the applicability of the non-WC based version of this
1040
// transform in IndVarSimplify.)
1041
//
1042
// NOTE ON POISON/UNDEF - We're hoisting an expression above guards which may
1043
// imply flags on the expression being hoisted and inserting new uses (flags
1044
// are only correct for current uses). The result is that we may be
1045
// inserting a branch on the value which can be either poison or undef. In
1046
// this case, the branch can legally go either way; we just need to avoid
1047
// introducing UB. This is achieved through the use of the freeze
1048
// instruction.
1049
1050
SmallVector<BasicBlock *, 16> ExitingBlocks;
1051
L->getExitingBlocks(ExitingBlocks);
1052
1053
if (ExitingBlocks.empty())
1054
return false; // Nothing to do.
1055
1056
auto *Latch = L->getLoopLatch();
1057
if (!Latch)
1058
return false;
1059
1060
auto *WidenableBR = FindWidenableTerminatorAboveLoop(L, *LI);
1061
if (!WidenableBR)
1062
return false;
1063
1064
const SCEV *LatchEC = SE->getExitCount(L, Latch);
1065
if (isa<SCEVCouldNotCompute>(LatchEC))
1066
return false; // profitability - want hot exit in analyzeable set
1067
1068
// At this point, we have found an analyzeable latch, and a widenable
1069
// condition above the loop. If we have a widenable exit within the loop
1070
// (for which we can't compute exit counts), drop the ability to further
1071
// widen so that we gain ability to analyze it's exit count and perform this
1072
// transform. TODO: It'd be nice to know for sure the exit became
1073
// analyzeable after dropping widenability.
1074
bool ChangedLoop = false;
1075
1076
for (auto *ExitingBB : ExitingBlocks) {
1077
if (LI->getLoopFor(ExitingBB) != L)
1078
continue;
1079
1080
auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1081
if (!BI)
1082
continue;
1083
1084
if (auto WC = extractWidenableCondition(BI))
1085
if (L->contains(BI->getSuccessor(0))) {
1086
assert(WC->hasOneUse() && "Not appropriate widenable branch!");
1087
WC->user_back()->replaceUsesOfWith(
1088
WC, ConstantInt::getTrue(BI->getContext()));
1089
ChangedLoop = true;
1090
}
1091
}
1092
if (ChangedLoop)
1093
SE->forgetLoop(L);
1094
1095
// The insertion point for the widening should be at the widenably call, not
1096
// at the WidenableBR. If we do this at the widenableBR, we can incorrectly
1097
// change a loop-invariant condition to a loop-varying one.
1098
auto *IP = cast<Instruction>(WidenableBR->getCondition());
1099
1100
// The use of umin(all analyzeable exits) instead of latch is subtle, but
1101
// important for profitability. We may have a loop which hasn't been fully
1102
// canonicalized just yet. If the exit we chose to widen is provably never
1103
// taken, we want the widened form to *also* be provably never taken. We
1104
// can't guarantee this as a current unanalyzeable exit may later become
1105
// analyzeable, but we can at least avoid the obvious cases.
1106
const SCEV *MinEC = getMinAnalyzeableBackedgeTakenCount(*SE, *DT, L);
1107
if (isa<SCEVCouldNotCompute>(MinEC) || MinEC->getType()->isPointerTy() ||
1108
!SE->isLoopInvariant(MinEC, L) ||
1109
!Rewriter.isSafeToExpandAt(MinEC, IP))
1110
return ChangedLoop;
1111
1112
Rewriter.setInsertPoint(IP);
1113
IRBuilder<> B(IP);
1114
1115
bool InvalidateLoop = false;
1116
Value *MinECV = nullptr; // lazily generated if needed
1117
for (BasicBlock *ExitingBB : ExitingBlocks) {
1118
// If our exiting block exits multiple loops, we can only rewrite the
1119
// innermost one. Otherwise, we're changing how many times the innermost
1120
// loop runs before it exits.
1121
if (LI->getLoopFor(ExitingBB) != L)
1122
continue;
1123
1124
// Can't rewrite non-branch yet.
1125
auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1126
if (!BI)
1127
continue;
1128
1129
// If already constant, nothing to do.
1130
if (isa<Constant>(BI->getCondition()))
1131
continue;
1132
1133
const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1134
if (isa<SCEVCouldNotCompute>(ExitCount) ||
1135
ExitCount->getType()->isPointerTy() ||
1136
!Rewriter.isSafeToExpandAt(ExitCount, WidenableBR))
1137
continue;
1138
1139
const bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1140
BasicBlock *ExitBB = BI->getSuccessor(ExitIfTrue ? 0 : 1);
1141
if (!ExitBB->getPostdominatingDeoptimizeCall())
1142
continue;
1143
1144
/// Here we can be fairly sure that executing this exit will most likely
1145
/// lead to executing llvm.experimental.deoptimize.
1146
/// This is a profitability heuristic, not a legality constraint.
1147
1148
// If we found a widenable exit condition, do two things:
1149
// 1) fold the widened exit test into the widenable condition
1150
// 2) fold the branch to untaken - avoids infinite looping
1151
1152
Value *ECV = Rewriter.expandCodeFor(ExitCount);
1153
if (!MinECV)
1154
MinECV = Rewriter.expandCodeFor(MinEC);
1155
Value *RHS = MinECV;
1156
if (ECV->getType() != RHS->getType()) {
1157
Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
1158
ECV = B.CreateZExt(ECV, WiderTy);
1159
RHS = B.CreateZExt(RHS, WiderTy);
1160
}
1161
assert(!Latch || DT->dominates(ExitingBB, Latch));
1162
Value *NewCond = B.CreateICmp(ICmpInst::ICMP_UGT, ECV, RHS);
1163
// Freeze poison or undef to an arbitrary bit pattern to ensure we can
1164
// branch without introducing UB. See NOTE ON POISON/UNDEF above for
1165
// context.
1166
NewCond = B.CreateFreeze(NewCond);
1167
1168
widenWidenableBranch(WidenableBR, NewCond);
1169
1170
Value *OldCond = BI->getCondition();
1171
BI->setCondition(ConstantInt::get(OldCond->getType(), !ExitIfTrue));
1172
InvalidateLoop = true;
1173
}
1174
1175
if (InvalidateLoop)
1176
// We just mutated a bunch of loop exits changing there exit counts
1177
// widely. We need to force recomputation of the exit counts given these
1178
// changes. Note that all of the inserted exits are never taken, and
1179
// should be removed next time the CFG is modified.
1180
SE->forgetLoop(L);
1181
1182
// Always return `true` since we have moved the WidenableBR's condition.
1183
return true;
1184
}
1185
1186
bool LoopPredication::runOnLoop(Loop *Loop) {
1187
L = Loop;
1188
1189
LLVM_DEBUG(dbgs() << "Analyzing ");
1190
LLVM_DEBUG(L->dump());
1191
1192
Module *M = L->getHeader()->getModule();
1193
1194
// There is nothing to do if the module doesn't use guards
1195
auto *GuardDecl =
1196
M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
1197
bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
1198
auto *WCDecl = M->getFunction(
1199
Intrinsic::getName(Intrinsic::experimental_widenable_condition));
1200
bool HasWidenableConditions =
1201
PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
1202
if (!HasIntrinsicGuards && !HasWidenableConditions)
1203
return false;
1204
1205
DL = &M->getDataLayout();
1206
1207
Preheader = L->getLoopPreheader();
1208
if (!Preheader)
1209
return false;
1210
1211
auto LatchCheckOpt = parseLoopLatchICmp();
1212
if (!LatchCheckOpt)
1213
return false;
1214
LatchCheck = *LatchCheckOpt;
1215
1216
LLVM_DEBUG(dbgs() << "Latch check:\n");
1217
LLVM_DEBUG(LatchCheck.dump());
1218
1219
if (!isLoopProfitableToPredicate()) {
1220
LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
1221
return false;
1222
}
1223
// Collect all the guards into a vector and process later, so as not
1224
// to invalidate the instruction iterator.
1225
SmallVector<IntrinsicInst *, 4> Guards;
1226
SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
1227
for (const auto BB : L->blocks()) {
1228
for (auto &I : *BB)
1229
if (isGuard(&I))
1230
Guards.push_back(cast<IntrinsicInst>(&I));
1231
if (PredicateWidenableBranchGuards &&
1232
isGuardAsWidenableBranch(BB->getTerminator()))
1233
GuardsAsWidenableBranches.push_back(
1234
cast<BranchInst>(BB->getTerminator()));
1235
}
1236
1237
SCEVExpander Expander(*SE, *DL, "loop-predication");
1238
bool Changed = false;
1239
for (auto *Guard : Guards)
1240
Changed |= widenGuardConditions(Guard, Expander);
1241
for (auto *Guard : GuardsAsWidenableBranches)
1242
Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
1243
Changed |= predicateLoopExits(L, Expander);
1244
1245
if (MSSAU && VerifyMemorySSA)
1246
MSSAU->getMemorySSA()->verifyMemorySSA();
1247
return Changed;
1248
}
1249
1250